
A Domain Theoreti
 A

ount of Pi
ard'sTheoremA. Edalat and D. PattinsonDepartment of Computing, Imperial College, London, UKAbstra
tWe present a domain-theoreti
 version of Pi
ard's theorem for solv-ing 
lassi
al initial value problems in Rn. For the 
ase of ve
tor �eldsthat satisfy a Lips
hitz 
ondition, we 
onstru
t an iterative algorithmthat gives two sequen
es of pie
ewise linear maps with rational 
o-e�
ients, whi
h 
onverge, respe
tively from below and above, expo-nentially fast to the unique solution of the initial value problem. Weprovide a detailed analysis of the speed of 
onvergen
e and the 
om-plexity of 
omputing the iterates. The algorithm uses proper datatypes based on rational arithmeti
, where no rounding of real numbersis required. Thus, we obtain an implementation framework to solveinitial value problems, whi
h is sound and, in 
ontrast to te
hniquesbased on interval analysis, also 
omplete: the unique solution 
an bea
tually 
omputed within any degree of required a

ura
y.1 Introdu
tionWe 
onsider the initial value problem (IVP) given by the system of di�eren-tial equationṡ
yi(x) = vi(y1, . . . , yn), yi(0) = 0 (i = 1, . . . , n) (1)where the ve
tor �eld v : O → Rn is 
ontinuous in a neighbourhood O ⊆ Rnof the origin, and we look for a di�erentiable fun
tion y = (y1, . . . , yn) :

[−a, a] → Rn, de�ned in a neighbourhood of 0 ∈ R, that satis�es (1). Bya theorem of Peano there is always a solution [9, page 19℄. Uniqueness ofthe solution is guaranteed, by Pi
ard's theorem, if v satis�es a Lips
hitz
ondition. The question of 
omputability and the 
omplexity of the initialvalue problem has been studied in di�erent 
ontexts in 
omputable analy-sis [13, 3, 8, 15, 20, 18, 6℄. 1



On the algorithmi
 and more pra
ti
al side, standard numeri
al pa
kagesfor solving IVP's try to 
ompute an approximation to a solution with aspe
i�ed degree of a

ura
y. Although these pa
kages are usually robust,their methods are not guaranteed to be 
orre
t and it is easy to �nd exampleswhere they output ina

urate results [14℄.Interval analysis [17℄ provides a method to give upper and lower boundsfor the unique solution in the Lips
hitz 
ase with a pres
ribed toleran
e,and has been developed and implemented for analyti
 ve
tor �elds [19, 1℄.In the interval analysis approa
h, arithmeti
 operations are performed onintervals, and outward rounding is applied if the resulting interval endpointsare not ma
hine representable. While this strategy guarantees soundness, i.e.
ontainment of the exa
t result in the 
omputed interval, one has in generalno 
ontrol over the rounding, whi
h 
an produ
e unduly large intervals. Asa 
onsequen
e, for an implementation of the framework for solving IVP'sbased on interval analysis, one 
annot in general guarantee 
ompleteness,that is, a
tual 
onvergen
e to the solution. For the same reason, one has no
ontrol over the speed of 
onvergen
e.Domain theory [4℄ presents an alternative te
hnique, based on properdata types, to produ
e a provably 
orre
t solution with any given degree ofa

ura
y. Using the domain of S
ott 
ontinuous interval valued fun
tionson a 
ompa
t interval, we de�ne a domain theoreti
 Pi
ard operator, whoseleast �xed point 
ontains any solution of the IVP. When the ve
tor �eldis Lips
hitz, the solution is unique and we 
onstru
t an iterative algorithmthat gives two sequen
es of pie
ewise linear maps with rational 
oe�
ients,whi
h 
onverge, respe
tively from below and above, exponentially fast tothe unique solution of the initial value problem. Sin
e the data types forrepresenting the pie
ewise linear maps with rational 
oe�
ients are dire
tlyrepresentable on a digital 
omputer, no rounding of real numbers is required.As a 
onsequen
e, the implementation of the domain theoreti
 approa
h isalso 
omplete, that is, we 
an guarantee the 
onvergen
e of the approximat-ing iterates to the solution of the IVP also for the implementation. Thisproperty is not present in any other approa
h to validated solutions of dif-ferential equations. Furthermore, as a result of the data types we use, we
an give estimates for the speed of 
onvergen
e of the approximating iterates,whi
h are still valid for an a
tual implementation of our algorithm.This simpli�es the earlier treatment [10℄, whi
h used a domain for C1fun
tions [11℄ and, at ea
h stage of iteration, required a new approximationof the derivative of the solution. The new treatment is mu
h more similarto the 
lassi
al theorem in that it gives rise, in the Lips
hitz 
ase, to fast
onvergen
e of the approximations to the solution.2



We dis
uss two di�erent bases to represent approximations to the solu-tions of the IVP, namely the pie
ewise linear and the pie
ewise 
onstant fun
-tions with rational 
oe�
ients. Using pie
ewise linear fun
tions, we avoidthe 
omputation of re
tangular en
losures of the solution, and we thereforeredu
e the wrapping e�e
t, a well known phenomenon in interval analysis.This 
omes at the expense of an in
rease in the size of the representation ofthe approximations to the solution. Using the base 
onsisting of pie
ewise
onstant fun
tions, we show that the order of the speed of 
onvergen
e tothe solution remains un
hanged, while the time and spa
e 
omplexity for therepresentation of the iterates is mu
h redu
ed.Our approa
h relies on approximating the ve
tor �eld with a sequen
e of(interval valued) step fun
tions, whi
h 
onverge exponentially fast to an in-terval extension of the ve
tor �eld. We dis
uss two te
hniques for obtainingsu
h sequen
es. First, we show how to 
ompose two sequen
es of approx-imations su
h that the 
omposition of the approximations still 
onvergesexponentially fast. Our se
ond te
hnique is based on a fun
tion whi
h 
om-putes the values of the ve
tor �eld to an arbitrary degree of a

ura
y, andwe show how this gives rise to step fun
tions with the desired properties.A prototypi
al implementation using the GNU multi pre
ision library [2℄shows that the resulting algorithms are a
tually feasible in pra
ti
e, and weplan to re�ne the implementation and 
ompare it in s
ope and performan
ewith existing interval analysis pa
kages like AWA [1℄. Of 
ourse we haveto bear in mind that �oating point arithmeti
 used by interval software isexe
uted on highly optimised pro
essors, whereas the rational arithmeti
needed for our implementation is performed by software.2 Preliminaries and NotationFor the remainder of the paper, we �x a 
ontinuous ve
tor �eld
v = (v1, . . . , vn) : [−K,K]n → [−M,M ]nwhi
h is de�ned in a 
ompa
t re
tangle 
ontaining the origin and 
onsider theIVP given by Equation (1). Note that any 
ontinuous fun
tion on a 
ompa
tre
tangle is bounded, hen
e we 
an assume, without loss of generality, that

v takes values in [−M,M ]n.We 
onstru
t solutions y : [−a, a] → Rn of Equation (1) where a > 0satis�es aM ≤ K. This will guarantee that the expression v(y) is wellde�ned, sin
e M is a bound for the derivative of y. We 
onsider the n-dimensional Eu
lidean spa
e Rn equipped with the maximum norm ‖x‖ =3



max{|x1|, . . . , |xn|}, as this simpli�es dealing with the Lips
hitz 
onditions,whi
h we introdu
e later. Approximations of real numbers live in the intervaldomain
IR = ({[a, b] | a, b ∈ R, a ≤ b} ∪ {R},⊑) with α ⊑ β ⇔ β ⊆ αordered by reverse in
lusion; the way below relation is given by α ≪ β i�

β ⊆ αo, where (·)o denotes the interior of a set. For n ≥ 1, the domain
IRn is isomorphi
 to the domain of n-dimensional re
tangles {α1 ×· · ·×αn |
αi ∈ IR for all 1 ≤ i ≤ n}, and we do not distinguish between these twopresentations. For a re
tangle R ⊆ Rn, the subset {S ∈ IRn | S ⊆ R}of re
tangles 
ontained in R is a sub-domain of IRn, whi
h is denoted by
IR. The powers IRn of the interval domain and the sub-domain IR, for are
tangle R, are 
ontinuous S
ott domains. If α−, α+ ∈ Rn with α−

i ≤ α+
i forall 1 ≤ i ≤ n, we write [α−, α+] for the re
tangle [α−

1 , α+
1 ] × · · · × [α−

n , α+
n ].Similarly, if f : X → IRn is a fun
tion, we write f = [f−, f+] if f(x) =

[f−(x), f+(x)] for all x ∈ X.The link between ordinary and interval valued fun
tion is provided bythe notion of extension. If R ⊆ Rn is a re
tangle, we say that g : IR → IRnis an extension of f : R → Rn if
g({x1}, . . . , {xn}) = {f(x1, . . . , xn)}for all x ∈ R. Note that every 
ontinuous fun
tion f : R → Rn has a
anoni
al maximal extension If de�ned by

If = (If1, . . . , Ifn) : IR → IRn with Ifi(S) = [ inf
x∈S

fi(x), sup
x∈S

fi(x)],where S ∈ IR is a re
tangle.This extension is maximal in the set of intervalvalued fun
tions extending f . It is easy to see that If is 
ontinuous w.r.t.the S
ott topology on IR and IRn if f is 
ontinuous w.r.t. the Eu
lideantopology.We 
onsider the following spa
es for approximating the ve
tor �eld andthe solutions to the IVP:
• V = I[−K,K]n → I[−M,M ]n, the set of 
ontinuous fun
tions w.r.t. theS
ott topology on I[−K,K]n and I[−M,M ]n.
• S = [−a, a] → I[−K,K]n, the set of 
ontinuous fun
tions w.r.t. theEu
lidean topology on [−a, a] and the S
ott topology on I[−K,K]nThat is, we will be 
on
erned with spa
es of fun
tions both with intervaland real input. For later referen
e, we in
lude the following lemma, whi
hlinks both presentations. 4



Lemma 2.1. Suppose P ∈ IRk, Q ∈ IRl and 
onsider the following opera-tions:
E :(P → IR) ∋ f 7→ λα.

l

x∈α

f(x) ∈ (IP → IR)

I :(IP → IR) ∋ f 7→ λx.f({x}) ∈ (P → IR)Then both I and E are 
ontinuous, I ◦ E = id and id ⊑ E ◦ I.For the proof, see [12℄. In order to measure the speed of 
onvergen
e, aswell as for te
hni
al 
onvenien
e in the formulation of some of our results,we introdu
e the following notation, where X is an arbitrary set:
• For a re
tangle α = [α−, α+], w(α) = ‖α+−α−‖ denotes the width of α.If f : X → IRn is a fun
tion, w(f) = supx∈X w(f(x)) is the width of f . Inthe spe
ial 
ase where X ⊆ R, we let wα(f) = supx∈X e−α|x|w(f(x)) and 
all

wα(f) the weighted width of f w.r.t. the weight α; this gives w(f) = w0(f).
• Given two re
tangles α = [α+, α−] and β = [β−, β+], their distan
e isgiven by d(α, β) = max1≤i≤n |α

+
i − β+

i | + |α−
i − β−

i | if α+ = (α+
1 , . . . , α+

n )and similarly for α−, β+, β−. If f, g : X → IRn are fun
tions, d(f, g) =
supx∈X d(f(x), g(x)) is the distan
e between f and g.In the above, the weight α will enable us to show that the domain the-oreti
 Pi
ard operator is a 
ontra
tion. Considering g as approximation to
f , we understand the distan
e d(f, g) as measure of the quality of the ap-proximation. We mention two simple lemmas linking distan
e, width andweighted width.Lemma 2.2. Letf : [−a, a] → IRn. Then wα(f) ≤ w(f) ≤ eaαwα(f) for all
α ≥ 0.Lemma 2.3. For a re
tangle γ = [γ−, γ+] denote the midpoint of γ by
m(γ) = 1

2(γ+
1 + γ−

1 , . . . , γ+
n , γ−

n ) and suppose α, β ∈ IRn are 
ompa
t.(i) ‖m(α) − m(β)‖ ≤ 1
2d(α, β)(ii) 0 ≤ w(β) − w(α) ≤ d(α, β) in 
ase β ⊑ α.The proof of both lemmas is a straightforward 
al
ulation, and thereforeomitted.
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3 The Pi
ard Operator in Domain TheoryIn the 
lassi
al proof of Pi
ard's theorem on the existen
e and uniqueness ofthe solution of the initial value problem (1) one de�nes an integral operatoron C0[−a, a] by
y 7→ λx.

∫ x

0
v(y(t))dt(with the integral understood 
omponentwise), whi
h 
an be shown to bea 
ontra
tion for su�
iently small a provided v satis�es a Lips
hitz 
ondi-tion [16℄. An appli
ation of Bana
h's theorem then yields a solution of theinitial value problem. We now de�ne the domain-theoreti
 Pi
ard operatorfor arbitrary S
ott 
ontinuous ve
tor �elds u : I[−K,K]n → I[−M,M ]n andfo
us on the spe
ial 
ase where u is an extension of a 
lassi
al fun
tion later.As in the 
lassi
al proof, the Pi
ard operator is an integral operator, and wetherefore introdu
e the integral of interval-valued fun
tions.De�nition 3.1. Suppose f = [f−, f+] : [−a, a] → I[−M,M ] is S
ott 
on-tinuous. For x ∈ [−a, a] we let

∫ x

0
f(t)dt = [

∫ x

0
f−σ(t)dt,

∫ x

0
fσ(t)dt]where σ = sgn(x) is the sign of x and f0(t) = 0. If f = (f1, . . . , fn) :

[−a, a] → IRn, we let ∫ x

0 f(t)dt = (
∫ x

0 f1(t)dt, . . . ,
∫ x

0 fn(t)dt).Note that, if we integrate in the positive x-dire
tion, then f− 
ontributesto the lower fun
tion asso
iated with the integral of f and f+ 
ontributes tothe upper fun
tion. If we integrate in the negative x-dire
tion, the roles of
f− and f+ are swapped to ensure that the lower value of integral is indeedsmaller than the upper value. As we are going to assume that the ve
tor �eldwhi
h de�nes the IVP is bounded, it su�
es to 
onsider bounded intervalvalued fun
tions only. The following shows that our de�nition is meaningful:Lemma 3.2. Suppose f : [−a, a] → I[−M,M ] is S
ott 
ontinuous.(i) f− and f+ are Lebesgue integrable(ii) ∫ x

0 f(t)dt ∈ IR for all x ∈ [−a, a].Proof. For S
ott 
ontinuous f , the fun
tions f−, f+ are lower (resp. upper)semi 
ontinuous, hen
e measurable, and integrability follows from bounded-ness. If σ = sgn(x), then σf−σ ≤ σfσ and ∫ x

0 f−σ(t)dt ≤
∫ x

0 fσ(t)dt followsfrom the de�nition of the ordinary integral.6



The following lemma shows that integration is 
ompatible with takingsuprema.Lemma 3.3. Let f : [−a, a] → IRn.(i) The fun
tion λx.
∫ x

0 f(t)dt is S
ott 
ontinuous.(ii) The fun
tion ∫

: f 7→ λx.
∫ x

0 f(t)dt is S
ott 
ontinuous.Proof. We assume n = 1 from whi
h the general 
ase follows. If g(x) =
∫ x

0 f(t)dt, then g−, g+ are 
ontinuous, hen
e g is S
ott 
ontinuous. These
ond statement follows from the monotone 
onvergen
e theorem.The domain theoreti
 Pi
ard operator 
an now be de�ned as follows:De�nition 3.4. Suppose u ∈ V. The domain theoreti
 Pi
ard operator
Pu : S → S is de�ned by Pu(y) = λx.

∫ x

0 u(y(t))dt.Lemma 3.5. Pu is well de�ned and 
ontinuous.Proof. That Pu(y) ∈ S follows from our assumption aM ≤ K. Lemma 3.3shows that Pu(y), for y ∈ S, and Pu itself are 
ontinuous.In the 
lassi
al proof of Pi
ard's theorem, one 
onstru
ts solutions ofIVP's as �xpoint of the (
lassi
al) Pi
ard operator. The domain theoreti
proof repla
es Bana
h's theorem with Klenee's theorem in the 
onstru
tionof a �xed point of the (domain theoreti
) Pi
ard operator. Unlike the 
las-si
al 
ase, where one 
hooses an arbitrary initial approximation, we 
hoosethe fun
tion y0 = λt.[−K,K]n with the least possible information as initialapproximation.Theorem 3.6. Let u ∈ V and yk+1 = Pu(yk). Then y =
⊔

k∈N
yk satis�es

Pu(y) = y.Proof. Follows immediately from Kleene's Theorem, see e.g. [4, Theorem2.1.19℄.The bridge between the solution of the domain-theoreti
 �xpoint equa-tion and the 
lassi
al initial value problem is established in the follow-ing proposition, where Sf : [−a, a] → I[−K,K]n denotes the fun
tion
λx.{f(x)}, for f : [−a, a] → [−K,K]n.Proposition 3.7. Suppose u is an extension of v and y is the least �xpointof Pu.(i) If f : [−a, a] → [−K,K]n solves (1) then y ⊑ Sf .7



(ii) If y has width 0, then y− = y+ solves (1).Proof. For the �rst statement, note that Sf is a �xed point of Pu and y isthe least su
h. The se
ond statement follows from the fundamental theoremof 
al
ulus; note that y− = y+ implies the 
ontinuity of both.The previous proposition 
an be read as a soundness result: Every so-lution of the IVP is 
ontained in the least �xpoint of the domain theoreti
Pi
ard operator.4 The Lips
hitz CaseWe 
an ensure the uniqueness of the solution of the IVP by requiring that theve
tor �eld satis�es an interval version of the Lips
hitz property. Re
all thatfor metri
 spa
es (M,d) and (M ′, d′), a fun
tion f : M → M ′ is Lips
hitz,if there is L ≥ 0 su
h that d′(f(x), f(z)) ≤ L · d(x, z) for all x, z ∈ M . Thefollowing de�nition translates this property into an interval setting, see also[17℄.De�nition 4.1 (Lips
hitz Condition). Suppose u : I[−K,K]n → I[−M,M ]n.Then u is interval Lips
hitz if there is some L ≥ 0 su
h that w(u(α)) ≤
L ·w(α) for all α ∈ I[−K,K]n. In this 
ase, L is 
alled an interval Lips
hitz
onstant for u.The following Proposition des
ribes the relationship between the 
lassi
alnotion and its interval version.Proposition 4.2. For v : [−K,K]n → [−M,M ]n, the following are equiva-lent:(i) v is Lips
hitz(ii) The 
anoni
al extension of v satis�es an interval Lips
hitz 
ondition(iii) v has an interval Lips
hitz extension.Proof. If v is Lips
hitz, then the 
anoni
al extension of v satis�es an intervalLips
hitz 
ondition. Now assume that u is an extension of v whi
h is intervalLips
hitz, and let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ [−K,K]n. Let R(x, y)denote the re
tangle α1×· · ·×αn where αi = [xi, yi] in 
ase xi ≤ yi and αi =
[yi, xi] otherwise. Sin
e u extends v, we have v(x) ∈ u({x}) ⊆ u(R(x, y)) bymonotoni
ity. Hen
e u−

i (R(x, y)) ≤ v(x) ≤ u+
i (R(x, y)) for all 1 ≤ i ≤ n.8



Similarly u−
i (R(x, y)) ≤ vi(y) ≤ u+

i (R(x, y)). Now
‖v(x) − v(y)‖ = max

1≤i≤n
‖vi(x) − vi(y)‖

≤ max
1≤i≤n

u+
i (R(x, y)) − u−

i (R(x, y))

= max
1≤i≤n

w(ui(R(x, y)))

≤ L · w(R(x, y))

= L‖x − y‖,as required.Note that every interval Lips
hitz fun
tion indu
es a total and 
ontinuous
lassi
al fun
tion.Corollary 4.3. Suppose u is interval Lips
hitz. Then w(u(α)) = 0 whenever
w(α) = 0, and the indu
ed real valued fun
tion ū, given by ū(x) = z i�
u({x}) = {z} is 
ontinuous.We now turn to show that the least �xpoint of the Pi
ard operator as-so
iated with u has indeed width zero, if u satis�es an interval Lips
hitz
ondition, and we assume for the remainder of the paper that u is an exten-sion of v that satis�es an interval Lips
hitz 
ondition with Lips
hitz 
onstant
L. In order to show that the least �xpoint of Pu has width zero, we use theweighted width, introdu
ed in Se
tion 2. The following lemma is the essen-tial step for showing that the least �xpoint of the domain theoreti
 Pi
ardoperator a
tually has width 0 on the whole of [−a, a].Lemma 4.4. Let y ∈ S. Then wα(Pu(y)) ≤ L

α
wα(y).Proof. For the i-th 
omponent Pu(y)i of Pu(y) we 
al
ulate

wα(Pu(y)) = sup
t∈[−a,a]

e−α|t|

∫ t

0
u

σ(t)
i (y(x)) − u

−σ(t)
i (y(x))dx

≤ sup
t∈[−a,a]

e−α|t|

∫ t

0
σ(t) · L · e−α|x|eα|x| · w(y(x))dx

≤ L · wα(y) · sup
t∈[−a,a]

e−α|t|

∫ |t|

0
eαxdx

≤
L

α
wα(y)as we had to show. 9



Re
all that y0(x) = [−K,K]n, hen
e w(y0) = wα(y0) = 2K for all α ≥ 0.This gives us the following for the (not weighted) width of the iterates yk.Proposition 4.5. Let yk+1 = Pu(yk) for all k ∈ N. Then w2L(yk) ≤
2−nw2L(y0). In parti
ular, w(yk) ≤ 2−k · e2aL · w(y0) and ⊔

k∈N
yk is realvalued and a solution of (1).Proof. The �rst statement follows by indu
tion from Lemma 4.4 (Pi
k α =

2L). The se
ond 
laim is immediate from Lemma 2.2 and Proposition 3.7.In order to be able to 
ompute the integrals, we now 
onsider approx-imations to u; the basi
 idea is that every 
ontinuous ve
tor �eld 
an beapproximated by a sequen
e of step fun
tions (i.e. fun
tions taking only�nitely many values), whi
h allows us to 
ompute the integrals involved in
al
ulating the approximations to the solution e�e
tively. The key prop-erty whi
h enables us to use approximations also to the ve
tor �eld is the
ontinuity of the mapping u 7→ Pu.Lemma 4.6. The map P : V → S → S, u 7→ Pu, is 
ontinuous.Proof. Follows from 
ontinuity of u and the monotone 
onvergen
e theorem.This 
ontinuity property allows us to 
ompute solutions to the 
lassi
alinitial value problem by means of a 
onverging sequen
e of approximationsof u.Proposition 4.7. Suppose u =
⊔

k∈N
uk and yk+1 = Puk

(yk) for k ∈ N.Then y =
⊔

k∈N
yk satis�es y = Pu(y).Proof. Follows from Theorem 3.6 and 
ontinuity of u 7→ Pu by the inter
hange-of-suprema law (see e.g. [4, Proposition 2.1.12℄).We have seen that the Lips
hitz 
ondition on the ve
tor �eld ensures thatthe approximations of the solution 
onverge exponentially fast (Proposition4.5). In presen
e of approximations of the ve
tor �eld, the speed of 
onver-gen
e will also depend on how fast the ve
tor �eld is approximated. Thefollowing estimate allows to des
ribe the speed of 
onvergen
e of the iteratesif the ve
tor �eld is approximated by an in
reasing 
hain of ve
tor �elds.Lemma 4.8. Let u′ ⊑ u and y ∈ S. Then wα(Pu′(y)) ≤ L

α
wα(y)+ 1

αe
d(u, u′).10



Proof. For the i-th 
omponent Pu′(y)i we 
al
ulate using Lemma 4.4
wα(Pu′(y)) = sup

t∈[0,1]
e−α|t|

∫ t

0
σ(t) · u′σ(t)

(y(x)) − u′−σ(t)
(y(x))dx

≤ sup
t∈[−a,a]

e−α|t|

∫ t

0
σ(t) · (uσ(t)(y(x)) − u−σ(t)(y(x)) + d(u, u′))dx

≤ sup
t∈[−a,a]

e−α|t|w(Pu(y)) + sup
t∈[−a,a]

e−α|t| · |t| · d(u, u′)

≤
L

α
wα(y) +

1

eα
d(u, u′)where the estimate for the se
ond term follows from f ′(1/α) = 0, f ′′(1/α) <

0 for f(x) = x · e−αx.Using this estimate, we 
an now prove fast 
onvergen
e if the approxi-mations of the ve
tor �eld 
onverge fast, too.Proposition 4.9. Suppose u =
⊔

k∈N
uk with d(u, uk) ≤ 2−n ·L·e·w(y0) and

yk+1 = Puk
(yk) for all k ∈ N. Then w4L(yk) ≤ 2−k · w4L(y0); in parti
ular

w(yk) ≤ 2−k · e4aL · w(y0) and ⊔

k∈N
yk is real valued and solves (1).Proof. We just show that w4L(yk) ≤ 2−n · w4L(y0) by indu
tion on k; these
ond 
laim then follows from Lemma 2.2. There is nothing to show for the
ase k = 0. For the general 
ase, we invoke Lemma 4.8 and obtain

w4L(yk+1) ≤
1

4
w4L(yk) +

1

4Le
d(u, uk)

≤
1

4
2−kw4L(y0) +

1

4
2−kw4L(y0)

= 2−(k+1)w4L(y0)as required.Given a representation of u in terms of step fun
tions, Proposition 4.7gives rise to an algorithm for 
omputing the solution of the initial value prob-lem and Proposition 4.9 provides an estimate on the speed of 
onvergen
e.Our next goal is to show that this algorithm 
an be restri
ted to bases ofthe respe
tive domains, showing that it 
an be implemented without lossof a

ura
y. We then give an estimate of the algebrai
 
omplexity of thealgorithm. 11



5 An Implementation Framework for Solving IVP'sWe now show that the algorithm 
ontained in Proposition 4.7 is indeedimplementable by showing that the 
omputations 
an be 
arried out in thebases of the domains. In fa
t, we demonstrate that every in
reasing 
hainof (interval valued) ve
tor �elds (uk)k∈N, where ea
h uk is a base elementof V, gives rise to a sequen
e of base elements of S, whi
h approximate thesolution and 
onverge to it.In view of the algorithm 
ontained in Proposition 4.7, we 
onsider simplestep fun
tions as base of V and pie
ewise linear fun
tion as base of S. Notethat in this setup, the domain-theoreti
 Pi
ard operator 
omputes integralsof pie
ewise 
onstant fun
tions, hen
e produ
es pie
ewise linear fun
tions.We begin by introdu
ing the bases whi
h we are going to work with.De�nition 5.1. Let D ⊆ R and assume that −a = a0 < · · · < ak = awith a0, . . . , ak ∈ D, β0, . . . , βk ∈ I[−K,K]nD and γ1, . . . , γk ∈ I[−M,M ]nD,where RD denotes the set of re
tangles, whi
h are 
ontained in R and whoseendpoints lie in D. We 
onsider the following 
lasses of fun
tions:(i) The 
lass SL
D of pie
ewise D-linear fun
tions [−a, a] → I[−K,K]n,

f = (a0, . . . , ak)ց
L (β0, . . . , βk)where f(x)± = β±

j−1 +
x−aj−1

aj−aj−1
(β±

j − β±
j−1) for x ∈ [aj−1, aj ]. Every 
om-ponent of a D-linear fun
tion is pie
ewise linear and takes values in D at

a0, a1 . . . , ak.(ii) The set SC
D of pie
ewise D-
onstant fun
tions [−a, a] → I[−K,K]n,

f = (a0, . . . , ak)ց
C (β1, . . . , βn), x 7→

{

βi x ∈ [ai−1, ai]
o

βi−1
d

βi x = ai and 1 < i < kwhere ⊓ denotes the greatest lower bound and ( · )o is interior relative to theinterval [−a, a]. The 
omponents of a D-
onstant fun
tion assume 
onstantvalues in D, whi
h only 
hange at a0, a1, . . . , ak.(iii) The set VD of �nite suprema of step fun
tions I[−K,K]n → I[−M,M ]n,
f =

⊔

1≤j≤k

βj ց γj : x 7→
⊔

{γj | 1 ≤ j ≤ k, βj ≪ x}.(iv) For any f as above, we put N (f) = k and 
all it the 
omplexity ofrepresentation of f . 12



Sin
e we will not 
onsider di�erent representations for the same fun
-tions, we allow ourselves to blur the distin
tion between a fun
tion and itsrepresentation as step fun
tion. The last se
tion shows, how to obtain arepresentation of u as a supremum of step fun
tions.If D is dense in R, it is well known that the sets de�ned above are basesof their respe
tive superspa
es:Proposition 5.2. Suppose D ⊆ R is dense and −a, a ∈ D.(i) VD is a base of V.(ii) SC
D and SL

D are bases of S.We 
an now show that the Pi
ard operator Pu asso
iated with a simplestep fun
tion u restri
ts to an endofun
tion on the set of basis elements ofthe spa
e of linear step fun
tions SL
D.Lemma 5.3. Suppose D ⊆ R is a sub�eld, u ∈ VD and y ∈ SL

D. Then thereis f ∈ SC
D with N (f) ≤ 3N (y)N (u) and u ◦ y(x) = f(x) for all but �nitelymany x ∈ [−a, a]. Moreover, f 
an be 
omputed in time O(N (u)2N (y)).Proof. First suppose u = γ ց β 
onsists of a single step fun
tion and

y = (a0, . . . , ak)ց
L β with β = (β0, . . . , βk). In every open interval α =

(aj−1, aj), the 
omponents of y are linear, hen
e the interval 
an be parti-tioned as α = (aj−1, lj ] ∪ (lj , hj) ∪ [h, aj) su
h that β ≪ y(x) i� x ∈ (lj , hj)on (aj−1, aj). Computing lj and hj 
an be done by 
omputing, for ea
h
omponent yi, the interse
tion of y±i with the 
onstant fun
tion λx.β±
i .Sin
e D ⊆ R is a sub�eld, lj, hj ∈ D. On the interval (aj−1, aj) we obtain

u(y(x)) = (aj−1, lj , hj , aj)ց
C ([−K,K]n, γ, [−K,K]n) for all x ∈ [aj−1, aj ] \

{aj−1, lj , hh, aj}. Sin
e this 
omputation 
an be done in 
onstant time, we
an 
ompute f ∈ SC
D su
h that f(x) = u(y(x)) for all but �nitely many x intime O(N (y)). We obtain N (u ◦ y) ≤ 3N (y), sin
e every interval (aj−1, aj)is sub-divided into at most three parts.In 
ase u =

⊔

1≤j≤l γj ց βj , we have u ◦ y =
⊔

1≤j≤l(γj ց βj) ◦ y.For every j, we 
an 
ompute fj with fj(x) = (γj ց δj)(y(x)) for all but�nitely many y in O(N (y)) algebrai
 steps. Hen
e supj fj 
an be per-formed in O(N (u)2 ·N (y)) steps, taking into a

ount that we need O(N (u)2)steps to 
ompute the right ordering of points in every subinterval (aj−1, aj),
j = 1, . . . , k. Note that the interval (−a, a) is subdivided into at most
3N (y)N (u) parts. We have u ◦ y(x) = f(x) for all but �nitely many x by
onstru
tion.Now that we have a basis representation of u ◦ y, it's easy to obtain abasis representation of Pu(y) by integration. Note that 
omputing integrals13




an be performed over a base de�ned over a subring of R; we will make useof this fa
t later.Lemma 5.4. Suppose D ⊆ R is a subring and let g(x) =
∫ x

0 f(x)dx for
f ∈ SC

D. Then g ∈ SL
D and N (g) = N (f). Furthermore, g 
an be 
omputedin O(N (f)) steps.Proof. Let f = (a0, . . . , ak)ց

C (β1, . . . , βk). First suppose 0 ∈ {a0, . . . , ak}.Every 
omponent fi = [f−
i , f+

i ] 
onsists of a pair of pie
ewise 
onstant fun
-tions. On every interval [aj−1, aj ], for 1 ≤ j ≤ k, the integral of f±
i 
anbe 
omputed by multiplying the width of the interval by the value of f±

i ,hen
e g ∈ SL
D sin
e D ⊆ R is a subring. This 
omputation takes 
onstanttime, hen
e g 
an be 
omputed in time O(N (f)), and 
learly N (g) = N (f).In 
ase 0 /∈ {a0, . . . , ak} we insert 0 as additional partition point and ob-tain N (g) = N (f) + 1 and g 
an be 
omputed in O(N (f) + 1) = O(N (f))steps.Summing up, we have the following estimate on the algorithm indu
edby Proposition 4.7 if we 
ompute over the base of pie
ewise linear fun
tions.Proposition 5.5. Suppose D ⊆ R is a sub�eld, u ∈ VD and y ∈ SL

D.(i) Pu(y) ∈ SL
D(ii) Pu(y) 
an be 
omputed in time O(N (u)2N (y)).(iii) N (Pu(y)) ∈ O(N (u)N (y)).Proof. Lemma 5.4 provides us with f = (a0, . . . , ak)ցC (β1, . . . , βk) with

N (f) ∈ O(N (u) · N (y)) su
h that u ◦ y = f for all but �nitely many argu-ments. Hen
e
Pu(y)(x) =

∫ x

0
(u ◦ y)(t)dt =

∫ x

0
f(t)dtand the 
laims follow from Lemma 5.4.We 
an now summarise our results for 
omputing with pie
ewise linearfun
tions as follows:Theorem 5.6. Suppose D ⊆ R is a sub�eld and u =

⊔

k∈N
uk with uk ∈ VD.If yk+1 = Puk

(yk), then(i) yk ∈ SL
D for all k ∈ N(ii) y =

⊔

k∈N
yk has width 0 and y− = y+ solves the IVP (1).(iii) w(yk) ∈ O(2−k) if d(u, uk) ∈ O(2−k).14



Sin
e the elements of SL
D for D = Q, the set of rational numbers, 
anbe represented faithfully on a digital 
omputer, the theorem � together withProposition 3.7 � guarantees soundness and 
ompleteness also for implemen-tations of the domain theoreti
 method. We also provide a guarantee on thespeed of 
onvergen
e, sin
e the 
ondition d(u, uk) ∈ O(2−k) 
an always beensured by the library used to 
onstru
t the sequen
e (uk) of approximationsto the ve
tor �eld. The 
onstru
tion of sequen
es (uk)k∈N that approximate

u is dis
ussed in Se
tion 7.Also, 
omputing over the base of pie
ewise linear fun
tions eliminates theneed of 
omputing re
tangular en
losures at every step of the 
omputation.This partially avoids the well-known wrapping e�e
t of interval analysis, butit 
omes at the 
ost of a high 
omplexity of the representation of the iter-ates. The next se
tion presents an alternative, whi
h uses pie
ewise 
onstantfun
tions only.6 Computing with Pie
ewise Constant Fun
tionsWe have seen that the time needed to 
ompute Pu(y) is quadrati
 in the
omplexity of the representation of u and linear in that of y. However, the
omplexity of the representation of Pu(y) is also quadrati
 in general. Thisimplies that
N (yk+1) ∈ O(N (u0) . . .N (uk)),if u =

⊔

k∈N
uk and yk+1 = Puk

(yk).The blow up of the 
omplexity of the representation of the iterates isdue to the fa
t that ea
h interval on whi
h y is linear is subdivided when
omputing u ◦ y, sin
e we have to interse
t linear fun
tions asso
iated with
y with 
onstant fun
tions indu
ed by u, as illustrated by the left diagram inFigure 1.This 
an be avoided if we work with pie
ewise 
onstant fun
tions only.The key idea is to transform the linear step fun
tion Pu(y) into a simple stepfun
tion before 
omputing the next iterate: on every interval, repla
e the up-per (linear) fun
tion by its maximum and the lower fun
tion by its minimum.We now develop the te
hni
al apparatus whi
h is needed to show that theapproximations so obtained still 
onverge to the solution. Te
hni
ally, thisis a
hieved by making the partitions of the interval [−a, a] expli
it.De�nition 6.1 (Partitions). Suppose x ≤ y are real numbers.(i) A partition of [x, y] is a �nite sequen
e (q0, . . . , qk) of real numberssu
h that x = q0 < · · · < qk = y; the set of partitions of [x, y] is denoted by15
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Figure 1: Subdivision of Intervals (left) and Flattening (right)
P[x, y]. If D ⊆ R then PD[x, y] ⊂ P[x, y] is the subset of partitions of [x, y]whose points lie in D.(ii) The norm |Q| of a partition Q = (q0, . . . , qk) is given by |Q| =
max1≤i≤k qi − qi−1 and N (Q) = k is the size of Q.(iii) A partition Q = (q0, . . . , qk) re�nes a partition R = (r0, . . . , rl) if
{r0, . . . , rl} ⊆ {q0, . . . , qk}; this is denoted by R ⊑ Q.We are now ready for the de�nition of the �attening fun
tional, whi
htransforms pie
ewise linear fun
tions to pie
ewise 
onstant fun
tions.De�nition 6.2. Suppose Q ∈ P[−a, a]. The �attening fun
tional FQ : S →
S asso
iated with Q is de�ned by

FQ(f) = (q0, . . . , qk)ց
C (γ1, . . . , γk)where γi =

d
{f(x) | x ∈ [qi−1, qi]} for 1 ≤ i ≤ k.Note that, geometri
ally speaking, FQ 
omputes an en
losure of semi
ontinuous fun
tions into re
tangles, as illustrated by the right diagram inFigure 1.Lemma 6.3. FQ is well de�ned and 
ontinuous.Proof. Sin
e every basis element of SC

R
is 
ontinuous, FQ(f) is 
ontinuousfor every f ∈ S, hen
e FQ is well de�ned. Continuity follows from Lemma2.1.In order to redu
e the 
omplexity of the representations of the iterates, wewant to apply the �attening fun
tional at every step of the 
omputation. The16



following lemma is the stepping stone in proving that this does not a�e
t
onvergen
e to the solution. In the 
ontext of partitions, we understandin
reasing in terms of the re�nement order ⊑, introdu
ed in De�nition 6.1.Lemma 6.4. Suppose (Qk)k∈N is an in
reasing sequen
e of partitions with
limk→∞ |Qk| = 0. Then ⊔

k∈N
FQk

= id.Proof. This follows from the fa
t that for every upper semi 
ontinuous fun
-tion f : [−a, a] → R and every de
reasing 
hain α0 ⊆ α1 ⊆ . . . of 
om-pa
t intervals 
ontaining x with w(αk) → 0 as k → ∞ one has f(x) =
infk∈N sup{f(x) | x ∈ αk}, and the dual statement for lower semi 
ontinuousfun
tions.The last lemma puts us in the position to show that the appli
ation ofthe �attening fun
tional at every stage of the 
onstru
tion does not a�e
tthe 
onvergen
e of the iterates to the solution.Proposition 6.5. Suppose u =

⊔

k∈N
uk, (Qk)k∈N is an in
reasing sequen
eof partitions with limk→∞ |Qk| = 0 and yk+1 = FQk

(Puk
(yk)). Then y =

⊔

k∈N
yk satis�es y = Pu(y).Proof. Follows from the inter
hange-of-suprema law (see e.g. [4, Proposition2.1.12℄), the previous lemma and Proposition 4.7.We now show that the speed of 
onvergen
e is essentially una�e
ted ifwe apply the �attening fun
tional at every stage of the 
omputation. Thisresult hinges on the following estimate:Lemma 6.6. Suppose g = ([g−1 , g+

1 ], . . . , [g−n , g+
n ]) : [−a, a] → IRn is S
ott
ontinuous and, for all i ∈ {1, . . . , n}, either g+
i or f−

i satis�es a Lips
hitz
ondition with Lips
hitz 
onstant N . If Q is a partition, then w(FQ(g)) ≤
w(g) + N |Q|.Proof. Fix 1 ≤ i ≤ n, suppose x ∈ [−a, a] and 
hoose two 
onse
utivepartition points q−, q+ of Q su
h that x ∈ [q−, q+]. Sin
e upper (resp.lower) semi 
ontinuous fun
tions attain their suprema (resp. in�ma) on
ompa
t intervals, there are x−, x+ ∈ [q−, q+] su
h that, for all x ∈ [q−, q+],we have FQ(g)−i (x) = g−i (x−) and FQ(g)+i (x) = g+

i (x+), where FQ(g)i =
[FQ(g)−i , FQ(g)+i ] denotes the ith 
omponent of FQ(g). If we assume w.l.o.g.

17



that g+
i is Lips
hitz 
ontinuous, we obtain for x ∈ [q−, q+] that

FQ(g)+i (x) − FQ(g)−i (x) = |g+
i (x+) − g−i (x−)|

≤ |g+
i (x+) − g+

i (x−)| + |g+
i (x−) − g−i (x−)|

≤ N |x+ − x−| + w(gi)

≤ N |Q| + w(g)as required.For the weighted width, we have the following 
orollary:Corollary 6.7. Under the hypothesis of the previous lemma, wα(FQ(g)) ≤
wα(g) + N |Q|.Proof. We have wα(FQ(g)) = supt∈[−a,a] e

−α|t|w(FQ(g)) ≤ supt∈[−a,a] e
−α|t|(w(g)+

N |Q|) ≤ wα(g) + 2N |Q|.The last 
orollary allows us to estimate the width of an iterate, 
omputedafter applying the �attening fun
tional.Lemma 6.8. Let u′ ∈ V with u′ ⊑ u, y ∈ S and Q ∈ P[−a, a]. Then
wα(FQ(Pu(y))) ≤ L

α
wα(y) + 1

αe
d(u, u′) + K

a
|Q|.Proof. By de�nition, the upper and lower fun
tions asso
iated with the 
om-ponents of g = Pu′(y) satisfy a Lips
hitz 
ondition with Lips
hitz 
onstant

M ; we have K
a
≤ M by assumption. The 
laim follows from Lemma 4.8 andCorollary 6.7.We 
an now establish the main result of this se
tion: Applying the �at-tening fun
tional at every step of the 
omputation does not a�e
t the orderof the speed of 
onvergen
e.Proposition 6.9. Suppose u =

⊔

k∈N
uk with d(u, uk) ≤ 2−k · eLw(y0),

(Qk)k∈N is an in
reasing sequen
e in P[−a, a] with |Qk| ≤ 2−k · a
3w(y0)and yk+1 = FQk

(Puk
(y)) for all k ≥ 0. Then w6L(yk) ≤ 2−kw6L(y0); inparti
ular w(yk) ≤ 2−k ·e6aLw(y0) and ⊔

k∈N
yk is real valued and solves (1).Proof. We just show the �rst statement; the se
ond follows by Lemma 2.2.There is nothing to show for k = 0. For the indu
tive step we have byLemma 6.8

w6L(FQk
(Puk

(yk))) ≤
1

6
w6L(y0) +

1

6
2−kw6L(y0) +

1

6
K

≤
1

6
2−k(w6L(y0) + w6L(y0) + w6L(y0))

= 2−(k+1)w6L(y0)18



as required.We now show that the appli
ation of the �attening fun
tional at everystep avoids the blow up of the size of the iterates. As a 
onsequen
e, the al-gorithm with �attening 
an be implemented using a base of fun
tions de�nedover a dense subring of R, su
h as the dyadi
 numbers.Lemma 6.10. Suppose D ⊆ R is a subring and Q ∈ PD[−a, a]. Then FQrestri
ts to a mapping SL
D → SC

D.Proof. Suppose f = (a0, . . . , al)ց
L (β0, . . . , βl) ∈ SL

D and Q = (q0, . . . , qk) ∈
PD[−a, a]. If FQ(f) = (q0, . . . , qk)ց

C (γ1, . . . , γk), then the verti
es of the γiare elements of the set ⋃

1≤i≤n{f
+
i (q0), f

−
i (a0), . . . , f

+
i (qk), f

−
i (ak)}, whi
h
an be 
omputed from the verti
es of the βj 's without forming quotients.The 
omplexity of the algorithm underlying Theorem 6.5 over the bases

VD and SC
D 
an now be summarised as follows; re
all that N (Q) = k is thesize of a partition Q = (q0, . . . , qk).Proposition 6.11. Suppose D ⊆ R is a subring, y ∈ SC

D and u ∈ VD.(i) FQ(Pu(y)) ∈ SC
D and N (FQ(Pu(y))) = N (Q)(ii) FQ(Pu(y)) 
an be 
omputed in time O(max(N (u) · N (y),N (Q))).Proof. For the �rst statement, assume that y = (a0, . . . , ak)ց

C (β1, . . . , βk)and u =
⊔

1≤j≤l γi ց δi. Then u ◦ y = (a0, . . . , ak)ց
C (β′

1, . . . , β
′
k), where

β′
m =

⊔

{γj | βj ≪ γj}. Clearly u ◦ y ∈ SC
D . Computing u ◦ y takes

O(N (u)·N (y)) steps, sin
e we have to mat
h every step fun
tion in u againstevery βm. By Lemma 5.4 we have that Pu(y) ∈ SL
D, and �nally FQ(Pu(y)) ∈

SC
D by Lemma 6.10. Computing Pu(y) from u ◦ y takes time O(N (u) ·N (y))and FQ(Pu(y)) 
an be 
omputed in O(max(N (u) ·N (y),N (Q)) steps, hen
ethe bound on the 
omplexity.Note the 
omplexity redu
tion 
ompared to Proposition 5.5 whi
h isa
hieved sin
e Pu(f) does not 
hanges its value in the subintervals [ai, ai+1].We 
an now summarise our results 
on
erning soundness and 
ompletenessof the algorithm with �attening as follows:Theorem 6.12. Suppose D ⊆ R is a subring and u =

⊔

k∈N
uk with uk ∈ VD.Furthermore, assume (Qk)k∈N is an in
reasing sequen
e of partitions with

limk→∞ |Qk| = 0 and yk+1 = FQk
(Puk

)(yk).(i) yk ∈ SC
D for all k ∈ N and N (yk) = N (Qk).19



(ii) y =
⊔

k∈N
yk has width 0 and y− = y+ solves the IVP (1)(iii) w(yk) ∈ O(2−k), if both d(u, uk) and |Qk| ∈ O(2−k).Note that, for a subring R ⊆ Q of the rational numbers, the elements of

VD and SC
D 
an be faithfully represented on a digital 
omputer. Hen
e we 
anguarantee both soundness and 
ompleteness also for an implementation of thedomain theoreti
 approa
h where furthermore the representation 
omplexityof the iterates are bounded above by the size of the partitions.7 Approximating Continuous Fun
tionsThe theory outlined in the previous se
tions depends on an interval ve
tor�eld u, given in terms of a supremum u =

⊔

k∈N
uk of step fun
tions. Inorder to apply our theory, the following assumptions must be satis�ed:1. u is an extension of the 
lassi
al ve
tor �eld v2. u needs to satisfy an interval Lips
hitz 
ondition3. The interval distan
e d(u, uk) needs to 
onverge exponentially fast.This se
tion shows, how to obtain a sequen
e (uk)k∈N whi
h satis�es theabove assumptions. We dis
uss two te
hniques for 
onstru
ting approxima-tions of ve
tor �elds: �rst, we dis
uss 
ompositions of approximations andthen we show, how to 
onstru
t interval valued approximations from a fun
-tion that 
omputes the value of the ve
tor �eld to an arbitrary degree ofa

ura
y.7.1 Composition of ApproximationsIn this se
tion we assume that we have two fun
tions g : I[−K,K]n → IRmand f : IRm → I[−M,M ]n, approximated by sequen
es (gn) and (fn), andshow, how use these approximations to 
ompute approximations of f ◦ g,subje
t to the 
onditions laid down at the beginning of the se
tion.We �rst treat the 
ase where f is the maximal extension of a 
lassi
alfun
tion, whi
h needs some auxiliary lemmas. The �rst lemma is needed inthe proof that a maximal extension of a 
lassi
al Lips
hitz 
ontinuous fun
-tion satis�es Lips
hitz 
ondition of the form d(If(α), If(β)) ≤ C · d(α, β).Lemma 7.1. Suppose α, β ∈ IRn are 
ompa
t with α ⊑ β. Then, for all

y ∈ α there is some z ∈ β with ‖y − z‖ ≤ d(α, β).20



Proof. Suppose α = [a−1 , a+
1 ]×· · ·× [a−n , a+

n ] and β = [b−1 , b+
1 ]×· · ·× [b−n , b+

n ].If y = (y1, . . . , yn) ∈ α and i ∈ {1, . . . , n}, we have one of the three 
ases:
a−i ≤ yi ≤ b−i ≤ b+

i ≤ a+
i : Putting zi = b−i ensures |yi − zi| ≤ b−1 − a−i ≤

d(α, β).
a−i ≤ b−i ≤ b+

i ≤ yi ≤ a+
i : Similarly, for zi = b+

i we have |yi−zi| ≤ a+
1 −b+

i ≤
d(α, β).

a−i ≤ b−i ≤ yi ≤ b+
i ≤ a+

i : For zi = yi we have |yi − zi| = 0 ≤ d(α, β).Hen
e for z = (z1, . . . , zn) we have ‖y − z‖ = max1≤i≤n |zi − yi| ≤ d(α, β)and z ∈ β.Using the lemma above, we 
an now give an estimate on the distan
ebetween the upper fun
tions, evaluated at two intervals.Lemma 7.2. Suppose R ⊆ Rn is a re
tangle and f : R → R satis�es aLips
hitz 
ondition with Lips
hitz 
onstant L. Then (If)+(α) − (If)+(β) ≤
L · d(α, β) for all 
ompa
t α, β ∈ IR with α ⊑ β.Proof. By 
ontinuity of f and 
ompa
tness of α, β, there are yα ∈ α and
yβ ∈ β with (If)+(α) = f(yα) and (If)+(β) = f(yβ). Using the previouslemma with y = yα we �nd z ∈ β with ‖y − z‖ ≤ d(α, β). Clearly f(z) ≤
f(yβ) and f(yα)− f(yβ) ≤ f(yα)− f(z) ≤ L‖yα − z‖ ≤ L · d(α, β) by 
hoi
eof z.As a 
orollary, we obtain a version of Lips
hitz 
ontinuity for maximalextensions.Corollary 7.3. Suppose R ⊆ Rn is a re
tangle and f : R → Rm satis�esa Lips
hitz 
ondition with Lips
hitz 
onstant L. Then d(If(α), If(β)) ≤
2Ld(α, β) for all 
ompa
t α ⊑ β ∈ IR.Proof. For the i-th 
omponent fi of f we have, by the previous lemma and itsdual, that d(Ifi(α), Ifi(β)) = (If)+(α)− (If)+(β) + (If)−(β)− (If)−(α) ≤
2L · d(α, β).We are now in the position to prove the promised result on 
omposi-tionality of approximations; in parti
ular we establish a guarantee of the
onvergen
e speed of 
omposed approximations.Theorem 7.4. Suppose R ⊆ Rm is a 
ompa
t re
tangle, fk : IR → IRl and
gk : I[−K,K]n → IR are monotone sequen
es of S
ott 
ontinuous fun
tionssatisfying the following requirements:21



1. f =
⊔

k fn and g =
⊔

k gk are extensions of 
lassi
al fun
tions with fmaximal2. d(f, fk), d(g, gk) ∈ O(2−k)3. Both f and g are interval Lips
hitz.Then f ◦ g is interval Lips
hitz and the extension of a 
lassi
al fun
tion;moreover d(fk ◦ gk, f ◦ g) ∈ O(2−k).Proof. Only the statement on the 
onvergen
e speed requires proof. We de-note the interval Lips
hitz 
onstant of f by L and assume w.l.o.g. that l = 1;the general result then follows by taking the maximum over the 
omponentsof f resp. fk. Now the 
laim follows from the following 
al
ulation, where
α ∈ I[−K,K]n is arbitrary:
d(f ◦ g(α), fk ◦ gk(α)) = f+

k (gk(α)) − f+(g(α)) + f−(g(α)) − f−
k (gl(α)

= f+
k (gk(α)) − f+(gk(α)) + f+(gk(α)) − f+(g(α))+

f−(g(α)) − f−(gk(α)) + f−(gk(α)) − f−
k (gk(α))

≤ d(f, fk) + d(f(g(α)), f(gk(α)))

≤ d(f, fk) + 2Ld(g, gk) ∈ O(2−k)where we have used Corollary 7.3 with α repla
ed by gk(α) and β = g(α) inthe last estimate.The proof of the theorem hinges on the fa
t that f is the maximal exten-sion of a 
lassi
al 
ontinuous fun
tion. The following example shows, thatthis hypothesis is ne
essary by showing that the assertion on the 
onvergen
espeed may fail if f is not maximal.Example 7.5. This example shows, that if f =
⊔

k fk and g =
⊔

k gk, andboth (fk) and (gk) 
onverge exponentially fast, then this is not ne
essarilytrue for the 
omposition g ◦ f , even if both f and g are interval Lips
hitz.Consider the 
ontinuous fun
tion h : [0, 1] → [0, 2] given by
h(x) =







1 − 1
ld( 2

1−x
)

x < 1

1 x = 1where ld is the dyadi
 logarithm (logarithm w.r.t. base 2). Clearly h isdi�erentiable in [0, 1), and elementary analysis shows that 0 ≤ h′(x) ≤
1

ln 2 ≤ 2 for x ∈ [0, 1), hen
e h(x) ≤ 2x for all x ∈ [0, 1]. Therefore the22



S
ott 
ontinuous fun
tion f(α) = [0, h(w(α))] satis�es an interval Lips
hitz
ondition w(f(α)) ≤ 2w(α). Putting fk = f , we 
learly have that d(f, fk) ≤
2−k. Note that f is a non-maximal interval extension of the 
onstant zerofun
tion.For g(α) = [0, w(α)] and gk(α) = [0, w(α) + 2−k−1] we also have that
g is interval Lips
hitz and d(g, gk) = 2−k−1 ≤ 2−k. We show that the
omposition fk ◦gk only 
onverges linearly fast to f ◦g. Consider the interval
αk = [0, 1 − 2−k−1]. Then d(fk ◦ gk, f ◦ g) ≥ d(fk(gk(αk)), f(g(αk))) =
h(w(gk(αk)))−h(w(g(αk))) = h(1)−h(1−2−k−1) = 1

n
, showing that fun
tion
omposition does not preserve exponential 
onvergen
e speed.The pre
eding example shows, that we need to work with maximal exten-sions if we want the 
omposition of two approximating sequen
es to preservethe 
onvergen
e speed. However, this imposes no limitation on our approa
h,sin
e every 
hain of approximating fun
tions 
an be 
onverted to a 
hain ap-proximating the maximal extension. This is demonstrated in the followinglemmas. The �rst lemma shows how we need to modify the approximatingfun
tions in order to obtain the maximal extension in the limit. We restri
tourselves here to the 
ase of fun
tions with 
odomain R; for the general 
ase,our 
onstru
tion has to be repeated for ea
h 
omponent.Lemma 7.6. Suppose f =

⊔

i∈I : IRn → IR is an extension of a fun
tion
g : Rn → R. If m(fi) = λβ.

d
x∈β fi({x}) then ⊔

i∈I m(fi) is the maximalextension of g.Proof. By Lemma 2.1, we have ⊔

i∈I m(fi) = m(
⊔

i∈I fi), hen
e for all
β ∈ IRn we obtain ⊔

i∈I m(fi)(β) = m(
⊔

i∈I(fi)(β)) =
d

x∈β

⊔

i∈I fi({x}) =d
x∈β g(x), whi
h shows that ⊔

i∈I m(fi) is the maximal extension of g.The next lemma shows, how we 
an 
onstru
t the fun
tions m(f) from
f , if f is a step fun
tion.Lemma 7.7. Suppose f =

⊔

1≤i≤k βi ց γi : IRn → IR and let cov(β) =
{J ⊆ {1, . . . , k} | β ⊆

⋃

j∈J βo
j } for β ∈ IRn. Then d

x∈β f({x}) =
⊔

J∈cov(β)

d
j∈J γj .Proof. Let β ∈ IRn and pi
k, for every x ∈ β, i+(x) ∈ {1, . . . , k} su
h that

γ+
i+(x)

= min{γ+
j | j = 1, . . . , k and x ∈ βo

j }. We write i+(β) = {i+(x) | x ∈

β. Then i+(β) is �nite and ⋃

j∈i+(x) βj 
overs β. Therefore
(
l

x∈β

⊔

{γi | x ∈ βo
i })

+ = max{γ+
j | j ∈ i+(β)} = (

l
{γj | j ∈ i+(β)})+.23
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Figure 2: Two elements of R(f), indi
ated by solid linesSimilarly, if 1 ≤ i−(x) ≤ k is su
h that γi−(x) = max{γ−
j | x ∈ β0

j } and
i−(β) = {i−(x) | x ∈ β} we have that

(
l

x∈β

⊔

{γi | x ∈ βo
i })

− = min{γ−
j | j ∈ i−(β)} = (

l
{γj | j ∈ i−(β)})−.Combining the last two equations, we obtain

⊔

J∈cov(β)

l

j∈J

bj =
l

j∈j−(β)

γj ⊔
l

j∈i+(β)

γj =
l

x∈β

⊔

{γi | x ∈ β0
i }.that is, our 
laim.Finally, we show how the fun
tion γ 7→

⊔

J∈cov(γ)

d
j∈J bj 
an be rep-resented as a step fun
tion. This needs the following auxiliary notation:Assume f =

⊔

i=1,...,k βi ց γi and suppose that βi = [(βi)
−
1 , (βi)

+
1 ] × · · · ×

(βi)
−
n , (βi)

+
n ] for all i = 1, . . . , k.We let Ri(f) = {[b−, b+] | b− ≤ b+ and b−, b+ ∈

⋃

j=1,...,k{(βj)
−
i , (βj)

+
i }.In other words, the Ri are intervals whose endpoints are proje
tions of the
orners of the βj 's onto the i-th 
oordinate axes. Finally R(f) = {α1 ×· · ·×

αn | αi ∈ Ri(f) and (α1 × · · · ×αn)o ⊆
⋃

j=1,...,k βo
j }. This means that R(f)is the set of re
tangles 
ontained in the domain of f , whose endpoints areinterse
tions of edges of the βj 's.Two elements of R(f) for f =

⊔

i=1,2,3 βi ց γi are shown below.We are now ready to formulate the last lemma needed to 
onstru
t ap-proximations to the 
anoni
al extension of 
lassi
al fun
tions.Lemma 7.8. Let f =
⊔

i=1,...,k βi ց γi : IRn → IR. Then m(f) =
⊔

α∈R(f) α ց
⊔

J∈cov(α)

d
j∈J γj where cov is as in Lemma 7.7.24



Proof. We split the proof into two parts 
orresponding to ⊑ and ⊒. Re
allfrom Lemma 7.7, we knot that m(f)(β) =
⊔

J∈cov(β)

d
j∈J γj .Suppose now that β ∈ IRn and α ≪ β, α ∈ R(f). Then cov(α) ⊆ cov(β),hen
e ⊔

J∈cov(β)

d
j∈J γj ⊑

⊔

J∈cov(β)

d
j∈J γj . Therefore

⊔

R(f)∋α≪β

⊔

J∈cov(α)

l

j∈J

γj ⊑
⊔

J∈cov(β)

l

j∈J

γj = m(f)(β).We now establish the reverse relation. Let α0 =
⊔

{α ∈ R(f) | α ≪ β}.Then α0 ∈ R(f) and α0 ≪ β as R(f) is �nite. Note that cov(α0) = cov(β)by 
onstru
tion. Therefore
m(f)(β) =

⊔

J∈cov(β)

l

j∈J

bj =
⊔

J∈cov(α0)

l

j∈J

bj ⊑
⊔

R(f)∋α≪β

⊔

J∈cov(α)

l

j∈J

bjwhi
h 
on
ludes the proof.Note that the left re
tangle in Figure 7.1 
annot be 
overed by β1, β2, β3,hen
e yields the value R ∈ IR.7.2 Constru
tion of ApproximationsNow that we have seen how to 
ompose approximations of interval ve
tor�elds 
ompositionally, this se
tion outlines a te
hnique for 
onstru
ting theseapproximations from s
rat
h, given a fun
tion that 
omputes the ve
tor �eldup to an arbitrary degree of a

ura
y.More pre
isely, we assume that g = (g1, . . . , gn) : [−K,K]n ∩ Qn × N →
Qn is given su
h that ‖f(x) − g(x, k)‖ ≤ K · 2−k. On a pra
ti
al level, thisallows us to 
ompute approximations for a large 
lass of fun
tions. Moreover,the existen
e of a 
omputable fun
tion g with the above property is equivalentto the 
omputability of v, and the results of this se
tion show, that we obtainapproximations by step fun
tions for every 
omputable ve
tor �eld v.The idea of the 
onstru
tion is as follows: Given a re
tangle α ⊆ [−K,K]n,we 
ompute the value of g(m(α), k) of the midpoint m(α) of α up to an a

u-ra
y of K · 2−k. In order to a

ommodate for the this ina

ura
y, we extendthis point value into a re
tangle by extending it with K ·2−k into the dire
tionof ea
h 
oordinate axis. This re
tangle is then subsequently extended usingthe Lips
hitz 
onstant of f , resulting in a re
tangle that 
ontains all values
f(x) for x ∈ α. The formal de�nition is as follows, where we assume for therest of the se
tion, that f : [−K,K]n → [−K,K]n satis�es a Lips
hitz 
ondi-tion with Lips
hitz 
onstant L and g : [−K,K]n ∩Qn ×N → [−K,K]n ∩Qnis su
h that ‖g(x, k) − f(x)‖ ≤ K · 2−k.25



De�nition 7.9. For a re
tangle α = [a−1 , a+
1 ] × · · · × [a−n , a+

n ], we denotethe midpoint of α by m(α) = (
a+

1
−a−

1

2 , . . . , a+
n −a−

n

2 ). For λ ∈ R and x =
(x1, . . . , xn) ∈ Rn, the 
ube with 
entre x and width λ is given as

x ⊕ λ = [x1 − λ, x1 + λ], . . . , [xn − λ, xn + λ].Given a partition Q = (q0, . . . , qk) of [−K,K] we denote by
R(Q) = {[qi1 , qj1] × · · · × [qin , qjn ] | 0 ≤ il < jl ≤ k, 1 ≤ l ≤ n}the set of re
tangles with 
orners in Q. Finally, we de�ne the family offun
tions fk

Q by
fk

Q =
⊔

α∈R(Q)

α ց g(m(α), k) ⊕ (K · 2−k + L · w(α))We 
all the fk
Q's the approximation fun
tions asso
iated with Q.It is easy to see that the approximation fun
tions asso
iated with a par-tition are sound in the sense that they give en
losures of the approximatedfun
tions.Lemma 7.10. Let Q ∈ P[−K,K] and k ∈ N. Then fk

Q ⊑ If .Proof. We have to show f(x) ∈ fk
Q(α) for all α ∈ I[−K,K]n and all x ∈ α.This follows from x ∈ g(m(β), k)⊕(K ·2−k+L·w(β)) for all β ≪ α, β ∈ R(Q)by taking suprema.So suppose β ∈ R(Q) and β ≪ α. To see that f(x) ∈ {g(m(β), k)}⊕(K ·

2−k+L·w(β)) it su�
es to show that ‖f(x)−g(m(β), k)‖ ≤ K ·2−k +L·w(β)for all x ∈ α. But this follows from
‖f(x) − g(m(β), k)‖ ≤ ‖f(x) − f(m(β))‖ + ‖f(m(β)) − g(m(β), k)‖

≤ L · ‖x − m(β)‖ + K · 2−k

≤ L · w(β) + K · 2−kwhere the estimate ‖x − m(β)‖ ≤ w(β) follows from β ≪ α and x ∈ α.Before we give guarantees on the quality of approximations 
onstru
tedusing this method, we need to 
he
k that the approximations 
onstru
teda
tually form an in
reasing 
hain. This is the 
ontent of the following lemma,whose straightforward proof is omitted.26



Lemma 7.11. Suppose R ⊑ Q ∈ P[−K,K] and j ≤ i. Then f j
R ⊑ f i

Q.We now establish one of the 
riteria for approximations laid down atthe beginning of the se
tion, i.e. that they 
onverge to a fun
tion whi
h isinterval Lips
hitz. We re
all the order on partitions and their norm fromDe�nition 6.1.Lemma 7.12. Suppose (Qk)k∈N is an in
reasing sequen
e of partitions with
limk→∞ |Qk| = 0. Then ⊔

k∈N
fk

Qk
satis�es an interval Lips
hitz 
onditionwith 
onstant L.Proof. Pi
k α ∈ I[−K,K]n. For any given ǫ > 0, pi
k k ≥ 0 s.t. |Qk| < ǫ

2and K · 2−k ≤ ǫ. By 
hoi
e of k, we �nd β ∈ R(Qk) with β ≪ α and
w(β) ≤ w(α)+ǫ. We now have β ց {g(m(β), k)}⊕(K ·2−k +L·w(β)) ⊑ fk

Qkand α ≪ β, when
e
w(

⊔

k∈N

fk
Qk

(α)) ≤ w(fk
Qk

(α))

≤ K · 2−k + L · w(β)

≤ K · 2−k + L · (w(α) + ǫ)

≤ (1 + L)ǫ + L · w(α).As ǫ > 0 was arbitrary, we 
on
lude that w(
⊔

k∈N
fk

Qk
(α)) ≤ L · w(α).As immediate 
orollary, we obtain the fa
t that ⊔

k∈N
fk

Qk
is an extensionof f .Corollary 7.13. The fun
tion h =

⊔

k∈N
fk

Qk
is an extension of f .Proof. By Lemma 7.11, we have f(x) ∈ h({x}) and Lemma 7.12 shows that

h({x}) is a singleton set.We have now shown how to 
onstru
t approximations whi
h satisfy twoof the three 
riteria needed to put our theory to work. We now turn to thelast item and give an estimate on the 
onvergen
e speed of the fk
Qk

to f . Inthe proof, we 
ompare an upper approximation u(α) ⊒ f(α) with a lowerapproximation l(α) ⊑ fk
Qk

(α), for a given re
tangle α. The next lemma isa major stepping stone for establishing an upper approximation of f . If were
all the de�nition of fk
Qk

, we see that the width of the right hand side ofthe step fun
tion α ց {m(α)} ⊕ (K · 2−k + L · w(α)) only depends on thewidth of α. Hen
e given β ∈ IR, it does not su�
e to 
onsider a minimalen
losure R(Q) ∋ α ≪ β to �nd an upper bound for fk
Qk

(β). Instead we27
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xFigure 3: Approximations asso
iated with g(x, y, k) = (x, y).need to 
onsider all en
losures that have the same width as the minimalen
losure. This situation is illustrated for f(x, y) = g(x, y, k) = (x, y) inFigure 7.2, where the dots indi
ate the grid points given by Qk. Note that
f(kQk

)+1 (β) = g(m(α0), k) + K · 2−k + L
2 w(α0) despite the fa
t that α1 is abetter approximation of β.The next lemma a

ounts for this situation and gives a lower bound forthe upper fun
tion asso
iated with fk

Qk
.Lemma 7.14. Suppose Q ∈ P[−K,K] and k ∈ N. Then, for all i = 1, . . . , nand all α ∈ I[−K,K]n,

(fk
Q)+i (α) ≥ min{fi(m(α′)) | α′ ⊑ α,w(α′) = w(α)} +

L

2
w(α)where (fk

Q)+i is the upper fun
tion asso
iated with the i-th 
omponent of fk
Q.Che
k indi
es.Proof. Throughout the proof, we �x 1 ≤ i ≤ n. First note that

{α′ ⊑ α | w(α′) = w(α)} = {α+(ρ1, . . . , ρn) | 0 ∈ ρi and w(αi)+w(ρi) ≤ w(α)}when
e the midpoint set M(α) = m(α′) | α′ ⊑ α,w(α′) = w(α) is given by
M(α) = m(α)+

1

2
([w(α1)−w(α), w(α)−w(α1)]×· · ·×[w(αn)−w(α), w(α)−w(αn)]).We �rst show that

f+
i (m(β)) +

L

2
w(β) ≥ min{fi(x) | x ∈ M(α)} +

L

2
w(α)for all β ⊑ α. Suppose β is given. In 
ase m(β) ∈ M(α) there is nothing toshow, and the 
laim follows from w(β) ≥ w(α). Now assume m(β) /∈ M(α).28



For an arbitrary x ∈ [−K,K]n, we write ‖M(α)−x‖ = infy∈M(α) ‖y−x‖for the least distan
e between x and any point in the set M(α). Hen
e ourassumption is ‖M(α) − m(β)‖ > 0. Pi
k any x ∈ M(α) s.t. ‖M(α) −
m(β)‖ = ‖x −m(β)‖ and let j ∈ {1, . . . , n} be su
h that ‖M(α) −m(β)‖ =
‖x − m(β)‖ = |xj − m(β)j | (re
all that ‖ · ‖ denotes maximum norm).We now 
laim that w(βj) ≥ w(α) + 2‖M(α)−m(β)‖. To see this, re
allthat x ∈ M(α) and ‖x−m(β)‖ is minimal, and we have two 
ases, owing tothe des
ription of the set M(α) above:Case 1: m(β)j < xj = m(α)j −

1
2 (w(α) − w(αj))Case 2: m(αj) + 1

2(w(α) − w(αj)) = xj < m(β)j .We only treat the �rst 
ase, as the se
ond is symmetri
, so assume that
m(β) < xj . If β = [b−1 , b+

1 ] × · · · × [b−n , b+
n ], we have xj − 1

2(b+
j + b−j ) =

xj − m(β)j = ‖M(α) − m(β)‖, when
e
b−j = 2xj − 2‖M(α) − m(β)‖ − b+

j

≤ 2m(α)j − (w(α) − w(αj)) − 2‖M(α) − m(β)‖ − a+
j

= a+
j + a−j − w(α) + a+

j − a−j − a+
j − 2‖M(α) − m(β)‖

= a+
j − w(α) − 2‖M(α) − m(β)‖where we have used β ⊑ α to obtain a+

j ≤ b+
j in the se
ond line. For thesame reason, and using the last estimate, we now have

w(βj) = b+
j − b−j

≥ a+
j − a+

j + w(α) + 2‖M(α) − m(β)‖whi
h implies our 
laim w(βj) ≥ 2‖M(α) − m(β)‖.Using this fa
t, as a 
onsequen
e of the 
hoi
e of x we now have
fi(m(β)) +

L

2
w(β) = fi(m(β)) − fi(x) + fi(x) +

L

2
w(β)

≥ −L‖x − m(β)‖ + fi(x) +
L

2
(w(α) + 2‖M(α) − m(β)‖)

= fi(x) +
L

2
w(α)

≥ min{fi(x) | x ∈ M(α)} +
L

2
w(α)whi
h 
on
ludes the proof of our �rst statement. We now show the lemma.As fk

Q =
⊔

β∈R(Q) g(m(β), k) ⊕ (K · 2−k + L
2 w(β)) it su�
es to show that

gi(m(β), k) + K · 2−K +
L

2
w(β) ≥ min{fi(x) | x ∈ M(α)} +

L

2
w(α)29



for all β ≪ α. But this now follows easily:
gi(m(β), k) + K · 2−k +

L

2
w(β) ≥ fi(m(β)) +

L

2
w(β)

≥ min{fi(x) | x ∈ M(α)} +
L

2
w(α)using our �rst result and the fa
t that β ⊑ α.We obtain the following immediate 
orollary, whi
h we use in the estimateof the 
onvergen
e speed to give am upper bound on h(α).Corollary 7.15. Suppose (Qk) is an in
reasing sequen
e of partitions and

h =
⊔

k∈K fk
Qk
. Then h+

i (α) ≥ min{fi(m(α′)) | α′ ⊑ α,w(α′) = w(α)} +
L
2 w(α) for all 1 ≤ i ≤ n.Using the last 
orollary as an upper bound for the value of h, we 
anformulate and prove a statement on the 
onvergen
e speed as follows:Proposition 7.16. Suppose (Qk) is an in
reasing sequen
e of partitions with
|Qk| ≤

K
L
· 2−k and h =

⊔

k fk
Qk
. Then d(h, fk

Qk
) ≤ 8K · 2−k.Proof. We show that d(h(α), fk

Qk
(α)) ≤ 8K · 2−k for all α ∈ I[−K,K]n. Sosuppose α ∈ I[−K,K]n is given and 1 ≤ i ≤ n. By 
ompa
tness of α and
ontinuity of f , we 
an �nd α′ ⊑ α with w(α′) = w(α) s.t.

fi(m(α′)) = min{fi(m(α′′)) | α′′ ⊑ α,w(α′′) = w(α)}.By Corollary 7.15 we have
h+

i (α) ≥ fi(m(α′)) +
L

2
w(α′) (2)(note w(α) = w(α′)). As |Qk| ≤ K ·2−k, we 
an �nd β ≪ α′ with d(α′, β) ≤

2|Qk| = 2K
L
· 2−k. By de�nition of fk

Qk
, we have

g(m(β), k) ⊕ (K · 2−k +
L

2
w(β)) ⊑ fk

Qk
(α)hen
e

(fk
Qk

)+i (α) ≤ gi(m(β), k) + K · 2−k +
L

2
w(β). (3)
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Combining equations (2) and (3) we obtain
(fk

Qk
)+i (α) − h+

i (α) ≤ gi(m(β), k) + K · 2−k +
L

2
w(β) − fi(m(α′)) −

L

2
w(α′)

≤ fi(m(β)) + 2K · 2−k +
L

2
(w(β) − w(α′))

≤ L · ‖m(β) − m(α′)‖ +
L

2
d(α′, β) + 2K · 2−k

≤ Ld(α′, β) + 2K · 2−k

≤ 2L|Qk| + 2K · 2−k

≤ 4K · 2−kwhere we have used Lemma 2.3 in line 3 and 4 of the estimate. Simi-larly one shows that h−
i (α) − (fk

Qk
)−i ≤ 4K · 2−k, and we 
on
lude that

d(hi(α), (fk
Qk

)i(α)) ≤ 8K ·2−k whi
h implies the 
laim as i was arbitrary.In summary, we have the following theorem, whi
h shows, that the ap-proximations satisfy all the 
onditions dis
ussed at the beginning of these
tion.Theorem 7.17. Suppose (Qk) is an in
reasing sequen
e of partitions with
|Qk| ≤

K
L
· 2−k and let h =

⊔

k∈N
fk

Qk
. Then1. h is an extension of f2. h satis�es an interval Lips
hitz 
ondition with Lips
hitz 
onstant L3. d(u, uk) ≤ 8K · 2−kfor arbitrary k ∈ N.This shows, together with the results of Se
tion 7.1, that we 
an build alibrary for approximating ve
tor �elds in the domain theoreti
 sense.In 
onjun
tion with Theorem 5.6 and Theorem 6.12 we obtain a frame-work for solving initial value problems, whi
h is based on proper data types,and 
an therefore be dire
tly implemented on a digital 
omputer. Moreover,working with rational or dyadi
 numbers, the speed of 
onvergen
e 
an forthe �rst time also be guaranteed for implementations of our te
hnique.A
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