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Abstract eral framework for computability in measure and integra-
tion theory still remains in its infancy.

We introduce a computable framework for Lebesgue’s  Computability of continuous functions and their inte-
measure and integration theory in the spirit of domain the- grals has been addressed by different schools in computable
ory. For an effectively given locally compact second count- analysis (for example [18, p 37] and [23, p 182]). In early
able Hausdorff space and an effectively given locally fi- 1990's, the author developed a domain-theoretic framework
nite Borel measure on the space, we define the notion offor measure and integration theory which gave rise to a gen-
a computable measurable set with respect to the given meaeralized Riemann integral [7, 6, 8, 10, 16, 1, 17]. It has
sure, which is stronger thaBanin’s recursive measurable provided a computable framework for measure theory and
set. The set of computable measurable subsets is closethe Riemann theory of integration. However, this only deals
under complementation, finite unions and finite intersec- with almost everywhere continuous functions. Computabil-
tions. We then introduce interval-valued measurable func-ity of measures on the unit interval has also been devel-
tions and develop the notion of computable measurableoped in type two theory [22] and, in addition, by using the
functions using interval-valued simple functions. Théslle ~ Prokhorov distance in the metric space of measures [12].
us to the interval versions of the main results of the theory  Computability of measurable subsets has a different
of LEbesgue integration which prOVide acomputable frame- story. In 1950's, based on the Russian approach to com-
work for measure and integration theory. The Lebesgue in- pytability in analysis, N. ASanin [21] initiated research
tegral of a computable integrable function with respect to into computability of measurable sets in Euclidean spaces
an effectively giveno(-)finite Borel measure on an effec- with respect to the Lebesgue measure. According to his
tively given (locally) compact second countable Hausdorff gefinition, a bounded measurable setdsursiveif there
space can be computed up to any required accuracy. exists a recursive sequence of “simple” open sets, hamely

finite unions of bounded rational open intervals, such that
Key Words: Domain theory, data type, interval-valued the Lebesgue measure of the symmetric difference of the set
measurable function, interval-valued Lebesgue integral.  and the elements of the sequence tends to zero effectively.

The notion of a recursive measurable set is equivalent

Dedication: This paper is dedicated to the historical to that of arecursively approximable sedefined by Ker-|
memory of Jamshid Kashani (d. 1429), the Iranian Ko in terms of a function-oracle [13]. The measure of the
mathematician who was the first to use the recursive ~ Symmetric difference of two sets provides a pseudo-metric
fixed point method in analysis with which he computed on the space of measurable subsets. TBasiin’s notion
sin 1° correct to 9 sexagesimal places; he also com- is also at the basis of the approach adopted by researchers
puted 7 to 16 decimal places [3, pages 7 and 151]. in type two theory of computability [25, 24], where an ab-

stract computable measure space is defined as one which is
. generated by a countable ring of subsets and which is en-
1. Introduction dowed with the pseudo-metric of the measure of symmetric
difference.

In the past decades, there have been a wide range of We aim to develop here a new approach to computability
applications of measure and integration theory in differen of measurable sets and functions that is motivated by inter-
branches of computer science including in probabilistic se val analysis and domain theory, where data types for mathe-
mantics [20, 15], stochastic hybrid systems [2] and lalelle matical objects are produced by providing lower and upper
Markov processes [9, 5]. Nevertheless, a systematic gen-bounds for them. As a directly relevant example, in [11] a



computable framework for geometric objects is constructed Theorem 2.1 Let X be alocally compact second countable
in which a subset of a topological space is approximated Hausdorff space ang a locally finite Borel measure on
from inside and outside by open subsets. X. Then a subsel C X is u-measurable iff for each
In this paper, a combined measure-theoretic and set-¢ > 0 there exist an open sét and a closed seaf’ such that
theoretic approach is designed in which a computable mea-C ¢ A C O with u(O \ C) < e.
surable set of a countably based locally compact Hausdorff
space is given by the intersection of a recursive sequencéroof The “only if” part follows from Theorem 2.14
of open sets containing the set and the union of a recursive(Riesz's Representation Theorem) and Theorems 2.17 and
sequence of closed sets contained in the set. Our notion o.18 in [19] as follows. SinceX is second countable, ev-
a computable measurable set, which gives approximationsery open set inX is o-compact, it follows from Theorem
to a measurable set both from within and from outside, is 2.18 above that is regular. By Theorems 2.14 and 2.17,
stronger tharBanin’s recursive measurable sets. for the y-measurable subset and anye > 0, there exist
A computable measurable set in our framework is char- an open seO and a closed set' such thatC’ ¢ A C O
acterized for each positive integerby a recursively given ~ with u(O \ C') < ¢ as required. For the “if part’, we put
closed set contained in the set and a recursively given opers = 1/n for any positive integer.. Then there are open
set containing the set, whose measure differ by less thatand closed set®,, andC,, such thatC,, ¢ A C O,, with
1/2". This provides a data type for measurable sets andi(On\Cy) < 1/n. LetF =5, Cn, andG =(,5, Oy.
naturally leads us to consider interval-valued measurableThenF andG are F;, andGs subsets respectively and we
functions, which in turn give us a date type for measurable have ' C A C G with (G \ F) = 0. Hence,A is -
functions. We derive interval versions of all major resiits ~ measurablé]
Lebesgue’s theory of integration which also furnish an ef- ] ]
fective method to compute the Lebesgue integral of a com-Ye Wwill use the following consequence of the above the-
putable measurable function. orem to develop our computability theory for measurable
It is assumed that the reader is familiar with the basic Subsets.

concepts of recursion theory as in [4], the elements of real Corollary 2.2 Let X be a locally compact second count-

number computability, in particular the notions of a com- able Hausdorff space, with' = (J,_, X; where eachy; is
putable real number and computable sequences of real num- Lew

. . . ; . mpact, an locally finite Borel m re oX. Then
bers together with their main properties, as in [18, ChapterCO pact, and. a locally © boret measure o ©

01 and finally a basic k led ¢ dint . A C X is y-measurable iff for each > 0 ande > 0, there
]an inally a basic knowledge of measure and in egra'onareopensetéchandVchuchthat
theory as in [19, 14].

Xl\UCAﬂXl cVnX;
2. Computable measurable sets
and
In this section we introduce our notion of a computable X NU) + p(Xi V) = p(Xi) <e
measurable set for Borel measures on locally compact sec- .
ond countable Hausdorff spaces, which includes the case oFrOOf Supposed is p-measurable and> 0. ThenX; N A

then-dimensional Lebesgue measurelh We firstrecall ' H-measurable for each= 0 and by Theorem 2.1, there
a number of definitions. exist a closed se&f and an open s€? suchthat ¢ A C O

A Hausdorff topological space is said to becompacif andu(0\C) <e. Putl = X\C'andV = O. Conversely,

; : g if for each: > 0 ande > 0 two open setd/ andV with
there exists an increasing sequence of compact &&isc.. the above zpﬁ)pertieseexist then FE)y Theorem &1 A

with X = Uiew X;. . - .
A measure. on a topological space is said to lsgular u-meaztjéable, and thus = e, (Xi N A) is alsop-
if for any y-measurable set we have: measura
. . We develop the notion of a computable measurable set by
A)=inf{u(O) : AC O, O ope - . . .
1(A) = inf{n(0) per} using the effective version of the statementin Corollag; 2.
= sup{u(C) : C C A, C compac}. We need the following basic results about computable se-

. ) guences of real numbers.
A Borel measure: on a Hausdorff spac&’ is said to be

Locally finiteif for any compact subsek’ C X we have Proposition 2.3 (i) If (a;jn )i, jnew IS @computable triple

w(K) < oo. sequence of real numbers converging effectively in
We start by providing a simple characterization of a mea- jandn asj — oo with lim;_. aijn = by then
surable set on locally compact second countable Hausdorff (bin)inew IS @ computable double sequence of real

spaces. numbers.



(i) If (@i;)i,jew is @ computable double sequence of real
numbers which converges monotonicallyjas: oo to
a computable sequence of real numbgrg,c.., i.e.,
;5 < Ai(j+1) for all i,j € w and b; = limj_,oo Qjj
then the convergence @f;;); jc.. is effective in botl
andj asj — ooc.

Proof (i) This is a straightforward extension of the result

in [18, page 20] for computable double sequences of real

numbers to computable triple sequence of real numbers.
(ii) [18, page 2012

We first develop the notion of computable measurable
sets for a finite Borel measure on a compact second count-

able Hausdorff space. This will allow us to see the main

Definition 2.5 We sayA C X is apu-computable measur-
ableset if there exists a total recursive functién N> — N
such that the following holds:

(i) The two sequences (Oal(ﬁ(]‘,n)))jznew _and.
(Oas(8(j,n)))imew Of Open sets are increasing in
j € w for fixedn € w and decreasing in for fixed ;.

(i) Forall n € w, we have:(
(Ujew Oas5im))-

(i) The two sequences (u(Oq,(s(jn))))jnew and
(11(Oay(8(j,n))))inew are computable double se-
guences of real numbers converging effectivg and

n asj — oo.

jew Oar(8Gm))) € A C

ideas of the construction before extending the notions to (V) Foralln € w, we have:M(Ug.ew Oay(8Gm)) +

locally finite Borel measures on a locally compact second

countable Hausdorff space.

Let X be a compact second countable Hausdorff space.

Definition 2.4 We say thatX is effectively given with re-
spect to an effective enumerati¢®;);c., of a countable
basis of open sets closed under finite union and intersectio
if the following holds:

e Oy =(andO; = X.

e The predicate®); C O; andO; C O; are decidable
fori,j € w.

e There are total recursive functiomsand such that
O;U0; = O¢(i7j) andO; N 0; = Ow(i,j)-

e Foreach € w, the predicateX \ O; C J;<,,,<,, Oi,.
is decidable for any finite set of integeirs € w with
1 < m < n, ie., from any effective covering of the
compact subseX \ O; by basic open subsets, one can
effectively obtain a finite subcovering.

SinceO; = 0 iff O; C Oy, it follows that the equality rela-

M(Ujew Oaz(ﬁ(jm))) - M(X < 1/271_

We know by Theorem 2.1 that the conditions in Defini-
tion 2.5 above imply that is u-measurable. Moreover, we
have:

Proposition 2.6 If A is a computableu-measurable set

r}henM(A) is a computable real number.

Proof Since the convergence in (iii) above is effective in
jandn asj — oo, it follows from Proposition 2.3 that
X \Ujew, Oar(5,m)) @Nd1(Uje, Oas ((5,n)) ) @F€ COM-
putable sequences of real numbers, with the first one in-
creasing and the second one decreasing.inFrom (ii)

and (iv), it follows that the common limit of these two se-
qguences, i.e4(A), is a computable real numbier.

Proposition 2.7 LetO = |J;,, O,(;) Wherey : N — Nis
a total recursive function. Thefd is a y-computable open
set iff1(O) is a computable real number.

Proof If O is u-computable then by Proposition 2/6,0)
is a computable real number. Now, for the converse, as-
sumex(O) is a computable real number. It suffices to

tion O; = (0 is decidable and we can assume, by redefining show that there is an effective decreasing sequence of ba-

the enumeration, thatO; = ( iff i« = 0. We note here that

it would be possible to drop the requirement for the decid-
ability of O; C Oy in (ii) at the expense of some more work.
For simplicity though, we choose to keep this condition in
our framework.

From our assumptions, it follows that there exists a to-
tal recursive functiom : N — N2 such thatO,;,
(Oa,(j)s Oas(y)) gives an enumeration of covers af by
pairs of basic open sets, i.€,, ;) U Oy, ;) = X.

Now assume that is a finite Borel measure on the ef-
fectively given compact second countable spacwith its
effective enumeratioO;);c., of basic open sets. We say
that 1. is effectively given onX if (u(O;))icw is a com-
putable sequence of real numbers.

sic open sets whose complements are contained within
and whoseu-measure tend ta(O). From~ we can ef-
fectively obtain a total recursive functioh : N — N
such thatO = U, Os(j) and Os; C Os(j41) for all

j € w. Since(u(Os(;)))jew increases monotonically to
the computable real numbeiO), the convergence is ef-
fective in j. Letn be any positive integer. Sinc is
effectively compact with respect to the basf3;);c.,, we
can effectively find a finite open covering \ Os(;;1) C
Ur<men Oi,, With O;, N Og;y = O for 1 < k < m. Us-
ing the total recursive functiop for binary union (Defini-
tion 2.4), we obtain a total recursive functiensuch that
X\ Osgj+1) C Ou(jy = Ur<m<n Oi,,- By construction,
we haveu(X) — p(Og(jy) > u(O) — 1/2". Moreover,



by putting(0) := o(0) andOg(;+1) := Ou(jy N Og(jy =
Oy(o(j),0(;)), We obtain a total recursive functighwhich

(if) Foralli,n € w, we have(X; \U,c, Oa,(5i,jn)) €
X;NAC (.Xz N Ujeu.) Oa2(ﬂ(i,j,n)))-

induces an effective decreasing sequence of basic open sets

that shares the above properties of the sequence induced b

o. This completes the proafl

The above characterization ofiacomputable open set co-
incides with that in [11].

2.1 Locally compact spaces

We now extend the notions of the previous section to a

locally compact second countable Hausdorff spiEcd hen

S}ii) The two sequence§u(X; N Oq, (5(i,j,n))))i.jnew and
(1(XiNOay(8(i,j,n))))i.jnew are computable triple se-
guences of real numbers converging effectively,in
andn asj — oo.

(iv) Foralli,n € w, we have:
M(Xz N (Uj&'w Oal(ﬁ(i,j,n)))) +
(X N (Ujew Oaz(8i,gn))) — (Xi) < 1/2".

We know by Theorem 2.1 that the conditions in Defini-
tion 2.9 above imply that is u-measurable. Moreover, we

X is o-compact and there exists an increasing sequence of5ye:

compact set§X;)ic, With X = J,._ X;. Let (0j)jcw

€W

be an effective enumeration of a basis of relatively compact Proposition 2.10If A is a computablg:-measurable set
open sets, which is closed under non-empty finite intersec-then(u(ANX;));c., is a computable sequence of real num-

tion and finite union. Then, for eaghc w, the collection

(0; N X;) ecw is a countable basis of the relative topology

for X;.

Definition 2.8 We say thatX is effectively given with re-
spect to(X;)ie, and(0;) e, if the following holds:

(i) Op = 0.
(ii) The predicates); C O; andO; C O; are decidable
fori,j € w.
e There are total recursive functiomsand) such that
O; U Oj = O¢(i,j) andO; N Oj = Ow(i,j)-

e For eachi,j € w, the predicateX; \ O, C
Ui<m<n Oi,. N X; is decidable, i.e., from any effec-
tive covering of the compact subs&t \ O, one can
effectively obtain a finite subcovering.

As in the compact case, we can and will assume thatNow, for the converse, le® = U

O; = 0 iff + = 0. From our assumptions, it follows
that there exists a total recursive function: N> — N2
such tha@a(i7j) = (Oa,(i,j)> Oas(i,j)) Dives an enumer-
ation of covers ofX; by pairs of basic open sets, i.e.,
Xi € Oa, (i,5) Y Oas(ig)-

Assume thaj is a locally finite Borel measure on the

bers.

Proof Since the convergence in Definition 2.9(iii) above
is effective ini, j andn asj — oo, it follows from
Proposition 2.3 that (X, \ U, ., Oay (5(i,j,n))) @ndu(X;N

Ujew Oas(sijn))) are computable double sequences of
real numbers, with the first one increasing and the second
one decreasing in for fixed i. From (iv) it follows that
these two double sequences of real numbers converge ef-
fectively inn andi to u(A N X;) asn — oo. Thus, by
Proposition 2.3(u(A N X;)):cw IS @ computable sequence

of real numberd]

Proposition 2.11 Let O be a recursive union of basic open
sets. Theid is a y-computable open set {ffi(X; N O));ic.
is a computable sequence of real numbers.

Proof If O is p-computable then by Proposition 2.10,
((X; N 0));ew is a computable sequence of real numbers.
iew O~(;) Where the se-
guence of open sets is increasing andN — N is a total
recursive function and assunjg(X; N O));c,, is a com-
putable sequence of real numbers. Sigg , O,(; can

be used as the first sequence of open sets in Definition 2.9,
it suffices to construct the second sequence. Frome

can effectively obtain a total recursive function N — N

effectively given locally compact second countable spacesych thatO = Ujew Osiy and Os(jy € Os(j41) for all

X with its effective enumeratio(0;);c., of basis. We say
that . is effectively given onX if (¢(O; N X;))i jew iS @
computable double sequence of real numbers.

Definition 2.9 We sayA C X is apu-computable measur-
ableset if there exists a total recursive functign N* — N
such that

(i) The two triple sequence$O,, 5 j,n)))i.jncw and

(Oas(8(i,j,n)) )ij.new Of Open sets are both increasing

in ¢ for fixed j andn, increasing inj for fixed i andn
and decreasing in for fixed i and;.

j € w. Consider the computable double sequence of real
numbergu(X;NO;(;) )i jew- It Monotonically converges to
the computable sequence of real numbers¥; N O));icy, -
Thus, by Proposition 2.3, the convergence is effectivé in
andj. Letn be any positive integer. SincE is effectively
locally compact with respect to the basi9;);c., and the
sequence of compact subséfs;);c.,, we can effectively
find a finite open covering; \ Os¢;+1) C U<y Ot
with Oy, N Os;y = O for1 < m < N. Using
the total recursive functiorp for binary union (Defini-
tion 2.8), we obtain a total recursive functiensuch that



Xi\ Os(j+1) C Oo(j) = Ui<m<n Ot,.- By construction,
we haveu(Xi) - M(Og(j) ﬂ_XJ > /L(O N Xz) — 1/2”
Moreover, by putting(0) := ¢(0) andOg(j41) := Og(;) N
Og(jy = Oy(a(j),6(5)), for j > 0, we obtain a total recursive

Example 2.13 Consider the Lebesgue measureon the
real line and let(r;)rew be an effective increasing se-
guence of positive rational numbers converging to a left-
computable but non-computable real number R. (Such

functiond which induces an effective decreasing sequencea sequence can be constructed from a recursively enumer-
of basic open sets which shares the above properties of theble but non-recursive subset of natural numbers.) Then by

sequence induced hy. Since the construction is effective
in ¢, this completes the prodi]

It follows from Definition 2.9 that any total recursive func-
tion 8 : N® — N which satisfies the following three condi-
tions:

e the two sequences (O, (5(i,jn)))ijmnew and
(Oas(8(i,jm)) )ijnew Of Open sets are increasing
in 4 for fixed j andn, increasing inj for fixedi andn
and decreasing in for fixed i andj,

o the two sequence3:(X; N Oy, (3(i,j,n))))i,jnew and
(1(XiNOay(8(i,5,n))))i.jnew are computable triple se-
guences of real numbers converging effectively,in
andn asj — oo,

e foralli,n € w, we have the relation:
M(Xi N (U]‘ew Oal(ﬁ(z}j,n)))) +
w(Xi N (Ujew Oaz(sigm)) — m(Xi) <1727,

defines an equivalence class g@f-computable mea-
surable sets which differ by a null set.

Gs set ,c. Umew Oa,(8ijn)) and the F, set
(mnew Ui,jew Oal (ﬁ(i)j7n)))c i i

Moreover, the two parameter family of pairs of closed
and relatively open sets in Definition 2.9(ii), forn € w,
represent a data-type for any membkeof this equivalence
class wheré X; \ U,c,, Oa,(s(ijn)) © Xi N A c (X;n
Ujew Oas(5(i,5.n))) @and the measure of the relatively open

subset and the closed subset in each pair differ by at most

1/2™, as it follows from 2.9(iv).

Proposition 2.12 (i) The complement of a computable

Two canon-
ical representatives of this class are given by the

Proposition 2.7, the open intervd, 7) = ..., (0,7%) is
not p-computable though for eadhe w the open interval
(0, 7y) is \-computable.

Finally, for later use, we define the notion of a computable
sequencéAy)re., Of computable measurable functions by
requiring that the properties required in Definition 2.9 for
the computable measurable sets for eachk € w hold
effectively ink € w:

Definition 2.14 We say( Ay, )rec. IS acomputable sequence
of p-computable measurable sets if there exists a total re-
cursive functions : N* — N such that the following four
conditions hold:

() The two sequencesO,, (5(i,j,n.k)))ijn.kew and
(Oas(8(i,5,n.k)) )i.jn.kew Of OpEN sets are increasing in
i for fixed j, n andk, increasing iy for fixed 7, n and
k, increasing in for fixed j, n andk and decreasing in
n for fixed ¢, j andk.

(i) Foralli,n,k € w, we have:
(Xi\Ujew Oar (8ijmky) © Xi N A C
(Xz N Ujéw Oag(ﬁ(i,j,n,k)))'

(iii) The two sequencesu(X; N Oq, (8(i,j,n,k))) )i jn,kcw
and (u(X; N Oy, (8(i,5,m.k)) ) )i jin,kew are computable
guartic sequences of real numbers converging effec-
tively in 4, j, n andk asj — oo.

(iv) Foralli,n,k € w, we have:

X N (Ujew Oar (Birjim b)) +

(X N (Ujew Oas(8G,5m.k)) — m(Xi) <1727

3 Measurable functions

measurable set is another computable measurable set.

(ii) A finite union or intersection of computable measur-
able subsets is a computable measurable subset.

Proof (i) Interchangel and?2 in the indices ofx and 3 in
Definition 2.9

(ii) This follows easily using the total recursive funct®n
¢ andw for binary union and binary intersection of basic
open sets. intersectionl

Let (X, M) be a measure space with the underlying set
X and as-algebraM of subsets ofX. We work with such a
general space first to develop the notions of interval-\édlue
measurable functions. Later, in order to develop a com-
putability theory for measurable functions, we assume that
X is a locally compact second countable Hausdorff space,
equipped with itsr-algebra of measurable subsets induced
by a Borel measurg on X, i.e. M will be the set of all
u-measurable subsets #f.

However, computable measurable subsets are not closed un- Given any topological spacg, we say that a function

der countable union or intersection as the following exam-

ple shows.

f: X — Y is measurable iff ~'(B) € M for any Borel
subsetB C Y. LetIR be the domain of the non-empty



compact intervals of the real line ordered by reverse inclu-

sion, equipped with itg-algebra of Borel subsets induced
from the Scott topology.

Consider the seX —,,, IR of measurable functions :
X — IR, whereR is the extended real line, i.e., the two
point compactificatiofi—oo, oo] of R, where the basic open
sets are of the fornfa, b), [—o0, b) and(a, o], with a, b €

R. Each such function is determined by the extended real-Note thats = [s—,s] wheres* : X — R with s*

valued lower and upper parfs™ and f+ of f defined such
that for eachr € X we havef(z) = [~ (z), f1(z)].

Proposition 3.1 We havef € (X —,, IR)iff =, f+ are
measurable as extended real valued functions.

Since the supremum, respectively infimum, of an in-

creasing, respectively decreasing, sequence of reatgalu
measurable functions is measurable, the paset,, IR is

w-bi-complete, i.e. the supremum (respectively infimum) of
any increasing (respectively decreasing) sequence af inte
val valued measurable functions is an interval-valued mea-
surable function. Similarly, since the supremum (respec-

tively infimum) of any (finite or) countable set of measur-
able functions is measurable, it follows thst —,, IR is
w-inf complete and bounded-sup complete.

Given a sequence of intervals € IR, i € w and
z € IR, we writelim; oo z; = z if 2~ = lim;_ o x;
andz® = lim,;_ . x] both exist inR with respect to its
compact topology.

Furthermore, we introduce tHam inf — lim sup opera-
tion on sequences R which we denote bjim™:

IR

L. e [ +
liminf; o z; ,limsup;_,. ;]

—

lim* : (IR)~
(l’i)z‘ew =
Note thatlim} ., _ z; for z; € IR is precisely the set of all
limits of convergent sequenceés;);c., with a; € z;. Note
thatlim™® is monotone but not continuous.
This induces dim inf — lim sup operation o X —,,
IR) as follows:

lim* : (X —,, IR)¥
(fi)iew

(X —, IR)
liminf; o f;

-
= ) lim SUupP; 00 fz+]
Thus, (X —,, IR) is alsolim*-completesince it has
limits of all countable sequences of intervals.
[~ = lim; f and f+ = lim;_ f;" both exist then
we writelim; ., f; = f = [f~, fT]. Clearly in this case
Forasubsel C X, letxs : X — {0,1} be the charac-
teristic function of the sefl, i.e.,xa(z) = 1iff z € A. In

If indeed

Definition 3.2 Let A; € X be measurable subsets oK
1 < n and leto; € IR be real intervals fot < ¢ < n. Then

SZZaiXAi : X = IR
i=1

is called arinterval-valued simple function

Y a®xa, are both measurable functions. It follows
thats is an interval-valued measurable function. Note also
that we exclude extended real intervals from the defini-
tion of a simple function and that, as in the classical case,
s takes only a finite number of values and does not de-
pend on the particular representation in terms of measur-
able sets4;’s and intervalsy;’s. There is indeed a canoni-
cal representation of for which theq;’s are precisely the
distinct non-zero values of and A; is precisely the set
where s takes valuew;. We define theorder o(s) of s
to be the number of distinct non-zero valuessof Using
the canonical representation @five also define thevidth
w(s) of s as the maximum length of the intervals, i.e.,
w(s) = max{a] —a; : 1 < i < n}. Finally, for the
canonical representation, we define thaximum absolute
valueof s by m(s) = max{|a; |, || : 1 <i < n}.

We sayf : X — IR is boundedby a compact interval
K € IR, ifforall x € X we have:K C f(z); we denote
this by K C f. We first deal with bounded measurable
functions; unbounded functions are addressed in the end of
this section.

Proposition 3.3 Every bounded real-valued measurable
function is the supremum of an increasing sequence of
interval-valued simple functions,, with o(s,) < ¢2",
where ¢ is a positive constant independent of and
w(sy) < 1/2™.

Proof Let the real-valued measurabfe : X — R be
bounded so thatf| < M for someM > 0. Letm be
the least non-negative integer such that < 2™. For a
positive integen and—2m+" 4+ 1 < k < 2Mm+7 |et

Ank =

ED < e e X fla) < o

which is measurable g&is measurable. Let

k1) k
|: on ' 9n XA

{reX:

}7

o(n+m)

>

f=—2(m+n) +1

Sn =

Then we havef = [|,-,sn With w(s,) < 1/2" with
o(s,) = 2"+ as requiredd

analogy with simple functions in classical measure theory
on the one hand and step functions in domain theory on theThe above proposition can easily be extended to bounded
other hand, we define: interval-valued measurable functions of tyfie— IR.



3.1 Computable measurable functions

An effective version of Proposition 3.3 provides us with
the notion of a computable real-valued measurable function
and our date type for such functions. Létbe an effectively
given locally compact second countable Hausdorff space as
in Section 2.

Definition 3.4 (i) A simple function

k

SZZ%‘X& : X —-1IR
i=1

is computablef for 1 < i < k, the subsed; C X is
a computable measurable set and the real numbers
anda;" are computable real numbers.

putr = min{jv — w| : v,w € Vwithv # w}. By
assumption, there is an increasing sequence of com-
putable simple functions,, with s = || s, and
w(sy) < 1/2™. Fixiwith 1 < ¢ < k, and letn be
such thatl /2" < r/2. Assumes,, = > " ButXB,., -
Then we have

Ai = U Bnt

a; €EQnt

and it follows thatA; is the finite union of computable
measurable subsets and is thus a computable measur-
able subset by Proposition 2.12. Moreover, for any
such thatB,; C A; we haves,, < a; < 3!, with

. — B3, < 1/2". Sincen can be chosen arbitrarily

large and sinced, and3;,, are computable real num-
bers, it follows that:; is a computable real number.

(i) We say thatf : X — R is a computable bounded Proposition 3.5 The maximum and minimum of a finite
measurable function if there is an effective increasing number of bounded real-valued computable measurable

sequence of computable simple functions: X —
IR with f =| |, . s» such that

new

functions are bounded computable measurable functions.

Consider the increasing sequence of bounded com-

— there is an effectively given non-negative integer putable measurable functions = (x(o,r,))rew, Where

M > 0withm(s,) < M forall n € w,

— w(sy) < 1/2™foralln € w, and,

— o(syn) < c2™ for some effectively given positive
constant independent of, € w.

Three remarks regarding the notion of a computable simple
function are in order.

(i) Firstly, note that Definition 3.4(i) of a computable sim-

(rk)kew 1S the sequence of rational numbers in Exam-
ple 2.13. Sincewup,, fn = X(0,r), We see that the supre-
mum of a countable set of bounded computable measurable
functions is not necessarily computable.

3.2 Unbounded measurable functions

The definitions and results above for bounded measur-
able functions can be extended to unbounded functions as

ple function is independent of the choice of the repre- follows. A countably valued simple functida a measur-
sentative of as the complement and the finite union of able functionf : X — R which takes countably many dis-
computable measurable sets are both computable meatinct values; this class of functions has been used in dalssi
surable sets and also the sum of two computable realmeasure and integration theory [14]. We now introduce a

numbers is another computable real number.

subclass of countably valued simple functions as follows.

A countably valued simple function i®cally finite if in

(ii) For a computable simple functiosnithe real numbers
w(s) andm(s), defined with respect to the canonical
representation, are computable real numbers.

(iii) We note that for a classical simple function =
Z?:laiXAi : X — R with a; € R the two def-
initions of computability in parts (i) and (ii) of Def-
inition 3.4 are consistent. Indeed, if;'s are com-
putable measurable sets amgs are computable real
numbers, so thatis a computable simple function ac-
cording to Definition 3.4(i), then putting,, = s for
all n € w we see that is computable as a measur-
able function in the sense of Definition 3.4(ii). On the
other hand, suppose the simple functiowith canon-
ical representation = Zle aixa, : X — Risa

any bounded region ifR it only takes a finite humber of
distinct values. These definitions extend to interval-gdlu
functions of typeX — IR. A locally finite interval-valued
simple function is a countably valued simple function such
that any bounded region IR intersects only a finite number
of its distinct values. For a locally finite simple functien
and for a compact intervadl of the real line, we denote by
o(s, K') the number of distinct non-zero values ©fhich
intersecti. For any measurable functigh: X — R, there

is an increasing sequence of locally finite interval-valued
simple functions with supremurfi Indeed, for any: € w,

let

kE kE+1
Sp = Z {577} XAk7
keZ

computable measurable function in the sense of Defi-where A, = {z € X : f(z) € [k/2", (k + 1)/2%). Then

nition 3.4(ii). LetV = {0} U {a; : 1 < i < k} and

Ay's are measurable sets and we hgve | |

s, Where

new



s, is locally finite. The definitions of the previous section We have the equality:[, fdu = [[, f~ du, [ fT du].
can then be extended to unbounded measurable functions a#/e usually writef f du for [ f du. The following results
follows. easily follows as in the classical case.
We say that a locally finite simple function =
D kew QkXA, IS computableif (Ag)re, is @ computable
sequence of computable measurable subsets (see Defin
tion 2.14), and ¢, ) kew and(az)kew are both computable
sequences of real numbers. Finally, we say a measurable () [(af +bg)dp=a [ fdu+0b [ gdp.
map is computable if there is an effective increasing se- ..
qguence of computable locally finite simple functioss : (i) 1f f £ g holds a.e., therf fdyu T [ g dp
X — IR with f =| |, s» andw(s,) < 1/2" such that (i) If AandB are disjoint measurable subsets then
o(sn, [N, N+1]) < ¢2" for some effectively given positive
constant: independent of, and V. All of the results of the / fdp = / fdu+ / fdp.
previous section can be extended to the unbounded case. AUB A B
We can now obtain in a straightforward way the interval
4 Interval Lebesgue Integral version of some of the classical results in measure theory.
Recall the definitions ofim andlim™* in (X —,, IR).

Proposition4.2 If f and ¢ are bounded measurable
interval-valued functions which vanish outside a set of fi-
hite measure then:

We are now in a position to define the notion of interval

) — = Proposition 4.3 Bounded Convergence TheoremLet
Lebesgue integral as a mgp: (X —,, IR) — R with

h L fn € (X —,, IR) be a sequence of uniformly bounded
respect to a measufeon the measure spacé’, M). Later measurable functions, which vanish outside a set of fi-

in this section, in order to develop a computability theory, i measure. such thatm £, = f exists. Then
we work with a Borel measure on a compact or a locally [ lim f c’l,u ~ lim ’Tf(’odl’z '
n—oo Jn - n—0o0 n .

compact second countable Hausdorff space
For a simple functios € (X —,, IR) with arepresen-  Corollary 4.4 Monotone Convergence Theorem Let
tatives = Y | a;xa, : X — IR, which vanishes outside  f. € (X —,, IR) be an increasing sequence of measur-

a set of finite measure, we define théntegral of s as: able functions, which vanish outside a set of finite measure,
n with fo bounded. Theh|, ., [ fudp = [(U,co fn) dit.
/X sdp = Z aipu(Ai)- Finally, from the Bounded Convergence Theorem above we
=1

obtain the interval version of Fatou’s lemma.
It follows that [, sdu = [[ s~ du, [y s du]. Thus, as
in the classical case, the integral of a simple function-s in
dependent of its representative. Af C X is measurable,
thens- xg = Z?Zl ;X A;nE 1S also a simple function and,

Lemma 4.5 Fatou's Lemmalet f, € (X —, IR)
be a sequence of uniformly bounded measurable func-
tions, which vanish outside a set of finite measure. Then

as in the classical case, whe(F) < oo, we define: J A fo dp © Y™ f £y e
/ sy = / s xmdy 4.1 Computability of Lebesgue integral
E X

We also immediately deduce the following. d&nd¢ are We now assumg is an effectively given second count-
simple interval-valued functions which are zero outside a 2P€ compact Hausdorff space gmis an effectively given
set of measure zero then, for compact intervalse IR : finite Borel measurg on it as described in Section 2. Recall

. that we have an effective enumerati@; ) ;e., of a count-

() J(as+bt)dp=a [sdu+b[tdp. able basis ofX with X = O, such that(;(0;));ec. is a
(i) If s Ctholdsa.e., therf sdu C [tdp. computable sequence of real numbers. The following theo-

rem, which is our main result, brings together and uses all
the results in the previous sections, on computable measur-
able sets and functions and on the interval-valued Lebesgue
integral, for the case of a compact second countable Haus-
Definition 4.1 The Lebesgue integral of any bounded dorffspace.

interval-valued measurable functigron a measurable sub-
setE with respect to a measureon X, such tha(E) <
00, is defined as:

Now we deal with measurable functi@s. We first con-
sider a measurable functighe (X —,, IR) bounded on
a setE with finite measure and define:

Theorem 4.6 Supposef is a bounded computable real-
valued measurable function oki. Then the Lebesgue in-
tegral of f with respect tqu is computable, i.e., given any

/ fdu = Ll{/ sdp : simples C f}. positive integetk we can effectively compute the Lebesgue
E E B integral of f up to1/2* accuracy.



Proof Let M be an effectively given bound fof and thatu(X) < 2!, Let the positive integek be given and put
(sn)new be the increasing sequence of computable simplen = k£ + ¢ + 1 and put

functions in(X —,,, IR) which witnesses the computabil-

ity of f according to Definition 3.4 with effectively given p = [logm(spre41)] + [loge] + 2k + 1 + 2.
constantc > 0. By the interval version of the Mono-
tone Convergence Theorem (Corollary 4.4), we know that
J fdu = ,c., | $ndp, which means that the required o(sn)

integral lies in each .Compact mterval of thg shrinking se- Z o w(0s) — a5 u(Ciyp)
guence of compact intervals given by the integrals of the

simple functions. Our task is to effectively fimdsuch that

[ s, du provides the required estimate. In fact, using the < 1/28 T 41 /2R = 1/9F,
canonical representation:

Using the above effectively obtain@dandp, we get

It follows that for the above values of and p the com-
o(sn) putable real number

sn = Z XA, o(sn)

Z o 1(Oip)
we obtain [ s, du = Z"(S") a;u(A;). Since eachy; is =t
a computable measurable subset, we can effectively obtains within 1/2* of the value of the integraf f dp. O
for each nonnegative integeran open sef);, and a closed
setCy, such thaly, C A; C Ojp With 11(Oip) andp(Cip) 4.2 Integral of unbounded functions
computable real numbers satisfyingO;,) — p(Cip) <
1/2P. We have

measurable functions on a general measure shEcé)
o(sn) O(Sn) . . .
Z _ Z n as in Section 3. We have shown there that any interval val-
a; pCip) = Sn d,u < a; ip)

=1 .. . . .
’ sequence of locally finite interval valued simple functions

The interval valued Lebesgue integral can be defined for

ued measurable function is the supremum of an increasing

Estimating the difference between the two sums above weHere, we first assume that our measurable functions are de-

have: fined on a set’ € M of finite measure:.(E) < co. We say
o(sn) that an infinite sum of compactintervals,_ 3; converges
Y af u(Op) — a; ul(Ciy) absolutelyif the two infinite sumsy", . ;" and_, . 8;

of real numbers converge absolutely. In this case we write

o(sn) Sicw Bi = Xicw Bi » Yicw B8] The Lebesgue integral
=Y a7 w(Oip) — af (Cip) + o5f 1(Cip) — a; 1(Cip) of a countably valued, interval valued simple function
=1
s = ZaiXAi : X —- IR

o(sn ;
Cip)) + (af — a7 )u(C; e
g i)+ Ju(Cip) which vanishes outsidd is defined as

A

Ju(Cip) < m(s"go(s") + “;X), /Sdu > @il

€W

smcew(sn) is bounded byl/2"™ and C;,’s, being con-
tained in the disjoint setsl;, are disjoint for fixedp and

1 < i < ofs,) and their totalu-measure is therefore
bounded by.(X). Thus, for our estimate, we conclude that

verges absolutely. In this case we saig integrable The

tion f on E is defined as:

o(sn) n / fd'u
Z o W(O4p) — a; p(Cip) < m(s;p)c2 + ,uéi()’ B
=1
= |_|{/ sdy : integrable countably valued simple_ f}.
sinceo(s;,) is bounded by:2". E
Note thatu(X) is a computable number & = Oy; One can then extend the basic results of Lebesgue integra-

we can thus effectively obtain a nonnegative integsuch tion to the interval case. In particular, we have:

provided the infinite sum of compact intervals above con-

Lebesgue integral of any interval-valued measurable func-



Theorem 4.7 Lebesgue’s bounded convergence theorem [7] A. Edalat. Dynamical systems, measures and fractals via
Let (fn)new be a convergent sequence of interval-valued domain theory. Information and Computation120(1):32—
measurable functions defined éhwith f = lim,, .. fx 48, 1995.

and suppose that there is an integrable interval-valued [8] A. Edalat. When Scott is weak on the topdathematical
function g also defined on®’ with u(E) < oo and with Structures in Computer Scienc&401-417, 1997.

g E faforalln € w. Then,f is integrable onE and [9] A. Edalat. Semi-pullbacks and bisimulation in categsri
limp oo [ frdp =[5 fdp. of Markov processesMathematical Structures in Computer

Using the notion of a computable measurable function as Science9(5):523-543, 1999. .
in Section 3 on an effectively given second countable com- [10] A. Edalat and R. Heckmann. A computational model for

pact Hausdorff space, which employs the set of locally finite metric spacesTheoretical Computer Scienc#93(1-2):53~

simple function, we also have the following generalization 73,1998

of Theorem 4.6 to unbounded functions. [11] A. Edalat and A. Lieutier. Foundation of a computablédso
modelling. Theoretical Computer Scienc284(2):319-345,

Theorem 4.8 Suppos¢ is a computable real-valued mea- 2002.

surable function on an effectively given second countable(;5) p. Gags. Uniform test of algorithmic randomness over a

compact Hausdorff spac¥ then the Lebesgue integral of general spaceTheoretical Computer Scienc41:91-137,

f with respect to any effectively given finite measureXon 2005.

IS cpmputable, .€., given any pqsmve integewe c%n ef- [13] K. Ko. Complexity Theory of Real Number8irkhauser,

fectively compute the Lebesgue integrafafp to1/2* ac- 1991

racy. .
curacy [14] A.N. Kolmogorov and S. V. Fominntroductory Real Anal-
Finally, we consider the interval version of the Lebesgue ysis Dover, 1975.

integral on a measure space with respect to a measure whiclil5] D. Kozen. Semantics of probabilistic progrands.Comput.

is o-finite, i.e., X = (J,.,, Fi with u(E;) < oo for each Syst. Scj.22:328-350, 1981.

i € w. Such a sequence of measurable subsets in calleqi6] J. Lawson. Spaces of maximal pointdathematical Struc-

exhausting[14]. An interval-valued measurable function tures in Computer Sciencé(5):543-555, 1997.

would then 'b.e integrable if it i§ integrable on eaf?h mMeasur- 1171 J. p. Lawson and B. Lu. Riemann and Edalat integration on

able set of finite measure andiifo; .o [, f dy exists and domains.Theoretical Computer Scienc&05(1-3):259—275,

is a compact interval for any exhausting sequeficg;c... 2003.

As in the cla}ssical theory, the limit W”,I be'independent of 18] M. B. Pour-El and J. I. RichardsComputability in Analysis

Fhe exrllal;;tlng sequence and we define it as the Lebesgue ~ anq physicsSpringer-Verlag, 1988.

integral of f. . . .

This framework will then enable us to develop a com- [19] W. Rudin.Real and Complex AnalysiMcGraw-Hill, 1970.
putability theory, as in Theorem 4.8, for an effectivelygiv =~ [20] N. Saheb-Djahromi. ~ CPO's of measures for non-
o-finite measure on an effectively given second countable ~ determinism. Theoretical Computer Scienc#2(1):19-37,
locally compact Hausdorff space. 198~0'

[21] N. Sanin.Constructive Real Numbers and Function Spaces
volume 21 ofTranslations of Mathematical Monographs
AMS, Providence Rhode Island, 1968. trasl. by E. Mendel-
son.
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