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Abstract

We develop a domain-theoretic computational model for multi-variable differ-
ential calculus, which for the first time gives rise to data types for differentiable
functions, by constructing an effectively given continuous Scott domain for real-
valued Lipschitz functions on finite dimensional Euclideanspaces. The model for
real-valued Lipschitz functions ofn variables, is built as a sub-domain of the prod-
uct of n + 1 copies of the function space on the domain of intervals by tupling
together consistent information about locally Lipschitz (piecewise differentiable)
functions and their differential properties (partial derivatives). The main result
of the paper is to show, in two stages, that consistency is decidable on basis ele-
ments, which implies that the domain can be given an effective structure. First,
a domain-theoretic notion of line integral is used to extendGreen’s theorem to
interval-valued vector fields and show that integrability of the derivative informa-
tion is decidable. Then, we use techniques from the theory ofminimal surfaces
to construct the least and the greatest piecewise linear functions that can be ob-
tained from a tuple ofn + 1 rational step functions, assuming the integrability of
then-tuple of the derivative part. This provides an algorithm tocheck consistency
on the rational basis elements of the domain, giving an effective framework for
multi-variable differential calculus.

1 Introduction

We develop a domain-theoretic computational model for multi-variable differential cal-
culus, which for the first time gives rise to data types for real-valued Lipschitz or dif-
ferentiable functions on finite dimensional Euclidean spaces. This extends the corre-
sponding result in [11] for dimensionn = 1 to higher dimensionsn > 1. While many
of the properties of the domain of Lipschitz functions onR extend easily, as shown
in [8], even to infinite dimensional Banach spaces, constructing an effective structure
for the domain in the finite dimensional casen > 1 has been a challenge.

The model is a continuous Scott domain for Lipschitz functions of n variables.
It allows us to deal with Lipschitz or differentiable functions in a recursion theoretic
setting, and is thus fundamental for applications in computational geometry, geometric
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modelling, ordinary and partial differential equations and other fields of computational
mathematics. The overall aim of the framework is to synthesize differential calculus
and computer science, which are two major pillars of modern science and technology.

As in dimension one, the basic idea of the model, for a finite dimensional Euclidean
spaceRn or for an infinite dimensional Banach spaceX , is to collect together the local
differential properties of the function by developing a generalization of the concept of
Lipschitz constant to a non-empty, convex and compact set-valued Lipschitz constant
in R

n in the finite dimensional case and a non-empty, convex and weak* compact
set-valued Lipschitz constant in the dualX∗ for the infinite dimensional case. The
collection of these local differentiable properties are then used to define the Lipschitz or
L-derivativeof a function and the primitives of a Scott continuous, non-empty, convex
and compact (respectively, weak* compact) set-valued vector field inR

n (respectively,
in X∗), which leads to a fundamental theorem of calculus for set-valued derivatives,
which was shown first for dimension one [10] and then for infinite dimensions [8].

The L-derivative is in fact closely related to Clarke’s gradient, which is a key tool
in nonsmooth analysis, control theory and optimization theory [5, 6] and is defined
by using the generalized directional derivative based on taking the limsup of the rate
of change of the function along a given direction. It has beenshown in [8] that the
L-derivative and the Clarke’s gradient coincide in finite dimensions.

In a series of papers, Borwein and his collaborators have studied various properties
of the Clarke gradient and developed new related notions [2,3, 4]. In particular, given
a weak* upper semi-continuous mapg that is non-empty, convex and weak* compact
set-valued from a Banach space to the space of subsets of its dual, ag-Lipschitz map
is defined as one whose Clarke gradient at every point is contained in the set value of
g at that point. In finite dimensions, the set ofg-Lipschitz maps is precisely the set
of primitives ofg, a result which is a direct consequence of the equivalence ofthe L-
derivative and Clarke gradient. Whereas in the domain-theoretic setting the generalized
differential properties are used to develop the notion of primitives and the fundamen-
tal theorem of calculus is then deduced as a proposition, in the work of Borwein et
al theg-Lipschitz maps are defined precisely by using the relation that expresses the
fundamental theorem of calculus.

The fundamental theorem is used here, in the finite dimensional case, to construct
the domain of differentiable functions as a sub-domain of the product of the space of
interval-valued function ofn variables and the space of functions ofn variables that
take nonempty compact sets as values. Geometrically, the first component of such a
pair serves as an approximation of the function value, and the second component si-
multaneously approximates alln partial derivatives. We call such a pair consistent if
there exists a piecewise differentiable function, equivalently a piecewise linear func-
tion, which is approximated by the first component, and whosen partial derivatives,
wherever defined, are approximated by the second component of the pair.

The geometric meaning of the finitary data type and consistency is as follows. Each
step function that approximates the function value is represented by a finite set of pairs
(ai, bi)i∈I wherea ⊆ R

n is a rational hyper-rectangle andb ⊆ R is a compact inter-
val such thatbi andbj have non-empty intersection whenever this is the case for the
interiors ofai andaj . Similarly, approximations of then partial derivatives are given
as finite sets of pairs(ai, bi)i∈I where theai are as above but thebj are now rational
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Figure 1: Two examples of consistent function and derivative approximations

polyhedra.
We now call a pair consisting of an approximation to the function value and itsn

partial derivatives consistent if there exists a piecewisedifferentiable function which
is approximated together with its partial derivatives, where defined, by the pair. For a
consistent pair, there are a least and a greatest piecewise differentiable function which
satisfy the function and the partial derivative constraints.

Figure 1 shows two examples of consistent tuples forn = 2 and in each case the
least and greatest functions consistent with the derivative constraints are drawn. In the
first case, on the left, there is a single hyper-rectangle forfunction approximation and
the derivative approximations in thex andy directions over the whole domain of the
function are given respectively by the constant intervals[n, N ] and[m, M ] with n, m >
0. In the second case, on the right, there are two intersectinghyper-rectangles for the
function approximation and the derivative approximationsare the constant intervals
[0, 0] and[m, M ] with m > 0.

The main question now is whether consistency of a pair containing function and
derivative information is actually decidable. Forn = 1, it was shown in [11] that
consistency is decidable and in [9], a linear algorithm was presented (linear in the
number of pairs in the two step functions) which decides the consistency in this case.
For finite n > 1, the problem is, as we have seen, very simple to state but not easy
to solve. The main result of the paper is to show, in two stages, that consistency is
decidable on basis elements.

In the first stage we need to develop a decidable condition forthe integrability of
a compact-convex set-valued function. As in classical differential multi-variable cal-
culus, such a function may fail to be integrable. Borwein et al [4, Theorem 8] have
derived a necessary and sufficient condition for the integrability of an upper semi-
continuous (equivalently Scott continuous) compact-convex set-valued function on fi-
nite dimensional Euclidean spaces in terms of the existenceof a measurable selection
of the compact-convex set-valued function for which all line integrals over polygonal
path vanishes; see Section 4.

In this paper, we provide an equivalent condition for this integrability, which we
prove is decidable on basis elements of our domain. With thisaim in mind, we intro-
duce a domain-theoretic notion of line integral, which we use to establish the following
necessary and sufficient condition for a compact-convex set-valued Scott continuous
vector function to be integrable: zero must be contained in the line integral of the
interval-valued vector field with respect to any closed path. This gives another exten-
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sion of the classical Green’s Theorem for a vector field to be agradient, i.e., to be an
exact differential, [14, pages 286-291]. We thus obtain a main result of this paper: an
algorithm to check integrability for rational step functions.

Finally, we use techniques from the theory of minimal surfaces to construct the least
and the greatest piecewise linear functions obtained from apair of rational step func-
tions, representing function and derivative approximation in which the derivative part
is assumed to be integrable. These surfaces are obtained by,respectively, maximalizing
and minimalizing the lower and the upper line integrals of the derivative information
over piecewise linear paths. The maximalization and minimization are achieved for a
piecewise linear path which can all be effectively constructed. The decidability of con-
sistency is then reduced to checking whether the minimal surface is below the maximal
surface, a task that can be done in finite time. This leads to analgorithm to check con-
sistency of a pair representing function and derivative approximation and shows that
consistency is decidable on the rational basis elements of the domain for locally Lips-
chitz functions, giving an effective framework for multi-variable differential calculus.

1.1 Related work

The domain for real-valued Lipschitz functions on the one dimensional real line has led
to applications in solving initial value problems [9, 12]. The domain for the Lipschitz
functions on finite dimensional Euclidean spaces has been used to develop domain-
theoretic inverse and implicit function theorems for Lipschitz functions [13].

In computable analysis, Pour-El and Richards [16] relate the computability of a
function with the computability of its derivative. The scheme employed by Weihrauch [19]
leads to partially defined representations, but there is no general result on decidability.
Interval analysis [15] also provides a framework for verified numerical computation.
There, differentiation is performed by symbolic techniques [17] in contrast to our se-
quence of approximations of the functions.

1.2 Notations and terminology

We use the standard notions of domain theory as in [1]. For an open subsetU ⊂ R
n,

let C0U be the set of all continuous functions of typeU → R be the set of continuous
functions andD0U = U → IR the domain of all Scott continuous functions of type
U → IR; we often writeD0 for D0U if no ambiguity can arise. A functionf ∈ D0

is given by a pair of respectively lower and upper semi-continuous functionsf−, f+ :
U → R with f(x) = [f−(x), f+(x)]. We denote the continuous Scott domain of the
nonempty compact subsets ofR

n ordered by reverse inclusion byCR
n. We will use

a canonical base of this domain, consisting of rational polyhedra together with the set
R

n as a least element. We will consider the extension− · − : CR
n × R

n → IR of the
scalar product which is defined pointwiseb · x = {y · x : y ∈ b}.

We use standard operations of interval arithmetic on interval matrices. We write
‖x‖ =

√

∑n
i=1 x2

i for the standard Euclidean norm ofx = (x1, · · · , xn) ∈ R
n. The

Euclidean norm is extended tob ∈ CR
n by ‖b‖ = max{‖x‖ : x ∈ b}. Recall that the

derivative of a mapf : U → R at y ∈ U , when it exists, is defined as the linear map
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T : R
n → R with

lim
‖x−y‖→0

|f(x) − f(y) − T (x − y)|

‖x − y‖
= 0.

The linear mapT is denoted byf ′(y). Let∇f denote the gradient off , when it exists,
i.e.,

(∇f)i(x) =
∂f

∂xi
=

limx′

i→xi

f(x1, . . . , xi, . . . , xn) − f(x1, . . . , x
′
i, . . . , xn)

xi − x′
i

,

for 1 ≤ i ≤ n. Recall that if the derivative exists at a point then the gradient also exists
at that point and has the same value. We will reserve the notationLd exclusively in this
paper for the L-derivative which will be introduced later. The interior of a setA ⊂ R

n

is denoted byA◦ and its closure by cl(A).
We next aim to define the generalized (Clarke) gradient of a function [5, Chapter

two] and explain its properties. LetU ⊂ X be an open subset of a Banach spaceX
and letf : U → R be Lipschitz nearx ∈ U andv ∈ X . Thegeneralized directional
derivativeof f atx in the direction ofv is

f◦(x; v) = lim sup
y→x t↓0

f(y + tv) − f(y)

t
.

Let us denote byX∗ the dual ofX , i.e. the set of real-valued continuous linear functions
on X . We considerX∗ with its weak* topology, i.e., the weakest topology onX∗ in
which for anyx ∈ X the mapf 7→ f(x) : X∗ → R is continuous.

Thegeneralized gradientof f atx, denoted by∂f(x) is the subset ofX∗ given by

{A ∈ X∗ : f◦(x; v) ≥ A(v) for all v ∈ X}.

It is shown in [5, page 27] that

• ∂f(x) is a non-empty, convex, weak* compact subset ofX∗.

• Forv ∈ X , we have:

f◦(x; v) = max{A(v) : A ∈ ∂f(x)}.

2 Domain for Lipschitz functions

This section reviews the necessary background on theL-derivative and the domain of
Lipschitz maps, specialized to finite dimensions, from [8] to which we also refer for
all proofs. The local differential property of a function isformalized in the domain-
theoretic framework by the notion of an interval Lipschitz constant. AssumeU ⊂ R

n

is an open subset.
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Definition 2.1. The continuous functionf : U → R hasa non-empty, convex and
compact set-valued Lipschitz constantb ∈ CR

n in an open subseta ⊂ U if for all
x, y ∈ a we have:b · (x − y) ⊑ f(x) − f(y). Thesingle-step tieδ(a, b) ⊆ C0U of a
with b is the collection of all partial functionsf onU with a ⊂ dom(f) ⊂ U in C0U
which haveb as a non-empty convex compact set-valued Lipschitz constant in a.

For example, ifn = 2 andb = b1×b2 ⊆ R
2, the information relation above reduces

to b1(x1 − y1) + b2(x2 − y2) ⊑ f(x) − f(y). For a single-step tieδ(a, b), one can
think of b as the non-empty compact-set Lipschitz constant for the family of functions
in δ(a, b). A classical Lipschitz would requirek = bi = −bi ≥ 0 for all i = 1 · · ·n.
By generalizing the concept of a Lipschitz constant in this way, one is able to obtain
essential information about the differential properties of the function. In particular, if
f ∈ δ(a, b) for a 6= ∅ andb 6= ⊥, thenf(x) is maximal for eachx ∈ a and the induced
functionf : a → R is Lipschitz: for allx, y ∈ a we have|f(x) − f(y| ≤ ‖b‖|x− y|.

For f ∈ C1U , the following three conditions are equivalent: (i)f ∈ δ(a, b), (ii)
∀z ∈ a. f ′(z) ∈ b and (iii) a ց b ⊑ f ′.

For the rest of this section, we assume we are in dimensionn ≥ 2.

Definition 2.2. A step tieof C0 is any finite intersection
⋂

i∈I δ(ai, bi) ⊂ C0, where
I is a finite indexing set. Atie of C0 is any intersection∆ =

⋂

i∈I δ(ai, bi) ⊂ C0, for
an arbitrary indexing setI. Thedomainof a non-empty tie∆ is defined asdom(∆) =
⋃

i∈I{ai | bi 6= ⊥}.

A non-empty step tie with rational intervals gives us a family of functions with
a finite set of consistent differential properties, and a non-emptygeneral tie gives a
family of functions with a consistent set of differential properties. Recall that a function
f : U → R defined on the open setU ⊆ R

n is locally Lipschitzif it is Lipschitz in a
neighborhood of any point inU . If ∆ ⊂ C0 is a tie andf ∈ ∆, thenf(x) is maximal
for x ∈ dom(∆) andf is locally Lipschitz ondom(∆).

We now collect some simple properties of step ties, which we will use later and
refer to [8] for proofs. For any indexing setI, the family of step functions(ai ց bi)i∈I

is consistent if
⋂

i∈I δ(ai, bi) 6= ∅. One important corollary of this is that consistency
of a family of step functions can be determined from the associated ties in a finitary
manner: The family(ai ց bi)i∈I is consistent if for any finite subfamilyJ ⊆ I we
have

⋂

i∈J δ(ai, bi) 6= ∅.
Let (T 1[0, 1],⊇) be the dcpo of ties ofC0 ordered by reverse inclusion. We are

finally in a position to define the primitives of a Scott continuous function; in fact now
we can do more and define:

Definition 2.3. The primitive map
∫

: (U → CR
n) → T 1 is defined by

∫

(g) =
⋂

i∈I δ(ai, bi), whereg = supi∈I ai ց bi. We usually write
∫

(f) as
∫

f and call it
theprimitivesof f .

The primitive map is well-defined, onto and continuous. Forn ≥ 2, as we are
assuming here, the primitive map will have the empty tie in its range, a situation which
does not occur forn = 1.

Example 2.4.Letg ∈ [0, 1]2 → (CR)2 be given byg = (g1, g2) = (λx1.λx2.1, λx1.λx2.x1).
Then ∂g1

∂x2
= 0 6= 1 = ∂g2

∂x1
, and it will follow that

∫

g = ∅.
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Therefore, we have the following important notion in dimensionsn ≥ 2.

Definition 2.5. A mapg ∈ U → CR
n is said to beintegrableif

∫

g 6= ∅.

Given a Scott continuous functionf : U → R, the relationf ∈ δ(a, b) provides,
as we have seen, finitary information about the local differential properties off . By
collecting all such local information, we obtain the complete differential properties of
f , namely its derivative.

Definition 2.6. Thederivativeof a continuous functionf : U → R is the map

Lf =
⊔

f∈δ(a,b)

a ց b : U → CR
n.

We have the following properties, which are established in [8] for the case of arbi-
trary (possibly infinite) dimension.

Theorem 2.7. (i) Lf is well-defined and Scott continuous.

(ii) If f ∈ C1U thenLf = f ′.

(iii) f ∈ δ(a, b) iff a ց b ⊑ Lf .

(iv) If f is differentiable atx ∈ U , thenf ′(x) ∈ Lf .

In finite dimensional Euclidean spaces, the L-derivative coincides with the Clarke
gradient [7, Corollary 8.2].

We also obtain the generalization of Theorem 2.7(iii) to ties, which provides a
duality between the domain-theoretic derivative and integral and can be considered as
a variant of the fundamental theorem of calculus:

Corollary 2.8. f ∈
∫

g iff g ⊑ Lf .

The notion ofg-Lipschitz functions due to Borwein et al [4] is defined as follows;
we restrict to finite dimensions. Letg ∈ (U → CR

n) be Scott continuous. Then, the
set ofg-Lipschitz mapsis defined as

χg = {f : U → R : f is locally Lipschitz and∂f(x) ⊂ g(x) for all x ∈ U}.

By the equivalence of the Clarke gradient and the L-derivative in finite dimensions, it
follows immediately from Corollary 2.8 thatχg =

∫

g.
A domain for locally Lipschitz functions and forC1U is constructed as follows.

The idea is to useD0U to represent the function andU → CR
n to represent the

differential properties (partial derivatives) of the function. Consider theconsistency
relation

Cons ⊂ D0 × (U → CR
n),

defined by(f, g) ∈ Cons if ↑f ∩
∫

g 6= ∅. For a consistent(f, g), we think of f
as thefunction partor thefunction approximationandg as thederivative partor the
derivative approximation. We will show that the consistency relation is Scott closed.
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Proposition 2.9. Let g ∈ U → CR
n and(fi)i∈I be a non-empty family of functions

fi : dom(g) → R with fi ∈
∫

g for all i ∈ I. If h1 = infi∈I fi is real-valued then
h1 ∈

∫

g. Similarly, ifh2 = supi∈I fi is real-valued, thenh2 ∈
∫

g.

Let R[0, 1] be the set of partial maps of[0, 1] into the extended real line. Consider
the two dcpo’s(R[0, 1],≤) and (R[0, 1],≥). Define the mapss : D0O × (U →
CR

n) → (R,≤) andt : D0O × (U → CR
n) → (R,≥) by

s : (f, g) 7→ inf{h : dom(g) → R |h ∈

∫

g & h ≥ f−}

t : (f, g) 7→ sup{h : dom(g) → R |h ∈

∫

g & h ≤ f+}.

We use the convention that the infimum and the supremum of the empty set are∞
and−∞, respectively. Note that given a connected componentA of dom(g) with
A ∩ dom(f) = ∅, thens(f, g)(x) = −∞ andt(s, f)(x) = ∞ for x ∈ A. In words,
s(f, g) is the least primitive map ofg that is greater than the lower part off , whereas
t(f, g) is greatest primitive map ofg less that the upper part off .

It then follows that the following three conditions are equivalent: (i)(f, g) ∈ Cons,
(ii) s(f, g) ≤ t(f, g) and (iii) There exists a continuous functionh : dom(g) → R with
g ⊑ Lf andf ⊑ h ondom(g).

Moreover, the mapss and t are Scott continuous and the relationCons is Scott
closed. We can sum up the situation for a consistent pair of function and derivative
information.

Corollary 2.10. Let (f, g) ∈ Cons. Then in each connected componentO of the
domain of definition ofg which intersects the domain of definition off , there exist two
locally Lipschitz functionss : O → R andt : O → R such thats, t ∈ ↑f ∩

∫

g and for
eachu ∈ ↑f ∩

∫

g, we have withs(x) ≤ u(x) ≤ t(x) for all x ∈ O.

The central notion of this paper is now presented as follows:

Definition 2.11. Define

D1U = {(f, g) ∈ D0U × (U → CR
n) : (f, g) ∈ Cons}.

The posetD1U is a continuous Scott domain, i.e. a bounded complete countably
based continuous dcpo. Now, letC0U andC1U be, respectively, the collection of real-
valuedC0 andC1 functions, and letΓ : C0U → D1U be defined byΓ(f) = (f,Lf)
and letΓ1 be the restriction ofΓ to C1U . Then, the mapsΓ andΓ1 are respectively
continuous injections ofC0U andC1U into the set of maximal elements ofD1U .

Furthermore,Γ restricts to give a continuous injection for locally Lipschitz func-
tions (whereLf 6= ⊥ for all x) and it restricts to give a continuous injection for piece-
wiseC1 functions (whereLf is maximal except for a finite set of points).

3 Interval-valued line integration

In this section, we extend the theory of line integration to interval-valued vector fields.
The collection of step functions of the form(f, g) ∈ D0U × CR

n, wheref ∈ D0U
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Figure 2: Crescents of a step function (left); the corners and their coaxial points (right)

andg ∈ CR
n are step functions, forms a basis ofD1U . For a countable base, we

fix a Cartesian coordinate system and take, as the countable base of topology ofU ,
the hyper-rectangles inU , with faces parallel to this coordinate system, whose vertices
have rational coordinates. This then provides us with rational single-step functions of
the forma ց r ∈ D0U wherea ⊂ U is a rational hyper-rectangle with faces parallel
to the coordinate system, whose vertices have rational coordinates andr ∈ IR is a
rational interval. It also gives us rational single-step functions of the forma ց b where
a ⊂ U is as before andb ∈ CR

n is a polyhedron with rational vertices. Note that the
faces ofb are not necessarily parallel to the coordinate planes. Therational basis of
D1U with respect to the given coordinate system is the collection of all step functions
(f, g) built from such rational single-step functions.We will show in Section 6 that for
rational step functionsf ∈ D0U andg ∈ CR

n, the mapss andt will be piecewise
linear, which can be effectively constructed to test the consistency of(f, g).

Let g = (g1, . . . , gn) ∈ CR
n be a rational step function. Recall that acrescentis

the intersection of an open set and a closed set. The domain dom(g) of g is partitioned
into a finite set of disjoint crescents{Cj : j ∈ Ii}, in each of which the value of
gi is constant, where we assume that the indexing setsIi are pairwise disjoint for
i = 1, . . . , n. The collection

{
⋂

1≤i≤n

Cki : ki ∈ Ii, 1 ≤ i ≤ n}

of crescents partition dom(g) into regions in which the value ofg is a constant interval
vector; they are called theassociated crescentsof g, which play a main part in deciding
integrability as we will see later in this section. Each associated crescent has boundaries
parallel to the coordinate planes and these boundaries intersect at points, which are
called thecornersof the crescent.

In Figure 2, an example of a step functiong is given with its associated crescents,
the interval in each crescent gives the value ofg in that crescent. A solid line on the
boundary of a crescent indicates that the boundary is in the crescent, whereas a broken
line indicates that it is not.

A path in a connected regionR ⊂ R
n is a continuous mapp : [0, 1] → R with

endpointsp(0) and p(1). If p is piecewiseC1, respectively piecewise linear, then
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the path is called a piecewiseC1, respectively piecewise linear. The spaceP (U) of
piecewiseC1 paths in the regionU ⊂ R

n is equipped with theC1 norm:

‖p‖ = max{ max
r∈[0,1]

‖p(r)‖, max
p′(r) exists

‖p′(r)‖}. (1)

A pathp is non-self-intersectingif p(r) = p(r′) for r < r′ impliesr = 0 andr′ = 1.
We will be mainly concerned with piecewise linear paths in this paper. For these paths,
there exists a strictly increasing sequence of points(ri)0≤i≤k for somek ∈ N with
0 = r0 < r1 < · · · rk−1 < rk = 1 such thatp is linear in[ri, ri+1] for 0 ≤ i ≤ k − 1.
The pointsp(ri) for i = 0, · · · , k, are said to be thenodesof p; the nodesp(ri) for
i = 1, · · · , k − 1 are called theinnernodes. The line segment{p(r) : ri ≤ r ≤ ri+1}
is denoted byp([ri, ri+1]). If p(0) = p(1), the path is said to beclosed.

A simplepath in a regionR ⊂ R
n is a non-self-intersecting piecewiseC1 map.

We now consider simple paths in the closure cl(O) of a connected componentO ⊆
dom(g).

Recall that given a vector fieldF : R → R
n in a regionR ⊂ Rn and a piecewise

C1 pathp : [0, 1] → R, the line integral ofF with respect top from 0 to w ∈ [0, 1]

is defined as
∫ 1

0 F (p(r)) · p′(r) dr, when the integral exists. Here,u · v =
∑n

i=1 uivi

denotes the usual scalar product of two vectorsu, v ∈ R
n. For anyC ∈ CR

n and
δ > 0, we consider the open setCδ = {x ∈ R

n : d(x, C) < δ} ⊂ R
n, whered(x, C)

is the minimum distance from the pointx to C.

Lemma 3.1. The map− · − : R
n × CR

n → IR given byr · A = {r · x : x ∈ A} is
Scott continuous.

Proof. Assumer ∈ R
n andA ∈ CR

n. Supposeǫ > 0 is given and consider the
open ballB(r, δ) centered atr and of radiusδ = min(1, ǫ/2(M + 1) with M =
sup{|r| : r ∈ A}. Let B ∈ CR

n with B ⊂ Aǫ/2(|r|+1). For anyx ∈ B, take
y ∈ A with |x − y| ≤ ǫ/2(|r| + 1). Then, for anys ∈ B(r, δ), we have:s · x =
s · x− s · y + s · y − r · y + r · y = s · (x− y) + (s− r) · y + r · y < ǫ/2 + ǫ/2 + r · y
and thuss · x < r · y + ǫ ≤ r · A + ǫ and it follows thats · B < r · A + ǫ. Similarly,
we have:s · B > r · A + ǫ.

Corollary 3.2. For a Scott continuousg : U → CR
n, whereU ⊂ R

n is an open set,
and a piecewise smooth pathp : [0, 1] → U , the mapt 7→ g(p(t)) · p′(t) : [0, 1] → IR

is Scott continuous.

Corollary 3.3. For any piecewise linear mapp ∈ P (U), the mapg 7→ λt.g(p(t)) ·
p′(t) : (U → C(Rn)) → D0 is Scott continuous.

We now define the notion of line integral of the compact-convex polygon valued
rational step functiong ∈ CR

n with respect to any piecewiseC1 path fromy to x in
the closure of a connected component of dom(g).

Definition 3.4. Giveng ∈ CR
n and a piecewiseC1 pathp : [0, 1] → R

n in the closure
of a connected component of the domain ofg, theline integralof g overpis defined as:

∫

p[0,w]

g(r) dr = [L

∫

p[0,1]

g(r) dr, U

∫

p[0,1]

g(r) dr]

10



where

U

∫

p[0,1]

g(r) dr =

∫ 1

0

g(p(r)) · p′(r) dr, L

∫

p[0,1]

g(r) dr =

∫ 1

0

g(p(r)) · p′(r) dr.

Note that sinceλt.g(p(t)) · p′(t) andλt.g(p(t)) · p′(t) are, by Corollary 3.2, re-
spectively upper and lower semi-continuous functions, theLebesgue integrals in the
above definition exist.

The interval-valued line integral
∫

p[0,1]
g(p(t)) · p′(t) dt for a step function ing ∈

(U → CR
n) and a piecewise linear pathp is easy to compute. For each associated

crescentT of g with valueK and each straight line segmentp : [a, b] → T of p
with p′(t) = c for somec ∈ R

n for t ∈ (a, b) ⊂ [0, 1], the extended scalar product
c ·K = c · x : x ∈ K = [m.M ] wherem andM are respectively the least and greatest
values ofc·x for x ∈ K, which will be the least and greatest values ofc·x for x ranging
over the vertices ofK, sinceK is a convex polygon. In fact the problem is precisely
the (standard) linear optimization problem: minimize and maximizec · x subject to the
k conditionsc · dj ≤ 0 wheredj for j = 1, ...., k are the normals to thek faces ofK.
The above scheme for computingm andM is precisely the fundamental theorem of
linear programming which says that the min and max occur at vertices of the polygon
K.

4 A generalization of Green’s Theorem

Borwein et al [4] give a necessary and sufficient condition for a Scott continuous func-
tion g : U → CR

n whereU ⊂ R
n is a non-empty open connected subset to be

integrable (see also [3, Theorem 8]). We will now explain their condition.
The line integralof a measurable mapf : U → R

n on the line segment[a, b] ⊂ U
is given by the Lebesgue integral:

∫

[a,b]

f(z) dz :=

1
∫

0

f(tb + (1 − t)a)(b − a) dt.

The line integral off on a piecewise linear pathP in U is simply the sum of its
line integrals on the line segments ofP . For any fixedǫ > 0, an ordered collection of
line segmentsP (ǫ) = {[ai, bi] : 1 < i < n − 1} is anǫ-path froma to b provided:

‖a − a1‖ + σn−1
i=1 ‖ai+1 − bi‖ + ‖bn − b‖ < ǫ.

Such a path is closed ifa = b. For a Borel subsetE ⊂ U , an ǫ-pathP is anE-
admissibleǫ-path froma to b if λ({t ∈ [0, 1] : tbi + (1 − t)ai /∈ E}) = 0 for
1 < i < n − 1. Line integrals on anǫ-path are defined similarly as above.

Theorem 4.1. [4, Theorem 8] LetU be a non-empty open connected subset ofR
n

and letg : U → C(Rn) be a bounded Scott continuous map. Theng is integrable
if and only if there exists a Borel setE ⊂ U with λ(U \ E) = 0 and a measurable
selectionf : E → R

n of g so thatlimǫ→0+

∫

P (ǫ)
f(z) dz = 0, whereP (ǫ) is any

closedE-admissibleǫ-path inU .

11
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Figure 3: Failure of zero-containment:g1 (left) andg2 (right)

The existence of a measurable selection as above is in general non-decidable. In
this section, we will derive an alternative necessary and sufficient condition for the
integrability of a Scott continuous functiong : U → CR

n, so that the condition is
decidable wheng is in fact a rational step function.

We now introduce the domain-theoretic generalization of Green’s celebrated con-
dition for the integrability of a vector field.

Definition 4.2. Giveng ∈ (U → CR
n) and a closed simple pathp in the closure of

a connected component of dom(g), we say thatg satisfies thezero-containment loop
condition forp if

0 ∈

∫

p[0,1]

g(r) dr.

We say thatg ∈ (U → CR
n) satisfies thezero-containment loop conditionif it satisfies

the zero-containment loop condition for any closed simple pathp in the closure of any
connected component of dom(g).

We note that ifg is a step function then in the zero-containment condition above,
it suffices to consider piecewise linear closed simple paths. If g only takes point (max-
imal) values, then the zero-containment loop condition is simply the standard con-
dition for g to be a gradient i.e., that the line integral ofg vanishes on any closed
path. Figure 3 gives an example of a step functiong = (g1, g2), with dom(g) =
((0, 3)× (0, 3))\ ([1, 2]× [1, 2]) which does not satisfy the zero-containment loop con-
dition. The values ofg1 (left) andg2 (right) are given for each of the four single-step
functions. Denote the dashed path byp; it has nodes atp(0) = p(1) = (1/2, 1/2),
p(1/4) = (5/2, 0), p(1/2) = (5/2, 5/2) andp(3/4) = (1/2, 5/2). The lower line
integral ofg overp gives a strictly positive value:

L
∫

p
g(r)dr = 8.

Recall thatg ∈ (U → CR
n) is called integrable if

∫

g 6= ∅. The following is an
extension of Green’s Theorem also called the Gradient Theorem in classical differential
calculus [14].
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Theorem 4.3. Supposeg ∈ (U → CR
n) is an integrable step function. Theng

satisfies the zero-containment loop condition.

Proof. Assumeh ∈
∫

g and thus, by Corollary 2.8,

g ⊑ Lh. (2)

Take any closed piecewise linear pathp0 in a connected componentO of dom(g) with
p0(0) = p0(1) = y0 and nodes at0 = r0 < r1 < · · · · · · rk−1 < rk = 1 say.
Thenh is locally Lipschitz in cl(O) and thus by Rademacher’s theorem [6, p 148] it
is differentiable almost everywhere inO. We take small parallel transversal (Poincaré)
(n − 1)-dimensional sections [18]Ai at p0(ri), for i = 0, · · · , k − 1, to the pathp0

and consider the family of closed piecewise linear pathspy with py(0) = py(1), where
y ∈ A0, such that, for eachy ∈ A0 and eachi with 0 ≤ i ≤ k − 1, py(ri) ∈ Ai, for
i = 1, · · ·k − 1, and the line segmentspy[ri, ri+1] are parallel withpy0

[ri, ri+1]. By
Fubini’s theorem, it follows that for almost ally ∈ A0, with respect to the(n − 1)-
dimensional Lebesgue measure onA0, the maph is differentiable on the pathpy almost
everywhere with respect to the 1-dimensional Lebesgue measure onpy. Lety ∈ A0 be
such a point. Thush′(x) exists almost everywhere forx ∈ py[0, 1] with respect to the
1-dimensional Lebesgue measure onpy[0, 1] and, by Theorem 2.7 (iv), at these points
we haveh′(x) ∈ Lh. This together with Equation 2, implies that

h′(x) ∈ g(x), (3)

for almost allx ∈ py([0, 1]). Now the compositionh ◦ p : [0, 1] → R of locally
Lipschitz maps is locally Lipschitz and thus equal to the integral of its derivative. Thus,
the ordinary path integral of the gradient ofh alongpy vanishes:

∫ 1

0

h′(py(r)) · p′y(r) dr =

∫ 1

0

(h ◦ p)′(r) dr =

h(py(1)) − h(py(0)) = h(y) − h(y) = 0. (4)

On the other hand, from the definitions of the lower and upper path integrals, using
Equation 3, we have:

L

∫

py

g(r) dr ≤

∫ 1

0

h′(py(r)) · p′y(r) dr,

and
∫ 1

0

h′(py(r)) · p′y(r) dr ≤ U

∫

py

g(r) dr. (5)

Thus,

L

∫

py

g(r) dr ≤ 0 ≤ U

∫

py

g(r) dr.

SinceL
∫

py
g(r) dr andU

∫

py
g(r) dr depend continuously ony ∈ A0 and since Equa-

tions (4) and (5) hold for almost ally ∈ A0 with respect to the (n-1)-dimensional

13
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Figure 4: Crescents of a step function (left); the corners and their coaxial points (right)

Lebesgue measure onA0, it follows that these equations hold actually for ally ∈ A0

and in particular fory = y0. This establishes thatg satisfies the zero-containment loop
condition for any closed non-self-intersecting piecewiselinear path inO. By continu-
ity, it follows that g also satisfies the zero-containment loop condition for any closed
non-self-intersecting piecewise linear path in the closure ofO.

5 Integrability of derivative information

We will now show that if a step functiong ∈ (U → CR
n) satisfies the zero-containment

loop condition, then it is integrable. LetO be a connected component of dom(g). Note
that any step functiong can be extended to the boundary of dom(g) by the lower and
upper semi continuity ofg− andg+ respectively. We adopt the following convention.
If two crescents have a common boundary, we consider their common boundary as
infinitesimally separated so that they have distinct boundaries. This means that a line
segment of a piecewise linear simple path on a common boundary of two different
crescents is always regarded as the limit of a sequence of parallel segments contained
on one side of this boundary.

A point of the boundary of an associated crescent of a step function is acoaxial
point of a point in some associated crescent if the two points have preciselyn − 1
coordinates in common. Clearly, each point has a finite number of coaxial points. In
Figure 4, the coaxial points of the corners of the crescents of the step function Figure 2,
reproduced on the left, are illustrated on the picture on theright.

We are now ready to introduce a key concept of this paper. Forx, y ∈ cl(O)), we
put

Vg(x, y) = sup{L

∫

p[0,1]

g(r) dr : p a piecewise linear path in cl(O) from y to x},

Wg(x, y) = inf{U

∫

p[0,1]

g(r) dr : p a piecewise linear path in cl(O) from y to x}.

We collect a few technical lemmas before we are able to prove the equivalence of
integrability and the zero-loop containment condition. The first lemma shows that the
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supremum of lower path integrals is always attained for a path whose inner nodes are
at the corners of the crescents. In presence of the zero-loopcondition, this allows to
effectively construct a piecewise linear path that maximizes the lower path integral.

Lemma 5.1. SupposeO =
⋃

i=0...k Oi is the disjoint union of rectangular crescents
Oi andg : O → CR

n is constant on every crescentOi. If x, y ∈ O, then

sup{L

∫

q

g(r)dr | q piecewise linear path inO fromx to y}

is attained for a piecewise linear path with inner nodes at the corners of the crescents.

Proof. Suppose thatci ∈ CR
n is the (constant) value ofg on the crescentOi for all

i = 0, . . . , k. We show that every piecewise linear pathp from x to y can be modified
to a piecewise linear pathq, also fromx to y such that

• the inner nodes ofq are at the corners of the crescents

• L
∫

q
g(r)dr ≥ L

∫

p
g(r)dr.

Supposep is a piecewise linear path inO with nodesp0, . . . , pl. We may assume
without loss of generality that each line segment(pj−1, pj) lies within a single crescent
Oij . We have, for the upper line integral, that

U

∫

p

g(r)dr =

l
∑

j=1

xj · (pj − pj−1)

for a collection of valuesxj ∈ cij . Now assume that an inner nodepj ∈ Ojj does
not lie at the corner of any crescentOij . As a consequence, both the line segment
(pj−1, pj) and(pj , pj+1) lie within the same crescentOij . Moreover, the function

f : cl(Oij ) → R, f(v) = xj(v − pj−1) + xj+1(pj+1 − v)

is a linear function ofv and therefore attains its maximum at an extremal point, sayp′j ,
of its domain of definition. Replacingpj by p′j in the definition of the pathp therefore
gives a pathp′ such thatL

∫

p′
g(r)dr ≥ L

∫

p
g(r)dr so that thej-th inner node lies at

the corner of a crescentOij . Repeating this process for all other inner points that do
not lie on the corners of the crescentsO0, . . . , Ok produces the desired path.

Proposition 5.2. Supposeg satisfies the zero-containment loop condition andx, y ∈
cl(O), then there are piecewise linear simple pathsp andq fromy to x such that:

Vg(x, y) = L

∫

p[0,1]

g(r) dr Wg(x, y) = U

∫

q[0,1]

g(r) dr.

Proof. We prove the statements for the lower integral; those for theupper integral are
dual to these. ConsiderVg(x0, y) for somex0 ∈ cl(O) and a piecewise linear pathpx0

in cl(O) with px0(0) = y andpx0(1) = x0 and nodespx0(ri) for 0 = r0 < r1 <
· · · < rk−1 < rk. By Lemma 5.1 it follows that the extremal values ofL

∫

p
g(r)dr are
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attained when the inner nodes of the path are at the corners ofthe crescents and their
coaxial points.

It then follows from the zero-containment loop condition that the maximum value
of L

∫

px0
g(r) dr is reached for a piecewise linear simple path, with inner nodes at the

corners of the crescents and their coaxial points. Since there are a finite number of
corners of the crescents ofO and their coaxial points, it follows that there are a finite
number of piecewise linear simple paths, sayp1, · · · , pN for some someN ≥ 1, from
y to x with inner nodes at the corners of the crescents ofg in O and their coaxial points,
one of which necessarily maximizesL

∫

p[0,1]
g(r)dr.

Proposition 5.3. If g satisfies the zero-containment loop condition, then, for all y ∈
cl(O), the two maps given byVg(·, y), Wg(·, y) : cl(O) → R are continuous, piecewise
linear and satisfyVg(y, y) = Wg(y, y) = 0.

Proof. For a fixedy ∈ cl(O), asx varies locally nearx0, each pathpx
m, for 1 ≤

m ≤ N , depends continuously onx, with respect to the norm given in Formula (1),
and thusL

∫

p
x0
m

g(r) dr depends piecewise linearly on the coordinates ofx, with the
linearity coefficients changing only at the corners of the crescents boundary of the
associated crescents ofg in O and their coaxial points. Thus, for eachm = 1, · · · , N ,
we obtain forx nearx0 a family of N pathspx

m (1 ≤ m ≤ M ) with px
m(0) = y and

px
m(1) = x such that the mappingλx.L

∫

px
m

g(r) dr is a continuous piecewise linear

surface. Therefore the mapVg(·, y), which is locally the maximum ofN continuous
piecewise linear local surfaces is itself a continuous piecewise linear surface.

In order to show thatVg(y, y) = 0, we note that the trivial constant pathp with
constant valuey is a piecewise linear simple path fromy to y with L

∫

p[0,1] g(r) dr = 0.
By the zero-containment loop condition, any other closed piecewise linear simple path
q from y to y satisfiesL

∫

q
g(r) dr ≤ 0 and thusVg(y, y) = L

∫

p[0,1]
g(r) dr = 0.

The statement for the upper line integral is entirely dual.

Intuitively speaking, we have anN valued multi-surface and we can move continu-
ously on this multi-surface from the point(x, L

∫

px
m

g(r) dr) on the graph ofλx.L
∫

px
m

g(r) dr

to the point(x, L
∫

px
ℓ

g(r) dr) on the graph ofλx.L
∫

px
ℓ
g(r) dr (for m 6= ℓ) by mov-

ing x continuously, around the holes ofO, along some closed path back to its original
position. The importance of the mapsVg andWg lies in the fact that their derivatives
provide a refinement ofg.

Proposition 5.4. If g satisfies the zero-containment loop condition, then the maps
Vg(·, y) andWg(·, y) satisfy

g ⊑ LVg(·, y) and g ⊑ LWg(·, y)

for all y ∈ cl(O).

Proof. We prove thatg ⊑ LVg(·, y) where the statement concerning the upper line
integral is entirely analogous. First we show that there exists smalla > 0 such that this
relation holds for ally andx with in any closedn-dimensional disc of radiusa with
center in cl(O). For anyw ∈ cl(O) there exists somebw > 0 such for ally andx in

16



the closedn-dimensional discDbw (w) of radiusbw and centerw, the pathp from y to
x with Vg(x, y) = L

∫

p[0,1] g(r) dr will either be,

(i) the straight path fromy to x, or,

(ii) the piecewise linear simple path fromy to x with two line segments and inner
nodew.

In fact if w is not a corner, we can choosebw small enough so thatDbw(w) does not
contain any corners and that it satisfies (i) above, whereas if w is a corner we can
choosebw such that (ii) above holds. Now, we consider the covering of the compact
set cl(O) by the collection

{D◦
bw/2(w) : w ∈ cl(O)}

of the open discsD◦
bw/2(w). Let

{D◦
bwi/2

(wi) : i = 1, · · · , M}

be a finite subcovering and let

a = min{bwi/2 : i = 1, · · · , M}.

Then, for anyw ∈ cl(O), we havew ∈ D◦
bwi/2

(wi) for somei = 1, · · · , M . We have

Da(w) ⊂ D
◦
bwi

(wi) and thus for anyx, y ∈ Da(w), the piecewise linear simple pathp

from y to x with Vg(x, y) = L
∫

p[0,1] g(r) dr will be either of type (i) or (ii) above, and
g ⊑ LVg(·, y) will hold as it is easily seen from the definition of lower pathintegral.

Now consider anyx, y ∈ cl(O) and consider then-dimensional sphereSa(x) and
the discDa(x) of radiusa with centerx. For anyz ∈ Sa(x) andu ∈ Da(x), we have:
Vg(u, y) ≥ Vg(z, y) + Vg(u, z) since any pair of piecewise linear pathsp1 (from y
to z) andp2 (from z to u) gives rise, by concatenation, to a piecewise linear path (p1

followed byp2) from y to u. Moreover,

Vg(u, y) = sup{Vg(z, y) + Vg(u, z)) : z ∈ Sa(x)},

sinceVg(u, y) is the maximum value of the lower path integral over all piecewise linear
paths fromy to u and any pathp0 as such will intersectSa(x) at some pointz and thus
gives rise to a piecewise linear pathp1 fromy to z and a piecewise linear pathp2 from z
to u. Now for fixedy, x ∈ cl(O) and fixedz ∈ Sa(x), the mapλu.Vg(z, y) + Vg(u, z)
satisfies

g ⊑ L(Vg(z, y) + Vg(·, z))

sinceVg(z, y) is a constant andu ∈ Da(x). Thus by Proposition 2.9, we haveg ⊑
LVg(·, y). Sinceu ∈ Da(x) is an arbitrary point, in particular we haveg ⊑ LVg(·, y)
and the proof is complete.

Thus, we obtain the following main result:

Theorem 5.5. A functiong ∈ (U → CR
n) is integrable iff it satisfies the zero-

containment loop condition.
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Proof. If g is a step function then the result follows from Theorem 4.3 and Proposi-
tion 5.2. To extend the result to all functions we only need toshow that the set of
integrable functions in(U → CR

n) and the set of functions in(U → CR
n) that sat-

isfy the zero-containment loop condition are both Scott closed. This will imply that
they are continuous Scott subdomains of(U → CR

n) with a common basis consisting
of step functions and thus they are the same domains. Now ifg ∈ (U → CR

n) is
integrable andh ⊑ g, then∅ 6=

∫

g ⊆
∫

h and thush is integrable. If(gi)i≥0 is an
increasing sequence of integrable functions, then by Proposition 5.2 we have for any
fixedy ∈ cl(O):

· · · , Vgi ≤ Vgi+1
≤ · · ·Wgi+1

≤ Vgi ≤ · · · ,

where for alli ≥ 0,

gi ⊑ LdVgi (·, y) and gi ⊑ LWgi(·, y).

Let h1 = supi≥0Vgi . Thenh1 : cl(O) → R is real-valued and thus by Proposition 2.9,
we havegi ⊑ LV h1 for eachi ≥ 0. It follows thatg ⊑ LV h1 and thusg is integrable.
This shows that the set of integrable functions in(U → CR

n) is Scott closed.
Next assume thatg ∈ D0 satisfies the zero-containment loop condition andh ⊑ g.

By monotonicity of the path integral map it follows thath satisfies the zero-containment
loop condition as well. If(gi)i≥0 is an increasing sequence of functions satisfy-
ing the zero-containment loop condition, then0 ∈

∫

p[0,1]
gi dr for any closed path

p and anyi ≥ 0 it follows that from the Scott continuity of the path integral map that
0 ∈

∫

p[0,1]
g dr.

Proposition 5.6. For a rational step functiong ∈ (U → CR
n) defined over rational

numbers, the zero-containment loop condition is decidable.

Proof. There are a finite number of connected components of dom(g). In each con-
nected componentO of dom(g), the values ofL

∫

p[0,1]
g(r) dr andU

∫

p[0,1]
g(r) dr, for

a closed piecewise linear simple path in cl(O) depend piecewise linearly on the co-
ordinates of any given node of the path. It follows that the maximum value of the
lower integral and the minimum value of the upper integral are reached for a pathp
with nodes at the corners of the crescents ofO and their coaxial points. Since the
number of such closed piecewise linear simple paths is finiteand since for each such
path L

∫

p[0,1]
g(r) dr is a rational number, we can decide in finite time if the zero-

containment loop condition holds forg.

For an associated crescenta of a step functiong we writev(a) for the value ofg on
a, i.e. v(a) = g(x) wherex ∈ ao is some point in the interior ofa. To check whether a
rational step functiong is integrable, the proof of Proposition 5.6 shows that it suffices
to check thatg satisfies the zero-containment loop condition on all paths with nodes in
the finite set of corners of the associated crescents and their coaxial points.

18



6 Consistency of function and derivative information

We will now show that for a pair of rational step functions(f, g) ∈ D1, with g in-
tegrable, the consistency relation(f, g) ∈ Cons is decidable. For this, we explicitly
constructs(f, g) andt(f, g), which will be piecewise linear functions that enable us
to decide ifs(f, g) ≤ t(f, g). Let x andy be in the same connected componentO of
dom(g) with O ∩ dom(f) 6= ∅.

Theorem 6.1. The mapsVg(·, y), Wg(·, y) : cl(O) → R are respectively the least and
the greatest continuous mapsL, G : O → R with L(y) = 0 andG(y) = 0 such that
g ⊑ LL andg ⊑ LG.

Proof. We prove thatL = Vg(·, y) by showing that the setA = {x ∈ cl(O) :
L(x) = Vg(x, y)} is non-empty, open and closed in cl(O), from which the result
follows. Clearlyy ∈ A soA 6= ∅. Also sinceL andVg(·, y) are both continuous,A is
closed. It remains to show thatA is open. SupposeA is not open. Then cl(O) \A 6= ∅.
We can takeu ∈ cl(O) \ A close to the boundary ofA and away from the boundary
of O such that the following condition holds: the locally minimal pathp from y to u
with Vg(u, y) = L

∫

p[0,1]
g(r) dr intersects the boundary ofA at a pointx such that the

subpathq of p from y to x gives:Vg(x, y) = L
∫

q
g(r) dr and the the subpath ofp from

x to u is a straight line. Thus,Vg(u, y) = Vg(x, y) + Vg(u, x). On the other hand,

L(u) ≥ L(x) + Vg(u, x) = V (x, y) + Vg(u, x)

and it follows thatL(u) ≥ Vg(u, y), i.e.,L(u) = Vg(u, y), which gives a contradiction.
This establishes the proof. The case forG is similar.

Let S(f,g)(x, y) = Vg(x, y) + limf−(y).

Corollary 6.2. Let O be a connected component of dom(g) with non-empty intersec-
tion with dom(f). For x ∈ O, we have:

s(f, g)(x) = sup
y∈O∩dom(f)

S(f,g)(x, y). (6)

Proof. By Proposition 6.1, the maphy = λx.S(f,g)(x, y) is the least function with
hy(y) = limf−(y) such thatg ⊑ Lhy. By definition,s(f, g) is precisely the upper
envelop ofhy for y ∈ O.

Proposition 6.3. There exist a finite number of pointsy0, y1, . . . , yi ∈ cl(O ∩ dom(f))
with

s(f, g)(x) = max{S(f,g)(x, yj) : j = 0, 1, . . . , i}

for x ∈ O.

Proof. For fixed(f, g) andx, the value ofS(f,g)(x, y) depends piecewise linearly on
the coordinates ofy, and thus its maximum value is reached for a piecewise linear
simple path with modes at the corners of the crescents ofO andx and their coaxial
points.
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Results dual to those above are obtained fort(f, g) as follows. We putT(f,g)(x, y) =

Wg(x, y) + limf+(y). Then, we have

t(f, g)(x) = inf
y∈O∩dom(f)

T(f,g)(x, y),

and there existy0, y1, . . . , yi ∈ cl(O ∩ dom(f)) with

t(f, g)(x) = min{T(f,g)(x, yj) : j = 0, 1, . . . , i},

for x ∈ O.

Corollary 6.4. The predicate Cons is decidable on basis elements(f, g) consisting of
rational step functions.

The algorithm for deciding consistency of a rational step functionf : [0, 1]n → IR

and a rational step functiong : [0, 1]n → (IR)n
s works as follows: Recall thatf and

g are consistent iffs(f, g) ≤ t(f, g). By the proof of Proposition 6.3, both functions
can be constructed by evaluating line integrals over piecewise linear simple paths with
inner nodes in the set of corners of the crescents ofg, the endpoint of the line integrals
and the coaxial points of these.

Note thats(x) and t(x) are piecewise linear functions inx with rational coeffi-
cients, hence we can decides(x) ≤ t(x) on cl(a) by first computing the rectangles on
which boths andt are linear and then checking fors ≤ t on the corners of those.

Theorem 6.5. The domainD1 can be given an effective structure using a standard
enumeration of its rational basis.

Proof. As consistency is decidable, an effective structure forD1(U) is obtained from
an effective structure for(U → IR) × (U → CR

n) by removing the non-consistent
pairs.
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