
A Domain Theoreti Aount of Piard'sTheoremA. Edalat and D. PattinsonDepartment of Computing, Imperial College, London, UKAbstratWe present a domain-theoreti version of Piard's theorem for solv-ing lassial initial value problems in Rn. For the ase of vetor �eldsthat satisfy a Lipshitz ondition, we onstrut an iterative algorithmthat gives two sequenes of pieewise linear maps with rational o-e�ients, whih onverge, respetively from below and above, expo-nentially fast to the unique solution of the initial value problem. Weprovide a detailed analysis of the speed of onvergene and the om-plexity of omputing the iterates. The algorithm uses proper datatypes based on rational arithmeti, where no rounding of real numbersis required. Thus, we obtain an implementation framework to solveinitial value problems, whih is sound and, in ontrast to tehniquesbased on interval analysis, also omplete: the unique solution an beatually omputed within any degree of required auray.1 IntrodutionWe onsider the initial value problem (IVP) given by the system of di�eren-tial equationṡ
yi(x) = vi(y1, . . . , yn), yi(0) = 0 (i = 1, . . . , n) (1)where the vetor �eld v : O → Rn is ontinuous in a neighbourhood O ⊆ Rnof the origin, and we look for a di�erentiable funtion y = (y1, . . . , yn) :

[−a, a] → Rn, de�ned in a neighbourhood of 0 ∈ R, that satis�es (1). Bya theorem of Peano there is always a solution [9, page 19℄. Uniqueness ofthe solution is guaranteed, by Piard's theorem, if v satis�es a Lipshitzondition. The question of omputability and the omplexity of the initialvalue problem has been studied in di�erent ontexts in omputable analy-sis [13, 3, 8, 15, 20, 18, 6℄. 1



On the algorithmi and more pratial side, standard numerial pakagesfor solving IVP's try to ompute an approximation to a solution with aspei�ed degree of auray. Although these pakages are usually robust,their methods are not guaranteed to be orret and it is easy to �nd exampleswhere they output inaurate results [14℄.Interval analysis [17℄ provides a method to give upper and lower boundsfor the unique solution in the Lipshitz ase with a presribed tolerane,and has been developed and implemented for analyti vetor �elds [19, 1℄.In the interval analysis approah, arithmeti operations are performed onintervals, and outward rounding is applied if the resulting interval endpointsare not mahine representable. While this strategy guarantees soundness, i.e.ontainment of the exat result in the omputed interval, one has in generalno ontrol over the rounding, whih an produe unduly large intervals. Asa onsequene, for an implementation of the framework for solving IVP'sbased on interval analysis, one annot in general guarantee ompleteness,that is, atual onvergene to the solution. For the same reason, one has noontrol over the speed of onvergene.Domain theory [4℄ presents an alternative tehnique, based on properdata types, to produe a provably orret solution with any given degree ofauray. Using the domain of Sott ontinuous interval valued funtionson a ompat interval, we de�ne a domain theoreti Piard operator, whoseleast �xed point ontains any solution of the IVP. When the vetor �eldis Lipshitz, the solution is unique and we onstrut an iterative algorithmthat gives two sequenes of pieewise linear maps with rational oe�ients,whih onverge, respetively from below and above, exponentially fast tothe unique solution of the initial value problem. Sine the data types forrepresenting the pieewise linear maps with rational oe�ients are diretlyrepresentable on a digital omputer, no rounding of real numbers is required.As a onsequene, the implementation of the domain theoreti approah isalso omplete, that is, we an guarantee the onvergene of the approximat-ing iterates to the solution of the IVP also for the implementation. Thisproperty is not present in any other approah to validated solutions of dif-ferential equations. Furthermore, as a result of the data types we use, wean give estimates for the speed of onvergene of the approximating iterates,whih are still valid for an atual implementation of our algorithm.This simpli�es the earlier treatment [10℄, whih used a domain for C1funtions [11℄ and, at eah stage of iteration, required a new approximationof the derivative of the solution. The new treatment is muh more similarto the lassial theorem in that it gives rise, in the Lipshitz ase, to fastonvergene of the approximations to the solution.2



We disuss two di�erent bases to represent approximations to the solu-tions of the IVP, namely the pieewise linear and the pieewise onstant fun-tions with rational oe�ients. Using pieewise linear funtions, we avoidthe omputation of retangular enlosures of the solution, and we thereforeredue the wrapping e�et, a well known phenomenon in interval analysis.This omes at the expense of an inrease in the size of the representation ofthe approximations to the solution. Using the base onsisting of pieewiseonstant funtions, we show that the order of the speed of onvergene tothe solution remains unhanged, while the time and spae omplexity for therepresentation of the iterates is muh redued.Our approah relies on approximating the vetor �eld with a sequene of(interval valued) step funtions, whih onverge exponentially fast to an in-terval extension of the vetor �eld. We disuss two tehniques for obtainingsuh sequenes. First, we show how to ompose two sequenes of approx-imations suh that the omposition of the approximations still onvergesexponentially fast. Our seond tehnique is based on a funtion whih om-putes the values of the vetor �eld to an arbitrary degree of auray, andwe show how this gives rise to step funtions with the desired properties.A prototypial implementation using the GNU multi preision library [2℄shows that the resulting algorithms are atually feasible in pratie, and weplan to re�ne the implementation and ompare it in sope and performanewith existing interval analysis pakages like AWA [1℄. Of ourse we haveto bear in mind that �oating point arithmeti used by interval software isexeuted on highly optimised proessors, whereas the rational arithmetineeded for our implementation is performed by software.2 Preliminaries and NotationFor the remainder of the paper, we �x a ontinuous vetor �eld
v = (v1, . . . , vn) : [−K,K]n → [−M,M ]nwhih is de�ned in a ompat retangle ontaining the origin and onsider theIVP given by Equation (1). Note that any ontinuous funtion on a ompatretangle is bounded, hene we an assume, without loss of generality, that

v takes values in [−M,M ]n.We onstrut solutions y : [−a, a] → Rn of Equation (1) where a > 0satis�es aM ≤ K. This will guarantee that the expression v(y) is wellde�ned, sine M is a bound for the derivative of y. We onsider the n-dimensional Eulidean spae Rn equipped with the maximum norm ‖x‖ =3



max{|x1|, . . . , |xn|}, as this simpli�es dealing with the Lipshitz onditions,whih we introdue later. Approximations of real numbers live in the intervaldomain
IR = ({[a, b] | a, b ∈ R, a ≤ b} ∪ {R},⊑) with α ⊑ β ⇔ β ⊆ αordered by reverse inlusion; the way below relation is given by α ≪ β i�

β ⊆ αo, where (·)o denotes the interior of a set. For n ≥ 1, the domain
IRn is isomorphi to the domain of n-dimensional retangles {α1 ×· · ·×αn |
αi ∈ IR for all 1 ≤ i ≤ n}, and we do not distinguish between these twopresentations. For a retangle R ⊆ Rn, the subset {S ∈ IRn | S ⊆ R}of retangles ontained in R is a sub-domain of IRn, whih is denoted by
IR. The powers IRn of the interval domain and the sub-domain IR, for aretangle R, are ontinuous Sott domains. If α−, α+ ∈ Rn with α−

i ≤ α+
i forall 1 ≤ i ≤ n, we write [α−, α+] for the retangle [α−

1 , α+
1 ] × · · · × [α−

n , α+
n ].Similarly, if f : X → IRn is a funtion, we write f = [f−, f+] if f(x) =

[f−(x), f+(x)] for all x ∈ X.The link between ordinary and interval valued funtion is provided bythe notion of extension. If R ⊆ Rn is a retangle, we say that g : IR → IRnis an extension of f : R → Rn if
g({x1}, . . . , {xn}) = {f(x1, . . . , xn)}for all x ∈ R. Note that every ontinuous funtion f : R → Rn has aanonial maximal extension If de�ned by

If = (If1, . . . , Ifn) : IR → IRn with Ifi(S) = [ inf
x∈S

fi(x), sup
x∈S

fi(x)],where S ∈ IR is a retangle.This extension is maximal in the set of intervalvalued funtions extending f . It is easy to see that If is ontinuous w.r.t.the Sott topology on IR and IRn if f is ontinuous w.r.t. the Eulideantopology.We onsider the following spaes for approximating the vetor �eld andthe solutions to the IVP:
• V = I[−K,K]n → I[−M,M ]n, the set of ontinuous funtions w.r.t. theSott topology on I[−K,K]n and I[−M,M ]n.
• S = [−a, a] → I[−K,K]n, the set of ontinuous funtions w.r.t. theEulidean topology on [−a, a] and the Sott topology on I[−K,K]nThat is, we will be onerned with spaes of funtions both with intervaland real input. For later referene, we inlude the following lemma, whihlinks both presentations. 4



Lemma 2.1. Suppose P ∈ IRk, Q ∈ IRl and onsider the following opera-tions:
E :(P → IR) ∋ f 7→ λα.

l

x∈α

f(x) ∈ (IP → IR)

I :(IP → IR) ∋ f 7→ λx.f({x}) ∈ (P → IR)Then both I and E are ontinuous, I ◦ E = id and id ⊑ E ◦ I.For the proof, see [12℄. In order to measure the speed of onvergene, aswell as for tehnial onveniene in the formulation of some of our results,we introdue the following notation, where X is an arbitrary set:
• For a retangle α = [α−, α+], w(α) = ‖α+−α−‖ denotes the width of α.If f : X → IRn is a funtion, w(f) = supx∈X w(f(x)) is the width of f . Inthe speial ase where X ⊆ R, we let wα(f) = supx∈X e−α|x|w(f(x)) and all

wα(f) the weighted width of f w.r.t. the weight α; this gives w(f) = w0(f).
• Given two retangles α = [α+, α−] and β = [β−, β+], their distane isgiven by d(α, β) = max1≤i≤n |α

+
i − β+

i | + |α−
i − β−

i | if α+ = (α+
1 , . . . , α+

n )and similarly for α−, β+, β−. If f, g : X → IRn are funtions, d(f, g) =
supx∈X d(f(x), g(x)) is the distane between f and g.In the above, the weight α will enable us to show that the domain the-oreti Piard operator is a ontration. Considering g as approximation to
f , we understand the distane d(f, g) as measure of the quality of the ap-proximation. We mention two simple lemmas linking distane, width andweighted width.Lemma 2.2. Letf : [−a, a] → IRn. Then wα(f) ≤ w(f) ≤ eaαwα(f) for all
α ≥ 0.Lemma 2.3. For a retangle γ = [γ−, γ+] denote the midpoint of γ by
m(γ) = 1

2(γ+
1 + γ−

1 , . . . , γ+
n , γ−

n ) and suppose α, β ∈ IRn are ompat.(i) ‖m(α) − m(β)‖ ≤ 1
2d(α, β)(ii) 0 ≤ w(β) − w(α) ≤ d(α, β) in ase β ⊑ α.The proof of both lemmas is a straightforward alulation, and thereforeomitted.
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3 The Piard Operator in Domain TheoryIn the lassial proof of Piard's theorem on the existene and uniqueness ofthe solution of the initial value problem (1) one de�nes an integral operatoron C0[−a, a] by
y 7→ λx.

∫ x

0
v(y(t))dt(with the integral understood omponentwise), whih an be shown to bea ontration for su�iently small a provided v satis�es a Lipshitz ondi-tion [16℄. An appliation of Banah's theorem then yields a solution of theinitial value problem. We now de�ne the domain-theoreti Piard operatorfor arbitrary Sott ontinuous vetor �elds u : I[−K,K]n → I[−M,M ]n andfous on the speial ase where u is an extension of a lassial funtion later.As in the lassial proof, the Piard operator is an integral operator, and wetherefore introdue the integral of interval-valued funtions.De�nition 3.1. Suppose f = [f−, f+] : [−a, a] → I[−M,M ] is Sott on-tinuous. For x ∈ [−a, a] we let

∫ x

0
f(t)dt = [

∫ x

0
f−σ(t)dt,

∫ x

0
fσ(t)dt]where σ = sgn(x) is the sign of x and f0(t) = 0. If f = (f1, . . . , fn) :

[−a, a] → IRn, we let ∫ x

0 f(t)dt = (
∫ x

0 f1(t)dt, . . . ,
∫ x

0 fn(t)dt).Note that, if we integrate in the positive x-diretion, then f− ontributesto the lower funtion assoiated with the integral of f and f+ ontributes tothe upper funtion. If we integrate in the negative x-diretion, the roles of
f− and f+ are swapped to ensure that the lower value of integral is indeedsmaller than the upper value. As we are going to assume that the vetor �eldwhih de�nes the IVP is bounded, it su�es to onsider bounded intervalvalued funtions only. The following shows that our de�nition is meaningful:Lemma 3.2. Suppose f : [−a, a] → I[−M,M ] is Sott ontinuous.(i) f− and f+ are Lebesgue integrable(ii) ∫ x

0 f(t)dt ∈ IR for all x ∈ [−a, a].Proof. For Sott ontinuous f , the funtions f−, f+ are lower (resp. upper)semi ontinuous, hene measurable, and integrability follows from bounded-ness. If σ = sgn(x), then σf−σ ≤ σfσ and ∫ x

0 f−σ(t)dt ≤
∫ x

0 fσ(t)dt followsfrom the de�nition of the ordinary integral.6



The following lemma shows that integration is ompatible with takingsuprema.Lemma 3.3. Let f : [−a, a] → IRn.(i) The funtion λx.
∫ x

0 f(t)dt is Sott ontinuous.(ii) The funtion ∫

: f 7→ λx.
∫ x

0 f(t)dt is Sott ontinuous.Proof. We assume n = 1 from whih the general ase follows. If g(x) =
∫ x

0 f(t)dt, then g−, g+ are ontinuous, hene g is Sott ontinuous. Theseond statement follows from the monotone onvergene theorem.The domain theoreti Piard operator an now be de�ned as follows:De�nition 3.4. Suppose u ∈ V. The domain theoreti Piard operator
Pu : S → S is de�ned by Pu(y) = λx.

∫ x

0 u(y(t))dt.Lemma 3.5. Pu is well de�ned and ontinuous.Proof. That Pu(y) ∈ S follows from our assumption aM ≤ K. Lemma 3.3shows that Pu(y), for y ∈ S, and Pu itself are ontinuous.In the lassial proof of Piard's theorem, one onstruts solutions ofIVP's as �xpoint of the (lassial) Piard operator. The domain theoretiproof replaes Banah's theorem with Klenee's theorem in the onstrutionof a �xed point of the (domain theoreti) Piard operator. Unlike the las-sial ase, where one hooses an arbitrary initial approximation, we hoosethe funtion y0 = λt.[−K,K]n with the least possible information as initialapproximation.Theorem 3.6. Let u ∈ V and yk+1 = Pu(yk). Then y =
⊔

k∈N
yk satis�es

Pu(y) = y.Proof. Follows immediately from Kleene's Theorem, see e.g. [4, Theorem2.1.19℄.The bridge between the solution of the domain-theoreti �xpoint equa-tion and the lassial initial value problem is established in the follow-ing proposition, where Sf : [−a, a] → I[−K,K]n denotes the funtion
λx.{f(x)}, for f : [−a, a] → [−K,K]n.Proposition 3.7. Suppose u is an extension of v and y is the least �xpointof Pu.(i) If f : [−a, a] → [−K,K]n solves (1) then y ⊑ Sf .7



(ii) If y has width 0, then y− = y+ solves (1).Proof. For the �rst statement, note that Sf is a �xed point of Pu and y isthe least suh. The seond statement follows from the fundamental theoremof alulus; note that y− = y+ implies the ontinuity of both.The previous proposition an be read as a soundness result: Every so-lution of the IVP is ontained in the least �xpoint of the domain theoretiPiard operator.4 The Lipshitz CaseWe an ensure the uniqueness of the solution of the IVP by requiring that thevetor �eld satis�es an interval version of the Lipshitz property. Reall thatfor metri spaes (M,d) and (M ′, d′), a funtion f : M → M ′ is Lipshitz,if there is L ≥ 0 suh that d′(f(x), f(z)) ≤ L · d(x, z) for all x, z ∈ M . Thefollowing de�nition translates this property into an interval setting, see also[17℄.De�nition 4.1 (Lipshitz Condition). Suppose u : I[−K,K]n → I[−M,M ]n.Then u is interval Lipshitz if there is some L ≥ 0 suh that w(u(α)) ≤
L ·w(α) for all α ∈ I[−K,K]n. In this ase, L is alled an interval Lipshitzonstant for u.The following Proposition desribes the relationship between the lassialnotion and its interval version.Proposition 4.2. For v : [−K,K]n → [−M,M ]n, the following are equiva-lent:(i) v is Lipshitz(ii) The anonial extension of v satis�es an interval Lipshitz ondition(iii) v has an interval Lipshitz extension.Proof. If v is Lipshitz, then the anonial extension of v satis�es an intervalLipshitz ondition. Now assume that u is an extension of v whih is intervalLipshitz, and let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ [−K,K]n. Let R(x, y)denote the retangle α1×· · ·×αn where αi = [xi, yi] in ase xi ≤ yi and αi =
[yi, xi] otherwise. Sine u extends v, we have v(x) ∈ u({x}) ⊆ u(R(x, y)) bymonotoniity. Hene u−

i (R(x, y)) ≤ v(x) ≤ u+
i (R(x, y)) for all 1 ≤ i ≤ n.8



Similarly u−
i (R(x, y)) ≤ vi(y) ≤ u+

i (R(x, y)). Now
‖v(x) − v(y)‖ = max

1≤i≤n
‖vi(x) − vi(y)‖

≤ max
1≤i≤n

u+
i (R(x, y)) − u−

i (R(x, y))

= max
1≤i≤n

w(ui(R(x, y)))

≤ L · w(R(x, y))

= L‖x − y‖,as required.Note that every interval Lipshitz funtion indues a total and ontinuouslassial funtion.Corollary 4.3. Suppose u is interval Lipshitz. Then w(u(α)) = 0 whenever
w(α) = 0, and the indued real valued funtion ū, given by ū(x) = z i�
u({x}) = {z} is ontinuous.We now turn to show that the least �xpoint of the Piard operator as-soiated with u has indeed width zero, if u satis�es an interval Lipshitzondition, and we assume for the remainder of the paper that u is an exten-sion of v that satis�es an interval Lipshitz ondition with Lipshitz onstant
L. In order to show that the least �xpoint of Pu has width zero, we use theweighted width, introdued in Setion 2. The following lemma is the essen-tial step for showing that the least �xpoint of the domain theoreti Piardoperator atually has width 0 on the whole of [−a, a].Lemma 4.4. Let y ∈ S. Then wα(Pu(y)) ≤ L

α
wα(y).Proof. For the i-th omponent Pu(y)i of Pu(y) we alulate

wα(Pu(y)) = sup
t∈[−a,a]

e−α|t|

∫ t

0
u

σ(t)
i (y(x)) − u

−σ(t)
i (y(x))dx

≤ sup
t∈[−a,a]

e−α|t|

∫ t

0
σ(t) · L · e−α|x|eα|x| · w(y(x))dx

≤ L · wα(y) · sup
t∈[−a,a]

e−α|t|

∫ |t|

0
eαxdx

≤
L

α
wα(y)as we had to show. 9



Reall that y0(x) = [−K,K]n, hene w(y0) = wα(y0) = 2K for all α ≥ 0.This gives us the following for the (not weighted) width of the iterates yk.Proposition 4.5. Let yk+1 = Pu(yk) for all k ∈ N. Then w2L(yk) ≤
2−nw2L(y0). In partiular, w(yk) ≤ 2−k · e2aL · w(y0) and ⊔

k∈N
yk is realvalued and a solution of (1).Proof. The �rst statement follows by indution from Lemma 4.4 (Pik α =

2L). The seond laim is immediate from Lemma 2.2 and Proposition 3.7.In order to be able to ompute the integrals, we now onsider approx-imations to u; the basi idea is that every ontinuous vetor �eld an beapproximated by a sequene of step funtions (i.e. funtions taking only�nitely many values), whih allows us to ompute the integrals involved inalulating the approximations to the solution e�etively. The key prop-erty whih enables us to use approximations also to the vetor �eld is theontinuity of the mapping u 7→ Pu.Lemma 4.6. The map P : V → S → S, u 7→ Pu, is ontinuous.Proof. Follows from ontinuity of u and the monotone onvergene theorem.This ontinuity property allows us to ompute solutions to the lassialinitial value problem by means of a onverging sequene of approximationsof u.Proposition 4.7. Suppose u =
⊔

k∈N
uk and yk+1 = Puk

(yk) for k ∈ N.Then y =
⊔

k∈N
yk satis�es y = Pu(y).Proof. Follows from Theorem 3.6 and ontinuity of u 7→ Pu by the interhange-of-suprema law (see e.g. [4, Proposition 2.1.12℄).We have seen that the Lipshitz ondition on the vetor �eld ensures thatthe approximations of the solution onverge exponentially fast (Proposition4.5). In presene of approximations of the vetor �eld, the speed of onver-gene will also depend on how fast the vetor �eld is approximated. Thefollowing estimate allows to desribe the speed of onvergene of the iteratesif the vetor �eld is approximated by an inreasing hain of vetor �elds.Lemma 4.8. Let u′ ⊑ u and y ∈ S. Then wα(Pu′(y)) ≤ L

α
wα(y)+ 1

αe
d(u, u′).10



Proof. For the i-th omponent Pu′(y)i we alulate using Lemma 4.4
wα(Pu′(y)) = sup

t∈[0,1]
e−α|t|

∫ t

0
σ(t) · u′σ(t)

(y(x)) − u′−σ(t)
(y(x))dx

≤ sup
t∈[−a,a]

e−α|t|

∫ t

0
σ(t) · (uσ(t)(y(x)) − u−σ(t)(y(x)) + d(u, u′))dx

≤ sup
t∈[−a,a]

e−α|t|w(Pu(y)) + sup
t∈[−a,a]

e−α|t| · |t| · d(u, u′)

≤
L

α
wα(y) +

1

eα
d(u, u′)where the estimate for the seond term follows from f ′(1/α) = 0, f ′′(1/α) <

0 for f(x) = x · e−αx.Using this estimate, we an now prove fast onvergene if the approxi-mations of the vetor �eld onverge fast, too.Proposition 4.9. Suppose u =
⊔

k∈N
uk with d(u, uk) ≤ 2−n ·L·e·w(y0) and

yk+1 = Puk
(yk) for all k ∈ N. Then w4L(yk) ≤ 2−k · w4L(y0); in partiular

w(yk) ≤ 2−k · e4aL · w(y0) and ⊔

k∈N
yk is real valued and solves (1).Proof. We just show that w4L(yk) ≤ 2−n · w4L(y0) by indution on k; theseond laim then follows from Lemma 2.2. There is nothing to show for thease k = 0. For the general ase, we invoke Lemma 4.8 and obtain

w4L(yk+1) ≤
1

4
w4L(yk) +

1

4Le
d(u, uk)

≤
1

4
2−kw4L(y0) +

1

4
2−kw4L(y0)

= 2−(k+1)w4L(y0)as required.Given a representation of u in terms of step funtions, Proposition 4.7gives rise to an algorithm for omputing the solution of the initial value prob-lem and Proposition 4.9 provides an estimate on the speed of onvergene.Our next goal is to show that this algorithm an be restrited to bases ofthe respetive domains, showing that it an be implemented without lossof auray. We then give an estimate of the algebrai omplexity of thealgorithm. 11



5 An Implementation Framework for Solving IVP'sWe now show that the algorithm ontained in Proposition 4.7 is indeedimplementable by showing that the omputations an be arried out in thebases of the domains. In fat, we demonstrate that every inreasing hainof (interval valued) vetor �elds (uk)k∈N, where eah uk is a base elementof V, gives rise to a sequene of base elements of S, whih approximate thesolution and onverge to it.In view of the algorithm ontained in Proposition 4.7, we onsider simplestep funtions as base of V and pieewise linear funtion as base of S. Notethat in this setup, the domain-theoreti Piard operator omputes integralsof pieewise onstant funtions, hene produes pieewise linear funtions.We begin by introduing the bases whih we are going to work with.De�nition 5.1. Let D ⊆ R and assume that −a = a0 < · · · < ak = awith a0, . . . , ak ∈ D, β0, . . . , βk ∈ I[−K,K]nD and γ1, . . . , γk ∈ I[−M,M ]nD,where RD denotes the set of retangles, whih are ontained in R and whoseendpoints lie in D. We onsider the following lasses of funtions:(i) The lass SL
D of pieewise D-linear funtions [−a, a] → I[−K,K]n,

f = (a0, . . . , ak)ց
L (β0, . . . , βk)where f(x)± = β±

j−1 +
x−aj−1

aj−aj−1
(β±

j − β±
j−1) for x ∈ [aj−1, aj ]. Every om-ponent of a D-linear funtion is pieewise linear and takes values in D at

a0, a1 . . . , ak.(ii) The set SC
D of pieewise D-onstant funtions [−a, a] → I[−K,K]n,

f = (a0, . . . , ak)ց
C (β1, . . . , βn), x 7→

{

βi x ∈ [ai−1, ai]
o

βi−1
d

βi x = ai and 1 < i < kwhere ⊓ denotes the greatest lower bound and ( · )o is interior relative to theinterval [−a, a]. The omponents of a D-onstant funtion assume onstantvalues in D, whih only hange at a0, a1, . . . , ak.(iii) The set VD of �nite suprema of step funtions I[−K,K]n → I[−M,M ]n,
f =

⊔

1≤j≤k

βj ց γj : x 7→
⊔

{γj | 1 ≤ j ≤ k, βj ≪ x}.(iv) For any f as above, we put N (f) = k and all it the omplexity ofrepresentation of f . 12



Sine we will not onsider di�erent representations for the same fun-tions, we allow ourselves to blur the distintion between a funtion and itsrepresentation as step funtion. The last setion shows, how to obtain arepresentation of u as a supremum of step funtions.If D is dense in R, it is well known that the sets de�ned above are basesof their respetive superspaes:Proposition 5.2. Suppose D ⊆ R is dense and −a, a ∈ D.(i) VD is a base of V.(ii) SC
D and SL

D are bases of S.We an now show that the Piard operator Pu assoiated with a simplestep funtion u restrits to an endofuntion on the set of basis elements ofthe spae of linear step funtions SL
D.Lemma 5.3. Suppose D ⊆ R is a sub�eld, u ∈ VD and y ∈ SL

D. Then thereis f ∈ SC
D with N (f) ≤ 3N (y)N (u) and u ◦ y(x) = f(x) for all but �nitelymany x ∈ [−a, a]. Moreover, f an be omputed in time O(N (u)2N (y)).Proof. First suppose u = γ ց β onsists of a single step funtion and

y = (a0, . . . , ak)ց
L β with β = (β0, . . . , βk). In every open interval α =

(aj−1, aj), the omponents of y are linear, hene the interval an be parti-tioned as α = (aj−1, lj ] ∪ (lj , hj) ∪ [h, aj) suh that β ≪ y(x) i� x ∈ (lj , hj)on (aj−1, aj). Computing lj and hj an be done by omputing, for eahomponent yi, the intersetion of y±i with the onstant funtion λx.β±
i .Sine D ⊆ R is a sub�eld, lj, hj ∈ D. On the interval (aj−1, aj) we obtain

u(y(x)) = (aj−1, lj , hj , aj)ց
C ([−K,K]n, γ, [−K,K]n) for all x ∈ [aj−1, aj ] \

{aj−1, lj , hh, aj}. Sine this omputation an be done in onstant time, wean ompute f ∈ SC
D suh that f(x) = u(y(x)) for all but �nitely many x intime O(N (y)). We obtain N (u ◦ y) ≤ 3N (y), sine every interval (aj−1, aj)is sub-divided into at most three parts.In ase u =

⊔

1≤j≤l γj ց βj , we have u ◦ y =
⊔

1≤j≤l(γj ց βj) ◦ y.For every j, we an ompute fj with fj(x) = (γj ց δj)(y(x)) for all but�nitely many y in O(N (y)) algebrai steps. Hene supj fj an be per-formed in O(N (u)2 ·N (y)) steps, taking into aount that we need O(N (u)2)steps to ompute the right ordering of points in every subinterval (aj−1, aj),
j = 1, . . . , k. Note that the interval (−a, a) is subdivided into at most
3N (y)N (u) parts. We have u ◦ y(x) = f(x) for all but �nitely many x byonstrution.Now that we have a basis representation of u ◦ y, it's easy to obtain abasis representation of Pu(y) by integration. Note that omputing integrals13



an be performed over a base de�ned over a subring of R; we will make useof this fat later.Lemma 5.4. Suppose D ⊆ R is a subring and let g(x) =
∫ x

0 f(x)dx for
f ∈ SC

D. Then g ∈ SL
D and N (g) = N (f). Furthermore, g an be omputedin O(N (f)) steps.Proof. Let f = (a0, . . . , ak)ց

C (β1, . . . , βk). First suppose 0 ∈ {a0, . . . , ak}.Every omponent fi = [f−
i , f+

i ] onsists of a pair of pieewise onstant fun-tions. On every interval [aj−1, aj ], for 1 ≤ j ≤ k, the integral of f±
i anbe omputed by multiplying the width of the interval by the value of f±

i ,hene g ∈ SL
D sine D ⊆ R is a subring. This omputation takes onstanttime, hene g an be omputed in time O(N (f)), and learly N (g) = N (f).In ase 0 /∈ {a0, . . . , ak} we insert 0 as additional partition point and ob-tain N (g) = N (f) + 1 and g an be omputed in O(N (f) + 1) = O(N (f))steps.Summing up, we have the following estimate on the algorithm induedby Proposition 4.7 if we ompute over the base of pieewise linear funtions.Proposition 5.5. Suppose D ⊆ R is a sub�eld, u ∈ VD and y ∈ SL

D.(i) Pu(y) ∈ SL
D(ii) Pu(y) an be omputed in time O(N (u)2N (y)).(iii) N (Pu(y)) ∈ O(N (u)N (y)).Proof. Lemma 5.4 provides us with f = (a0, . . . , ak)ցC (β1, . . . , βk) with

N (f) ∈ O(N (u) · N (y)) suh that u ◦ y = f for all but �nitely many argu-ments. Hene
Pu(y)(x) =

∫ x

0
(u ◦ y)(t)dt =

∫ x

0
f(t)dtand the laims follow from Lemma 5.4.We an now summarise our results for omputing with pieewise linearfuntions as follows:Theorem 5.6. Suppose D ⊆ R is a sub�eld and u =

⊔

k∈N
uk with uk ∈ VD.If yk+1 = Puk

(yk), then(i) yk ∈ SL
D for all k ∈ N(ii) y =

⊔

k∈N
yk has width 0 and y− = y+ solves the IVP (1).(iii) w(yk) ∈ O(2−k) if d(u, uk) ∈ O(2−k).14



Sine the elements of SL
D for D = Q, the set of rational numbers, anbe represented faithfully on a digital omputer, the theorem � together withProposition 3.7 � guarantees soundness and ompleteness also for implemen-tations of the domain theoreti method. We also provide a guarantee on thespeed of onvergene, sine the ondition d(u, uk) ∈ O(2−k) an always beensured by the library used to onstrut the sequene (uk) of approximationsto the vetor �eld. The onstrution of sequenes (uk)k∈N that approximate

u is disussed in Setion 7.Also, omputing over the base of pieewise linear funtions eliminates theneed of omputing retangular enlosures at every step of the omputation.This partially avoids the well-known wrapping e�et of interval analysis, butit omes at the ost of a high omplexity of the representation of the iter-ates. The next setion presents an alternative, whih uses pieewise onstantfuntions only.6 Computing with Pieewise Constant FuntionsWe have seen that the time needed to ompute Pu(y) is quadrati in theomplexity of the representation of u and linear in that of y. However, theomplexity of the representation of Pu(y) is also quadrati in general. Thisimplies that
N (yk+1) ∈ O(N (u0) . . .N (uk)),if u =

⊔

k∈N
uk and yk+1 = Puk

(yk).The blow up of the omplexity of the representation of the iterates isdue to the fat that eah interval on whih y is linear is subdivided whenomputing u ◦ y, sine we have to interset linear funtions assoiated with
y with onstant funtions indued by u, as illustrated by the left diagram inFigure 1.This an be avoided if we work with pieewise onstant funtions only.The key idea is to transform the linear step funtion Pu(y) into a simple stepfuntion before omputing the next iterate: on every interval, replae the up-per (linear) funtion by its maximum and the lower funtion by its minimum.We now develop the tehnial apparatus whih is needed to show that theapproximations so obtained still onverge to the solution. Tehnially, thisis ahieved by making the partitions of the interval [−a, a] expliit.De�nition 6.1 (Partitions). Suppose x ≤ y are real numbers.(i) A partition of [x, y] is a �nite sequene (q0, . . . , qk) of real numberssuh that x = q0 < · · · < qk = y; the set of partitions of [x, y] is denoted by15
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Figure 1: Subdivision of Intervals (left) and Flattening (right)
P[x, y]. If D ⊆ R then PD[x, y] ⊂ P[x, y] is the subset of partitions of [x, y]whose points lie in D.(ii) The norm |Q| of a partition Q = (q0, . . . , qk) is given by |Q| =
max1≤i≤k qi − qi−1 and N (Q) = k is the size of Q.(iii) A partition Q = (q0, . . . , qk) re�nes a partition R = (r0, . . . , rl) if
{r0, . . . , rl} ⊆ {q0, . . . , qk}; this is denoted by R ⊑ Q.We are now ready for the de�nition of the �attening funtional, whihtransforms pieewise linear funtions to pieewise onstant funtions.De�nition 6.2. Suppose Q ∈ P[−a, a]. The �attening funtional FQ : S →
S assoiated with Q is de�ned by

FQ(f) = (q0, . . . , qk)ց
C (γ1, . . . , γk)where γi =

d
{f(x) | x ∈ [qi−1, qi]} for 1 ≤ i ≤ k.Note that, geometrially speaking, FQ omputes an enlosure of semiontinuous funtions into retangles, as illustrated by the right diagram inFigure 1.Lemma 6.3. FQ is well de�ned and ontinuous.Proof. Sine every basis element of SC

R
is ontinuous, FQ(f) is ontinuousfor every f ∈ S, hene FQ is well de�ned. Continuity follows from Lemma2.1.In order to redue the omplexity of the representations of the iterates, wewant to apply the �attening funtional at every step of the omputation. The16



following lemma is the stepping stone in proving that this does not a�etonvergene to the solution. In the ontext of partitions, we understandinreasing in terms of the re�nement order ⊑, introdued in De�nition 6.1.Lemma 6.4. Suppose (Qk)k∈N is an inreasing sequene of partitions with
limk→∞ |Qk| = 0. Then ⊔

k∈N
FQk

= id.Proof. This follows from the fat that for every upper semi ontinuous fun-tion f : [−a, a] → R and every dereasing hain α0 ⊆ α1 ⊆ . . . of om-pat intervals ontaining x with w(αk) → 0 as k → ∞ one has f(x) =
infk∈N sup{f(x) | x ∈ αk}, and the dual statement for lower semi ontinuousfuntions.The last lemma puts us in the position to show that the appliation ofthe �attening funtional at every stage of the onstrution does not a�etthe onvergene of the iterates to the solution.Proposition 6.5. Suppose u =

⊔

k∈N
uk, (Qk)k∈N is an inreasing sequeneof partitions with limk→∞ |Qk| = 0 and yk+1 = FQk

(Puk
(yk)). Then y =

⊔

k∈N
yk satis�es y = Pu(y).Proof. Follows from the interhange-of-suprema law (see e.g. [4, Proposition2.1.12℄), the previous lemma and Proposition 4.7.We now show that the speed of onvergene is essentially una�eted ifwe apply the �attening funtional at every stage of the omputation. Thisresult hinges on the following estimate:Lemma 6.6. Suppose g = ([g−1 , g+

1 ], . . . , [g−n , g+
n ]) : [−a, a] → IRn is Sottontinuous and, for all i ∈ {1, . . . , n}, either g+
i or f−

i satis�es a Lipshitzondition with Lipshitz onstant N . If Q is a partition, then w(FQ(g)) ≤
w(g) + N |Q|.Proof. Fix 1 ≤ i ≤ n, suppose x ∈ [−a, a] and hoose two onseutivepartition points q−, q+ of Q suh that x ∈ [q−, q+]. Sine upper (resp.lower) semi ontinuous funtions attain their suprema (resp. in�ma) onompat intervals, there are x−, x+ ∈ [q−, q+] suh that, for all x ∈ [q−, q+],we have FQ(g)−i (x) = g−i (x−) and FQ(g)+i (x) = g+

i (x+), where FQ(g)i =
[FQ(g)−i , FQ(g)+i ] denotes the ith omponent of FQ(g). If we assume w.l.o.g.

17



that g+
i is Lipshitz ontinuous, we obtain for x ∈ [q−, q+] that

FQ(g)+i (x) − FQ(g)−i (x) = |g+
i (x+) − g−i (x−)|

≤ |g+
i (x+) − g+

i (x−)| + |g+
i (x−) − g−i (x−)|

≤ N |x+ − x−| + w(gi)

≤ N |Q| + w(g)as required.For the weighted width, we have the following orollary:Corollary 6.7. Under the hypothesis of the previous lemma, wα(FQ(g)) ≤
wα(g) + N |Q|.Proof. We have wα(FQ(g)) = supt∈[−a,a] e

−α|t|w(FQ(g)) ≤ supt∈[−a,a] e
−α|t|(w(g)+

N |Q|) ≤ wα(g) + 2N |Q|.The last orollary allows us to estimate the width of an iterate, omputedafter applying the �attening funtional.Lemma 6.8. Let u′ ∈ V with u′ ⊑ u, y ∈ S and Q ∈ P[−a, a]. Then
wα(FQ(Pu(y))) ≤ L

α
wα(y) + 1

αe
d(u, u′) + K

a
|Q|.Proof. By de�nition, the upper and lower funtions assoiated with the om-ponents of g = Pu′(y) satisfy a Lipshitz ondition with Lipshitz onstant

M ; we have K
a
≤ M by assumption. The laim follows from Lemma 4.8 andCorollary 6.7.We an now establish the main result of this setion: Applying the �at-tening funtional at every step of the omputation does not a�et the orderof the speed of onvergene.Proposition 6.9. Suppose u =

⊔

k∈N
uk with d(u, uk) ≤ 2−k · eLw(y0),

(Qk)k∈N is an inreasing sequene in P[−a, a] with |Qk| ≤ 2−k · a
3w(y0)and yk+1 = FQk

(Puk
(y)) for all k ≥ 0. Then w6L(yk) ≤ 2−kw6L(y0); inpartiular w(yk) ≤ 2−k ·e6aLw(y0) and ⊔

k∈N
yk is real valued and solves (1).Proof. We just show the �rst statement; the seond follows by Lemma 2.2.There is nothing to show for k = 0. For the indutive step we have byLemma 6.8

w6L(FQk
(Puk

(yk))) ≤
1

6
w6L(y0) +

1

6
2−kw6L(y0) +

1

6
K

≤
1

6
2−k(w6L(y0) + w6L(y0) + w6L(y0))

= 2−(k+1)w6L(y0)18



as required.We now show that the appliation of the �attening funtional at everystep avoids the blow up of the size of the iterates. As a onsequene, the al-gorithm with �attening an be implemented using a base of funtions de�nedover a dense subring of R, suh as the dyadi numbers.Lemma 6.10. Suppose D ⊆ R is a subring and Q ∈ PD[−a, a]. Then FQrestrits to a mapping SL
D → SC

D.Proof. Suppose f = (a0, . . . , al)ց
L (β0, . . . , βl) ∈ SL

D and Q = (q0, . . . , qk) ∈
PD[−a, a]. If FQ(f) = (q0, . . . , qk)ց

C (γ1, . . . , γk), then the verties of the γiare elements of the set ⋃

1≤i≤n{f
+
i (q0), f

−
i (a0), . . . , f

+
i (qk), f

−
i (ak)}, whihan be omputed from the verties of the βj 's without forming quotients.The omplexity of the algorithm underlying Theorem 6.5 over the bases

VD and SC
D an now be summarised as follows; reall that N (Q) = k is thesize of a partition Q = (q0, . . . , qk).Proposition 6.11. Suppose D ⊆ R is a subring, y ∈ SC

D and u ∈ VD.(i) FQ(Pu(y)) ∈ SC
D and N (FQ(Pu(y))) = N (Q)(ii) FQ(Pu(y)) an be omputed in time O(max(N (u) · N (y),N (Q))).Proof. For the �rst statement, assume that y = (a0, . . . , ak)ց

C (β1, . . . , βk)and u =
⊔

1≤j≤l γi ց δi. Then u ◦ y = (a0, . . . , ak)ց
C (β′

1, . . . , β
′
k), where

β′
m =

⊔

{γj | βj ≪ γj}. Clearly u ◦ y ∈ SC
D . Computing u ◦ y takes

O(N (u)·N (y)) steps, sine we have to math every step funtion in u againstevery βm. By Lemma 5.4 we have that Pu(y) ∈ SL
D, and �nally FQ(Pu(y)) ∈

SC
D by Lemma 6.10. Computing Pu(y) from u ◦ y takes time O(N (u) ·N (y))and FQ(Pu(y)) an be omputed in O(max(N (u) ·N (y),N (Q)) steps, henethe bound on the omplexity.Note the omplexity redution ompared to Proposition 5.5 whih isahieved sine Pu(f) does not hanges its value in the subintervals [ai, ai+1].We an now summarise our results onerning soundness and ompletenessof the algorithm with �attening as follows:Theorem 6.12. Suppose D ⊆ R is a subring and u =

⊔

k∈N
uk with uk ∈ VD.Furthermore, assume (Qk)k∈N is an inreasing sequene of partitions with

limk→∞ |Qk| = 0 and yk+1 = FQk
(Puk

)(yk).(i) yk ∈ SC
D for all k ∈ N and N (yk) = N (Qk).19



(ii) y =
⊔

k∈N
yk has width 0 and y− = y+ solves the IVP (1)(iii) w(yk) ∈ O(2−k), if both d(u, uk) and |Qk| ∈ O(2−k).Note that, for a subring R ⊆ Q of the rational numbers, the elements of

VD and SC
D an be faithfully represented on a digital omputer. Hene we anguarantee both soundness and ompleteness also for an implementation of thedomain theoreti approah where furthermore the representation omplexityof the iterates are bounded above by the size of the partitions.7 Approximating Continuous FuntionsThe theory outlined in the previous setions depends on an interval vetor�eld u, given in terms of a supremum u =

⊔

k∈N
uk of step funtions. Inorder to apply our theory, the following assumptions must be satis�ed:1. u is an extension of the lassial vetor �eld v2. u needs to satisfy an interval Lipshitz ondition3. The interval distane d(u, uk) needs to onverge exponentially fast.This setion shows, how to obtain a sequene (uk)k∈N whih satis�es theabove assumptions. We disuss two tehniques for onstruting approxima-tions of vetor �elds: �rst, we disuss ompositions of approximations andthen we show, how to onstrut interval valued approximations from a fun-tion that omputes the value of the vetor �eld to an arbitrary degree ofauray.7.1 Composition of ApproximationsIn this setion we assume that we have two funtions g : I[−K,K]n → IRmand f : IRm → I[−M,M ]n, approximated by sequenes (gn) and (fn), andshow, how use these approximations to ompute approximations of f ◦ g,subjet to the onditions laid down at the beginning of the setion.We �rst treat the ase where f is the maximal extension of a lassialfuntion, whih needs some auxiliary lemmas. The �rst lemma is needed inthe proof that a maximal extension of a lassial Lipshitz ontinuous fun-tion satis�es Lipshitz ondition of the form d(If(α), If(β)) ≤ C · d(α, β).Lemma 7.1. Suppose α, β ∈ IRn are ompat with α ⊑ β. Then, for all

y ∈ α there is some z ∈ β with ‖y − z‖ ≤ d(α, β).20



Proof. Suppose α = [a−1 , a+
1 ]×· · ·× [a−n , a+

n ] and β = [b−1 , b+
1 ]×· · ·× [b−n , b+

n ].If y = (y1, . . . , yn) ∈ α and i ∈ {1, . . . , n}, we have one of the three ases:
a−i ≤ yi ≤ b−i ≤ b+

i ≤ a+
i : Putting zi = b−i ensures |yi − zi| ≤ b−1 − a−i ≤

d(α, β).
a−i ≤ b−i ≤ b+

i ≤ yi ≤ a+
i : Similarly, for zi = b+

i we have |yi−zi| ≤ a+
1 −b+

i ≤
d(α, β).

a−i ≤ b−i ≤ yi ≤ b+
i ≤ a+

i : For zi = yi we have |yi − zi| = 0 ≤ d(α, β).Hene for z = (z1, . . . , zn) we have ‖y − z‖ = max1≤i≤n |zi − yi| ≤ d(α, β)and z ∈ β.Using the lemma above, we an now give an estimate on the distanebetween the upper funtions, evaluated at two intervals.Lemma 7.2. Suppose R ⊆ Rn is a retangle and f : R → R satis�es aLipshitz ondition with Lipshitz onstant L. Then (If)+(α) − (If)+(β) ≤
L · d(α, β) for all ompat α, β ∈ IR with α ⊑ β.Proof. By ontinuity of f and ompatness of α, β, there are yα ∈ α and
yβ ∈ β with (If)+(α) = f(yα) and (If)+(β) = f(yβ). Using the previouslemma with y = yα we �nd z ∈ β with ‖y − z‖ ≤ d(α, β). Clearly f(z) ≤
f(yβ) and f(yα)− f(yβ) ≤ f(yα)− f(z) ≤ L‖yα − z‖ ≤ L · d(α, β) by hoieof z.As a orollary, we obtain a version of Lipshitz ontinuity for maximalextensions.Corollary 7.3. Suppose R ⊆ Rn is a retangle and f : R → Rm satis�esa Lipshitz ondition with Lipshitz onstant L. Then d(If(α), If(β)) ≤
2Ld(α, β) for all ompat α ⊑ β ∈ IR.Proof. For the i-th omponent fi of f we have, by the previous lemma and itsdual, that d(Ifi(α), Ifi(β)) = (If)+(α)− (If)+(β) + (If)−(β)− (If)−(α) ≤
2L · d(α, β).We are now in the position to prove the promised result on omposi-tionality of approximations; in partiular we establish a guarantee of theonvergene speed of omposed approximations.Theorem 7.4. Suppose R ⊆ Rm is a ompat retangle, fk : IR → IRl and
gk : I[−K,K]n → IR are monotone sequenes of Sott ontinuous funtionssatisfying the following requirements:21



1. f =
⊔

k fn and g =
⊔

k gk are extensions of lassial funtions with fmaximal2. d(f, fk), d(g, gk) ∈ O(2−k)3. Both f and g are interval Lipshitz.Then f ◦ g is interval Lipshitz and the extension of a lassial funtion;moreover d(fk ◦ gk, f ◦ g) ∈ O(2−k).Proof. Only the statement on the onvergene speed requires proof. We de-note the interval Lipshitz onstant of f by L and assume w.l.o.g. that l = 1;the general result then follows by taking the maximum over the omponentsof f resp. fk. Now the laim follows from the following alulation, where
α ∈ I[−K,K]n is arbitrary:
d(f ◦ g(α), fk ◦ gk(α)) = f+

k (gk(α)) − f+(g(α)) + f−(g(α)) − f−
k (gl(α)

= f+
k (gk(α)) − f+(gk(α)) + f+(gk(α)) − f+(g(α))+

f−(g(α)) − f−(gk(α)) + f−(gk(α)) − f−
k (gk(α))

≤ d(f, fk) + d(f(g(α)), f(gk(α)))

≤ d(f, fk) + 2Ld(g, gk) ∈ O(2−k)where we have used Corollary 7.3 with α replaed by gk(α) and β = g(α) inthe last estimate.The proof of the theorem hinges on the fat that f is the maximal exten-sion of a lassial ontinuous funtion. The following example shows, thatthis hypothesis is neessary by showing that the assertion on the onvergenespeed may fail if f is not maximal.Example 7.5. This example shows, that if f =
⊔

k fk and g =
⊔

k gk, andboth (fk) and (gk) onverge exponentially fast, then this is not neessarilytrue for the omposition g ◦ f , even if both f and g are interval Lipshitz.Consider the ontinuous funtion h : [0, 1] → [0, 2] given by
h(x) =







1 − 1
ld( 2

1−x
)

x < 1

1 x = 1where ld is the dyadi logarithm (logarithm w.r.t. base 2). Clearly h isdi�erentiable in [0, 1), and elementary analysis shows that 0 ≤ h′(x) ≤
1

ln 2 ≤ 2 for x ∈ [0, 1), hene h(x) ≤ 2x for all x ∈ [0, 1]. Therefore the22



Sott ontinuous funtion f(α) = [0, h(w(α))] satis�es an interval Lipshitzondition w(f(α)) ≤ 2w(α). Putting fk = f , we learly have that d(f, fk) ≤
2−k. Note that f is a non-maximal interval extension of the onstant zerofuntion.For g(α) = [0, w(α)] and gk(α) = [0, w(α) + 2−k−1] we also have that
g is interval Lipshitz and d(g, gk) = 2−k−1 ≤ 2−k. We show that theomposition fk ◦gk only onverges linearly fast to f ◦g. Consider the interval
αk = [0, 1 − 2−k−1]. Then d(fk ◦ gk, f ◦ g) ≥ d(fk(gk(αk)), f(g(αk))) =
h(w(gk(αk)))−h(w(g(αk))) = h(1)−h(1−2−k−1) = 1

n
, showing that funtionomposition does not preserve exponential onvergene speed.The preeding example shows, that we need to work with maximal exten-sions if we want the omposition of two approximating sequenes to preservethe onvergene speed. However, this imposes no limitation on our approah,sine every hain of approximating funtions an be onverted to a hain ap-proximating the maximal extension. This is demonstrated in the followinglemmas. The �rst lemma shows how we need to modify the approximatingfuntions in order to obtain the maximal extension in the limit. We restritourselves here to the ase of funtions with odomain R; for the general ase,our onstrution has to be repeated for eah omponent.Lemma 7.6. Suppose f =

⊔

i∈I : IRn → IR is an extension of a funtion
g : Rn → R. If m(fi) = λβ.

d
x∈β fi({x}) then ⊔

i∈I m(fi) is the maximalextension of g.Proof. By Lemma 2.1, we have ⊔

i∈I m(fi) = m(
⊔

i∈I fi), hene for all
β ∈ IRn we obtain ⊔

i∈I m(fi)(β) = m(
⊔

i∈I(fi)(β)) =
d

x∈β

⊔

i∈I fi({x}) =d
x∈β g(x), whih shows that ⊔

i∈I m(fi) is the maximal extension of g.The next lemma shows, how we an onstrut the funtions m(f) from
f , if f is a step funtion.Lemma 7.7. Suppose f =

⊔

1≤i≤k βi ց γi : IRn → IR and let cov(β) =
{J ⊆ {1, . . . , k} | β ⊆

⋃

j∈J βo
j } for β ∈ IRn. Then d

x∈β f({x}) =
⊔

J∈cov(β)

d
j∈J γj .Proof. Let β ∈ IRn and pik, for every x ∈ β, i+(x) ∈ {1, . . . , k} suh that

γ+
i+(x)

= min{γ+
j | j = 1, . . . , k and x ∈ βo

j }. We write i+(β) = {i+(x) | x ∈

β. Then i+(β) is �nite and ⋃

j∈i+(x) βj overs β. Therefore
(
l

x∈β

⊔

{γi | x ∈ βo
i })

+ = max{γ+
j | j ∈ i+(β)} = (

l
{γj | j ∈ i+(β)})+.23
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Figure 2: Two elements of R(f), indiated by solid linesSimilarly, if 1 ≤ i−(x) ≤ k is suh that γi−(x) = max{γ−
j | x ∈ β0

j } and
i−(β) = {i−(x) | x ∈ β} we have that

(
l

x∈β

⊔

{γi | x ∈ βo
i })

− = min{γ−
j | j ∈ i−(β)} = (

l
{γj | j ∈ i−(β)})−.Combining the last two equations, we obtain

⊔

J∈cov(β)

l

j∈J

bj =
l

j∈j−(β)

γj ⊔
l

j∈i+(β)

γj =
l

x∈β

⊔

{γi | x ∈ β0
i }.that is, our laim.Finally, we show how the funtion γ 7→

⊔

J∈cov(γ)

d
j∈J bj an be rep-resented as a step funtion. This needs the following auxiliary notation:Assume f =

⊔

i=1,...,k βi ց γi and suppose that βi = [(βi)
−
1 , (βi)

+
1 ] × · · · ×

(βi)
−
n , (βi)

+
n ] for all i = 1, . . . , k.We let Ri(f) = {[b−, b+] | b− ≤ b+ and b−, b+ ∈

⋃

j=1,...,k{(βj)
−
i , (βj)

+
i }.In other words, the Ri are intervals whose endpoints are projetions of theorners of the βj 's onto the i-th oordinate axes. Finally R(f) = {α1 ×· · ·×

αn | αi ∈ Ri(f) and (α1 × · · · ×αn)o ⊆
⋃

j=1,...,k βo
j }. This means that R(f)is the set of retangles ontained in the domain of f , whose endpoints areintersetions of edges of the βj 's.Two elements of R(f) for f =

⊔

i=1,2,3 βi ց γi are shown below.We are now ready to formulate the last lemma needed to onstrut ap-proximations to the anonial extension of lassial funtions.Lemma 7.8. Let f =
⊔

i=1,...,k βi ց γi : IRn → IR. Then m(f) =
⊔

α∈R(f) α ց
⊔

J∈cov(α)

d
j∈J γj where cov is as in Lemma 7.7.24



Proof. We split the proof into two parts orresponding to ⊑ and ⊒. Reallfrom Lemma 7.7, we knot that m(f)(β) =
⊔

J∈cov(β)

d
j∈J γj .Suppose now that β ∈ IRn and α ≪ β, α ∈ R(f). Then cov(α) ⊆ cov(β),hene ⊔

J∈cov(β)

d
j∈J γj ⊑

⊔

J∈cov(β)

d
j∈J γj . Therefore

⊔

R(f)∋α≪β

⊔

J∈cov(α)

l

j∈J

γj ⊑
⊔

J∈cov(β)

l

j∈J

γj = m(f)(β).We now establish the reverse relation. Let α0 =
⊔

{α ∈ R(f) | α ≪ β}.Then α0 ∈ R(f) and α0 ≪ β as R(f) is �nite. Note that cov(α0) = cov(β)by onstrution. Therefore
m(f)(β) =

⊔

J∈cov(β)

l

j∈J

bj =
⊔

J∈cov(α0)

l

j∈J

bj ⊑
⊔

R(f)∋α≪β

⊔

J∈cov(α)

l

j∈J

bjwhih onludes the proof.Note that the left retangle in Figure 7.1 annot be overed by β1, β2, β3,hene yields the value R ∈ IR.7.2 Constrution of ApproximationsNow that we have seen how to ompose approximations of interval vetor�elds ompositionally, this setion outlines a tehnique for onstruting theseapproximations from srath, given a funtion that omputes the vetor �eldup to an arbitrary degree of auray.More preisely, we assume that g = (g1, . . . , gn) : [−K,K]n ∩ Qn × N →
Qn is given suh that ‖f(x) − g(x, k)‖ ≤ K · 2−k. On a pratial level, thisallows us to ompute approximations for a large lass of funtions. Moreover,the existene of a omputable funtion g with the above property is equivalentto the omputability of v, and the results of this setion show, that we obtainapproximations by step funtions for every omputable vetor �eld v.The idea of the onstrution is as follows: Given a retangle α ⊆ [−K,K]n,we ompute the value of g(m(α), k) of the midpoint m(α) of α up to an au-ray of K · 2−k. In order to aommodate for the this inauray, we extendthis point value into a retangle by extending it with K ·2−k into the diretionof eah oordinate axis. This retangle is then subsequently extended usingthe Lipshitz onstant of f , resulting in a retangle that ontains all values
f(x) for x ∈ α. The formal de�nition is as follows, where we assume for therest of the setion, that f : [−K,K]n → [−K,K]n satis�es a Lipshitz ondi-tion with Lipshitz onstant L and g : [−K,K]n ∩Qn ×N → [−K,K]n ∩Qnis suh that ‖g(x, k) − f(x)‖ ≤ K · 2−k.25



De�nition 7.9. For a retangle α = [a−1 , a+
1 ] × · · · × [a−n , a+

n ], we denotethe midpoint of α by m(α) = (
a+

1
−a−

1

2 , . . . , a+
n −a−

n

2 ). For λ ∈ R and x =
(x1, . . . , xn) ∈ Rn, the ube with entre x and width λ is given as

x ⊕ λ = [x1 − λ, x1 + λ], . . . , [xn − λ, xn + λ].Given a partition Q = (q0, . . . , qk) of [−K,K] we denote by
R(Q) = {[qi1 , qj1] × · · · × [qin , qjn ] | 0 ≤ il < jl ≤ k, 1 ≤ l ≤ n}the set of retangles with orners in Q. Finally, we de�ne the family offuntions fk

Q by
fk

Q =
⊔

α∈R(Q)

α ց g(m(α), k) ⊕ (K · 2−k + L · w(α))We all the fk
Q's the approximation funtions assoiated with Q.It is easy to see that the approximation funtions assoiated with a par-tition are sound in the sense that they give enlosures of the approximatedfuntions.Lemma 7.10. Let Q ∈ P[−K,K] and k ∈ N. Then fk

Q ⊑ If .Proof. We have to show f(x) ∈ fk
Q(α) for all α ∈ I[−K,K]n and all x ∈ α.This follows from x ∈ g(m(β), k)⊕(K ·2−k+L·w(β)) for all β ≪ α, β ∈ R(Q)by taking suprema.So suppose β ∈ R(Q) and β ≪ α. To see that f(x) ∈ {g(m(β), k)}⊕(K ·

2−k+L·w(β)) it su�es to show that ‖f(x)−g(m(β), k)‖ ≤ K ·2−k +L·w(β)for all x ∈ α. But this follows from
‖f(x) − g(m(β), k)‖ ≤ ‖f(x) − f(m(β))‖ + ‖f(m(β)) − g(m(β), k)‖

≤ L · ‖x − m(β)‖ + K · 2−k

≤ L · w(β) + K · 2−kwhere the estimate ‖x − m(β)‖ ≤ w(β) follows from β ≪ α and x ∈ α.Before we give guarantees on the quality of approximations onstrutedusing this method, we need to hek that the approximations onstrutedatually form an inreasing hain. This is the ontent of the following lemma,whose straightforward proof is omitted.26



Lemma 7.11. Suppose R ⊑ Q ∈ P[−K,K] and j ≤ i. Then f j
R ⊑ f i

Q.We now establish one of the riteria for approximations laid down atthe beginning of the setion, i.e. that they onverge to a funtion whih isinterval Lipshitz. We reall the order on partitions and their norm fromDe�nition 6.1.Lemma 7.12. Suppose (Qk)k∈N is an inreasing sequene of partitions with
limk→∞ |Qk| = 0. Then ⊔

k∈N
fk

Qk
satis�es an interval Lipshitz onditionwith onstant L.Proof. Pik α ∈ I[−K,K]n. For any given ǫ > 0, pik k ≥ 0 s.t. |Qk| < ǫ

2and K · 2−k ≤ ǫ. By hoie of k, we �nd β ∈ R(Qk) with β ≪ α and
w(β) ≤ w(α)+ǫ. We now have β ց {g(m(β), k)}⊕(K ·2−k +L·w(β)) ⊑ fk

Qkand α ≪ β, whene
w(

⊔

k∈N

fk
Qk

(α)) ≤ w(fk
Qk

(α))

≤ K · 2−k + L · w(β)

≤ K · 2−k + L · (w(α) + ǫ)

≤ (1 + L)ǫ + L · w(α).As ǫ > 0 was arbitrary, we onlude that w(
⊔

k∈N
fk

Qk
(α)) ≤ L · w(α).As immediate orollary, we obtain the fat that ⊔

k∈N
fk

Qk
is an extensionof f .Corollary 7.13. The funtion h =

⊔

k∈N
fk

Qk
is an extension of f .Proof. By Lemma 7.11, we have f(x) ∈ h({x}) and Lemma 7.12 shows that

h({x}) is a singleton set.We have now shown how to onstrut approximations whih satisfy twoof the three riteria needed to put our theory to work. We now turn to thelast item and give an estimate on the onvergene speed of the fk
Qk

to f . Inthe proof, we ompare an upper approximation u(α) ⊒ f(α) with a lowerapproximation l(α) ⊑ fk
Qk

(α), for a given retangle α. The next lemma isa major stepping stone for establishing an upper approximation of f . If wereall the de�nition of fk
Qk

, we see that the width of the right hand side ofthe step funtion α ց {m(α)} ⊕ (K · 2−k + L · w(α)) only depends on thewidth of α. Hene given β ∈ IR, it does not su�e to onsider a minimalenlosure R(Q) ∋ α ≪ β to �nd an upper bound for fk
Qk

(β). Instead we27
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f(kQk

)+1 (β) = g(m(α0), k) + K · 2−k + L
2 w(α0) despite the fat that α1 is abetter approximation of β.The next lemma aounts for this situation and gives a lower bound forthe upper funtion assoiated with fk

Qk
.Lemma 7.14. Suppose Q ∈ P[−K,K] and k ∈ N. Then, for all i = 1, . . . , nand all α ∈ I[−K,K]n,

(fk
Q)+i (α) ≥ min{fi(m(α′)) | α′ ⊑ α,w(α′) = w(α)} +

L

2
w(α)where (fk

Q)+i is the upper funtion assoiated with the i-th omponent of fk
Q.Chek indies.Proof. Throughout the proof, we �x 1 ≤ i ≤ n. First note that

{α′ ⊑ α | w(α′) = w(α)} = {α+(ρ1, . . . , ρn) | 0 ∈ ρi and w(αi)+w(ρi) ≤ w(α)}whene the midpoint set M(α) = m(α′) | α′ ⊑ α,w(α′) = w(α) is given by
M(α) = m(α)+

1

2
([w(α1)−w(α), w(α)−w(α1)]×· · ·×[w(αn)−w(α), w(α)−w(αn)]).We �rst show that

f+
i (m(β)) +

L

2
w(β) ≥ min{fi(x) | x ∈ M(α)} +

L

2
w(α)for all β ⊑ α. Suppose β is given. In ase m(β) ∈ M(α) there is nothing toshow, and the laim follows from w(β) ≥ w(α). Now assume m(β) /∈ M(α).28



For an arbitrary x ∈ [−K,K]n, we write ‖M(α)−x‖ = infy∈M(α) ‖y−x‖for the least distane between x and any point in the set M(α). Hene ourassumption is ‖M(α) − m(β)‖ > 0. Pik any x ∈ M(α) s.t. ‖M(α) −
m(β)‖ = ‖x −m(β)‖ and let j ∈ {1, . . . , n} be suh that ‖M(α) −m(β)‖ =
‖x − m(β)‖ = |xj − m(β)j | (reall that ‖ · ‖ denotes maximum norm).We now laim that w(βj) ≥ w(α) + 2‖M(α)−m(β)‖. To see this, reallthat x ∈ M(α) and ‖x−m(β)‖ is minimal, and we have two ases, owing tothe desription of the set M(α) above:Case 1: m(β)j < xj = m(α)j −

1
2 (w(α) − w(αj))Case 2: m(αj) + 1

2(w(α) − w(αj)) = xj < m(β)j .We only treat the �rst ase, as the seond is symmetri, so assume that
m(β) < xj . If β = [b−1 , b+

1 ] × · · · × [b−n , b+
n ], we have xj − 1

2(b+
j + b−j ) =

xj − m(β)j = ‖M(α) − m(β)‖, whene
b−j = 2xj − 2‖M(α) − m(β)‖ − b+

j

≤ 2m(α)j − (w(α) − w(αj)) − 2‖M(α) − m(β)‖ − a+
j

= a+
j + a−j − w(α) + a+

j − a−j − a+
j − 2‖M(α) − m(β)‖

= a+
j − w(α) − 2‖M(α) − m(β)‖where we have used β ⊑ α to obtain a+

j ≤ b+
j in the seond line. For thesame reason, and using the last estimate, we now have

w(βj) = b+
j − b−j

≥ a+
j − a+

j + w(α) + 2‖M(α) − m(β)‖whih implies our laim w(βj) ≥ 2‖M(α) − m(β)‖.Using this fat, as a onsequene of the hoie of x we now have
fi(m(β)) +

L

2
w(β) = fi(m(β)) − fi(x) + fi(x) +

L

2
w(β)

≥ −L‖x − m(β)‖ + fi(x) +
L

2
(w(α) + 2‖M(α) − m(β)‖)

= fi(x) +
L

2
w(α)

≥ min{fi(x) | x ∈ M(α)} +
L

2
w(α)whih onludes the proof of our �rst statement. We now show the lemma.As fk

Q =
⊔

β∈R(Q) g(m(β), k) ⊕ (K · 2−k + L
2 w(β)) it su�es to show that

gi(m(β), k) + K · 2−K +
L

2
w(β) ≥ min{fi(x) | x ∈ M(α)} +

L

2
w(α)29



for all β ≪ α. But this now follows easily:
gi(m(β), k) + K · 2−k +

L

2
w(β) ≥ fi(m(β)) +

L

2
w(β)

≥ min{fi(x) | x ∈ M(α)} +
L

2
w(α)using our �rst result and the fat that β ⊑ α.We obtain the following immediate orollary, whih we use in the estimateof the onvergene speed to give am upper bound on h(α).Corollary 7.15. Suppose (Qk) is an inreasing sequene of partitions and

h =
⊔

k∈K fk
Qk
. Then h+

i (α) ≥ min{fi(m(α′)) | α′ ⊑ α,w(α′) = w(α)} +
L
2 w(α) for all 1 ≤ i ≤ n.Using the last orollary as an upper bound for the value of h, we anformulate and prove a statement on the onvergene speed as follows:Proposition 7.16. Suppose (Qk) is an inreasing sequene of partitions with
|Qk| ≤

K
L
· 2−k and h =

⊔

k fk
Qk
. Then d(h, fk

Qk
) ≤ 8K · 2−k.Proof. We show that d(h(α), fk

Qk
(α)) ≤ 8K · 2−k for all α ∈ I[−K,K]n. Sosuppose α ∈ I[−K,K]n is given and 1 ≤ i ≤ n. By ompatness of α andontinuity of f , we an �nd α′ ⊑ α with w(α′) = w(α) s.t.

fi(m(α′)) = min{fi(m(α′′)) | α′′ ⊑ α,w(α′′) = w(α)}.By Corollary 7.15 we have
h+

i (α) ≥ fi(m(α′)) +
L

2
w(α′) (2)(note w(α) = w(α′)). As |Qk| ≤ K ·2−k, we an �nd β ≪ α′ with d(α′, β) ≤

2|Qk| = 2K
L
· 2−k. By de�nition of fk

Qk
, we have

g(m(β), k) ⊕ (K · 2−k +
L

2
w(β)) ⊑ fk

Qk
(α)hene

(fk
Qk

)+i (α) ≤ gi(m(β), k) + K · 2−k +
L

2
w(β). (3)

30



Combining equations (2) and (3) we obtain
(fk

Qk
)+i (α) − h+

i (α) ≤ gi(m(β), k) + K · 2−k +
L

2
w(β) − fi(m(α′)) −

L

2
w(α′)

≤ fi(m(β)) + 2K · 2−k +
L

2
(w(β) − w(α′))

≤ L · ‖m(β) − m(α′)‖ +
L

2
d(α′, β) + 2K · 2−k

≤ Ld(α′, β) + 2K · 2−k

≤ 2L|Qk| + 2K · 2−k

≤ 4K · 2−kwhere we have used Lemma 2.3 in line 3 and 4 of the estimate. Simi-larly one shows that h−
i (α) − (fk

Qk
)−i ≤ 4K · 2−k, and we onlude that

d(hi(α), (fk
Qk

)i(α)) ≤ 8K ·2−k whih implies the laim as i was arbitrary.In summary, we have the following theorem, whih shows, that the ap-proximations satisfy all the onditions disussed at the beginning of thesetion.Theorem 7.17. Suppose (Qk) is an inreasing sequene of partitions with
|Qk| ≤

K
L
· 2−k and let h =

⊔

k∈N
fk

Qk
. Then1. h is an extension of f2. h satis�es an interval Lipshitz ondition with Lipshitz onstant L3. d(u, uk) ≤ 8K · 2−kfor arbitrary k ∈ N.This shows, together with the results of Setion 7.1, that we an build alibrary for approximating vetor �elds in the domain theoreti sense.In onjuntion with Theorem 5.6 and Theorem 6.12 we obtain a frame-work for solving initial value problems, whih is based on proper data types,and an therefore be diretly implemented on a digital omputer. Moreover,working with rational or dyadi numbers, the speed of onvergene an forthe �rst time also be guaranteed for implementations of our tehnique.AknowledgementsThis work has been supported by EPSRC in the UK, the EU projet �APPSEM-II� and a grant by the �Deutshe Forshungsgemeinshaft�.31
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