
A Language for Differentiable Functions
Pietro Di Gianantonio

Dip. di Matematica e Informatica
Università di Udine
33100 Udine, Italy

Email: pietro.digianatonio@uniud.it

Abbas Edalat
Department of Computing
Imperial College London
London SW7 2RH, UK

Email: ae@ic.ac.uk

Abstract—We introduce a typed lambda calculus in which
real numbers, real functions, and in particular continuously
differentiable and more generally Lipschitz functions can be
defined. Given an expression representing a real-valued function
of a real variable in this calculus, we are able to evaluate the
expression on an argument but also evaluate the generalised
derivative, i.e., the L-derivative, equivalently the Clarke gradient,
of the expression on an argument. The language is an extension of
PCF with a real number data-type, similar to Real PCF and RL,
but is equipped with primitives for min and weighted average
to capture computable continuously differentiable or Lipschitz
functions on real numbers. We present an operational semantics
and a denotational semantics based on continuous Scott domains
and several logical relations on these domains. We then prove
an adequacy result for the two semantics. The denotational
semantics is closely linked with Automatic Differentiation also
called Algorithmic Differentiation, which has been an active area
of research in numerical analysis for decades, and our framework
can also be considered as providing denotational semantics for
Automatic Differentiation. We derive a definability result showing
that for any computable Lipschitz function there is a closed term
in the language whose evaluation on any real number coincides
with the value of the function and whose derivative expression
also evaluates on the argument to the value of the generalised
derivative of the function.

INTRODUCTION

Real-valued locally Lipschitz maps on finite dimensional
Euclidean spaces enjoy a number of fundamental properties
which make them the appropriate choice of functions in many
different areas of applied mathematics and computation. They
contain the class of continuously differentiable functions and
more generally the class of differentiable functions with locally
bounded derivatives. They are closed under composition and
the absolute value, min and max operations, and thus contain
the important class of piecewise polynomial functions, which
are widely used in geometric modelling, approximation and
interpolation and are supported in MatLab [4]. Lipschitz maps
with uniformly bounded Lipschitz constants are also closed
under convergence with respect to the sup norm. In the theory
and application of ordinary differential equations, Lipschitz
maps represent the most fundamental class of maps in view of
their basic and essentially unrivalled property that a Lipschitz
vector field in Rn has a unique solution in the initial value
problem [3].

In the past thirty years, motivated by applications in non-
smooth analysis, optimisation and control theory, the notion
of Clarke gradient has been developed as a convex and

compact set-valued generalized derivative for real-valued lo-
cally Lipschitz maps [2]. For example, the absolute value
function, which is not classically differentiable at zero, is a
Lipschitz map which has Clarke gradient [−1, 1] at zero. The
Clarke gradient extends the classical (Fréchet) derivative for
continuously differentiable functions and is moreover always
defined and continuous with respect to what is in fact the Scott
topology on a domain.

Independently, a domain-theoretic Lipschitz derivative, later
called the L-derivative, was introduced in [7] for interval-
valued functions of an interval variable and was used to
construct a domain for locally Lipschitz maps; these results
were then extended to higher dimensions [8]. The L-derivative
was later defined and studied for real-valued functions on
Banach spaces and it was shown that on finite dimensional
Euclidean spaces the L-derivative actually coincides with the
Clarke gradient [5]. In finite dimensions, therefore, the L-
derivative provides a simple and finitary representation for the
Clarke gradient, which in its original form was defined using
an infinitary double limit superior operation.

Since the mid 1990’s, a number of typed lambda calculi,
namely extensions of PCF with a real number data type, have
been constructed, including Real PCF, RL and LPR [10], [11],
[17], which are essentially equivalent and in which computable
continuous functions can be defined. Moreover, IC-Reals, a
variant of LPR with seven digits, has been implemented with
reasonable efficiency in C and Haskell [13].

The aim of this work is to take the current extensions
of PCF with a real number data type into a new category
and define a typed lambda calculus, in which real numbers,
real functions and in particular continuously differentiable and
Lipschitz functions are definable objects. Given an expression
e representing a function from real numbers to real numbers
in this language, we would not only be able to evaluate e on
an argument, but also to evaluate the derivative of e on a given
argument.

To develop such a language, we need to find a suitable
replacement for the test for positiveness ((0<)), which is
used in the current extensions of PCF with real numbers to
define functions by cases. In fact, a function defined using
the conditional with this constructor will not be differentiable
at zero even if the two outputs of the conditional are both
differentiable: Suppose we have two real computable functions
f and g whose derivatives Df and Dg are also computable,

and consider l = λx. if (0<) x then f x else g x. The
function l is computable and there is an effective way to obtain
approximations of the value of l(x) including at 0. However,
there is no effective way to generate any approximation for
the derivative of l, i.e., D l, at the point 0. In fact, it is correct
to generate an approximation of Dl on 0 only if f(0) = g(0),
but this equality is undecidable, i.e., it cannot be established
by observing the computation of f and g at 0 for any finite
time.

In this paper, instead of the test (0<) , we will use the
functions minimum, negation and weighted average when
defining continuously differentiable or Lipschitz maps. These
primitives are of course definable in Real PCF, RL and LPR,
but the definitions are based on the test (0<) , which means
that the information about the derivative is lost. We show
that when the functions minimum, negation and average are
introduced as primitives, the language becomes sufficiently
rich to define any computable, continuously differentiable or
Lipschitz function on reals.

Note that by a simple transfer of the origin and a rescaling
of coordinates we can take the interval [−1, 1] as the domain
of definition of Lipschitz maps. Furthermore, by a rescaling of
the values of Lipschitz maps (i.e., multiplying them with the
reciprocal of their Lipschitz constant) we can convert them to
non-expansive maps, i.e., we can take their Lipschitz constant
to be one. Concretely, we take digits similar to those in Real
PCF as constructors and develop an operational semantics
and a denotational semantics based on three logical relations,
and prove an adequacy result. The denotational semantics
for first order types is closely related but different from the
domain constructed in [7] in that we capture approximations
to the function part and to the derivative part regarded as
a sublinear map on the tangent space. Finally, we prove a
definability result and show that every computable Lipschitz
map is definable in the language.

A. Related work

Given a programme to evaluate the values of a function
defined in terms of a number of basic primitives, Auto-
matic Differentiation (also called Algorithmic Differentiation)
seeks to use the chain rule to compute the derivative of the
function. AD is distinct from symbolic differentiation and
from numerical differentiation. Our work can be regarded
as providing denotational semantics for forward Automatic
Differentiation and can be used to extend AD to computation
of the generalised derivative of Lipschitz functions.

In [9], the differential lambda calculus has been introduced
which syntactically models the derivative operation on power
series in a typed lambda calculus or a full linear logic. It
is however only applicable to analytical maps which have
power series expansion and as the authors point out the
usual denotational semantics using domain theory is lost.
Computable Analysis [18], [19] and Constructive Analysis [1]
are not directly concerned with computation of the derivative
and both only deal with continuously differentiable functions.
In fact, a computable real-valued function with a continuous

derivative has a computable derivative if and only if the
derivative has a recursive modulus of uniform continuity [14,
p. 191], [18, p. 53], which is precisely the definition of a
differentiable function in constructive mathematics [1, p. 44].

I. SYNTAX

We denote the new language with PCDF (Programming
language for Computable and Differentiable Functions).

The types of PCDF are the types of PCF together with a
new type ι, an expression e of type ι denotes a real number in
the interval [−1, 1] or a partial approximation of a real number,
represented by a closed intervals contained in [−1, 1]. The set
T of type expressions is defined by the grammar:

σ ::= o | ν | ι | σ → σ

where o is the type of booleans and ν is the type of natural
numbers.

The expressions of PCDF are the expressions of PCF
together with a new set of constants for dealing with real
numbers. This set of constants is composed by the following
elements:

(i) A set of constructors for real numbers,

{da,b | −1 ≤ b−a ≤ b+a ≤ 1∧a 6= 1∧a, b rational }.

The constructor da,b : ι → ι, represents the affine
transformation λx.ax+ b. The condition

−1 ≤ b− a ≤ b+ a ≤ 1,

implies that the affine transformation da,b (λx.ax + b)
maps the interval [−1, 1] into itself and has a non-
negative slope or derivative 0 ≤ a ≤ 1 while the
condition a 6= 1 excludes the identity map.
The constructors da,b are also called generalised
digits. We associate to any finite sequence of
generalised digits 〈dai,bi 〉i<n the rational interval
da0,b0 (da0,b0 (. . . (dan−1,bn−1 ([−1, 1]). Through a limiting
process we associate to a stream of generalised digits a
real interval, that can also be also a singleton interval
[r, r], in this case the stream of digit represents the real
number r.

(ii) The negation function t−1 : ι→ ι.
(iii) (+) : ν → ι → ι representing the func-

tion λn.x.min ((x + r(n)), 1)), where r is an in-
jective enumeration of the rational dyadic num-
bers in (0, 1), given by the formula r(n) =
2(n−2blog2 n+1c)+3

2blog2 n+1c+1 , the first element in the enumeration
are: 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, To improve read-
ability, in the following we sometime substitute a natural
number with the corresponding dyadic number, as given
by the enumeration r, for example we write (+) 1

2 x
instead of (+) 0x. Moreover we write (+) − nx as an
abbreviation for the expression t−1 ((+)n(t−1 x)) that
returns the value max ((x− r(n)),−1)).

(iv) A set of weighted average functions: for any rational
number c in the interval (0, 1), the weighted average

function ⊕c : ι→ ι→ ι is defined as ⊕c = λx.y . cx+
(1−c)y. The infix notation is used with the constant ⊕c,
that is we write e1⊕ce2 instead of ⊕ce1e2.

(v) The minimum function

min : ι→ ι→ ι

with the obvious action on pairs of real numbers. We
do not introduce the maximum function since it can
be defined by the minimum and the negation functions,
max = λx.y.t−1 (min (t−1 x)(t−1 y)).

(vi) A test function (0<) : ι→ o , which checks if the argu-
ment is greater than zero. The test function can be used
for constructing functions that are not differentiable, an
example being the function λx.if (0<) (x) then 1 else 0;
as a consequence we impose some restriction in its use.

(vii) The if-then-else constructor on reals, if : o→ ι→ ι→ ι,
and the parallel if-then-else constructor pif : o → ι →
ι→ ι.

(viii) A new binding operator D. The operator D can bind only
variables of type ι and can be applied only to expressions
of type ι. In our language, Dx.e represents the derivative
of the real function λx.e.
The differential operator D can be applied only to
expressions that contain neither the constant (0<) nor
the differential operator D itself.

Note that, with the exception of the test functions (0<) , all
the new constants represent functions on reals that are non-
expansive; the if-then-else constructors are also non-expansive
if the distance between true (tt) and false (ff) is defined
to be equal to two, while is the test function (0<) cannot
be non-expansive, whatever metric is defined on the Boolean
values,. The expressions containing neither the constant (0<)
nor the differential operator D are called non-expansive since
they denote functions on real numbers that are non-expansive.
This fact, intuitively true, is formally proved by Proposition 2.
The possibility to syntactically characterise a sufficiently rich
set of expressions representing non-expansive functions is
a key ingredient in our approach that allows us to obtain
information about the derivative of a function expression
without completely evaluating it. For example, from the fact
that e : ι is a non-expansive expression, one can establish that
the derivative of λx.e, at any point, is contained in the interval
[−1, 1] and that the derivative of λx.da,b e is contained in the
smaller interval [−a, a].

II. OPERATIONAL SEMANTICS

The operational semantics is given by an small step reduc-
tion relation, → , which is obtained by adding to the PCF
reduction rules the following set of extra rules for the new
constants.

The operational semantics of (+) and min operators uses
the extra constants:

{ta,b | a ≥ 0 ∧ a, b rational},

representing general (including expansive) affine transforma-
tions with a non-negative derivative, that is ta,b is intended

to represent the affine transformation λx.ax + b. A property
preserved (i.e., an invariant) by the reduction rules is that the
constants ta,b appear only as the head of one argument of the
constants min and ta,b . It follows that in any expression e′

in the reduction chain of a standard expression e (without the
extra constants ta,b), the constants ta,b can appear only in the
above positions.

The generalised digit da,b is a special case of an affine
transformation. Therefore, in applying the reduction rules, we
use the convention that any reduction rule containing a general
affine transformation ta,b can be instantiated to a term where
the affine transformation ta,b is substituted by a generalised
digit da,b .

On affine transformations we will use the following nota-
tions:

• ta1,b1 ◦ ta2,b2 stands for ta1a2,a1b2+b1 , that is the compo-
sition of affine transformations ta1,b1 and ta2,b2

• ta,b
−1 stands for ta−1,−b/a , that is the inverse of the affine

transformation ta,b .
• An affine transformation with non-negative slope is

uniquely characterised by the image of the interval [−1, 1]
under the map. The affine transformation ta,b sends the
interval [−1, 1] into the interval [b − a, b + a], and the
only affine transformation, with non-negative derivative,
that maps [−1, 1] into [a, b] is the affine transformation
t(b−a)/2,(b+a)/2 . There are cases in which the opera-
tional rules can be better expressed if an affine map is
represented by the image of the interval [−1, 1] under
the map. Therefore we use the symbol t[a,b] to repre-
sent t(b−a)/2,(b+a)/2 . Given this notation, the expression
t[a1,b1] u t[a2,b2] stands for t[min{a1,a2},max{b1,b2}] .

The reduction rules are the PCF reduction rules together the
following extra rules:

1) da1,b1 (da2,b2 e) → da1,b1 ◦ da2,b2 e
2) t−1 (da,b e) → da,−b (t−1 e)
3) (+)n e → min (t1,r(n) e)(d0,1 e)
4) (da,b e1)⊕ce2 → da′,b′ (e1⊕c′e2)

where a′ = ac + (1 − c), b′ = bc and c′ = ca/a′. It
is an easy exercise to check that the left and the right
parts of the reduction rules represent the same affine
transformation with arguments e1, e2.

5) e1⊕c(da,b e2) → da′,b′ (e1⊕c′e2)
where a′ = a(1− c) + c, b′ = b(1− c), and c′ = c/a′.

6) min (d[a1,b1] e1)(t[a2,b2] e2) → d[a1,b1] e1 if b1 ≤ a2
7) min (t[a1,b1] e1)(d[a2,b2] e2) → d[a2,b2] e1 if b2 ≤ a1
8) min (d[a,b] e1)e2 →

d[−1,b] (min (d[−1,b]
−1 ◦ d[a,b] e1)(d[−1,b]

−1e2))
9) min e1(d[a,b] e2) →

d[−1,b] (min (d[−1,b]
−1e1)(d[−1,b]

−1 ◦ d[a,b] e2))
10) min (t[a1,b1] e1)(t[a2,b2] e2) →

d[a,1] (min (d[a,1]
−1 ◦ t[a1,b1] e1)

(d[a,1]
−1 ◦ t[a2,b2] e2))

where a = min(a1, a2) satisfies −1 < a < 1.
11) ta1,b1 (ta2,b2 e) → (ta1,b1 ◦ ta2,b2) e
12) t[a,b] e → d[a,b] e

if [a, b] ⊂ [−1, 1] and e is not in the form ta′,b′ e.
13) (0<) d[a,b] e → tt if a > 0
14) (0<) d[a,b] e → ff if b < 0
15) if tt then e1 else e2 → e1
16) if ff then e1 else e2 → e2
17) pifι tt then e1 else e2 → e1
18) pifι ff then e1 else e2 → e2
19) pifι e then d[a1,b1] e1 else d[a2,b2] e2 →

d[a,b] (pif e then (d[a,b]
−1 ◦ d[a1,b1])e1

else (d[a,b]
−1 ◦ d[a2,b2])e2)

where d[a,b] = d[a1,b1] u d[a2,b2]

20) N → N ′

MN → MN ′
if M is a constant different from Y

or is the expression minM ′, M ′⊕c, pifι M ′ then,
pifι M

′ then M ′′ else

The reduction rules for the derivative operator are:
1) Dx.x → λy.d0,1 y
2) Dx.da,b e → λy.da,0 (Dx.e)y
3) Dx.t−1 e → λy.t−1 (Dx.e)y
4) Dx.(+)n e →

λy.pifι (0<) ((+)m(t−1 e)) then (Dx.e)y else d0,0 y
where r(m) = 1− r(n)

5) Dx.e1⊕ce2 → λy.(Dx.e1)y⊕c(Dx.e2)y
6) Dx.min e1e2 → λy.

pif (λx.(0<) ((t−1 e1)⊕1/2e2))y
then (Dx.e1)y else (Dx.e2)y

7) Dx.pifι e1 then e2 else e3 →
λy.pifι (λx.e1)y then (Dx.e1)y else (Dx.e2)y

8) Dx.if e1 then e2 else e3 →
λy.if (λx.e1)y then (Dx.e1)y else (Dx.e2)y

9) Dx.Y e → Dx.e(Y e)
10) Dx.(λy.e)e1 . . . en → Dx.e[e1/y]e2 . . . en

Note that the rules for the derivative operator almost coincide
with the usual rules for the symbolic computation of the
derivative of a function.

III. DENOTATIONAL SEMANTICS

The denotational semantics for PCDF is given in the stan-
dard way as a family of continuous Scott domains, UD :=
{Dσ | σ ∈ T} The basic types are interpreted using the
standard flat domains of integers and booleans. The domain
associated to real numbers is the product domain Dι = I ×I,
where I is the continuous Scott domain consisting of the
compact subintervals of the interval I = [−1, 1] partially
ordered with reverse inclusion. Elements of I can represent
either a real number x, the degenerated interval [x, x], or a
partial information about a real number x, the intervals [a, b],
with x ∈ (a, b). On the element of I, we consider both the
set theoretic operation of intersection (∩), the pointwise exten-
sions of the arithmetic operations, and the lattice operations
on the domain information order (u,t), [10]. Function types
have the usual interpretation of call-by-name programming
languages: Dσ→τ = Dσ → Dτ .

A hand waiving explanation for the definition of the domain
Dι = I × I, is that the first component is used to define the
value part of the function while the second component is used

to define the derivative part. More precisely, a (non-expansive)
function f from I to I , is described, in the domain, by the
product of two functions 〈f1, f2〉 : (I × I) → (I × I): the
function f1 : (I × I) → I represents the value part of f , in
particular f1(i, j) is the image of the interval i under f for
all intervals j, i.e., f1 depends only on the first argument. The
second function f2 : (I × I) → I represents the derivative
part. If Df denotes the derivative of f , then f2(i, j) is the
image of the intervals i and j under the function λx, y.D f (x)·
y. Thus, f2 is linear in its second component and f2({x}, {1})
is the derivative of f at the point x.

Note that with respect to the above interpretation, composi-
tion behaves correctly, that is if the pair 〈f1, f2〉 : (I × I)→
(I × I) describes the value part and the derivative part of a
function f : I → I and 〈g1, g2〉 : (I×I)→ (I×I) describes
a function g : I → I then 〈h1, h2〉 describes, by the chain
rule, the function f ◦ g with h1(i, j) = f1(g1(i, j), g2(i, j))
and h2(i, j) = f2(g1(i, j), g2(i, j)).

The L-derivative of the non-expansive map f : I → I is
the Scott continuous function L(f) : I → I defined by [5]:

L(f)(x) =
⋂
{b ∈ I : ∃ open interval O ⊂ I with

f(x)−f(y)
x−y ∈ b for all x, y ∈ O, x 6= y}.

Consider now the case of functions in two arguments. Given
a function g : I → I → I , its domain description will be
an element in (I × I) → (I × I) → (I → I), which is
isomorphic to ((I × I) × (I × I)) → (I × I). Thus again,
the domain description of g consists of a pair of functions
〈g1, g2〉, with g1 describing the value part. If Dg (x1, x2) is
the linear transformation representing the derivative of g at
(x1, x2), then the function g2 is a domain extension of the
real function λx1, y1, x2, y2.D g (x1, x2) · (y1, y2).

This approach for describing functions on reals is also
used in (forward mode) Automatic Differentiation [12]. While
Automatic Differentiation is different from our method in that
it does not consider the domain of real numbers and the
notion of partial reals, it is similar to our approach in that
it uses two real numbers as input and a pair of functions to
describe the derivative of functions on reals. The idea of using
two separated components to describe the value part and the
derivative part in the domain-theoretic setting was introduced
in [7], which is implemented in a different way than here.

The semantic interpretation function E is defined, by struc-
tural induction, in the standard way:

EJcKρ = BJcK
EJxKρ = ρ(x)
EJe1e2Kρ = EJe1Kρ(EJe2Kρ)
EJλxσ.eKρ = λd ∈ Dσ.EJeK(ρ[d/x])

The semantic interpretation of any PCF constant is the usual
one, while the semantic interpretation of the new constants on
reals is given by:

BJda,b K(〈i, j〉) = 〈ai+ b, aj〉

BJt−1 K(〈i, j〉) = 〈−i, −j〉

BJ(+) Kn(〈i, j〉) =

⊥ if n = ⊥
〈i+ r(n), j〉 if i+ r(n) < 1 and n 6= ⊥
〈[1, 1], [0, 0]〉 if i+ r(n) > 1 and n 6= ⊥
〈i+ r(n) ∩ [−1, 1], j u [0, 0]〉 otherwise

BJ⊕cK(〈i1, j1〉, 〈i2, j2〉) = 〈ci1 + (1− c)i2, cj1 + (1− c)j2〉

BJmin K(〈i1, j1〉, 〈i2, j2〉) =

 〈i1, j1〉 if i1 < i2
〈i2, j2〉 if i1 > i2
〈i1min i2, j1 u j2〉 otherwise

BJ(0<) K(〈i, j〉) =

 tt if i > 0
ff if i < 0
⊥ otherwise

The interpretation of the derivative operator is given by:

EJDx.eKρ = λd ∈ I × I . 〈π2(EJeKρ[〈π1d, 1〉/x]),⊥〉

Note that the function BJ(0<) K loses the information given
by the derivative part, while the function EJDx.eKρ, is a sort of
translation of the function EJλx.eKρ: The value of EJDx.eKρ
is obtained from the derivative part of EJλx.eKρ, while the
derivative part of EJDx.eKρ is set to ⊥.

Consider some examples. The absolute value function can
be implemented through the term Ab = λx.max (t−1 x)x with
the following semantic interpretation:

EJAbKρ(〈i, j〉) =

 〈i, j〉 if i > 0
〈−i,−j〉 if i < 0
〈[k−, k+], [−1, 1]j〉 otherwise,

where k− = max(i−,−i+), k+ = max(i+,−i−) with i =
[i−, i+].

When the absolute value function evaluated at 0, where
it is not differentiable, the derivative part of the semantic
interpretation returns a partial value: π2(EJAbKρ({0}, {1}) =
[−1, 1]. This partial value coincides with the Clarke gradient,
equivalently the L-derivative, of the absolute value function.

The function |x−y|2 , is represented by the expression

Ab-dif = λx.y.max (x⊕1/2(t−1 y))((t−1 x)⊕1/2y)

whose semantics is the function:

EJAb-difKρ(〈i1, j1〉, 〈i2, j2〉) =
〈 i1−i22 , j1−j22 〉 if i1 > i2

〈 i2−i12 , j2−j12 〉 if i1 < j1

〈[k−, k+], [−1/2, 1/2](j1 − j2)〉 otherwise,

,

where k− = max(i−1 − i+2 , i
−
2 − i+1) and k+ = max(i+1 −

i−2 , i
+
2 − i

−
1).

From JAb-difK it is possible to evaluate the partial deriva-
tive of the function |x−y|

2 , not only along the axes x and
y, but along any direction. Considering the Euclidean dis-
tance, the derivative of the function at (0, 0) in the direc-
tion of the unit vector (u/

√
u2 + v2, v/

√
u2 + v2) is given

by EJAb-difKρ(〈{0}, {u/
√
u2 + v2}〉, 〈{0}, {v/

√
u2 + v2}〉),

that is the the interval [−1/2, 1/2] u−v√
u2+v2

. Again this value

coincides with the value of the Clarke gradient of the function
|x−y|

2 at (0, 0) in the direction (u/
√
u2 + v2, v/

√
u2 + v2).

A. Logical relations characterization

In the present approach we choose to define the semantic
domains in the simplest possible way. As a consequence, our
domains contain also points that are not consistent with the
intended meaning, for example, the domain Dι→ι = (I×I)→
(I × I) contains also the product of two functions 〈f1, f2〉
where the derivative part f2 is not necessarily linear in its
second argument and is not necessarily consistent with the
value part, i.e., the function f1; moreover the value part f1
can be a function depending also on its second argument.

However the semantic interpretation of (non-expansive)
PCDF expressions will not have this pathological behaviour.
A proof of this fact and a more precise characterisation of
the semantic interpretation of expressions can be obtained
through the technique of logical relations [16]. In particular
we define a set of logical relations on the semantic domains
and prove that, for any non-expansive PCDF expression e, the
semantic interpretation of e satisfies these relations. Using this
method, we can establish a list of properties for the semantic
interpretation of PCDF expressions.

Definition 1: The following list of relations are defined on
the domain Dι.
• Independence: A binary relation Riι consisting of the

pairs of the form (〈i, j1〉, 〈i, j2〉). The relation Riι is used
to establish that, for a given function, the value part of
the result is independent from the derivative part of the
argument: f1(i, j1) = f1(i, j2).

• Sub-linearity: A family of relations Rl,rι indexed by a
rational number r ∈ [−1, 1]. The family Rl,rι consists
of pairs of the form (〈i, j1〉, 〈i, j2〉) where j1 v r · j2.
These relations are used to establish the sublinearity of
the derivative part: f2(i, r · j) v r · f2(i, j).

• Consistency: A family of ternary relation Rd,rι indexed
by a rational number r ∈ (0, 2], consisting of triples of
the form (〈i1, j1〉, 〈i2, j2〉, 〈i3, j3〉) with i3 v i1 u i2 and
(r ·j3) consistent with (i1−i2), that is the intervals (r ·j3)
and (i1− i2) have a non-empty intersection. This relation
is used to establish the consistency of the derivative part
of a function with respect to the value part.

The above relations are defined on the other ground domains
Do and Dν as the diagonal relations in two or three arguments,
e.g., Rd,rν (l,m, n) iff l = m = n. The relations are extended
inductively to higher order domains by the usual definition
on logical relations: Riσ→τ (f, g) iff for every d1, d2 ∈ Dσ ,
Riσ(d1, d2) implies Riτ (f(d1), g(d2)), and similarly for the
other relations.

Proposition 1: For any closed expression e : σ, for any
rational number r ∈ [−1, 1], the semantic interpretation EJeK
of e, is self-related by Riσ , Rl,rσ , i.e. Riσ(EJeKρ, EJeKρ), and
similarly for Rl,rσ . Moreover, if the expression e : σ is non-
expansive, the semantic interpretation EJeK, is self-related by
Rd,rσ ,.

Proof: The proof is quite standard, and is based on
the fact that the relations Riσ , Rl,rσ , Rd,rσ are logical. First
one proves that the semantic interpretation of (non-expansive)
constants are self-related by Rd,rσ , Riσ , and Rl,rσ . Then, to show
that the fixed-point operator preserves the relations, one shows
that the bottom elements are self-related by Riσ , Rl,rσ , and
Rd,rσ , and that the relations are closed under the lub of chains.
Finally, by the basic lemma of logical relations, one obtains
the result.

We now show how the three relations ensure the three prop-
erties of independence, sublinearity and consistency. To any
element f = 〈f1, f2〉 in the domain Dι→ι = (I×I)→ (I×I)
we associate a partial function fv : I → I with

fv(x) =

{
y if f1(〈{x},⊥〉) = {y}
undefined if f1(〈{x},⊥〉) is a proper interval

and a total function

fd : I → I = λx.f2(〈{x}, {1}〉))

The preservation of the relations Riι, R
l,r
ι has the following

straightforward consequences:
Proposition 2: (i) For any function f = 〈f1, f2〉 in Dι→ι

self-related by Riι→ι, for every i, j1, j2, f1(〈i, j1〉) =
f1(〈i, j2〉), the return value part in independent from the
derivative argument.

(ii) For any function f = 〈f1, f2〉 in Dι→ι self-related by
Rl,rι→ι for every i, j, and for every rational r ∈ [−1, 1],
f2(〈i, r · j〉) v r · f2(〈i, j〉). Therefore:
• (f2(〈i, {r}〉))/r v f2(〈i, {1}〉), i.e., the most pre-

cise approximation of the L-derivative is obtained
by evaluating the function with 1 as its second
argument,

• for every i, j, f2(〈i,−j〉) = −f2(〈i, j〉), i.e., the
derivative part is an odd function.

The preservation of the relation Rd,rι induces the following
properties (see the Appendix for the proof):

Proposition 3: For any function f = 〈f1, f2〉 : Dι→ι self-
related by Rd,rι→ι:

(i) the function fv is non-expansive;
(ii) on the open sets where the functions fv is defined, the

function fd is an approximation to the L-derivative of
the function fv;

(iii) if f is a maximal element of Dι→ι then fv is a total
function and fd is the associated L-derivative.

B. Subdomains

By definition, the logical relations are closed under directed
lubs, and as a consequence also the sets of elements self-
related by them are also closed under directed lubs.

For any ground type σ the relations Riσ , Rl,rσ , Rd,rσ
are closed under arbitrary meets, meaning that if ∀j ∈
J . Riσ(dj , ej) then Riσ(

d
j∈J dj ,

d
j∈J ej) and similarly for

the other relations Rl,rσ , Rd,rσ . The proof is immediate for

σ = o, ν, and is a simple check for σ = ι. The following result
shows that this closure property holds also for σ = ι→ ι.

Proposition 4: The set of elements in Dι→ι self-related by
any of the three relations Riι→ι, R

l,r
ι→ι, and Rd,rι→ι is closed

under arbitrary meets.
Proof: For the independence relation Riι→ι, the closure

property is trivial to check. For the consistency relation Rd,rι→ι,
the closure under non-empty meets follows immediately from
the fact that this relation is downward closed. The closure
property for the sublinearity relation Rl,rι→ι is given in the
Appendix.

We now employ the following result whose proof can be
found in the Appendix.

Proposition 5: In a continuous Scott domain, a non-empty
subset closed under lubs of directed subsets and closed under
non-empty meets is a continuous Scott subdomain.

Corollary 1: If σ is a ground type or first order type, then
the set of elements in Dσ self-related by the three logical
relations is a continuous Scott subdomain of Dσ .

As we do not deal with second or higher order real types in
this extended abstract, we will not discuss the corresponding
subdomains here.

C. Adequacy

As usual once an operational and denotational semantics are
defined, it is necessary to present an adequacy theorem stating
that the two semantics agree.

Let us denote by d[a,b] � Eval(e) the fact that there exits a
rational interval [a′, b′] such that e →? d[a′,b′] e

′ and [a′, b′] ⊂
(a, b). The proof of the following theorem is presented in the
Appendix.

Theorem 1 (Adequacy): For every closed term e with type
ι and environment ρ, we have:

d[a,b] � Eval(e) iff [a, b]� π1(EJeKρ)

In the operational semantics that we have proposed, the cal-
culus of the derivative is performed through a sort of symbolic
computation: the rewriting rules specified how to evaluate the
derivative of the primitive functions and the application of the
derivative rules essentially transforms a function expression
into the function expression representing the derivative. The
denotational semantics provides an alternative approach to the
computation of the derivative, which almost exactly coincides
with the computation performed by Automatic Differentiation.
We can interpret our adequacy result as a proof that symbolic
computation of the derivative and the computation of the
derivative through Automatic Differentiation coincide. We
remark in passing that, inspired by the denotational semantics,
it is possible to define an alternative operational semantics that
will perform the computation of the derivative in the same way
that is performed by Automatic Differentiation.

IV. FUNCTION DEFINABILITY

We will show in this section that for any maximal com-
putable function f in Dι→ι preserving the logical relations,

there exists a closed PCDF expression f with type ι→ ι whose
semantics, EJfKρ, coincides with f on maximal elements, i.e.
real numbers. More precisely, we show that for any real
number x ∈ [−1, 1], we have: fv(x) = (EJfKρ)v(x) and
fd(x) = (EJfKρ)d(x)

We do not consider the problem of defining PCDF expres-
sions whose semantics coincides with f on non-maximal par-
tial elements. PCDF is not rich enough for such a definability
result, and the introduction of new constants, simply to allow
the definability of partial elements, will make the language
less natural.

Here we will not give a detailed proof but present a
general construction that can be used to define, inside PCDF,
any computable non-expansive function. The presentation is
quite lengthy and proceeds incrementally showing, in several
steps, how to consider to define larger and larger classes
of computable maximal elements in Dι→ι. Each step will
introduce a new ingredient in the construction. More precisely,
we first present a construction that can deal with any piecewise
continuously differentiable function (i.e., a function that is
continuously differentiable except for a finite number of points
at which the left and right derivatives exist), then we extend it
to treat functions that are piecewise continuously differentiable
except for a finite number of points (of essential discontinuities
of the derivative at which the left and right derivatives do
not exist), and finally we give a definability result for general
Lipschitz maps.

Notation. Given two real numbers x, r we denote with
x± r the interval having center in x and diameter 2r. Given
a total function f , we denote by f ± r the partial function
λx.f(x) ± r. With some abuse of notation given a PCDF
constant c representing a function on reals, we will use the
symbol c to denote the functional obtained by pointwise
application of the function c. For example, min denotes the
functional λf.g . λx .min (fx)(gx).

For start, we present a series of functions, and functionals
definable by PCDF expressions.
• It is easy to see that any non-expansive piecewise ra-

tional linear function l is definable using the functions
da,b , t−1 , (+) ,min ,max , in the sense that there exists
a PCDF function expression l such that l = (EJlKρ)v
and d l

d x = (EJlKρ)d. For example a piecewise linear
interpolation of the function λx.x3/2 coinciding with the
function on the points with x equal to −1,−1/2, 0, 1/2, 1
can be defined as

λx.max (min ((+) 3
8 (d 7

8 ,0
x))(d 1

8 ,0
x))

((+) −38 (d 7
8 ,0
x))

We use l1, l2, . . . as metavariables over expressions defin-
ing piecewise rational linear functions, with l1, l2, . . .
denoting the corresponding functions on reals, i.e., l1 =
(EJl1Kρ)v

• In the following we will use the functional:

B = λlι→ι.cν .f ι→ιλxι.
min (max ((+) − c (l x))(f x))((+) c (l x)).

Note that, given an expression l defining a (piecewise
linear) function l, EJB l nKρfx is the interval (l(x) ±
r(n))∩f(x), if the interval l(x)±r(n) and f(x) intersect,
otherwise EJB l nKρfx coincides with one of the two
bounds of the interval l(x)±r(n). The following diagram
illustrates the behaviour of the functional B on maximal
points for a function preserving these points.

-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

-0.4

-0.3

-0.2

-0.1

-0

0.1

0.2

0.3

0.4

l

f

B(l,1/8,f)

On partial elements, EJB l nKρf is a sort of projection
of the function f on the function λx . l(x) ± r(n).
Given an expression Ω denoting the completely undefined
function, the value part of EJB l nΩKρ) is the function
λx . l(x)± r(n), while the derivative part (EJB l nΩKρ)d
is the completely undefined function.

• A PCDF expression L such that EJLf1nf2Kρ =
EJf1⊕r(n)f2Kρ can be defined as

L = Y(λF.f1.n.f2. if (n = 1/2) then f1⊕ 1
2
f2

else if (n > 1/2) then f1⊕ 1
2
(Ff1(2n− 1)f2)

else f2⊕ 1
2
(Ff1(2n)f2))

where with (n > 1/2) we indicate a suitable expression
evaluating to tt if r(n) > 1/2 and to ff otherwise.
Similar considerations hold for the other abbreviations,
(n = 1/2), (2n), (2n− 1).
Given an expression l defining a piecewise linear function
l, it is readily seen that the value part of EJLlnΩι→ιKρ
is the function λx . (1 − r(n)) · l(x) ± r(n), while
(EJLlnΩι→ιKρ)d is the function λx . (1−r(n)) · d ld x (x) ±
r(d).

It is easy to show that for any non-expansive function f :
I → I there exists a sequence of piecewise linear functions
〈li〉i∈N converging fast to f , in the sense that for any i, we
have f ∈ li ± 2−i+1.

If the sequence of piecewise linear functions 〈li〉i∈N is
definable in the sense that there exists a term l such that
l n defines the function ln, denoting by (2−n−1) a suit-
able term converging, for any instantiation of the variable
n, to a value h such that r(h) = (2−n−1), the term
f = (Y λF.λn.B(l n)(2−n−1)(F(n + 1)))0 is such that:

EJfKρ =
⊔
i∈N
EJB(l 0)

1

2
(B(l 1)

1

4
(. . .B(l i)2−i+1Ω) . . .)Kρ

It is then not difficult to see that f = (EJfKρ)v . However,
(EJfKρ)d is the bottom function, i.e., the completely undefined

approximation of the derivative of the function f . We now
proceed in three steps of increasing complexity to define
various classes of Lipschitz functions in PCDF.

A. Piecewise continuously differentiable

If f : I → I is piecewise continuously differentiable, then
there exists a sequence of piecewise linear functions 〈li〉i∈N
such that for all i the function l1⊕1/2(l2⊕1/2(. . . li⊕1/20) . . .)
approximates the function f with precision 2−i, both for the
value and for the derivative part. If the sequence of piecewise
linear function is definable by a term l then we can construct
a term f such that:

EJfKρ =
⊔
i∈N
EJL(l 0)

1

2
(L(l 1)

1

2
(. . . L(l i)

1

2
(Ω) . . .)Kρ

and one can prove that EJfKρ describes both the value part and
the derivative part of f .

B. Piecewise continuously differentiable except for isolated
points

The above construction can be applied only if the func-
tion f : I → I , together with its derivative, is globally
approximable by a sequence of piecewise linear functions.
In general, if f is not piecewise continuously differentiable,
this is not always possible. For example consider f(x) =
x2·sin(1/x)/4, in [−1, 1]. Then f has a Lipschitz constant 3/4
and is differentiable at every point, but in any neighbourhood
of 0 its derivative assumes all the values between −1/4,
1/4, i.e., the left and right derivatives at 0 do not exist.
It follows that there is no piecewise linear function, whose
derivative part approximates the derivative of part of f with
an error smaller that 1/4. To overcome this, we now present a
construction where the problem of defining a function on the
whole interval [−1, 1] is reduced to the problem of defining
suitable approximations to the function on smaller and smaller
intervals.

It works as follows: given a non-expansive function f :
I → I , we first obtain a piecewise linear function l0,0, and
a rational number c0,0 ∈ [0, 1) such that c0,0 · l0,0 globally
approximates the value and derivative part of f with an error
1−c0,0. Given an expression l0,0 defining the function l0,0, an
expression defining f can be written in the form l0,0⊕cg0,0, for
a suitable expression g0,0, defining the non-expansive function
g0,0 = (f − c0,0 · l0,0)/(1 − c0,0). In other words we reduce
the problem of defining f to the problem of defining g0,0.
At this stage we do not look for a global piecewise linear
approximation of g0,0, but we split the domain of g0,0 in two
overlapping intervals J1,0 and J1,0, and consider two functions
f1,0 and f1,1 defined as the least non-expansive functions that
coincide with g0,0 on the intervals J1,0 and J1,0 respectively.
The function g0,0 can be expressed as max (f1,0, f1,1) In this
way, the problem of defining g0,0, it is split into the problem
of defining two functions f1,0, f1,1 each of them having a
complex behaviour just in one restricted part of the domain and
in the remaining part behaving as piecewise linear functions.
Corecursively, we apply the apply the procedure consider for

the function f to the functions f1,0 and f1,1, constructing
an infinitary tree of linear approximations, each of which
considers the behaviour of the function f in smaller and
smaller intervals.

A more formal presentation of the construction is the
following.

First we define two sequences of coverings, Ii, Ji, with
i > 0, of the interval I by rational intervals. To any pair i, j
of non-negative integers with 2i > j ≥ 0, we associate the
real intervals

Ii,j = [(j − 2i−1)/2i−1, (j + 1− 2i−1)/2i−1],

and

Ji,j = [(2j − 1− 2i)/2i, (2j + 3− 2i)/2i] ∩ [−1, 1].

As a numerical example, the covering I2 is formed by the
intervals

[−1,−1/2], [−1/2, 0], [0, 1/2], [1/2, 1]

while the overlapping covering J2 is formed by the intervals

[−1,−1/4], [−3/4, 1/4], [−1/4, 3/4], [1/4, 1].

By simultaneous induction on i ≥ 0 we construct three
families of double indexed maps fi,j , li,j and gi,j , and a double
indexed family of rational ci,j as follows:
• A family of functions fi,j from I to I , with 0 ≤ i and

0 ≤ j < 2i, is defined by:
– f0,0 = fv
– fi+1,j is the smallest (wrt the real line order) non-

expansive function coinciding with the gi,bj/2c on
the interval Ji+1,j , formally:
fi+1,j(x) = min (gi,bj/2c(x), x + ai+1,j , −x +
bi+1,j).
where, denoting by J−i,j and J+

i,j , respectively, the
left and right bound of the interval Ji,j , we put
ai,j = gi,bj/2c(J

−
i,j)−J

−
i,j and bi,j = gi,bj/2c(J

+
i,j)+

J+
i,j . These definitions imply that the function
λx. x + ai,j passes through the point with coordi-
nates (J−i,j , gi,bj/2c(J

−
i,j)) while the function λx. −

x + bi,j passes through the point with coordinates
(J+
i,j , gi,bj/2c(J

+
i,j)).

Aim of this definition is to reduce the definability of gi,j
to the definability of fi+1,2j and fi+1,2j+1, each of them
consider a different region portion of the function domain
of gi,j .

• A family of piecewise linear functions li,j and the dyadic
rational numbers ci,j ∈ [0, 1), with 0 ≤ i and 0 ≤ j ≤
2i− 1, such that: fi,j ∈ ci,j · li,j ± (1− ci,j) and d fi,j

d x ∈
ci,j · d li,jd x ± (1− ci,j).
The functions li,j and the rationals ci,j are not uniquely
defined, the construction just chooses them in such a way
that ci,j · li,j is a piecewise approximation of, value and
derivative part of, fi,j , with error (1− ci,j).

• The family of functions gi,j from I to I , with 0 ≤ i and
0 ≤ j < 2i are defined such that fi,j = li,j ⊕ci,j gi,j ;

the conditions pose on the function li,j assure that the
function fi,j exists and it is non-expansive.

After having generated the approximation li,j of the
functions fi,j , one is left with the problem of defining
the function gi,j .

As an example of the above construction, consider the
function f = x2/2. We can choose, in the first step of
approximation, the function l0,0(x) = max (−x, x) and the
constant c0,0 = 1/2. This choice induces the functions
g0,0(x) = min ((x2 + x), (x2 − x)) and f1,0(x) = min ((x2 +
x), (x2 − x), (−x + 1/4). Proceeding with the construction,
using similar choices for the next steps, leads to the function
f2,1(x) = min ((2x2 + 3x + 1), (2x2 + x), (2x2 − x), (x +
5/8), (−x + 1/8)). A piecewise linear approximation of
function f2,1, with precision 1/2 is given by the function
l2,1(x) = max (min (x + 1/2, −x − 1/2), min (x,−x)). The
following diagram depicts the functions f2,1 and l2,1/2.

-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

f21

l21 /2

Fig. 1. Functions used in approximating the square function

The function g2,1 with f2,1 = l2,1/2 + g2,1/2 and the
function f3,2(x) = min ((4x2 + 5x + 3/2), (4x2 + 3x +
1/2), (4x2 + x), (x + 9/16), (−x − 3/16)) are illustrated by
the following diagram:

-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

g
21

f32

Fig. 2. Approximation of the square function

Coming back to the general construction, at any point on the
interval I , we have that fi,j ≥ li,j ⊕ci,j max (fi+1,2j , fi+2,2j)
while on the interval Ji+1,2j∩Ji+1,2j+1 equality holds: fi,j =
li,j ⊕ci,j max (fi+1,2j , fi+2,2j). Thus, the following infinitary
formula gives a correct approximation of the function f :

l0,0 ⊕c0,0 max ((l1,0 ⊕c1,0 max ((l2,0 ⊕c2,0 max . . .),
(l2,1 ⊕c2,1 max . . .))),

(l1,1 ⊕c1,1 max ((l2,2 ⊕c2,2 max . . .),
(l2,3 ⊕c2,3 max . . .)))).

If the families ci,j and li,j are definable, then it is possible
to construct a PCDF expression whose semantics coincides
with the formula. Given a real number x ∈ I , denote with
〈Ji,h(i)〉i∈N a sequence of J intervals converging to x such
that ∀i.h(i) = bh(i+ 1)/2c (if x is not a dyadic rational this
sequence is unique, if x is a dyadic rationals there are two such
a sequences). The above formula defines a function converging
on x iff Πi∈N(1− ci,h(i)) = 0, for any such a sequence (each
level reduces the inaccuracy by a factor (1 − ci,j)). If there
exists an index k such that the function f is continuously
differentiable in any interval Jk,j containing x, then on these
intervals f can be approximated with arbitrary precision by
a piecewise linear function and therefore there is a choice
for the constants ci,j making the above construction converge
on x. But if x is a point of essential discontinuity for the
derivative, there is a limit on the level of the precision for any
choice for the constants ci,j , and we need to consider the next
construction to obtain convergence to the value of the function
and its derivative at x.

C. General Lipschitz functions

In the previous construction, the finite approximations of
the above displayed formula define both the value part and the
derivative part of the function with the same level of precision.
But there are non-expansive functions whose Clarke gradients
(L-derivatives) are partial elements at all points [15], [6].
When applied to this class of functions the above construction
can only lead to expressions whose semantics is a partial
function also for the value part. To define functions in this
class, we have to add an extra ingredient to the construction
and to use the “projection” operator B, which increases the
information contained in the value part of the partial function
without necessarily modifying the information contained in
the derivative part. To apply the operator B, it is necessary to
build a list of piecewise linear functions l′i,j and dyadic rational
numbers c′i,j , with 0 ≤ j ≤ 2i − 1 satisfying the following
three conditions: gi,j ∈ l′i,j ± c′i,j/4, c′0,0 · (1− c0,0) ≤ 1

2 and

c′i+1,j · (1 − ci+1,j) ≤
c′i,j/2

2 , that is l′i,j is a piecewise linear
approximation of the function gi,j such that the value part of
gi,j is approximated within an error c′i,j/4, while there is no
condition on the derivative part of l′i,j .

The function f can then be expressed as

l0,0 ⊕c0,0 (Bc′0,0 l
′
0,0(max (l1,0 ⊕c1,0 (Bc′1,0 l

′
1,0(max . . .))),

(l1,1 ⊕c1,1 (Bc′1,1 l
′
1,1(max . . .))))).

The conditions on the constants c′i,j are such that the
expansion of the above formula until the level i describes the
value part of f with precision 2−1. The conditions on l′i,j are
such that a further application of the B operator determines
the value of the function with an error strictly smaller than the
application above it.

Given a maximal computable element f in the function
domain Dι→ι, the value part fv is a total functions. Moreover,
by the computability of f , it is possible to effectively generate,
with an arbitrary precision, the graphs of the functions fv and

fd. Therefore it is possible to effectively generate the families
of dyadic rationals ci,j , c′i,j and the piecewise linear functions
li,j , l′i,j of the construction above. To ensure the convergence
of the derivative part, we also require that given a recursive
enumeration of the finite elements below f , the rational dyadic
number ci,j is chosen as the largest number in the form k

2i

that can be generated after examining the first 2i elements
in the enumeration of f . Since the construction is effective,
by Turing completeness of PCF, there exist four PCDF terms
c, c′, l, l generating the above families ci,j , c′i,j , li,j , l

′
i,j .

Let f : ν → ν → ι→ ι be the expression

f = Y λF.λi.jL(l i j)(c i j)(B(l′ i j)(c′ i j)(max (F(i + 1)(2j))
(F(i + 1)(2j + 1))))

The expression f 0 0 defines the function f ; in the sense that
for any real number x ∈ I , we have fv(x) = (EJf0,0Kρ)v(x)
and fd(x) = (EJf0,0Kρ)d(x).

Note that above definability result outlines a program ex-
pression that computes a function similar to the tradition of
numerical analysis: the function f is expressed as the limit
of a sequence of piecewise linear functions and the program
that computes the value of the function at a given point
actually also computes the values of the derivative at that point.
Note moreover that the definability constructions do not use
the parallel if operator pif. However pif becomes necessary
in evaluating the derivative of a generic function since the
operational semantics rules reduce the derivative of min to an
expression containing pif.

V. CONCLUSION

In this paper we have presented a language for exact
computation in the differentiable calculus. The language is
obviously too simple to be practically usable. Even the product
operator is not a primitive function in the calculus and needs
to be defined.

The aim however has been to show that it is possible to
integrate, in a single language, exact lazy computation of real
functions with exact lazy computation of their derivatives.
Moreover we have selected a small set of primitive functions
that are sufficient to define any other function. In real pro-
gramming languages, practical reasons call for the use of a
larger set of primitives.

The present research can be extended in several directions.
We outline here some possible future work.
• An obvious problem to consider is whether the defin-

ability result presented in the paper can be extended
to a larger class of function domains. We claim that
the techniques presented here can be easily adapted to
functions with several arguments. This is not however
the case when considering higher order functions, whose
definability is an open problem.

• Another open problem is whether the set of elements in
a generic domain Dσ that are self-related by the three
logical relations Riσ , Rl,rσ , and Rd,rσ forms a continuous

Scott subdomain, and if so to find a direct characterisation
of these subdomains.

• Another direction for possible further research is the
treatment of C2 or C∞ functions. Interestingly it is
possible to extend the domains of denotational semantics
in such a way as to describe not only the derivatives but
also the second derivatives of functions. For this, it is
sufficient to use as basic domain for real numbers the
domain I×I×I. Moreover using the infinite product of
I as domain for reals, one can deal with C∞ functions,
and allow an arbitrary depth application of the derivative
operator. From the language point of view however, it
is an open problem to find a set of primitive functions
to generate twice differentiable or infinitely differentiable
functions.

REFERENCES

[1] E. Bishop and D. Bridges. Constructive Analysis. Springer-Verlag, 1985.
[2] F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley, 1983.
[3] E. A. Coddington and N. Levinson. Theory of Ordinary Differential

Equations. McGraw-Hill, 1955.
[4] T. A. Davis and K. Sigmon. MATLAB Primer. CRC Press, seventh

edition, 2005.
[5] A. Edalat. A continuous derivative for real-valued functions. In S. B.

Cooper, B. Löwe, and A. Sorbi, editors, New Computational Paradigms,
Changing Conceptions of What is Computable, pages 493–519. Springer,
2008.

[6] A. Edalat. A differential operator and weak topology for Lipschitz maps.
Topology and its Applications, 157,(9):1629–1650, June 2010.

[7] A. Edalat and A. Lieutier. Domain theory and differential calculus
(Functions of one variable). Mathematical Structures in Computer
Science, 14(6):771–802, December 2004.

[8] A. Edalat, A. Lieutier, and D. Pattinson. A computational
model for multi-variable differential calculus. In V. Sassone,
editor, Proc. FoSSaCS 2005, volume 3441 of Lecture Notes
in Computer Science, pages 505–519, 2005. Available in
doc.ic.ac.uk/˜ae/papers/multi.pdf.

[9] T. Ehrhard and L. Regnier. The differential lambda-calculus. Theoretical
Computer Science, 309(1-3), 2003.

[10] M. H. Escardó. PCF extended with real numbers. Theoretical Computer
Science, 162(1):79–115, August 1996.

[11] P. Di Gianantonio. An abstract data type for real numbers. Theoretical
Computer Science, 221:295–326, 1999.

[12] A. Griewank and A. Walther. Evaluating Derivatives. Siam, second
edition, 2008.

[13] IC-Reals. www.doc.ic.ac.uk/exact-computation/.
[14] K. Ko. Complexity Theory of Real Numbers. Birkhäuser, 1991.
[15] G. Lebourg. Generic differentiability of lipschitzian functions. Trans-

action of AMS, 256:125–144, 1979.
[16] J. C. Mitchell. Foundations of Programming Languages. MIT Press,

1996.
[17] P. J. Potts, A. Edalat, and M. Escardó. Semantics of exact real arithmetic.

In Twelfth Annual IEEE Symposium on Logic in Computer Science.
IEEE, 1997.

[18] M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics.
Springer-Verlag, 1988.

[19] K. Weihrauch. Computable Analysis (An Introduction). Springer, 2000.

APPENDIX

We give the details of several proofs and the alternative
logical relations here.

A. Proof of Proposition 3

Proof: (i) Let x and y be two real numbers for which the
function fv is defined. For any rational r ≥ |x−y| we have that
Rd,rι (〈{x}, [−1, 1]〉, 〈{y}, [−1, 1]〉, 〈[x, y], [−1, 1]〉). Therefore
Rd,rι (f(〈{x}, [−1, 1]〉), f(〈{y}, [−1, 1]〉), f(〈[x, y], [−1, 1]〉)),
which implies that fv(x) − fv(y) ∈ r · f2(〈[x, y], [−1, 1]〉),
and thus −1 ≤ fv(x)−fv(y)

x−y ≤ 1.
(ii) Given any x ∈ I and any open interval O
containing fd(x) = f2(〈{x, }, {1}〉), let [a, b] � {x}
be a rational interval such that fv is define on [a, b]
and f2(〈[a, b], {1}〉) ⊆ O, and let r = b − a, we
have Rd,rι (〈{b}, [−1, 1]〉, 〈{a}, [−1, 1]〉, 〈[a, b], {1}〉), by
repeating the arguments of the previous point, it follows
fv(b)−fv(a)

b−a ∈ f2(〈[a, b], {1}〉). By monotonicity of f it
follows that for any pair of rationals a′, b′ ∈ (a, b), we have:
fv(b

′)−fv(a′)
b′−a′ ∈ f2(〈[a, b], {1}〉), and by continuity of fv for

any pair of real numbers x, y ∈ (a, b) fv(x)−fv(y)
x−y ∈ O.

(iii) If f is a maximal element Dι→ι, by point (i) the function
fv is non-expansive on the points where it is defined. It
follows that if the function fv is not defined at a given point
x, it is always possible to construct a function f◦ such that
f v f◦ and f◦v defined on x, leading to a contradiction.
Similar arguments can be used to prove that fd is the
L-derivative of fv and not only an approximation of the
L-derivative.

B. Proof of Proposition 4

The sublinearity relation Rl,rι→ι is closed under non-empty
meets.

Proof: To show that sublinearity is closed under meets,
assume that fk : I → I with k ∈ K is a family of Scott
continuous functions satisfying the sublinearity fk(r[x, y]) ≥
rfk([x, y]) for all [x, y] ∈ I and some (rational) r ∈ [−1, 1].
We show that the meet

d
k fk will also be sublinear.

We use the lower and upper parts of any f : I → I as
f−, f+ : T → [−1, 1] where T = {(x, y) ∈ [−1, 1]× [−1, 1] :
x ≤ y}. Note that f− and f+ are lower and upper semi-
continuous respectively. Sublinearity of f is equivalent to
f+(r(x, y)) ≥ rf+((x, y)) and f−(r(x, y)) ≤ rf−((x, y))
for r ∈ [−1, 1] and (x, y) ∈ T .

We have: (
d
k fi)

+ = g with g = lim sup g0 where g0 =
supk∈K f

+
k and similarly (

d
k fi)

− = h with h = lim inf h0
where h0 = infk∈K f

−
k .

The sublinearity condition for fk is equivalent to
f+k (r(x, y)) ≥ rf+k ((x, y)) and f−k (r(x, y)) ≤ rf−k ((x, y))
for r ∈ [−1, 1] and (x, y) ∈ T .

By taking pointwise sup and inf respectively we get:
g0(r(x, y)) ≥ rg0((x, y)) and h0(r(x, y)) ≤ rh0((x, y)). By
taking limsup and liminf respectively we obtain: g(r(x, y)) ≥
rg((x, y)) and h(r(x, y)) ≤ rh((x, y)) as required.

C. Proof of Proposition 5

In a continuous Scott domain, a non-empty subset closed
under lubs of direct subsets and closed under non-empty meets
is a continuous Scott subdomain.

Proof: Let D be a continuous Scott domain and C ⊂ D
a non-empty subset with the above closure properties. Given
an element of d ∈ D, denote by i(d) the greatest lower bound
(meet) in C of the set {c | d v c, c ∈ C}, if this set is not
empty, otherwise let i(d) be undefined.

Then i, regarded as a partial function from D to C, preserves
the well below relation�. In fact given two elements x, y ∈ D
with y �D x and i(x) defined, we check that i(y)�C i(x).
Let A be a directed subset of elements in C, with i(x) v⊔
C A. Since C is closed under lub of directed sets,

⊔
C A =⊔

D A, and by construction of i, we have x v i(x). Thus,
x v

⊔
D C, and, by hypothesis, there exists a ∈ A such that

y v a. Since i is monotone and coincides with the identity
on the elements of C, we have i(y) v i(a) = a and therefore
i(y) �C i(x). It follows that if a set B is a basis of D then
i(B) forms is a basis for C. In fact given an element x ∈ C,
the set A = {a ∈ B | a � x}, is a directed set with lub x,
then i(A) is a directed set of elements well below i(x) = x,
having x as lub. Therefore C is a continuous dcpo, and since
it has non-empty meets, it is also consistently complete.

D. Proof of Adequacy Theorem 1

For every closed term e with type ι and environment ρ, we
have:

d[a,b] � Eval(e) iff [a, b]� π1(EJeKρ)

Proof: We use the technique of computability predicates
to prove both the soundness and the completeness of the
operational semantics. Note that the soundness of the oper-
ational semantics cannot be proved by simply showing that
the reduction rules preserve the denotational semantics, since
this is simply not true. A simple example being the expres-
sion (Dx.d1/2,0 e1)e2 that reduces to d1/2,0 ((Dx.e1)e2). The
elements EJ(Dx.d1/2,0 e1)e2Kρ and EJd1/2,0 ((Dx.e1)e2)Kρ do
not coincide on their second component (the first is ⊥, the
other is above [−1/2, 1/2]. More generally, all the reduction
rules for the derivative operator do not preserve the semantics
on the second element.

We define a computability predicate Comp for closed
terms of type o, ν by requiring that the denotational and
operational semantics coincide, in the usual way. A closed
term e having type ι satisfies the predicate Compι if for
every closed rational interval [a, b] and environment ρ we have:
d[a,b] � Eval(e) iff [a, b]� π1(EJeKρ)

The computability predicate is then extended, by induction
on types, to closed elements of any type, and, by closure, to
arbitrary elements.

Using the standard techniques for computability predicate, it
is possible to prove that all constants are computable, and that
λ-abstraction preserves the computability of the expressions.
Therefore all expressions not containing the derivative operator
are computable.

To prove that the computability predicate is satisfied by
expressions containing the derivative operator, we show, by
structural induction on the non-expansive expression e, that
the expression Dx.e is also computable.

The proof considers many cases. As an example, we take
the case where e = min e1e2. By the induction hypothesis we
can assume the computability of Dx.e1 and Dx.e2. Since the
expressions e1, e2, pif and ⊕1/2 do not contain the derivative
operator, we can assume that they are computable.

We need to prove, for any computable expression
e′, that d[a,b] � Eval((Dx.min e1e2)e

′) iff [a, b] �
π1(EJ(Dx.min e1e2)e

′Kρ).
On the one hand, we have the following chain of implica-

tions:
d[a,b] � Eval((Dx.min e1e2)e

′) iff, by the denotational
semantics rules,
d[a,b] � Eval(pif (0<) (t−1 e1[e

′/x]⊕1/2(e2[e
′/x]))

then (Dx.e1)e
′ else (Dx.e2)e

′)
iff, by computability of the expression right hand side
[a, b]� π1(EJpif (0<) (e1[e

′/x]⊕1/2(t−1 e2[e
′/x]))

then (Dx.e1)e
′ else (Dx.e2)e

′Kρ)
If we pose: EJe′Kρ = 〈i, j〉, EJe1Kρ[〈i,1〉/x] = 〈i1, j1〉,

EJe1Kρ[〈i,j〉/x] = 〈i′1, j′1〉, EJe2Kρ[〈i,1〉/x] = 〈i2, j2〉,
EJe2Kρ[〈i,j〉/x] = 〈i′2, j′2〉.

by applying the denotational semantics rule we can derive
that right hand side in the last relation is equal to j1 if i′1 < i′2,
to j2 if i′2 < i′1, and to j1 t j2 otherwise.

On the other hand, by the rules of denotational semantics:
π1(EJ(Dx.min e1e2)eKρ) = π2(EJmin e1e2Kρ[i,1〉/x]) which is
equal to j1 if i1 < i2, to j2 if i2 < i1, and to j1tj2 otherwise.

Since EJe1K and EJe2K are self-related by Riσ , their value
parts are independent from the derivative part so i1 = i′1 and
i2 = i′2, from which the result follows.

The other cases can be proved in a similar way.

E. Alternative Logical Relations

It is possible to give a more precise characterization of
definable elements by presenting an alternative set of logical
relations. In the new set, the relation for sublinearity Rl,rσ is
replaced by a relation Sl,rσ implying linearity, rather than the
sublinearity, of the derivative part. Given a rational number
r ∈ [−1, 1], the family Sl,rι consists of pairs of the form
(〈i, j1〉, 〈i, j2〉) where j1 = r · j2. It is now easy to prove
that the semantic interpretation of all constants are self-related
by Sl,rσ . The only problem is that the bottom element ⊥σ
is not self-related by Sl,rσ , and as a consequence expressions
containing the recursive operator Yσ have semantic interpre-
tations that are not self-related by Sl,rσ . This problem can be
resolved by giving an alternative semantics interpretation for
Yσ: in particular the fixed-point Yσe of an expression e is now
defined as the least upper bound of a chain whose first element
is the least element ⊥lσ , called the least linear element, self-
related by Sl,rσ , rather than ⊥σ , as usual. Therefore, before
defining the interpretation of the fixed-point operator Yσ , one
needs to introduce the logical relations, Sl,rσ , for linearity on

an arbitrary type σ and characterise the least linear element in
each semantic domain Dsσ, and finally prove that the semantic
interpretation of expressions are self-related by Sl,rσ .

Note that the elements of Dι that are self-related by Sl,rι
are the element in the form 〈i, {0}〉, which form a subdomain
isomorphic to I, the standard domain for real numbers.

For a given type σ, the least linear element ⊥lσ is defined
using a set function extσ : Dσ → I by mutual induction on
the structure of σ as follows:
• ⊥lι = 〈[−1, 1], [0, 0]〉,
• if σ has the form σ = σ1 → . . . σn → ι we define

⊥lσd1 . . . dn = 〈[−1, 1],
⊔
i∈I
{extσi(di)}

• if σ is not in the above form ⊥lσ = ⊥σ .
• The function extσ is defined by: extι(〈i, j〉) = j t −j,
exto(d) = [0, 0], extν(d) = [0, 0], extσ1→σ2

(d) =
extσ2(d(⊥lσ1

)).
Clearly this solution gives rise to a more complex definition

of the semantics. Therefore we preferred to present the simpler
semantics in this paper, and just sketched here the possibility
of obtaining a more refined and precise semantics.

