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Abstract

We solve the mean field equations for a stochastic Hopfield network with tem-
perature (noise) in the presence of strong, i.e., multiply stored, patterns, and use
this solution to obtain the storage capacity of such a network. Our result provides
for the first time a rigorous solution of the mean filed equations for the standard
Hopfield model and is in contrast to the mathematically unjustifiable replica tech-
nique that has been used hitherto for this derivation. We show that the critical
temperature for stability of a strong pattern is equal to its degree or multiplicity,
when the sum of the squares of degrees of the patterns is negligible compared
to the network size. In the case of a single strong pattern, when the ratio of the
number of all stored pattens and the network size is a positive constant, we obtain
the distribution of the overlaps of the patterns with the mean field and deduce that
the storage capacity for retrieving a strong pattern exceeds that for retrieving a
simple pattern by a multiplicative factor equal to the square of the degree of the
strong pattern. This square law property provides justification for using strong
patterns to model attachment types and behavioural prototypes in psychology and
psychotherapy.

1 Introduction: Multiply learned patterns in Hopfield networks

The Hopfield network as a model of associative memory and unsupervised learning was introduced
in [23] and has been intensively studied from a wide range of viewpoints in the past thirty years.
However, properties of a strong pattern, as a pattern that has been multiply stored or learned in
these networks, have only been examined very recently, a surprising delay given that repetition of an
activity is the basis of learning by the Hebbian rule and long term potentiation. In particular, while
the storage capacity of a Hopfield network with certain correlated patterns has been tackled [13, 25],
the storage capacity of a Hopfield network in the presence of strong as well as random patterns has
not been hitherto addressed.

The notion of a strong pattern of a Hopfield network has been proposed in [15] to model attachment
types and behavioural prototypes in developmental psychology and psychotherapy. This sugges-
tion has been motivated by reviewing the pioneering work of Bowlby [9] in attachment theory and
highlighting how a number of academic biologists, psychiatrists, psychologists, sociologists and
neuroscientists have consistently regarded Hopfield-like artificial neural networks as suitable tools
to model cognitive and behavioural constructs as patterns that are deeply and repeatedly learned by
individuals [11, 22, 24, 30, 29, 10].

A number of mathematical properties of strong patterns in Hopfield networks, which give rise to
strong attractors, have been derived in [15]. These show in particular that strong attractors are
strongly stable; a series of experiments have also been carried out which confirm the mathematical
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results and also indicate that a strong pattern stored in the network can be retrieved even in the pres-
ence of a large number of simple patterns, far exceeding the well-known maximum load parameter
or storage capacity of the Hopfield network with random patterns (αc ≈ 0.138).

In this paper, we consider strong patterns in stochastic Hopfield model with temperature, which ac-
counts for various types of noise in the network. In these networks, the updating rule is probabilistic
and depend on the temperature. Since analytical solution of such a system is not possible in general,
one strives to obtain the average behaviour of the network when the input to each node, the so-called
field at the node, is replaced with its mean. This is the basis of mean field theory for these networks.

Due to the close connection between the Hopfield network and the Ising model in ferromagnetism [1,
8], the mean field approach for the Hopfield network and its variations has been tackled using the
replica method, starting with the pioneering work of Amit, Gutfreund and Sompolinsky [3, 2, 4, 19,
31, 1, 13]. Although this method has been widely used in the theory of spin glasses in statistical
physics [26, 16] its mathematical justification has proved to be elusive as we will discuss in the next
section; see for example [20, page 264], [14, page 27], and [7, page 9].

In [17] and independently in [27], an alternative technique to the replica method for solving the
mean field equations has been proposed which is reproduced and characterised as heuristic in [20,
section 2.5] since it relies on a number of assumptions that are not later justified and uses a number
of mathematical steps that are not validated.

Here, we use the basic idea of the above heuristic to develop a verifiable mathematical framework
with provable results grounded on elements of probability theory, with which we assume the reader
is familiar. This technique allows us to solve the mean field equations for the Hopfield network in
the presence of strong patterns and use the results to study, first, the stability of these patterns in the
presence of temperature (noise) and, second, the storage capacity of the network with a single strong
pattern at temperature zero.

We show that the critical temperature for the stability of a strong pattern is equal to its degree (i.e.,
its multiplicity) when the ratio of the sum of the squares of degrees of the patterns to the network
size tends to zero when the latter tends to infinity. In the case that there is only one strong pattern
present with its degree small compared to the number of patterns and the latter is a fixed multiple of
the number of nodes, we find the distribution of the overlap of the mean field and the patterns when
the strong pattern is being retrieved. We use these distributions to prove that the storage capacity
for retrieving a strong pattern exceeds that for a simple pattern by a multiplicative factor equal to
the square of the degree of the strong attractor. This result matches the finding in [15] regarding the
capacity of a network to recall strong patterns as mentioned above. Our results therefore show that
strong patterns are robust and persistent in the network memory as attachment types and behavioural
prototypes are in the human memory system.

In this paper, we will several times use Lyapunov’s theorem in probability which provides a simple
sufficient condition to generalise the Central Limit theorem when we deal with independent but
not necessarily identically distributed random variables. We require a general form of this theorem
as follows. Let Yn =

∑kn
i=1 Yni, for n ∈ IN , be a triangular array of random variables such

that for each n, the random variables Yni, for 1 ≤ i ≤ kn are independent with E(Yni) = 0
and E(Y 2

ni) = σ2
ni, where E(X) stands for the expected value of the random variable X . Let

s2n =
∑kn
i=1 σ

2
ni. We use the notation X ∼ Y when the two random variables X and Y have the

same distribution (for large n if either or both of them depend on n).

Theorem 1.1 (Lyapunov’s theorem [6, page 368]) If for some δ > 0, we have the condition:

1

s2+δn

E(|Yn|2+δ|)→ 0 as n→∞

then 1
sn
Yn

d−→ N (0, 1) as n → ∞ where d−→ denotes convergence in distribution, and we denote
by N (a, σ2) the normal distribution with mean a and variance σ2. Thus, for large n we have
Yn ∼ N (0, s2n). �
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2 Mean field theory

We consider a Hopfield network with N neurons i = 1, . . . , N with values Si = ±1 and follow the
notations in [20]. As in [15], we assume patterns can be multiply stored and the degree of a pattern
is defined as its multiplicity. The total number of patterns, counting their multiplicity, is denoted by
p and we assume there are n patterns ξ1, . . . , ξn with degrees d1, . . . , dn ≥ 1 respectively and that
the remaining p −

∑n
k=1 dk ≥ 0 patterns are simple, i.e., each has degree one. Note that by our

assumptions there are precisely

p0 = p+ n−
n∑
k=1

dk

distinct patterns, which we assume are independent and identically distributed with equal probability
of taking value ±1 for each node. More generally, for any non-negative integer k ∈ IN , we let

pk =

p0∑
µ=1

dkµ.

We use the generalized Hebbian rule for the synaptic couplings: wij = 1
N

∑p0
µ=1 dµξ

µ
i ξ

µ
j for i 6= j

with wii = 0 for 1 ≤ i, j ≤ N . As in the standard stochastic Hopfield model [20], we use Glauber
dynamics [18] for the stochastic updating rule with pseudo-temperature T > 0, which accounts for
various types of noise in the network, and assume zero bias in the local field. Putting β = 1/T
(i.e., with the Boltzmann constant kB = 1) and letting fβ(h) = 1/(1 + exp(−2βh)), the stochastic
updating rule at time t is given by:

Pr(Si(t+ 1) = ±1) = fβ(±hi(t)), where hi(t) =

N∑
j=1

wijSj(t), (1)

is the local field at i at time t. The updating is implemented asynchronously in a random way.

The energy of the network in the configuration S = (Si)
N
i=1 is given by

H(S) = −1

2

N∑
i,j=1

SiSjwij .

For largeN , this specifies a complex system, with an underlying state space of dimension 2N , which
in general cannot be solved exactly. However, mean field theory has proved very useful in studying
Hopfield networks. The average updated value of Si(t+ 1) in Equation (1) is

〈Si(t+ 1)〉 = 1/(1 + e−2βhi(t))− 1/(1 + e2βhi(t)) = tanh(βhi(t)), (2)
where 〈. . .〉 denotes taking average with respect to the probability distribution in the updating rule
in Equation (1). The stationary solution for the mean field thus satisfies:

〈Si〉 = 〈tanh(βhi)〉, (3)
The average overlap of pattern ξµ with the mean field at the nodes of the network is given by:

mν =
1

N

N∑
i=1

ξνi 〈Si〉 (4)

The replica technique for solving the mean field problem, used in the case p/N = α > 0 asN →∞,
seeks to obtain the average of the overlaps in Equation (4) by evaluating the partition function of the
system, namely,

Z = TrS exp(−βH(S)),

where the trace TrS stands for taking sum over all possible configurations S = (Si)
N
i=1. As it

is generally the case in statistical physics, once the partition function of the system is obtained,

3



all required physical quantities can in principle be computed. However, in this case, the partition
function is very difficult to compute since it entails computing the average 〈〈 logZ〉〉 of logZ, where
〈〈 . . .〉〉 indicates averaging over the random distribution of the stored patterns ξµ. To overcome this
problem, the identity

logZ = lim
k→0

Zk − 1

k

is used to reduce the problem to finding the average 〈〈Zk〉〉 of Zk, which is then computed for
positive integer values of k. For such k, we have:

Zk = TrS1TrS2 . . .TrSk exp(−β(H(S1) +H(S1) + . . .+H(Sk))),

where for each i = 1, . . . , k the super-scripted configuration Si is a replica of the configuration
state. In computing the trace over each replica, various parameters are obtained and the replica
symmetry condition assumes that these parameters are independent of the particular replica under
consideration. Apart from this assumption, there are two basic mathematical problems with the tech-
nique which makes it unjustifiable [20, page 264]. Firstly, the positive integer k above is eventually
treated as a real number near zero without any mathematical justification. Secondly, the order of
taking limits, in particular the order of taking the two limits k → 0 and N → ∞, are several times
interchanged again without any mathematical justification.

Here, we develop a mathematically rigorous method for solving the mean field problem, i.e., com-
puting the average of the overlaps in Equation (4) in the case of p/N = α > 0 as N → ∞. Our
method turns the basic idea of the heuristic presented in [17] and reproduced in [20] for solving
the mean field equation into a mathematically verifiable formalism, which for the standard Hopfield
network with random stored patterns gives the same result as the replica method, assuming replica
symmetry. In the presence of strong patterns we obtain a set of new results as explained in the next
two sections.

The mean field equation is obtained from Equation (3) by approximating the right hand side of
this equation by the value of tanh at the mean field 〈hi〉 =

∑N
j=1 wij〈Sj〉, ignoring the sum∑N

j=1 wij(Sj − 〈Sj〉) for large N [17, page 32]:

〈Si〉 = tanh(β〈hi〉) = tanh
(
β
N

∑N
j=1

∑p0
µ=1 dµξ

µ
i ξ

µ
j 〈Sj〉

)
. (5)

Equation (5) gives the mean field equation for the Hopfield network with n possible strong patterns
ξµ (1 ≤ µ ≤ n) and p −

∑n
µ=1 dµ simple patterns ξµ with n + 1 ≤ µ ≤ p0. As in the standard

Hopfield model, where all patterns are simple, we have two cases to deal with. However, we now
have to account for the presence of strong attractors and our two cases will be as follows: (i) In the
first case we assume p2 :=

∑p0
µ=1 d

2
µ = o(N), which includes the simpler case p2 � N when p2

is fixed and independent of N . (ii) In the second case we assume we have a single strong attractor
with the load parameter p/N = α > 0.

3 Stability of strong patterns with noise: p2 = o(N)

The case of constant p and N → ∞ is usually referred to as α = 0 in the standard Hopfield
model. Here, we need to consider the sum of degrees of all stored patterns (and not just the number
of patterns) compared to N . We solve the mean field equation with T > 0 by using a method
similar in spirit to [20, page 33] for the standard Hopfield model, but in our case strong patterns
induce a sequence of independent but non-identically distributed random variables in the crosstalk
term, where the Central Limit Theorem cannot be used; we show however that Lyapunov’s theorem
(Theorem (1.1) can be invoked. In retrieving pattern ξ1, we look for a solution of the mean filed
equation of the form: 〈Si〉 = mξ1i , where m > 0 is a constant. Using Equation (5) and separating
the contribution of ξ1 in the argument of tanh, we obtain:

mξ1i = tanh

mβ
N

d1ξ1i +
∑

j 6=i,µ>1

dµξ
µ
i ξ

µ
j ξ

1
j

 . (6)
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For each N , µ > 1 and j 6= i, let

YNµj =
dµ
N
ξµi ξ

µ
j ξ

1
j . (7)

This gives (p0 − 1)(N − 1) independent random variables with E(YNµj) = 0, E(Y 2
Nµj) = d2µ/N

2,
and E(|Y 3

Nµj |) = d3µ/N
3. We have:

s2N :=
∑

µ>1,j 6=i

E(Y 2
Nµj) =

N − 1

N2

∑
µ>1

d2µ ∼
1

N

∑
µ>1

d2µ. (8)

Thus, as N →∞, we have:

1

s3N

∑
µ>1,j 6=i

E(|Y 3
Nµj |) ∼

∑
µ>1 d

3
µ√

N(
∑
µ>1 d

2
µ)3/2

→ 0. (9)

as N → ∞ since for positive numbers dµ we always have
∑
µ>1 d

3
µ < (

∑
µ>1 d

2
µ)3/2. Thus the

Lyapunov condition is satisfied for δ = 1. By Lyapunov’s theorem we deduce:

1

N

∑
µ>1,j 6=i

dµξ
µ
i ξ

µ
j ξ

1
j ∼ N

(
0,
∑
µ>1

d2µ/N

)
(10)

Since we also have p2 = o(N), it follows that we can ignore the second term, i.e., the crosstalk
term, in the argument of tanh in Equation (6) as N →∞; we thus obtain:

m = tanhβd1m. (11)

To examine the fixed points of the Equation (11), we let d = d1 for convenience and put x = βdm =
dm/T , so that tanhx = Tx/d; see Figure 1. It follows that Tc = d is the critical temperature. If
T < d then there is a non-zero (non-trivial) solution for m, whereas for T > d we only have the
trivial solution. For d = 1 our solution is that of the standard Hopfield network as in [20, page 34].

x

                          y =   tanh x

 
              

 y > x y = x  ( d  = T)   

y < x ( T < d  )

       ( d   <  T )

Figure 1: Stability of strong attractors with noise

Theorem 3.1 The critical temperature for stability of a strong attractor is equal to its degree. �

4 Mean field equations for p/N = α > 0.

The case p/N = α, as for the standard Hopfield model, is much harder and we here assume we
have only a single pattern ξ1 with d1 ≥ 1 and the rest of the patterns ξµ are simple with dµ = 1 for
2 ≤ µ ≤ p0. The case when there are more than one strong patterns is harder and will be dealt with
in a future paper. Moreover, we assume d1 � p0 which is the interesting case in applications. If
d1 > 1 then we have a single strong pattern whereas if d1 = 1 the network is reduced to the standard
Hopfield network. We recall that all patterns ξµ for 1 ≤ µ ≤ p0 are independent and random. Since

5



p and N are assumed to be large and d1 � p0, we will replace p0 with p and approximate terms like
p− 2 with p.

We again consider the mean field equation (5) for retrieving pattern ξ1 but now the cross talk term
in (6) is large and can no longer be ignored. We therefore look at the overlaps, Equation (4), of the
mean field with all the stored patterns ξν and not just ξ1.

Combining Equation (5) and (4), we eliminate the mean field to obtain a recursive equation for the
overlaps as the new variables:

mν =
1

N

N∑
i=1

ξνi tanh

(
β

p∑
µ=1

dµξ
µ
i mµ

)
(12)

We now have a family of p stochastic equations for the random variables mν with 1 ≤ ν ≤ p in
order to retrieve the random pattern ξ1. Formally, we assume we have a probability space (Ω,F , P )
with the real-valued random variables mν : Ω → IR, which are measurable with respect to F and
the Borel sigma field B over the real line and which take value mν(ω) ∈ IR for each sample point
ω ∈ Ω. The probability of an event A ∈ B is given by Pr{ω : mν(ω) ∈ A}. As usual Ω can itself
be taken to the real line with its Borel sigma field and we will usually drop all references to Ω. We
need two lemmas to prove our main result. We write XN

a.s.−→ X for the almost sure convergence
of the sequence of random variables XN to X , whereas XN

d−→ X indicates convergence in
distribution [6]. Recall that almost sure convergence implies convergence in distribution. To help
us compute the right hand side of Equation (12), we need the following lemma, which extends the
standard result for the Law of Large Numbers and its rate of convergence [5, pages 112 and 113].

Lemma 4.1 Let X be a random variable on IR such that its probability distribution F (x) =
Pr(X ≤ x) is differentiable with density F ′(x) = f(x). If g : IR → IR is a bounded measur-
able function and Xk (k ≥ 1) is a sequence of of independent and identically distributed random
variables with distribution X , then

1

N

N∑
i=1

g(Xi)
a.s.−→ Eg(X) =

∫ ∞
∞

g(x)f(x)dx, (13)

and for all ε > 0 and t > 1, we have:

Pr

(
sup
k≥N

(
1

k

k∑
i=1

(g(Xi)− kE(g)(X))

)
≥ ε

)
= o(1/N t−1) � (14)

The proof of the above lemma is given on-line in the supplementary material.

Assume p/N = α > 0 with d1 � p0 and dµ = 1 for 1 < µ ≤ p0. In the following theorem, we use
the basic idea of the heuristic in [17] which is reproduced in [20, section 2.5] to develop a verifiable
mathematical method with provable results to solve the mean field equation in the more general case
that we have a single strong pattern present in the network.

Theorem 4.2 There is a solution to the mean field equations (12) for retrieving ξ1 with independent
random variables mν (for 1 ≤ ν ≤ p0), where m1 ∼ N (m, s/N) and mν ∼ N (0, r/N) (for
ν 6= 1), if the real numbers m, s and r satisfy the four simultaneous equations:

(i) m =
∫∞
−∞

dz√
2π
e−

z2

2 tanh(β(d1m+
√
αrz))

(ii) s = q −m2

(iii) q =
∫∞
−∞

dz√
2π
e−

z2

2 tanh2(β(d1m+
√
αrz))

(iv) r = q
(1−β(1−q))2

(15)

In the proof of this theorem, as given below, we seek a solution of the mean field equations assuming
we have independent random variables mν (for 1 ≤ ν ≤ p0) such that for large N and p with
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p/N = α, we have m1 ∼ N (m, s/N) and mν ∼ N (0, r/N) (ν 6= 1), and then find conditions in
terms of m, s and r to ensure that such a solution exists. These assumptions are in effect equivalent
to the replica symmetry approximation [17, page 262], since they lead, as shown below, to the same
solution derived from the replica method when all stored patterns are simple. In analogy with the
replica technique, we call our solution symmetric. Since by our assumption about the distribution of
the overlaps mµ, the standard deviation of each overlap is O(1/

√
N), we ignore terms of O(1/N)

and more generally terms of o(1/
√
N) compared to terms of O(1/

√
N) in the proof including in

the lemma below, which enables us to compute the argument of tanh in Equation (12) for large N .

Lemma 4.3 If mν ∼ N (0, r/N) (for ν 6= 1), then we have the equivalence of distributions:∑
µ6=1,ν

ξ1i ξ
µ
i mµ ∼ N (0, αr) ∼

∑
µ 6=1

ξ1i ξ
µ
i mµ. �

The proofs of the above lemma and Theorem (4.2) are given on-line in the supplementary material.

We note that in the heuristic described in [20] the distributions of m1 and mν (ν 6= 1) are not
eventually determined yet an initial assumption about the variance of mν is made. Moreover, the
heuristic has no assumption on how mν is distributed, and no valid justification is provided for
computing the double summation to obtain mν , which is similar to the lack of justification for the
interchange of limits in the replica technique mentioned in Section 2.

Comparing the equations for m, q and r in Equations (15) with those obtained by the replica
method [20, pages 263-4] or the heuristic in [20, page 37], we see that m has been replaced by
d1m on the right hand side of the equations for m and q. It follows that for d1 = 1, we obtain the
solution for random patterns in the standard Hopfield network produced by the replica method.

We can solve the simultaneous equations in (15) for m, q and r (and then for s) numerically. As
in [20, page 38], we examine when these equations have non-trivial solutions (i.e., m 6= 0) when
T → 0 corresponding to β → ∞, where we also have q → 1 but C := β(1 − q) remains finite:
Using the relations:

{ ∫∞
−∞

dz√
2π
e−z

2/2(1− tanh2 β(az + b)) ≈ 2
π

1
aβ e
−b2/2a2∫∞

−∞
dz√
2π
e−z

2/2 tanhβ(az + b)
β→∞−→ erf(b/

√
2a),

(16)

where erf is the error function, the three equations for m, q and r become:{
C := β(1− q) =

√
2/παr exp(−(dm)2/2αr)

r = 1/(1− C)2, m = erf(dm/
√

2αr),
(17)

where we have put d := d1. Let y = dm/
√

2αr; then we obtain:

fα,d(y) :=
y

d
(
√

2α+
2√
π
e−y

2

) = erf(y) (18)

Figure 2, gives a schematic view of the solution of Equation (18). The dotted curve is the erf function
on the right hand side of the equation, whereas the three solid curves correspond to the graphs of the
function fα,d on the left hand side of the equation for a given value of d and three different values
of α. The heights of these graphs increase with α.

The critical load parameter αc(d) is the threshold such that for α < αc(d) the strong pattern with
degree d can be retrieved whereas for αc(d) < α this memory is lost. Geometrically, αc(d) corre-
sponds to the curve that is tangent, say at yd, to the error function, i.e.,

f ′αc(d),d
(yd) = erf ′(yd).

For α < αc(d), the function fα,d has two non-trivial intersections (away from the origin) with erf
while for αc(d) < α there are no non-trivial intersections.

We can compare the storage capacity of strong patterns with that of simple patterns, assuming the
independence of mν (equivalently replica symmetry), by finding a lower bound for αc(d) in terms
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y
yd

0

fα,

..
d

erf(y)

 α

cf  dα  (  ),d

α, d
f

Figure 2: Capacity of strong attractors

of αc(1) as follows. We have:

fα,d(y) = y(
√

2(α/d2) +
2

d
√
π
e−y

2

) ≤ y(
√

2(α/d2) +
2√
π
e−y

2

) (19)

where equality holds iff d = 1. Putting α = d2αc(1) and y = y1, we have for d > 1:

fd2αc(1),d(y1) < fαc(1),1(y1) = erf(y1), (20)

Therefore, for a strong pattern, the graphs of fd2αc(1),d and erf intersect in two non-trivial points and
thus αc(d) > d2αc(1). Since αc(1) = αc ≈ 0.138, this yields: αc(d)/0.138 > d2, i.e., the relative
increase in the storage capacity exceeds the square of the degree of the strong pattern.

In the case of the standard Hopfield network with simple patterns only, we have αc(1) = αc ≈
0.138, but simulation experiments show that for values in the narrow range 0.138 < α < 0.144
there are replica symmetry breaking solutions for which a stored pattern can still be retrieved [12].
We show that the square property holds when we take into account symmetry breaking solutions.
By [15, Theorem 1], it follows that the error probability of retrieving a single strong attractor is:

Prer ≈
1

2
(1− erf(d/

√
2α),

for α = p/N . Thus, this error will be constant if d/
√
α remains fixed, indicating that the critical

value of the load parameter is proportional to the square of the degree of the strong attractor.

Corollary 4.4 The storage capacity for retrieving a single strong pattern exceeds that of a simple
pattern by the square of the degree of the strong pattern. �

This square property shows that a multiply learned pattern is retained in the memory in the presence
of a large number of other random patterns, proportional to the square of its multiplicity.

5 Conclusion

We have developed a mathematically justifiable method to derive the storage capacity of the Hopfield
network when the load parameter α = p/N remains a positive constant as the network sizeN →∞.
For the standard model, our result confirms that of the replica technique, i.e., αc ≈ 0.138. However,
our method also computes the storage capacity when retrieving a single strong pattern of degree d
in the presence of other random patterns and we have shown that this capacity exceeds that of a
simple pattern by a multiplicative factor d2, providing further justification for using strong patterns
of Hopfield networks to model attachment types and behavioural prototypes in psychology.

The storage capacity of Hopfield networks when there are more than a single strong pattern and in
networks with low neural activation will be addressed in future work. It is also of interest to examine
the behaviour of strong patterns in Boltzmann Machines [20], Restricted Boltzmann Machines [28]
and Deep Learning Networks [21].
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