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We introduce a computable framework for Lebesgue’s measure and integration theory

in the spirit of domain theory. For an effectively given second countable locally compact

Hausdorff space and an effectively given finite Borel measure on the space, we define a

recursive measurable set, which extends the corresponding notion due to S̃anin for the

Lebesgue measure on the real line. We also introduce the stronger notion of a computable

measurable set, where a measurable set is approximated from inside and outside by se-

quences of closed and open subsets, respectively. Themore refined property of computable

measurable sets give rise to the idea of partial measurable subsets, which naturally form a

domain for measurable subsets. We then introduce interval-valued measurable functions

and develop the notion of recursive and computable measurable functions using interval-

valued simple functions. This leads us to the interval versions of themain results in classical

measure theory. The Lebesgue integral is shown to be a continuous operator on the domain

of interval-valuedmeasurable functions and the interval-valued Lebesgue integral provides

a computable framework for integration.
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1. Introduction

In the past decades, there has been a wide range of applications of measure and integration theory in different branches

of computer science including in probabilistic semantics [24,18], stochastic hybrid systems [2] and labelled Markov pro-

cesses [11,7]. Nevertheless, a systematic general framework for computability inmeasure and integration theory still remains

in its infancy.

Computability of continuous functions and their integrals has been addressed by different schools in computable analysis

(for example, [22, p. 37] and [27, p. 182]). In 1990’s, the author developed a domain-theoretic framework for measure

and integration theory which gave rise to a generalized Riemann integral [8–10,12,19,1,20]. It has provided a computable

framework formeasure theory and a generalised Riemann theory of integration. However, this theory only deals with almost

everywhere continuous functions and not with measurable functions in general. Computability of measures on the unit

interval has also been developed in type two theory [26] and, in addition, by using the Prokhorov distance in the metric

space of measures [15].
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Computability of measurable subsets has a different story. In 1950’s, based on the Russian approach to computability

in analysis, S̃anin [25] initiated research into computability of measurable sets in Euclidean spaces with respect to the

Lebesgue measure. According to his definition, a bounded measurable set is recursive if there exists a recursive sequence of

“simple” open sets, namelyfinite unions of bounded rational open intervals, such that the Lebesguemeasure of the symmetric

difference of the set and the elements of the sequence tends to zero effectively. This differs completely fromBishop’s approach

to constructive analysis [4].

The notion of a recursive measurable set is equivalent to that of a recursively approximable set, defined by Ker-I Ko in

terms of a function-oracle [16]. The measure of the symmetric difference of two sets provides a pseudo-metric on the space

of measurable subsets. S̃anin’s notion is also at the basis of the approach adopted by researchers in type two theory of

computability [29,28], where an abstract computable measure space is defined as one which is generated by a countable

ring of subsets and which is endowed with the pseudo-metric of the measure of symmetric difference.

We aim to develop here a new approach to computability of measurable sets and functions based on classical logic and

recursion theory that is motivated by interval analysis and domain theory, where data types for mathematical objects are

produced by providing lower and upper bounds for them. A directly relevant example is the computable framework for

geometric objects in [13] in which a subset of a topological space is approximated from inside and outside by open subsets.

In this paper, we first develop an effective structure on any second countable, locally compact Hausdorff space and then

derive the notion of an effectively given locally finite measure on such a space. We then extend recursive measurable sets

to effectively given Borel measures on effectively given second countable compact Hausdorff spaces and show that they are

closed under finite union, finite intersection and complementation. A recursive measurable set corresponds to a “rapidly

converging”Cauchysequenceofbasicopensubsetswith respect to thepseudo-metric of themeasureof symmetricdifference.

Such a Cauchy sequence therefore provides a data type for measurable sets.

We then use a combinedmeasure-theoretic and topological approach to define a computablemeasurable subset, which is

givenby the intersectionof a recursive sequenceof open sets containing the set and theunionof a recursive sequenceof closed

sets contained in the set. Our notion of a computable measurable set, which gives approximations to a measurable set both

fromwithin and from outside, is stronger than S̃anin’s recursive measurable sets. The contrast between the two notions can

be seen in constructing elementary sets equivalent to a recursive and a computable measurable set. Wewill in fact construct

a recursive Gδ set equivalent (up to a null set) to a given recursive measurable set on a compact space. For a computable

measurable set, we can however construct an equivalent Fσ set contained in it and an equivalent Gδ set containing it.

A computablemeasurable set in our framework is characterized for eachpositive integernby a recursively given closed set

contained in the set and a recursively given open set containing the set, whosemeasure differ by less that 1/2n. This provides

us with a more refined data type for measurable sets, namely measurable-set intervals or partial measurable sets, leading to

a domain for measurable sets. In this domain, measurable sets are constructed as the least upper bound of increasing chains

of basic partial measurable sets, each given by a pair of closed and open sets with the closed set contained in the open set.

This is similar to the way the domain of real intervals, regarded as partial real numbers, forms a data-type for real numbers

represented as the least upper bound of increasing chains of rational intervals.

Next we deal with measurable functions. We show generally that an interval-valued function on a measure space is

measurable (with respect to the Borel σ -algebra induced by the Scott topology on the domain of intervals of the extended

real line) if and only if the corresponding lower and upper extended real-valued functions are measurable. This observation

allows us to developmeasure theory for interval-valuedmaps on anymeasure space, giving rise to anω-bi-complete function

space of measurable maps, which provides a domain for these maps.

Simple interval-valued measurable maps, which only take a finite number of interval values, are of particular interest:

any bounded real-valued measurable function can be obtained as the supremum of an increasing chain of interval-valued

simple measurable maps, which at each stage of computation gives lower and upper bounds for the real-valued function.

Moreover, the chain can be chosen so that the simple function at level n has, up to a constant factor independent of n, a total

of 2n distinct rational compact interval values each of width 2−n. This enables us to define a μ-recursive and a μ-computable

measurable map and present a data type for such maps in terms of μ-recursive and μ-computable interval-valued simple

maps, respectively.

The notion of μ-computability enables us to develop a domain-theoretic data-type for measurable maps. A partial

measurable set induces an interval-valued characteristic function, which is reduced to a simple interval-valued function

in the domain of measurable maps. Moreover, in the domain of measurable maps, a μ-computable measurable map can

be constructed as the least upper bound of an effective increasing chain of simple interval-valued functions composed of

characteristic maps of basic partial measurable sets. Therefore, we obtain a domain-theoretic data-type for μ-computable

measurable maps based on the domain of partial measurable sets.

As our main results, we derive the interval versions of the basic results in Lebesgue’s theory of integration for bounded

measurable functions with respect to finite Borel measures. In particular, the interval version of the monotone convergence

theorem implies that the Lebesgue integral, as a functional on the space of interval-valued measurable functions, is ω-

continuous. This framework finally furnishes us with an effective method to compute the Lebesgue integral of a bounded

computable measurable function with respect to an effectively given finite Borel measure on a second countable compact

Hausdorff space.

It is assumed that the reader is familiar with the basic concepts of recursion theory as in [6], the elements of real number

computability, in particular the notions of a computable real number and computable sequences of real numbers together
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with theirmain properties, as in [22, Chapter 0], and finally a basic knowledge ofmeasure and integration theory as in [23,17].

For convenience, we denote both by X \ A and by Ac the complement of a subset A ⊆ X .

2. Measurable sets

In this section, we give two characterisations of measurable subsets with respect to a Borel measure on second countable

locally compact Hausdorff spaces, which are used in the next section to define the notions of recursive measurable subsets

and computable measurable subsets, respectively. We first recall a number of definitions; see [23].

A Hausdorff topological space is said to be σ -compact if there exists an increasing sequence of compact sets (Xi)i�0 with

X = ⋃
i�0 Xi. A measure μ on a topological space is said to be regular if for any μ-measurable set Awe have:

μ(A) = inf{μ(O) : A ⊆ O, O open} = sup{μ(C) : C ⊆ A, C compact}.

A Borel measure μ on a Hausdorff space X is said to be locally finite if for any compact subset K ⊆ X we have μ(K) < ∞.

We start by providing a simple characterization of measurable sets on locally compact second countable Hausdorff spaces.

Assume for the rest of this section that X is such a space.

Theorem 2.1. Let X be a locally compact second countable Hausdorff space and μ a locally finite Borel measure on X. Then a

subset A ⊆ X isμ-measurable iff for each ε > 0 there exists an open set O and a closed set C such that C ⊆ A ⊆ Owithμ(O \ C) < ε.

Proof. The “only if” part follows from Theorem 2.14 (Riesz’s Representation Theorem) and Theorems 2.17 and 2.18 in [23] as

follows. Since X is second countable, every open set in X is σ -compact, and it follows from Theorem 2.18 [23] thatμ is regular.

By Theorems 2.14 and 2.17 in [23], for the μ-measurable subset A and any ε > 0, there exist an open set O and a closed set

C such that C ⊆ A ⊆ O with μ(O \ C) < ε as required. For the “if part”, we put ε = 1/2n for any integer n � 0. Then there are

open and closed sets On and Cn such that Cn ⊆ A ⊆ On with μ(On \ Cn) < 1/2n. Let F = ⋃
n�1 Cn and G = ⋂

n�1 On. Then F and

G are Fσ and Gδ subsets, respectively, and we have F ⊆ A ⊆ G with μ(G \ F) = 0. Hence, A is μ-measurable. �

We will use the following consequence of the above theorem to develop our computability theory for measurable subsets.

Corollary 2.2. Let X be a locally compact second countable Hausdorff space,with X = ⋃
i�0 Xi where each Xi is compact, and μ a

locally finite Borel measure on X. Then A ⊆ X is μ-measurable iff for each i � 0 and ε > 0, there are open sets Ui ⊆ X and Vi ⊆ X

such that

Xi \ Ui ⊆ A ∩ Xi ⊆ Vi ∩ Xi

and

μ(Xi ∩ Ui ∩ Vi)) < ε.

Proof. Suppose A is μ-measurable and ε > 0. Then by Theorem 2.1, there exist a closed set C and an open set O such that

C ⊆ A ⊆ O and μ(O \ C) < ε. Put Ui = X \ C and Vi = O for all i � 0. Conversely, if for each i � 0 and ε > 0 two open sets

Ui and Vi with the above properties exist, then by Theorem 2.1, Xi ∩ A is μ-measurable, and thus A = ⋃
i�0(Xi ∩ A) is also

μ-measurable. �

Next, we give an alternative characterisation of measurable sets. Note that the limit superior of a sequence (An)n�0 of

subsets of a set is defined as

lim sup
n→∞

An =
⋂
n�0

⋃
m�n

Am.

Let ν be a measure on a measure space with σ -algebraF and let A�B denote the symmetric difference between subsets A

and B. The following distance, which gives a pseudo-metric onF, is well known in measure theory [5]. �

Definition 2.3. The dν-distance between A1,A2 ∈ F is defined as dν(A1,A2) = ν(A1�A2).

The pseudo-metric dν is complete and there is a constructive witness for this completion property. We say that a Cauchy

sequence (sn)n�0 in a pseudo-metric space is rapidly converging if, for all n � 0, we have: d(si, sj) < 1/2n for all i, j � n;

compare with the similar notion of a rapidly converging sequence of rational numbers in [27, p. 88].

Lemma 2.4. If (An)n�0 is a rapidly converging Cauchy sequence in (F, dν), then it has lim supn→∞ An as a limit.
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Proof. See [5, 1.12.6 Theorem(ii), p. 54]. �

Since any Cauchy sequence has a rapidly converging subsequence, it follows that every Cauchy sequence (An)n�0 in (F, dν)

has a limit of the form lim supn→∞ Ain for some subsequence Ain . This limit is therefore a limit of the original sequence as

well.

Theorem 2.5. Given a Borel measure μ on a second countable locally compact Hausdorff space and a subset A ⊆ X , the following

are equivalent:
(i) A is μ-measurable,

(ii) A is equivalent (up to a nullset) to a Gδ subset.

(iii) For each ε > 0 there exists an open O such that μ(A�O) � ε.

Proof. The implications (i) ⇐⇒ (ii) and the implication (i) ⇒ (iii) follow from Theorem 2.1. For (iii) ⇒ (ii), assume for

each ε = 1/2n (n � 0) that the open subset An satisfies μ(A�An) < 1/2n. Thus, (An+1)n�0 is a rapidly converging Cauchy

sequence and by Lemma 2.4, we have μ(A� lim supn→∞ An) = 0. Therefore, A is equivalent (up to a nullset) to the Gδ set⋂
n�0(

⋃
m�n Am). �

3. Recursive measurable sets

In this section, we develop the notion of a recursive measurable set based on the results of the previous section. We need

to use computable sequences of real numbers and recall the following definitions and basic results from [22].

Definition 3.1

(i) A sequence (rk)k�0 of rational numbers is computable if there exist three total recursive functions a, b, s : N → N with

b(k) /= 0 for k � 0 such that for all k � 0:

rk = (−1)s(k)
a(k)

b(k)
.

(ii) Let (xk)k�0 be a sequence of real numbers with xk → x as k → ∞. We say that xk → x converges effectively in k if there

exists a total recursive function e : N → N such that for all N:

k � e(N) implies |xk − x| � 2−N .

(iii) Let (xnk)n,k�0 be a double sequence of real numbers with xnk → xn as k → ∞ for each n � 0. We say that xnk → xn
converges effectively in n and k as k → ∞ if there exists a total recursive function e : N × N → N such that for all n,N:

k � e(n,N) implies |xnk − xn| � 2−N .

(iv) A real number x is computable if there is a computable sequence of rational numbers (rn)n�0 such that rn → x effectively

in n.

(v) A sequence of real numbers (xn)n�0 is computable (as a sequence) if there is a computable double sequence of rationals

(rnk)n,k�0 such that rnk → xn as k → ∞ effectively in n and k.

(vi) A function f : R → R is computable if (1) itmaps computable sequences of real numbers to computable sequences of real

number, and (2) it is effectively uniformly continuous on intervals [−n,n], i.e., there is a recursive function h : N2 → N
such |x − y| � 1/2h(n,k) and x, y ∈ [−n,n] implies |f (x)− f (y)| � 1/2k for all n, k ∈ N and x, y ∈ R.

It is easy to extend (ii) to triple sequences of real numbers. Next, we need the following basic results about computable

sequences of real numbers.

Proposition 3.2

(i) If (aijn)i,j,n�0 is a computable triple sequenceof real numbers convergingeffectively in i, j andnas j → ∞with limj→∞ aijn = bin
then (bin)i,n�0 is a computable double sequence of real numbers.

(ii) If (aij)i,j�0 is a computable double sequence of real numbers which converges monotonically as j → ∞ to a computable

sequence of real numbers (bi)i�0, i.e., aij � ai(j+1) for all i, j � 0 and bi = limj→∞ aij then the convergence of (aij)i,j�0 is

effective in both i and j as j → ∞.

Proof. (i) This is a straightforward extension of the result in [22, p. 20] for computable double sequences of real numbers

to computable triple sequence of real numbers.
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(ii) See [22, p. 20]. �

We first develop the notions of recursive and computable measurable sets for a finite Borel measure on a compact second

countable Hausdorff space X which will highlight the basic ideas and results. In a later section, these ideas and results

are extended to the technically more involved case of locally finite Borel measures on locally compact spaces. We start by

presenting a notion of effective structure for a second countable compact Hausdorff space X by equipping its ω-continuous

lattice of open subsets with an effective structure as a domain.

Definition 3.3. We say that a second countable compact Hausdorff space X is effectively given with respect to an effective

enumeration (Oi)i�0 of a countable basis of open sets closed under finite union and intersection if the following holds:

(i) O0 = ∅ and O1 = X .

(ii) There are total recursive functions φ and ψ such that Oi ∪ Oj = Oφ(i,j) and Oi ∩ Oj = Oψ(i,j).

(iii) The predicates Oi ⊆ Oj and Oi ⊆ Oj are decidable for i, j � 0.

Since Oi = ∅ iff Oi ⊆ O0, it follows that the equality relation Oi = ∅ is decidable and we can assume, by redefining the

enumeration (Oi)i�0, that Oi = ∅ iff i = 0.We note here that it would be possible to drop the requirement for the decidability

ofOi ⊆ Oj in (iii) at the expense of somemorework. For simplicity though,we choose to keep this condition in our framework.

Proposition 3.4. For each i � 0, the predicate X \ Oi ⊆ ⋃
1�m�n Oim is decidable for any finite set of integers im � 0 with 1 �

m � n, i.e., from any effective covering of the compact subset X \ Oi by basic open subsets, one can effectively obtain a finite

subcovering.

Proof. Recall that X = O1. Thus, the relation X \ Oi ⊆ ⋃
1�m�n Oim , in other words X ⊆ Oi ∪ (

⋃
1�m�n Oim ), is equivalent, by

using the total recursive function φ on the right hand side n − 1 times, to O1 ⊆ Oj . The latter is decidable by condition (i) in

Definition 3.3. �

Now assume that μ is a finite Borel measure on the effectively given compact second countable space X with its effective

enumeration (Oi)i�0 of basic open sets.

Definition 3.5. The finite measure μ is effectively given on X if (μ(Oi))i�0 is a computable sequence of real numbers.

We now use an effective version of the statement in Theorem 2.5 to define a recursive measurable set.

Definition 3.6. Suppose μ is effectively given on X . We say ameasurable subset A ⊆ X is a μ-recursive measurable set if there

exists a total recursive function λ : N → N such that μ(A�Oλ(n)) < 1/2n for all n � 0.

By Theorem 2.5, we know that a μ-recursive measurable set is indeed measurable (assuming that A�Oλ(n) is measurable for

all n � 0). Note that in the above definition, the Cauchy sequence (Oλ(n+1))n�0 is rapidly converging with A as a limit. We can

therefore always assume that μ-recursive measurable sets are defined by rapidly converging effective Cauchy sequences of

basic open sets. It thus follows, from Lemma 2.4, that there is a one to one correspondence between μ-recursive measurable

sets and rapidly converging effective Cauchy sequences of basic open sets, i.e. sequences of the form (Oλ(n))n�0 for a total

recursive function λ satisfying, for all n � 0, the relation μ(Oλ(i)�Oλ(j)) < 1/2n for all i, j � n.

Corollary 3.7. A μ-recursive measurable set is up to a null set a Gδ set whose μ-measure is a computable real number.

Proof. Suppose A ⊆ X is aμ-recursivemeasurable setwith a total recursive function λ : N → N such thatμ(A�Oλ(n)) < 1/2n

for all n � 0. By Theorem 2.5, we know that A is equivalent to a Gδ set. On the other hand, since μ is an effectively given

measure, (μ(On))n�0 is a computable sequence of real numbers and, therefore, so is μ(Oλ(n))n�0 as λ is a total recursive

function. The latter sequence converges effectively to μ(A), which is therefore a computable number. (Note that the limit of

a computable sequence of real numbers which converges effectively is a computable real number [22, page 20]). �

We also have the following closure properties of μ-recursive measurable subsets.

Theorem 3.8. The complement, finite union and finite intersection of μ-recursive measurable sets are μ-recursive measurable

sets.

Proof. Suppose A and B are μ-recursive measurable subsets with total recursive functions λ and η satisfying:

μ(A�Oλ(n)) < 1/2n, μ(B�Oη(n)) < 1/2n.
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Note that Oλ(n) ∪ Oη(n) = Oφ(λ(n),η(n)) and for any subsets C,C ′,D,D′ we have: (C ∪ D)�(C ′ ∪ D′) ⊆ (C�C ′) ∪ (D�D′) . Thus,

μ((A ∪ B)�Oφ(λ(n),η(n))) = μ((A ∪ B)�(Oλ(n) ∪ Oη(n))) <
1

2n
+ 1

2n
= 1

2n−1
,

and hence the finite union of μ-recursive measurable sets is μ-recursive.

Next we show that the complement of A is μ-recursive. Consider the compact set Oc
λ(n+1)

. Since the basis (Oi)i�0 is closed

under finite unions and by Proposition 3.4, there is a total recursive function θ such that the subset relation Oc
λ(n+1)

⊆ Oθ(i)
for i � 0 enumerates the union of all finite open covers of Oc

λ(n+1)
by basis elements. In fact, we can take θ(i) to be, in the

usual ordering of natural numbers, the ith natural number j satisfying the relation X = O1 ⊆ Oφ(j,λ(n+1)), a decidable predicate

by Definition 3.3. We have
⋂

i�0 Oθ(i) = Oc
λ(n+1)

, since for any point x ∈ O one can find, by the Hausdorff property, a finite

covering of Oc
λ(n+1)

by basic open sets that do not contain x. It follows that there exists i � 0 such that μ(Oθ(i) \ Oc
λ(n+1)

) =
μ(Oθ(i) ∩ Oλ(n+1)) < 1/2n+1, or in other words, there exists i � 0 with:

μ(Oψ(θ(i),λ(n+1))) < 1/2n+1.

The above relation is semi-decidable asμ(Oi) is a computable real number for any i � 0.We compute, in parallel, increasingly

accurate approximations to the computable numbers μ(Oψ(θ(i),λ(n+1))) for a finite but increasing number of i � 0. Let i(n) be

the first integer in this parallel computation scheme so that the corresponding approximation yields a result strictly less

than 1/2n+1, i.e. for which the above inequality holds. Then,

μ(Ac�Oθ(i(n)))� μ(Ac�Oc
λ(n+1)

)+ μ(Oc
λ(n+1)

�Oθ(i(n)))

= μ(A�Oλ(n+1))+ μ(Oc
λ(n+1)

�Oθ(i(n)))

< 1
2n+1 + μ(Oψ(θ(i(n)),λ(n+1)))

< 1
2n+1 + 1

2n+1 = 1
2n
.

This shows that Ac is μ-recursive. Since finite intersections of sets can be written as the complement of the union of their

complements, the result follows. �

For the Lebesguemeasure μ on the real line, a countable union of μ-recursive open sets may not be a μ-recursive open set. In

the next section, we give a simple counter example of this property for μ-computable open sets which will also be a counter

example for the case of μ-recursive open sets.

4. Computable measurable sets

In this section, we introduce the notion of a computable measurable set for Borel measures on compact second countable

Hausdorff spaces. Assume thatμ is an effectively givenfiniteBorelmeasureon theeffectively given compact secondcountable

space X with its effective enumeration (Oi)i�0 of basic open sets. Recall from Theorem 2.1 that a subset A ⊆ X is measurable

iff for all ε > there exist a closed set C and an open set O with C ⊆ A ⊆ O and μ(O \ C) < ε. Our task is to make this property

effective with respect to the basic open subsets (Oi)i�0 and the corresponding closed subsets (Oc
i
)i�0. From Proposition 3.4,

it follows that there exists a total recursive function

α : N → N2
(1)

such that �Oα(j) := (Oα1(j),Oα2(j)) gives an enumeration of covers of X by pairs of basic open sets, i.e., Oα1(j) ∪ Oα2(j) = X , or

equivalently, (Oα1(j))
c ⊆ Oα2(j). This motivates the following formulation.

Definition 4.1. We say A ⊆ X is aμ-computable measurable set if there exists a total recursive function β : N2 → N such that

the following holds:

(i) The two sequences (Oα1(β(j,n)))j,n�0 and (Oα2(β(j,n)))j,n�0 of open sets are increasing in j � 0 for fixed n � 0 and decreasing

in n for fixed j.

(ii) For all n � 0, we have:
(⋃

j�0 Oα1(β(j,n))

)c ⊆ A ⊆
(⋃

j�0 Oα2(β(j,n))

)
.

(iii) The two computable double sequences of real numbers (μ(Oα1(β(j,n))))j,n�0 and (μ(Oα2(β(j,n))))j,n�0 converge effectively

in j and n as j → ∞.

(iv) For all n � 0, we have: μ
((⋃

j�0 Oα1(β(j,n))

)
∩

(⋃
j�0 Oα2(β(j,n))

))
< 1/2n.

Item (i) ensures that we only need to work with monotonic sequences of open subsets to characterize the μ-computability

of a measurable subset A. Items (ii) and (iv) provide us, for each integer n � 0, with a closed and an open subset, contained
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in and containing A, respectively, and effectively given in terms of the basic open subsets, such that the measure of their

difference is 1/2n. Item (iii) ensures that the μ-measure of A is computable.

We know by Theorem 2.1 that the conditions in Definition 4.1 above imply that A is μ-measurable. Moreover, we have:

Proposition 4.2. If A is a μ-computable measurable set then μ(A) is a computable real number.

Proof. Since the convergence in (iii) above is effective in j and n as j → ∞, it follows from Proposition 3.2 that μ(X \⋃
j�0 Oα1(β(j,n))) andμ(

⋃
j�0 Oα2(β(j,n))) are computable sequences of real numbers,with thefirst one increasing and the second

one decreasing in n. From (ii) and (iv), it follows that the common limit of these two sequences, i.e., μ(A), is a computable

real number. �

Proposition 4.3. Let O = ⋃
j�0 Oγ (j) where γ : N → N is a total recursive function. Then O is a μ-computable open set iff μ(O)

is a computable real number.

Proof. If O is μ-computable then by Proposition 4.2, μ(O) is a computable real number. Now, for the converse, assume μ(O)

is a computable real number. It suffices to show that there is an effective decreasing sequence of basic open sets whose

complements are contained within O with the sequence of the μ-measure of these complements tending to μ(O). Using

the total recursive function φ (Definition 3.3(ii)), we can assume without loss of generality that γ gives rise to an increasing

sequence of basic open sets. From γ we can effectively obtain, by [14, Proposition 3], a total recursive function δ : N → N such

that O = ⋃
j�0 Oδ(j) and Oδj ⊆ Oδ(j+1) for all j � 0. Since (μ(Oδ(j)))j�0 increases monotonically to the computable real number

μ(O), the convergence is effective in j. Since X is an effectively given compact space with respect to the basis (Oi)i�0 and

since Oδj ⊆ Oδ(j+1) for all j � 0, we can effectively find a finite open covering X \ Oδ(j+1) ⊆ ⋃
1�m�n Oim with Oim ∩ Oδ(j) = ∅

for 1 � m � n. Using the total recursive function φ for binary union (Definition 3.3), we obtain a total recursive function

σ such that X \ Oδ(j+1) ⊆ Oσ(j) := ⋃
1�m�n Oim . Moreover, by putting θ(0) := σ(0) and Oθ(j+1) := Oσ(j) ∩ Oθ(j) = Oψ(σ(j),θ(j)), we

obtain a total recursive function θ which induces an effective decreasing sequence of basic open sets that shares the above

properties of the sequence induced by σ . This completes the proof. �

The above characterization of a μ-computable open set coincides with that in [13].

Corollary 4.4. Let O = ⋃
j�0 Oγ (j) where γ : N → N is a total recursive function. Then O is a μ-recursive open set iff μ(O) is a

computable real number.

Proof. The “if” part follows from Proposition 4.3, since a μ-computable measurable set is μ-recursive. The “only if” part

follows from Corollary 3.7. �

In view of Definition 4.1, consider any total recursive function β : N2 → N which satisfies the following three conditions:

(E1) the two sequences (Oα1(β(j,n)))j,n�0 and (Oα2(β(j,n)))j,n�0 of open sets are increasing in j for fixed n and decreasing in n for

fixed j,

(E2) the two computable double sequences of real numbers (μ(Oα1(β(j,n))))j,n�0 and (μ(Oα2(β(i,j,n))))j,n�0 converge effectively

in j and n as j → ∞,

(E3) for all n � 0, we have the relation:

μ((
⋃

j�0 Oα1(β(j,n)))) ∩ ((⋃j�0 Oα2(β(j,n)))) < 1/2n.

Such a recursive function β characterizes an equivalence class of μ-computable measurable sets which differ by a null set.

Two canonical representatives of this class are the Gδ set
⋂

n�0

⋃
j�0 Oα2(β(j,n)) and the Fσ set (

⋂
n�0

⋃
j�0 Oα1(β(j,n)))

c .

Moreover, the one parameter family of pairs of closed and open sets in Definition 4.1(ii), for n � 0, represent a data-type

for any member A of this equivalence class where (
⋃

j�0 Oα1(β(j,n)))
c ⊆ A ⊆ (

⋃
j�0 Oα2(β(j,n))) and the measure of the open

subset and the closed subset in each pair differ by at most 1/2n, as can be seen follows from Definition 4.1(iv).

Proposition 4.5

(i) The complement of a computable measurable set is another computable measurable set.

(ii) A finite union or intersection of computable measurable subsets is a computable measurable subset.

Proof. (i) Interchange 1 and 2 in the indices of α and β in Definition 4.1.

(ii) This follows easily using the total recursive functions φ and ψ for binary union and binary intersection of basic open

sets. intersection. �

Weprovide a simple example to show thatμ-computable (orμ-recursive)measurable subsets are not closed under countable

union or intersection.
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Example 4.6. Consider the Lebesgue measure μ on the real line and let (rk)k�0 be an effective increasing sequence of

positive rational numbers converging to a left-computable but non-computable real number r ∈ R. (Such a sequence

can be constructed from a recursively enumerable but non-recursive subset of natural numbers.) Then by Proposition 4.3,

the open interval (0, r) = ⋃
k�0(0, rk) is not μ-computable though for each k � 0 the open interval (0, rk) is

μ-computable.

5. Domain of measurable subsets

We now introduce a domain for μ-measurable sets and show our notion of a μ-computable measurable set actually

provides a domain-theoretic data type. Consider a measure space (X ,S) with the underlying set X and a σ -algebra S of

subsets of X , regarded as measurable subsets. The domain (M(X ,S),�) of measurable subsets of X is defined as follows.

An element of M(X ,S) is given by a pair of subsets A,B ∈ S with A ⊆ B. The partial order is defined as [A1,B1] � [A2,B2] if
A1 ⊆ A2 and B1 ⊇ B2. Thus, (M(X ,S),�) is ω-bi-complete with

⊔
i�0 [Ai,Bi] = [⋃

i�0 Ai,
⋂

i�0 Bi
]
, �i�0 [Ai,Bi] = [⋂

i�0 Ai,
⋃

i�0 Bi
]
,

and the pair [∅,X] as the least element. We think of [A,B] as a partial, or partially defined, measurable set that can be refined

to any measurable set C with A ⊆ C ⊆ B, in much the same way that a real interval [a, b] is regarded as a partial real number

that can be refined to any real number c with a � c � b.

Any measure on (X ,S) extends to the domain of partial measurable subsets as an interval-valued map. Let [0,∞] be
the one-point compactification of (0,∞) and I[0,∞] be the set of non-empty compact intervals of [0,∞] ordered by reverse

inclusion. A measure μ on (X ,S) induces a mapM(μ) : M(X ,S) → I[0,∞], defined by M(μ) : [A,B] �→ [μ(A),μ(B)]. It is easy
to check that this map is ω-bi-continuous, i.e., it is monotone and preserves the supremums and infimums of increasing and

decreasing ω-chains.

Assume now thatμ is a finitemeasure on themeasure space (X ,S). We say that a subsetD ⊆ M(X ,S) is aμ-basis for the

domain (M(X),�) if for any C ∈ S there exists an increasing chain [An,Bn]n�0 inD with its lub [A,B] := [⋃n�0 An,
⋂

n�0 Bn]
satisfying A ⊆ C ⊆ B and μ(B \ A) = 0. An effective sequence (Sn)n�0, such that Sn ∈ S for all n � 0, S0 = ∅ and S1 = X , is said

to be an ω-generator sequence for the μ-basisD of (X ,S) if the following two conditions hold:

(G-1) For every element (A,B) ∈ D in the μ-basis, there are increasing sequences (Sf (n))n�0 and (Sg(n))n�0 for total functions

f , g : N → N such that Ac = ⋃
n�0 Sf (n) and B = ⋃

n�0 Sg(n).

(G-2) The sequence (μ(Sn))n�0 is a computable sequence of real numbers.

We say that the μ-basis element [A,B] is effectively given (with respect to the ω-generator sequence) if the total functions

f and g in (G-1) above are recursive. We finally say that an element C ∈ S is μ-domain computable with respect to the

ω-generator sequence (Sn)n�0 of theμ-basisD if it is contained in the lub of an increasing recursive chain of effectively given

μ-basis elements with the width of the nth element of the chain bounded by 1/2n, i.e., if there exist total recursive functions

f : N2 → N and g : N2 → N such that:

(C-1) For all n � 0 we have: (
⋃

j�0 Sf (j,n))
c ⊆ C ⊆ ⋃

j�0 Sg(j,n).

(C-2) The chain ([(⋃j�0 Sf (j,n))
c ,

⋃
j�0 Sg(j,n)])n�0 is increasing in n � 0 and the sequences (μ(

⋃
j�0 Sf (j,n)))n�0 and

μ(
⋃

j�0 Sg(j,n))n�0 are computable sequences of real numbers.

(C-3) For all n � 0, we have: μ(
⋃

j�0 Sg(j,n))− μ(
⋃

j�0 Sf (j,n))
c < 1/2n.

Nowwe consider a finite measure μ on a second countable compact Hausdorff space X . By Theorem 2.1, the collectionD
of pairs (C,O), with C closed and O open, forms a μ-basis for the domain (M(X ,S),�) where S is the set of μ measurable

subsets of X . Next assume further that X is effectively given with respect to an enumeration (Oi)i�0 of a countable basis and

μ is effectively given with respect to this enumeration as in Definition 3.5. Then, (Oi)i�0 is an ω-generator sequence forD as

(G-1) and (G-2) are satisfied. Finally we obtain:

Proposition 5.1. A μ-computable measurable subset A ⊆ X with respect to the enumeration (Oi)i�0 of basic open subsets

is a μ-domain computable subset with respect to (Oi)i�0 as an ω-generator sequence of the basis of pairs of closed and open

sets.

Proof. Let α and β be as in Definition 4.1 for theμ-computablemeasurable subset A ⊆ X . Putting f = α1 ◦ β and g = α2 ◦ βwe

see that the conditions (C-1)–(C-3) aremet sincebyProposition3.2μ
(⋃

j�0 Oα1(β(j,n))

)
andμ

(⋃
j�0 Oα2(β(j,n))

)
are computable

sequences of real numbers. �

In Section 7, we will see how partial measurable sets naturally give rise to interval-valued measurable functions, which in

turn provide a domain-theoretic data-type for measurable functions.
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6. Locally compact spaces

We will show how to extend the results of the previous two sections to locally finite measures on locally compact

spaces. We will treat the case of μ-computable measurable sets in detail and briefly indicate how the results for μ-recursive

measurable sets can be generalized in this setting. Let X be a second countable locally compact Hausdorff space. Let (Oj)j�0 be

an effective enumeration of a basis of relatively compact open sets, which is closed under non-empty finite intersection and

finite union. We note that X is σ -compact, i.e., there exists an increasing sequence of compact sets (Xi)i�0 with X = ⋃
i�0 Xi,

e.g., we can take Xi = ⋃
n�i On. For each i � 0, the collection (Oj ∩ Xi)j�0 is a countable basis of the relative topology for Xi.

Definition 6.1. We say that X is effectively given with respect to (Xi)i�0 and (Oj)j�0 if the following holds:

(i) O0 = ∅.
(ii) The predicates Oi ⊆ Oj and Oi ⊆ Oj are decidable for i, j � 0.

(iii) There are total recursive functions φ and ψ such that Oi ∪ Oj = Oφ(i,j) and Oi ∩ Oj = Oψ(i,j).

(iv) For each i, j, k � 0, the predicate Xi \ Oj ⊆ Ok ∩ Xi is decidable.

As in the compact case, we can and will assume that Oi = ∅ iff i = 0. Notice however that in contrast to the compact setting

(Definition 3.3), in the locally compact case we have an additional axiom (iv), which for a compact space X follows from the

other axioms by stipulating that X = O1 as shown in Proposition 3.4.

Fromour assumptions, it follows that there exists a total recursive functionα : N2 → N2
such that �Oα(i,j) := (Oα1(i,j),Oα2(i,j))

gives an enumeration of covers of Xi by pairs of basic open sets, i.e., Xi ⊆ Oα1(i,j) ∪ Oα2(i,j).

Example 6.2. As an important example, consider the real line R equipped with its Euclidean topology; it is a second

countable locally compact Hausdorff space. We put Xi = [−i, i] for i ∈ N. Consider any effective enumeration (Uj)j�0 of the

canonical basisB of R consisting of the set of finite unions of rational open intervals and assume U0 = ∅. ThenB is closed

under finite intersections as well and it is easily seen by checking the clauses of Definition 6.1 that R is effectively given with

respect to (Xi)i�0 and (Uj)j�0.Moreover, there exists an effective scheme to express eachUi as the finite union of disjoint open

rational intervals, i.e., there exists a total recursive function ρ : N → N*
where N*

is the set of finite sequences over N*
such

that if ρ(i) = (ρ(i)0, ρ(i)1, · · · , ρ(i)ni ), for some ni ∈ N, thenUi = Uρ(i)0 ∪ Uρ(i)1 ∪ · · · ∪ Uρ(i)ni
, whereUρ(i)m are disjoint intervals

for 0 � m � ni. Let (Ci)i�0 be an effective enumeration of the set of compact rational intervals of R. Since the interior C◦
i
is,

for each i � 0, a rational open (possibly empty) interval, we can effectively obtain j � 0 such that C◦
i

= Uj . Thus, there exists

a total recursive function τ : N → N such that C◦
i

= Uτ(i) for all i � 0. Finally, there is a partial recursive function κ : N → N
such that C◦

κ(i)
= Ui whenever Ui is an open interval.

We now give two other equivalent characterizations of computable functions of type R → R as defined in Definition 3.1.

Lemma 6.3. A continuous function f : R → R is computable iff the relation f [Ci] ⊂ C◦
j
is r.e. in i, j.

Proof. This follows from [14, Theorems 26 and 29]. �

Theorem 6.4. A continuous function f : R → R is computable iff the relation Ui ⊆ f−1(Uj) is r.e. in i, j.

Proof. Suppose the relationUi ⊆ f−1(Uj) is r.e. in i, j. We have: f [Ci] ⊆ C◦
j
iff Ci ⊆ f−1(C◦

j
) iffUτ(i) ⊆ f−1(Uτ(j)). Since τ is a total

recursive function the latter relation is by assumption r.e. in i, j and thus so is the relation f [Ci] ⊆ C◦
j
.

Suppose on the other hand that Ci ⊆ f−1(C◦
j
) is r.e. in i, j. Since

Ui ⊆ f−1(Uj)

⇐⇒ Uρ(i)0 ∪ Uρ(i)1 ∪ · · · ∪ Uρ(i)ni
⊆ f−1(Uρ(j)0 ∪ Uρ(j)1 ∪ · · · ∪ Uρ(j)nj

),

it is sufficient to show that the relation Ui0
∪ Ui1

∪ · · · ∪ Uim ⊆ f−1(Uj0
∪ Uj1

∪ · · · ∪ Ujn ), where all open subsets are assumed

to be open intervals, is r.e. in ((i0, i1, . . . , im), (j0, j1, . . . , jn)) ∈ N* × N*
. (Recall that N*

is in bijective correspondence with N

under themapping {k1, k2, . . . , kn} �→ p
k1
1
p
k2
2
. . .pknn where k1 < k2 < · · · < kn and pi is the ith prime number.) We can assume

that open sets are open intervals by invoking the recursive function κ introduced above, with Ui = C◦
κ(i)

, which is defined

for i ∈ N iff Ui is an open interval. Fix (m,n) ∈ N2
. We have Ui0

∪ Ui1
∪ · · · ∪ Uim ⊆ f−1(Uj0

∪ Uj1
∪ · · · ∪ Ujn ) iff ∀k(0 � k �

m) ∃l(0 � l � n). f [Uik
] ⊆ Ujl

(since f [Uik
] is a compact interval for each k) iff ∀k(0 � k � m) ∃l(0 � l � n). f [Cκ(ik)] ⊆ C◦

κ(jl)
.
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From this, we can deduce that the set

Emn :=

{((i0, . . . , im), (j0, . . . , jn)) : ∀k(0 � k � m) ∃l(0 � l � n). f [Cκ(ik)] ⊆ C◦
κ(jl)

}

is r.e. In fact, for any pair k, l ∈ N, with 0 � k � m and 0 � l � n, the set

Eklmn = {((i0, i1, . . . , im), (j0, j1, . . . , jn)) : f [Cκ(ik)] ⊆ C◦
κ(jl)

}

is r.e. as follows. Since Emn = ⋂
0�k�m

⋃
0�l�n E

kl
mn and since any finite union and any finite intersection of r.e. sets are r.e., it

follows that Emn is r.e. Finally, put

E := {((i0, . . . , im), (j0, . . . , jn)) : m,n ∈ N and ∀k ∃l. f [Cκ(ik)] ⊆ C◦
κ(jl)

}.

Then, E = ⋃
(m,n)∈N2 Emn and is thus r.e. since any countable union of r.e. sets is r.e. [21, 5.9], and the proof is complete. �

Using Theorem 6.4, we can generalize the notion of a computable function to real-valued continuous functions on a locally

compact second countable Hausdorff space.

Definition 6.5. A continuous function f : X → R on the effectively given locally compact second countable Hausdorff space

X with the enumeration (Oi)i�0 of its basis elements is computable if the relation Oi ⊆ f−1(Uj) is r.e. in i, j.

Assume now that μ is a locally finite Borel measure on the effectively given locally compact second countable space X

with its effective enumeration (Oi)i�0 of basis. We say that μ is effectively given on X if (μ(Oj ∩ Xi))i,j�0 is a computable

double sequence of real numbers.

Definition 6.6. We say A ⊆ X is a μ-recursive measurable set if there exists a total recursive function λ : N2 → N such that

the double computable sequence of real numbers (μ(Oλ(n,i)))n,i�0 converges effectively in n and i as n → ∞ with μ((A ∩
Xi)�(Oλ(n,i) ∩ Xi)) < 1/2n for all n � 0.

One can extend the proof of Theorem 3.8 to show that the family of μ-recursive measurable sets are closed are finite unions,

intersections and complementation. We will not present the details here and instead move on to define μ-computable

measurable sets on locally compact spaces for which we will provide the proofs of the extended results.

Definition 6.7. We say A ⊆ X is aμ-computable measurable set if there exists a total recursive function β : N3 → N such that

(i) The two triple sequences (Oα1(i,β(i,j,n)))i,j,n�0 and (Oα2(i,β(i,j,n)))i,j,n�0 of open sets are both increasing in i for fixed j and n,

increasing in j for fixed i and n and decreasing in n for fixed i and j.

(ii) For all i,n � 0, we have:

⎛
⎝Xi \

⋃
j�0

Oα1(i,β(i,j,n))

⎞
⎠ ⊆ Xi ∩ A ⊆

⎛
⎝Xi ∩

⋃
j�0

Oα2(i,β(i,j,n))

⎞
⎠ .

(iii) The two computable triple sequences of real numbers

(μ(Xi ∩ Oα1(i,β(i,j,n))))i,j,n�0, (μ(Xi ∩ Oα2(i,β(i,j,n))))i,j,n�0,

converge effectively in i, j and n as j → ∞.

(iv) For all i,n � 0, we have:

μ

⎛
⎝Xi ∩

⎛
⎝⋃

j�0

Oα1(i,β(i,j,n))

⎞
⎠ ∩

⎛
⎝⋃

j�0

Oα2(i,β(i,j,n))

⎞
⎠

⎞
⎠ < 1/2n.

We know by Theorem 2.1 that the conditions in Definition 6.7 above imply that A is μ-measurable. Moreover, we have:

Proposition 6.8. If A is a computable μ-measurable set then (μ(A ∩ Xi))i�0 is a computable sequence of real numbers.
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Proof. Since the convergence in Definition 6.7(iii) above is effective in i, j and n as j → ∞, it follows from Proposition 3.2 that

μ(Xi \
⋃

j�0 Oα1(i,β(i,j,n))) and μ(Xi ∩
⋃

j�0 Oα2(i,β(i,j,n))) are computable double sequences of real numbers, with the first one

increasing and the second one decreasing in n for fixed i. From (iv) it follows that these two double sequences of real numbers

converge effectively in n and i to μ(A ∩ Xi) as n → ∞. Thus, by Proposition 3.2, (μ(A ∩ Xi))i�0 is a computable sequence of real

numbers. �

Proposition 4.3 can be extended to obtain:

Proposition 6.9. Let O be a recursive union of basic open sets. ThenO is aμ-computable open set iff (μ(Xi ∩ O))i�0 is a computable

sequence of real numbers.

Proof. If O is μ-computable then by Proposition 6.8, (μ(Xi ∩ O))i�0 is a computable sequence of real numbers. Now, for

the converse, let O = ⋃
j�0 Oγ (j) where the sequence of open sets is increasing and γ : N → N is a total recursive function

and assume (μ(Xi ∩ O))i�0 is a computable sequence of real numbers. Since
⋃

j�0 Oγ (j) can be used as the first sequence of

open sets in Definition 6.7, it suffices to construct the second sequence. As in the proof of Proposition 4.3, from γ we can

effectively obtain, by [14, Proposition 3], a total recursive function δ : N → N such that O = ⋃
j�0 Oδ(j) and Oδ(j) ⊆ Oδ(j+1)

for all j � 0. Consider the computable double sequence of real numbers (μ(Xi ∩ Oδ(j))i,j�0. It monotonically converges to

the computable sequence of real numbers (μ(Xi ∩ O))i�0. Thus, by Proposition 3.2, the convergence is effective in i and j.

Since X is effectively locally compact with respect to the basis (Oj)j�0 and the sequence of compact subsets (Xi)i�0 and since

Oδj ⊆ Oδ(j+1) for all j � 0, we can effectively find a finite open covering Xi \ Oδ(j+1) ⊆ ⋃
1�m�n Otm with Otm ∩ Oδ(j) = ∅ for

1 � m � n. Using the total recursive function φ for binary union (Definition 6.1), we obtain a total recursive function σ such

that Xi \ Oδ(j+1) ⊆ Oσ(j) := ⋃
1�m�n Otm . Moreover, by putting θ(0) := σ(0) and Oθ(j+1) := Oσ(j) ∩ Oθ(j) = Oψ(σ(j),θ(j)), for j � 0,

we obtain a total recursive function θ which induces an effective decreasing sequence of basic open sets which shares the

above properties of the sequence induced by σ . Since the construction is effective in i, this completes the proof. �

The proof of Proposition 4.5 easily extends to locally finite measures on locally compact spaces:

Proposition 6.10

(i) The complement of a computable measurable set is another computable measurable set.

(ii) A finite union or intersection of computable measurable subsets is a computable measurable subset.

7. Measurable functions

Let (X ,S) be a measure space with the underlying set X and a σ -algebraS of subsets of X . We work with such a general

space first to develop the notion of interval-valued measurable functions, which we will motivate shortly. Later, in order to

develop a computability theory for measurable functions, we assume that X is a locally compact second countable Hausdorff

space, equipped with its σ -algebra of measurable subsets induced by a Borel measure μ on X , i.e., S will be the set of all

μ-measurable subsets of X .

Given any topological space Y , we say that a function f : X → Y is measurable if f−1(B) ∈ S for any Borel subset B ⊆ Y .

Let R be the extended real line, i.e., the two point compactification [−∞,∞] of R, where the basic open sets are of the form

(a, b), [−∞, b) and (a,∞], with a, b ∈ R. Let IR, respectively, IR, be the domain of the non-empty compact intervals of the real

line, respectively, of the extended real line, ordered by reverse inclusion and equipped with its σ -algebra of Borel subsets

induced from the Scott topology.

In classical measure theory, measurable maps are built up from characteristic maps of measurable sets. It is thus natural

to seek to define computable measurable maps by using characteristic maps of μ-recursive or μ-computable measurable

subsets.Wehaveseen inSection5 that thedomainofpartialmeasurable subsetsprovidesadata type topresentμ-computable

measurable subsets. The notion of characteristic maps can be extended to partial measurable subsets as follow. Define:

χ : M(X ,S)→ (X → IR)
[A,B] �→ χ[A,B]

with

χ[A,B] : x �→
⎧⎨
⎩

1 if x ∈ A

0 if x /∈ B

[0, 1] if x ∈ B \ A
(2)

It is easily checked that χ is ω-continuous, i.e., it is monotone and preserves the lubs of increasing ω-chains.
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Consider the set (X →m IR) of measurable functions f : X → IR partially ordered pointwise, i.e., f � g if f (x) � g(x) for all

x ∈ X . Each such function is determined by the extended real-valued lower and upper parts f− and f+ of f defined such that

for each x ∈ X we have f (x) = [f−(x), f+(x)].

Proposition 7.1. We have f ∈ (X →m IR) iff f−, f+ are measurable as extended real-valued functions.

Proof. We note first that the Scott topology on IR has a countable basis consisting of subsets of the form �I = {y : y ⊆ I}
where I is any rational open interval, i.e., I = (a, b) or I = (a,∞] or I = [−∞, b) for rational numbers a, b ∈ R. Since the Borel

σ -algebra on any topological space is generated by the open sets, f will be measurable iff f−1(�I) ∈ S for all rational open

intervals I. The result now follows from observing the following relations:

f−1(�(a,∞]) = (f−)−1(a,∞]
f−1(�([−∞, b)) = (f+)−1[−∞, b)

f−1(�(a, b)) = (f−)−1(a,∞] ∩ (f+)−1[−∞, b)

In fact, if f− and f+ are both measurable, then f will be measurable since by the above relations f−1(�I) is measurable for

any rational interval I. On the other hand if f is measurable then by the first two relations, (f−)−1(a,∞] and (f+)−1[−∞, b)

are measurable for all rational numbers a and b and it will follow that f− and f+ are both measurable. �

It follows immediately that the function space (X →m IR) is closed under finite sums; moreover we have:

Proposition 7.2. If α ∈ IR and f ∈ (X →m IR) then αf ∈ (X →m IR).

Proof. We have:

αf = [α−,α+][f−, f+]
= [min(α−f−,α−f+,α+f−,α+f+),max(α−f−,α−f+,α+f−,α+f+)]
∈ (X →m IR),

since the min and max of measurable maps are measurable. �

Corollary 7.3. If αi ∈ IR and fi ∈ (X →m IR) for 1 � i � n then
∑n

i=1 αifi ∈ (X →m IR).

Since the supremum, respectively, infimum, of an increasing, respectively, decreasing, sequence of real-valued mea-

surable functions is measurable, the poset (X →m IR) is ω-bi-complete, i.e., the supremum (respectively, infimum) of any

increasing (respectively, decreasing) sequence of interval-valued measurable functions is an interval-valued measurable

function. Similarly, since the supremum (respectively, infimum) of any (finite or) countable set of measurable functions

is measurable, it follows that (X →m IR) is ω-inf complete and bounded ω-sup complete. In fact, suppose (fi)i�0 is a

countable sequence of elements in (X →m IR). Then �i�0fi = λx. �i�0fi(x), where �i�0fi(x) is the closure in R of the

convex hull of
⋃

i�0 fi(x), which is compact since R is compact. On the other hand, if (fi)i�0 is a bounded sequence, then⊔
i�0 fi = λx.

⊔
i�0 fi(x) since

⊔
i�0 fi(x) is the intersection of non-empty compact intervals is therefore a non-empty and

compact interval.

Given a sequence of intervals xi ∈ IR, i � 0 and x ∈ IR, we write limi→∞ xi = x if x− = limi→∞ x−
i

and x+ = limi→∞ x+
i

both exist in R with respect to its compact topology.

Furthermore, we introduce a limit operation on sequences in IR which we denote by lim*:

lim* : (IR)ω → IR
(xi)i�0 �→ [lim inf i→∞ x−

i
, lim supi→∞ x+

i
]

Note that lim
*
i→∞ xi for xi ∈ IR is precisely the set of all limits of convergent sequences (ai)i�0 with ai ∈ xi. Note also that lim*

is monotone but not continuous.

This induces a limit operation on sequences in (X →m IR) as follows:

lim* : (X →m IR)ω → (X →m IR)
(fi)i�0 �→ [lim inf i→∞ f−

i
, lim supi→∞ f+

i
]

If f− = limi→∞ f−
i

and f+ = limi→∞ f+
i

both exist then we write limi→∞ fi = f = [f−, f+]. Clearly in this case limi→∞ fi =
lim*

i→∞ fi.

From the definition of a characteristic map in Eq. (2), we immediately obtain:
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Proposition 7.4. For any partial measurable subset [A,B] the characteristic map χ[A,B] : X → IR is measurable.

In analogy with simple functions in classical measure theory on the one hand and step functions in domain theory on the

other hand, we define the following:

Definition 7.5. Let [Ai,Bi] ⊆ X be partial measurable subsets of X for 1 � i � n and let αi ∈ IR be real intervals for 1 � i � n.

Then

s =
n∑

i=1

αiχ[Ai ,Bi] : X → IR

is called an interval-valued simple function.

Since χ[A,B] = χA + [0, 1]χB\A, the characteristic function of a partial measurable function can be expressed in terms of char-

acteristic function of measurable functions with interval coefficients. Therefore, without loss of generality, we assume from

now on that an interval-valued simple function has the form s = ∑n
i=1 αiχAi : X → IR. From this, we see that s = [s−, s+]

where s± : X → R with s± = ∑n
i=1 α

±χAi are both measurable functions. It follows that s is an interval-valued measurable

function. Note also thatwe exclude extended real intervals from the definition of a simple function and that, as in the classical

case, s takes only a finite number of values and does not depend on the particular representation in terms of measurable sets

Ai’s and intervals αi’s. There is indeed a canonical representation of s for which the αi’s are precisely the distinct non-zero

values of s and Ai is precisely the set where s takes value αi. We define the order o(s) of s to be the number of distinct non-zero

values of s. Using the canonical representation of swe also define thewidth w(s) of s as the maximum length of the intervals

αi, i.e., w(s) = max{α+
i

− α−
i

: 1 � i � n}. Finally, for the canonical representation, we define the maximum absolute value of

s by m(s) = max{|α−
i

|, |α+
i

| : 1 � i � n}. We say that s is a rational interval-valued simple function if αi is a compact rational

interval for 1 � i � n.

We say f : X → IR is bounded by a compact interval K ∈ IR, if for all x ∈ X we have: K � f (x); we denote this by K � f . We

only deal with bounded measurable functions in this paper.

Let the real-valued measurable function f : X → R be bounded so that |f | � M for some M � 0. Let m be the least non-

negative integer such thatM < 2m. For a positive integer n and any integer k with −2m+n+1 + 2 � k � 2m+n+1 let

Ank = f−1

(
k − 2

2n+1
,

k

2n+1

)
, (3)

which is measurable since f is measurable and the dyadic interval
(

k−2
2n+1 ,

k
2n+1

)
is an open set. For a measurable f , let

sn =
2(n+m+1)∑

k=−2(m+n+1)+2

[
k − 2

2n
,
k

2n

]
χAnk , (4)

then, we have f = ⊔
n�0 sn with w(sn) � 1/2n with o(sn) � 2n+m+2. We have therefore shown.

Proposition 7.6. Given a measure space X , every bounded real-valued measurable function f : X → R is the supremum of an

increasing sequence of rational interval-valued simple functions sn with o(sn) � c 2n, where c is a positive constant independent

of n, and w(sn) � 1/2n.

The above proposition can easily be extended to bounded interval-valued measurable functions of type X → IR.

7.1. Recursive and computable measurable functions

An effective version of Proposition 7.6 provides us with the notion of a μ-recursive and a μ-computable real-valued

measurable function and our data type for such functions. Let X be an effectively given compact second countable Hausdorff

space as in Section 2. We fix an effectively given Borel measure μ on X .

Definition 7.7

(i) A rational interval-valued simple function

s =
k∑

i=1

αiχAi : X → IR

is μ-computable (μ-recursive) if for 1 � i � k, the subset Ai ⊆ X is a μ-computable (μ-recursive) measurable set for

1 � i � k.
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(ii) A sequence (sn)n�0 of μ-computable (μ-recursive) interval-valued simple functions is effectively given if there is an

effective procedure to obtain sn.

(iii) We say that f : X → R is a μ-computable (μ-recursive) bounded measurable function if there is an effective increasing

sequence of μ-computable (μ-recursive) interval-valued simple functions sn : X → IR with f = ⊔
n�0 sn such that

• there is an effectively given non-negative integer M � 0 withm(sn) � M for all n � 0,

• w(sn) � 1/2n for all n � 0, and,

• o(sn) � c 2n for some effectively given positive constant c independent of n � 0. �

Two remarks regarding the notion of a μ-computable (μ-recursive) simple function are in order.

(i) First, note that Definition 7.7(i) of a μ-computable (μ-recursive) simple function is independent of the choice of the

representative of s as the complement and the finite union of μ-computable (μ-recursive) measurable sets are both

μ-computable measurable sets.

(ii) We note that for a classical simple function s = ∑k
i=1 aiχAi : X → R with ai ∈ R the two definitions in parts (i) and (ii)

of Definition 7.7 are consistent. Indeed, if Ai’s are μ-computable (μ-recursive) measurable sets and ai’s are rational

numbers, so that s is aμ-computable (μ-recursive) simple function according to Definition 7.7(i), then putting sn = s for

all n � 0 we see that s is μ-computable (μ-recursive) as a measurable function in the sense of Definition 7.7(ii). On the

other hand, suppose the simple function swith canonical representation s = ∑k
i=1 aiχAi : X → R is a μ-computable (μ-

recursive) measurable function in the sense of Definition 7.7(ii). Let V = {0} ∪ {ai : 1 � i � k} and put r = min{|v − w| :
v,w ∈ V with v /= w}. By assumption, there is an increasing sequence of μ-computable (μ-recursive) simple functions

sn with s = ⊔
n sn and w(sn) � 1/2n. Fix i with 1 � i � k, and let n be such that 1/2n < r/2. Assume sn = ∑mn

t=1
βntχBnt .

Then, for � i � k, we have

Ai =
⋃

ai∈βnt
Bnt

and it follows that Ai is the finite union of μ-computable (μ-recursive) measurable subsets and is thus a μ-computable

(μ-recursive) measurable subset by Theorem 3.8 and Proposition 4.5.

Proposition 7.8. The set of bounded real-valuedμ-computable (μ-recursive)measurable functions is closed undermultiplication

by a computable real number and under taking sums, absolute value,maximum and minimum.

Proof. Suppose f = ⊔
n�0 sn and f ′ = ⊔

n�0 s
′
n, where sn and s′n are μ-computable (μ-recursive) simple functions satisfying

the conditions in Definition 7.7(ii) and in particular: w(sn) � 2n, o(sn) � c2n and w(s′n) � 2n, o(s′n) � c′2n. Assume a ∈ R be

a computable real number; we will show that af is a μ-computable (μ-recursive) measurable function. Let M be effectively

givenwith sn � M for all n � 0. Let the positive integer p be such that |a| < 2p − 1. From the computability of a, Definition 3.1,

it follows that there is a sequence (γn)n�0 of compact rational intervals with w(γn) � 1/2n that has a as their intersections.

Note that if s = �k
i=1
αiχAi : X → IR is the canonical representation of any interval-valued simple function (i.e., with disjoint

Ai’s, equivalently distinct αi’s) and if γ is any compact interval, then γ s = �k
i=1
γαiχAi , where γα = {xy : x ∈ γ , y ∈ α}. We also

have: w(αs)� max(|γ−|, |γ+|)w(s) and o(αs) � o(s). Consider now tn := γnsn. Clearly tn is μ-computable (μ-recursive). We

have af = ⊔
n�0 tn, with w(tn) � 2p−n, o(tn) � o(sn) � c2n and m(tn) � 2pM for all n � 0. Since p is independent of n, it

follows easily that af is μ-computable (μ-recursive). Next, we consider the other operations. In all these cases, we construct

a new effective sequence of μ-computable (μ-recursive) interval-valued simple functions. For the sum operation, we have:

f + f ′ = ⊔
n�0 sn + s′n. Note that for real intervals α,β ∈ IR and for subsets A,B ⊆ X we have:

αχA + βχB = (α + β)χA∩B + αχA\B + βχB\A. (5)

Sinceμ-computable (μ-recursive)measurable subsets are closedunderfiniteunion, finite intersectionandcomplementation,

it follows that for each n � 0, the interval-valued simple function sn + s′n is μ-computable (μ-recursive). From Eq. 5, it

also follows that w(sn + s′n) � 1/2n−1 and, since o(sn) � c2n and o(s′n) � c′2n, then o(sn + s′n) � 3k2n where k = max(c, c′).
Furthermore, m(sn + s′n) � m(sn)+ m(s′n). We conclude that f + f ′ is a μ-computable (μ-recursive) measurable function.

Next, we show that |f | is μ-computable (μ-recursive). We use the pointwise extension of the absolute value function to real

intervals. Then, for any interval-valued simple function s = ∑k
i=1 aiχAi : X → R we have the interval-valued simple function:

|s| = ∑k
i=1 |αi|χAi with w(|s|) � w(s), o(|s|) � o(s) and m(|s|) = m(s). It follows that |f | = ⊔

n�0 |sn| is a μ-computable (μ-

recursive) measurable function. Finally, we note that min(f , f ′) = (f + f ′ − |f − f ′|)/2 and max(f , f ′) = (f + f ′ + |f − f ′|)/2,
from which we conclude that min(f , f ′) and max(f , f ′) are μ-computable (μ-recursive) measurable functions. �

Consider the increasing sequence of bounded μ-computable measurable functions (fk)k�0 with fk = χ(0,rk), where (rk)k�0

is the sequence of rational numbers in Example 4.6. Since supk�0 fk = χ(0,r), we see that the supremum of a countable set of

bounded μ-computable (μ-recursive) measurable functions is not necessarily μ-computable (μ-recursive).
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Given a μ-computable simple function s = ∑k
i=1 αiχAi as in Definition 7.7, it follows by the μ-computability of the mea-

surable subsets Ai (for 1 � i � k) that there are total recursive functions βi : N2 → N such that for 1 � i � kwe have (up to

a null set):

Ai =
⊔
n�0

[Cin,Oin],

where Cin = (
⋃

j�0 Oα1(βi(j,n)))
c and Oin = ⋃

j�0 Oα2(βi(j,n)). Thus, we have s = ⊔
n�0 sn with

sn =
k∑

i=1

αiχ[Cin ,Oin].

We have thus shown.

Proposition 7.9. A μ-computable simple function is the lub of an increasing recursive chain of simple functions made up of

effectively given μ-basis elements.

Finally, we present a condition for a computable continuous function as introduced in Definition 6.5 to be a μ-computable

map. We say a real-valued continuous function f : X → R is effectively bounded if a nonnegative number M is effectively

given such that |f (x)| � M for all x ∈ X .

Theorem 7.10. An effectively bounded, computable continuous real-valued function on an effectively given compact second

countable Hausdorff space isμ-computablewith respect to an effectively given finite Borelmeasureμ on the space if theμ-measure

of the inverse image of each open dyadic rational interval is a computable real number.

Proof. Let f : X → R be an effectively bounded, computable continuous real-valued function on an effectively given compact

second countable Hausdorff space X with enumeration (Oi)i�0 and let μ be an effectively given finite Borel measure on X .

LetM be the effectively given bound for f and letm,n, k and Ank be as in Eq. 3. We have the simple functions sn in Eq. 4 with

f = ⊔
n�0 sn. Given the open interval

(
k−2
2n+1 ,

k
2n+1

)
, with−2m+n+1 + 2 � k � 2m+n+1, there is j � 0 such thatUj =

(
k−2
2n+1 ,

k
2n+1

)
as defined in Example 6.2 and thus Ank = f−1(Uj). Since, by computability of f , the relation Oi ⊆ f−1(Uj) is, for fixed j, r.e. in

i, it follows that there exists a total recursive function γ : N → N such that Ank = ⋃
j�0 Oγ (j). By assumption, μ(Ank) is a

computable real number. Thus, by Proposition 4.3, Ank is a μ-computable measurable subset and it follows that sn is an

effective sequence of μ-computable interval-valued simple functions with lub f , which completes the proof. �

8. Interval Lebesgue integral

We are now in a position to define the notion of interval Lebesgue integral as a map
∫ : (X →m IR) → R with respect to

a measure μ on the measure space (X ,S). Later in this section, in order to develop a computability theory, we work with a

finite Borel measure μ on a locally compact second countable Hausdorff space X .

For a simple function s ∈ (X →m IR)with a representative s = ∑n
i=1 αiχAi : X → IR, which vanishes outside a set of finite

measure, we define the μ-integral of s as:

∫
X
s dμ =

n∑
i=1

αiμ(Ai).

It follows that
∫
X s dμ = [∫X s− dμ,

∫
X s+ dμ]. Thus, as in the classical case, the integral of a simple function is independent of

its representative. If E ⊆ X is measurable, then s · χE = ∑n
i=1 αiχAi∩E is also a simple function and, as in the classical case, we

define:

∫
E
s dμ =

∫
X
s · χE dμ.

We also immediately deduce the following.

Proposition 8.1. If s and t are simple interval-valued functions then, for compact intervals a, b ∈ IR :
(i)

∫
(as + bt) dμ = a

∫
s dμ+ b

∫
t dμ.

(ii) If s � t holds a.e., then
∫
s dμ � ∫

t dμ.
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Now we deal with bounded measurable functions. We first consider a bounded measurable function f ∈ (X →m IR) and
define:

Definition 8.2. The Lebesgue integral of any bounded interval-valuedmeasurable function f on ameasurable subset Ewith

respect to a bounded measure μ on X is defined as:

∫
E
f dμ =

⊔ {∫
E
s dμ : simple s � f

}
.

We immediately obtain the following formula for computing the interval-valued Lebesgue integral:

Proposition 8.3.
∫
E f dμ = [∫E f− dμ,

∫
E f

+ dμ].

We usually write
∫
f dμ for

∫
X f dμ. The following results easily follow as in the classical case.

Proposition 8.4. If f and g are bounded measurable interval-valued functions and a and b are real numbers, then:
(i)

∫
(af + bg) dμ = a

∫
f dμ+ b

∫
g dμ.

(ii) If f � g holds a.e., then
∫
f dμ � ∫

g dμ.

(iii) If A and B are disjoint measurable subsets then

∫
A∪B

f dμ =
∫
A
f dμ+

∫
B
f dμ.

Note that, in Proposition 8.4(i) above, the linearity of the integral operator on interval-valued functions only holds for real

coefficients whereas for simple functions this linearity extends to compact real intervals as in Proposition 8.1(i).

We can now obtain in a straightforward way, using Proposition 8.3, the interval version of some of the classical results in

measure theory. Recall the definitions of lim and lim* in (X →m IR).

Proposition 8.5 (Bounded Convergence Theorem). Let fn ∈ (X →m IR), for n � 0, be a sequence of uniformly boundedmeasur-

able functionswith respect to a bounded Borelmeasureμ, such that limn→∞ fn = f exists. Then
∫
limn→∞ fn dμ = limn→∞

∫
fn dμ.

From this, we obtain what is essentially the ω-continuity of the Lebesgue integral operator:

Corollary 8.6 [Monotone Convergence Theorem]. Let fn ∈ (X →m IR), for n � 0, be an increasing sequence of measurable

functions with respect to a bounded Borel measure μ, with f0 bounded. Then
⊔

n�0

∫
fn dμ = ∫

(
⊔

n�0 fn) dμ.

Finally, from the Bounded Convergence Theorem above we obtain the interval version of Fatou’s lemma.

Lemma 8.7 (Fatou’s Lemma). Let fn ∈ (X →m IR), for n � 0, be a sequence of uniformly bounded measurable functions with

respect to a bounded Borel measure μ. Then
∫
lim* fn dμ � lim* ∫

fn dμ.

8.1. Computability of Lebesgue integral

We now assume X is an effectively given second countable compact Hausdorff space and μ is an effectively given finite

Borel measure μ on it as described in Section 2. Recall that we have an effective enumeration (Oj)j�0 of a countable basis

of X with X = O1 such that (μ(Oj))j�0 is a computable sequence of real numbers. The following theorem, which is our main

result, brings together and uses all the results in the previous sections, on μ-computable measurable sets and functions and

on the interval-valued Lebesgue integral.

Theorem 8.8. Suppose f is a bounded μ-computable real-valued measurable function on X. Then the Lebesgue integral of f with

respect to μ is computable, i.e., given any positive integer k we can effectively compute the Lebesgue integral of f up to 1/2k

accuracy.

Proof. Let M be an effectively given bound for f and (sn)n�0 be the increasing sequence of μ-computable simple functions

in (X →m IR)whichwitnesses the computability of f according to Definition 7.7 with effectively given constant c > 0. By the

interval version of the Monotone Convergence Theorem (Corollary 8.6), we know that
∫
f dμ = ⊔

n�0

∫
sn dμ, which means

that the required integral lies in each compact interval of the shrinking sequence of compact intervals given by the integrals

of the simple functions. Our task is to effectively find n such that
∫
sn dμ provides the required estimate. In fact, using the
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canonical representation:

sn =
o(sn)∑
i=1

αiχAi (6)

we obtain
∫
sn dμ = ∑o(sn)

i=1
αiμ(Ai). Since each Ai is a μ-computable measurable subset, we can effectively obtain for each

nonnegative integer p an open set Oip and a closed set Cip such that Cip ⊆ Ai ⊆ Oip with μ(Oip) and μ(Cip) computable real

numbers satisfying μ(Oip)− μ(Cip) < 1/2p.

We note that there are three types of intervals αi in the simplemap sn of Eq. 6: (i) 0 � α−
i
, (ii) α+

i
� 0 and (iii) α−

i
< 0 < α+

i
.

This gives us three pairwise disjoint subsets:

I+n = {0 � i � o(sn) : 0 � α−
i

}
I−n = {0 � i � o(sn) : α+

i
� 0}

I0n = {0 � i � o(sn) : α−
i
< 0 < α+

i
},

with 0 � i � o(sn) iff i ∈ I+n ∪ I−n ∪ I0n .

We have

∑
i∈I+n

α−
i
μ(Cip)+

∑
i∈I−n

α−
i
μ(Oip)+

∑
i∈I0n

α−
i
μ(Oip) �

∫
fn dμ �

∑
i∈I+n

α+
i
μ(Oip)+

∑
i∈I−n

α+
i
μ(Cip)+

∑
i∈I0n

α+
i
μ(Oip).

Estimating the difference between the three types of terms in the two sums on the left and right hand side above we have:

∑
i∈I+n α

+
i
μ(Oip)− α−

i
μ(Cip) = ∑

i∈I+n α
+
i
μ(Oip)− α+

i
μ(Cip)+ α+

i
μ(Cip)− α−

i
μ(Cip)

= ∑o(sn)
i=1

α+
i
(μ(Oip)− μ(Cip))+ (α+

i
− α−

i
)μ(Cip)

� ∑
i∈I+n

m(sn)
2p

+ w(sn)μ(Cip) � m(sn)o(sn)
2p

+ μ(X)
2n

,

sincew(sn) is bounded by 1/2n and Cip’s, being contained in the disjoint sets Ai, are disjoint for fixed p and 1 � i � o(sn) and

their total μ-measure is therefore bounded by μ(X). Thus, for our estimate, we conclude that

∑
i∈I+n

α+
i
μ(Oip)− α−

i
μ(Cip) �

m(sn)c2
n

2p
+ μ(X)

2n
,

since o(sn) is bounded by c2n.

Similary,

∑
i∈I−n α

+
i
μ(Cip)− α−

i
μ(Oip) = ∑

i∈I−n α
+
i
μ(Cip)− α−

i
μ(Cip)+ α−

i
μ(Cip)− α−

i
μ(Oip)

= ∑
i∈I−n (α

+
i

− α−
i
)μ(Cip)+ (μ(Cip)− μ(Oip))α

−
i

� m(sn)c2
n

2p
+ μ(X)

2n
,

as in the computation of the estimate for the I+n terms.

Finally, we have:

∑
i∈I0n α

+
i
μ(Oip)− α−

i
μ(Oip) = ∑

i∈I+
0
(α+

i
− α−

i
)μ(Oip)

� ∑
i∈I+

0
w(sn)μ(Oip)

� w(sn)
∑

i∈I+
0
(μ(Cip)+ 1

2p
) � μ(X)

2n
+ c

2p

Overall, collecting the contributions from the three types, we have:

w

(∫
sn dμ

)
� 3μ(X)

2n
+ c(1 + m(sn)2

n+1)

2p
.

Note that μ(X) is a computable number as X = O1; we can thus effectively obtain a nonnegative integer t such that

3μ(X) < 2t . Let the positive integer k be given and put n = k + t + 1 and

p = �log c(m(sk+t+1)2
k+t+1 + 1)2k�.
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Using the above effectively obtained n and p, we get

w(

∫
sn dμ) � 1/2k+1 + 1/2k+1 = 1/2k.

It follows that for the above values of n and p the computable real number

∑
i∈I+n

α+
i
μ(Oip)+

∑
i∈I−n

α+
i
μ(Cip)+

∑
i∈I0n

α+
i
μ(Oip)

is within 1/2k of the value of the integral
∫
f dμ. �

Theorem8.8 also holds forμ-recursivemeasurable functionswhich is amore general result; the proof is only slightly different

and is skipped here.

9. Conclusion and further work

Wehave established a domain-theoretic computable framework for Lebesgue’smeasure and integration theory on locally

compactHausdorff spaces,which canherald applications of domain theory inprobability theory and in the theoryof Lp spaces

and functional analysis in general.

Our computability theory is based either on the extension of S̃anin’s notion of μ-recursive measurable sets or on the

new and stronger notion of μ-computable measurable sets, which gives rise to a domain-theoretic data-type for measurable

sets. The classical results of Lebesgue theory are extended to interval-valued functions using the notion of interval-valued

simple functions and it is shown, in particular, that the Lebesgue integral operator is ω-continuous on the space of interval-

valued boundedmeasurable functions and that the Lebesgue integral of anyμ-computable real-valued boundedmeasurable

functionwith respect to an effectively given finite Borelmeasure on an effectively given second countable compact Hausdorff

space is computable. Further work is required to extend these results to the Lebesgue integral of unbounded measurable

functions with respect to finite or locally finite measures on locally compact Hausdorff spaces.

One can also incorporate into this framework the idea of approximating Borel measures on second countable locally

compact Hausdorff spaces by simple valuations on the upper space of the locally compact space as developed in [9,8]. In

otherwords, both simple functions and simple valuationswould be used to compute the Lebesgue integral. This wouldmake

the Lebesgue integral operator continuous on the product of the space of interval-valuedmeasurable functions and the space

of continuous valuations on the upper space.
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[15] P. Gaćs, Uniform test of algorithmic randomness over a general space, Theoretical Computer Science 341 (2005) 91–137.
[16] K. Ko, Complexity Theory of Real Numbers, Birkhäuser, 1991.
[17] A.N. Kolmogorov, S.V. Fomin, Introductory Real Analysis, Dover, 1975.
[18] D. Kozen, Semantics of probabilistic programs, Journal of Computer and System Sciences 22 (1981) 328–350.
[19] J.D. Lawson, Spaces of maximal points, Mathematical Structures in Computer Science 7 (5) (1997) 543–555.
[20] J.D. Lawson, B. Lu, Riemann and Edalat integration on domains, Theoretical Computer Science 305 (1–3) (2003) 259–275.
[21] Yu.I. Manin, A Course in Mathematical Logic, Springer, 1974.
[22] M.B. Pour-El, J.I. Richards, Computability in Analysis and Physics, Springer-Verlag, 1988.
[23] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1970.
[24] N. Saheb-Djahromi, CPO’s of measures for non-determinism, Theoretical Computer Science 12 (1) (1980) 19–37.
[25] N. S̃anin, Constructive Real Numbers and Function Spaces (E. Mendelson, Trans.), Translations of Mathematical Monographs, vol. 21, AMS, Providence

Rhode Island, 1968.
[26] K. Weihrauch, Computability on the probability measures on the Borel sets of the unit interval, Theoretical Computer Science 219 (1999) 421–437.
[27] K. Weihrauch, Computable Analysis (An Introduction), Springer, 2000.
[28] Y. Wu, D. Ding, Computability of measurable sets via effective topologies, Archive for Mathematical Logic 45 (3) (2006) 365–379.
[29] Y. Wu, K. Weihrauch, A computable version of the daniell-stone theorem on integration and linear functionals, Theoretical Computer Science 359

(1–3) (2006) 28–42.


	Introduction
	Measurable sets
	Recursive measurable sets
	Computable measurable sets
	Domain of measurable subsets
	Locally compact spaces
	Measurable functions
	Recursive and computable measurable functions

	Interval Lebesgue integral
	Computability of Lebesgue integral

	Conclusion and further work
	References

