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Abstract

We present a domain-theoretic version of Picard’s theorem for solv-
ing classical initial value problems in R™. For the case of vector fields
that satisfy a Lipschitz condition, we construct an iterative algorithm
that gives two sequences of piecewise linear maps with rational co-
efficients, which converge, respectively from below and above, expo-
nentially fast to the unique solution of the initial value problem. We
provide a detailed analysis of the speed of convergence and the com-
plexity of computing the iterates. The algorithm uses proper data
types based on rational arithmetic, where no rounding of real numbers
is required. Thus, we obtain an implementation framework to solve
initial value problems, which is sound and, in contrast to techniques
based on interval analysis, also complete: the unique solution can be
actually computed within any degree of required accuracy.

1 Introduction

We consider the initial value problem (IVP) given by the system of differen-
tial equations

Ui(x) = vi(y1, ... yn), vi(0)=0 (it=1,...,n) (1)

where the vector field v : O — R" is continuous in a neighbourhood O C R"
of the origin, and we look for a differentiable function y = (y1,...,yn) :
[—a,a] — R", defined in a neighbourhood of 0 € R, that satisfies (1). By
a theorem of Peano there is always a solution [9, page 19]. Uniqueness of
the solution is guaranteed, by Picard’s theorem, if v satisfies a Lipschitz
condition. The question of computability and the complexity of the initial
value problem has been studied in different contexts in computable analy-
sis [13, 3, 8, 15, 20, 18, 6].



On the algorithmic and more practical side, standard numerical packages
for solving TVP’s try to compute an approximation to a solution with a
specified degree of accuracy. Although these packages are usually robust,
their methods are not guaranteed to be correct and it is easy to find examples
where they output inaccurate results [14].

Interval analysis [17] provides a method to give upper and lower bounds
for the unique solution in the Lipschitz case with a prescribed tolerance,
and has been developed and implemented for analytic vector fields [19, 1].
In the interval analysis approach, arithmetic operations are performed on
intervals, and outward rounding is applied if the resulting interval endpoints
are not machine representable. While this strategy guarantees soundness, i.e.
containment of the exact result in the computed interval, one has in general
no control over the rounding, which can produce unduly large intervals. As
a consequence, for an implementation of the framework for solving IVP’s
based on interval analysis, one cannot in general guarantee completeness,
that is, actual convergence to the solution. For the same reason, one has no
control over the speed of convergence.

Domain theory [4] presents an alternative technique, based on proper
data types, to produce a provably correct solution with any given degree of
accuracy. Using the domain of Scott continuous interval valued functions
on a compact interval, we define a domain theoretic Picard operator, whose
least fixed point contains any solution of the IVP. When the vector field
is Lipschitz, the solution is unique and we construct an iterative algorithm
that gives two sequences of piecewise linear maps with rational coefficients,
which converge, respectively from below and above, exponentially fast to
the unique solution of the initial value problem. Since the data types for
representing the piecewise linear maps with rational coefficients are directly
representable on a digital computer, no rounding of real numbers is required.
As a consequence, the implementation of the domain theoretic approach is
also complete, that is, we can guarantee the convergence of the approximat-
ing iterates to the solution of the IVP also for the implementation. This
property is not present in any other approach to validated solutions of dif-
ferential equations. Furthermore, as a result of the data types we use, we
can give estimates for the speed of convergence of the approximating iterates,
which are still valid for an actual implementation of our algorithm.

This simplifies the earlier treatment [10], which used a domain for C!
functions [11] and, at each stage of iteration, required a new approximation
of the derivative of the solution. The new treatment is much more similar
to the classical theorem in that it gives rise, in the Lipschitz case, to fast
convergence of the approximations to the solution.



We discuss two different bases to represent approximations to the solu-
tions of the IVP, namely the piecewise linear and the piecewise constant func-
tions with rational coefficients. Using piecewise linear functions, we avoid
the computation of rectangular enclosures of the solution, and we therefore
reduce the wrapping effect, a well known phenomenon in interval analysis.
This comes at the expense of an increase in the size of the representation of
the approximations to the solution. Using the base consisting of piecewise
constant functions, we show that the order of the speed of convergence to
the solution remains unchanged, while the time and space complexity for the
representation of the iterates is much reduced.

Our approach relies on approximating the vector field with a sequence of
(interval valued) step functions, which converge exponentially fast to an in-
terval extension of the vector field. We discuss two techniques for obtaining
such sequences. First, we show how to compose two sequences of approx-
imations such that the composition of the approximations still converges
exponentially fast. Our second technique is based on a function which com-
putes the values of the vector field to an arbitrary degree of accuracy, and
we show how this gives rise to step functions with the desired properties.

A prototypical implementation using the GNU multi precision library [2]
shows that the resulting algorithms are actually feasible in practice, and we
plan to refine the implementation and compare it in scope and performance
with existing interval analysis packages like AWA [1]. Of course we have
to bear in mind that floating point arithmetic used by interval software is
executed on highly optimised processors, whereas the rational arithmetic
needed for our implementation is performed by software.

2 Preliminaries and Notation
For the remainder of the paper, we fix a continuous vector field
v=(v1,...,0): [-K,K]" = [-M,M]"

which is defined in a compact rectangle containing the origin and consider the
IVP given by Equation (1). Note that any continuous function on a compact
rectangle is bounded, hence we can assume, without loss of generality, that
v takes values in [—M, M]™.

We construct solutions y : [—a,a] — R"™ of Equation (1) where a > 0
satisfies aM < K. This will guarantee that the expression v(y) is well
defined, since M is a bound for the derivative of y. We consider the n-
dimensional Euclidean space R™ equipped with the maximum norm ||z| =



max{|z1],...,|xn|}, as this simplifies dealing with the Lipschitz conditions,
which we introduce later. Approximations of real numbers live in the interval
domain

IR = ({[a,b] | a,b € R,a < b} U{R},C) withaC 8 B C a

ordered by reverse inclusion; the way below relation is given by a < § iff
B C a°, where (-)° denotes the interior of a set. For n > 1, the domain
IR™ is isomorphic to the domain of n-dimensional rectangles {ay X -+ X ay, |
a; € IR for all 1 <i<n}, and we do not distinguish between these two
presentations. For a rectangle R C R", the subset {S € IR" | § C R}
of rectangles contained in R is a sub-domain of IR™, which is denoted by
IR. The powers IR" of the interval domain and the sub-domain IR, for a
rectangle R, are continuous Scott domains. If o, a™ € R" with o < oz;L for
all 1 <i < n, we write [@~,at] for the rectangle [a],a]] x -+ x [a;,, at].
Similarly, if f : X — IR" is a function, we write f = [f~, f] if f(z) =
[f~(z), fT(z)] for all z € X.

The link between ordinary and interval valued function is provided by
the notion of extension. If R C R™ is a rectangle, we say that g : IR — IR"
is an extension of f: R — R™ if

g}, {an}) = {f (21, wn)}

for all x € R. Note that every continuous function f : R — R™ has a
canonical maximal extension If defined by

If ={f1,...,Ifn) : IR — IR" with If;(S) = [inf f;(x), sup fi(z)],

zes zeS

where S € IR is a rectangle.This extension is maximal in the set of interval
valued functions extending f. It is easy to see that If is continuous w.r.t.
the Scott topology on IR and IR"™ if f is continuous w.r.t. the FEuclidean
topology.

We consider the following spaces for approximating the vector field and
the solutions to the IVP:

o V=I-K K|"— I[-M,M]", the set of continuous functions w.r.t. the
Scott topology on I[— K, K] and I[—M, M]".

e § = [—a,a] — I[-K,K]", the set of continuous functions w.r.t. the
Euclidean topology on [—a,a] and the Scott topology on I|—K, K"

That is, we will be concerned with spaces of functions both with interval
and real input. For later reference, we include the following lemma, which
links both presentations.



Lemma 2.1. Suppose P € IRF,Q € IR! and consider the following opera-
tions:

E:(P—1IR)> fr .| | f(z) € AP - IR)
TEQ

Z:(IP —-1IR)> fr Ax.f({z}) € (P —1IR)
Then both T and £ are continuous, Zo& =id andid E £ o 7.

For the proof, see [12]. In order to measure the speed of convergence, as
well as for technical convenience in the formulation of some of our results,
we introduce the following notation, where X is an arbitrary set:

e For arectangle a = [a™,a™], w(a) = ||a™ —a~|| denotes the width of «.
If f: X — IR"is a function, w(f) = sup,cx w(f(z)) is the width of f. In
the special case where X C R, we let wq (f) = sup,ex e~ *®lw(f(x)) and call
wq (f) the weighted width of f w.r.t. the weight «; this gives w(f) = wo(f).

e Given two rectangles a = [a™,a"| and 3 = |87, 87], their distance is
given by d(a, 8) = maxi<i<y o) — 5|+ |a; = 7| if ot = (af ..., a5f)
and similarly for o=, 3%,87. If f,g : X — IR"™ are functions, d(f,g) =
sup,cx d(f(x),g(z)) is the distance between f and g.

In the above, the weight a will enable us to show that the domain the-
oretic Picard operator is a contraction. Considering g as approximation to
f, we understand the distance d(f,g) as measure of the quality of the ap-
proximation. We mention two simple lemmas linking distance, width and
weighted width.

Lemma 2.2. Letf : [—a,a] — IR™. Then wo(f) < w(f) < e®@wq(f) for all
a > 0.

Lemma 2.3. For a rectangle v = [y~ ,7"] denote the midpoint of v by
m(y) = %(yf + 97 s ) and suppose «, 8 € IR™ are compact.

(i) |lm(a) = m(B)|| < 3d(a, )
(i1) 0 < w(f) —w(a) < d(e,3) in case B C a.

The proof of both lemmas is a straightforward calculation, and therefore
omitted.



3 The Picard Operator in Domain Theory

In the classical proof of Picard’s theorem on the existence and uniqueness of
the solution of the initial value problem (1) one defines an integral operator
on C°[—a,a] by

Y= AT, /Oxv(y(t))dt

(with the integral understood componentwise), which can be shown to be
a contraction for sufficiently small a provided v satisfies a Lipschitz condi-
tion [16]. An application of Banach’s theorem then yields a solution of the
initial value problem. We now define the domain-theoretic Picard operator
for arbitrary Scott continuous vector fields u : I|- K, K|" — I[-M, M]"™ and
focus on the special case where u is an extension of a classical function later.
As in the classical proof, the Picard operator is an integral operator, and we
therefore introduce the integral of interval-valued functions.

Definition 3.1. Suppose f = [f~, fT] : [-a,a] — I[-M, M] is Scott con-
tinuous. For = € [—a,a] we let

/Oxf(t)dt = [/OJC fo(t)dt, /Om £7(1)dt]

where o = sgn(z) is the sign of z and fO(t) = 0. If f = (f1,...,fn) :
[—a,a] — IR™, we let [ f(t)dt = ([; fi(t)dt,. .., [5 fa(t)dt).

Note that, if we integrate in the positive x-direction, then f~ contributes
to the lower function associated with the integral of f and f* contributes to
the upper function. If we integrate in the negative x-direction, the roles of
f~ and fT are swapped to ensure that the lower value of integral is indeed
smaller than the upper value. As we are going to assume that the vector field
which defines the IVP is bounded, it suffices to consider bounded interval
valued functions only. The following shows that our definition is meaningful:

Lemma 3.2. Suppose f :[—a,a] — I[—M, M] is Scott continuous.

(i) f~ and fT are Lebesque integrable

(ir) [y f(t)dt € IR for all x € [—a,al.
Proof. For Scott continuous f, the functions f~, f* are lower (resp. upper)
semi continuous, hence measurable, and integrability follows from bounded-

ness. If o = sgn(x), then of~7 <o f? and [ f~7(t)dt < [ f(t)dt follows
from the definition of the ordinary integral. O



The following lemma shows that integration is compatible with taking
suprema.

Lemma 3.3. Let f : [—a,a] — IR™.

(i) The function \z. [ f(t)dt is Scott continuous.
(it) The function [ : f— Xa. [ f(t)dt is Scott continuous.

Proof. We assume n = 1 from which the general case follows. If g(z) =
Jo f(t)dt, then g=,g* are continuous, hence g is Scott continuous. The
second statement follows from the monotone convergence theorem. U

The domain theoretic Picard operator can now be defined as follows:

Definition 3.4. Suppose u € V. The domain theoretic Picard operator
P, :8 — 8 is defined by P,(y) = Az. [ u(y(t))dt.

Lemma 3.5. P, is well defined and continuous.

Proof. That P,(y) € S follows from our assumption aM < K. Lemma 3.3
shows that P,(y), for y € S, and P, itself are continuous. O

In the classical proof of Picard’s theorem, one constructs solutions of
IVP’s as fixpoint of the (classical) Picard operator. The domain theoretic
proof replaces Banach’s theorem with Klenee’s theorem in the construction
of a fixed point of the (domain theoretic) Picard operator. Unlike the clas-
sical case, where one chooses an arbitrary initial approximation, we choose
the function yo = At.[— K, K]™ with the least possible information as initial
approximation.

Theorem 3.6. Let u € V and yp11 = Pu(yr). Then y = | |,y yr satisfies

Proof. Follows immediately from Kleene’s Theorem, see e.g. [4, Theorem
2.1.19]. O

The bridge between the solution of the domain-theoretic fixpoint equa-
tion and the classical initial value problem is established in the follow-
ing proposition, where Sf : [—a,a] — I[-K, K]" denotes the function
e A{f(z)}, for f:[—a,a] — [-K, K]".

Proposition 3.7. Suppose u is an extension of v and y is the least fixpoint
of P,.

(i) If f : [—a,a] — [- K, K]" solves (1) then y T Sf.



(ii) If y has width 0, then y~ = y™ solves (1).

Proof. For the first statement, note that Sf is a fixed point of P, and y is
the least such. The second statement follows from the fundamental theorem
of calculus; note that ¥y~ = y™ implies the continuity of both. O

The previous proposition can be read as a soundness result: Every so-
lution of the IVP is contained in the least fixpoint of the domain theoretic
Picard operator.

4 The Lipschitz Case

We can ensure the uniqueness of the solution of the IVP by requiring that the
vector field satisfies an interval version of the Lipschitz property. Recall that
for metric spaces (M,d) and (M’,d'), a function f : M — M’ is Lipschitz,
if there is L > 0 such that d'(f(z), f(2)) < L -d(z,z2) for all z,z € M. The
following definition translates this property into an interval setting, see also
[17].

Definition 4.1 (Lipschitz Condition). Suppose v : I|- K, K|"* — I[-M, M]".
Then w is interval Lipschitz if there is some L > 0 such that w(u(a)) <
L-w(a) for all @ € I|-K, K]™. In this case, L is called an interval Lipschitz
constant for u.

The following Proposition describes the relationship between the classical
notion and its interval version.

Proposition 4.2. Forv: [-K,K|" — [-M, M]", the following are equiva-
lent:

(i) v is Lipschitz
(ii) The canonical extension of v satisfies an interval Lipschitz condition

(iii) v has an interval Lipschitz extension.

Proof. If v is Lipschitz, then the canonical extension of v satisfies an interval
Lipschitz condition. Now assume that u is an extension of v which is interval
Lipschitz, and let z = (z1,...,2,),y = (Y1,---,yn) € [~ K, K]™. Let R(x,y)
denote the rectangle oy X - - - X o, where o; = [x4, y;] in case z; < y; and a; =
[y, z;] otherwise. Since u extends v, we have v(z) € u({z}) C u(R(z,y)) by
monotonicity. Hence u; (R(z,y)) < v(z) < uf (R(z,y)) for all 1 < i < n.



Similarly u; (R(z,y)) < v;(y) < v (R(z,y)). Now

Jo(a) = o)l = max fli(z) - vi(y)]|

< max u;L(R(ﬂ:,y)) —u; (R(z,y))

1<i<n

= lrgzagcn w(ui(R(z,y)))

< L-w(R(z,y))
= Lz —yl],

as required. O

Note that every interval Lipschitz function induces a total and continuous
classical function.

Corollary 4.3. Suppose u is interval Lipschitz. Then w(u(a)) = 0 whenever
w(a) = 0, and the induced real valued function u, given by u(x) = z iff
u({x}) = {2z} is continuous.

We now turn to show that the least fixpoint of the Picard operator as-
sociated with u has indeed width zero, if u satisfies an interval Lipschitz
condition, and we assume for the remainder of the paper that u is an exten-
sion of v that satisfies an interval Lipschitz condition with Lipschitz constant
L. In order to show that the least fixpoint of P, has width zero, we use the
weighted width, introduced in Section 2. The following lemma is the essen-
tial step for showing that the least fixpoint of the domain theoretic Picard
operator actually has width 0 on the whole of [—a, a].

Lemma 4.4. Let y € S. Then wa(Py(y)) < Lwa(y).

Proof. For the i-th component P,(y); of P,(y) we calculate

wa(Puly) = su ]e i / PO (@) - v (y(e))da
[—a,a]
< L-wa(y)- Sup e at'/ e“dx
[—a,a]

L
< —
> awa(y)

as we had to show. O



Recall that yo(z) = [—K, K]", hence w(yp) = wa(yo) = 2K for all o > 0.
This gives us the following for the (not weighted) width of the iterates y.

Proposition 4.5. Let ypi1 = Pyu(yx) for all k € N. Then wor(yr) <
27" war (yo). In particular, w(yg) < 27% - €2 w(yg) and | | ey yr 15 real
valued and a solution of (1).

Proof. The first statement follows by induction from Lemma 4.4 (Pick o =
2L). The second claim is immediate from Lemma 2.2 and Proposition 3.7.
O

In order to be able to compute the integrals, we now consider approx-
imations to wu; the basic idea is that every continuous vector field can be
approximated by a sequence of step functions (i.e. functions taking only
finitely many values), which allows us to compute the integrals involved in
calculating the approximations to the solution effectively. The key prop-
erty which enables us to use approximations also to the vector field is the
continuity of the mapping u — P,.

Lemma 4.6. The map P:V — S — S, u— P,, is continuous.

Proof. Follows from continuity of v and the monotone convergence theorem.

0

This continuity property allows us to compute solutions to the classical
initial value problem by means of a converging sequence of approximations
of u.

Proposition 4.7. Suppose u = | | cyur and ypp1 = Py, (yx) for k € N.
Then y = | ey yn satisfies y = Py(y).

Proof. Follows from Theorem 3.6 and continuity of u — P, by the interchange-
of-suprema law (see e.g. [4, Proposition 2.1.12]). O

We have seen that the Lipschitz condition on the vector field ensures that
the approximations of the solution converge exponentially fast (Proposition
4.5). In presence of approximations of the vector field, the speed of conver-
gence will also depend on how fast the vector field is approximated. The
following estimate allows to describe the speed of convergence of the iterates
if the vector field is approximated by an increasing chain of vector fields.

Lemma 4.8. Letu' Cuandy € S. Then wa(Py (y)) < Zwa(y)+Ld(u, ).

10



Proof. For the i-th component P, (y); we calculate using Lemma 4.4

wa(Pu(y)) = sup e / o(t) - u' " y(x)) — ' (y(x))da
t€[0,1] 0

< sup el /0 o(t) - (u® (y(x)) — u="O(y(x)) + d(u, o ))da

t€[—a,al
< sup e “Mw(Py(y) + sup e - jt] - d(u,u)

te[—a,al te[—a,al
L 1

< Zwe —d(u, v

< L) + = dfw.)

where the estimate for the second term follows from f/(1/a) =0, f”(1/a) <
0 for f(z) =z -e . O

Using this estimate, we can now prove fast convergence if the approxi-
mations of the vector field converge fast, too.

Proposition 4.9. Suppose u = | |, oy ur with d(u,uy) < 27" L-e-w(yo) and
Ykt1 = Py, (yx) for all k € N. Then war,(yr) < 27% - war(yo); in particular
w(yy) <277 - el w(yg) and | ey Yk is real valued and solves (1).

Proof. We just show that war(yx) < 27" - wyr(yo) by induction on k; the
second claim then follows from Lemma 2.2. There is nothing to show for the
case k = 0. For the general case, we invoke Lemma 4.8 and obtain

1 1
< = _
war, (Y1) < 4w4L(?/k) + 4Led(u’uk)
1 1
< 12 Fwar(yo) + 12 Fwar, (o)
— 2_(k+1)w4L(yo)
as required. O

Given a representation of u in terms of step functions, Proposition 4.7
gives rise to an algorithm for computing the solution of the initial value prob-
lem and Proposition 4.9 provides an estimate on the speed of convergence.
Our next goal is to show that this algorithm can be restricted to bases of
the respective domains, showing that it can be implemented without loss
of accuracy. We then give an estimate of the algebraic complexity of the
algorithm.

11



5 An Implementation Framework for Solving IVP’s

We now show that the algorithm contained in Proposition 4.7 is indeed
implementable by showing that the computations can be carried out in the
bases of the domains. In fact, we demonstrate that every increasing chain
of (interval valued) vector fields (ug)gen, where each uy is a base element
of V, gives rise to a sequence of base elements of S, which approximate the
solution and converge to it.

In view of the algorithm contained in Proposition 4.7, we consider simple
step functions as base of V and piecewise linear function as base of S. Note
that in this setup, the domain-theoretic Picard operator computes integrals
of piecewise constant functions, hence produces piecewise linear functions.

We begin by introducing the bases which we are going to work with.

Definition 5.1. Let D C R and assume that —a = a9 < - < a; = a
with ag,...,ax € D, fo,..., 0, € I|-K, K|}, and v1,...,v € I[-M, M|},
where Rp denotes the set of rectangles, which are contained in R and whose
endpoints lie in D. We consider the following classes of functions:

(i) The class SE of piecewise D-linear functions [—a,a] — I[-K, K]",
f = (a(]a"'vak)\L (ﬁo,"' aﬁk)

where f(z)* = 5]{1 + ;1(2:1 (ﬁji - ﬁjil) for € [aj_1,a;]. Every com-

ponent of a D-linear function is piecewise linear and takes values in D at
ap,ai ...,ag.

(ii) The set S§ of piecewise D-constant functions [—a,a] — I[-K, K]",

Bi x € [ai—1,a;]°

_ C —
f_(a(]a"'aak)\ (ﬁla--'aﬁn)ax {ﬁlll—lﬁl z=a;and 1 <i<k

where M denotes the greatest lower bound and (-)? is interior relative to the
interval [—a,a]. The components of a D-constant function assume constant
values in D, which only change at ag, a1, ..., ax.

(iii) The set Vp of finite suprema of step functions I|— K, K|"* — I[- M, M]",

F= | BiNa— | [l l1<i <k B <a).

1<j<k

(iv) For any f as above, we put N(f) = k and call it the complezity of
representation of f.

12



Since we will not consider different representations for the same func-
tions, we allow ourselves to blur the distinction between a function and its
representation as step function. The last section shows, how to obtain a
representation of u as a supremum of step functions.

If D is dense in R, it is well known that the sets defined above are bases
of their respective superspaces:

Proposition 5.2. Suppose D C R is dense and —a,a € D.
(i) Vp is a base of V.
(ii) S and Sk are bases of S.

We can now show that the Picard operator P, associated with a simple
step function w restricts to an endofunction on the set of basis elements of
the space of linear step functions SIL).

Lemma 5.3. Suppose D C R is a subfield, w € Vp and y € SIL). Then there
is f € 8§ with N(f) < 3N (y)N(u) and uoy(z) = f(z) for all but finitely
many x € [—a,a]. Moreover, f can be computed in time O(N (u)*N (y)).

Proof. First suppose u = v \, [ consists of a single step function and
y = (ag,...,ax)\EB with 3 = (Bo,...,B:). In every open interval a =
(aj—1,a;), the components of y are linear, hence the interval can be parti-
tioned as a = (a;_1,l;] U (I, h;) U [h, a;) such that § < y(z) iff x € (1}, hy)
on (aj_1,a;). Computing I; and h; can be done by computing, for each
component y;, the intersection of yfE with the constant function )\xﬂii.
Since D C R is a subfield, [;,h; € D. On the interval (a;j_1,a;) we obtain
u(y(x)) = (aj-1,1j, hyj, o)\ ([ K, K]*, 7, [ K, K]") for all z € [a;-1,a;] \
{aj—1,1j, hp,a;}. Since this computation can be done in constant time, we
can compute f € S such that f(z) = u(y(x)) for all but finitely many z in
time O(N (y)). We obtain M (u o y) < 3N (y), since every interval (a;_1,a;)
is sub-divided into at most three parts.

In case u = |_|1§j§17j \. Bj, we have uoy = |_|1§j§l(’7j N Bj) 0 y.
For every j, we can compute f; with f;(z) = (y; \, J;)(y(x)) for all but
finitely many y in O(N(y)) algebraic steps. Hence sup; f; can be per-
formed in O(N (u)?-N(y)) steps, taking into account that we need O(N (u)?)
steps to compute the right ordering of points in every subinterval (a;_1, a;),
j = 1,...,k. Note that the interval (—a,a) is subdivided into at most
3N (y)N (u) parts. We have u o y(z) = f(x) for all but finitely many x by

construction. O

Now that we have a basis representation of w oy, it’s easy to obtain a
basis representation of P,(y) by integration. Note that computing integrals

13



can be performed over a base defined over a subring of R; we will make use
of this fact later.

Lemma 5.4. Suppose D C R is a subring and let g(z) = foxf(x)dx for
f€85. Then g € S5 and N'(g) = N'(f). Furthermore, g can be computed
in ON(f)) steps.

Proof. Let f = (ag,...,ax) S (B1,...,B:). First suppose 0 € {ag,...,a;}.
Every component f; = [f;, f;"] consists of a pair of piecewise constant func-
tions. On every interval [a;_1,a;], for 1 < j < k, the integral of fzi can
be computed by multiplying the width of the interval by the value of fzi,
hence g € Sf) since D C R is a subring. This computation takes constant
time, hence g can be computed in time O(N(f)), and clearly N'(g) = N(f).

In case 0 ¢ {ag,...,ar} we insert 0 as additional partition point and ob-
tain N'(g) = N(f) + 1 and g can be computed in ON(f) + 1) = ON(f))
steps. [l

Summing up, we have the following estimate on the algorithm induced
by Proposition 4.7 if we compute over the base of piecewise linear functions.

Proposition 5.5. Suppose D C R is a subfield, u € Vp and y € Sk.

(i) Pu(y) € Sp

(i) Pu(y) can be computed in time O(N (u)’N (y)).

(ii1) N(Pu(y)) € ON (N (y)).
Proof. Lemma 5.4 provides us with f = (ag,...,ax)\¢ (B1,...,B) with
N(f) € ON(u) - N(y)) such that uoy = f for all but finitely many argu-

ments. Hence - -
Pua) = [ wonii= [ s
and the claims follow from Lemma 5.4. O

We can now summarise our results for computing with piecewise linear
functions as follows:

Theorem 5.6. Suppose D C R is a subfield and u = | | oy ur with uy € Vp.
If ypy1 = Puy, (yx), then

(i) yr € S5 for all k € N
(1) y = Upen v has width 0 and y= = y* solves the IVP (1).
(i) wiyk) € O if d(u,uy) € 02

14



Since the elements of SIL) for D = Q, the set of rational numbers, can
be represented faithfully on a digital computer, the theorem — together with
Proposition 3.7 — guarantees soundness and completeness also for implemen-
tations of the domain theoretic method. We also provide a guarantee on the
speed of convergence, since the condition d(u,u;) € O(27%) can always be
ensured by the library used to construct the sequence (uy) of approximations
to the vector field. The construction of sequences (uy)ken that approximate
u is discussed in Section 7.

Also, computing over the base of piecewise linear functions eliminates the
need of computing rectangular enclosures at every step of the computation.
This partially avoids the well-known wrapping effect of interval analysis, but
it comes at the cost of a high complexity of the representation of the iter-
ates. The next section presents an alternative, which uses piecewise constant
functions only.

6 Computing with Piecewise Constant Functions

We have seen that the time needed to compute P,(y) is quadratic in the
complexity of the representation of w and linear in that of y. However, the
complexity of the representation of P,(y) is also quadratic in general. This
implies that

N (yr+1) € ON (uo) ... N (uk)),

if u = | |penyur and yp1 = Pu, (Yi)-

The blow up of the complexity of the representation of the iterates is
due to the fact that each interval on which y is linear is subdivided when
computing w o y, since we have to intersect linear functions associated with
y with constant functions induced by u, as illustrated by the left diagram in
Figure 1.

This can be avoided if we work with piecewise constant functions only.
The key idea is to transform the linear step function P,(y) into a simple step
function before computing the next iterate: on every interval, replace the up-
per (linear) function by its maximum and the lower function by its minimum.
We now develop the technical apparatus which is needed to show that the
approximations so obtained still converge to the solution. Technically, this
is achieved by making the partitions of the interval [—a, a] explicit.

Definition 6.1 (Partitions). Suppose x < y are real numbers.

(i) A partition of [x,y] is a finite sequence (qo,...,qr) of real numbers
such that © = g9 < -+ < qr = y; the set of partitions of [z,y] is denoted by
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%1 oo 3

Figure 1: Subdivision of Intervals (left) and Flattening (right)

Plz,y]. If D C R then Pplz,y] C Plx,y] is the subset of partitions of [z, y]
whose points lie in D.

(ii) The norm |Q]| of a partition @ = (qo,...,qx) is given by |Q| =
maxi<i<k ¢ — ¢i—1 and N(Q) = k is the size of Q.

(iii) A partition @ = (qo,-.-,qx) refines a partition R = (rg,...,r;) if
{ro,.--sm} € {qo,--.,qx}; this is denoted by R C Q.

We are now ready for the definition of the flattening functional, which
transforms piecewise linear functions to piecewise constant functions.

Definition 6.2. Suppose Q € P|—a,a]. The flattening functional Fg : S —
S associated with @ is defined by

Fo(f) = (g0 ae) NS (v, 7k)

where v; =[{f(x) | z € [gi—1,qi]} for 1 <i < k.

Note that, geometrically speaking, Fiyp computes an enclosure of semi
continuous functions into rectangles, as illustrated by the right diagram in
Figure 1.

Lemma 6.3. Fg is well defined and continuous.

Proof. Since every basis element of Sﬂg is continuous, Fg(f) is continuous
for every f € S, hence Fy is well defined. Continuity follows from Lemma
2.1.

O

In order to reduce the complexity of the representations of the iterates, we
want to apply the flattening functional at every step of the computation. The
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following lemma is the stepping stone in proving that this does not affect
convergence to the solution. In the context of partitions, we understand
increasing in terms of the refinement order C, introduced in Definition 6.1.

Lemma 6.4. Suppose (Qk)ren 1S an increasing sequence of partitions with
limg oo [Qr| = 0. Then | | Fo,, = id.

Proof. This follows from the fact that for every upper semi continuous func-
tion f : [—a,a] — R and every decreasing chain ag C a3 C ... of com-
pact intervals containing = with w(ay) — 0 as k& — oo one has f(z) =
infrensup{f(z) | x € ax}, and the dual statement for lower semi continuous
functions. O

The last lemma puts us in the position to show that the application of
the flattening functional at every stage of the construction does not affect
the convergence of the iterates to the solution.

Proposition 6.5. Suppose u = | |,,cy Uk, (Qk)ren @5 an increasing sequence
of partitions with limy_,« |Qr| = 0 and yp+1 = Fo,(Pu,(yx)). Then y =
ren yn satisfies y = Py(y).

Proof. Follows from the interchange-of-suprema law (see e.g. [4, Proposition
2.1.12]), the previous lemma and Proposition 4.7. O

We now show that the speed of convergence is essentially unaffected if
we apply the flattening functional at every stage of the computation. This
result hinges on the following estimate:

Lemma 6.6. Suppose g = ([97,911],---,[9n,95]) : [~a,a] — IR™ is Scott
continuous and, for all i € {1,...,n}, either gf or f; satisfies a Lipschitz
condition with Lipschitz constant N. If Q is a partition, then w(Fg(g)) <
w(g) + N|Q|.

Proof. Fix 1 < i < n, suppose & € [—a,a] and choose two consecutive
partition points ¢~,qt of @Q such that z € [¢~,¢"]. Since upper (resp.
lower) semi continuous functions attain their suprema (resp. infima) on
compact intervals, there are x—, 2% € [¢~, ¢"] such that, for all x € [¢~, ¢"],
we have F(g); () = g; () and FQ(g)j(x) = g;r(x+), where Fp(g); =
[Fo(9);, Fo(g)] denotes the ith component of Fg(g). If we assume w.l.o.g.

17



that g;L is Lipschitz continuous, we obtain for z € [¢—, ¢ "] that

Fo(9)f (2) — Folg); (z) = |g;f (z%) — g7 (27)]
<|g («) = g;F (@) + g (27) — g; (27|
< Nlz™ — 27|+ w(g)
< N|Q| + w(g)

as required. O

For the weighted width, we have the following corollary:

Corollary 6.7. Under the hypothesis of the previous lemma, wq(Fg(g)) <
wa(g) + N|Q|

Proof. We have wa(Fg(g)) = supse(_q,q ¢ *Mw(Fo(g)) < supye(_q,q ¢ (w(g)+
NIQI) < walg) +2N1Q| 0

The last corollary allows us to estimate the width of an iterate, computed
after applying the flattening functional.

Lemma 6.8. Let v/ € V withv' T u, y € S and Q € Pl—a,a]. Then
wa(FQ(Pu()) < Zwaly) + d(u,v) + £|Q.

Proof. By definition, the upper and lower functions associated with the com-
ponents of g = P,/(y) satisfy a Lipschitz condition with Lipschitz constant
M ; we have % < M by assumption. The claim follows from Lemma 4.8 and
Corollary 6.7. O

We can now establish the main result of this section: Applying the flat-
tening functional at every step of the computation does not affect the order
of the speed of convergence.

Proposition 6.9. Suppose u = | |jcnur with d(u,u;) < 27k . eLw(y),
(Qk)ken is an increasing sequence in Pl—a,a] with |Qr] < 27F - Sw(yo)
and Y1 = Fg,(Pu,(y)) for all k > 0. Then wer(yx) < 2 %wer(yo); in
particular w(yg) < 277 e5Lw(yo) and | |,en yi s real valued and solves (1).

Proof. We just show the first statement; the second follows by Lemma 2.2.
There is nothing to show for k = 0. For the inductive step we have by
Lemma 6.8

1 1
wer,(FQ, (Puy,(Yx))) < Zwer(yo) + G2 Fwer (yo) + oK

IN
[N NN

27" (wer (o) + weL (o) + weL (Y0))
(k1)

I
DO

weL (Yo)
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as required. O

We now show that the application of the flattening functional at every
step avoids the blow up of the size of the iterates. As a consequence, the al-
gorithm with flattening can be implemented using a base of functions defined
over a dense subring of R, such as the dyadic numbers.

Lemma 6.10. Suppose D C R is a subring and QQ € Pp[—a,a]. Then Fg
restricts to a mapping SIL) — Sg.

Proof. Suppose f = (ag,...,a) s (Bo,...,0) € S5 and Q = (g0, ..., qx) €
Ppl—a,al]. If Fo(f) = (qo,- .- )N (71, ..., 7k), then the vertices of the ;

are elements of the set Ulgiﬁn{f;r(q(])’ fz‘i (a(])’ cee fz+(QI€)a fif (ak)}a which
can be computed from the vertices of the ;s without forming quotients. [I

The complexity of the algorithm underlying Theorem 6.5 over the bases
Vp and 8§ can now be summarised as follows; recall that A'(Q) = k is the
size of a partition Q = (qo, ..., qk)-

Proposition 6.11. Suppose D C R is a subring, y € Sg and u € Vp.

(i) Fo(Pu(y)) € 8§ and N (F(Pu(y))) = N(Q)
(ii) Fo(Py(y)) can be computed in time O(max(N (u) - N (y),N(Q))).

Proof. For the first statement, assume that y = (ag,...,ax)\¢ (B1,..., k)
and v = | |j<;<% N\ 6. Then uoy = (ao,... Lap)NS (BL,...,B.), where
B, = U | B < v} Clearly uoy € S§. Computing u oy takes
O(N (u)-N(y)) steps, since we have to match every step function in v against
every fB,. By Lemma 5.4 we have that P,(y) € S5, and finally F(P,(y)) €
S$ by Lemma 6.10. Computing P, (y) from uoy takes time O(N (u) - N (y))
and Fo(P,(y)) can be computed in O(max(N (u)-N(y), N (Q)) steps, hence
the bound on the complexity. O

Note the complexity reduction compared to Proposition 5.5 which is
achieved since P,(f) does not changes its value in the subintervals [a;, a;11].
We can now summarise our results concerning soundness and completeness
of the algorithm with flattening as follows:

Theorem 6.12. Suppose D C R is a subring and u = | |, o ur with uy, € Vp.
Furthermore, assume (Qp)rken 1S an increasing sequence of partitions with

limg o0 [Qk| = 0 and y11 = Fi, (Pu, ) (Yk)-
(i) yr € S for all k € N and N (yx) = N (Qx)-
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(i) y = Upen vk has width 0 and y~ = y* solves the IVP (1)
(iii) w(yr) € O27F), if both d(u,uz) and |Qx| € O(27F).

Note that, for a subring R C Q of the rational numbers, the elements of
Vp and Sg can be faithfully represented on a digital computer. Hence we can
guarantee both soundness and completeness also for an implementation of the
domain theoretic approach where furthermore the representation complexity
of the iterates are bounded above by the size of the partitions.

7 Approximating Continuous Functions

The theory outlined in the previous sections depends on an interval vector
field w, given in terms of a supremum u = | |,y ur of step functions. In
order to apply our theory, the following assumptions must be satisfied:

1. u is an extension of the classical vector field v
2. u needs to satisfy an interval Lipschitz condition
3. The interval distance d(u,uy) needs to converge exponentially fast.

This section shows, how to obtain a sequence (ug)gen which satisfies the
above assumptions. We discuss two techniques for constructing approxima-
tions of vector fields: first, we discuss compositions of approximations and
then we show, how to construct interval valued approximations from a func-
tion that computes the value of the vector field to an arbitrary degree of
accuracy.

7.1 Composition of Approximations

In this section we assume that we have two functions g : I[-K, K|" — IR™
and f : IR™ — I[—M, M]|", approximated by sequences (g,) and (f,), and
show, how use these approximations to compute approximations of f o g,
subject to the conditions laid down at the beginning of the section.

We first treat the case where f is the maximal extension of a classical
function, which needs some auxiliary lemmas. The first lemma is needed in
the proof that a maximal extension of a classical Lipschitz continuous func-
tion satisfies Lipschitz condition of the form d(If(«),If(8)) < C-d(a, ).

Lemma 7.1. Suppose «, 3 € IR™ are compact with o C (3. Then, for all
y € « there is some z € [ with ||y — z|| < d(a, §).
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Proof. Suppose a = [a],a]]x X [a,,,a;] and B = [b],b]] x -+ x [b,,b}].

no n»’n

Ify=(y1,...,yn) € and i € {1,...,n}, we have one of the three cases:

a; <y; <b; <bf <af: Putting z; = b, ensures |y; — z| < by —a; <
d(e, B).

a; <b; <bf <y <af: Similarly, for z; = b} we have |y; — 2| < af — b

d(ev, 3).

a; <b; <y; <bf <af: For z; = y; we have |y; — 2| = 0 < d(a, B).

1 g

IN

Hence for z = (z1,...,2,) we have ||y — z|| = maxi<i<p |2 — yi| < d(e, B)
and z € 3. O

Using the lemma above, we can now give an estimate on the distance
between the upper functions, evaluated at two intervals.

Lemma 7.2. Suppose R C R" is a rectangle and f : R — R satisfies a
Lipschitz condition with Lipschitz constant L. Then (If)™(a) — (If)T(8) <
L-d(a,B) for all compact o, 8 € IR with o C 3.

Proof. By continuity of f and compactness of «, (3, there are y, € a and
yg € f with (If)"(a) = f(ya) and (If)"(8) = f(yp). Using the previous
lemma with y = y, we find z € g with ||y — z|| < d(«, 5). Clearly f(z) <

fys) and f(ya) — f(ys) < f(Ya) — f(2) < L|ya — 2|| < L-d(a, 3) by choice
of z. O

As a corollary, we obtain a version of Lipschitz continuity for maximal
extensions.

Corollary 7.3. Suppose R C R"™ is a rectangle and f : R — R™ satisfies
a Lipschitz condition with Lipschitz constant L. Then d(If(«),1f(3)) <
2Ld(a, B) for all compact o C 3 € IR.

Proof. For the i-th component f; of f we have, by the previous lemma and its

dual, that d(Ifi(a),1fi(8)) = (If)" () = @)™ (8) + Af)~(8) = (1)~ (a) <
2L - d(a, ). O

We are now in the position to prove the promised result on composi-
tionality of approximations; in particular we establish a guarantee of the
convergence speed of composed approximations.

Theorem 7.4. Suppose R C R™ is a compact rectangle, f, : IR — IR! and
gr : I[- K, K|" — IR are monotone sequences of Scott continuous functions
satisfying the following requirements:
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1. f =g fn and g = |, gk are extensions of classical functions with f
mazimal

2. d(fa fk)ad(gagk) € O(Q_k)

3. Both f and g are interval Lipschitz.

Then f o g is interval Lipschitz and the extension of a classical function;
moreover d(fx o gr, f o g) € O(27F).

Proof. Only the statement on the convergence speed requires proof. We de-
note the interval Lipschitz constant of f by L and assume w.l.o.g. that [ = 1;
the general result then follows by taking the maximum over the components
of f resp. fr. Now the claim follows from the following calculation, where
a € I[-K, K|" is arbitrary:

d(f o g(a), fr o gr(a)) = fi (ge(@)) = F(9(a)) + f(9(a)) = fi (gu(e)
= fil (gr()) = fF(gr()) + f T (gr(@)) — f(g(a))+
F7(g(a)) = f7 (gr(@) + f (gr(@) — f;; (gr(@))
< d(f, fie) +d(f(g(e)), f(gr(@)))
< d(f, f) +2Ld(g, gx) € O(27k)
where we have used Corollary 7.3 with « replaced by gx(«) and § = g(a) in
the last estimate. O

The proof of the theorem hinges on the fact that f is the maximal exten-
sion of a classical continuous function. The following example shows, that
this hypothesis is necessary by showing that the assertion on the convergence
speed may fail if f is not maximal.

Example 7.5. This example shows, that if f =| |, fx and g = ||, gx, and

both (fx) and (gx) converge exponentially fast, then this is not necessarily

true for the composition g o f, even if both f and g are interval Lipschitz.
Consider the continuous function h : [0, 1] — [0, 2] given by

_ 1
h(x): 1 ld(%) r <1
1 r=1

where 1d is the dyadic logarithm (logarithm w.r.t. base 2). Clearly h is
differentiable in [0,1), and elementary analysis shows that 0 < h'(z) <

=5 < 2 for x € [0,1), hence h(z) < 2z for all € [0,1]. Therefore the
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Scott continuous function f(a) = [0, h(w(«))] satisfies an interval Lipschitz
condition w(f(a)) < 2w(«). Putting fr, = f, we clearly have that d(f, fi) <
27 k. Note that f is a non-maximal interval extension of the constant zero
function.

For g(a) = [0,w(a)] and gi(a) = [0,w(a) + 27%71] we also have that
g is interval Lipschitz and d(g,gr) = 27%71 < 27%. We show that the
composition fjogg only converges linearly fast to fog. Consider the interval
ap = [0,1 — 27" Then d(fi o gk, f o g) > d(fulgr(ew)), f(g(ar))) =
h(w(gr (o)) —h(w(g(ag))) = h(1)—h(1—-27%"1) = L ‘showing that function
composition does not preserve exponential convergence speed.

The preceding example shows, that we need to work with maximal exten-
sions if we want the composition of two approximating sequences to preserve
the convergence speed. However, this imposes no limitation on our approach,
since every chain of approximating functions can be converted to a chain ap-
proximating the maximal extension. This is demonstrated in the following
lemmas. The first lemma shows how we need to modify the approximating
functions in order to obtain the maximal extension in the limit. We restrict
ourselves here to the case of functions with codomain R; for the general case,
our construction has to be repeated for each component.

Lemma 7.6. Suppose [ = | |;c; : IR" — IR is an extension of a function
g :R" = R Ifm(fi) = MN3.[,ep fil{z}) then | |;c;m(fi) is the mazimal
extension of g.

Proof. By Lemma 2.1, we have | |;.;m(f;) = m(|;c; fi), hence for all

B € IR™ we obtain Uie[ m(fi)(B) = m(l_lief(f@-)(ﬁ)) = ﬂmeﬁ Llie[ fi{z}) =
[N.ep 9(x), which shows that | |;.; m(f;) is the maximal extension of g. [

The next lemma shows, how we can construct the functions m(f) from
f,if f is a step function.

Lemma 7.7. Suppose f = | |j<;<;. Bi \ v + IR" — IR and let cov(B) =
[JC [k} | B C Upy B} for 8 € TR™. Then [Tes/({a}) =
|—|J6cov(ﬁ) |—|jeJ K

Proof. Let 8 € IR™ and pick, for every = € 3, it(z) € {1,...,k} such that
W;(x) = min{w;.L |j=1,...,kand z € B9}. We write i* () = {i*(z) | = €

(3. Then it (/) is finite and | J ) Bj covers 3. Therefore

jeit(z

([T [ = € 70" = max{y] |5 € it B)} = ([ v 1J € (®H™

z€ef
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Figure 2: Two elements of R(f), indicated by solid lines

Similarly, if 1 < i (2) < k is such that v;-(,) = max{y; |z € ﬁjo.} and
i~ (B) ={i (=) | = € B} we have that

(][ 1= € 821 = minfo; [jei- ()} = (s 15 ei- (BN

€S

Combining the last two equations, we obtain

LI o= T1 wu [ =00 zes.

Jecov(B) jeJ j€i=(8) jeit(8) z€B
that is, our claim. O

Finally, we show how the function v — || c.ov(y) [ ljes b can be rep-
resented as a step function. This needs the following auxiliary notation:
Assume [ = I_Iizl,...,k B; \\ Vi and suppose that 8; = [(3:)7, (8] x --- x
(Bi)yn, (Bi)f] foralli =1,... k.

We let R;(f) = {[b=,0"] [ b~ <b" and b, 0" € U,y {(3)i, (8)7 }-
In other words, the R; are intervals whose endpoints are projections of the
corners of the 3;’s onto the i-th coordinate axes. Finally R(f) = {a1 x---x
an | ;i € Ri(f) and (a1 x -+ X an)? €Uy _x B7}. This means that R(f)
is the set of rectangles contained in the domain of f, whose endpoints are
intersections of edges of the 3;’s.

Two elements of R(f) for f =[], 550 .7 are shown below.

We are now ready to formulate the last lemma needed to construct ap-
proximations to the canonical extension of classical functions.

Lemma 7.8. Let f = ||,y ;0 . v : IR" — IR. Then m(f) =
Uaer(r) @ N Usecov(ay [ 1jes Vi where cov is as in Lemma 7.7.
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Proof. We split the proof into two parts corresponding to C and 3. Recall
from Lemma 7.7, we knot that m(f)(8) = U ccov() [ ljes Vi
Suppose now that 5 € IR” and a < 3, € R(f). Then cov(a) C cov(5),

hence |—|JECOV(;6) I_leJ Vi C |—|JECOV(;6) I_leJ Vs Therefore

LI U Twe U [y =mho.

R(f)oakB Jecov(a) jJEJ Jecov(B) jEJ

We now establish the reverse relation. Let ag = | {a € R(f) | o < B}
Then o € R(f) and ap < [ as R(f) is finite. Note that cov(ag) = cov(5)
by construction. Therefore

m(HB= L [Mu= U [Mwe U U [

Jecov(B) jeJ Jecov(ap) jEJ R(f)da<kB Jecov(a) j€J

which concludes the proof. [l

Note that the left rectangle in Figure 7.1 cannot be covered by 31, G2, O3,
hence yields the value R € IR.

7.2 Construction of Approximations

Now that we have seen how to compose approximations of interval vector
fields compositionally, this section outlines a technique for constructing these
approximations from scratch, given a function that computes the vector field
up to an arbitrary degree of accuracy.

More precisely, we assume that g = (g1,...,9,) : [-K,K]"NQ" x N —
Q" is given such that ||f(z) — g(z, k)|| < K -27%. On a practical level, this
allows us to compute approximations for a large class of functions. Moreover,
the existence of a computable function g with the above property is equivalent
to the computability of v, and the results of this section show, that we obtain
approximations by step functions for every computable vector field v.

The idea of the construction is as follows: Given arectangle o C [—-K, K|",
we compute the value of g(m(a), k) of the midpoint m(«) of o up to an accu-
racy of K -27%. In order to accommodate for the this inaccuracy, we extend
this point value into a rectangle by extending it with K -2~k into the direction
of each coordinate axis. This rectangle is then subsequently extended using
the Lipschitz constant of f, resulting in a rectangle that contains all values
f(z) for x € a. The formal definition is as follows, where we assume for the
rest of the section, that f : [-K, K|" — [—K, K|" satisfies a Lipschitz condi-
tion with Lipschitz constant L and ¢ : [-K, K|"NQ" x N — [-K, K]"NQ"
is such that ||g(z, k) — f(z)|| < K -27k.
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Definition 7.9. For a rectangle a = [a],a]] X -+ X [a,,,a;], we denote

n»rn
+ - _
the midpoint of a by m(a) = (452 ,...,‘J%“"). For A € R and z =
(z1,...,oy) € R, the cube with centre x and width \ is given as
rBA=[x1 = ANz1+A,..., [xn — A\ zn + A

Given a partition @ = (qo, ..., qx) of [-K, K] we denote by

R(Q) = {lgir» gjs] x -+ X [gir 4] |0 < i < < k1 <1< nj

the set of rectangles with corners in (). Finally, we define the family of
functions fg by

fg = |_| a\, g(m(a), k)@ (K -27F + L w())

a€R(Q)
We call the fé’s the approximation functions associated with Q.

It is easy to see that the approximation functions associated with a par-
tition are sound in the sense that they give enclosures of the approximated
functions.

Lemma 7.10. Let Q € P[-K, K] and k € N. Then f§ C1f.

Proof. We have to show f(z) € fg(a) for all « € I[-K, K]" and all z € a.

This follows from x € g(m(3), k)@ (K-27%+L-w(B)) for all 3 < a, 3 € R(Q)
by taking suprema.

So suppose 3 € R(Q) and § < a. To see that f(z) € {g(m(8),k)}& (K
27F 4 L.w(p)) it suffices to show that || f(z)—g(m(B), k)| < K-27F+L-w(B)
for all z € . But this follows from

1f (@) — g(m(B8), B)[| < [[f(x) = f(m(B)[| + || f(m(B)) — g(m(B), k)|
<L-|lz —m(@)| + K -27F
<L-wB) +K-27"

where the estimate ||z — m(8)|| < w(pB) follows from f < a and z € . O

Before we give guarantees on the quality of approximations constructed
using this method, we need to check that the approximations constructed
actually form an increasing chain. This is the content of the following lemma,
whose straightforward proof is omitted.
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Lemma 7.11. Suppose RC Q € P[—K, K] and j <i. Then fé C fé.

We now establish one of the criteria for approximations laid down at
the beginning of the section, i.e. that they converge to a function which is
interval Lipschitz. We recall the order on partitions and their norm from
Definition 6.1.

Lemma 7.12. Suppose (Qk)keN S an increasing sequence of partitions with
limy oo [Qr| = 0. Then | ey fgk satisfies an interval Lipschitz condition
with constant L.

Proof. Pick a € I[-K, K]". For any given € > 0, pick &k > 0 s.t. |Qx] < §
and K - 27% < e. By choice of k, we find 3 € R(Qg) with 8 < «a and
w(B) < w(a)+e. Wenow have 8\, {g(m(8), k)}& (K -2~ +L-w(B)) C f&,
and o < 3, whence

w(| ] £5, (@) < w(f, ()

keN
<K-27F 4 Low(B)
<K-27F4 L. (w(a)+e)
<1+ L)e+L- wa).

As € > 0 was arbitrary, we conclude that w(| |,cy fék(a)) <L -wl. 0O

As immediate corollary, we obtain the fact that | |, oy fgk is an extension

of f.
Corollary 7.13. The function h = | | oy fgk s an extension of f.

Proof. By Lemma 7.11, we have f(z) € h({z}) and Lemma 7.12 shows that
h({z}) is a singleton set. O

We have now shown how to construct approximations which satisfy two
of the three criteria needed to put our theory to work. We now turn to the
last item and give an estimate on the convergence speed of the fgk to f. In
the proof, we compare an upper approximation u(a) 3 f(«) with a lower
approximation [(«) C fgk(oz), for a given rectangle o. The next lemma is
a major stepping stone for establishing an upper approximation of f. If we
recall the definition of fgk, we see that the width of the right hand side of
the step function a \, {m(a)} ® (K -27% + L - w(a)) only depends on the
width of a. Hence given § € IR, it does not suffice to consider a minimal
enclosure R(Q) 3 a < [ to find an upper bound for fék(ﬁ) Instead we
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Figure 3: Approximations associated with g(z,y, k) = (z,y).

need to consider all enclosures that have the same width as the minimal
enclosure. This situation is illustrated for f(z,y) = g(x,y,k) = (z,y) in
Figure 7.2, where the dots indicate the grid points given by Q. Note that
f(’ék)f(ﬂ) = g(m(ap), k) + K - 27% + Lw(ap) despite the fact that oy is a
better approximation of 3.

The next lemma accounts for this situation and gives a lower bound for
the upper function associated with fgk

Lemma 7.14. Suppose Q € P[—K, K] and k € N. Then, foralli=1,...,n
and all o € I[-K, K",

(F5)F (@) = min{fi(m(a')) | o € 0 w(ef) = w(@)} + Zu(a)

where (fé)j‘ 1s the upper function associated with the i-th component of fé
Check indices.

Proof. Throughout the proof, we fix 1 < i < n. First note that

{o/ Calw(d)=w(@)}={at(p,-...pa) | 0 € p; and w(e)+w(p;) < w(e)}

whence the midpoint set M («) = m(d/) | & C a,w(a/) = w(a) is given by
M(a) = m(a)+5 ([wlar)~w(@), w(a)~wla)]x- - x[w(an) —w(a), w(a)~wlan)))-
We first show that

FHm(B) + Su(B) > min{fi(z) | = € M(@)} + Fu(a)

for all § C «. Suppose [ is given. In case m(3) € M(«) there is nothing to
show, and the claim follows from w(3) > w(«). Now assume m(3) ¢ M(«).
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For an arbitrary = € [~ K, K", we write || M (a) — x| = inf cpr) [y — 2|
for the least distance between z and any point in the set M («). Hence our
assumption is |M(a) — m(B)|| > 0. Pick any z € M(«a) s.t. | M(a) —
m(B)|| = ||z — m(B)|| and let j € {1,...,n} be such that ||M(a) — m(3)| =
|z —m(B)|| = |x; — m(B);] (recall that || - || denotes maximum norm).

We now claim that w(5;) > w(a) + 2||M (o) — m(B)||. To see this, recall
that € M («) and ||z —m(8)|| is minimal, and we have two cases, owing to
the description of the set M («) above:

Case 1: m(8); < 2; = m(a); — L(w(a) - w(ay)
Case 2: m(aj) + 3(w(a) — w(ay)) = z; < m(B);.

We only treat the first case, as the second is symmetric, so assume that

m(B) < z;. If B = [by,bf] x -+ x [b;,b}], we have z; — (b +b;) =

ni»’n

2; —m(8); = |M(a) — m(B)], whence
by = 2; — 2| M(a) - m(B)] - b
< 2m(a); — (w(a) — w(ay)) — 2 M(a) = m(B)]| — af

ot +_ o=
=aj ta; —w(a)+aj —a; —aj —2[|M(a) —m(B)]

= a —w(a) — 2|M(a) — m(B)]|

where we have used 0 C « to obtain aj < bj in the second line. For the
same reason, and using the last estimate, we now have

w(B;) = b — by
> af —af +w(a) +2|M(a) - m(B)]

which implies our claim w(3;) > 2||M () — m(B)||.
Using this fact, as a consequence of the choice of z we now have

Fim(8)) + gw(B) = fi(m(8)) — fla) + filx) + Zw(d)
> Lz~ m(@)] + fi(w) + 5 wle) + 2 M(@) ~m(B)])
= filx) + u(0)
> min{fi(z) | = € M()} + 5 w(a)

which concludes the proof of our first statement. We now show the lemma.
As fg = Ugerq) 9(m(B), k) & (K - 27% + Ly(B)) it suffices to show that

gi(m(8), )+ K <27 4 Zu(8) > min{fi(x) |« € M(0)} + Z(a)
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for all § < a. But this now follows easily:

L

Gi(m(B), k) + K 27+ Zu(8) > fim(B) + gu(d)

. L
> min{fi(x) | = € M(0)} + 5 w(a)
using our first result and the fact that 5 C a. O

We obtain the following immediate corollary, which we use in the estimate
of the convergence speed to give am upper bound on h(«).

Corollary 7.15. Suppose (Q) is an increasing sequence of partitions and
h = Uper fék Then hi (o) > min{fi(m(a')) | & C a,w(d) = w(a)} +
Lw(a) forall 1 <i<n.

Using the last corollary as an upper bound for the value of h, we can
formulate and prove a statement on the convergence speed as follows:

Proposition 7.16. Suppose (Qy) is an increasing sequence of partitions with
Qrl <& -27F and h =, f&, - Then d(h, f§ ) < 8K -27F.

Proof. We show that d(h(a),fgk () < 8K -27F for all @ € I[- K, K]™. So
suppose a € I[—K, K|" is given and 1 < ¢ < n. By compactness of o and
continuity of f, we can find o C « with w(a/) = w(a) s.t.

fitm(a")) = min{f;(m(a”)) | " € o, w(a") = w(a)}.

By Corollary 7.15 we have

L
(@) 2 film() + Su(a!) @)
(note w(a) = w(c’)). As |Qr| < K -27%, we can find 3 < o with d(o/, 8) <
2|Qx| = 2% .ok, By definition of fgk, we have

gm(B),K) & (K -2 + Tu(B) C 15, (@)

hence
(75,0 (@) < gulm(B), k) + K - 27 + Zu(p). Q
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Combining equations (2) and (3) we obtain
(75,07 (0) = B (0) < galm(B), k) + K - 27+ Zu() — Film(a')) —

< Fim(B)) + 2K <27 + £ (w(B) — w(e))

w(a)

< L m(B) — m(a')| + o/, §) + 2K -2°F
< Ld(o/, B) 4+ 2K -27*

< 2L|Qy| 42K -27F

< 4K -27F

where we have used Lemma 2.3 in line 3 and 4 of the estimate. Simi-
larly one shows that h; (a) — (fgk); < 4K - 27% and we conclude that

d(hi(a), (fék)l(a)) < 8K -27% which implies the claim as i was arbitrary. [

In summary, we have the following theorem, which shows, that the ap-
proximations satisfy all the conditions discussed at the beginning of the
section.

Theorem 7.17. Suppose (Qk) is an increasing sequence of partitions with
Q| < % -27% and let h = | ey f5,- Then

1. h is an extension of f
2. h satisfies an interval Lipschitz condition with Lipschitz constant L
3. d(u,uy) < 8K -27F

for arbitrary k € N.

This shows, together with the results of Section 7.1, that we can build a
library for approximating vector fields in the domain theoretic sense.

In conjunction with Theorem 5.6 and Theorem 6.12 we obtain a frame-
work for solving initial value problems, which is based on proper data types,
and can therefore be directly implemented on a digital computer. Moreover,
working with rational or dyadic numbers, the speed of convergence can for
the first time also be guaranteed for implementations of our technique.
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