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We introduce the notion of weakly hyperbolic iterated function
system (IFS) on a compact metric space, which generalises that of
hyperbolic IFS. Based on a domain-theoretic model, which uses the
Plotkin power domain and the probabilistic power domain respectively,
we prove the existence and uniqueness of the attractor of a weakly
hyperbolic IFS and the invariant measure of a weakly hyperbolic IFS
with probabilities, extending the classic results of Hutchinson for
hyperbolic IFSs in this more general setting. We also present finite algo-
rithms to obtain discrete and digitised approximations to the attractor
and the invariant measure, extending the corresponding algorithms for
hyperbolic IFSs. We then prove the existence and uniqueness of the
invariant distribution of a weakly hyperbolic recurrent IFS and obtain an
algorithm to generate the invariant distribution on the digitised screen.
The generalised Riemann integral is used to provide a formula for the
expected value of almost everywhere continuous functions with
respect to this distribution. For hyperbolic recurrent IFSs and Lipschitz
maps, one can estimate the integral up to any threshold of accuracy.
] 1996 Academic Press, Inc.

1. INTRODUCTION

The theory of iterated function system has bee an active
area of research since the seminal work of Mandelbrot [32]
on fractals and self-similarity in nature in late seventies and
early eighties [25, 2, 13, 29, 30, 18, 5]. The theory has found
applications in diverse areas such as computer graphics,
image compression, learning automata, neural nets, and
statistical physics [7, 8, 1, 6, 11, 29, 30, 10, 9].

In this paper, we will be mainly concerned with the basic
theoretical work of Hutchinson [25] and a number of algo-
rithms based on this work. We start by briefly reviewing the
classical work. See [19] for a comprehensive introduction
to iterated function systems and fractals.

1.1. Iterated Function Systems

An iterated function system (IFS ) [X; f1 , f2 , ..., fN] on a
topological space X is given by a finite set of continuous
maps fi : X � X (i=1; ..., N ). If X is a complete metric space
and the maps fi are all contracting, then the IFS is said to
be hyperbolic. For a complete metric space X, let HX be the
complete metric space of all non-empty compact subsets of
X with the Hausdorff metric dH defined by

dH(A, B)=inf[$ | B�A$ and A�B$],

where, for a non-empty compact subset C�X and $�0, the
set

C$=[x # X | _y # C } d(x, y)�$]

is the $-parallel body of C.
A hyperbolic IFS induces a map

F : HX � HX, (1)

defined by F(A)= f1(A) _ f2(A) _ } } } _ fN(A). In fact, F is
also contracting with contractivity factor s=maxi si ; where
si is the contractivity factor of fi (1�i�N ). The number s
is called the contractivity of the IFS. By the contracting
mapping theorem, F has a unique fixed point A* in HX,
which is called the attractor of the IFS, and we have

A*= lim
n � �

F n(A) (2)

for any non-empty compact subset A�X [25]. The attrac-
tor is also called a self-similar set.

For applications in graphics and image compression [1,
6, 21], it is assumed that X is the plane R2 and that the maps
are contracting affine transformations. Then, the attractor
is usually a fractal; i.e., it has fine, complicated and non-
smooth local structure, some form of self-similarity, and,
usually, a non-integral Hausdorff dimension. A finite algo-
rithm to generate a discrete approximation to the attractor
was first obtained by Hepting et al. [24]. (See also [14,
33].) It is described in Section 2.3.

1.2. IFS with Probabilities

There is also a probabilistic version of the theory that
produces invariant probability distributions and, as a result,
coloured images in computer graphics. A hyperbolic IFS
with probabilities [X; f1 , ..., fN ; p1 , ..., pN] is a hyperbolic
IFS [X; f1 , f2 , ..., fN], with X a compact metric space, such
that each fi (1�i�N) is assigned a probability pi with

0<pi<1 and :
N

i=1

pi=1.

Then, the Markov operator is defined by

T : M1X � M1X (3)
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on the set M1X of normalised Borel measures on X. It takes
a Borel measure + # M1X to a Borel measure T(+) # M1X
given by

T(+)(B)= :
N

i=1

pi +( f &1
i (B))

for any Borel subset B�X. When X is compact, the
Hutchinson metric rH can be defined on M1X as follows [2]:

rH(+, &)=sup {|X
f d+&|

X
f d& | f : X � R,

| f (x)& f ( y)|�d(x, y), \x, y # X= .

Then, using some Banach space theory, including Alaoglu's
theorem, it is shown that the weak* topology and the
Hutchinson metric topology on M1X coincide, thereby
making (M1X, rH) a compact metric space. If the IFS is
hyperbolic, T will be a contracting map. The unique fixed
point +* of T then defines a probability distribution on X
whose support is the attractor of [X; f1 , ..., fN] [25]. The
measure +* is also called a self similar measure or a multi-
fractal. When X�Rn, this invariant distribution gives dif-
ferent point densities in different regions of the attractor,
and using a colouring scheme, one can colour the attractor
accordingly. A finite algorithm to generate a discrete
approximation to this invariant measure and a formula for
the value of the integral of a continuous function with
respect to this measure were also obtained in [24]; they are
described in Sections 3.3 and 5, respectively.

The random iteration algorithm for an IFS with
probabilities [13, 1] is based on the following ergodic
theorem of Elton [18]. Let [X; f1 , ..., fN ; p1 , ..., pN] be an
IFS with probabilities on the compact metric space X and
let x0 # X be any initial point. Put 7N=[1, ..., N] with
the discrete topology. Choose i1 # 7N at random such that
i is chosen with probability pi . Let x1= fi1(x0). Repeat
to obtain i2 and x2= fi2(x1)= fi2( fi1(x0)). In this way,
construct the sequence (xn) n�0 . Suppose B is a Borel sub-
set of X such that +*(#(B))=0, where +* is the invariant
measure of the IFS and #(B) is the boundary of B. Let
L(n, B) be the number of points in the set [x0 , x1 , ..., xn]
& B. Then, Elton's Theorem says that, with probability one
(i.e., for almost all sequences (xn) n�0 # 7|

N), we have

+*(B)= lim
n � �

L(n, B)
n+1

.

Moreover, for all continuous functions g : X � R, we have
the following convergence with probability one,

| g d+*= lim
n � �

� n
i=0 g(xi)
n+1

, (4)

which gives the expected value of g.

1.3. Recurrent IFS

Recurrent iterated function systems generalise IFSs with
probabilities as follows [4]. Let X be a compact metric
space and [X; f1 , f2 , ..., fN] a (hyperbolic) IFS. Let ( pij) be
an indecomposable N_N row-stochastic matrix, i.e.,

v �N
j=1 pij=1 for all i,

v pij�0 for all i, j, and

v for all i, j there exist i1 , i2 , ..., in with i1=i and in=j
such that pi1i2 pi2i3 } } } pin&1in>0.

Then [X; fj ; pij ; i, j=1, 2, ..., N ] is called a (hyperbolic)
recurrent IFS. For a hyperbolic recurrent IFS, consider a
random walk on X as follows. Specify a starting point x0 # X
and a starting code i0 # 7N . Pick a number i1 # 7N such that
pi0j is the conditional probability that j is chosen, and define
x1= fi1(x0). Then pick i2 # 7N such that pi1 j is the condi-
tional probability that j is chosen, and put x2= fi2( fi1(x0)).
Continue to obtain the sequence (xn) n�0 . The distribution
of this sequence converges with probability one to a
measure on X called the stationary distribution of the hyper-
bolic recurrent IFS. This generalises the theory of hyper-
bolic IFSs with probabilities. In fact, if pij=pj is independ-
ent of i then we obtain a hyperbolic IFS with probabilities;
the stationary distribution is then just the invariant measure
and the random walk above reduces to the random iteration
algorithm. The first practical software system for fractal
image compression, Barnsley's VRIFS (Vector Recurrent
Iterated Function System), which is an interactive image
modelling system, is based on hyperbolic recurrent IFSs [6].

1.4. Weakly Hyperbolic IFS

In [15], power domains were used to construct domain-
theoretic models for IFSs and IFSs with probabilities. It was
shown that the attractor of a hyperbolic IFS on a compact
metric space is obtained as the unique fixed point of a con-
tinuous function on the Plotkin power domain of the upper
space. Similarly, the invariant measure of a hyperbolic IFS
with probabilities on a compact metric space is the fixed
point of a continuous function on the probabilistic power
domain of the upper space.

We will here introduce the notion of a weakly hyperbolic
IFS. Our definition is motivated by a number of applica-
tions, for example in neural nets [23, 9, 17], where one
encounters IFSs which are not hyperbolic. This situation
can arise for example in a compact interval X�R
if the IFS contains a smooth map f : X � X satisfying
| f $(x)|�1 but not | f $(x)|<1.

Let (X, d ) be a compact metric space; we denote the
diameter of any set a�X by |a|=sup [d(x, y) | x, y # a]. As
before, let 7N=[1, 2, ..., N] with the discrete topology and
let 7|

N be the set of all infinite sequences i1 i2 i3 . . .(in # 7N for
n�1) with the product topology.

183POWER DOMAINS AND ITERATED FUNCTION SYSTEMS
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Definition 1.1. An IFS [X; f1 , f2 , ..., fN] is weakly
hyperbolic if for all infinite sequences i1 i2 . . . # 7|

N we have
limn � � | fi1 fi2 } } } fin X|=0.

Weakly hyperbolic IFSs generalise hyperbolic IFSs since
clearly a hyperbolic IFS is weakly hyperbolic. One similarly
defines a weakly hyperbolic IFS with probabilities and a
weakly hyperbolic recurrent IFS.

There are two other notions of IFSs with non-contracting
maps in the literature. We compare these with the notion of
weakly hyperbolic IFS in the case of a compact metric space
X. An IFS [X; f1 , f2 , ..., fN] is said to be eventually contract-
ing [21] if there is some k�1 such that the Nk maps
gi1i2 } } } ik= fi1 fi2 } } } fik are contracting for all finite sequences
i1 , i2 , ..., ik # 7k

N of length k. It is easy to see that an even-
tually contracting IFS is weakly hyperbolic as follows. We
can write any n�1 as n=pk+q, where p and q are non-
negative integers with 0�q�k&1. Since ( fi1 fi2 } } } fin X)n�0

is a decreasing sequence of subsets of X, it follows that
| fi1 fi2 } } } fin X| � | gj1 gj2 } } } gjp X | where jm = i(m&1) k+1

i(m&1) k+2 } } } imk for 1�m�p. As gjp
is contracting for any

jp # 7k
N , we conclude that limn � � | fi1 fi2 } } } fin X |=0 and

that an eventually contracting IFS is weakly hyperbolic.
However, a weakly hyperbolic IFS need not be eventually
contracting. This can be seen even for the case of a single
map (N=1) on X=[0, 1]. Let f0 : [0, 1] � [0, 1] be,
say, a twice differentiable map with f0(0)=0, f $0(0)=1
and f "0(x)<0 for all x # [0, 1] (e.g., f0(x)=x(1&x) or
f0(x)=tanh (x)). Then, f0 has a unique weakly attracting
fixed point at x=0 and limn � � f n(x)=0 for all x # [0, 1].
It follows that limn � � | f n

0([0, 1])|=0 and, hence, the IFS
[[0, 1], f0] is weakly hyperbolic. Since ( f n

0)$ (0)=1 for all
n�1, it follows by the mean value theorem that
f n

0 : [0, 1] � [0, 1] is not contracting for any n�1. There-
fore, [[0, 1], f0] is not eventually contracting. In fact, for
any hyperbolic IFS [[0, 1]; f1 , ..., fN], it can be shown that
the extended IFS [[0, 1]; f0 , f1 , ..., fN], where f0 is as
above, is weakly hyperbolic (see Proposition 2.6) but is not
eventually contracting. Therefore, weakly hyperbolic IFSs
generalise eventually contracting IFSs.

An IFS with probabilities [X; f1 , ..., fN ; p1 , ..., pN] is
said to be contracting on average [3] if there is s<1 such
that

`
N

i=1

d( fi (x), fi ( y)) pi�sd(x, h)

for all x, y # X. An eventually contracting IFS (and, hence,
a weakly hyperbolic IFS with probabilities) need not be con-
tracting on average. This can be seen even in the trivial IFS
[[0, 1]; f1] with f1(x)=max(0, (5x�2)&2). This IFS is
clearly not contracting on average, but it is eventually con-
tracting as f 2

1(x)=0 for all x # [0, 1]. We can also add the
map f2: [0, 1] � [0, 1] with f2(x)=(1&x)�2 to obtain the

IFS with probabilities [[0, 1]; f1 , f2 ;1�2, 1�2] which is
easily shown to be eventually contracting (any composition
fi1

fi2 fi3 has contractivity 5�8) but is again not contracting
on average. On the other hand, an IFS which is contracting
on average need not be weakly hyperbolic (and, hence,
need not be eventually contracting). This can be seen by
the IFS with probabilities [[0, 1]; f1 , f2 ; 1�2, 1�2] where
f1(x)=x�3 and f2(x)=min(2x, 1). It is easily seen that for
all x, y # [0, 1] we have

| f1(x)& f1( y)| | f2(x)& f2( y)|� 2
3 |x&y| 2

and, hence, the IFS is contracting on average. However, for
all n�1 we have fn

2([0, 1])=[0, 1] and, therefore, the IFS
is not weakly hyperbolic. Note that this IFS does not have
a unique attractor. In fact, the compact subsets [0, 1] and
[0] are both fixed points of F : H[0, 1] � H[0, 1] with
F(A)= f1(A) _ f2(A). We therefore conclude that IFSs
which are contracting on average represent a totally dif-
ferent class as compared with hyperbolic IFSs.

Since for a weakly hyperbolic IFS, the map F : HX � HX
is not necessarily contracting, one needs a different
approach to prove the existence and uniqueness of the
attractor in this more general setting. In this paper, we will
use the domain-theoretic model to extend the results of
Hutchinson, those of Hepting et al. and those in [15]
mentioned above to weakly hyperbolic IFSs and weakly
hyperbolic IFSs with probabilities. We will then prove the
existence and uniqueness of the invariant distribution of a
weakly hyperbolic recurrent IFS and obtain a finite algo-
rithm to generate this invariant distribution on a digitised
screen. We also deduce a formula for the expected value of
an almost continuous function with respect to this distribu-
tion and also a simple expression for the expected value of
any Lipschitz map, up to any given threshold of accuracy,
with respect to the invariant distribution of a hyperbolic
recurrent IFS.

The domain-theoretic framework of IFS, we will show,
has the unifying feature that several aspects of the theory
of IFS, namely (a) the proof of existence and uniqueness
of the attractor of a weakly hyperbolic IFS and that of
the invariant measure of a weakly hyperbolic IFS with
probabilities or recurrent IFS, (b) the finite algorithms to
approximate the attractor and the invariant measures,
(c) the complexity analyses of these algorithms, and (d) the
computation of the expected value of almost everywhere
continuous functions (or Lipschitz functions) with respect
to these invariant measures, are all integrated uniformly
within the domain-theoretic model.

1.5. Notation and Terminology

We recall the basic definitions in the theory of continuous
posets (poset=partially ordered set).

184 ABBAS EDALAT
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A non-empty subset A�P of a poset (P, C=) is directed if
for any pair of elements x, y # A there is z # A with x, y C= z.
A directed complete partial order (dcpo) is a partial order in
which every directed subset A has a least upper bound (lub),
denoted by � A. A poset is bounded complete if every
bounded subset has a lub.

An open set O�D of the Scott topology of a dcpo is a set
which is upward closed (i.e., x # O 6 x C= y O y # O) and is
inaccessible by lubs of directed sets (i.e., � A # O O _x # A }
x # O). It can be shown that a function f : D � E from a
dcpo D to another one E is continuous with respect to the
Scott topology iff it is monotone, i.e., x C= y(x) C= f ( y) and
preserves lubs of directed sets, i.e., �i # I f (xi)= f (�i # I xi),
where [xi | i # I ] is any directed subset of D. From this it
follows that a continuous function f : D � D on a dcpo D
with least element (or bottom) = has a least fixed point
given by �n�0 f n(=).

Given two elements x, y in a dcpo D, we say x is
way-below y, denoted by xRy, if whenever y C= � A for a
directed set A, then there is a # A with x C= a. We say that
a subset B�D is a basis for D if for each d # D the set A of
elements of B way-below d is directed and d=� A. We say
D is continuous if it has a basis; it is |-continuous if it has a
countable basis. The product of (|-)continuous dcpo's is an
(|-)continuous dcpo in which the Scott topology and the
product topology coincide. An (|-)algebraic dcpo is an
(|-)continuous dcpo with a (countable) basis B satisfying
bRb for all b # B.

For any map f : D � E, any point x # D, any subset A�D
and any subset B�E, we denote, whenever more con-
venient, the image of x by fx instead of f (x), the forward
image of A by fA instead of f (A) and the pre-image of B by
f &1B instead of f &1(B). The lattice of open sets of a
topological space X is denoted by 0(X ). For a compact
metric space X, we denote by McX, 0�c�1, the set of all
Borel measures + on X with +(X )=c.

2. A DOMAIN-THEORETIC MODEL

We start by presenting the domain-theoretic framework
for studying IFSs.

2.1. The Upper Space

Let X be a compact Hausdorff space. The upper space
(UX, $) of X consists of all non-empty compact subsets of
X ordered by reverse inclusion. We recall the following
properties of the upper space, for example, from [15]. The
partial order (UX, $) is a bounded complete continuous
dcpo with a bottom element, namely X, in which the least
upper bound (lub) of a directed set of compact subsets is
their intersection. The way-below relation BRC holds if
and only if B contains a neighbourhood of C. The Scott

topology on UX has a basis given by the collections
ga=[C # UX | C�a] (a # 0(X )). The singleton map

s : X � UX

x [ [x]

embeds X onto the set s(X ) of maximal elements of UX. Any
continuous map f : X � Y of compact Hausdorff spaces
induces a Scott-continuous map Uf : UX � UY defined by
Uf (C )= f (C ); to keep the notations simple we will write Uf
simply as f. If X is in fact a compact metric space, then
(UX, $) is an |-continuous dcpo and has a countable basis
consisting of finite unions of closures of relatively compact
open sets of X. Note that the two topological spaces
(UX, $) and (HX, dH) have the same elements (the non-
empty compact subsets) but different topologies.

Hayashi used the upper space to note the following result.

Proposition 2.1. [22] If [X; f1 , f2 , ..., fN] is an IFS on
a compact Hausdorff space X, then the map

F : UX � UX

A [ f1(A) _ f2(A) _ } } } _ fN(A)

is Scott-continuous and has therefore a least fixed point,
namely,

A*='
n

F n(X )=,
n

F n(X ).

For convenience, we use the same notation for the map
F : HX � HX as in Eq. (1) and the map F : UX � UX above,
as they are defined in exactly the same way. Since the order-
ing in UX is reverse inclusion, A* is the largest compact
subset of X with F(A*)=A*. However, in order to obtain
a satisfactory result on the uniqueness of this fixed point and
in order to formulate a suitable theory of IFS with
probabilities, we need to assume that X is a metric space.

On the other hand if X is a locally compact, complete
metric space and [X; f1 , ..., fN] a hyperbolic IFS, then there
exists a non-empty regular compact set1 A such that
F(A)= f1(A) _ f2(A) _ } } } _ fN(A)�A%, where A% is the
interior of A (see [15, Lemma 3.10]). The unique attractor
of the IFS will then lie in A and, therefore, we can simply
work with the IFS [A; f1 , ..., fN]. In particular, if X is Rn

with the Euclidean metric and si , 0�si<1, is the contrac-
tivity factor of fi (1�i�N), then it is easy to check that
we have F(A)�A, where A is any closed ball of radius R
centred at the origin O with

R�max
i

d(O, fi (O))
1&si

,

185POWER DOMAINS AND ITERATED FUNCTION SYSTEMS
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FIG. 1. The IFS tree.

where d is the Euclidean metric. Therefore, as far as a hyper-
bolic IFS on a locally compact, complete metric space is
concerned, there is no loss of generality if we assume that
the underlying space X is a compact metric space. We will
make this assumption from now on.

Let X be a compact metric space and let [X; f1 , ..., fN] be
an IFS. The IFS generates a finitely branching tree as in
Fig. 1, which we call the IFS tree. Note that each node is a
subset of its parent node and therefore the diameters of the
nodes decrease along each infinite branch of the tree. The
IFS tree plays a fundamental role in the domain-theoretic
framework for IFSs: As we will see, all the results in this
paper are based on various properties of this tree; these
include the existence and uniqueness of the attractor of a
weakly hyperbolic IFS, the algorithm to obtain a discrete
approximation to the attractor, the existence and unique-
ness of the invariant measure of a weakly hyperbolic IFS:
with probabilities, the algorithm to generate this measure
on a digitised screen, the corresponding results for the
recurrent IFSs, and the formula for the expected value of an
almost everywhere continuous function with respect to the
invariant distribution of a weakly hyperbolic recurrent IFS.

We will now use this tree to obtain some equivalent
characterizations of a weakly hyperbolic (IFS) as defined in
Definition 1.1.

Proposition 2.2. For an IFS [X; f1 , ..., fN] on a com-
pact metric space X, the following are equivalent:

(i) The IFS is weakly hyperbolic.

(ii) For each infinite sequence i1 i2 } } } # 7|
N , the intersec-

tion �n�1 fi1 fi2 } } } fin X is a singleton set.
(iii) For all =>0, there exists n�0 such that

| fi1 fi2 } } } fin X|<= for all finite sequences i1 i2 } } } in # 7n
N of

length n.

Proof. The implications (i) � (ii) and also (iii) O (i) are
all straightforward. It remains to show (i) O (iii). Assume
that the IFS does not satisfy (iii). Then there exists =>0
such that for all n�0 there is a node on level n of the IFS
tree with diameter at least =. Since the parent of any such
node will also have diameter at least =, we obtain a finitely
branching infinite subtree all whose nodes have diameter
at least =. By Ko� nig's lemma this subtree will have an
infinite branch ( fi1 fi2 } } } fin X) n�0. Therefore, the sequence
( | fi1 fi2

} } } fin X |) n�0 does not converge to zero as n � �
and the IFS is not weakly hyperbolic. K

Corollary 2.3. If the IFS is weakly hyperbolic, then for
any sequence i1 i2 } } } # 7|

N , the sequence ( fi1 fi2 } } } fin x) n�0

converges for any x # X and the limit is independent of x.
Moreover, the mapping

? : 7|
N � X

i1 i2 } } } [ lim
n � �

fi1 fi2
} } } fin x

is continuous and its image is A*=�n�0 F nX.

An IFS [X; f1 , ..., fN] also generates another finitely
branching tree as in Fig. 2, which we call the action tree.
Here, a child of a node is the image of the node under the
action of some fi .

Note that the IFS tree and the action tree have the same
set of nodes on any level n�0.

Corollary 2.4. If the IFS is weakly hyperbolic,
limn � � | fin fin&1

} } } fi1 X|=0 for all infinite sequences
i1 i2 } } } # 7|

N .

186 ABBAS EDALAT
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FIG. 2. The action tree.

Conversely, we have the following. Recall that a map
f : X � X is non-expansive if d( f (x), f ( y))�d(x, y) for all
x, y # X.

Proposition 2.5. If each mapping fi in an IFS is non-
expansive and limn � � | fin fin&1

. . .fi1 X|=0 for all infinite
sequences i1 i2 . . . # 7|

N , then the IFS is weakly hyperbolic.

Proof. Assume that the IFS is not weakly hyperbolic.
Then, by condition (iii) of Proposition 2.2, there exists
=>0 such that for each n�0 there is a node fin fin&1

} } } fi1 X
on level n of the action tree with diameter at least =. Since,
by assumption, fin is non-expansive, it follows that the
parent node fin&1

} } } fi1 X has diameter at least =. We then
have a finitely branching infinite subtree with nodes of
diameter at least =. Therefore, by Ko� nig's lemma, the action
tree has an infinite branch with nodes of diameter at least =,
which gives a contradiction. K

Proposition 2.6. If [X; f1 , ..., fN] is a weakly hyperbolic
IFS with non-expansive maps fi : X � X (1�i�N) and if
[X; fN+1, ..., fM] is a hyperbolic IFS, then [X; f1 , ..., fN ,
fN+1 , ..., fM] is a weakly hyperbolic IFS.

Proof. Let i1 i2 } } } # 7|
M . If the set [n�1 | N+1�

in�M] is infinite, then clearly limn � � | fi1 fi2
} } } fin X|=0.

If, on the other hand, the above set is finite, then it
has a maximum element m�1 say. Hence for all n>m we
have N+1�in�M and, therefore, | fi1

fi2 } } } fim } } } fin X|�
| fim+1

} } } fin X | which tends to zero as n � �. K

By Proposition 2.1, we already know that a weakly
hyperbolic IFS has a fixed point given by A*=�n�0

F nX=�n�0 F nX. Note that F nX is the union of the nodes
of the IFS tree on level n, and that A* is the set of lubs of

all infinite branches of this tree. Such a set is an example of
a finitely generable subset of the |-continuous dcpo UX as
it is obtained from a finitely branching tree of elements of
UX. This gives us the motivation to study the Plotkin power
domain of UX which can be presented precisely by the set of
finitely generable subsets of UX. We will then use the
Plotkin power domain to prove the uniqueness of the fixed
point of a weakly hyperbolic IFS and deduce its other
properties.

2.2. Finitely Generable Sets

The following construction of the Plotkin power domain
of an |-continuous dcpo and the subsequent properties are
a straightforward generalization of those for an |-algebraic
cpo presented in [35, 36]. Suppose (D, C=) is any |-con-
tinuous dcpo with bottom and B�D a countable basis for
it. Consider any finitely branching tree, whose branches are
all infinite and whose nodes are elements of D and each
child y of any parent node x satisfies x C= y. The set of lubs
of all branches of the tree is called a finitely generable subset
of D. It can be shown that any finitely generable subset of D
can also be generated in the above way by a finitely branch-
ing tree of elements of the basis B, such that each node is
way-below its parents. We denote the set of finitely
generable subsets of D by F (D). It is easily seen that
Pf (B)�Pf (D)�F (D), where Pf (S ) denotes the set of all
finite non-empty subsets of the set S. For A # Pf (B) and
C # F (D), the order REM is defined by A REM C iff

\a # A_c # C } aRc and \c # C_a # A } aRc.

This induces a pre-order on F (D) by defining C1 C=EM C2

iff for all A # Pf (B) whenever A REM C1 holds we have
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A REM C2 . Then (F (D), C=EM) becomes an |-continuous
dcpo except that C=EM is a pre-order rather than a partial
order. A basis is given by (Pf (D), C=EM) and a countable
basis by (Pf (B), C=EM). The Plotkin power domain or the
convex power domain CD of D is then defined to be the
quotient (F (D) �$

, C=EM�$
), where the equivalence relation

$ on F (D) is given by C1 $C2 iff C1 C=EM C2 and
C2 C=EM C1 . If A # F (D) and A consists of maximal
elements of a bounded complete D, then A will be a maxi-
mal element of (F (D), C=EM) and its equivalence class will
consist of A only. If D has a bottom element =, then
(F (D), C=EM) has a bottom element, namely [=], and its
equivalence class consists of itself only. Finally, we note
that, for any dcpo E, any monotone map g : Pf (D) � E has
a unique extension to a Scott-continuous map g : CD � E
which, for convenience, we denote by g.

Now let D be UX where X is, as before, a compact metric
space and [X; f1 , ..., fN] an IFS. Let F : UX � UX be
as before and consider the Scott-continuous map
f : CUX � CUX which is defined on the basis Pf (UX) by
the monotone map

f : Pf (UX) � CUX

[Aj | 1�j�M] [ [ fi (Aj) | 1�j�M, 1�i�N].

The set of nodes at level n of the IFS tree is then represented
by f n[X]. We also consider the Scott-continuous map
U : CUX � UX, defined on the above basis by the
monotone map

U : Pf (UX) � CUX

[Aj | 1�j�M] [ .
1�j�N

Aj .

The following properties were shown in [15]; for the sake
of completeness, we reiterate them here in the context of our
presentation of the Plotkin power domain in terms of
finitely generable subsets. The diagram

UX �wwU CUX
F f

UX �wwU CUX

commutes, which can be easily seen by considering the
restriction to the basis Pf (UX). It follows that U maps any
fixed point of f to a fixed point of F. Moreover, it maps the
least fixed point of f to the least fixed point of F, since for
each n�0, Uf n[X ]=F nU[X ]=F nX, and, therefore,

U '
n�0

f n[X ]= '
n�0

Uf n[X ]= '
n�0

F nX.

On the other hand, for A # UX, let

S(A)=[s(x) | x # A]=[[x] | x # A]�UX.

It is easy to see that S(A) is a finitely generable subset of
UX. This can be shown for example by constructing a
finitely branching tree such that the set of nodes at level
n�0 consists of the closure of open subsets with diameters
less than 1�2n. It follows that S(A) is an element of CUX
and, by the above remark, it is a maximal element. Further-
more, the Scott-continuity of f implies that the following
diagram commutes:

UX ww�S CUX

F f

UX ww�S CUX

Therefore, S maps any fixed point of F to a fixed point
of f. Note also that S is one-to-one.

Proposition 2.7. If the IFS [X; f1 , ..., fN] is weakly
hyperbolic, then the two maps F : UX � UX and
f : CUX � CUX have unique fixed points A*=,n�0 F nX
and SA* respectively.

Proof. For each n�0, we have

f n[X ]=[ fi1 fi2 } } } fin X | i1 i2 } } } in # 7n
N]=SF nX.

It follows that the least fixed point of f is given by
�n�0 f n[X ]=[limn � � fi1

fi2 . . . fin X | i1 i2 } } } # 7�
N ]. Since

the IFS is weakly hyperbolic, this set consists of singleton
sets; in fact we have �n�0 f n[X ]=S �n�0 F nX=SA*.
However, SA* is maximal in CUX, so this least fixed point
is indeed the unique fixed point of f. On the other hand,
since S is one-to-one and takes any fixed point of F to a
fixed point of f, it follows that A* is the unique fixed point
of F. K

In order to get the generalization of Eq. (2), we need the
following lemma whose straightforward proof is omitted.

Lemma 2.8. Let [Bi | 1 � i � M], [Ci | 1 � i � M],
[Di | 1�i�M] be three finite collections of non-empty com-
pact subset of the metric space X. If Ci , Di �Bi and |Bi |<=
for 1�i�M, then dH(� i Ci , �i Di)<=.

Theorem 2.9. If the IFS [X; f1 , ..., fN] is weakly hyper-
bolic, then the map F : HX � HX has a unique fixed point A*,
the attractor of the IFS. Moreover, for any A # HX, we have
F nA � A* in the Hausdorff metric as n � �.

Proof. Since the set of fixed points of F : HX � HX
is precisely the set of fixed points of F : UX � UX, the
first part follows immediately from Proposition 2.7 and
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A*=�n�0 F nX is indeed the unique fixed point of
F : HX � HX. Let A�X be any non-empty compact
subset, and let =>0 be given. By Proposition 2.2.(iii),
there exists m�0 such that for all n�m the diameters of
all the subsets in the collection f n[X ]=[ fi1 fi2 } } } fin X |
i1 i2 } } } in # 7n

N] are less that =. Clearly, fi1 fi2 } } } fin A�
fi1 fi2 } } } fin X and A* & fi1 fi2 } } } fin X� fi1 fi2 } } } fin X for all
i1 i2 } } } in # 7n

N . Therefore, by the lemma, dH(F nA, A*)<=.
K

2.3. Plotkin Power Domain Algorithm

Given a weakly hyperbolic IFS [X; f1 , ..., fN], we want to
formulate an algorithm to obtain a finite subset A= of X
which approximates the attractor A* of the IFS up to a
given threshold =>0 with respect to the Hausdorff metric.

We will make the assumption that for each node of the
IFS tree it is decidable whether or not the diameter of the
node is less than =. For a hyperbolic IFS, we have

| fi1 fi2 } } } fin X|�si1 si2 } } } sin |X |,

where si is the contractivity factor of fi , and, therefore, the
above relation is clearly decidable. However, there are other
interesting cases in applications where this relation is also
decidable. For example, if X=[0, 1]n�Rn and if, for every
i # 7N , each of the coordinates of the map fi : [0, 1]n �
[0, 1]n is, say, monotonically increasing in each of its
arguments, then the diameter of any node is easily com-
puted as

| fi1 } } } fin[0, 1]n|=d( fi1 } } } fin(0, ..., 0), fi1 } } } fin(1, ..., 1)),

where d is the Eucleadian distance. It is then clear that the
above relation is decidable in this case.

Let =>0 be given and fix x0 # X. We construct a finite
subtree of the IFS tree as follows. For any infinite sequence
i1 i2 } } } # 7|

N , the sequence ( | fi1
fi2 } } } fin X |) n�0 is decreas-

ing and tends to zero, and, therefore, there is a least integer
m�0 such that | fi1 fi2

} } } fim X |�=. We truncate the infinite

FIG. 3. A branch of the truncated IFS tree.

branch ( fi1 fi2 } } } fin X) n�0 of the IFS tree at the node
fi1

fi2 } } } fim X which is then a leaf of the truncated tree as
depicted in Fig. 3, and which contains the distinguished
point fi1 fi2 } } } fim x0 # fi1 fi2 } } } fim X.

By Proposition 2.2, the truncated tree will have finite
depth. Let L= denote the set of all leaves of this finite
tree and let A= �X be the set of all distinguished points of
the leaves. For each leaf l # L= , the attractor satisfies
l$l & A*{< and A*=�l # L= l & A*. On the other
hand, for each leaf l # L= , we have l & A= {< and
A==� l # L= l & A= . It follows, by Lemma 2.8, that
dH(A= , A*)�=. The algorithm therefore traverses the IFS
tree in some specific order to obtain the set of leaves L= and
hence the finite set A= which is the required discrete
approximation.

For a hyperbolic IFS and for X=A*, this algorithm
reduces to that of Hepting et al. [24]. We will here obtain
an upper bound for the complexity of the algorithm when
the maps fi are contracting affine transformations as this is
always the case in image compression. First, we note that
there is a simple formula for the contractivity of an affine
map. In fact, suppose the map f : R2 � R2 is given at the
point z # R2 in matrix notation by z [ Wz+t, where the
2_2 matrix W is the linear part and t # R2 is the translation
part of f. Then, the infimum of numbers c with

| f (z)& f (z$)|�c |z&z$|

is the greatest eigenvalue (in absolute value) of the matrix
W tW, where W t is the transpose of W [12]. This greatest
eigenvalue is easily calculated for the matrix

W=\a
c

b
d+ ,

to be given by

- :+;+- (:&;)2+#2,

where :=(a2+c2)�2, ;=(b2+d 2)�2, and #=ab+cd. If f is
contracting then this number is strictly less than one and is
the contractivity of f. While traversing the tree,
the algorithm recursively computes fi1 fi2 } } } fin x0 and
si1 si2 } } } sin |X | , and if si1 si2 } } } sin |X |�=, then the point
fi1

fi2 } } } fin x0 is taken to belong to A= . An upper bound for
the height of the truncated tree is obtained as follows. We
have si1 si2 } } } sin�sn, where s=max1�i�N si<1 is the con-
tractivity of the IFS. Therefore the least integer h with
sh |X |�= is an upper bound, i.e., h=Wlog (=�|X | )�log sX,
where WaX is the least non-negative integer greater than
or equal to a. A simple counting shows that there are
at most nine arithmetic computations at each node. There-
fore, the total number of computations is at most 9(N+N2+
N3+ } } } +Nh)=9(Nh+1&1)�(N&1), which is O(N h).
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In order to have a similar complexity analysis for the
generation of the attractor of a weakly hyperbolic IFS, one
needs information on the rate of convergence of limn � �

| fi1 fi2 } } } fin X |=0 for all sequences i1 i2 } } } # 7|
N . In fact, if

there is a uniform constructive rate of convergence, i.e., if for
all positive integers m, there is an integer n=n(m), explicitly
given in terms of m, such that | fi1 fi2 } } } fin X |�1�m for all
sequences i1 i2 } } } # 7|

N , then one can easily obtain a com-
plexity result similar to the case of hyperbolic IFSs.

Next we consider the problem of plotting, on the com-
puter screen, the discrete approximation to the attractor of
a weakly hyperbolic IFS in R2. The digitization of the dis-
crete approximation A= inevitably produces a further error
in approximating the attractor A*. We will obtain a bound
for this error. Suppose we have a weakly hyperbolic IFS
[X; f1 , ..., fN] with X�R2. By a translation of origin and
rescaling if necessary, we can assume that X�[0, 1]_
[0, 1]. Suppose, furthermore, that the computer screen,
with resolution r_r, is represented by the unit square
[0, 1]_[0, 1] digitised into a two-dimensional array of
r_r pixels. We regard each pixel as a point so that the dis-
tance between nearest pixels is given by $=1�(r&1). We
assume that for each point in A= the nearest pixel is plotted
on the screen. Let A$

= be the set of pixels plotted. Since any
point in [0, 1]_[0, 1] is at most - 2 $�2 from its nearest
pixel, it is easy to see that dH(A$

= , A=)�- 2 $�2. It follows
that

dH(A$
= , A*)�dH(A$

= , A=)+dH(A= , A*)�
- 2
2

$+=.

In the worst case, the error in the digitization process, for a
given resolution r_r of the screen, is at least - 2 $�2=$�- 2
(i.e., $ divided by the diameter of the screen [0, 1]_[0, 1])
whatever the value of the discrete threshold =>0. On the
other hand, even in the case of a hyperbolic IFS, the com-
plexity of the algorithm grows as N&log = as = � 0. In prac-
tice, the optimal balance between accuracy and complexity
is reached by taking = to be of the order of $=1�(r&1).

3. INVARIANT MEASURE OF AN IFS
WITH PROBABILITIES

We prove the existence and uniqueness of the invariant
measure of a weakly hyperbolic IFS with probabilities
by generalizing the corresponding result for an hyper-
bolic IFS in [15] which is based on the normalised
probabilistic power domain. We first recall the basic defini-
tions.

3.1. Probabilistic Power Domain

A valuation on topological space Y is map & : 0(Y ) �
[0, �) which satisfies:

(i) &(a)+&(b)=&(a _ b)+&(a & b),

(ii) &(<)=0, and

(iii) a�b O &(a)�&(b).

A continuous valuation [31, 27, 26] is a valuation such
that whenever A�0(Y ) is a directed set (wrt�) of open
sets of Y, then

& \ .
O # A

O+= sup
O # A

&(O).

For any b # Y, the point valuation based at b is the valua-
tion $b : 0(Y ) � [0, �) defined by

$b(O)={1,
0,

if b # O,
otherwise.

Any finite linear combination

:
n

i=1

ri $bi

of point valuations $bi with constant coefficients ri # [0, �),
(1�i�n), is a continuous valuation on Y; we call it a
simple valuation.

The normalised probabilistic power domain, P1Y, of a
topological space Y consists of the set of continuous valua-
tions & on Y with &(Y )=1 and is ordered as follows:

+ C= & iff for all open sets O of Y, +(O)�&(O).

The partial order (P1Y, C=) is a dcpo with bottom in
which the lub of a directed set ( +i) i # I is given by � i +i=&,
where for O # 0(Y ) we have

&(O)=sup
i # I

+i (O).

Moreover, if Y is an |-continuous dcpo with a bottom
element =, then P1Y is also an |-continuous dcpo with a
bottom element $= and has a basis consisting of simple
valuations [27, 26, 16]. Therefore, any + # P1Y is the lub of
an |-chain of normalised simple valuations and, hence by a
lemma of Saheb-Djahromi [34] can be uniquely extended
to a Borel measure on Y which we denote for conve-
nience by + as well [34, p. 24]. For 0�c�1, let PcY denote
the dcpo of valuations with total mass c, i.e., PcY=
[+ # PY | +(Y )=c]. Since PcY is obtained from P1Y by a
simple rescaling, it shares the above properties of P1Y; the
case c=0 is, of course, trivial.

For two simple valuations

+1= :
b # B

rb $b +2= :
c # C

sc $c

190 ABBAS EDALAT



F
ile

:6
43

J
25

34
10

.B
y:

B
V

.D
at

e:
15

:0
2:

96
.T

im
e:

16
:2

0
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

57
25

Si
gn

s:
36

79
.L

en
gt

h:
56

pi
c

0
pt

s,
23

6
m

m

in P1Y, where B, C # Pf (Y ), we have by the splitting lemma
[27, 16]: +1 C= +2 iff, for all b # B and all c # C, there exists
a non-negative number tb, c such that

:
c # C

tb, c=rb :
b # B

tb, c=sc (5)

and tb, c {0 implies b C= c. We can consider any b # B as a
source with mass rb , any c # C as a sink with mass sc , and
the number tbc as the flow of mass from b to c. Then, the
above property can be regarded as conservation of total
mass.

3.2. Model for IFS with Probabilities

Now let X be a compact metric space so that (UX, $) is
an |-continuous dcpo with bottom X. Therefore, P1UX is
an |-continuous dcpo with bottom $X . Recall that the
singleton map s : X � UX with s(x)=[x] embeds X onto
the set s(X ) of maximal elements of UX. For any open sub-
set a�X, the set s(a)=[[x] | x # a]�UX is a G$ subset
and, hence, a Borel subset [15, Corollary 5.9]. A valuation
+ # P1UX is said to be supported in s(X ) if +(UX"s(X ))=0.
If + is supported in s(X ), then the support of + is the set of
points y # s(X ) such that +(O)>0 for any Scott-
neighbourhood O�UX of y. Any element of P1UX which
is supported in s(X ) is a maximal element of P1UX [15,
Proposition 5.18]; we denote the set of all valuations which
are supported in s(X ) by S1X. We can identify S1X with the
set M1X of normalised Borel measures on X as follows.
Let

e : M1X � S1X

+ [ + b s&1

and

j : S1X � M1X

& [ & b s.

Theorem 3.1. [15, Theorem 5.21]. The maps e and j are
well-defined and induce an isomorphism between S1X and
M1X.

For + # M1X and an open subset a�X,

+(a)=e(+)(s(a))=e(+)(ga). (6)

Let [X; f1 , ..., fN ; p1 , ..., pN] be an IFS with probabilities
on the compact metric space X. Define

H : P1UX � P1UX

+ [ H(+)

by H(+)(O)=�N
i=1 pi +( f &1

i (O)). Note that H is defined in
the same way as the Markov operator T in Eq. (3). Then, H
is Scott-continuous and has, therefore, a least fixed point
given by &*=�m H m $X , where

H m $X= :
N

i1, i2, ..., im=1

pi1 pi2 } } } pim $fi1 fi2 } } } fim X . (7)

Furthermore, we have:

Theorem 3.2. For a weakly hyperbolic IFS, the least
fixed point &* of H is in S1X. Hence, it is a maximal element
of P1UX and therefore the unique fixed point of H. The sup-
port of &* is given by SA*=[[x] | x # A*] where A*�X is
the attractor of the IFS.

Proof. To show that &* # S1X, it is sufficient to show
that &*(s(X ))=1. For each integer k�1, let (bi) i # Ik be the
collection of all open balls bi �X of radius less than 1�k. Let
Ok=�i # Ik gbi . Then (Ok) k�1 is a decreasing sequence of
open subsets of UX and s(X )=�k�1 Ok . Therefore,
&*(s(X ))=infk�1 &*(Ok). By Proposition 2.2(iii), for each
k�1 there exists some integer n�0 such that all the nodes
of the IFS tree on level n have diameter strictly less than 1�k.
Hence, for all finite sequences i1 } } } im # 7m

N with m�n, we
have fi1 fi2 } } } fim X # Ok . Therefore, for all m�n,

(H m $X)(Ok)= :
fi1 fi2 } } } fim X # Ok

pi1 pi2 } } } pim=1.

It follows that &*(Ok)=supm�0 (H m $X)(Ok)=1, and,
therefore, &*(s(X ))=infk�1 &*(Ok)=1, as required. To
show that SA* is the support of &*, let x # A* and, for any
integer k�1, let Bk(x)�X be the open ball of radius 1�k
centred at x. Then [x] is the lub of some infinite
branch of the IFS tree: [x]=�n�0 fi1 } } } fin X for some
i1 i2 } } } # 7|

N . As in the above, let n�0 be such that the
diameters of all nodes of the IFS tree on level n are strictly
less than 1�k. Then,

&*(gBk(x))= sup
m�0

(H m $X)(gBk(x))

�(H n $X)(gBk(x))�pi1 } } } pin>0.

Since (gBk(x)) k�1 is a neighbourhood basis of [x] in
UX, it follows that [x] is in the support of &*. On the other
hand, if x � A*, there is an open ball B$(x)�X which does
not intersect A*. Let n�0 be such that the nodes on level n
of the IFS tree have diameters strictly less than $. Then, for
all m�n, we have (H m $X)(B$(x))=0 and it follows that

&*(B$(x))= sup
m�0

(B$(x))=0,

and [x] is not in the support of &*. K

191POWER DOMAINS AND ITERATED FUNCTION SYSTEMS



File: 643J 253411 . By:MC . Date:12:02:96 . Time:09:14 LOP8M. V8.0. Page 01:01
Codes: 4511 Signs: 3289 . Length: 56 pic 0 pts, 236 mm

FIG. 4. The IFS tree with transitional probabilities.

Corollary 3.3. For a weakly hyperbolic IFS, the nor-
malised measure +*=j(&*) # M1X is the unique fixed point of
the Markov operator T : M1X � M1X. Its support is the
unique attractor A* of the IFS.

3.3. Probabilistic Power Domain Algorithm

Since the Plotkin power domain algorithm in Section 2.3
provides a digitised discrete approximation A$

= to the attrac-
tor A*, the question is how to render the pixels in A$

= to
obtain an approximation to the invariant measure +*. We
now describe an algorithm to do this, which extends that of
Hepting et al. for a hyperbolic IFS with probabilities [24].
Assume again that the unit square represents the digitised
screen with r_r pixels. Suppose [X; f1 , ..., fN ; p1 , ..., pN] is
a weakly hyperbolic IFS with X�[0, 1]_[0, 1] and =>0
is the discrete threshold. Fix x0 # X. The simple valuation
H m $X of Eq. (7) can be depicted by the mth level of the IFS
tree labelled with transitional probabilities as in Fig. 4.

The root X of the tree has mass one and represents
$X . Any edge going from a node t(X ), where t= fi1 b
fi2 b } } } b fim is a finite composition of the maps fi , to its child
t( fi (X )) is labelled with transitional probability pi for
i=1, ..., N. The transitional probability label on each edge
gives the flow of mass from the parent node (source) to the
child node (sink) in the sense of Eq. (5) in the splitting
lemma. The total mass of the node fi1 fi2 } } } fim X on level m
is, therefore, the product pi1 pi2 } } } pim of the labels of all the
edges leading from the root to the node, in agreement with
the expansion of H m $X in Eq. (7). We again make the
assumption that it is decidable that the diameter of any
node is less than = or not. The algorithm then proceeds, as
in the deterministic case, to find all the leaves of the IFS tree
and, this time, computes the mass of each leaf. The set of all

weighted leaves of the truncated IFS tree represents a simple
valuation which is a discrete approximation to the invariant
measure +*. Then the total mass given to each pixel in A$

= is
the sum of the masses of all leaves corresponding to that
pixel.

In the hyperbolic case, the probabilistic algorithm traver-
ses the finite tree and recursively computes fi1 fi2 } } } fin x0 ,
pi1 pi2 } } } pin and si1 si2 } } } sin |X |, and if si1 si2 } } } sin |X |�=,
then the weight of the pixel for fi1 fi2 } } } fin x0 is incremented
by pi1 pi2 } } } pin . A simple counting shows that this takes
at most 10 arithmetic computations at each node. There-
fore, the total number of computations is at most
10(N+N 2+N 3+ } } } +N h), which is O(N h) as before.

4. A MODEL FOR RECURRENT IFS

In this section, we will construct a domain-theoretic
model for weakly hyperbolic recurrent IFSs. Assume that
[X; f1 , ..., fN] is an IFS and ( pij) (1�i, j�N ) is an
indecomposable row-stochastic matrix. Then [X; fj ; pij ;
i, j=1, 2, ..., N ] is a recurrent IFS. We will see below that
this gives rise to a Markov chain on the coproduct of N
copies of X. (See [20] for an introduction to Markov
chains.)

For a topological space Y, we let Y� =�N
j=1 Y_[ j ]

denote the coproduct (disjoint sum) of N copies of Y [37],
i.e.,

Y� = :
N

j=1

Y_[ j ]=[( y, j ) | y # Y, 1�j�N],

with its frame of open sets given by 0(Y� )=(0(Y ))N, and its
Borel subsets by B(Y� )=(B(Y ))N, where B(Y ) is the set of
Borel subsets of Y.
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Any normalised Borel measure +� # M1Y� is a mapping

+� : B(Y )N � [0, 1]

which can be written as +� =(+j)j=(+1 , +2 , ..., +N) with
+j # McjY for some cj , (0�cj�1 and �N

j=1 cj=1), such
that for B� =(Bj) j=(B1 , B2 , ..., BN) # (B(Y ))N we have
+� (B� )=�N

j=1 +j (Bj).

4.1. The Generalised Markov Operator

A recurrent IFS induces a Markov process on
X� =�N

j=1 X_[ j ] as follows [4]. Let i0 , i1 , i2 , ... be a
Markov chain on [1, 2, ..., N] with transition probability
matrix ( pij). Let x0 # X and consider the process

Z0=x0 Zn=fin Zn&1

which gives us the random walk described in Subsection 1.3.
Then (Zn , in) is a Markov process on X� =�N

j=1 X_[ j ]
with the Markov transition probability function

K((x, i ), B� )= :
N

j=1

pij /B� ( fjx, j )

which is the probability of transition from (x, i ) into the
Borel set B� �X� (here /B� is the characteristic function of the
set B� ). This transitional probability induces the generalised
Markov operator defined by

T� : M1X� � M1X�

+� [ T� (+� )

with

T� (+� )(B� )=|
X�

K((x, i ), B� ) d+� =|
X�

:
N

j=1

pij /B� ( fj x, j ) d+�

= :
N

i=1
|

X
:
N

j=1

pij /Bj ( fj x) d+i

= :
N

i=1

:
N

j=1

pij |
X

/Bj ( fj x) d+i

= :
N

j=1

:
N

i=1

pij +i ( f &1
j Bj).

In other words,

(T� (+� ))j= :
N

i=1

pij +i b f &1
j . (8)

Note that T� is well-defined since

T� (+� ) X� = :
N

j=1

:
N

i=1

pij +i ( f &1
j X )= :

N

i=1

:
N

j=1

pij +i (X )

= :
N

i=1

+i (X )=1

as �N
j=1 pij=1 for 1�i�N. For a hyperbolic recurrent IFS,

Barnsley defines the generalised Hutchinson metric r� H on
M1X� by

r� H(+� , &� )=sup { :
N

i=1
\|X

fi d+i&|
X

fi d&i+ } fi : X � R,

| fi (x)&fi ( y)|�d(x, y), 1�i�N=
and then states in [1, p. 406] that one expects the
generalised Markov operator to be a contracting map and
therefore to have a unique fixed point. However, he notes
that the contractivity factor will depend not only on the
contractivity of the IFS but also on the matrix ( pij).
Nevertheless, no proof is given that T� is indeed contracting
for a given ( pij); subsequently, the existence and uniqueness
of a fixed point is not verified. On the other hand, it is shown
in [4, Theorem 2.1] by proving the convergence in distribu-
tion of the expected value of real-valued functions on X� that
a hyperbolic recurrent IFS does have a unique stationary
distribution. We will show here more generally that for a
weakly hyperbolic recurrent IFS the generalised Markov
operator has indeed a unique fixed point.

4.2. The Unique Fixed Point of the Markov Operator

We will achieve the above task, without any need for a
metric, by extending the generalised Markov operator to
PUX where UX=�N

j=1 (UX )_[ j ] is the coproduct of N
copies of UX.

If Y is a topological space, a valuation + # P1Y� is a map-
ping

&� : 0(Y� ) � [0, 1]

which can be written as &� =(&j) j=(&1 , ..., &N) with &j # PcjY
for some cj (0�c�1 and �N

j=1 cj=1), such that for
O� =(Oj)j=(O1 , O2 , ..., ON) # (0(Y ))N we have &� (O� )=
�N

j=1 &j (Oj) [26, p. 90]. We will work in a subdcpo of P1UX
which is defined below.

Note that our assumptions imply that ( pij) is the trans-
itional matrix of an ergodic finite Markov chain, and there-
fore, we have:

Proposition 4.1 [28, p. 100]. There exists a unique
probability vector (mj) with mj>0 (1�j�N ) and
�N

j=1 mj=1 which satisfies mj=�N
i=1 mi pij .
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Let &0 # P1UX be given by &0=(m1 $X , m2 $X , ..., mN $X)
where mj (1�j�N ) is the unique probability vector in
Proposition 4.1. Put

P1
0UX=[&� # P1UX | &0 C= &� ].

Note that for &� =(&1 , &2 , ..., &N) # PUX we have &� # P1
0UX iff

&j (UX )=mj for 1� j�N, since &0 C= &� iff mj�&j (UX ) and
we have

1= :
N

j=1

mj� :
N

j=1

&j (UX )=&� (UX )�1,

which implies &j (UX )=mj . It also follows that P1
0UX=

>N
j=1 Pmj (UX ). Therefore, P1

0UX is an |-continuous dcpo
with bottom &0, and any (&j) j # P1

0UX extends uniquely to a
Borel measure on P1

0UX as each &j extends uniquely to
a Borel measure on P1

0 UX.
Let

s� : X� � UX

(x, j ) [ ([x], j )

be the embedding of X� onto the set of maximal elements of
UX. Any Borel subset B� =(Bj) j of X� induces a Borel subset
s� (B� )=(s(Bj)) j of UX since each s(Bj) is a Borel subset of UX.
Let M1

0X� =[(&j)j # M1X� | &j (X )=mj , 1�j�N], and let

S1
0 UX=[&� # P1

0UX | &� (s� X� )=1]

and define the two maps

e� : M1
0X� � S1

0 UX and }� : S1
0UX � M1

0X�

+� [ +� b s� &1 &� [ &� b s� .

We then have the following generalisation of Theorem 3.1.

Theorem 4.2. The two maps e� and }� are well-defined and
give an isomorphism between M1

0 X� and S1
0UX.

Given a recurrent IFS [X; fi ; pij ; i, j=1, ..., N] we extend
the generalised Markov operator on P1UX by

H� : P1UX � P1UX

&� [ H� (&� ),

where H� (&� )(O� )=�N
j=1 �N

i=1 pij&i ( f &1
j Oj); in other words,

we have (H� (&� )) j=�N
i=1 pij &i b f &1

j as in the definition of T� in
Eq. (8). If &� # P1

0UX, then H� (&� ) # P1
0UX, since

(H� (&� )) j (UX )= :
N

i=1

pij &i b f &1
j (UX )

= :
N

i=1

pij &i (UX )= :
N

i=1

pij mi=mj .

Proposition 4.3. Any fixed point of H� (respectively T� )
is in P1

0UX (respectively M1
0 X� ).

Proof. Let &� =(&1 , &2 , ..., &N) # P1UX be a fixed point of
H� . Then, for each j # [1, 2, ..., N] we have

&j (UX )=(H� &� ) j (UX )

= :
N

i=1

pij &i ( f &1
j (UX ))

= :
N

i=1

pij&i (UX ).

By Proposition 4.1, we have &j (UX )=mj , as required. The
proof for T� is similar. K

The following lemma shows that, for any recurrent IFS,
the generalised Markov operator has a least fixed point.

Lemma 4.4. The mapping H� : P1
0UX � P1

0UX is Scott-
continuous.

Proof. It is immediately seen from the definition that H�
is monotone. Let (&� k) k�0 be an increasing chain in P1

0UX.
Then, for any O� =(Oj) j # 0UX, we have

\H� '
k

&� k+ (O� )= :
N

j=1

:
N

i=1

pij \'
k

&k
i + ( f &1

j Oj)

= :
N

j=1

:
N

i=1

pij sup
k

&k
i ( f &1

j Oj)

=sup
k

:
N

j=1

:
N

i=1

pij &k
i ( f &1

j Oj)

=sup
k

(H� &� k)(O� )

='
k

(H� &� k)(O� ).

The Scott-continuity of H� follows. K

Let us find an explicit formula for the least fixed point
&� *=�n H� n(&0) of H� . It is convenient to use the inverse
transitional probability matrix [20, p. 414] (qij) which is
defined as follows:

qij=
mj

mi
pji . (9)

Note that by Proposition 4.1, mj>0 for 1�j�N and there-
fore (qij) is well-defined; it is again row-stochastic,
irreducible, and satisfies �N

i=1 miqij=mj for j=1, ..., N. We
can now show by induction that

(H� n&0) j= :
N

i1, i2, ..., in&1=1

mj qji1 qi1 i2 } } } qin&2 in&1

_$fj fi1 fi2 } } } fin&1X . (10)
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FIG. 5. The recurrent IFS tree with tansitional probabilities.

In fact,

(H� &0) j= :
N

i=1

pij mi $X b f &1
j

= :
N

i=1

pij mi $fjX

=mj $fj X .

Assuming the result holds for n, we have

(H� n+1&0)j=(H� (H� n&0)) j

= :
N

i=1

pij :
N

i1, ..., in&1=1

mi qii1 } } } qin&2 in&1

_($fi fi1 } } } fin&1 X) b f &1
j

= :
N

i, i1, ..., in&1

mi pijqii1 } } } qin&2 in&1
$fj fi fi1 } } } fin&1X

= :
N

i, i1, ..., in&1

mj qji qii1 } } } qin&2 in&1
$fj fi fi1 } } } fin&1 X ,

as required.

Theorem 4.5. For a weakly hyperbolic recurrent IFS,
the extended generalized Markov operator H� : P1UX �
P1UX has a unique fixed point &� * # S1

0UX with support
(S(A* & fjX )) j where A* is the unique attractor of the IFS.

Proof. We know, by Proposition 4.3 that any fixed
point of H� is in P1

0UX. Therefore, it is sufficient to show that
the least fixed point &� * of

H� : P1
0UX � P1

0UX

is unique. Using the explicit form of &* in Eq. (10), we can
show as in the corresponding proof for a weakly hyperbolic
IFS with probabilities (Theorem 3.2) that &� * # S1

0UX. It
then follows that &� * is maximal in P1

0UX, and hence is the
unique fixed point. By Eq. (10), the support of &� * is indeed
(S(A* & fj X )) j . K

It then follows, similar to the case of an IFS with
probabilities, that }� (&� *) is the unique stationary distribution
&� * of the generalised Markov operator T� : M1X� � M1X� of
Subsection 4.1, and that the support of +� * is (A* & fj X )) j .

4.3. The Recurrent Probabilistic Power Domain Algorithm

Theorem 4.5 provides us with the recurrent algorithm to
generate the stationary distribution of a recurrent IFS on
the digitised screen. Given the recurrent IFS [X; fj ; pij ;
i, j=1, 2, ..., N ], where X is contained in the unit square,
consider the recurrent IFS tree with transitional
probabilities in Fig. 5. Let =>0 be the discrete threshold.

Initially, the set X_[ j ] is given mass mj , which is then
distributed amongst the nodes of the tree according to the
inverse transitional probability matrix (qij). The algorithm
first computes the unique stationary initial distribution
(mi), by solving the equations mj=�N

i=1 mi pij for mj

(1�j�N ) with the Gaussian elimination method, and
determines the inverse transition probability matrix (qij)
given by Eq. (9). The number of arithmetic computations
for this is O(N3). Then the algorithm proceeds, exactly as
the probabilistic algorithm, to compute, for each pixel,
the sum of the weights mi1 qi1i2 } } } qin&1in of the leaves
fi1

fi2 } } } fin X of the IFS tree which occupy that pixel. The
number of computations for the latter is O(Nh) as before,
where h=Wlog (=�|X | )�log sX. Therefore, the complexity of
the algorithm is O(Nh$) where h$=max(h, 3).
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5. THE EXPECTED VALUE OF CONTINUOUS
FUNCTIONS

In this section, we will use the theory of generalised
Riemann integration, developed in [16], to obtain the
expected value of a continuous real-valued function with
respect to the stationary distribution of a recurrent IFS. We
first recall the basic notions from the above work.

Let X be a compact metric space and g : X � R be
a bounded real-valued function which is continuous almost
everywhere with respect to a given normalised Borel
measure + on X. By [16, Theorem 6.5], g will be
R-integrable, and by [16, Theorem 7.2], its R-integral
R � g d+ coincides with its Lebesgue integral L � g d+. The
R-integral can be computed as follows. We know that +
corresponds to a unique valuation e(+)=+ b s&1 # S1X�
P1UX, which is supported in s(X ). For any simple valuation
&=�b # B rb $b # P1UX, the lower sum of g with respect to &
is

Sl(g, &)= :
b # B

rb inf g(b).

Similarly, the upper sum of g with respect to & is

Su(g, &)= :
b # B

rb sup g(b).

Let (&n) n�0 be an |-chain of simple valuations in
P1UX with e(+)=�n &n . Then it follows from [16,
Corollary 4.9] that S l

X (g, &n) is an increasing sequence of
n�0 with limit R � g d& and S l

X (g, &n) is a decreasing
sequence with limit R � g d&. We can also compute the
R-integral by generalised Riemann sums as follows. Let

&n= :
b # Bn

rn, b $b

and !n, b # b for b # Bn and n�0. Put

S(g, &n)= :
b # Bn

rn, bg(!n, b).

Then, we have Sl(g, &n)�S(g, &n)�Su(g, &n) and therefore

lim
n � �

S(g, &n)=R | g d&. (11)

Now consider a weakly hyperbolic recurrent IFS
[X; fj ; pij ; i, j=1, 2, ..., N ]. We would like to compute

| g d&� *= :
N

j=1

g d+j* , (12)

where +� *=(+j*) j is the unique stationary distribution and
g : X � R is a bounded real-valued function which is con-
tinuous almost everywhere with respect to each component
+j*. We know that e� (+� *)=&� *=�n &n, where &n=H� n(&0)
and each component (H� n&0) j is given by Eq. (10). Fix an
arbitrary point x0 # X and for each component j=1, ..., N,
select fj fi1 } } } fin&1

x0 # fj fi1 } } } fin&1
X and define the Riemann

sum for the j component by

Sj (g, &n)= :
N

i1, i2, ..., in&1=1

mj qji1 qi1i2 } } } qin&2 in&1

_g( fj fi1 } } } fin&1
x0).

Put S(g, &n)=�N
j=1 Sj (g, &n). Then by Eqs. (11) and (12),

we have

R | g d+� *= lim
n � �

S(g, &n).

For an IFS with probabilities, we have pij=pj for
1�i, j�N, which implies mj=pj and qij=pj for all i, j ; the
invariant measure +* of the IFS with probabilities can be
expressed in terms of the stationary distribution +� * of the
recurrent IFS by +*=�N

j=1 +j* and we obtain

R | g d+*= lim
n � �

:
N

i1, i2, ..., in=1

pi1 } } } pin g( fi1 } } } fin x0).

Compare this formula with Elton's ergodic formula in
Eq. (4), which converges with probability one. For a hyper-
bolic IFS and a continuous function g, the above formula
reduces to that of Hepting et al. in [24].

For a hyperbolic recurrent IFS and a Lipschitz map g, we
can do better; we can obtain a polynomial algorithm to
calculate the integral to any given accuracy. Suppose there
exist k>0 and c>0 such that g satisfies

| g(x)&g( y)|�c(d(x, y))k

for all x, y # X. Let =>0 be given. Then we have
| g(x)&g( y)|�= if d(x, y)�(=�c)1�k. Put n=Wlog ((=�c)1�k�
|X | )�log sX, where s is the contractivity of the IFS. Then, the
diameter of the subset fi1 } } } fin X is at most sn |X |�(=�c)1�k

for all sequences i1 i2 } } } in # 7n
N , and hence the variation of

g on this subset is at most =. This implies that

Su(g, &n)&Sl(g, &n)

= :
N

i1, ..., in=1

mi1 qi1i2 } } } qin&1in(sup g( fi1 } } } fin X)

&inf g( fi1 } } } fin X))

�= :
N

i1, ..., in=1

mi1 qi1 i2 } } } qin&1 in==.
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Since S(g, &n) and � g d+* both lie between Su(g, &n) and
Sl(g, &n), we conclude that

}S(g, &n)&| g d+� *}�=.

Therefore, S(g, &n) with n=Wlog ((=�c)1�k�|X | )�log sX is the
required approximation and the complexity is O(Nn).
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