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Abstract

We introduce a computable framework for Lebesgue’s
measure and integration theory in the spirit of domain the-
ory. For an effectively given locally compact second count-
able Hausdorff space and an effectively given locally fi-
nite Borel measure on the space, we define the notion of
a computable measurable set with respect to the given mea-
sure, which is stronger thañSanin’s recursive measurable
set. The set of computable measurable subsets is closed
under complementation, finite unions and finite intersec-
tions. We then introduce interval-valued measurable func-
tions and develop the notion of computable measurable
functions using interval-valued simple functions. This leads
us to the interval versions of the main results of the theory
of Lebesgue integration which provide a computable frame-
work for measure and integration theory. The Lebesgue in-
tegral of a computable integrable function with respect to
an effectively given (σ-)finite Borel measure on an effec-
tively given (locally) compact second countable Hausdorff
space can be computed up to any required accuracy.

Key Words: Domain theory, data type, interval-valued
measurable function, interval-valued Lebesgue integral.

Dedication: This paper is dedicated to the historical
memory of Jamshid Kashani (d. 1429), the Iranian
mathematician who was the first to use the recursive
fixed point method in analysis with which he computed
sin 1◦ correct to 9 sexagesimal places; he also com-
puted π to 16 decimal places [3, pages 7 and 151].

1. Introduction

In the past decades, there have been a wide range of
applications of measure and integration theory in different
branches of computer science including in probabilistic se-
mantics [20, 15], stochastic hybrid systems [2] and labelled
Markov processes [9, 5]. Nevertheless, a systematic gen-

eral framework for computability in measure and integra-
tion theory still remains in its infancy.

Computability of continuous functions and their inte-
grals has been addressed by different schools in computable
analysis (for example [18, p 37] and [23, p 182]). In early
1990’s, the author developed a domain-theoretic framework
for measure and integration theory which gave rise to a gen-
eralized Riemann integral [7, 6, 8, 10, 16, 1, 17]. It has
provided a computable framework for measure theory and
the Riemann theory of integration. However, this only deals
with almost everywhere continuous functions. Computabil-
ity of measures on the unit interval has also been devel-
oped in type two theory [22] and, in addition, by using the
Prokhorov distance in the metric space of measures [12].

Computability of measurable subsets has a different
story. In 1950’s, based on the Russian approach to com-
putability in analysis, N. A.S̃anin [21] initiated research
into computability of measurable sets in Euclidean spaces
with respect to the Lebesgue measure. According to his
definition, a bounded measurable set isrecursiveif there
exists a recursive sequence of “simple” open sets, namely
finite unions of bounded rational open intervals, such that
the Lebesgue measure of the symmetric difference of the set
and the elements of the sequence tends to zero effectively.

The notion of a recursive measurable set is equivalent
to that of arecursively approximable set, defined by Ker-I
Ko in terms of a function-oracle [13]. The measure of the
symmetric difference of two sets provides a pseudo-metric
on the space of measurable subsets. Thus,S̃anin’s notion
is also at the basis of the approach adopted by researchers
in type two theory of computability [25, 24], where an ab-
stract computable measure space is defined as one which is
generated by a countable ring of subsets and which is en-
dowed with the pseudo-metric of the measure of symmetric
difference.

We aim to develop here a new approach to computability
of measurable sets and functions that is motivated by inter-
val analysis and domain theory, where data types for mathe-
matical objects are produced by providing lower and upper
bounds for them. As a directly relevant example, in [11] a
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computable framework for geometric objects is constructed
in which a subset of a topological space is approximated
from inside and outside by open subsets.

In this paper, a combined measure-theoretic and set-
theoretic approach is designed in which a computable mea-
surable set of a countably based locally compact Hausdorff
space is given by the intersection of a recursive sequence
of open sets containing the set and the union of a recursive
sequence of closed sets contained in the set. Our notion of
a computable measurable set, which gives approximations
to a measurable set both from within and from outside, is
stronger thañSanin’s recursive measurable sets.

A computable measurable set in our framework is char-
acterized for each positive integern by a recursively given
closed set contained in the set and a recursively given open
set containing the set, whose measure differ by less that
1/2n. This provides a data type for measurable sets and
naturally leads us to consider interval-valued measurable
functions, which in turn give us a date type for measurable
functions. We derive interval versions of all major resultsin
Lebesgue’s theory of integration which also furnish an ef-
fective method to compute the Lebesgue integral of a com-
putable measurable function.

It is assumed that the reader is familiar with the basic
concepts of recursion theory as in [4], the elements of real
number computability, in particular the notions of a com-
putable real number and computable sequences of real num-
bers together with their main properties, as in [18, Chapter
0] and finally a basic knowledge of measure and integration
theory as in [19, 14].

2. Computable measurable sets

In this section we introduce our notion of a computable
measurable set for Borel measures on locally compact sec-
ond countable Hausdorff spaces, which includes the case of
then-dimensional Lebesgue measure onR

n. We first recall
a number of definitions.

A Hausdorff topological space is said to beσ-compactif
there exists an increasing sequence of compact sets(Xi)i∈ω
with X =

⋃

i∈ωXi.
A measureµ on a topological space is said to beregular

if for any µ-measurable setA we have:

µ(A) = inf{µ(O) : A ⊂ O, O open}

= sup{µ(C) : C ⊂ A, C compact}.

A Borel measureµ on a Hausdorff spaceX is said to be
Locally finite if for any compact subsetK ⊂ X we have
µ(K) <∞.

We start by providing a simple characterization of a mea-
surable set on locally compact second countable Hausdorff
spaces.

Theorem 2.1 LetX be a locally compact second countable
Hausdorff space andµ a locally finite Borel measure on
X . Then a subsetA ⊂ X is µ-measurable iff for each
ǫ > 0 there exist an open setO and a closed setC such that
C ⊂ A ⊂ O with µ(O \ C) < ǫ.

Proof The “only if” part follows from Theorem 2.14
(Riesz’s Representation Theorem) and Theorems 2.17 and
2.18 in [19] as follows. SinceX is second countable, ev-
ery open set inX is σ-compact, it follows from Theorem
2.18 above thatµ is regular. By Theorems 2.14 and 2.17,
for theµ-measurable subsetA and anyǫ > 0, there exist
an open setO and a closed setC such thatC ⊂ A ⊂ O
with µ(O \ C) < ǫ as required. For the “if part”, we put
ǫ = 1/n for any positive integern. Then there are open
and closed setsOn andCn such thatCn ⊂ A ⊂ On with
µ(On\Cn) < 1/n. LetF =

⋃

n≥1 Cn andG =
⋂

n≥1On.
ThenF andG areFσ andGδ subsets respectively and we
haveF ⊂ A ⊂ G with µ(G \ F ) = 0. Hence,A is µ-
measurable.�

We will use the following consequence of the above the-
orem to develop our computability theory for measurable
subsets.

Corollary 2.2 Let X be a locally compact second count-
able Hausdorff space, withX =

⋃

i∈ωXi where eachXi is
compact, andµ a locally finite Borel measure onX . Then
A ⊂ X is µ-measurable iff for eachi ≥ 0 andǫ > 0, there
are open setsU ⊂ X andV ⊂ X such that

Xi \ U ⊂ A ∩Xi ⊂ V ∩Xi

and
µ(Xi ∩ U) + µ(Xi ∩ V ) − µ(Xi) < ǫ.

Proof SupposeA isµ-measurable andǫ > 0. ThenXi∩A
is µ-measurable for eachi ≥ 0 and by Theorem 2.1, there
exist a closed setC and an open setO such thatC ⊂ A ⊂ O
andµ(O\C) < ǫ. PutU = X \C andV = O. Conversely,
if for each i ≥ 0 andǫ > 0 two open setsU andV with
the above properties exist, then by Theorem 2.1,Xi ∩ A
is µ-measurable, and thusA =

⋃

i∈ω(Xi ∩ A) is alsoµ-
measurable.�

We develop the notion of a computable measurable set by
using the effective version of the statement in Corollary 2.2.
We need the following basic results about computable se-
quences of real numbers.

Proposition 2.3 (i) If (aijn)i,j,n∈ω is a computable triple
sequence of real numbers converging effectively ini,
j and n as j → ∞ with limj→∞ aij,n = bin then
(bin)i,n∈ω is a computable double sequence of real
numbers.
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(ii) If (aij)i,j∈ω is a computable double sequence of real
numbers which converges monotonically asj → ∞ to
a computable sequence of real numbers(bi)i∈ω , i.e.,
aij ≤ ai(j+1) for all i, j ∈ ω and bi = limj→∞ aij
then the convergence of(aij)i,j∈ω is effective in bothi
andj asj → ∞.

Proof (i) This is a straightforward extension of the result
in [18, page 20] for computable double sequences of real
numbers to computable triple sequence of real numbers.

(ii) [18, page 20].�

We first develop the notion of computable measurable
sets for a finite Borel measure on a compact second count-
able Hausdorff space. This will allow us to see the main
ideas of the construction before extending the notions to
locally finite Borel measures on a locally compact second
countable Hausdorff space.

LetX be a compact second countable Hausdorff space.

Definition 2.4 We say thatX is effectively given with re-
spect to an effective enumeration(Oi)i∈ω of a countable
basis of open sets closed under finite union and intersection
if the following holds:

• O0 = ∅ andO1 = X .

• The predicatesOi ⊆ Oj andOi ⊆ Oj are decidable
for i, j ∈ ω.

• There are total recursive functionsφ andψ such that
Oi ∪Oj = Oφ(i,j) andOi ∩Oj = Oψ(i,j).

• For eachi ∈ ω, the predicateX \Oi ⊂
⋃

1≤m≤nOim
is decidable for any finite set of integersim ∈ ω with
1 ≤ m ≤ n, i.e., from any effective covering of the
compact subsetX \Oi by basic open subsets, one can
effectively obtain a finite subcovering.

SinceOi = ∅ iff Oi ⊆ O0, it follows that the equality rela-
tionOi = ∅ is decidable and we can assume, by redefining
the enumerationO, thatOi = ∅ iff i = 0. We note here that
it would be possible to drop the requirement for the decid-
ability ofOi ⊆ Oj in (ii) at the expense of some more work.
For simplicity though, we choose to keep this condition in
our framework.

From our assumptions, it follows that there exists a to-
tal recursive functionα : N → N

2 such that~Oα(j) :=
(Oα1(j), Oα2(j)) gives an enumeration of covers ofX by
pairs of basic open sets, i.e.,Oα1(j) ∪Oα2(j) = X .

Now assume thatµ is a finite Borel measure on the ef-
fectively given compact second countable spaceX with its
effective enumeration(Oi)i∈ω of basic open sets. We say
that µ is effectively given onX if (µ(Oi))i∈ω is a com-
putable sequence of real numbers.

Definition 2.5 We sayA ⊂ X is aµ-computable measur-
ableset if there exists a total recursive functionβ : N

2 → N

such that the following holds:

(i) The two sequences (Oα1(β(j,n)))j,n∈ω and
(Oα2(β(j,n)))j,n∈ω of open sets are increasing in
j ∈ ω for fixedn ∈ ω and decreasing inn for fixed j.

(ii) For all n ∈ ω, we have:(
⋃

j∈ω Oα1(β(j,n)))
c ⊆ A ⊆

(
⋃

j∈ω Oα2(β(j,n))).

(iii) The two sequences (µ(Oα1(β(j,n))))j,n∈ω and
(µ(Oα2(β(j,n))))j,n∈ω are computable double se-
quences of real numbers converging effective inj and
n asj → ∞.

(iv) For all n ∈ ω, we have:µ(
⋃

j∈ω Oα1(β(j,n))) +
µ(

⋃

j∈ω Oα2(β(j,n))) − µ(X) < 1/2n.

We know by Theorem 2.1 that the conditions in Defini-
tion 2.5 above imply thatA is µ-measurable. Moreover, we
have:

Proposition 2.6 If A is a computableµ-measurable set
thenµ(A) is a computable real number.

Proof Since the convergence in (iii) above is effective in
j andn as j → ∞, it follows from Proposition 2.3 that
µ(X\

⋃

j∈ω Oα1(β(j,n))) andµ(
⋃

j∈ω Oα2(β(j,n))) are com-
putable sequences of real numbers, with the first one in-
creasing and the second one decreasing inn. From (ii)
and (iv), it follows that the common limit of these two se-
quences, i.e.,µ(A), is a computable real number.�

Proposition 2.7 LetO =
⋃

j∈ω Oγ(j) whereγ : N → N is
a total recursive function. ThenO is aµ-computable open
set iffµ(O) is a computable real number.

Proof If O is µ-computable then by Proposition 2.6,µ(O)
is a computable real number. Now, for the converse, as-
sumeµ(O) is a computable real number. It suffices to
show that there is an effective decreasing sequence of ba-
sic open sets whose complements are contained withinO
and whoseµ-measure tend toµ(O). From γ we can ef-
fectively obtain a total recursive functionδ : N → N

such thatO =
⋃

j∈ω Oδ(j) andOδj ⊆ Oδ(j+1) for all
j ∈ ω. Since(µ(Oδ(j)))j∈ω increases monotonically to
the computable real numberµ(O), the convergence is ef-
fective in j. Let n be any positive integer. SinceX is
effectively compact with respect to the basis(Oi)i∈ω , we
can effectively find a finite open coveringX \ Oδ(j+1) ⊂
⋃

1≤m≤nOim with Oik ∩ Oδ(j) = ∅ for 1 ≤ k ≤ m. Us-
ing the total recursive functionφ for binary union (Defini-
tion 2.4), we obtain a total recursive functionσ such that
X \ Oδ(j+1) ⊂ Oσ(j) :=

⋃

1≤m≤nOim . By construction,
we haveµ(X) − µ(Oσ(j)) > µ(O) − 1/2n. Moreover,
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by puttingθ(0) := σ(0) andOθ(j+1) := Oσ(j) ∩ Oθ(j) =
Oψ(σ(j),θ(j)), we obtain a total recursive functionθ which
induces an effective decreasing sequence of basic open sets
that shares the above properties of the sequence induced by
σ. This completes the proof.�

The above characterization of aµ-computable open set co-
incides with that in [11].

2.1 Locally compact spaces

We now extend the notions of the previous section to a
locally compact second countable Hausdorff spaceX . Then
X is σ-compact and there exists an increasing sequence of
compact sets(Xi)i∈ω with X =

⋃

i∈ωXi. Let (Oj)j∈ω
be an effective enumeration of a basis of relatively compact
open sets, which is closed under non-empty finite intersec-
tion and finite union. Then, for eachi ∈ ω, the collection
(Oj ∩ Xi)j∈ω is a countable basis of the relative topology
forXi.

Definition 2.8 We say thatX is effectively given with re-
spect to(Xi)i∈ω and(Oj)j∈ω if the following holds:

(i) O0 = ∅.

(ii) The predicatesOi ⊆ Oj andOi ⊆ Oj are decidable
for i, j ∈ ω.

• There are total recursive functionsφ andψ such that
Oi ∪Oj = Oφ(i,j) andOi ∩Oj = Oψ(i,j).

• For each i, j ∈ ω, the predicateXi \ Oj ⊂
⋃

1≤m≤nOim ∩ Xi is decidable, i.e., from any effec-
tive covering of the compact subsetXi \ Oj one can
effectively obtain a finite subcovering.

As in the compact case, we can and will assume that
Oi = ∅ iff i = 0. From our assumptions, it follows
that there exists a total recursive functionα : N

2 → N
2

such that~Oα(i,j) := (Oα1(i,j), Oα2(i,j)) gives an enumer-
ation of covers ofXi by pairs of basic open sets, i.e.,
Xi ⊂ Oα1(i,j) ∪Oα2(i,j).

Assume thatµ is a locally finite Borel measure on the
effectively given locally compact second countable space
X with its effective enumeration(Oi)i∈ω of basis. We say
thatµ is effectively given onX if (µ(Oj ∩ Xi))i,j∈ω is a
computable double sequence of real numbers.

Definition 2.9 We sayA ⊂ X is aµ-computable measur-
ableset if there exists a total recursive functionβ : N

3 → N

such that

(i) The two triple sequences(Oα1(β(i,j,n)))i,j,n∈ω and
(Oα2(β(i,j,n)))i,j,n∈ω of open sets are both increasing
in i for fixed j andn, increasing inj for fixed i andn
and decreasing inn for fixed i andj.

(ii) For all i, n ∈ ω, we have:(Xi \
⋃

j∈ω Oα1(β(i,j,n))) ⊆
Xi ∩A ⊆ (Xi ∩

⋃

j∈ω Oα2(β(i,j,n))).

(iii) The two sequences(µ(Xi ∩Oα1(β(i,j,n))))i,j,n∈ω and
(µ(Xi∩Oα2(β(i,j,n))))i,j,n∈ω are computable triple se-
quences of real numbers converging effectively ini, j
andn asj → ∞.

(iv) For all i, n ∈ ω, we have:
µ(Xi ∩ (

⋃

j∈ω Oα1(β(i,j,n)))) +
µ(Xi ∩ (

⋃

j∈ω Oα2(β(i,j,n)))) − µ(Xi) < 1/2n.

We know by Theorem 2.1 that the conditions in Defini-
tion 2.9 above imply thatA is µ-measurable. Moreover, we
have:

Proposition 2.10 If A is a computableµ-measurable set
then(µ(A∩Xi))i∈ω is a computable sequence of real num-
bers.

Proof Since the convergence in Definition 2.9(iii) above
is effective in i, j and n as j → ∞, it follows from
Proposition 2.3 thatµ(Xi \

⋃

j∈ω Oα1(β(i,j,n))) andµ(Xi∩
⋃

j∈ω Oα2(β(i,j,n))) are computable double sequences of
real numbers, with the first one increasing and the second
one decreasing inn for fixed i. From (iv) it follows that
these two double sequences of real numbers converge ef-
fectively in n and i to µ(A ∩ Xi) asn → ∞. Thus, by
Proposition 2.3,(µ(A ∩Xi))i∈ω is a computable sequence
of real numbers.�

Proposition 2.11 LetO be a recursive union of basic open
sets. ThenO is aµ-computable open set iff(µ(Xi∩O))i∈ω
is a computable sequence of real numbers.

Proof If O is µ-computable then by Proposition 2.10,
(µ(Xi ∩O))i∈ω is a computable sequence of real numbers.
Now, for the converse, letO =

⋃

j∈ω Oγ(j) where the se-
quence of open sets is increasing andγ : N → N is a total
recursive function and assume(µ(Xi ∩ O))i∈ω is a com-
putable sequence of real numbers. Since

⋃

j∈ω Oγ(j) can
be used as the first sequence of open sets in Definition 2.9,
it suffices to construct the second sequence. Fromγ we
can effectively obtain a total recursive functionδ : N → N

such thatO =
⋃

j∈ω Oδ(j) andOδ(j) ⊆ Oδ(j+1) for all
j ∈ ω. Consider the computable double sequence of real
numbers(µ(Xi∩Oδ(j))i,j∈ω . It monotonically converges to
the computable sequence of real numbers(µ(Xi ∩O))i∈ω .
Thus, by Proposition 2.3, the convergence is effective ini
andj. Letn be any positive integer. SinceX is effectively
locally compact with respect to the basis(Oj)j∈ω and the
sequence of compact subsets(Xi)i∈ω , we can effectively
find a finite open coveringXi \ Oδ(j+1) ⊂

⋃

1≤m≤N Otm
with Otm ∩ Oδ(j) = ∅ for 1 ≤ m ≤ N . Using
the total recursive functionφ for binary union (Defini-
tion 2.8), we obtain a total recursive functionσ such that

4



Xi \Oδ(j+1) ⊂ Oσ(j) :=
⋃

1≤m≤N Otm . By construction,
we haveµ(Xi) − µ(Oσ(j) ∩ Xi) > µ(O ∩ Xi) − 1/2n.
Moreover, by puttingθ(0) := σ(0) andOθ(j+1) := Oσ(j) ∩
Oθ(j) = Oψ(σ(j),θ(j)), for j ≥ 0, we obtain a total recursive
functionθ which induces an effective decreasing sequence
of basic open sets which shares the above properties of the
sequence induced byσ. Since the construction is effective
in i, this completes the proof.�

It follows from Definition 2.9 that any total recursive func-
tion β : N

3 → N which satisfies the following three condi-
tions:

• the two sequences (Oα1(β(i,j,n)))i,j,n∈ω and
(Oα2(β(i,j,n)))i,j,n∈ω of open sets are increasing
in i for fixed j andn, increasing inj for fixed i andn
and decreasing inn for fixed i andj,

• the two sequences(µ(Xi ∩ Oα1(β(i,j,n))))i,j,n∈ω and
(µ(Xi∩Oα2(β(i,j,n))))i,j,n∈ω are computable triple se-
quences of real numbers converging effectively ini, j
andn asj → ∞,

• for all i, n ∈ ω, we have the relation:
µ(Xi ∩ (

⋃

j∈ω Oα1(β(i,j,n)))) +
µ(Xi ∩ (

⋃

j∈ω Oα2(β(i,j,n)))) − µ(Xi) < 1/2n,

defines an equivalence class ofµ-computable mea-
surable sets which differ by a null set. Two canon-
ical representatives of this class are given by the
Gδ set

⋂

n∈ω

⋃

i,j∈ω Oα2(β(i,j,n)) and the Fσ set
(
⋂

n∈ω

⋃

i,j∈ω Oα1(β(i,j,n)))
c.

Moreover, the two parameter family of pairs of closed
and relatively open sets in Definition 2.9(ii), fori, n ∈ ω,
represent a data-type for any memberA of this equivalence
class where(Xi \

⋃

j∈ω Oα1(β(i,j,n))) ⊆ Xi ∩ A ⊆ (Xi ∩
⋃

j∈ω Oα2(β(i,j,n))) and the measure of the relatively open
subset and the closed subset in each pair differ by at most
1/2n, as it follows from 2.9(iv).

Proposition 2.12 (i) The complement of a computable
measurable set is another computable measurable set.

(ii) A finite union or intersection of computable measur-
able subsets is a computable measurable subset.

Proof (i) Interchange1 and2 in the indices ofα andβ in
Definition 2.9

(ii) This follows easily using the total recursive functions
φ andψ for binary union and binary intersection of basic
open sets. intersection.�

However, computable measurable subsets are not closed un-
der countable union or intersection as the following exam-
ple shows.

Example 2.13 Consider the Lebesgue measureλ on the
real line and let(rk)k∈ω be an effective increasing se-
quence of positive rational numbers converging to a left-
computable but non-computable real numberr ∈ R. (Such
a sequence can be constructed from a recursively enumer-
able but non-recursive subset of natural numbers.) Then by
Proposition 2.7, the open interval(0, r) =

⋃

k∈ω(0, rk) is
notµ-computable though for eachk ∈ ω the open interval
(0, rk) is λ-computable.

Finally, for later use, we define the notion of a computable
sequence(Ak)k∈ω of computable measurable functions by
requiring that the properties required in Definition 2.9 for
the computable measurable setsAk for eachk ∈ ω hold
effectively ink ∈ ω:

Definition 2.14 We say(Ak)k∈ω is acomputable sequence
of µ-computable measurable sets if there exists a total re-
cursive functionβ : N

4 → N such that the following four
conditions hold:

(i) The two sequences(Oα1(β(i,j,n,k)))i,j,n,k∈ω and
(Oα2(β(i,j,n,k)))i,j,n,k∈ω of open sets are increasing in
i for fixed j, n andk, increasing inj for fixed i, n and
k, increasing ini for fixedj, n andk and decreasing in
n for fixed i, j andk.

(ii) For all i, n, k ∈ ω, we have:
(Xi \

⋃

j∈ω Oα1(β(i,j,n,k))) ⊆ Xi ∩Ak ⊆
(Xi ∩

⋃

j∈ω Oα2(β(i,j,n,k))).

(iii) The two sequences(µ(Xi ∩ Oα1(β(i,j,n,k))))i,j,n,k∈ω
and(µ(Xi ∩ Oα2(β(i,j,n,k))))i,j,n,k∈ω are computable
quartic sequences of real numbers converging effec-
tively in i, j, n andk asj → ∞.

(iv) For all i, n, k ∈ ω, we have:
µ(Xi ∩ (

⋃

j∈ω Oα1(β(i,j,n,k)))) +
µ(Xi ∩ (

⋃

j∈ω Oα2(β(i,j,n,k)))) − µ(Xi) < 1/2n.

3 Measurable functions

Let (X,M) be a measure space with the underlying set
X and aσ-algebraM of subsets ofX . We work with such a
general space first to develop the notions of interval-valued
measurable functions. Later, in order to develop a com-
putability theory for measurable functions, we assume that
X is a locally compact second countable Hausdorff space,
equipped with itsσ-algebra of measurable subsets induced
by a Borel measureµ onX , i.e. M will be the set of all
µ-measurable subsets ofX .

Given any topological spaceY , we say that a function
f : X → Y is measurable iff−1(B) ∈ M for any Borel
subsetB ⊂ Y . Let IR be the domain of the non-empty
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compact intervals of the real line ordered by reverse inclu-
sion, equipped with itsσ-algebra of Borel subsets induced
from the Scott topology.

Consider the setX →m IR of measurable functionsf :
X → IR, whereR is the extended real line, i.e., the two
point compactification[−∞,∞] of R, where the basic open
sets are of the form(a, b), [−∞, b) and(a,∞], with a, b ∈
R. Each such function is determined by the extended real-
valued lower and upper partsf− andf+ of f defined such
that for eachx ∈ X we havef(x) = [f−(x), f+(x)].

Proposition 3.1 We havef ∈ (X →m IR) iff f−, f+ are
measurable as extended real valued functions.

Since the supremum, respectively infimum, of an in-
creasing, respectively decreasing, sequence of real-valued
measurable functions is measurable, the posetX →m IR is
ω-bi-complete, i.e. the supremum (respectively infimum) of
any increasing (respectively decreasing) sequence of inter-
val valued measurable functions is an interval-valued mea-
surable function. Similarly, since the supremum (respec-
tively infimum) of any (finite or) countable set of measur-
able functions is measurable, it follows thatX →m IR is
ω-inf complete and boundedω-sup complete.

Given a sequence of intervalsxi ∈ IR, i ∈ ω and
x ∈ IR, we write limi→∞ xi = x if x− = limi→∞ x−i
andx+ = limi→∞ x+

i both exist inR with respect to its
compact topology.

Furthermore, we introduce thelim inf − lim sup opera-
tion on sequences inIR which we denote bylim∗:

lim∗ : (IR)ω → IR

(xi)i∈ω 7→ [lim infi→∞ x−i , lim supi→∞ x+
i ]

Note thatlim∗
i→∞ xi for xi ∈ IR is precisely the set of all

limits of convergent sequences(ai)i∈ω with ai ∈ xi. Note
thatlim∗ is monotone but not continuous.

This induces alim inf − lim sup operation on(X →m

IR) as follows:

lim∗ : (X →m IR)ω → (X →m IR)
(fi)i∈ω 7→ [lim infi→∞ f−

i , lim supi→∞ f+
i ]

Thus, (X →m IR) is also lim∗-completesince it has
limits of all countable sequences of intervals. If indeed
f− = limi→∞ f−

i andf+ = limi→∞ f+
i both exist then

we write limi→∞ fi = f = [f−, f+]. Clearly in this case
limi→∞ fi = lim∗

i→∞ fi.
For a subsetA ⊂ X , letχA : X → {0, 1} be the charac-

teristic function of the setA, i.e.,χA(x) = 1 iff x ∈ A. In
analogy with simple functions in classical measure theory
on the one hand and step functions in domain theory on the
other hand, we define:

Definition 3.2 LetAi ⊂ X be measurable subsets for1 ≤
i ≤ n and letαi ∈ IR be real intervals for1 ≤ i ≤ n. Then

s =

n
∑

i=1

αiχAi
: X → IR

is called aninterval-valued simple function.

Note thats = [s−, s+] wheres± : X → R with s± =
∑n
i=1 α

±χAi
are both measurable functions. It follows

thats is an interval-valued measurable function. Note also
that we exclude extended real intervals from the defini-
tion of a simple function and that, as in the classical case,
s takes only a finite number of values and does not de-
pend on the particular representation in terms of measur-
able setsAi’s and intervalsαi’s. There is indeed a canoni-
cal representation ofs for which theαi’s are precisely the
distinct non-zero values ofs andAi is precisely the set
where s takes valueαi. We define theorder o(s) of s
to be the number of distinct non-zero values ofs. Using
the canonical representation ofs we also define thewidth
w(s) of s as the maximum length of the intervalsαi, i.e.,
w(s) = max{α+

i − α−
i : 1 ≤ i ≤ n}. Finally, for the

canonical representation, we define themaximum absolute
valueof s bym(s) = max{|α−

i |, |α
+
i | : 1 ≤ i ≤ n}.

We sayf : X → IR is boundedby a compact interval
K ∈ IR, if for all x ∈ X we have:K ⊑ f(x); we denote
this byK ⊑ f . We first deal with bounded measurable
functions; unbounded functions are addressed in the end of
this section.

Proposition 3.3 Every bounded real-valued measurable
function is the supremum of an increasing sequence of
interval-valued simple functionssn with o(sn) ≤ c 2n,
where c is a positive constant independent ofn, and
w(sn) ≤ 1/2n.

Proof Let the real-valued measurablef : X → R be
bounded so that|f | ≤ M for someM ≥ 0. Let m be
the least non-negative integer such thatM ≤ 2m. For a
positive integern and−2m+n + 1 ≤ k ≤ 2m+n let

Ank =

{x ∈ X :
(k − 1)

2n
≤ f(x)} ∩ {x ∈ X : f(x) <

k

2n
},

which is measurable asf is measurable. Let

sn =
2(n+m)
∑

k=−2(m+n)+1

[

(k − 1)

2n
,
k

2n

]

χAnk
.

Then we havef =
⊔

n≥0 sn with w(sn) ≤ 1/2n with
o(sn) = 2n+m+1 as required.�

The above proposition can easily be extended to bounded
interval-valued measurable functions of typeX → IR.
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3.1 Computable measurable functions

An effective version of Proposition 3.3 provides us with
the notion of a computable real-valued measurable function
and our date type for such functions. LetX be an effectively
given locally compact second countable Hausdorff space as
in Section 2.

Definition 3.4 (i) A simple function

s =

k
∑

i=1

αiχAi
: X → IR

is computableif for 1 ≤ i ≤ k, the subsetAi ⊂ X is
a computable measurable set and the real numbersα−

i

andα+
i are computable real numbers.

(ii) We say thatf : X → R is a computable bounded
measurable function if there is an effective increasing
sequence of computable simple functionssn : X →
IR with f =

⊔

n∈ω sn such that

– there is an effectively given non-negative integer
M ≥ 0 with m(sn) < M for all n ∈ ω,

– w(sn) ≤ 1/2n for all n ∈ ω, and,

– o(sn) ≤ c 2n for some effectively given positive
constantc independent ofn ∈ ω.

Three remarks regarding the notion of a computable simple
function are in order.

(i) Firstly, note that Definition 3.4(i) of a computable sim-
ple function is independent of the choice of the repre-
sentative ofs as the complement and the finite union of
computable measurable sets are both computable mea-
surable sets and also the sum of two computable real
numbers is another computable real number.

(ii) For a computable simple functions the real numbers
w(s) andm(s), defined with respect to the canonical
representation, are computable real numbers.

(iii) We note that for a classical simple functions =
∑k
i=1 aiχAi

: X → R with ai ∈ R the two def-
initions of computability in parts (i) and (ii) of Def-
inition 3.4 are consistent. Indeed, ifAi’s are com-
putable measurable sets andai’s are computable real
numbers, so thats is a computable simple function ac-
cording to Definition 3.4(i), then puttingsn = s for
all n ∈ ω we see thats is computable as a measur-
able function in the sense of Definition 3.4(ii). On the
other hand, suppose the simple functions with canon-
ical representations =

∑k
i=1 aiχAi

: X → R is a
computable measurable function in the sense of Defi-
nition 3.4(ii). LetV = {0} ∪ {ai : 1 ≤ i ≤ k} and

put r = min{|v − w| : v, w ∈ V with v 6= w}. By
assumption, there is an increasing sequence of com-
putable simple functionssn with s =

⊔

n sn and
w(sn) ≤ 1/2n. Fix i with 1 ≤ i ≤ k, and letn be
such that1/2n < r/2. Assumesn =

∑mn

t=1 βntχBnt
.

Then we have

Ai =
⋃

ai∈αnt

Bnt

and it follows thatAi is the finite union of computable
measurable subsets and is thus a computable measur-
able subset by Proposition 2.12. Moreover, for anyt
such thatBnt ⊂ Ai we haveβ−

nt ≤ ai ≤ β+
nt with

β+
nt − β−

nt < 1/2n. Sincen can be chosen arbitrarily
large and sinceβ+

nt andβ−
nt are computable real num-

bers, it follows thatai is a computable real number.

Proposition 3.5 The maximum and minimum of a finite
number of bounded real-valued computable measurable
functions are bounded computable measurable functions.

Consider the increasing sequence of bounded com-
putable measurable functionsfn = (χ(0,rk))k∈ω , where
(rk)k∈ω is the sequence of rational numbers in Exam-
ple 2.13. Sincesupn fn = χ(0,r), we see that the supre-
mum of a countable set of bounded computable measurable
functions is not necessarily computable.

3.2 Unbounded measurable functions

The definitions and results above for bounded measur-
able functions can be extended to unbounded functions as
follows. A countably valued simple functionis a measur-
able functionf : X → R which takes countably many dis-
tinct values; this class of functions has been used in classical
measure and integration theory [14]. We now introduce a
subclass of countably valued simple functions as follows.
A countably valued simple function islocally finite if in
any bounded region inR it only takes a finite number of
distinct values. These definitions extend to interval-valued
functions of typeX → IR. A locally finite interval-valued
simple function is a countably valued simple function such
that any bounded region inR intersects only a finite number
of its distinct values. For a locally finite simple functions
and for a compact intervalK of the real line, we denote by
o(s,K) the number of distinct non-zero values ofs which
intersectK. For any measurable functionf : X → R, there
is an increasing sequence of locally finite interval-valued
simple functions with supremumf . Indeed, for anyn ∈ ω,
let

sn =
∑

k∈Z

[

k

2n
,
k + 1

2n

]

χAk
,

whereAk = {x ∈ X : f(x) ∈ [k/2n, (k + 1)/2k). Then
Ak ’s are measurable sets and we havef =

⊔

n∈ω sn where
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sn is locally finite. The definitions of the previous section
can then be extended to unbounded measurable functions as
follows.

We say that a locally finite simple functions =
∑

k∈ω αkχAk
is computableif (Ak)k∈ω is a computable

sequence of computable measurable subsets (see Defini-
tion 2.14), and(α−

k )k∈ω and(α+
k )k∈ω are both computable

sequences of real numbers. Finally, we say a measurable
map is computable if there is an effective increasing se-
quence of computable locally finite simple functionssn :
X → IR with f =

⊔

n∈ω sn andw(sn) ≤ 1/2n such that
o(sn, [N,N+1]) ≤ c 2n for some effectively given positive
constantc independent ofn andN . All of the results of the
previous section can be extended to the unbounded case.

4 Interval Lebesgue Integral

We are now in a position to define the notion of interval
Lebesgue integral as a map

∫

: (X →m IR) → R with
respect to a measureµ on the measure space(X,M). Later
in this section, in order to develop a computability theory,
we work with a Borel measureµ on a compact or a locally
compact second countable Hausdorff spaceX .

For a simple functions ∈ (X →m IR) with a represen-
tatives =

∑n
i=1 αiχAi

: X → IR, which vanishes outside
a set of finite measure, we define theµ-integralof s as:

∫

X

s dµ =
n

∑

i=1

αiµ(Ai).

It follows that
∫

X
s dµ = [

∫

X
s− dµ,

∫

X
s+ dµ]. Thus, as

in the classical case, the integral of a simple function is in-
dependent of its representative. IfE ⊂ X is measurable,
thens ·χE =

∑n
i=1 αiχAi∩E is also a simple function and,

as in the classical case, whenµ(E) <∞, we define:
∫

E

s dµ =

∫

X

s · χE dµ.

We also immediately deduce the following. Ifsand t are
simple interval-valued functions which are zero outside a
set of measure zero then, for compact intervalsa, b ∈ IR :

(i)
∫

(as+ bt) dµ = a
∫

s dµ+ b
∫

t dµ.

(ii) If s ⊑ t holds a.e., then
∫

s dµ ⊑
∫

t dµ.

Now we deal with measurable functions. We first con-
sider a measurable functionf ∈ (X →m IR) bounded on
a setE with finite measure and define:

Definition 4.1 The Lebesgue integral of any bounded
interval-valued measurable functionf on a measurable sub-
setE with respect to a measureµ onX , such thatµ(E) <
∞, is defined as:

∫

E

f dµ =
⊔

{

∫

E

s dµ : simples ⊑ f}.

We have the equality:
∫

E
f dµ = [

∫

E
f− dµ,

∫

E
f+ dµ].

We usually write
∫

f dµ for
∫

X
f dµ. The following results

easily follows as in the classical case.

Proposition 4.2 If f and g are bounded measurable
interval-valued functions which vanish outside a set of fi-
nite measure then:

(i)
∫

(af + bg) dµ = a
∫

f dµ+ b
∫

g dµ.

(ii) If f ⊑ g holds a.e., then
∫

f dµ ⊑
∫

g dµ.

(iii) If A andB are disjoint measurable subsets then
∫

A∪B

f dµ =

∫

A

f dµ+

∫

B

f dµ.

We can now obtain in a straightforward way the interval
version of some of the classical results in measure theory.
Recall the definitions oflim andlim∗ in (X →m IR).

Proposition 4.3 Bounded Convergence TheoremLet
fn ∈ (X →m IR) be a sequence of uniformly bounded
measurable functions, which vanish outside a set of fi-
nite measure, such thatlimn→∞ fn = f exists. Then
∫

limn→∞ fn dµ = limn→∞

∫

fn dµ.

Corollary 4.4 Monotone Convergence Theorem Let
fn ∈ (X →m IR) be an increasing sequence of measur-
able functions, which vanish outside a set of finite measure,
with f0 bounded. Then

⊔

n∈ω

∫

fn dµ =
∫

(
⊔

n∈ω fn) dµ.

Finally, from the Bounded Convergence Theorem above we
obtain the interval version of Fatou’s lemma.

Lemma 4.5 Fatou’s Lemma Let fn ∈ (X →m IR)
be a sequence of uniformly bounded measurable func-
tions, which vanish outside a set of finite measure. Then
∫

lim∗ fn dµ ⊑ lim∗
∫

fn dµ.

4.1 Computability of Lebesgue integral

We now assumeX is an effectively given second count-
able compact Hausdorff space andµ is an effectively given
finite Borel measureµ on it as described in Section 2. Recall
that we have an effective enumeration(Oj)j∈ω of a count-
able basis ofX with X = O1 such that(µ(Oj))j∈ω is a
computable sequence of real numbers. The following theo-
rem, which is our main result, brings together and uses all
the results in the previous sections, on computable measur-
able sets and functions and on the interval-valued Lebesgue
integral, for the case of a compact second countable Haus-
dorff space.

Theorem 4.6 Supposef is a bounded computable real-
valued measurable function onX . Then the Lebesgue in-
tegral off with respect toµ is computable, i.e., given any
positive integerk we can effectively compute the Lebesgue
integral off up to1/2k accuracy.
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Proof Let M be an effectively given bound forf and
(sn)n∈ω be the increasing sequence of computable simple
functions in(X →m IR) which witnesses the computabil-
ity of f according to Definition 3.4 with effectively given
constantc > 0. By the interval version of the Mono-
tone Convergence Theorem (Corollary 4.4), we know that
∫

f dµ =
⊔

n∈ω

∫

sn dµ, which means that the required
integral lies in each compact interval of the shrinking se-
quence of compact intervals given by the integrals of the
simple functions. Our task is to effectively findn such that
∫

sn dµ provides the required estimate. In fact, using the
canonical representation:

sn =

o(sn)
∑

i=1

αiχAi

we obtain
∫

sn dµ =
∑o(sn)

i=1 αiµ(Ai). Since eachAi is
a computable measurable subset, we can effectively obtain
for each nonnegative integerp an open setOip and a closed
setCip such thatCip ⊂ Ai ⊂ Oip with µ(Oip) andµ(Cip)
computable real numbers satisfyingµ(Oip) − µ(Cip) <
1/2p. We have

o(sn)
∑

i=1

α−
i µ(Cip) ≤

∫

sn dµ ≤

o(sn)
∑

i=1

α+
i µ(Oip).

Estimating the difference between the two sums above we
have:

o(sn)
∑

i=1

α+
i µ(Oip) − α−

i µ(Cip)

=

o(sn)
∑

i=1

α+
i µ(Oip) − α+

i µ(Cip) + α+
i µ(Cip) − α−

i µ(Cip)

=

o(sn)
∑

i=1

α+
i (µ(Oip) − µ(Cip)) + (α+

i − α−
i )µ(Cip)

≤

o(sn)
∑

i=1

m(sn)

2p
+ w(sn)µ(Cip) ≤

m(sn)o(sn)

2p
+
µ(X)

2n
,

sincew(sn) is bounded by1/2n and Cip’s, being con-
tained in the disjoint setsAi, are disjoint for fixedp and
1 ≤ i ≤ o(sn) and their totalµ-measure is therefore
bounded byµ(X). Thus, for our estimate, we conclude that

o(sn)
∑

i=1

α+
i µ(Oip) − α−

i µ(Cip) ≤
m(sn)c2

n

2p
+
µ(X)

2n
,

sinceo(sn) is bounded byc2n.
Note thatµ(X) is a computable number asX = O1;

we can thus effectively obtain a nonnegative integert such

thatµ(X) < 2t. Let the positive integerk be given and put
n = k + t+ 1 and put

p = ⌈logm(sk+t+1)⌉ + ⌈log c⌉ + 2k + t+ 2.

Using the above effectively obtainedn andp, we get

o(sn)
∑

i=1

α+
i µ(Oip) − α−

i µ(Cip)

≤ 1/2k+1 + 1/2k+1 = 1/2k.

It follows that for the above values ofn and p the com-
putable real number

o(sn)
∑

i=1

α+
i µ(Oip)

is within 1/2k of the value of the integral
∫

f dµ. �

4.2 Integral of unbounded functions

The interval valued Lebesgue integral can be defined for
measurable functions on a general measure space(X,M)
as in Section 3. We have shown there that any interval val-
ued measurable function is the supremum of an increasing
sequence of locally finite interval valued simple functions.
Here, we first assume that our measurable functions are de-
fined on a setE ∈ M of finite measureµ(E) <∞. We say
that an infinite sum of compact intervals

∑

i∈ω βi converges
absolutelyif the two infinite sums

∑

i∈ω β
−
i and

∑

i∈ω β
+
i

of real numbers converge absolutely. In this case we write
∑

i∈ω βi = [
∑

i∈ω β
−
i ,

∑

i∈ω β
+
i ]. The Lebesgue integral

of a countably valued, interval valued simple function

s =
∑

i∈ω

αiχAi
: X → IR

which vanishes outsideA is defined as
∫

s dµ =
∑

i∈ω

αiµ(Ai)

provided the infinite sum of compact intervals above con-
verges absolutely. In this case we says is integrable. The
Lebesgue integral of any interval-valued measurable func-
tion f onE is defined as:

∫

E

f dµ

=
⊔

{

∫

E

s dµ : integrable countably valued simples ⊑ f}.

One can then extend the basic results of Lebesgue integra-
tion to the interval case. In particular, we have:

9



Theorem 4.7 Lebesgue’s bounded convergence theorem
Let (fn)n∈ω be a convergent sequence of interval-valued
measurable functions defined onE with f = limn→∞ fn
and suppose that there is an integrable interval-valued
function g also defined onE with µ(E) < ∞ and with
g ⊑ fn for all n ∈ ω. Then,f is integrable onE and
limn→∞

∫

E
fn dµ =

∫

E
f dµ.

Using the notion of a computable measurable function as
in Section 3 on an effectively given second countable com-
pact Hausdorff space, which employs the set of locally finite
simple function, we also have the following generalization
of Theorem 4.6 to unbounded functions.

Theorem 4.8 Supposef is a computable real-valued mea-
surable function on an effectively given second countable
compact Hausdorff spaceX then the Lebesgue integral of
f with respect to any effectively given finite measure onX
is computable, i.e., given any positive integerk we can ef-
fectively compute the Lebesgue integral off up to1/2k ac-
curacy.

Finally, we consider the interval version of the Lebesgue
integral on a measure space with respect to a measure which
is σ-finite, i.e.,X =

⋃

i∈ω Ei with µ(Ei) < ∞ for each
i ∈ ω. Such a sequence of measurable subsets in called
exhausting[14]. An interval-valued measurable function
would then be integrable if it is integrable on each measur-
able set of finite measure and iflimi→∞

∫

Ei

f dµ exists and
is a compact interval for any exhausting sequence(Ei)i∈ω .
As in the classical theory, the limit will be independent of
the exhausting sequence and we define it as the Lebesgue
integral off .

This framework will then enable us to develop a com-
putability theory, as in Theorem 4.8, for an effectively given
σ-finite measure on an effectively given second countable
locally compact Hausdorff space.
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