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Abstract

We develop a domain-theoretic computational model for krwvaltiable differ-
ential calculus, which for the first time gives rise to datpey for differentiable
functions, by constructing an effectively given continadécott domain for real-
valued Lipschitz functions on finite dimensional Euclidepaces. The model for
real-valued Lipschitz functions of variables, is built as a sub-domain of the prod-
uct of n 4+ 1 copies of the function space on the domain of intervals byirigp
together consistent information about locally LipschipieCewise differentiable)
functions and their differential properties (partial datives). The main result
of the paper is to show, in two stages, that consistency igldele on basis ele-
ments, which implies that the domain can be given an effecttwucture. First,

a domain-theoretic notion of line integral is used to ext&@réen’s theorem to
interval-valued vector fields and show that integrabilityte derivative informa-
tion is decidable. Then, we use techniques from the theominimal surfaces
to construct the least and the greatest piecewise lineatifuns that can be ob-
tained from a tuple ofi + 1 rational step functions, assuming the integrability of
then-tuple of the derivative part. This provides an algorithncheck consistency
on the rational basis elements of the domain, giving an &ffedramework for
multi-variable differential calculus.

1 Introduction

We develop a domain-theoretic computational model for iavaltiable differential cal-
culus, which for the first time gives rise to data types fol-kedued Lipschitz or dif-
ferentiable functions on finite dimensional Euclidean gsacThis extends the corre-
sponding result in [11] for dimension = 1 to higher dimensiona > 1. While many
of the properties of the domain of Lipschitz functions Rrextend easily, as shown
in [8], even to infinite dimensional Banach spaces, consitrg@an effective structure
for the domain in the finite dimensional case> 1 has been a challenge.

The model is a continuous Scott domain for Lipschitz funwiof n variables.
It allows us to deal with Lipschitz or differentiable funmtis in a recursion theoretic
setting, and is thus fundamental for applications in comaamnal geometry, geometric



modelling, ordinary and partial differential equationslather fields of computational
mathematics. The overall aim of the framework is to syntteesiifferential calculus
and computer science, which are two major pillars of modeiense and technology.

As in dimension one, the basic idea of the model, for a finireatisional Euclidean
spaceR™ or for an infinite dimensional Banach spakXeis to collect together the local
differential properties of the function by developing a gealization of the concept of
Lipschitz constant to a non-empty, convex and compactaied Lipschitz constant
in R™ in the finite dimensional case and a non-empty, convex and&kweampact
set-valued Lipschitz constant in the dugl for the infinite dimensional case. The
collection of these local differentiable properties arthised to define the Lipschitz or
L-derivativeof a function and the primitives of a Scott continuous, nompey, convex
and compact (respectively, weak* compact) set-valuecovdigid in R™ (respectively,
in X*), which leads to a fundamental theorem of calculus for séiled derivatives,
which was shown first for dimension one [10] and then for indiiimensions [8].

The L-derivative is in fact closely related to Clarke’s geadt, which is a key tool
in nonsmooth analysis, control theory and optimizatiorotiid5, 6] and is defined
by using the generalized directional derivative based &imggthe limsup of the rate
of change of the function along a given direction. It has bgeown in [8] that the
L-derivative and the Clarke’s gradient coincide in finitenéinsions.

In a series of papers, Borwein and his collaborators hawkestivarious properties
of the Clarke gradient and developed new related notion3,[2]. In particular, given
a weak* upper semi-continuous mafthat is non-empty, convex and weak* compact
set-valued from a Banach space to the space of subsets aofaitsag-Lipschitz map
is defined as one whose Clarke gradient at every point is itmttan the set value of
g at that point. In finite dimensions, the set@Llipschitz maps is precisely the set
of primitives of g, a result which is a direct consequence of the equivalentieeoi -
derivative and Clarke gradient. Whereas in the domainfttersetting the generalized
differential properties are used to develop the notion ohjives and the fundamen-
tal theorem of calculus is then deduced as a propositiorhénsork of Borwein et
al the g-Lipschitz maps are defined precisely by using the relati@a €xpresses the
fundamental theorem of calculus.

The fundamental theorem is used here, in the finite dimeakzase, to construct
the domain of differentiable functions as a sub-domain efgtoduct of the space of
interval-valued function of: variables and the space of functionsrof/ariables that
take nonempty compact sets as values. Geometrically, stecbmponent of such a
pair serves as an approximation of the function value, aadsétond component si-
multaneously approximates allpartial derivatives. We call such a pair consistent if
there exists a piecewise differentiable function, eqeinty a piecewise linear func-
tion, which is approximated by the first component, and whogartial derivatives,
wherever defined, are approximated by the second compohtr pair.

The geometric meaning of the finitary data type and congigtisras follows. Each
step function that approximates the function value is regméed by a finite set of pairs
(a;, bi)ier Wherea C R™ is a rational hyper-rectangle ahdC R is a compact inter-
val such thab; andb; have non-empty intersection whenever this is the case &r th
interiors ofa; anda;. Similarly, approximations of the partial derivatives are given
as finite sets of pairéa;, b;),c; where theu,; are as above but thg are now rational
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Figure 1: Two examples of consistent function and derieagipproximations

polyhedra.

We now call a pair consisting of an approximation to the fiorcvalue and its:
partial derivatives consistent if there exists a piecewlifierentiable function which
is approximated together with its partial derivatives, veheefined, by the pair. For a
consistent pair, there are a least and a greatest pieceifiesedtiable function which
satisfy the function and the partial derivative constraint

Figure 1 shows two examples of consistent tuplesifet 2 and in each case the
least and greatest functions consistent with the derigatbnstraints are drawn. In the
first case, on the left, there is a single hyper-rectangléuioction approximation and
the derivative approximations in theandy directions over the whole domain of the
function are given respectively by the constant interlal$v] and[m, M] with n, m >
0. In the second case, on the right, there are two intersehtipgr-rectangles for the
function approximation and the derivative approximatians the constant intervals
[0, 0] and[m, M| with m > 0.

The main question now is whether consistency of a pair coimgifunction and
derivative information is actually decidable. Fer= 1, it was shown in [11] that
consistency is decidable and in [9], a linear algorithm wessented (linear in the
number of pairs in the two step functions) which decides tivesistency in this case.
For finiten > 1, the problem is, as we have seen, very simple to state butasgt e
to solve. The main result of the paper is to show, in two statiest consistency is
decidable on basis elements.

In the first stage we need to develop a decidable conditiothiintegrability of
a compact-convex set-valued function. As in classicakddiitial multi-variable cal-
culus, such a function may fail to be integrable. BorweinlddaTheorem 8] have
derived a necessary and sufficient condition for the inteiita of an upper semi-
continuous (equivalently Scott continuous) compact-earset-valued function on fi-
nite dimensional Euclidean spaces in terms of the existehaameasurable selection
of the compact-convex set-valued function for which alklintegrals over polygonal
path vanishes; see Section 4.

In this paper, we provide an equivalent condition for thiegrability, which we
prove is decidable on basis elements of our domain. Withainisin mind, we intro-
duce a domain-theoretic notion of line integral, which we tesestablish the following
necessary and sufficient condition for a compact-convexaeed Scott continuous
vector function to be integrable: zero must be containechéline integral of the
interval-valued vector field with respect to any closed pdthis gives another exten-



sion of the classical Green’s Theorem for a vector field to beadient, i.e., to be an
exact differential, [14, pages 286-291]. We thus obtain amesult of this paper: an
algorithm to check integrability for rational step funci®

Finally, we use techniques from the theory of minimal sueto construct the least
and the greatest piecewise linear functions obtained frgairaof rational step func-
tions, representing function and derivative approxinratiowhich the derivative part
is assumed to be integrable. These surfaces are obtainexspgctively, maximalizing
and minimalizing the lower and the upper line integrals & derivative information
over piecewise linear paths. The maximalization and mination are achieved for a
piecewise linear path which can all be effectively congedc The decidability of con-
sistency is then reduced to checking whether the miniméeseis below the maximal
surface, a task that can be done in finite time. This leads &dgurithm to check con-
sistency of a pair representing function and derivativeragmation and shows that
consistency is decidable on the rational basis elementseeaddmain for locally Lips-
chitz functions, giving an effective framework for multasiable differential calculus.

1.1 Related work

The domain for real-valued Lipschitz functions on the omaetisional real line has led
to applications in solving initial value problems [9, 12]nd domain for the Lipschitz
functions on finite dimensional Euclidean spaces has beeth tasdevelop domain-
theoretic inverse and implicit function theorems for Lipgz functions [13].

In computable analysis, Pour-El and Richards [16] relateabmputability of a
function with the computability of its derivative. The sche employed by Weihrauch [19]
leads to partially defined representations, but there isameial result on decidability.
Interval analysis [15] also provides a framework for vedfieumerical computation.
There, differentiation is performed by symbolic technis|{&7] in contrast to our se-
qguence of approximations of the functions.

1.2 Notations and terminology

We use the standard notions of domain theory as in [1]. Fompam subset/ C R",

let C°U be the set of all continuous functions of type— R be the set of continuous
functions andDU = U — IR the domain of all Scott continuous functions of type
U — IR; we often writeD° for D°U if no ambiguity can arise. A functiofi € D°

is given by a pair of respectively lower and upper semi-cardils functiong =, f* :

U — Rwith f(z) = [f~(z), f(x)]. We denote the continuous Scott domain of the
nonempty compact subsetsRf ordered by reverse inclusion KyR™. We will use

a canonical base of this domain, consisting of rational lpedira together with the set
R™ as a least element. We will consider the extension- : CR” x R™ — IR of the
scalar product which is defined pointwisex = {y - = : y € b}.

We use standard operations of interval arithmetic on ialematrices. We write
lz|| = v/>_;_, x? for the standard Euclidean norm of= (z1,---,z,) € R". The
Euclidean norm is extended boc CR™ by ||b|| = max{||z|| : « € b}. Recall that the
derivative of amapf : U — R aty € U, when it exists, is defined as the linear map



T :R"™ — R with
|f(z) = fly) —T(z —y)

lle—yl|—0 lz —yll

=0.

The linear maf’ is denoted byf’(y). LetV f denote the gradient gf, when it exists,
ie.,

_of _
(Vi) = 2L =
: - '
hmm(ﬁxif(xl,...,:171,...,:17”) fl($17---75%---755n),
i T; — T

for 1 <i < n. Recall that if the derivative exists at a point then the ggathlso exists
at that point and has the same value. We will reserve theiantéd exclusively in this
paper for the L-derivative which will be introduced latehéTinterior of a setd ¢ R"
is denoted by4° and its closure by ¢A).

We next aim to define the generalized (Clarke) gradient ofnatfan [5, Chapter
two] and explain its properties. L& C X be an open subset of a Banach spAce
and letf : U — R be Lipschitz near: € U andv € X. Thegeneralized directional
derivativeof f atx in the direction ofv is

f(x;v) = limsup fly+tv) — fly)
y—x t|0 t

Letus denote by * the dual ofX, i.e. the set of real-valued continuous linear functions
on X. We considerX * with its weak* topology, i.e., the weakest topology &ff in
which for anyxz € X the mapf — f(x) : X* — R is continuous.

Thegeneralized gradiendf f atxz, denoted by f(x) is the subset ok * given by

{Ae X" f°(z;v) > A(v) forallv € X }.
Itis shown in [5, page 27] that
e Jf(z) is a non-empty, convex, weak* compact subseXdt

e Forv € X, we have:

f?(@;0) = max{A(v) : A € 0f(x)}.

2 Domain for Lipschitz functions

This section reviews the necessary background or.therivative and the domain of
Lipschitz maps, specialized to finite dimensions, from [Bixhich we also refer for
all proofs. The local differential property of a functionfrmalized in the domain-
theoretic framework by the notion of an interval Lipschionstant. Assumé& c R™
is an open subset.



Definition 2.1. The continuous functiorf : U — R hasa non-empty, convex and
compact set-valued Lipschitz constane CR™ in an open subset C U if for all
x,y € awe haved - (x —y) C f(x) — f(y). Thesingle-step tief(a,b) C C°U of a
with b is the collection of all partial functiong on U with « C dom(f) C U in C°U
which haveb as a non-empty convex compact set-valued Lipschitz conistan

For example, ifh = 2 andb = b, xb, C R?, the information relation above reduces
to b1 (z1 — y1) + ba(z2 — y2) C f(z) — f(y). For a single-step tié(a, b), one can
think of b as the non-empty compact-set Lipschitz constant for théyarhfunctions
in d(a,b). A classical Lipschitz would require = b; = —b; >0foralli=1---n.
By generalizing the concept of a Lipschitz constant in thég/ywone is able to obtain
essential information about the differential propertiéthe function. In particular, if
f €d(a,b)fora # @andb # L, thenf(z) is maximal for eachr € a and the induced
functionf : @ — R is Lipschitz: for allx, y € a we have|f(z) — f(y| < ||b]||x — y|.

For f € C'U, the following three conditions are equivalent: fi)e §(a,b), (ii)
Vz €a. f'(z) e band (ii)a \, b C f.

For the rest of this section, we assume we are in dimensior.

Definition 2.2. A step tieof C* is any finite intersectiofi,, d(a;, b;) C C°, where
I'is afinite indexing set. Aie of C" is any intersectiom\ = (", d(as, b;) C C?, for
an arbitrary indexing set. Thedomainof a non-empty tieA is defined aglom (A) =

Uiel{ai |b; # L}.

A non-empty step tie with rational intervals gives us a fanaf functions with
a finite set of consistent differential properties, and a non-enggtyeral tie gives a
family of functions with a consistent set of differentiabperties. Recall that a function
f : U — R defined on the open sét C R is locally Lipschitzif it is Lipschitz in a
neighborhood of any pointify. If A ¢ C?is a tie andf € A, thenf(z) is maximal
for xz € dom(A) andf is locally Lipschitz ondom (A).

We now collect some simple properties of step ties, which wkeuse later and
refer to [8] for proofs. For any indexing sétthe family of step function&z; ™\ b;)icr
is consistent if"),.; 6(as, b;) # 0. One important corollary of this is that consistency
of a family of step functions can be determined from the dssed ties in a finitary
manner: The family(a; \ b;);cs is consistent if for any finite subfamily C I we
have(,.; 0(a;, b;) # 0.

Let (T'[0, 1], 2) be the dcpo of ties of® ordered by reverse inclusion. We are
finally in a position to define the primitives of a Scott comtius function; in fact now
we can do more and define:

Definition 2.3. The primitive map [ : (U — CR") — T" is defined by[(g) =
N;cr 6(ai, b;), whereg = sup;c;a; \, b;. We usually write[(f) as [ f and call it
theprimitivesof f.

The primitive map is well-defined, onto and continuous. Rop 2, as we are
assuming here, the primitive map will have the empty tiesnmainge, a situation which
does not occur fon = 1.

Example 2.4.Letg € [0,1]2 — (CR)? be givenbyy = (g1, 92) = (M\z1. 2.1, A1y AT2.71).

(
ThengZ =0 # 1 = 92, and it will follow that [ g = 0.




Therefore, we have the following important notion in dimensn > 2.
Definition 2.5. Amapg € U — CR™ is said to bentegrableif | g # (.

Given a Scott continuous functiofi: U — R, the relationf € §(a, b) provides,
as we have seen, finitary information about the local difféet properties off. By
collecting all such local information, we obtain the contpldifferential properties of
f, namely its derivative.

Definition 2.6. Thederivativeof a continuous functiorf : U — R is the map

Lf= |_| a\,b:U — CR".
fe€d(a,b)

We have the following properties, which are establishe®]rdr the case of arbi-
trary (possibly infinite) dimension.

Theorem 2.7. (i) Lf is well-defined and Scott continuous.
(i) If f e CUthenLlf = f'.

(i) fedla,d)iffa\DC LS.
(iv) If fis differentiable atc € U, thenf’(z) € Lf.

In finite dimensional Euclidean spaces, the L-derivativacides with the Clarke
gradient [7, Corollary 8.2].

We also obtain the generalization of Theorem 2.7(iii) te tiwhich provides a
duality between the domain-theoretic derivative and irgkgnd can be considered as
a variant of the fundamental theorem of calculus:

Corollary2.8. f € [giffgC Lf.

The notion ofg-Lipschitz functions due to Borwein et al [4] is defined addofs;
we restrict to finite dimensions. Lete (U — CR"™) be Scott continuous. Then, the
set ofg-Lipschitz mapss defined as

Xg ={f:U — R: fislocally Lipschitzandf(z) C g(z) forall z € U}.

By the equivalence of the Clarke gradient and the L-defredti finite dimensions, it
follows immediately from Corollary 2.8 that, = | g.

A domain for locally Lipschitz functions and far'' U is constructed as follows.
The idea is to uséD’U to represent the function alld — CR” to represent the
differential properties (partial derivatives) of the ftion. Consider theonsistency
relation

Cons € D' x (U — CR"),

defined by(f,g) € Consif 1f N [g # 0. For a consistentf,g), we think of f
as thefunction partor thefunction approximatiorandg as thederivative partor the
derivative approximationWe will show that the consistency relation is Scott closed.



Proposition 2.9. Letg € U — CR"™ and(f;);c; be a non-empty family of functions
fi : dom(g) — Rwith f; € fg forall ¢ € I. If hy = inf;¢; f; is real-valued then
hy € [ g. Similarly, if hy = sup,¢; f; is real-valued, therhs € [ g.

Let R[0, 1] be the set of partial maps {f, 1] into the extended real line. Consider
the two dcpo’s(R[0, 1], <) and (R[0,1],>). Define the maps : D°0O x (U —
CR") — (R, <) andt : D°0O x (U — CR") — (R, >) by

s:(f,g)»—>inf{h:dom(g)—>R|he/g&h2f—}

ﬁ:(f,g)»—>sup{h:dom(g)—>R|h€/g&h§f+}.

We use the convention that the infimum and the supremum ofriyeset arexc
and —oo, respectively. Note that given a connected componkwf dom(g) with
Andom(f) =0, thens(f,g)(z) = —oo andi(s, f)(x) = oo for z € A. In words,
s(f, g) is the least primitive map qf that is greater than the lower part pf whereas
t(f,g) is greatest primitive map af less that the upper part ¢f

It then follows that the following three conditions are eguént: (i) (f, g) € Cons,
(i) s(f,g) < t(f,g) and (iii) There exists a continuous functibn dom(g) — R with
gC Lfandf C hondom(g).

Moreover, the maps andt¢ are Scott continuous and the relatiGnns is Scott
closed. We can sum up the situation for a consistent pair mdtfon and derivative
information.

Corollary 2.10. Let (f,g) € Cons. Then in each connected componéhbf the
domain of definition of which intersects the domain of definitionffthere exist two
locally Lipschitz functions : O — R andt : O — R such thats, ¢ € 1f N [ g and for
eachu € 1f N [ g, we have withs(z) < u(z) < t(z) forall z € O.

The central notion of this paper is now presented as follows:

Definition 2.11. Define
D'U = {(f,9) € D°U x (U — CR™) : (f,g) € Cons}.

The posetD!'U is a continuous Scott domain, i.e. a bounded complete cbiynta
based continuous dcpo. Now, BYU andC'U be, respectively, the collection of real-
valuedC? andC"* functions, and let’ : C°U — DU be defined by'(f) = (f, Lf)
and letl'! be the restriction of* to C*U. Then, the map§ andI'! are respectively
continuous injections of °U andC'U into the set of maximal elements 6L U.

Furthermore] restricts to give a continuous injection for locally Lipgzhfunc-
tions (wherel f # L for all x) and it restricts to give a continuous injection for piece-
wise C'! functions (whereC f is maximal except for a finite set of points).

3 Interval-valued line integration

In this section, we extend the theory of line integratiomteival-valued vector fields.
The collection of step functions of the forgf, g) € D°U x CR", wheref € DU
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Figure 2: Crescents of a step function (left); the cornedsthrir coaxial points (right)

andg € CR" are step functions, forms a basis BfU. For a countable base, we
fix a Cartesian coordinate system and take, as the countabidf topology of/,
the hyper-rectangles iii, with faces parallel to this coordinate system, whose eesti
have rational coordinates. This then provides us with natigingle-step functions of
the forma \, » € D°U wherea C U is a rational hyper-rectangle with faces parallel
to the coordinate system, whose vertices have rationaldauates and- € IR is a
rational interval. It also gives us rational single-stepdiions of the formu ™\, b where

a C U is as before and € CR" is a polyhedron with rational vertices. Note that the
faces ofb are not necessarily parallel to the coordinate planes. ratienal basis of
DU with respect to the given coordinate system is the colleatioall step functions
(£, g) built from such rational single-step functions.We will shim Section 6 that for
rational step functiong € D°U andg € CR", the mapss andt will be piecewise
linear, which can be effectively constructed to test theseiancy of{ f, g).

Letg = (g1,.-.,9,) € CR"™ be a rational step function. Recall that@scenis
the intersection of an open set and a closed set. The domaiydlof ¢ is partitioned
into a finite set of disjoint crescents”; : j € I}, in each of which the value of
g; is constant, where we assume that the indexing setge pairwise disjoint for
1=1,...,n. The collection

{ () Cr:hicl,1<i<n}

1<i<n

of crescents partition dofy) into regions in which the value afis a constant interval
vector; they are called thessociated crescents g, which play a main part in deciding
integrability as we will see later in this section. Each assted crescent has boundaries
parallel to the coordinate planes and these boundarieséuteat points, which are
called thecornersof the crescent.

In Figure 2, an example of a step functigiis given with its associated crescents,
the interval in each crescent gives the valug dfi that crescent. A solid line on the
boundary of a crescent indicates that the boundary is inrdsrent, whereas a broken
line indicates that it is not.

A path in a connected regioR C R"™ is a continuous map : [0,1] — R with
endpointsp(0) andp(1). If p is piecewiseC!, respectively piecewise linear, then



the path is called a piecewigg', respectively piecewise linear. The spded/) of
piecewiseC! paths in the regioy C R™ is equipped with th€! norm:

Ipll = max{ max ||p(r)[, max |lp’(r)]l}. 1)
r€(0,1] p'(r) EXIStS

A pathp is non-self-intersecting p(r) = p(r’') for r <+’ impliesr = 0 andr’ = 1.
We will be mainly concerned with piecewise linear paths is laper. For these paths,
there exists a strictly increasing sequence of points<;<y for somek € N with
0=r9<r <---1rg_1 <71 =1suchthapislinearinfr;,r;;1]for0 <i <k —1.
The pointsp(r;) fori = 0,---, k, are said to be theodesof p; the node(r;) for
i=1,---,k — 1are called thénnernodes. The line segmefip(r) : r; < r <711}
is denoted by ([r;, ri+1]). If p(0) = p(1), the path is said to belosed

A simplepath in a region? C R” is a non-self-intersecting piecewis& map.
We now consider simple paths in the closur@Xl of a connected componett C
dom(g).

Recall that given a vector fielff : R — R™ in aregionR C R™ and a piecewise
C! pathp : [0,1] — R, the line integral ofF" with respect tg from 0 to w € [0, 1]
is defined agfol F(p(r)) - p'(r) dr, when the integral exists. Here, v = > | w;v;
denotes the usual scalar product of two vectars € R™. For anyC € CR™ and
0 > 0, we consider the open s€§ = {z € R" : d(z,C) < §} C R", whered(z, C)
is the minimum distance from the pointo C.

Lemma 3.1. The map— - — : R* x CR® — IR givenbyr- A ={r-x: 2 € A}is
Scott continuous.

Proof. Assumer € R™ and A € CR". Suppose > 0 is given and consider the
open ballB(r, §) centered at and of radiusd = min(1,¢/2(M + 1) with M =
sup{|r| : 7 € A}. Let B € CR" with B C Ay 4+1)- FOr anyz € B, take
y € Awith |z —y| < ¢/2(Jr| + 1). Then, for anys € B(r,d), we have:s - x =
scx—s-yt+sy—r-y+r-y=s-(x—y)+(s—r)-y+r-y<e/2+¢/24+r-y
andthuss-z < r-y+e <r-A+eanditfollowsthats- B < r- A+ €. Similarly,
we haves-B >r-A+e. O

Corollary 3.2. For a Scott continuoug : U — CR", whereU C R" is an open set,
and a piecewise smooth path [0,1] — U, the mapt — g(p(¢)) - p'(¢) : [0,1] — IR
is Scott continuous.

Corollary 3.3. For any piecewise linear map € P(U), the mapg — At.g(p(t)) -
p'(t): (U — C(R")) — D is Scott continuous.

We now define the notion of line integral of the compact-cerpelygon valued
rational step functiog € CR" with respect to any piecewisé! path fromy to z in
the closure of a connected component of dgm

Definition 3.4. Giveng € CR" and a piecewis€' pathp : [0,1] — R™ in the closure
of a connected component of the domaimyptheline integralof g overpis defined as:

/p [Oﬁw]g(r) dr =L /p [071]9(7“) dr, U /p o g(r) dr]
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where
U /10[071] g(r)dr = /0 g(p(r)) - p'(r) dr, L/p[o,u g(r)dr /0 g(p(r)) - p/(r) dr.

Note that since\t.g(p(t)) - p’'(¢t) and At.g(p(¢)) - p'(t) are, by Corollary 3.2, re-
spectively upper and lower semi-continuous functions,ltbleesgue integrals in the
above definition exist.

The interval-valued line integrgfl, , ,, g(p(t)) - p'(¢) dt for a step function iy €
(U — CR") and a piecewise linear pathis easy to compute. For each associated
crescentl’ of g with value K and each straight line segment: [a,b] — T of p
with p’(t) = ¢ for somec € R™ for t € (a,b) C [0,1], the extended scalar product
c-K=c-z:2€ K =[m.M]wherem andM are respectively the least and greatest
values ofc-x for x € K, which will be the least and greatest valueg af for « ranging
over the vertices of{, sinceK is a convex polygon. In fact the problem is precisely
the (standard) linear optimization problem: minimize arakimizec - « subject to the
k conditionsc - & < 0 whered’ for j = 1, ...., k are the normals to thie faces of K.
The above scheme for computing and M is precisely the fundamental theorem of
linear programming which says that the min and max occur @ices of the polygon
K.

4 A generalization of Green’s Theorem

Borwein et al [4] give a necessary and sufficient conditiaref&cott continuous func-
tiong : U — CR™ whereU C R"™ is a non-empty open connected subset to be
integrable (see also [3, Theorem 8]). We will now explairirthendition.

Theline integralof a measurable map: U — R™ on the line segmenit, b] C U
is given by the Lebesgue integral:

/. f(2)dz := /.f(tb+ (1 —=t)a)(b—a)dt.
[a,b] 0

The line integral off on a piecewise linear path in U is simply the sum of its
line integrals on the line segments Bf For any fixede > 0, an ordered collection of
line segment$(¢) = {[ai, bi] : 1 < i <n — 1} is ane-path froma to b provided:

la = axll + 075 laiss = bill + [[bn — bl < e.

Such a path is closed if = b. For a Borel subsety C U, ane-path P is an E-
admissiblee-path froma to b if A({¢t € [0,1] : tbi + (1 — t)a, ¢ E}) = 0 for
1 < i < n — 1. Line integrals on ar-path are defined similarly as above.

Theorem 4.1. [4, Theorem 8] LetU be a non-empty open connected subseR’of
and letg : U — C(R"™) be a bounded Scott continuous map. Ther integrable

if and only if there exists a Borel séf C U with A(U \ E) = 0 and a measurable
selectionf : E — R”™ of g so thatlim,_,o+ fp(e) f(z)dz = 0, whereP(e) is any

closedE-admissibles-path inU.

11
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Figure 3: Failure of zero-containmemt;: (left) andg. (right)

The existence of a measurable selection as above is in demeralecidable. In
this section, we will derive an alternative necessary arfficgent condition for the
integrability of a Scott continuous function: U — CR", so that the condition is
decidable whep is in fact a rational step function.

We now introduce the domain-theoretic generalization afeBis celebrated con-
dition for the integrability of a vector field.

Definition 4.2. Giveng € (U — CR") and a closed simple pathin the closure of
a connected component of dgym, we say thay satisfies theero-containment loop

condition forp if _
0¢ / g(r)dr.
p[0,1]

We say thay € (U — CR") satisfies theero-containment loop conditidfit satisfies
the zero-containment loop condition for any closed simplip in the closure of any
connected component of ddg).

We note that ifg is a step function then in the zero-containment conditicovab
it suffices to consider piecewise linear closed simple pathsonly takes point (max-
imal) values, then the zero-containment loop conditioninspty the standard con-
dition for ¢ to be a gradient i.e., that the line integral g¢fvanishes on any closed
path. Figure 3 gives an example of a step functior= (g1, g2), with dom(g) =
((0,3) x (0,3))\ ([1, 2] x [1, 2]) which does not satisfy the zero-containmentloop con-
dition. The values of;; (left) andg- (right) are given for each of the four single-step
functions. Denote the dashed pathyit has nodes ap(0) = p(1) = (1/2,1/2),
p(1/4) = (5/2,0), p(1/2) = (5/2,5/2) andp(3/4) = (1/2,5/2). The lower line
integral ofg overp gives a strictly positive value:

prg(r)dr =8.

Recall thaty € (U — CR") is called integrable if[ g # (. The following is an
extension of Green’s Theorem also called the Gradient Hmean classical differential
calculus [14].

12



Theorem 4.3. Supposgy € (U — CR") is an integrable step function. Then
satisfies the zero-containment loop condition.

Proof. Assumeh € [ g and thus, by Corollary 2.8,
gC Lh. 2)

Take any closed piecewise linear pathin a connected componefitof dom(g) with
po(0) = po(1) = yoand nodes ab = rg < r; < ------ -1 < T = 1 say.
Thenh is locally Lipschitz in c{O) and thus by Rademacher’s theorem [6, p 148] it
is differentiable almost everywhere @ We take small parallel transversal (Poincaré)
(n — 1)-dimensional sections [18}; at po(r;), fori = 0,---,k — 1, to the pathp,
and consider the family of closed piecewise linear pathwith p, (0) = p, (1), where

y € Ay, such that, for each € Ay and eachi with 0 < ¢ < k — 1, py(r;) € A,, for

i =1,---k —1, and the line segmenjg [r;, ;11] are parallel withp,,[r;, 7,11]. By
Fubini’'s theorem, it follows that for almost ajl € Ay, with respect to thén — 1)-
dimensional Lebesgue measurey) the map is differentiable on the path, almost
everywhere with respect to the 1-dimensional Lebesgueuneasp,. Lety € A, be
such a point. Thug/(z) exists almost everywhere fare p, [0, 1] with respect to the
1-dimensional Lebesgue measurepgfD, 1] and, by Theorem 2.7 (iv), at these points
we haveh/(x) € Lh. This together with Equation 2, implies that

h(z) € g(), 3)

for almost allz € p,([0,1]). Now the compositiorh o p : [0,1] — R of locally
Lipschitz maps is locally Lipschitz and thus equal to thegnal of its derivative. Thus,
the ordinary path integral of the gradient/o&longp,, vanishes:

/0 B (py(r)) ~p;(7’) dr = /0 (hop)(r)dr =
h(py(1)) — h(py(0)) = h(y) — h(y) = 0. 4)

On the other hand, from the definitions of the lower and upeh integrals, using
Equation 3, we have:

L /
/0 1 W (py(r)) - pyy(r) dr < U / g(r)dr. (5)

Py
/
p

SincelL fp g(r)dr andU fp g(r) dr depend continuously ope A, and since Equa-
tions (4) and (5) hold for almost al} € A, with respect to the (n-1)-dimensional

g(r) dr < / W (py () - Pl () dr,

Y

and

Thus,

g(r)dr <0< U/ g(r)dr.

Y Py

13
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Figure 4: Crescents of a step function (left); the cornedsthrir coaxial points (right)

Lebesgue measure ofy, it follows that these equations hold actually forale Ag
and in particular foy = . This establishes thatsatisfies the zero-containment loop
condition for any closed non-self-intersecting pieceviisear path inO. By continu-
ity, it follows that g also satisfies the zero-containment loop condition for daged
non-self-intersecting piecewise linear path in the clesfiO. O

5 Integrability of derivative information

We will now show that if a step functione (U — CR"™) satisfies the zero-containment
loop condition, then it is integrable. L&t be a connected component of dgm Note
that any step functiop can be extended to the boundary of dginby the lower and
upper semi continuity of ~ andg™ respectively. We adopt the following convention.
If two crescents have a common boundary, we consider theimoan boundary as
infinitesimally separated so that they have distinct botirda This means that a line
segment of a piecewise linear simple path on a common boyrdawo different
crescents is always regarded as the limit of a sequence altglaaegments contained
on one side of this boundary.

A point of the boundary of an associated crescent of a stegtifimis acoaxial
point of a point in some associated crescent if the two points hageigelyn — 1
coordinates in common. Clearly, each point has a finite hurobeoaxial points. In
Figure 4, the coaxial points of the corners of the crescdritecstep function Figure 2,
reproduced on the left, are illustrated on the picture orritiig.

We are now ready to introduce a key concept of this paperxzFore cl(O)), we
put

Vy(z,y) = Sup{L/ g(r) dr : p a piecewise linear path in €)) fromy to x },
p[0,1]

Wy(z,y) = inf{U / g(r)dr : p a piecewise linear path in ¢)) fromy toz}.
p[0,1]

We collect a few technical lemmas before we are able to ptoyeguivalence of
integrability and the zero-loop containment conditioneTinst lemma shows that the

14



supremum of lower path integrals is always attained for & pditose inner nodes are
at the corners of the crescents. In presence of the zeroelmogition, this allows to
effectively construct a piecewise linear path that maxésithe lower path integral.

Lemma 5.1. Suppos&® = J,_, , O; is the disjoint union of rectangular crescents
O; andg : O — CR" is constant on every crescefit. If z,y € O, then

sup{L/g(r)dr | ¢ piecewise linear path i® fromx to y}
q

is attained for a piecewise linear path with inner nodes &ttbrners of the crescents.

Proof. Suppose that; € CR" is the (constant) value af on the crescend; for all
1 =0,...,k. We show that every piecewise linear patfrom = to y can be modified
to a piecewise linear pat}) also fromzx to y such that

e the inner nodes of are at the corners of the crescents

o L[ g(r)dr =L [ g(r)dr.

Supposep is a piecewise linear path i@ with nodespy,...,p;. We may assume
without loss of generality that each line segmignt.., p;) lies within a single crescent
O;,. We have, for the upper line integral, that

l
u /g(r)dr = ij (pj — pj-1)

for a collection of values:;; € c;;. Now assume that an inner noge € O;, does
not lie at the corner of any crescedt,. As a consequence, both the line segment
(pj—1,p4) and(p;, pj+1) lie within the same crescent;; . Moreover, the function

fc(Oy) = R, f(v) =2(v—pj—1) + 2j41(Pj+1 — V)

is a linear function o and therefore attains its maximum at an extremal pointp$ay
of its domain of definition. Replacing; by p’; in the definition of the path therefore
gives a pathy’ such that fp, g(r)dr > L fpg(r)dr so that thej-th inner node lies at
the corner of a crescei;;. Repeating this process for all other inner points that do
not lie on the corners of the crescenls, . . ., Oy, produces the desired path. O

Proposition 5.2. Supposg satisfies the zero-containment loop condition ang €
cl(0), then there are piecewise linear simple pattendq fromy to = such that:

Vy(z,y) = L/ g(r)dr Wy(z,y) = U/ g(r)dr.
p[O,l] Q[Ovl]

Proof. We prove the statements for the lower integral; those fouthyger integral are
dual to these. Considéf, (zo,y) for somez, € cl(O) and a piecewise linear pagi°
in cl(O) with p¥(0) = y andp™ (1) = x and nodep™ (r;) for0 = ro < r; <
<o < rg_1 < rg. By Lemma 5.1 it follows that the extremal valuesLofp g(r)dr are
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attained when the inner nodes of the path are at the corngéing @fescents and their
coaxial points.

It then foIIows from the zero-containment loop conditioattthe maximum value
of Lf r) dr is reached for a piecewise linear simple path, with inneresaat the
corners of the crescents and their coaxial points. Since thee a finite number of
corners of the crescents 6f and their coaxial points, it follows that there are a finite
number of piecewise linear simple paths, gay- - -, p for some someV > 1, from
y to z with inner nodes at the corners of the crescentsinfO and their coaxial points,
one of which necessarily maximizEsfp[O,u g(r)dr. O

Proposition 5.3. If g satisfies the zero-containment loop condition, then, fbyat
cl(0), the two maps given b, (-, y), W, (-, y) : cl(O) — R are continuous, piecewise
linear and satisfy, (y,y) = Wy(y,y) = 0.

Proof. For a fixedy € cl(O), asx varies locally near, each pathpZ,, for 1 <
m < N, depends continuously on with respect to the norm given in Formula (1),
and thust =0 g(r) dr depends piecewise linearly on the coordinates,olvith the
linearity coe?flClents changing only at the corners of thescents boundary of the

associated crescents @fn O and their coaxial points. Thus, foreach=1,---, N,
we obtain forz nearzy a family of N pathSp (1 <m < M) with pZ (0) = y and
pZ (1) = z such that the mappingz. Lf r)dr is a continuous piecewise linear

surface. Therefore the mag (-, y). WhICh is Iocally the maximum ofV continuous
piecewise linear local surfaces is itself a continuousegse linear surface.

In order to show tha¥,(y,y) = 0, we note that the trivial constant pathwith
constant valug is a piecewise linear simple path franto y with L fp[o,u g(r)dr =0.
By the zero-containment loop condition, any other cIoseut@r'vise Iinear simple path
g fromy to y satisfied fqg( )dr < 0andthusV,(y,y) =L [ o[0.1] g(r)dr =0.

The statement for the upper line integral is entirely dual O

Intuitively speaking, we have aN valued multi surface and we can move continu—
ously on this multi-surface from the poit, L f r) dr) onthe graph ofz.L f r)dr
to the point(z, Lf g(r) dr) on the graph of\z. Lf g(r) dr (for m # ¢) by mov-

ing x contlnuously, around the holes 6f, along some closed path back to its original
position. The importance of the maps andW, lies in the fact that their derivatives
provide a refinement af.

Proposition 5.4. If g satisfies the zero-containment loop condition, then thesmap
V, (-, y) andW, (-, y) satisfy

gC LV,(-,y) and g C LW,(.,y)

forall y € cl(O).

Proof. We prove thaty T LV, (-,y) where the statement concerning the upper line
integral is entirely analogous. First we show that therstexdmalk > 0 such that this
relation holds for ally andz with in any closedr-dimensional disc of radiug with
center in c[O). For anyw € cl(O) there exists somg, > 0 such for ally andz in
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the closedi-dimensional dis®,,, (w) of radiusb,, and centetw, the pathp from y to
zwith Vy(z,y) =L fp[O 1 g(r) dr will either be,

(i) the straight path frony to z, or,

(i) the piecewise linear simple path frognto x with two line segments and inner
nodew.

In fact if w is not a corner, we can choosg small enough so thdd,, (w) does not
contain any corners and that it satisfies (i) above, wheifeasi$ a corner we can
chooseh,, such that (ii) above holds. Now, we consider the coveringhefdcompact
set c[O) by the collection

{Dgw/Q(w) cw € cl(0)}
of the open disc®p /,(w). Let
{Dgwi/z(wi) 1= 17" aM}
be a finite subcovering and let
a=min{b,,/2:i=1,---,M}.

Then, for anyw € cl(O), we havew € D%.. (w;) for somei = 1,---, M. We have
Da(w) C Dy, (w;) and thus for any, y € D,(w), the piecewise linear simple path

fromytoz with Vy(z,y) =L fp[o,1] g(r) dr will be either of type (i) or (ii) above, and

g C LV, (-,y) will hold as it is easily seen from the definition of lower patkegral.
Now consider any:, y € cl(O) and consider the-dimensional spherg, (z) and

the discD, (z) of radiusa with centerz. For anyz € S,(z) andu € D, (), we have:

Vo(u,y) > Vy(z,y) + Vy(u, z) since any pair of piecewise linear paths (from y

to z) andp, (from z to u) gives rise, by concatenation, to a piecewise linear path (

followed byp,) from y to u. Moreover,

Vo (u,y) = sup{Vy(z,y) + Vy(u, 2)) : 2 € So(z)},

sinceV, (u, y) is the maximum value of the lower path integral over all pigise linear
paths fromy to « and any patlpy as such will intersec§, (x) at some point and thus
gives rise to a piecewise linear pathfromy to z and a piecewise linear paph from z
to u. Now for fixedy, « € cl(O) and fixedz € S, (z), the map\u.V,(z,y) + V,(u, 2)
satisfies

gLt E(Vg(zv y) + Vg('v Z))

sinceVy(z,y) is a constant and € D,(x). Thus by Proposition 2.9, we hayeC
LV, (-,y). Sinceu € Dy(x) is an arbitrary point, in particular we haye_ LV, (-,y)
and the proof is complete. O

Thus, we obtain the following main result:

Theorem 5.5. A functiong € (U — CR") is integrable iff it satisfies the zero-
containment loop condition.
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Proof. If g is a step function then the result follows from Theorem 4.8 Broposi-
tion 5.2. To extend the result to all functions we only neeghow that the set of
integrable functions ifU — CR™) and the set of functions i’ — CR") that sat-
isfy the zero-containment loop condition are both Scotsetb This will imply that
they are continuous Scott subdomaingéf— CR™) with a common basis consisting
of step functions and thus they are the same domains. Ngweif(U — CR") is
integrable andh C g, then() # fg - fh and thush is integrable. If(g;)i>0 is an
increasing sequence of integrable functions, then by Ritpo 5.2 we have for any
fixedy € cl(O):

where for all; > 0,
g; C Edng(yy) and i C EWgz(7y)

Leth; = sup~Vy,. Thenh; : cl(O) — Ris real-valued and thus by Proposition 2.9,
we haveg; T LV h; for eachi > 0. It follows thatg T £V h; and thugy is integrable.
This shows that the set of integrable functionglih— CR™) is Scott closed.

Next assume that € D° satisfies the zero-containment loop condition &arid g.
By monotonicity of the path integral map it follows thasatisfies the zero-containment
loop condition as well. [f(g;);>0 IS an increasing sequence of functions satisfy-
ing the zero-containment loop condition, thenc fp[o,u g; dr for any closed path
p and anyi > 0 it follows that from the Scott continuity of the path intepnaap that
0e fp[(),l] gdr. O

Proposition 5.6. For a rational step functiory € (U — CR") defined over rational
numbers, the zero-containment loop condition is decidable

Proof. There are a finite number of connected components of(dinin each con-
nected componeri® of dom(g), the values Of-fp[o,ug(r) dr andep[O,l]g(T) dr, for

a closed piecewise linear simple path if(2) depend piecewise linearly on the co-
ordinates of any given node of the path. It follows that theximam value of the
lower integral and the minimum value of the upper integral l@ached for a path
with nodes at the corners of the crescentsJoéind their coaxial points. Since the
number of such closed piecewise linear simple paths is famitesince for each such
path pr[o,l}g(r) dr is a rational number, we can decide in finite time if the zero-
containment loop condition holds fgr O

For an associated crescerf a step functiory we writev(a) for the value ofy on
a,i.e.v(a) = g(z) wherex € a° is some point in the interior of. To check whether a
rational step functiop is integrable, the proof of Proposition 5.6 shows that ifisa
to check thay satisfies the zero-containment loop condition on all patitis modes in
the finite set of corners of the associated crescents andcthesxial points.
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6 Consistency of function and derivative information

We will now show that for a pair of rational step functiofg g) € D*, with g in-
tegrable, the consistency relatigfi, g) € Cons is decidable. For this, we explicitly
constructs(f, g) andt(f, g), which will be piecewise linear functions that enable us
to decide ifs(f, g) < t(f,g). Letz andy be in the same connected compon@ndf

dom(g) with O N dom(f) # 0.

Theorem 6.1. The mapd/, (-, y), Wy (-, y) : cl(O) — R are respectively the least and
the greatest continuous mapsG : O — R with L(y) = 0 andG(y) = 0 such that
gC LLandg C LG.

Proof. We prove thatL = V,(-,y) by showing that the sed = {z € cl(O) :
L(z) = Vy(x,y)} is non-empty, open and closed in@l), from which the result
follows. Clearlyy € A soA # (. Also sinceL andV,(-,y) are both continuous! is
closed. It remains to show thdtis open. Supposé is not open. Then ¢D) \ A # 0.
We can take: € cl(O) \ A close to the boundary ol and away from the boundary
of O such that the following condition holds: the locally minihpathp from y to «
with V (u,y) =L fp[o,u g(r) dr intersects the boundary af at a pointz such that the
subpathy of p fromy to x gives:V, (z,y) =L fq g(r) dr and the the subpath pffrom

x tow is a straight line. Thus/, (u, y) = Vy(z,y) + V,(u, z). On the other hand,

L(u) > L(z) + Vy(u, ) = V(2,y) + Vy(u, z)

and it follows thatZ(u) > V;(u,y), i.e.,L(u) = Vy(u,y), which gives a contradiction.
This establishes the proof. The cased@bis similar. O

Let S(s.q) (2, y) = Vy(,y) + LHmf~ (y).

Corollary 6.2. LetO be a connected component of dginwith non-empty intersec-
tion with donf f). For z € O, we have:

: = S, ). 6
s(f,9)(x) yeoilél())m(f) (.9 (T:Y) (6)

Proof. By Proposition 6.1, the map, = A\z.Ss 4 (z,y) is the least function with
hy(y) = limf~(y) such thaty T Lh,. By definition, s(f, g) is precisely the upper
envelop ofh, fory € O. O

Proposition 6.3. There exist a finite number of poingg, y1, - . . , y; € cl(O N dom(f)
with
s(f,9)(x) = max{S(s ) (z,y;) : j =0,1,...,4}
forx € O.
Proof. For fixed(f, g) andz, the value ofS(; ;) (x,y) depends piecewise linearly on
the coordinates of, and thus its maximum value is reached for a piecewise linear

simple path with modes at the corners of the crescentd ahdx and their coaxial
points. O
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Results dual to those above are obtained(¢yg) as follows. We put’ 4 oy (=, y) =
Wy (z,y) + limf*(y). Then, we have

t(f,9)(x) =

= inf T z,Y),
Jeondom(f) (r9(@:9)

and there exisyo, y1, . . .,y € cl(O N dom(f)) with

t(f,9)(x) = min{T(s 4 (z,y;) : = 0,1,...,1},
forxz € O.

Corollary 6.4. The predicate Cons is decidable on basis elemgfjtg) consisting of
rational step functions.

The algorithm for deciding consistency of a rational stegction f : [0,1]™ — IR
and a rational step functiop : [0, 1] — (IR)? works as follows: Recall that and
g are consistent ift(f, g) < t(f,g). By the proof of Proposition 6.3, both functions
can be constructed by evaluating line integrals over piesselinear simple paths with
inner nodes in the set of corners of the crescentgs tfe endpoint of the line integrals
and the coaxial points of these.

Note thats(z) andt¢(x) are piecewise linear functions inwith rational coeffi-
cients, hence we can decidér) < t(z) on cl(a) by first computing the rectangles on
which boths andt are linear and then checking fer< ¢ on the corners of those.

Theorem 6.5. The domainD! can be given an effective structure using a standard
enumeration of its rational basis.

Proof. As consistency is decidable, an effective structurel¥¢U) is obtained from
an effective structure fofUU — IR) x (U — CR™) by removing the non-consistent
pairs. O
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