
THE GENERALIZED RIEMANN INTEGRAL ONLOCALLY COMPACT SPACESAbbas Edalat Sara NegriDepartment of ComputingImperial College180 Queen's Gate, London SW7 2BZAbstractWe extend the basic results on the theory of the generalized Riemann integral tothe setting of bounded or locally �nite measures on locally compact second countableHausdor� spaces. The correspondence between Borel measures on X and continuousvaluations on the upper space UX gives rise to a topological embedding between thespace of locally �nite measures and locally �nite continuous valuations, both endowedwith the Scott topology. We construct an approximating chain of simple valuations onthe upper space of a locally compact space, whose least upper bound is the given locally�nite measure. The generalized Riemann integral is de�ned for bounded functions withrespect to both bounded and locally �nite measures. Also in this setting, generalized R-integrability for a bounded function is proved to be equivalent to the condition that the setof its discontinuities has measure zero. Furthermore, if a bounded function is R-integrablethen it is also Lebesgue integrable and the two integrals coincide. Finally, we extend R-integration to an open set and provide a su�cient condition for the computability of theintegral of a bounded almost everywhere continuous function.1 IntroductionDomain theory was introduced by Dana Scott in 1970 ([27]) as a foundational basis forthe semantics of computation.In [6], a basic connection between domain theory and some main branches of mathe-matics has been established, giving rise, in particular, to a novel computational approachto measure theory and integration. A domain-theoretic framework for measure and in-tegration has been provided in [7], by proving that any bounded Borel measure on acompact metric space X can be obtained as the least upper bound of simple valuations(measures) on the upper space UX, the set of non-empty compact subsets of X orderedby reverse inclusion.Simple valuations approximating the given measure play the role of partitions in Rie-mann integration and are used to obtain increasingly better approximations of the integralof a bounded real-valued function on a compact metric space. Thus, instead of approx-imating the function with simple functions as is done in Lebesgue theory, the measureis approximated with simple measures. This idea leads to a new notion of integration,called generalized Riemann integration, R-integration for short, similar in spirit but moregeneral than Riemann integration.All the basic results of the theory of Riemann integration can be extended to thissetting. For instance, it is proved in [7] that a bounded real-valued function on a compactmetric space is R-integrable with respect to a bounded Borel measure if and only if its1



set of discontinuities has measure zero and that if the function is R-integrable then it isalso Lebesgue integrable and the two integrals coincide.This theory has had applications in exact computation of integrals [8], in the seman-tics of programming languages [12], in the 1-dimensional random �elds Ising model instatistical physics [9], in forgetful neural networks [10], in stochastic processes [5] and inchaos theory [8].Apart from the domain-theoretic integral, there are two other notions of general-ized Riemann integrals in the literature, namely, the McShane and the Henstock inte-grals [25, 15]. These are basically integrals for real valued functions on R. Their general-izations to Rn also exist but they are much more involved. The basic McShane integralis equivalent to the Lebesgue integral with respect to to the Lebesgue measure. TheHenstock integral, sometimes called the Henstock-Kurzweil integral, is a generalizationof the McShane integral in the sense that any McShane integrable function is Henstockintegrable but not conversely. The Henstock integral has the property that every contin-uous, nearly everywhere di�erentiable function can be recovered by integration from itsderivative. This property, which does not hold for the Riemann or the Lebesgue integral,was historically the motivation behind the de�nition of this integral.The reason why the McShane and the Henstock integrals are called generalized Rie-mann integrals is the following. In order to de�ne the ordinary Riemann integral ofa (bounded) function one partitions the domain of the function, whereas to de�ne theLebesgue integral of a function one partitions its range to obtain an increasing sequenceof simple functions converging pointwise to the given function. In the McShane integral,as well as in the Henstock integral, one returns to the idea of partitioning the domainof the function with a more sophisticated notion of \a tagged partition of an intervalsubordinate to a given positive valued function on the interval". Using such partitionsone can obtain generalizations of the Riemann integral and in fact that of the Lebesgueintegral. The theory however is, like the Lebesgue theory, non-constructive and withoutany e�ective framework.The domain-theoretic generalization of the Riemann integral works generally for in-tegration of functions with respect to Borel measures on Polish spaces (topologicallycomplete separable metrizable spaces) [13, 22, 17] which include locally compact secondcountable spaces. Here, one also deals with the domain of the function rather than itsrange. But now one goes beyond the notion of partitions and uses �nite covers by opensubsets to provide approximations to the measure. These approximations give generalizedupper and lower sums with which we de�ne the integral. The theory, like the Riemanntheory, has a constructive and e�ective framework. The generalized Riemann integral ofa H�older function with respect to an e�ectively given measure can be approximated upto any desired accuracy by upper and lower sums [8].In order to apply the generalized Riemann integration to a wider range of problems,we look for an extension of the results in [7] and [8] to the more general setting of locallycompact second countable Hausdor� spaces with bounded or locally �nite measures, thelatter being measures which are �nite on compact subsets of the space. A number ofthese extensions do require further work; others are straightforward generalizations of thecompact case.These more general hypotheses, however, cover some central �elds of application. Forinstance, probability distributions on the real line are examples of bounded measures ona locally compact space, whereas the Lebesgue measure on the real line is an example ofa locally �nite measure on a locally compact space.In this paper, after reviewing the domain-theoretic notions needed here, we showin section 3 that the set of locally �nite measures on a locally compact space are inone to one correspondence with the set of locally �nite continuous valuations on theupper space which are supported on its maximal elements. Indeed, this gives rise to atopological embedding when both spaces are endowed with the Scott topologies induced2



by the pointwise order.In section 4, we show how to approximate a locally �nite valuation on a locally compactspace by means of an increasing sequence of simple valuations on the upper space, whichis built up from any given presentation of the locally compact space as an increasingcountable union of relatively compact open subsets.We proceed in section 5 with the de�nition of the generalized Riemann integral ofa bounded real-valued function on a locally compact space with respect to a boundedBorel measure. As in the case of compact spaces [7], generalized R-integrability for afunction f is seen to be equivalent to the condition that the set of discontinuities of fhas measure zero. Moreover, if the R-integral exists then the Lebesgue integral existsand the two integrals are equal. The notion of an e�ective approximation to a boundedmeasure by simple valuations on the upper space, which is used to compute integrals ofH�older continuous functions up to any precision, has a straightforward extension to locallycompact spaces.We then de�ne, in section 6, the R-integral with respect to a locally �nite measure.In the case of functions with compact support, the R-integral reduces to the R-integralin compact spaces with respect to the restriction of the measure to the support of thefunction. In the case of functions with non-compact support, the R-integral is de�ned ina way similar to the improper Riemann integral. It is shown, in this more general case,that if a function is R-integrable then it is also Lebesgue integrable and the two integralscoincide.Finally in section 7, following the work in [4], we extend the de�nition of R- integrationto an open set, and prove that the lower integral coincides with the Lebesgue integralon the open set, whereas the upper integral coincides with the Lebesgue integral on itsclosure. As a consequence, when the boundary of the open set has measure zero, we obtaintwo sequences that converge from below and from above to the value of the integral ofa bounded almost everywhere continuous function. This allows a computation of theintegral on the open set up to any desired degree of accuracy.2 Valuations on continuous posetsWe �rst recall some basic notions from domain theory which we need in this paper. Anon-empty subset A � P of a partially ordered set (poset) (P;v) is directed if for any pairof elements x; y 2 A there is z 2 A with x; y v z. A directed complete partial order (dcpo)is a partial order in which every directed subset A has a least upper bound (lub), denotedby FA. An open set O � P of the Scott topology of P is a set which is upward closed(i.e. x 2 O & x v y ) y 2 O) and is inaccessible by lubs of directed sets (i.e. if A isdirected with a lub, then FA 2 O ) 9x 2 A: x 2 O). The Scott topology of any posetis T0. Given two elements x; y in a poset P , we say x is way-below y or x approximates y,denoted by x� y, if whenever y v FA for a directed set A with lub, then there is a 2 Awith x v a. We sometimes write �P to emphasise that the way-below relation is withrespect to P . We say that a subset B � D is a basis for D if for each d 2 D the set Aof elements of B way-below d is directed and d = FA. We say D is continuous if it hasa basis; it is !-continuous if it has a countable basis. In any continuous poset, subsets ofthe form ""b = fx j b� xg where b belongs to a basis give a basis of the Scott topology.A valuation on a topological space Y is a measure-like function de�ned on the lattice
(Y ) of open sets. Here is the precise de�nition.De�nition 2.1 A valuation on a topological space Y is a map� : 
(Y )! [0;1)which, for all U; V 2 
(Y ), satis�es 3



1. �(U ) + �(V ) = �(U [ V ) + �(U \ V );2. �(;) = 0;3. U � V ) �(U ) � �(V ).A continuous valuation is a valuation such that whenever A is a directed family in 
(Y )then4. �(SO2AO) = supO2A �(O).A locally �nite continuous valuation is a map� : 
(Y )! [0;1]satisfying the same properties of a continuous valuation and5. �(V ) <1 for V � Y .The set of locally �nite continuous valuations on Y is denoted by P `(Y ); it is pointwiseordered by: �1 v �2 � (8O 2 
(X))(�1(O) � �2(O)) :The subposet of continuous valuations bounded by one, i.e. with �(Y ) � 1, is denoted byP (Y ) and the set of normalized valuations, i.e. those with �(Y ) = 1 is denoted by P 1(Y ).The point valuation based at b 2 Y is the valuation�b : 
(Y )! [0;1)de�ned by �b(O) = � 1 if b 2 O0 otherwise.Any �nite linear combinationnXi=1 ri�bi (ri 2 [0;1); i = 1; : : : ; n)of point valuations is called a simple valuation.If Y is an (!)-continuous dcpo then P (Y ) is also an (!)-continuous dcpo with a basisof simple valuations [19]. We have the following property:Proposition 2.2 [20, page 46] Let � = Pb2B rb�b be a simple valuation and � acontinuous valuation on a continuous dcpo Y . Then � � � i� for all A � B we haveXb2A rb < �(""A); 2where ""A = fy 2 Y j 9a 2 A: a� yg.If Y is an (!)-continuous dcpo with bottom then P 1(Y ) is also an (!)-continuous dcpowith a basis of simple valuations and we have the following results [7]:Lemma 2.3 Let Y be a dcpo with bottom and let�1 = Xa2A ra�a �2 =Xb2B sb�bbe simple valuations in P 1(Y ). Then we have �1 v �2 i�, for all a 2 A and for all b 2 B,there exists ta;b � 0 such that Pb2B ta;b = ra, Pa2A ta;b = sb and ta;b > 0 implies a v b.4



De�ne the mapsm+ : PY ! P 1(Y ) m� : PY ! PY� 7! �+ � 7! ��where �+(O) = � �(O) if O 6= Y1 otherwiseand ��(O) = � �(O) if O 6= Y�(Y � f?g) otherwise.Proposition 2.4 (i) � �PY � & � 2 P 1Y ) �+ �P1Y �.(ii) � �P1Y � ) �� �PY �� v �.Lemma 2.5 Suppose �; � 2 P 1Y . Then � �P1Y � implies �(Y � f?g) < 1.Proposition 2.6 For two simple valuations�1 =Xb2B rb�b �2 =Xc2C sc�cin P 1Y , we have �1 �P1Y �2 i� ? 2 B with r? 6= 0, and, for all b 2 B and all c 2 C,there exists a nonnegative number tb;c with t?;c 6= 0 such thatXc2C tb;c = rb Xb2B tb;c = scand tb;c 6= 0 implies b� c.When considering locally �nite valuations closure under directed joins does not holdany more, i.e. P `(Y ) is not a dcpo. However, it is still true that locally �nite valuations canbe approximated by simple valuations, since this results holds in general for (unbounded)valuations (cf. theorem 5.2, page 46 in [20]), and simple valuations are in particular locally�nite. So we have:Proposition 2.7 For any continuous dcpo Y , any � 2 P `(Y ) is the supremum of the(directed) set of simple valuations way-below it and, therefore, P `(Y ) is a continuousposet.3 Locally �nite measures on a locally compact spaceThroughout the paper, X will denote a second countable locally compact Hausdor� space.We will use the decomposition X = Si2INXi, where hXiii2IN is an increasing sequenceof relatively compact open subsets of X such that Xi � Xi+1. We start with somede�nitions:De�nition 3.1 A Borel measure � on a locally compact Hausdor� space is locally �niteif �(C) <1 for all compact C � X. M `(X) will denote the set of locally �nite measureson X. The set of measures bounded by one and the set of normalized measures are denotedrespectively by M (X) and M1(X). 5



We recall from [6] that the upper space UX of a topological space is the set of allnon-empty compact subsets of X, with the base of the upper topology given by the sets2a = fC 2 UX jC � ag;where a 2 
(X). When X is a second countable locally compact Hausdor� space, thenthe upper space UX of X is an !-continuous dcpo and the Scott topology of (UX;�)coincides with the upper topology. The lub of a directed subset is the intersection andA � B i� B is contained the interior of A. The singleton map s : X ! UX withs(x) = fxg is a topological embedding onto the set of maximal elements of UX.In [6], it was shown that the mapM (X) ! P (UX)� 7! � � s�1is an injection into the set of maximal elements of P (UX) and it was conjectured that itsimage is the set of maximal elements. This conjecture was later proved by Lawson in amore general setting [23]. The continuous dcpo UX does not necessarily have a bottomelement. Therefore, in order to consider normalized valuations, we will adjoin a bottomelement ?= X and denote the dcpo with bottom thus obtained with (UX)?. Then theinjective map � 7! � � s�1 : M1(X) ! P 1(UX)? is onto the set of maximal elements ofP 1(UX)?. Here, we will show a one-to-one correspondence between locally �nite Borelmeasures on X and locally �nite continuous valuations on the upper space supported ins(X).Proposition 3.2 Let s : X ! UX be the singleton map. Then the mape :M `(X) ! P `(UX)� 7! � � s�1is well de�ned.Before proving the above proposition we need the following lemmas, connecting theway-below relation on the upper space UX of X with the one on X.Lemma 3.3 Let fOi : i 2 Ig be a directed family in 
(X). Then2([i2IOi) = [i2I2Oi:Proof: The inclusion from right to left trivially holds. For the converse, assume that C isa non-empty compact subset of Si2I Oi. By compactness, C has a �nite subcover, andtherefore, since the family of opens is directed, there exists i 2 I such that C is a subsetof Oi. 2Lemma 3.4 Let V be an open set in the Scott topology of UX. ThenV � UX in 
(UX) if and only if s�1(V )� X in 
(X):Proof:): SupposeX � Si2I Oi where the right-hand side is a directed union and Oi 2 
(X).Then, by lemma 3.3, we have UX = 2X � Si2I 2Oi. Since V � UX in 
(UX), thereexists i 2 I such that V � 2Oi, and therefore s�1(V ) � Oi, thus proving the claim.(: Suppose UX � Si2I Oi, where the right-hand side is the union of a directed familyof opens of the upper space. Since by hypothesis s�1(V )� X and X is a locally compactspace, there exists a compact set C � X such that s�1(V ) � C � X. Since C 2 UX,6



there exists i 2 I such that C 2 Oi and therefore " C � Oi as Oi is open in the Scotttopology of UX and thus an upper set with respect to reverse inclusion. This impliesV �" C. For, if K 2 V and x 2 K, then K v fxg and, hence, fxg 2 V since V is upwardclosed. Thus x 2 s�1(V ) � C, i.e. K � C. Therefore V �" C � Oi, i.e., V � UX. 2Proof of proposition 3.2: Let � be a locally �nite Borel measure on X. Then it isimmediate to verify that � � s�1 satis�es conditions 1-4 of de�nition 2.1 since � is ameasure and s�1 preserves (directed) unions and intersections. The continuous valuation� � s�1 is locally �nite since, if V � UX, then, by lemma 3.4, s�1(V ) � X. Since X islocally compact, there exists a compact subset K of X such that s�1(V ) � K. Therefore,by monotonicity of �, � � s�1(V ) � �(K), and by the assumption on local �niteness of �the conclusion follows. 2By a result from [24] (theorem 3.9), if P is a continuous dcpo equipped with its Scotttopology, then every continuous valuation � on P extends uniquely to a measure, denotedby ��. Thus, in particular, ��s�1 extends to a unique measure (��s�1)� on UX, which, byabuse of notation, we will denote by �� too. Such a measure satis�es ��(UX�s(X)) = 0,that is we have:Proposition 3.5 The valuation � � s�1 is supported in s(X).Proof: We have UX � s(X) = Si2IN(UXi � s(Xi)). By proposition 5.9 and corollary5.10 in [6], s(X)ands(Xi) are G� subsets of UX and there exists a countable decreasingsequence of opens hOi;jij2IN such that s(Xi) = \j2INOi;j and s�1(Oi;j) = Xi. Therefore��(UX � s(X)) = supi2IN��(UXi � s(Xi));so it is enough to prove that, for all i 2 IN, ��(UXi � s(Xi)) = 0. We have ��(s(Xi)) =infj2IN ��(Oi;j) = infj2IN � � s�1(Oi;j) = �(Xi) = � � s�1(UXi) = ��(UXi). It followsthat ��(UXi � s(Xi)) = 0. 2Adapting the notation from [6], we will denote with S`(X), resp. S1(X), the locally�nite valuations, resp. the normalized valuations, on UX which are supported in s(X).We have:Theorem 3.6 The map e :M `(X) ! S`(X)� 7! � � s�1is a bijection with inverse given byj : S`(X) ! M `(X)� 7! �� � s :The proof of the theorem is based on the following lemma.Lemma 3.7 If � and � are locally �nite Borel measures which have the same restrictionto 
(X) then � = �.Proof: We have �(Xi) = �(Xi) < 1. Furthermore, for all Borel sets B, B \ Xi is aBorel set in the induced topology of Xi. By proposition 5.2 in [6], any �nite continuousvaluation on a locally compact Hausdor� space has a unique extension to a measure, sothat we have �(Xi\B) = �(Xi\B) and therefore �(B) = �(X\B) = �((Si2INXi)\B) =�(Si2IN(Xi \B)) = supi2IN �(Xi \B) = supi2IN �(Xi \B) = �(B). 2Proof of theorem 3.6: By the foregoing discussion, e is well de�ned. To prove that j iswell de�ned we only have to prove j(�) is a locally �nite measure when � is a locally �nitecontinuous valuation. Let C be a compact subset of X. There exists a relatively compact7



open subset O, i.e. O � X, with C � O. Then (j(�))(C) � (j(�))(O) = ��(s(O)) ��(2O) <1, where the last inequality holds since 2O� UX by lemma 3.4.The proof that j is the inverse of � proceeds as in [6], theorem 5.21. 2In [8] it has been proved that the space of probability measures of a compact metricspace equipped with the weak topology is topologically embedded, via the map � 7!� � s�1, onto the subspace of the maximal elements of the probabilistic power domain ofthe upper space.Here a topological embedding can be obtained by considering the Scott topologies onM `(X) and P `(UX): We de�ne a partial order on M `(X), as in P `(UX), by�1 v �2 � (8O 2 
(X))(�1(O) � �2(O)) :The relation v is clearly reexive and transitive, and it is antisymmetric by lemma 3.7.Observe that the space (M `(X);v) is not a dcpo. In fact, a directed subset D of M `(X)has least upper bound in M `(X) if and only if for all open sets O such that O � X in
(X) the set f�(O) : � 2 Dg is bounded. It is immediate to check that the maps e andj are continuous with respect to the Scott topologies on M `(X) and P `(UX), i.e., e is atopological embedding.4 Approximation of locally �nite measuresGiven a measure on a compact metric space it is possible to construct a chain of simplevaluations on the upper space with the measure as its least upper bound (cf. [8]). Inthis section we will generalize this construction to the case of locally �nite measures on alocally compact space.The relatively compact subsets Xi are used to construct a sequence of simple valua-tions on UX approximating any given locally �nite measure on X, thus generalizing theprocedure which is worked out in [8]. As in that work, we assume that the measure is givenby its values on a given countable basis closed under �nite unions and �nite intersections.Since the subsets Xi are relatively compact, for all i 2 IN there exists an ordered�nite covering Ci of Xi made of relatively compact open sets of the basis with diameter� 1i . Moreover such coverings can be chosen satisfying the additional requirement [Ci �[Ci+1. These hypotheses are needed in order to obtain an increasing sequence of simplevaluations. We assume in this section, and the rest of the paper, that open covers arealways constructed from the given countable base satisfying the above property.For each i 2 IN we de�ne inductively a �nite ordered open cover Di for Xi as a list ofopens sets in the following way, where the symbol � denotes the concatenation operationfor lists:D1 � C1;D2 � D1 ^ C2 � hO 2 C2 : O �= [ C1i;D3 � D2 ^ C3 � hO 2 C3 : O �= [ C2i;: : :Di+1 � Di ^ Ci+1 � hO 2 Ci+1 : O �= [ Cii;: : :where, for given ordered covers A and B, A^ B denotes the coverhO1 \O2 : O1 2 A; O2 2 Biordered lexicographically. We recall from [8] that, for an ordered cover A = hO1; : : : ; Oni,the simple valuation �A associated with A is given by�A � nXi=1 ri�Oi , where ri = �(Oi �[j<iOj):8



We will denote with �i the simple valuation �Di associated with Di.We will now prove that the �i's constitute a chain of simple valuations with leastupper bound �. The following lemma is proved as proposition 3.1 in [8].Lemma 4.1 Let A = hO1; : : : ; Oni be an ordered cover of Xi with Oj � X for all j � n,� a locally �nite measure on X and the ri's as above. Then for all open subsets O of Xiwe have XOi�O ri � �(O) � XOi\O 6=; ri :Corollary 4.2 For all i 2 IN, �i v e(�) in P `(UX).Proof: Let V = S�2�2O� be an open set of the upper space. Then�i(V ) = POi2S�2� 2O� ri �POi�S�2� O� ri� �(S�2�O�) = e(�)(V ) :where the last inequality holds by lemma 4.1. 2Proposition 4.3 For all i 2 IN, �i v �i+1 in P `(UX).Proof: Let O 2 
(UX), Di = hO1; : : : ; Oni, Ci+1 = hV1; : : : ; Vmi and let, for 1 � i � n,1 � j � m, ri = �(Oi � Si0<iOi0), r(i;j) = �(Oi \ Vj � S(i0;j0)<(i;j)Oi0 \ Vj0). Then�i+1(O) � �Di^Ci+1 (O) =POi\Vj2O r(i;j). Furthermore,XOi\Vj2O r(i;j) � Xj�m XOi2O r(i;j) = XOi2OXj�m r(i;j) :As in the proof of proposition 3.4 in [8], it follows that Pj�m r(i;j) = ri, and thereforePOi2OPj�m r(i;j) �POi2O ri = �i(O), and the result follows. 2Proposition 4.4 � = Fi2IN �i.Proof: Since, for all i, �i v �, we have Fi2IN �i v �.For the converse inequality, it is su�cient by lemma 3.3 in [8] to check that, for allopens O 2 
(X), supi �i(2O) � �(O). We distinguish two cases, i.e. �(O) < 1 and�(O) = 1. If �(O) < 1, let Oj � O \Xj , for j 2 IN. Then, for all j, Oj � X andO = Sj2INOj. By theorem 3.5 in [8], we have, for all j 2 IN, �(Oj) = Fi2IN �i(Oj) andtherefore �(O) = Fj2IN �(Oj) = Fj2INFi2IN �i(Oj) = Fi2INFj2IN �i(Oj) = Fi2IN �i(O).If �(O) =1, then for all M > 0 there exists V � O such that �(V ) > M . Since V � Oand � is a locally �nite measure, �(V ) is �nite and therefore, by the previous case,�(V ) = F�i(2V ). Thus, since 2O � 2V , we have F�i(2O) � F�i(2V ) = �(V ) > M ,and the conclusion follows since M is arbitrary. 25 Integration with respect to bounded measuresLet � be a Borel measure on X such that 0 < �(X) < 1. By rescaling, we can supposethat � is normalized, i.e. that �(X) = 1. By corollary 3.3 in [7], P 1(UX)?, the set ofnormalized valuations of the probabilistic power domain of (UX)?, is an !-continuousdcpo with a basis of normalized simple valuations.9



We also know from the previous section that there exists an increasing chain of simplevaluations h�iii�0 in P (UX)? such that � � s�1 = supi�0 �i. For convenience, in the restof this section, we identify � � s�1 with � and, therefore, write � = supi�0 �i.The valuations �+i � �i + (1� �i((UX)?))�?are in P 1(UX)?. Moreover, for any proper open subset O of (UX)?, we have �+i (O) =�i(O) and � � s�1 = supi�0 �+i , where h�+i ii�0 is again an increasing chain of simplevaluations.Let f be a bounded real-valued function de�ned on X and let � be a bounded Borelmeasure on X. For a simple valuation � � Pb2B rb�b, de�ne, as in [7], the lower andupper sums by SX̀ (f; �) �Xb2B rb inf f [b]SuX (f; �) �Xb2B rb sup f [b];where f [b] = ff(x)jx 2 bg. Observe that, since f is bounded, SX̀ (f; �) and SuX (f; �) arewell de�ned real numbers. For a choice of xb 2 b for all b 2 B, we also have a Riemannsum Sx(f; �) =Pb2B rbf(xb). By proposition 4.2 in [7] we have:Proposition 5.1 Let �1; �2 2 P 1(UX)? be simple valuations with �1 v �2. ThenSX̀ (f; �1) � SX̀ (f; �2) and SuX (f; �2) � SuX (f; �1).Corollary 5.2 If �1; �2 2 P 1(UX)? are simple valuations with �1; �2 � �, then SX̀ (f; �1) �SuX (f; �2)Using the notation introduced above we de�ne the lower and upper R-integrals asfollows:De�nition 5.3 RR fd� � sup��� SX̀ (f; �) (the lower R-integral);RR fd� � inf��� SuX (f; �) (the upper R-integral).By corollary 5.2 we have RZ fd� � RZ fd� :De�nition 5.4 We say that f is R-integrable with respect to � and write f 2 RX(�) ifRR f = RR f .As a consequence of the de�nition we have:Proposition 5.5 (The R-condition). We have f 2 R(�) i� for all � > 0 there exists asimple valuation � 2 P 1(UX)? with � � � such thatSuX (f; �)� SX̀ (f; �) < �.If f is R-integrable then the integral of f can be calculated by using the increasing sequenceof simple valuations h�+i ii�0 :Proposition 5.6 If f is R-integrable with respect to �, and h�iii�0 is an increasingsequence of simple valuations on UX with least upper bound �, thenZX fd� = supi�0 SX̀ (f; �+i ) = infi�0SuX (f; �+i ):10



Proof: Cf. proposition 4.9 in [7]. 2The following properties are easily shown as in [7]:Proposition 5.7 1. If f and g are R-integrable with respect to � then f + g is alsoR-integrable with respect to � and R (f + g)d� = R fd�+ R gd�.2. If f is R-integrable with respect to � and c 2 IR then cf is R-integrable with respectto � and R cfd� = c R fd�.3. If f and g are R-integrable with respect to � then so is their product fg.5.1 Lebesgue criterion for R-integrabilityWe will extend the Lebesgue criterion for Riemann integration of a bounded function ona compact real interval to R-integration of a bounded real-valued function on a locallycompact space, by generalizing the result in [7], that is the analogous criterion for R-integration on compact spaces.We �rst recall some de�nitions.De�nition 5.8 Let T � X and r > 0 and de�ne
f (T ) � supff(x)� f(y) j x; y 2 Tg, called the oscillation of f on T ;!f (x) � limh!0+ 
f (B(x; h)), where B(x; h) is the open ball of radius h centred at x;Dr � fx 2 X j !f (x) � 1rg.Then we have (cf. [2], p. 170, and [7]):Proposition 5.9 The following statements hold:(i) f is continuous at x i� !f (x) = 0.(ii) If X is compact and !f (x) < � for all x 2 X, then there exists � > 0 such that, forall compact subsets b � X with jbj < �, we have 
f (b) < �.(iii) For any r > 0, the set Dr is closed.IfD is the set of discontinuities of f , we haveD = Sn�1Dn where D1 � D2 � D3 � : : :is an increasing chain of closed sets. Hence D is an F� and therefore a Borel set. In thefollowing, � 2M1(X). We have:Lemma 5.10 Let d be a compact subset of X and let � =Pb2B rb�b 2 P 1(UX). Then:1. If � v � then Pb\d 6=; rb � �(d).2. If � � � then Pb�\d 6=; rb � �(d), where b� denotes the interior of b.Proof: Cf. lemma 6.4 in [7]. 2Proposition 5.11 Let h�iii2I be a directed set of simple valuations�i = Xb2Bi ri;b�bin P 1(UX). Then Fi2I �i 2 im(e) i� all � > 0 and all � > 0, there exists i 2 I withXb2Bi;jbj�� ri;b < �where jbj is the diameter of the compact set b � X.11



Proof: The two directions in the proof were shown for a compact X in proposition 4.14in [7] and in proposition 5.1 in [8], but the proofs there hold for a locally compact X aswell. 2We recall from [26] that a bounded measure on a second countable locally compactHausdor� space is regular, i.e., for any Borel set B, it satis�es�(B) = inff�(O) j B � O; O openg = supf�(K) j K � B; K compactg :Then the Lebesgue criterion follows:Theorem 5.12 A bounded real-valued function on a locally compact second countableHausdor� space is R-integrable with respect to a bounded Borel measure � on X i� its setof discontinuities has measure zero.Proof: Suppose �(D) > 0. Since D = Sn�1Dn, there exists n � 1 such that �(Dn) > 0.As Dn = Si�0Dn \Xi, there exists i such that �(Dn \Xi) > 0. We put D0n � Dn \Xi.Let � =Pb2B rb�b be a simple valuation with � � �. ThenSu(f; �)� S`(f; �) = Pb2B rb(sup f [b]� inf f [b])� Pb�\D0n 6=; rb(sup f [b]� inf f [b])� Pb�\D0n 6=; rb=n � �(D0n)=n > 0by de�nition of D0n and the above lemma. Thus f does not satisfy the R-condition andtherefore it is not R-integrable.Conversely, assume �(D) = 0. For all n � 1, there exists a compact subset Y of Xsuch that �(X �Y ) < 1n . Let T and Z be regular compact subsets of X with Y � Z� andZ � T �. Let Dn = fx 2 T j wf (x) � 1ng. We know that Dn is closed and �(Dn) = 0. Byregularity of �, there exists an open V � X such that Dn \ Z � V and �(V ) < 1n . Bytaking the intersection of V with T �, if necessary, we can assume V � T �. Since Dn \ Zis compact, there exists an open set W with Dn\Z � W and W � V . Let d(W;V c) = �1and d(Y; @Z) = �2, where @Z denotes the boundary of Z. Observe that Z�W is compactand for all x 2 Z �W , wf (x) < 1n . By proposition 5.9(ii), there exists �3 such that forall compact b � Z �W with jbj < �3 we have 
f (b) < 1n . Let 0 < � < min(�1; �2; �3). Byproposition 5.11, there exists  2 P 1(UX)?,  =Pb2B rb�b, such thatPjbj�� rb < 1n and v �. Observe that, by the choice of �, jbj < � implies b � Z or b � X � Y . Moreover,jbj < � and b � Z imply b � V \Z or b � Z �W . Then we haveSu(f; ) � S`(f; ) =Xb2B rb(sup f [b]� inf f [b])� Xjbj�� rb(sup f [b]� inf f [b]) + Xjbj<�;b�Z rb(sup f [b]� inf f [b])+ Xjbj<�;b�X�Y rb(sup f [b]� inf f [b])� Xjbj�� rb(sup f [b]� inf f [b]) + Xjbj<�;b�V\Z rb(sup f [b]� inf f [b])+ Xjbj<�;b�Z�W rb(sup f [b]� inf f [b]) + Xjbj<�;b�X�Y rb(sup f [b]� inf f [b])� (M �m)=n+ (M �m)=n + 1=n+ (M �m)=n = [3(M �m) + 1]=nand we conclude that f is R-integrable. 2 12



5.2 R-integration and Lebesgue integrationIn this section we will prove that the result in [7] connecting R-integration and Lebesgueintegration for bounded real-valued functions de�ned on a compact space extends to thecase of bounded functions de�ned on a locally compact second countable Hausdor� space.The proof for the compact case uses the domain-theoretic result for the existence of a di-rected set of deations whose lub is the identity function on the domain; it can be extendedto the locally compact case using the one-point compacti�cation of the space. However,the following alternative proof which uses the construction of the simple valuations insection 4 approximating a given measure is elementary and conceptually simpler than theproof in [7]. Furthermore, the new proof can be used to generalize the result to otherspaces such as complete separable metric spaces where the domain-theoretic property onthe existence of deations does not exist.Theorem 5.13 If a bounded real-valued function f is R-integrable with respect to abounded Borel measure � on a locally compact second countable Hausdor� space, thenit is also Lebesgue integrable and the two integrals coincide.Proof: We will use the increasing chain of simple valuations h�iii2IN, constructed insection 4, such that � = Fi2IN �i. We recall that the simple valuation �i associated withthe ordered cover Di = hOi;1; : : : ; Oi;nii of Xi is given by�i = niXj=1 ri;j�Oi;j , where ri;j = �(Oi;j � [k<jOi;k) :Let Vi;j � Oi;j � Sk<j Oi;k. Observe that for all x 2 [Di there exists a unique j suchthat x 2 Vi;j. Moreover, let m and M be a lower bound and an upper bound of f on X,respectively. For all i 2 N we de�ne two functionsf�i : [Di ! IR f+i : [Di ! IRx 7! inf f [Vi;j ]; for x 2 Vi;j x 7! sup f [Vi;j]; for x 2 Vi;jBy putting f�i (x) = m and f+i (x) = M for x 2 X � [Di we obtain two functionsf�i : X ! IR f+i : X ! IRObserve that f�i and f+i are simple measurable functions. Moreover, since the cover Di+1is a re�nement of the cover Di, for all x 2 X we havem � : : : � f�i (x) � f�i+1(x) : : : � f(x) � : : : � f+i+1(x) � f+i (x) � M :Let f� : X ! IR f+ : X ! IRx 7! lim i!1 f�i (x) x 7! limi!1 f+i (x):Then f�(x) � f(x) � f+(x) for all x 2 X, and, by the monotone convergence theorem,f� and f+ are Lebesgue integrable.We will now estimate their Lebesgue integrals. We haveS`(f; �i) = Pnij=1 �(Vi;j) inf f [Oi;j]� Pnij=1 �(Vi;j) inf f [Vi;j] = L R f�i d��m�(X �[Di)and Su(f; �i) = Pnij=1 �(Vi;j) sup f [Oi;j]� Pnij=1 �(Vi;j) sup f [Vi;j] = L R f+i d��M �(X �[Di)13



Since f�i � f+i implies L R f�i d� � L R f+i d�, we obtainm�(X � [Di) + S`(f; �i) � L Z f�i d� � L Z f+i d� � Su(f; �i) +M �(X �[Di):Since f is assumed to be R-integrable, we know by proposition 5.6 that S`(f; �i)increases to R R fd� and Su(f; �i) decreases to R R fd�. Moreover �(X � [Di) ! 0 asi!1 since Si>0[Di = X.Therefore, both L R f�i d� and L R f+i d� converge to R R fd�, and thus, by the mono-tone convergence theorem, L R f�d� = L R f+d� = R R fd�.We thus obtain L R (f+ � f�)d� = 0, which implies that f+ = f� almost everywhere.Therefore f = f+ = f� almost everywhere and we can conclude that f is Lebesgueintegrable and that L Z fd� = L Z f�d� = L Z f+d� = R Z fd�as required. 25.3 Computation of integralsFollowing [8], we can develop an e�ective framework for computing integrals of boundedH�older continuous functions with respect to a normalized measure on a locally compactsecond countable metric space X. This is a straightforward generalization of the compactcase and is presented here for completeness. Given a measure � 2M1(X), a chain h�iii2Nof simple valuations in P 1(UX) is an e�ective approximation to � if Fi2I �i = � and forall positive integers m and n there exists i � 0, recursively given in terms of m and n, suchthat �i =Pc2C rc�c satis�esPjcj�1=m rc < 1=n. Suppose such an e�ective approximationexists for �. Let f : X ! R be a bounded H�older continuous function with constantsk � 0 and h > 0 such that jf(x)� f(y)j � k(d(x; y))h for all x; y 2 X, and let jf(x)j � Kfor all x 2 X. In this setting one can compute the integral of f with respect to � upto any desired accuracy as follows. Let � > 0 be given. To compute R f d� to within �accuracy, we choose positive integers m and n with 1=m < (�=2k)1=h and 1=n < �=(4K),and let the integer i be such that �i =Pc2C rc�c satis�es Pjcj�1=m rc < 1=n. We haveS`(f; �i) � Z f d� � Su(f; �i); S`(f; �i) � S�(f; �i) � Su(f; �i);where S�(f; �i) is any generalised Riemann sum for �i. For any c 2 C we have sup f [c]�inf f [c] � 2K; whereas for c 2 C with jcj < 1=m we have sup f [c]� inf f [c] < �=2. Hence,j R f d�� S�(f; �i)j � Su(f; �i)� S`(f; �i) = NXc2C rc(sup f [c]� inf f [c])= Xjcj�1=m rc(sup f [c]� inf f [c]) + Xjcj<1=m rc(sup f [c]� inf f [c])� �=2 + �=2 = �:Therefore any Riemann sum for �i gives the value of the integral up to � accuracy. Wehave then shown:Theorem 5.14 The expected value of any H�older continuous function with respect to anynormalised measure on a second countable locally compact metric space can be obtainedup to any given accuracy with an e�ective approximation of the measure by an increasingchain of normalised valuations on the upper space of the metric space.14



6 Integration with respect to locally �nite measures6.1 Functions with compact supportIn this section we de�ne the R-integral for a real-valued function with compact supportde�ned on a locally compact space with respect to a locally �nite measure.We �rst need the following:De�nition 6.1 For any Borel measure � and any Borel set B, let �jB be the uniqueextension to a measure of the continuous valuation given by�jB(O) � �(B \O) :Let f be a real-valued function on X with compact support C and let � be a locally�nite measure on X. Then the integral of f with respect to � is given byZ fd� = Z fd�jC :The computation of the above integral can be obtained by cutting down, to the compactsupport C of f , the construction of the chain of simple valuations approximating the givenlocally �nite measure �.Recall from section 4 that � = F�i, where �i is the simple valuation, associated withthe ordered cover Di of Xi, given byPnij=1 ri;j�Oi;j , with ri;j = �(Oi;j�Sk<j Oi;k). SinceC is compact, there exists n 2 IN such that C � Xi for all i > n. For i > n, de�ne�Ci = niXj=1 rCi;j�Oi;j\C , where rCi;j = �(Oi;j \ C � [k<jOi;k \ C) :The following properties are then easily derived as in section 4 (observe that it is enoughto know the value of � on the induced topology of C):Lemma 6.2 POi;j\C�O rCi;j � �(O \ C) �POi;j\C\O 6=; rCi;j :Then we have:Proposition 6.3 Let �jC and �Ci be de�ned as above. Then:1. For all i > n, �Ci v �jC ;2. For all i > n, �Ci v �Ci+1;3. �jC = Fi>n �Ci .The above proposition shows that the integral of f can be computed by means of thechain of simple valuations h�Ci ii. Therefore R-integrability of f with respect to � reducesto the R-integrability of f jC with respect to �jC.6.2 Functions with non-compact supportLet f : X ! IR be a positive function which is bounded on compact sets. Given a subsetA of X let �A denote the characteristic function of A. In order to extend the theory ofgeneralized Riemann integration to this setting we need the following.De�nition 6.4 A positive function f , bounded on compact sets, is R-integrable on X withrespect to � if, for all i 2 IN, the function with compact support f � �Xi is R-integrableand the limit limi!1R ZX f � �Xid�15



is �nite. In this case we putR ZX fd� = limi!1R ZX f � �Xid� :The above de�nition of R-integrability for positive functions bounded on compact setsdoes not depend on the choice of the increasing sequence of relatively compact subsetsXi's such that X = SiXi. Indeed, if hYiii2IN is another such sequence then, for all i,f � �Xi is R-integrable if and only if, for all i, f � �Yi is R-integrable andlimi!1R ZX f � �Xid� = limi!1R ZX f � �Yid�:In fact, for all i, there exists j such that Xi � Yj, henceR ZX f � �Xid� � R ZX f � �Yid�and conversely.For a general function f we can use the decompositionf = f+ � f�where f+ = max(f; 0) and f� = max(�f; 0), and say that f is R-integrable if both f+and f� are R-integrable and we putR ZX fd� = R ZX f+d��R ZX f�d� :The following result connects R-integration with respect to locally �nite measures toLebesgue integration, generalizing theorem 5.13.Theorem 6.5 If a real-valued function f bounded on compact sets is R- integrable withrespect to a locally �nite Borel measure � on a locally compact second countable Hausdor�space, then it is also Lebesgue integrable and the two integrals coincide.Proof: By using the decomposition f = f+ � f� and the fact that Lebesgue integrablefunctions are closed under sum, we can suppose f � 0.By hypothesis, for all i, f � �Xi is R-integrable. Since it is a function with compactsupport, by the results of the previous section, its R-integral can be computed with respectto the bounded measure �jXi . By theorem 5.13, it is Lebesgue integrable andL Z f � �Xid� = R Z f � �Xid� :Moreover hf � �Xiii2IN is an increasing monotonic sequence of functions that convergespointwise to f . Therefore, by the monotone convergence theorem, f is Lebesgue integrableand L Z fd� = limi!1L Z f � �Xid� :Since limi!1 L R f � �Xid� = limi!1R R f � �Xid� = R RX fd�, we have L R fd� =R RX fd�. 2 16



7 The generalized Riemann integral on an open SetIn this section we generalize the de�nition of R-integration to an open set, in such a waythat it gives the usual one when the open set is the whole space. We remark that for thispurpose we could take O itself as a locally compact space and then use the results alreadyestablished in the theory of integration developed so far. Nevertheless this extension isnecessary if we want to compute the integral of f on O by using the original chain ofsimple valuations h�iii2IN approximating � on X. Once this chain has been obtained, itwill not be necessary to construct a new chain for each subspace O.In what follows, f is a bounded non-negative real valued function on X and � anormalized Borel measure on X.De�nition 7.1 Let � = Pa2A ra�a be a simple valuation. The generalized lower andupper Darboux sums relative to the open O are, respectively:SÒ(f; �) � Pa2A;a�O ra inf f [a] ;SuO(f; �) � Pa2A;a\O 6=; ra sup f [a] :Note that for O = X, the above sums reduce to the earlier de�nitions.As in section 5, we will consider the !-continuous dcpo with bottom (UX)? and obtainthe generalization of proposition 5.1 for the lower and upper sums relative to an open set.Proposition 7.2 Let �1; �2 2 P 1(UX)? be simple valuations with �1 v �2. ThenSÒ(f; �1) � SÒ(f; �2) and SuO(f; �2) � SuO(f; �1).Proof: The �rst inequality holds as before. For the second, by the above lemma, we have:SuO(f; �2) � Xb2B;b\O 6=; sb sup f [b] = Xb2B;b\O 6=;Xa2A ta;b sup f [b]= Xb2B;b\O 6=; Xa2A;a\O 6=; ta;b sup f [b] � Xb2B;b\O 6=; Xa2A;a\O 6=; ta;b sup f [a]= Xa2A;a\O 6=; ra sup f [a] � SuO(f; �1) : 2De�nition 7.3 The lower R-integral of f on O with respect to � isRR Ofd� = sup��� SÒ(f; �) .The upper R-integral of f on O with respect to � isRR Ofd� = inf��� SuO(f; �) .We clearly have RR Ofd� � RROfd� = sup��� SÒ(f; �).Proposition 7.4 If f is a non-negative, real-valued function on X which is continuousalmost everywhere with respect to �, then for all � > 0 there exists � � �, � =Pb2B rb�b,such that Xb2B;b�O rb sup f [b]� SÒ(f; �) < � :Proof: The proof proceeds as the proof of the `if' part of theorem 5.12 by showingthat for all � > 0 there exists a simple valuation � = Pb2B rb�b � �, such thatPb2B;b�O rb(sup f [b]� inf f [b]) < �. 2 17



7.1 R-integration on an open set and Lebesgue integrationWewill now investigate the connection between R-integration on an open set and Lebesgueintegration. We will see that when the function f is continuous almost everywhere andf � 0 then the lower integral coincides with the Lebesgue integral of f on O whereas theupper integral coincides with the Lebesgue integral of f on O. An important consequenceof this fact is that the lower and the upper integral are equal when the boundary of Ohas measure zero.In what follows, � is a normalized Borel measure on X, f is a bounded, non-negative,real-valued function on X whose set of discontinuities has measure zero and O is an opensubset of X.Lemma 7.5 Let � = F�2D � be the lub of a directed set of simple valuations on UXand O an open set. For � = Pb2B rb�b, de�ne �O = Pb2B;b�O rb�b. Then the setf�O : � 2 Dg is directed and F�2D �O = �jO.Proof: First we prove that for two simple valuations � and �, � v � implies �O v �O andtherefore f�O : � 2 Dg is directed: For any open A � UX we have �O(A) = �(A\2O) �� 0(A \2O) = � 0O(A).Then we have�jO(A) � �jO � s�1(A) � �(O \ s�1(A)) = �jO � s�1(2O \A)= �(2O \A) = (F�2D)�(2O \A)= F�2D �O(A) :2Lemma 7.6 If f is a non-negative real valued function on X which is continuous almosteverywhere with respect to � thenRZ Ofd� = supfZC fd� j C � O;C compactg :Proof: For O = X, the result is clear. Assume that O 6= X. We �rst provesup���SÒ(f; �) � supfZC fd� j C � O;C compactg:Let � � Pb2B rb�b �P1(UX)? �, �O � Pb2B;b�O rb�b and C � Sb2B;b�O b. Observethat C is compact since it is a �nite union of compact sets and �O 2 P (UC). Byproposition 2.4(ii), �� �P (UX)? �. It follows by proposition 2.2, applied �rst to P (UX)?and then to P (UC), that (��)O �P (UC) �jC . We also have �O = (��)O since O 6= X byassumption. Hence, �O �P (UC) �jC, and consequently, SÒ(f; �) = SC̀(f; �O) � R RC fd�.For the converse inequality, let C be a compact subset of O and let �jC and �jO bethe restrictions of � to C and to O respectively. Since f is non-negative,ZC fd� � ZX fd�jO :By lemma7.5, �jO = F��� �O and hence RX fd�jO = sup��� S`(f; �O) = sup��� SÒ(f; �).2 We observe that by the above lemma the generalization to open sets that we gavefor R-integration extends the usual for ordinary Riemann integration: indeed, if ]a; b[ is18



an open interval of the real line the Riemann integral of f on it can be de�ned in thefollowing way:Z]a;b[ f(x)dx � lim�!0Z b��a+� f(x)dx = supfZI f(x)dx j I �]a; b[; I compactgTherefore R-integration on open sets extends usual Riemann integration on open intervals.As announced, we have:Proposition 7.7 If f is a non-negative real valued function on X which is continuousalmost everywhere with respect to � thenRZ Ofd� = L ZO fd� :Proof: Since X is locally compact and second countable, there exists a chain hCiii2IN ofcompact sets such that O = Si2IN Ci. By applying Lebesgue's monotone convergencetheorem to the sequence of functions hf�Ci ii2IN, we obtainL ZO fd� = supC�O;C compactL ZC fd� :The conclusion then follows by lemma 7.6 and the fact that we already know that oncompact spaces the Lebesgue and the generalized Riemann integral coincide. 2Recall that for any subset A � X of a metric space (X; d) and any r � 0, the r-parallelbody Ar of A is given by Ar = fx 2 X j 9y 2 A: d(x; y) � rg.Proposition 7.8 If f is a non-negative real valued function on X which is continuousalmost everywhere with respect to � thenRZ Ofd� = L ZO fd� :Proof: We will start with proving that RROfd� � L RO fd�. Let O1=n be the 1=n-parallelbody of O. Since L ZO fd� = infn�0L ZO1=n fd� ;it is enough to prove that, for all positive integer n, RROfd� � L RO1=n fd�. Fix n � 1and let � > 0 be given.Let M � sup f [X]. By proposition 5.11 there exists �1 � � such that, for all � �Pa2A ra�a w �1, we have Xa2A;jaj�1=n ra < �2M :By applying propositions 7.4 and 7.7 to O1=n, there exists �2 � � such that, for all� �Pa2A ra�a w �2, we have:Xa2A;a�O1=n rb sup f [b]� L ZO1=n fd� < �=2 :19



Take � �Pa2A ra�a � � with �1; �2 v �. Then,RR Ofd� � SuO(f; �)= Pa2A;a\O 6=;;jaj<1=n ra sup f [a] +Pa2A;a\O 6=;;jaj�1=n ra sup f [a]� Pa2A;a�O1=n ra sup f [a] +MPa2A;jaj�1=n ra� Pa2A;a�O1=n ra sup f [a] + �=2� L RO1=n fd�+ �:The conclusion follows since � is arbitrary.As for the converse inequality, we have to prove that, for all � � �, SuO(f; �) �L RO fd�. For this purpose, we will use the chain of simple valuations h�iii2Nconstructedin section 4 with � = Fi2N�i.If O � X, there exists i 2 IN such that O � Xi. Moreover, since � � �, there exists jsuch that � v �j. Let k = maxfi; jg. Then O � Xk and and � v �k. To �x the notation,let �k be the simple valuation associated to the ordered cover hO1; : : : ; Oni of Xk. Sincethe upper sums decrease, we have:Su(f; �) � SuO(f; �k)� POi\O 6=; �(Oi �[j<iOj) sup f [Oi]� POi\O 6=; �((Oi �[j<iOj) \O) sup f [(Oi � [j<iOj) \O]� POi\O 6=; L R(Oi�[j<iOj )\O fd� = L RO fd�If O is not way-below X we can use the decomposition O = Si2INO \Xi, where, for alli, O \Xi � X. By the above argument, for all i we haveRZ O\Xifd� � L ZO\Xi fd�and therefore, for all i, RZ Ofd� � L ZO\Xi fd�that gives RZ Ofd� � supi2INL ZO\Xi fd�and the conclusion follows since supi2IN L RO\Xi fd� = L RO fd�. 2The following linearity properties are easily derived from the corresponding propertiesof the Lebesgue integral:Proposition 7.91. RR O(f + g)d� = RROfd�+RROgd�.2. If c is any positive real number, then RR Ocfd� = c RROfd�.Similarly we have: 20



Proposition 7.10 If O1; O2 are disjoint open sets thenRZ O1[O2fd� = RZ O2fd� +RZ O2fd� :Proposition 7.11 If a sequence hfjij2IN of R-integrable, real-valued functions de�nedon X is uniformly convergent to the function f and O is an open subset of X, then f isR-integrable on O and RR Ofd� = limj!1RROfjd�.By the next proposition, in the following we can dispense with the assumption on f beingnon-negative.Proposition 7.12 If f is a bounded real-valued function which is continuous almost ev-erywhere then L RO fd� = R RO f+d��R RO f�d�.Proof: We have L RO fd� = L RO f+d�� L RO f�d� = R RO f+d��R RO f�d�. 27.2 Computation of the R-integral on an open setIn order to have a computation of the integral RO fd� of a bounded function continuousalmost everywhere with respect to �, we require to have two sequences which converge tothe expected value of the integral from below and from above, so that at each stage of thecomputation a lower bound and an upper bound for the value of the integral is obtained.First, by de�nition, for every simple valuation �,SÒ(f; �) � SuO(f; �) :Then it follows from proposition 7.2 that for any two simple valuations �1; �2 � � wehave SÒ(f; �1) � SuO(f; �2)and therefore sup���SÒ(f; �) � inf���SuO(f; �) :The lower sums and the upper sums of a continuous function relative to a given achain of valuations and a given open may not converge to the same limit, as the followingexample of an iterated function system (IFS) with probabilities [18, 3] will show.Example. Consider the IFS with probabilities on the space X = [0; 1]:f1 : x 7! x=2 p1 = 1=3f2 : x 7! 1=2 p2 = 1=3f3 : x 7! x=2 + 1=2 p1 = 1=3This IFS gives rise to the following chain h�nin�1 of simple valuations on the upper spaceof X, where �n = 1=3n 3Xi1;:::;in=1 �fi1 ;:::;fin [0;1]It follows from [6, 7] that Fn�1 �n is maximal in P 1(UX) and gives the unique measure� satisfying � = 1=3(� � f�11 + � � f�12 + � � f�13 ) :Observe that there is a non-zero mass on all points 1=2n.21
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