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Abstra
t

Solid modelling and 
omputational geometry are based on 
lassi
al topology

and geometry in whi
h the basi
 predi
ates and operations, su
h as member-

ship, subset in
lusion, union and interse
tion, are not 
ontinuous and therefore

not 
omputable. But a sound 
omputational framework for solids and geometry


an only be built in a framework with 
omputable predi
ates and operations. In

pra
ti
e, 
orre
tness of algorithms in 
omputational geometry is usually proved

using the unrealisti
 Real RAM ma
hine model of 
omputation, whi
h allows


omparison of real numbers, with the undesirable result that 
orre
t algorithms,

when implemented, turn into unreliable programs. Here, we use a domain-

theoreti
 approa
h to re
ursive analysis to develop the basis of an e�e
tive and

realisti
 framework for solid modelling. This framework is equipped with a

well-de�ned and realisti
 notion of 
omputability whi
h re
e
ts the observable

properties of real solids. The basi
 predi
ates and operations on solids are 
om-

putable in this model whi
h admits regular and non-regular sets and supports a

design methodology for a
tual robust algorithms. Moreover, the model is able

to 
apture the un
ertainties of input data in a
tual CAD situations.

1 Introdu
tion

The 
urrent frameworks for solid modelling and 
omputational geometry are based,

on the one hand, on dis
ontinuous predi
ates and Boolean operations, and, on the

other hand, on 
omparison of real numbers. These essential foundations of the

existing theory and implementations are both unjusti�ed and unrealisti
.

Topology and geometry, as mainstream mathemati
al dis
iplines, have been de-

veloped to study 
ontinuous transformations on spa
es. It is therefore ironi
al that

the main building blo
ks of these subje
ts, namely the membership predi
ate of a

set, the subset in
lusion predi
ate and the basi
 operations su
h as union and inter-

se
tions, are generally not 
ontinuous and therefore non-
omputable. For example,

in any Eu
lidean spa
e the membership predi
ate of any proper subset is dis
ontin-

uous at the boundary of the subset; whereas the binary interse
tion, as an operator
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on 
ompa
t subsets, is dis
ontinuous with respe
t to the Hausdor� metri
 when-

ever the two input 
ompa
t subsets tou
h ea
h other. This non-
ontinuity 
reates

a foundational problem in 
omputation, whi
h has so far been essentially negle
ted.

In fa
t, in order to 
onstru
t a sound 
omputational model for solids and geometry,

one needs a framework in whi
h these elementary building blo
ks are 
ontinuous

and 
omputable.

In pra
ti
e, 
orre
tness of algorithms in 
omputational geometry is usually proved

using the Real RAM ma
hine [27℄ model of 
omputation, in whi
h 
omparison of

real numbers is 
onsidered to be de
idable. Sin
e this model is not realisti
, 
orre
t

algorithms, when implemented, turn into unreliable programs. In CAGD modelling

operators, the e�e
t of rounding errors on 
onsisten
y and robustness of a
tual im-

plementations is an open question, whi
h is handled in industrial software by various

unreliable and expensive \up to epsilon" heuristi
s that remain very unsatisfa
tory.

The solid modelling framework provided by 
lassi
al analysis, whi
h allows dis-


ontinuous behaviour and 
omparison of exa
t real numbers, is not realisti
 as a

model of our intera
tion with the physi
al world in terms of measurement and man-

ufa
turing. Nor is it realisti
 as a basis for the design of algorithms implemented on

realisti
 ma
hines, whi
h 
an only deal with �nite data. Industrial solid modelling

software used for CAGD (Computer Aided Geometri
 Design), CAM (Computer

Aided Manufa
turing) or roboti
s is therefore infe
ted by the disparity between the


lassi
al analysis paradigm and feasible 
omputations. This disparity, as well as the

representation of un
ertainties in the geometry of the solid obje
ts, is handled 
ase

by 
ase, by various expensive and unsatisfa
tory \up to epsilon" ad ho
 heuristi
s.

It is diÆ
ult, if at all possible, to improve and generalize these te
hniques, sin
e

their relatively poor su

ess depends on the skill and experien
e of software engi-

neers rather than on a well formalised methodology. In pra
ti
e, the maintenan
e


ost of some 
entral geometri
 operators su
h as the Boolean operations or some

spe
i�
 variants of the Minkowski sum has always remained 
riti
al [24, 14, 23℄.

The authors 
laim that a robust algorithm is one whose 
orre
tness is proved

with the assumption of a realisti
 ma
hine model [22℄. Re
ursive analysis de�nes

pre
isely what it means, in the 
ontext of the realisti
 Turing ma
hine model of 
om-

putation, to 
ompute obje
ts belonging to non-
ountable sets su
h as the set of real

numbers. There are various approa
hes to 
omputable analysis, in
luding the Type

2 Theory of E�e
tivity (TTE) [21, 35, 36℄, based on a 
omputation with a ma
hine,

the algebrai
 domain approa
h [33, 34℄, based on embedding 
lassi
al spa
es into

algebrai
 domains, the 
ontinuous domain approa
h [9, 10, 13, 12℄, based on embed-

ding 
lassi
al spa
es into the set of maximal elements of 
ontinuous domains, and

the more re
ent approa
h by Equilogi
al Spa
es [31, 4, 5℄, based on taking quotients

of T

0

topologi
al spa
es. In re
ent years, Brattka and Weihrau
h have also studied

the question of 
omputability of 
losed and 
ompa
t subsets of Eu
lidean spa
es in

the 
ontext of TTE [6℄.

In this paper, whi
h is based on the preliminary work in [11℄, we use a domain-

theoreti
 approa
h to re
ursive analysis to develop the foundation of an e�e
tive

framework for solid modelling. We introdu
e the 
ontinuous domain of solid obje
ts
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whi
h gives a 
on
rete model of 
omputation on solids 
lose to the a
tual pra
ti
e

by CAD engineers. In this model, the basi
 predi
ates, su
h as membership and

subset in
lusion, and operations, su
h as union and interse
tion, are 
ontinuous and


omputable. The set-theoreti
 aspe
ts of solid modelling are revisited, leading to a

theoreti
ally motivated model that shows some interesting similarities with the Re-

qui
ha Solid Model [28, 29℄. Within this model, some unavoidable limitations of solid

modelling 
omputations are proved and a sound framework to design spe
i�
ations

for feasible modelling operators is provided. Some 
onsequen
es in 
omputation

with the boundary representation paradigm are sket
hed that 
an in
orporate exist-

ing methods [16, 32, 19, 17, 18℄ into a general, mathemati
ally well-founded theory.

Moreover, the model is able to 
apture the un
ertainties of input data [7, 25℄ in

a
tual CAD situations.

We need the following requirements for the mathemati
al model:

(1) the notion of 
omputability of solids has to be well de�ned,

(2) the model has to re
e
t the observable properties of real solids,

(3) it has to be 
losed under the Boolean operations and all basi
 predi
ates and

operations have to be 
omputable,

(4) non-regular sets

1

have to be 
aptured by the model as well as regular solids,

(5) the model has to support a design methodology for a
tual robust algorithms.

A general methodology for the spe
i�
ation of feasible operators and the design

of robust algorithms should rely on a sound mathemati
al model. This is why the

authors believe that the domain-theoreti
 approa
h is a powerful framework both

to model partial or un
ertain data and to guide the design of robust software.

The paper is organised as follows. In Se
tion 2, we introdu
e the solid domain, a

mathemati
al model for 
omputable rigid solids, whi
h satis�es the above properties.

Se
tion 3 shows that the basi
 predi
ates and Boolean operations are 
ontinuous

in this model. Using a standard theory of 
omputability for domains, Se
tion 4

presents a 
omputability theory for our model, whi
h is 
onsistent with 
omputing

solids with a realisti
 ma
hine. Se
tions 5 and 6 enri
h the domain-theoreti
 notion

of 
omputability with a quantitative measure of 
onvergen
e with respe
t to the

Hausdor� metri
 and the Lebesgue measure respe
tively. Se
tion 7 presents our


on
lusion and sket
hes the outline of future work in
luding the implementation of

this framework. Finally, in the Appendix, we 
olle
t together the basi
 notions of

domain theory that we use in this paper.

2 The Solid Domain

In this se
tion, we introdu
e the solid domain, a mathemati
al model for representing

rigid solids. We fo
us here on the set-theoreti
 aspe
ts of solid modelling as Requi
ha

1

An open set is regular if it is the interior of its 
losure.
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did in introdu
ing the r-sets model [28℄. Our model is motivated by requirements

(1) to (5) given in the introdu
tion.

For any subset A of a topologi
al spa
e, A, A

Æ

, �A and A




denote respe
tively

the 
losure, the interior, the boundary and the 
omplement of A. Re
all, for example

from [8, page 92℄, that an open set is regular if it is the interior of its 
losure; dually,

a 
losed set is regular if it is the 
losure of its interior. The 
omplement of a regular

open set then is a regular 
losed set and vi
e versa. The interior of a regular 
losed

set is a regular open set, whereas the 
losure of a regular open set is a regular 
losed

set. Finally, the interse
tion of two regular open sets is regular. The regularization

of an open set is the interior of its 
losure; the regularization of a 
losed set is the


losure of its interior. Therefore, the regularized binary union of open sets O

1

and

O

2

is the set (O

1

[O

2

)

Æ

.

De�nition 2.1 The solid domain (SX;v) of a topologi
al spa
e X is the set of

ordered pairs (A;B) of disjoint open subsets of X endowed with the information

order: (A

1

; B

1

) v (A

2

; B

2

) () A

1

� A

2

and B

1

� B

2

.

An element (A;B) of SX is 
alled a partial solid: A and B are intended to


apture, respe
tively, the interior and the exterior (interior of the 
omplement) of a

solid obje
t, possibly, at some �nite stage of 
omputation. Note that (SX;v) is a

dire
ted 
omplete partial order; the least upper bound (lub) of a dire
ted family of

partial solid obje
ts (A

i

; B

i

)

i2I

is given by

F

i2I

(A

i

; B

i

) = (

S

i2I

A

i

;

S

i2I

B

i

). The

solid domain is isomorphi
 with the fun
tion spa
e X ! ftt;�g

?

, i.e. the 
olle
tion

of 
ontinuous fun
tions f : X ! ftt;�g

?

ordered pointwise. Here, ftt;�g

?

is

the lift of ftt;�g equipped with its S
ott topology. By duality of open and 
losed

sets, (SX;v) is also isomorphi
 with the 
olle
tion of ordered pairs (A;B) of 
losed

subsets of X with A [ B = X with the information ordering: (A

1

; B

1

) v (A

2

; B

2

)

() A

2

� A

1

and B

2

� B

1

.

In fa
t, S is a 
ontravariant fun
tor on the 
ategory TOP of topologi
al spa
es

and 
ontinuous maps. Given a 
ontinuous fun
tion f : X ! Y of topologi
al spa
es

X and Y , we have a 
ontinuous fun
tion Sf : SY ! SX de�ned by (Sf)(A;B) =

(f

�1

A; f

�1

B).

Proposition 2.2 The partial solid (A;B) 2 (SX;v) is a maximal element i� A =

B




Æ

and B = A




Æ

.

Proof Let (A;B) be maximal. Sin
e A and B are disjoint open sets, it follows that

A � B




Æ

. Hen
e, (A;B) v (B




Æ

; B) and thus A = B




Æ

. Similarly, B = A




Æ

. This

proves the \only if" part. For the \if part", suppose that A = B




Æ

and B = A




Æ

.

Then, any proper open superset of A will have non-empty interse
tion with B and

any proper open superset of B will have non-empty interse
tion with A. It follows

that (A;B) is maximal. �

Corollary 2.3 If (A;B) is a maximal element, then A and B are regular open sets.

Conversely, for any regular open set A, the partial solid (A;A




Æ

) is maximal.
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Proof For the �rst part, note that A is the interior of the 
losed set B




and is,

therefore, regular; similarly B is regular. For the se
ond part, observe that A




Æ




Æ

=

(A




Æ




)

Æ

= (A)

Æ

= A. �

We de�ne (A;B) 2 SX to be a 
lassi
al solid obje
t if A [B = X.

Proposition 2.4 Any maximal element is a 
lassi
al solid obje
t.

Proof Suppose (A;B) is maximal. Then X = A [ �A [ A




Æ

= A [ B, sin
e

A = A [ �A and A




Æ

� A




Æ

= B. �

We need the following lemma on regular open sets for later results.

Lemma 2.5 If A is a regular open set of a topologi
al spa
e, then �A = �(A




Æ

).

Proof Suppose x 2 �A. Then any neighbourhood of x 
ontains an element of

A � A




Æ




. Assume now that O is a neighbourhood of x whi
h does not 
ontain

any element of A




Æ

. Then O � A, and hen
e by regularity of A, we have O � A

whi
h 
ontradi
ts x 2 �A. This shows that �A � �(A




Æ

). By symmetry we also get

�A � �(A




Æ

), sin
e A




Æ

is also a regular open set with A




Æ




Æ

= A. �

We next show that the solid domain is 
ontinuous for a suitable 
lass of topologi
al

spa
es.

Theorem 2.6 Let X be a lo
ally 
ompa
t Hausdor� spa
e. Then the solid domain

(SX;v) is a bounded 
omplete 
ontinuous domain and (A

1

; B

1

) � (A

2

; B

2

) i� A

1

and B

1

are 
ompa
t subsets of A

2

and B

2

respe
tively. If X is se
ond 
ountable,

then (SX;v) is !-
ontinuous.

Proof This is a simple exer
ise whi
h 
an be proved dire
tly or it 
an be dedu
ed

from more general results as follows. From [15, page 129, II.4.6℄, it follows that

(SX;v) is a 
ontinuous domain with (A

1

; B

1

)� (A

2

; B

2

) i� there are pairs (A

3

; B

3

)

of 
ompa
t sets su
h that A

1

� A

3

� A

2

and B

1

� B

3

� B

2

, whi
h gives us

the desired 
ondition sin
e a 
losed subset of a 
ompa
t set in a Hausdor� spa
e

is 
ompa
t. If X is se
ond 
ountable, then it will have a 
ountable basis, whi
h


ontains the empty set, is 
losed under binary interse
tion and regularized binary

union, and 
onsists of regular open sets whose 
losures are 
ompa
t. The 
olle
tion

of pairs of disjoint elements of this basis will provide a 
ountable basis for (SX;v).

�

Proposition 2.7 Any 
lassi
al solid obje
t (A;B) 2 SX, with A 6= ; 6= B, of a


onne
ted, lo
ally 
ompa
t Hausdor� spa
e X is maximal with respe
t to the way-

below relation.

Proof If (A;B) � (A

0

; B

0

) 2 SX, then we must have A � A

0

and B � B

0

. There-

fore, A

0

[ B

0

= X with A

0

6= ; 6= B

0

. This 
ontradi
ts the 
onne
tedness of X,

sin
e A

0

and B

0

are disjoint open sets. Hen
e, (A;B) is maximal with respe
t to the

way-below relation. �
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Remark 2.8 In fa
t if the latti
e of open sets of a topologi
al spa
e X is 
ontin-

uous, then [15, II.4.6, page 129℄ implies that (SX;v) is a 
ontinuous domain. In

parti
ular, it follows that one does not need X to be Hausdor�: the solid domain of

any lo
ally 
ompa
t spa
e is 
ontinuous. In that 
ase we have: (A

1

; B

1

)� (A

2

; B

2

)

i� there are pairs (A

3

; B

3

) of 
ompa
t saturated sets

2

su
h that A

1

� A

3

� A

2

and

B

1

� B

3

� B

2

. In this paper, however, we will restri
t our attention to lo
ally


ompa
t Hausdor� spa
es only.

In pra
ti
e, we are often interested in the subdomain S

b

X of bounded partial solids

whi
h is de�ned as S

b

X = f(A;B) 2 SXjB




is 
ompa
tg [ f(;; ;)g, ordered by

in
lusion. It is easy to see that S

b

X is a subd
po of SX. Moreover:

Proposition 2.9 If X is a (se
ond 
ountable) lo
ally 
ompa
t Hausdor� spa
e, S

b

X

is (!)-
ontinuous with the way-below relation given by (A

1

; B

1

)� (A

2

; B

2

) i� A

1

is

a 
ompa
t subset of A

2

and B




2

� B

1




Æ

.

From now on, unless otherwise stated, X is a lo
ally 
ompa
t se
ond 
ountable

Hausdor� spa
e.

3 Predi
ates and Operations on Solids

We will next de�ne the membership predi
ate on SX. In order to motivate our

de�nition, assume for the dis
ussion below that X = R

d

. Given any proper subset

of S � R

d

, the 
lassi
al membership predi
ate 2

S

: R

d

! ftt;�g is 
ontinuous ex
ept

on �S. In fa
t, if S is an open or 
losed set, then its boundary has empty interior

and it is not de
idable that a point is on �S. For example if X = R and S is

the set of positive numbers, then a real number x 2 R is on the boundary of S

i� x = 0 whi
h is not de
idable in 
omputable analysis [26, page 23℄. It therefore

makes sense from a 
omputational viewpoint to rede�ne the membership predi
ate

as the 
ontinuous fun
tion: 2

0

S

: R

d

! ftt;�g

?

where the value ? is taken on �S.

We 
all this the 
ontinuous membership predi
ate. Then, two subsets are equivalent

if and only if they have the same 
ontinuous membership predi
ate, i.e. if they have

the same interior and the same exterior (interior of 
omplement). By analogy with

general set theory for whi
h a set is 
ompletely de�ned by its membership predi
ate,

the solid domain 
an be seen as the 
olle
tion of subsets that 
an be distinguished

by their 
ontinuous membership predi
ates. The de�nition of the solid domain is

then 
onsistent with requirement (1) sin
e a 
omputable membership predi
ate has

to be 
ontinuous.

Our de�nition is also 
onsistent with requirement (2) in a 
losely related way.

We 
onsider the idealization of a ma
hine used to measure me
hani
al parts. Two

parts 
orresponding to equivalent subsets 
annot be distinguished by su
h a ma-


hine. Moreover, partial solids, and, more generally, domain-theoreti
ally de�ned

2

A set is saturated if it is upper 
losed with respe
t to the spe
ialisation ordering.
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data types allow us to 
apture partial, or un
ertain input data [7, 25℄ en
oun-

tered in realisti
 CAD situations. In order to be able to 
ompute the 
ontinu-

ous membership predi
ate on X, we extend it to the upper spa
e UX by de�ning

� 2 � : UX � SX ! ftt;�g

?

with:

C 2 (A;B) =

8

<

:

tt if C � A

� if C � B

? otherwise

Note that we use the in�x notation for predi
ates and Boolean operations. When

X = R

d

, it is more 
onvenient to use the interval domain IR

d

instead of the upper

spa
e and de�ne the membership predi
ate as: � 2 � : IR

d

� SR

d

! ftt;�g

?

.

(A,B)

B

A

 ff

 ⊥⊥

 tt

 ⊥⊥

 ⊥⊥

Figure 1: The membership predi
ate of a partial solid obje
t of the unit square.

We de�ne the predi
ate � � � : S

b

X � SX ! ftt;�g

?

, by

(A;B) � (C;D) =

8

<

:

tt if B [C = X

� if A \D 6= ;

? otherwise

The restri
tion to S

b

X will ensure that � � � is 
ontinuous, as we will see below.

Starting with the 
ontinuous membership predi
ate, the natural de�nition for the


omplement would be to swap the values tt and �. This means that the 
omplement

of (A;B) is (B;A), 
f. requirement (3).

As for requirement (4), the �gure below represents a subset S of X = [0; 1℄

2

that

is not regular (Fig. 2). Its regularization removes both the external and internal

\dangling edge". This set 
an be 
aptured in our framework but not in the Requi
ha

model. Here and in subsequent �gures, the two 
omponents A and B of the partial

solid are, for 
larity, depi
ted separately below ea
h pi
ture.

7



(A,B)

A B

Figure 2: Representation of a non-regular solid.

Next we 
onsider the Boolean operators. First note that the regularization op-

erator R : SX ! SX de�ned by R((A;B)) = ((A)

Æ

; (B)

Æ

) is not 
ontinuous, and

hen
e not 
omputable. To see this, suppose X = R and 
onsider the partial solid

(R n f0g; ;). Then

G

n�1

(R n [�

1

n

;

1

n

℄; ;) = (R n f0g; ;);

but

G

n�1

R(Rn [�

1

n

;

1

n

℄; ;)) =

G

n�1

(R n [�

1

n

;

1

n

℄; ;) = (Rnf0g; ;) 6= (R; ;) = R((R nf0g; ;)):

Furthermore, the regularized union [28, 29℄ of two adja
ent three dimensional boxes

(i.e. produ
t of intervals) is not 
omputable, sin
e, to de
ide whether the adja
ent

fa
es are in 
onta
t or not, one would have to de
ide the equality of two real numbers

whi
h is not 
omputable. Requirements (1) and (3) entail the existen
e of Boolean

operators whi
h are 
omputable with respe
t to a realisti
 ma
hine model (e.g. the

Turing ma
hine).

In order to de�ne Boolean operators on the solid domain, we obtain the truth

table of logi
al Boolean operators on ftt;�;?g. Consider the logi
al Boolean op-

erator \or", whi
h, applied to the 
ontinuous membership predi
ates of two partial

solids, would de�ne their union.

_ tt � ?

tt tt tt tt

� tt � ?

? tt ? ?

This is indeed the truth table for parallel or in domain theory; see [2, page 133℄.

One 
an likewise build the truth table for \and". Note the similarities with the

(In,On,Out) points 
lassi�
ations used in some boundary representation based al-

gorithms [30, 3℄. From these truth tables, we 
an dedu
e the de�nition of Boolean

8



operators on partial solids:

(A

1

; B

1

) [ (A

2

; B

2

) = (A

1

[A

2

; B

1

\B

2

)

(A

1

; B

1

) \ (A

2

; B

2

) = (A

1

\A

2

; B

1

[B

2

):

One 
an likewise de�ne the n-ary union and the n-ary interse
tion of partial solids.

Note that, given two partial solids representing adja
ent boxes, their union would

not represent the set-theoreti
 union of the boxes, as illustrated in Fig. 3.

(A2,B2)

A2 B2

(A1,B1)

A1
B1

(A1,B1)∪(A2,B2)

A1∪A2 B1∩B2

Figure 3: The union operation on the solid domain.

Theorem 3.1 The following maps are 
ontinuous:

(i) The predi
ates, � 2 � : UX � SX ! ftt;�g

?

and � 2 � : IR

d

� SR

d

!

ftt;�g

?

.

(ii) The binary union �[� : SX�SX ! SX and more generally the n-ary union

S

: (SX)

n

! SX for any topologi
al spa
e X.

(iii) The binary interse
tion �\� : SX�SX ! SX and more generally the n-ary

interse
tion

T

: (SX)

n

! SX for any topologi
al spa
e X.

(iv) � � � : S

b

X � SX ! ftt;�g

?

, for any Hausdor� spa
e X.

Proof (i) The proof is similar in both 
ases. A fun
tion of two variables on domains

is 
ontinuous i� it is 
ontinuous in ea
h variable separately when the other variable

is �xed [2, page 12℄. From this, we obtain the required 
ontinuity, in both 
ases, by

observing that a non-empty 
ompa
t set is 
ontained in the union of an in
reasing

sequen
e of open sets i� it is 
ontained in one su
h open set.

(ii) This follows from the distributivity of [ over \.

(iii) Follows from (ii) by duality.

9



(iv) The fun
tion � is 
learly monotone. To see that it is 
ontinuous in the

�rst argument when the se
ond argument (C;D) is held �xed, let (A

i

; B

i

)

i2I

be

a dire
ted family in S

b

X. Then, (

S

i2I

B

i

) [ C = X i�

T

i2I

B




i

� C i� there

exists i 2 I su
h that B




i

� C, by 
ompa
tness of B




i

[8, page 226℄. On the other

hand (

S

i2I

A

i

) \ D 6= ; i� there exists i 2 I su
h that A

i

\ D 6= ;. To show

that it is 
ontinuous in the se
ond argument when the �rst argument (A;B) is

held �xed, let (C

i

;D

i

)

i2I

be a dire
ted family in SX. Then, B [

S

i2I

C

i

= X

i� B




�

S

i2I

C

i

i� there exists i 2 I su
h that B




� C

i

, by 
ompa
tness of B




.

Moreover, A \ (

S

i2I

D

i

) 6= ; i� there exists i 2 I su
h that A \D

i

6= ;. �

We 
an also show the stability of 
lassi
al solids under Boolean operations:

Theorem 3.2 In any topologi
al spa
e, 
lassi
al solid obje
ts are stable under the

Boolean operations.

Proof We show that � \ � preserves 
lassi
al solids; the 
ase of � [ � follows by

duality. Let (A

1

; B

1

) and (A

2

; B

2

) be two 
lassi
al solids of the topologi
al spa
e X,

so that A

i

[B

i

= X for i = 1; 2. To show that (A

1

\A

2

) [ (B

1

[B

2

) = X, assume

x 2 X, with x =2 B

1

[B

2

. Then, there exist open neighbourhoods D

i

of x with

D

i

\ B

i

= ;, i = 1; 2. Hen
e, D

1

\D

2

� A

1

\ A

2

. Let O be any neighbourhood of

x. We will show that O \A

1

\A

2

6= ;. Put D = O \D

1

\D

2

. From D � A

1

\A

2

,

it follows that there exists a non-empty open set D

0

� D with D

0

� A

1

. Sin
e

D

0

� A

2

, there exists a non-empty open set D

00

� D

0

with D

00

� A

2

. We 
on
lude

that O \A

1

\A

2

� D

00

6= ;, as required. �

3.1 Minkowski Sum

We now introdu
e the Minkowski sum operation for partial solids of X = R

d

. Re
all

that the Minkowski sum of two subsets S

1

; S

2

� R

d

is de�ned as

S

1

� S

2

= fx+ yjx 2 S

1

; y 2 S

2

g

where x + y is the ve
tor addition in R

d

. For 
onvenien
e we will use the same

notation � for the Minkowski sum on the solid domain, whi
h is de�ned as a fun
tion

��� : (S

b

R

d

)� (SR

d

)! SR

d

by:

(A

1

; B

1

)� (A

2

; B

2

) = ((A

1

�A

2

); (B




1

�B




2

)




):

Lemma 3.3 ��� : (S

b

R

d

)� (SR

d

)! SR

d

is well-de�ned.

Proof Sin
e the Minkowski sum of an open set with any other set is always open,

A

1

� A

2

is open. We show that the Minkowski sum K � L of any 
ompa
t set K

and any 
losed set L is always 
losed. It is suÆ
ient to show that K � L 
ontains

all its limit points. Let x

n

+ y

n

with x

n

2 K and y

n

2 L be a 
onvergent sequen
e

with limit z 2 R

d

. Sin
e K is 
ompa
t, x

n

has a 
onvergent subsequen
e x

n

k

with limit a 2 K. Sin
e the subsequen
e x

n

k

+ y

n

k


onverges to z, it follows that

10



lim

k!1

x

n

k

= z � a 2 L, as L is 
losed. Hen
e z = a+ (z � a) 2 K � L and, thus,

K �L is 
losed. Sin
e, by assumption, B




1

is 
ompa
t, we 
on
lude that (B




1

�B




2

)




is open. It remains to show that (A

1

�A

2

) and (B




1

�B




2

)




are disjoint. This follows

easily as A

1

� B




1

and A

2

� B




2

implies (A

1

�A

2

) � (B




1

�B




2

). �

Corollary 3.4 The Minkowski sum operation restri
ts to a map:

��� : (S

b

R

d

)� (S

b

R

d

)! S

b

R

d

:

Proof This follows immediately from the fa
t that the Minkowski sum of two 
om-

pa
t sets is bounded as well as 
losed. �

Note that the Minkowski sum of two 
losed sets is not ne
essarily 
losed; for example,

in R

2

, the set S = f(x; y)jy � 0g � f(x; y)jy � expxg is not 
losed as the sequen
e

(n; 0) + (�n; exp(�n)) = (0; exp(�n)) 
onverges to (0; 0) =2 S. That is why we need

to restri
t the se
ond argument of the Minkowski operator to S

b

R

d

.

Theorem 3.5 The map ��� : (S

b

R

d

)� (SR

d

)! SR

d

is 
ontinuous.

Proof Clearly � is monotoni
 in the �rst argument and also, be
ause of two 
om-

plementation operations, in the se
ond argument. We 
he
k the 
ontinuity in the

�rst argument when the se
ond is �xed as (C;D). Let (A

i

; B

i

)

i2!

be an in
reasing


hain of partial solids with lub (A;B). We have to show the following two relations:

S

i2!

(A

i

�C) � (

S

i2!

A

i

)�C and

S

i2!

(B




i

�D




)




� ((

S

i2!

B

i

)




�D




)




. The �rst

is trivial; as for the se
ond we need to show that:

T

i2!

(B




i

�D




) � (

T

i2!

B




i

)�D




.

Let z 2

T

i2!

(B




i

�D




). Then, for ea
h natural number i, there exists x

i

2 B




i

and

y

i

2 D




su
h that z = x

i

+ y

i

. Sin
e B




0

is 
ompa
t, there exists a subsequen
e

(x

i

n

)

n2!

whi
h 
onverges to x 2 B




. Hen
e (y

i

n

)

n2!


onverges to z � x whi
h must

belong to D




. Therefore, z = x+ (z � x) 2 (

T

i

B




i

)�D




. The 
ontinuity of ���

when the �rst argument is �xed is proved in a similar way. �

Unlike the two Boolean operations, the Minkowski operation does not preserve 
las-

si
al solid obje
ts. For example, in S[0; 4℄

([0; 1); (1; 4℄) � (;; [0; 4℄ n f2g) = (;; [0; 2) [ (3; 4℄);

whi
h is not a 
lassi
al solid. However, we have the following:

Proposition 3.6 The map ��� : (S

b

R

d

)� (SR

d

)! SR

d

takes any two maximal

elements to a 
lassi
al solid.

Proof Let (A;B) 2 S

b

R

d

and (C;D) 2 SR

d

be maximal elements. Then, B




= A

and D




= C. We show that A�C = A � C. Sin
e B




� D




is 
losed, we have

A� C � A � C. On the other hand, let a+ 
 2 A� C. Then, there are sequen
es

(a

n

)

n2!

and (


n

)

n2!

, with a

n

2 A and 


n

2 C, for all n 2 !, su
h that a = lima

n

and 
 = lim 


n

. Therefore, a+ 
 = lima

n

+lim 


n

= lim(a

n

+ 


n

) 2 A�C. It follows

that B




�D




= A� C, and we 
on
lude that (A;B)� (C;D) = (A� C; (A� C)




)

is a 
lassi
al solid. �
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4 Computability on the Solid Domain

Let X be a se
ond 
ountable lo
ally 
ompa
t Hausdor� spa
e. Then UX and

SX are both !-
ontinuous bounded 
omplete d
po's. We will now de�ne e�e
tive

stru
tures for UX and SX. Let O be a 
ountable basis of regular open sets with


ompa
t 
losure for X, whi
h 
ontains the empty set, is 
losed under regularized

binary unions and under binary interse
tions. Consider an e�e
tive enumeration,

i.e. a surje
tion, O : N ! O, su
h that there is an e�e
tive pro
edure to obtain

O(i) for any i 2 N. For 
onvenien
e, we write O

i

for O(i) and often denote the

enumeration O by (O

i

)

i2!

. Here, we assume that O

0

= ; and stipulate that, for any

n � 1, the relation O

i

�

S

1�m�n

O

j

m

is de
idable. This, by the way, means that,

in the 
ontinuous latti
e of open subsets of X, the way-below relation on the basis

O is de
idable. Sin
e O

i

= ; i� O

i

� O

0

, it follows that the equality relation O

i

= ;

is de
idable and we 
an assume, by rede�ning the enumeration O, that O

i

= ; i�

i = 0. Furthermore, we assume that the binary interse
tion and the regularized

binary union of basis elements are 
omputable, i.e. there exist two total re
ursive

fun
tions �;  : N � N ! N su
h that (O

i

[O

j

)

Æ

= O

�(i;j)

and O

i

\O

j

= O

 (i;j)

. In

parti
ular, this implies that the relation O

i

\O

j

= ; is de
idable.

De�nition 4.1 Let (O

i

)

i2!

be an e�e
tive enumeration of a basis of a se
ond 
ount-

able lo
ally 
ompa
t Hausdor� spa
e X, 
onsisting of regular open sets with 
ompa
t


losure. Assume further that the basis is 
losed under binary interse
tion and regu-

larized binary union. We say that the e�e
tive enumeration (O

i

)

i2!

is an e�e
tive

stru
ture for X, if the following 
onditions hold:

� O

i

= ; i� i = 0.

� For any n � 1, the relation O

i

�

S

1�m�n

O

j

m

is de
idable.

� There exist total re
ursive fun
tions �;  : N � N ! N su
h that (O

i

[O

j

)

Æ

=

O

�(i;j)

and O

i

\O

j

= O

 (i;j)

.

If X is 
ompa
t, we will assume the further 
ondition that, for ea
h positive integer

n, the relation

S

1�m�n

O

i

m

= X is de
idable.

Note that the 
losure of the basis under binary interse
tion and regularized union

implies its 
losure under �nite interse
tions and regularized �nite unions. For ex-

ample, if A, B and C are open sets then it is easy to 
he
k that (A [B [ C)

Æ

=

((A [B)

Æ

[ C)

Æ

. From the e�e
tive enumeration O of the basis O, we 
an obtain an

e�e
tive enumeration of the basis S of SX, 
onsisting of pairs of disjoint elements

of O. In fa
t, there are total re
ursive fun
tions �; � : N ! N su
h that S : N ! S,

with S

n

= (O

�(n)

; O

�(n)

), gives an e�e
tive enumeration of S, with the relation

S

i

� S

j

de
idable.

The 
olle
tion C = fOjO 2 Og [ f?g is a 
ountable basis for the !-
ontinuous

domain UX, with an e�e
tive enumeration C : N ! C de�ned by C

0

= ? and
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C

i

= O

i

for i � 1. Noti
e that, we have C

j

� C

i

in UX i� O

i

� O

j

; therefore, the

way-below relation, C

i

� C

j

, on C is de
idable.

Having equipped SX and UX with the above e�e
tive stru
ture, we 
an now

dedu
e the 
omputability of the basi
 predi
ates and operations.

Theorem 4.2 The following fun
tions are 
omputable with respe
t to the e�e
tive

stru
tures on UX and SX.

(i) The membership predi
ate, � 2 � : UX � SX ! ftt;�g

?

.

(ii) The binary union �[� : SX�SX ! SX and more generally the n-ary union

[ : (SX)

n

! SX.

(iii) The binary interse
tion, �\� : SX�SX ! SX and more generally the n-ary

interse
tion \ : (SX)

n

! SX.

(iv) � � � : SX � SX ! ftt;�g

?

, where X is assumed to be 
ompa
t.

Proof (i) We have to show that the relations (C

i

2 S

n

) = tt and (C

i

2 S

n

) = � are

both r.e. The �rst redu
es to C

i

� O

�(n)

, in other words, O

i

� O

�(n)

, whi
h is in

fa
t de
idable by assumption. The se
ond is similarly de
idable.

(ii) We have to show, in the binary 
ase, that the relation S

n

� S

i

[ S

j

is r.e. Writing this relation in detail, it redu
es to (O

�(n)

; O

�(n)

) � (O

�(i)

[

O

�(j)

; O

 (�(i);�(j))

), i.e. O

�(n)

� O

�(i)

[ O

�(j)

and O

�(n)

� O

 (�(i);�(j))

, whi
h are

both de
idable. The n-ary 
ase is similar.

(iii) Dual to (ii).

(iv) The relations (S

i

� S

j

) = tt and (S

i

� S

j

) = � redu
e to O

�(i)

[O

�(j)

= X

and O

 (�(i);�(j))

6= ;, whi
h are both de
idable. �

4.1 E�e
tive stru
ture over SR

d

In order to endow SR

d

with an e�e
tive stru
ture, we introdu
e two di�erent 
ount-

able bases that are re
ursively equivalent, but 
orrespond to di�erent types of al-

gorithms in use. The �rst basis, made of partial dyadi
 voxel sets, 
orresponds to

the dis
rete geometry approa
h, while the se
ond one, made of partial rational poly-

hedra, is more 
onsistent with the 
omputational geometry point of view and will

be the basis for eÆ
ient algorithms. The 
omputability of Boolean and Minkowski

operators is easier to prove using the partial dyadi
 voxel sets representation.

4.1.1 Partial dyadi
 voxel sets

A dyadi
 number is a rational number whose denominator is a power of 2. Given

a natural number n, we divide the 
ube [�2

n

; 2

n

℄

d

into 2

(2n+1)d

small 
ubes ea
h

of length 2

�n

, the 
oordinates of the 2

d

verti
es of ea
h small 
ube will then be

integer multiples of 2

�n

, that is, dyadi
 numbers. We 
onsider these small 
ubes
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as 
losed 
ubes: two adja
ent 
ubes overlap along their 
ommon fa
e (or k-edge,

0 � k � d� 1).

A dyadi
 voxel set of order n is the interior of a �nite union of these small 
ubes.

We have then 2

2

(2n+1)d

distin
t dyadi
 voxel sets of order n, in
luding the trivial

ones, that is the empty set and the whole 
ube [�2

n

; 2

n

℄

d

itself. Noti
e that dyadi


voxel sets of order n are regular open sets with 
ompa
t 
losure(Fig. 4.

Dyadic voxel set of order 2Dyadic voxel set of order 1Dyadic voxel set of order 0

Figure 4: Voxel sets of di�erent orders.

Of 
ourse, if n < m, the dyadi
 voxel sets of order n are dyadi
 voxel sets of

order m. We say that a voxel set V has stri
t order n if V is of order n but is not

of order k for k < n.

The set V of all the dyadi
 voxel sets of any order n = 0; 1; 2; :: 
an be e�e
tively

enumerated by V : N ! V as follows. We put V

0

= ; and then start by �rst

enumerating, in a given pres
ribed way, the dyadi
 voxel sets of stri
t order 0, then

those of stri
t order 1, and so on. Then, there exists a total re
ursive fun
tion

r : N ! N su
h that, for ea
h i 2 N, V

i

will be a voxel set of stri
t order r(i), whi
h

would be expli
itly given as the interior of the union of its small 
ubes.

Clearly, V

i

= ; i� i = 0 and the relations V

i

�

S

1�m�n

V

j

m

and V

i

�

S

1�m�n

V

j

m

are de
idable for ea
h n � 1.

The interse
tion and the regularized union of dyadi
 voxel sets of order n are

dyadi
 voxel sets of order n and 
omputing the index of the binary interse
tion and

the regularized binary union of dyadi
 voxel sets from their indi
es is a �nite pro
e-

dure. This therefore gives an e�e
tive stru
ture for R

n

in the sense of De�nition 4.1.

From the e�e
tive enumeration (V

i

)

i2!

one 
an 
onstru
t an e�e
tive enumeration

(V

i

)

i2!

of the partial dyadi
 voxel sets, that is the pairs V

i

= (V

�(i)

; V

�(i)

), with �

and � total re
ursive fun
tions, su
h that V

�(i)

\ V

�(i)

= ;, with V

0

= (;; ;). Then,

(V

i

)

i2!

provides us with a basis of SR

d

and a partial solid (A;B) 2 SR

d

is 
om-

putable if and only if the set fi 2 NjV

i

� (A;B)g is r.e. We 
an endow S[�a; a℄

d

,
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where a > 0 is a 
omputable real number, with an e�e
tive stru
ture by using the

interse
tion of voxel sets with the 
ube S[�a; a℄

d

.

One 
an then apply the results of the previous se
tion to dedu
e:

Corollary 4.3 The following fun
tions are 
omputable with respe
t to the e�e
tive

stru
tures on IR

d

, SR

d

and S[�a; a℄

d

.

(i) � 2 � : IR

d

� SR

d

! ftt;�g

?

(ii) � [� : SR

d

� SR

d

! SR

d

.

(iii) � \� : SR

d

� SR

d

! SR

d

.

(iv) � � � : S[�a; a℄

d

� S[�a; a℄

d

! ftt;�g

?

.

In order to study the 
omputability of the Minkowski sum, we need a basis for the

domain S

b

R

d

of bounded partial solids. Re
all that the non-bottom elements of S

b

R

d

are of the form (A;B), with A and B open and B




bounded, and therefore 
ompa
t.

The se
ond 
omponent, B, will be approximated by the interiors of 
omplements of

dyadi
 voxel sets.

From the e�e
tive enumeration (V

i

)

i2!

one 
an obtain an e�e
tive enumeration

(W

i

)

i2!

of the partial bounded dyadi
 voxel sets. There are total re
ursive fun
tions


 and Æ su
h that W

0

= (;; ;) and, for i > 0, W

i

= (V


(i)

; V




Æ(i)

Æ

) where V


(i)

� V

Æ(i)

,

whi
h is de
idable. This provides us with a basis for S

b

R

d

.

Proposition 4.4 Given basis elements W

i

and V

j

of S

b

R

d

and SR

d

respe
tively,

there is a total re
ursive fun
tion � : N�N ! N su
h that V

�(i;j)

= W

i

�V

j

. Given

basis elements W

i

and W

j

of S

b

R

d

, there is a total re
ursive fun
tion  su
h that

W

 (i;j)

= W

i

� W

j

.

Proof The 
omputation redu
es to 
omputing either the Minkowski sum of two

dyadi
 voxel sets, or the Minkowski sum of a dyadi
 voxel set and the 
omplement

of a dyadi
 voxel set. This is 
learly a �nite pro
edure. �

Corollary 4.5 The following maps are 
omputable.

� � �� : (S

b

R

d

)� (SR

d

)! SR

d

� � �� : (S

b

R

d

)� (S

b

R

d

)! S

b

R

d

� � � � : (S

b

R

d

)� (SR

d

)! ftt;�g

?

.
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4.1.2 Partial rational polyhedra

A rational d-simplex in R

d

is the 
onvex hull of d+1 points with rational 
oordinates

that do not lie on the same hyper-plane. An open rational polyhedron is the interior

of a �nite union of rational d-simplexes. Starting with an e�e
tive enumeration of

the rational d-simplexes, one 
an obtain an e�e
tive enumeration (P

i

)

i2!

of the set

of open rational polyhedra with P

i

= ; i� i = 0. The relations P

i

�

S

1�m�n

P

j

m

and P

i

�

S

1�m�n

P

j

m

are de
idable for ea
h n � 1. Rational polyhedra are 
losed

under the binary interse
tion and the regularized binary union. These operations

are 
omputable as they rely only on rational arithmeti
 and 
omparison of rational

numbers.

A partial open rational polyhedron is a pair of disjoint open rational polyhedra.

From the e�e
tive enumeration (P

i

)

i2!

of open rational polyhedra, one 
an obtain

an e�e
tive enumeration (P

i

)

i2!

of the partial open rational polyhedra.

Partial dyadi
 voxel sets are trivially partial open rational polyhedra. Moreover,

they de�ne the same notion of 
omputability, in other words:

Proposition 4.6 P

i

� V

j

and V

i

� P

j

are de
idable in i and j.

From this equivalen
e, it follows that a partial solid obje
t, or a map, is 
om-

putable with respe
t to the e�e
tive stru
ture by partial open rational polyhedra if

and only if it is 
omputable with respe
t to the e�e
tive stru
ture by partial dyadi


voxel sets.

One 
an de�ne a basis of S

b

R

d

exa
tly in the same way as with rational partial

dyadi
 voxel sets.

Our domain-theoreti
 notion of 
omputability so far has the essential weakness

of la
king a quantitative measure for the rate of 
onvergen
e of basis elements to a


omputable element. This short
oming 
an be redressed by enri
hing the domain-

theoreti
 notion of 
omputability with an additional requirement whi
h allows a

quantitative degree of approximation. We will see in the next two se
tions that this


an be done in at least two di�erent ways.

5 Hausdor� 
omputability

In this se
tion we will enri
h the notion of 
omputability with 
onvergen
e with re-

spe
t to the Hausdor� metri
. Let X be a 
ompa
t metri
 spa
e, with its solid

domain SX e�e
tively given by a basis (S

i

)

i2!

, with S

i

= (O

�(i)

; O

�(i)

). Let

d

H

denote the Hausdor� distan
e between 
ompa
t sets with the 
onvention that

d

H

(;; ;) = 0 and for Y 6= ;, d

H

(;; Y ) = 1. We assume that the three double se-

quen
es (d

H

(O

i

; O

j

))

i;j2!

, (d

H

(O

i

; O




j

))

i;j2!

and (d

H

(O




i

; O




j

))

i;j2!

of real numbers

are 
omputable.

De�nition 5.1 A partial solid (A;B) is Hausdor� 
omputable if there is a total

re
ursive fun
tion f su
h that:
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� A =

S

i2!

O

�(f(i))

with d

H

(A;O

�(f(i))

) < 2

�i

and d

H

(A




; O




�(f(i))

) < 2

�i

.

� B =

S

i2!

O

�(f(i))

with d

H

(B;O

�(f(i))

) < 2

�i

and d

H

(B




; O




�(f(i))

) < 2

�i

.

Lemma 5.2 Let (A

i

)

i2!

be a de
reasing sequen
e of 
ompa
t subsets of a 
ompa
t

metri
 spa
e X and

T

i2!

A

i

= A. Then d

H

(A

i

; A)! 0 and d

H

(A




i

; A




)! 0.

Proof Let B

�

be the open ball of radius � 
entred at the origin. Consider

A�B

�

= fx 2 Xj9a 2 A: d(x; a) < �g:

Then, there exists i 2 ! su
h that A

i

� A � B

�

[8, page 226℄. It follows that

d

H

(A

i

; A) � �. Furthermore, we have A




�

S

i2!

A




i

� B

�

. It follows that there

exists i 2 ! su
h that A




� A




i

�B

�

, and hen
e, d

H

(A




i

; A




) � �. �

Proposition 5.3 A 
omputable maximal element of SX is Hausdor� 
omputable.

Proof Let (A;B) be a 
omputable maximal element of SX. From the regularity

of A and B, we get A = B




and B = A




. From the 
omputability of (A;B) in

SX, it follows that there exists a total re
ursive fun
tion � su
h that (A;B) =

(

S

i2!

O

�Æ�(i)

;

S

i2!

O

�Æ�(i)

), where the sequen
es of basis elements are both in-


reasing with i. For 
onvenien
e, put A

i

= O

�Æ�(i)

and B

i

= O

�Æ�(i)

. We have,

A




=

T

i2!

A




i

and B




=

T

i2!

B




i

. Sin
e X is 
ompa
t, A




, A




i

, B




and B




i

are also


ompa
t.

Applying Lemma 5.2, we get: d

H

(A




i

; A




) ! 0, d

H

(A

i

; A) ! 0, d

H

(B




i

; B




) !

0, and d

H

(B

i

; B) ! 0. Using A = B




and the triangular inequality we dedu
e:

d

H

(A

i

; B




i

)! 0 and similarly d

H

(B

i

; A




i

)! 0.

Sin
e �, � and � are total re
ursive fun
tions, (d

H

(A

i

; B




i

))

i2!

, i.e. (d

H

(O

�Æ�(i)

; O




�Æ�(i)

))

i2!

and (d

H

(B

i

; A




i

))

i2!

, i.e. (d

H

(O

�Æ�(i)

; O




�Æ�(i)

))

i2!

, are 
omputable sequen
es of real

numbers. Therefore, we 
an e�e
tively �nd the �rst integer k(i) 2 N su
h that:

d

H

(A

k(i)

; B




k(i)

) < 2

�i

and d

H

(B

k(i)

; A




k(i)

) < 2

�i

. Now, given three subsets E, F

and G, with E � F � G, we 
an 
he
k easily that: d

H

(E;F ) � d

H

(E;G) and

d

H

(F;G) � d

H

(E;G). Applying this to A

k(i)

� A = B




� B




k(i)

and B

k(i)

� B =

A




� A




k(i)

, it follows that:

d

H

(B

k(i)

; B) < 2

�i

; d

H

(B




; B




k(i)

) < 2

�i

; d

H

(A

k(i)

; A) < 2

�i

; d

H

(A




; A




k(i)

) < 2

�i

;

whi
h 
ompletes the proof. �

From the de�nition, it is 
lear that the 
omplement (B;A) of a partial solid

(A;B) is Hausdor� 
omputable if and only if (A;B) is Hausdor� 
omputable. How-

ever, Boolean operators do not preserve Hausdor� 
omputability in general, as we

will show in the following example(Fig. 5).
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Example 5.4 We will 
onstru
t Hausdor� 
omputable maximal elements (A;B)

and (A

0

; B

0

) of S([0; 1℄�[�1; 1℄) whi
h have a non-Hausdor� 
omputable interse
tion.

Let (a

n

)

n2!

be a 
omputable, in
reasing sequen
e of rational numbers, with a

0

> 0,

whose limit is a non-
omputable, left-
omputable real number l < 1.

Let g

n

: [0; 1℄! [0; 1℄, for n 2 N, be de�ned by

g

n

(t) =

�

2

�n

(1�

t

a

n

) if t < a

n

0 if t � a

n

Then, put f

n

= maxfg

i

j0 � i � ng, A

n

= f(x; y) 2 [0; 1℄ � [�1; 1℄jf

n

(x) + 2

�n

< yg

and B

n

= f(x; y) 2 [0; 1℄ � [�1; 1℄jy < f

n

(x)g.

Bn

An

a0 a1

g0

g1

g22
-2

2
0

2
-1

B ∪∪ B’

l ?

Figure 5: Interse
tion does not preserve Hausdor� 
omputability.

The sets A =

S

i2!

A

i

and B =

S

i2!

B

i

are regular and (A;B) is a Hausdor�


omputable, maximal element of S([0; 1℄ � [�1; 1℄). The partial solid (A

0

; B

0

) with

A

0

= [0; 1℄� [�1; 0) and B

0

= A

0




= [0; 1℄� (0; 1℄ is Hausdor� 
omputable. Consider

the interse
tion (A;B) \ (A

0

; B

0

) = (A \ A

0

; B [ B

0

). We have A \ A

0

= ; and

B [B

0

= ([l; 1℄ � f0g)




.

If the last 
omponent were Hausdor� 
omputable, there would be a 
omputable

sequen
e of basis elements (X

i

)

i2!

su
h that d

H

(X




i

; [l; 1℄ � f0g) < 2

�i

. But this is

in 
ontradi
tion with the non-
omputability of l.

6 Lebesgue Computability

We now 
onsider the notion of measure-theoreti
 
omputability whi
h is 
losed under

Boolean operations and 
an be expressed for solids on lo
ally 
ompa
t spa
es as

well. Suppose we have the e�e
tive stru
ture, introdu
ed in Se
tion 4, on the solid

domain SX of a se
ond 
ountable lo
ally 
ompa
t spa
e X, given in terms of the


ountable basis O. Let � be a �nite Borel measure on X, su
h that (�(O

i

))

i2!

18



is a 
omputable sequen
e of real numbers. If (A;B) 2 SX is 
omputable then

(A;B) =

F

i2!

S

Æ(i)

=

F

i2!

(O

�(Æ(i))

; O

�(Æ(i))

) for a total re
ursive fun
tion Æ : N !

N su
h that (S

Æ(i)

)

i2!

is an in
reasing 
hain. It follows that (�(O

�(Æ(i))

))

i2!

and

(�(O

�(Æ(i))

))

i2!

are 
omputable in
reasing sequen
es of real numbers whi
h 
onverge

to �(A) and �(B), respe
tively. Hen
e, �(A) and �(B) are left-
omputable real

numbers. We say that the 
omputable partial solid (A;B) is �-
omputable if �(A)

and �(B) are both 
omputable real numbers. It follows that, (A;B) is �-
omputable

i� there exists a total re
ursive fun
tion Æ su
h that �(A) � �(O

�(Æ(i))

) <

1

2

i

and

�(B)��(O

�(Æ(i))

) <

1

2

i

, for all i 2 N. The de�nition extends naturally to 
omputable

elements of (SX)

m

for any positive integer m.

Proposition 6.1 If �(X) is a 
omputable real number and (A;B) 2 SX is 
om-

putable with �(Xn(A[B)) a left-
omputable real number, then (A;B) is �-
omputable.

Proof We have the disjoint union X = A [ B [ (X n (A [ B)). Sin
e �(B) and

�(Xn(A[B)) are left-
omputable, it follows that �(A) = �(X)��(B)��(Xn(A[B))

is also right-
omputable, and, hen
e, 
omputable. Similarly �(B) is 
omputable. �

Corollary 6.2 If �(X) is a 
omputable real number and (A;B) 2 SX is a 
om-

putable maximal element with �(�A) = 0, then (A;B) is �-
omputable.

Proof By Lemma 2.5, �A = �B. Hen
e �(X n (A [B)) = �(�A) = 0. �

We say that a 
omputable sequen
e of partial solids ((A

n

; B

n

))

n2!

is �-
omputable

if (�(A

n

))

n2!

and (�(B

n

))

n2!

are 
omputable sequen
es of real numbers. As for


omputable elements, the de�nition extends naturally to 
omputable sequen
es of

(SX)

m

for any positive integer m. If ((A

n

; B

n

))

n2!

is a 
omputable sequen
e

of partial solid obje
ts, then there exist total re
ursive fun
tions a and b with

(A

n

; B

n

) =

F

i2!

(O

a(n;i)

; O

b(n;i)

) where the sequen
es of open sets are in
reasing

with i.

Lemma 6.3 Suppose ((A

n

; B

n

))

n2!

is a 
omputable sequen
e of partial solids, with

(A

n

; B

n

) =

F

i2!

(O

a(n;i)

; O

b(n;i)

) for total re
ursive fun
tions a and b where the

sequen
es of open sets are in
reasing with i. Then, ((A

n

; B

n

))

n2!

is �-
omputable

i� there exist total re
ursive fun
tions r; s : N � N ! N su
h that

�(A

n

)� �(O

a(n;r(n;i))

) � 2

�i

; �(B

n

)� �(O

b(n;s(n;i))

) � 2

�i

:

Proof Sin
e (�(O

j

))

j2!

is a 
omputable sequen
e of real numbers, it follows that

(�(O

a(n;i)

))

n;j2!

is a 
omputable double sequen
e of real numbers. Sin
e (�(O

a(n;i

)))

n;j2!


onverges monotoni
ally upwards to the sequen
e (�(A

n

))

n2!

as j ! 1, it follows

by [26, Proposition 2, Page 20℄, that the 
onvergen
e is e�e
tive in both n and j,

i.e. the re
ursive fun
tion r, with the required property exists, i� (�(A

n

))

n2!

is a


omputable sequen
e of real numbers. Similarly, the re
ursive fun
tion s with the

required property exists i� (�(B

n

))

n2!

is a 
omputable sequen
e of real numbers. �
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A 
omputable fun
tion f : (SX)

m

! SX is said to be �-
omputable if it takes

any �-
omputable sequen
e of m-tuples of partial solids to a �-
omputable sequen
e

of partial solids.

Theorem 6.4 The binary operations � [ � and � \ � are �-
omputable. More

generally, the n-ary operations of [ and \ are �-
omputable.

Proof Let ((A

n

; B

n

))

n2!

and ((C

n

;D

n

))

n2!

be �-
omputable sequen
es of partial

solids with (A

n

; B

n

) =

F

i2!

(O

a(n;i)

; O

b(n;i)

) and (C

n

;D

n

) =

F

i2!

(O


(n;i)

; O

d(n;i)

),

where the sequen
es of open sets are in
reasing and a, b, 
 and d are total re
ursive

fun
tions.

Sin
e, by Theorem 4.2, � [ � is 
omputable, it sends 
omputable sequen
es to


omputable sequen
es. Hen
e, ((A

n

[C

n

; B

n

\D

n

))

n2!

is a 
omputable sequen
e of

partial solids. We show that (�(A

n

[C

n

))

n2!

and (�(B

n

\D

n

))

n2!

are 
omputable

sequen
es of real numbers.

Let r and s be total re
ursive fun
tions, given by Lemma 6.3, su
h that

�(A

n

)� �(O

a(n;r(n;i)

)) � 2

�i

; �(C

n

)� �(O


(n;s(n;i)

)) � 2

�i

:

Then, for the total re
ursive fun
tion u de�ned by u(n; i) = max(r(n; i); s(n; i)), we

have:

�(A

n

[ C

n

)� �(O

a(n;u(n;i))

[O


(n;u(n;i))

) = �((A

n

[ C

n

) n (O

a(n;u(n;i))

[O


(n;u(n;i))

))

� �((A

n

n O

a(n;u(n;i))

) [ (C

n

n O


(n;u(n;i))

))

� �(A

n

n O

a(n;u(n;i))

) + �(C

n

nO


(n;u(n;i))

)

� 2

�i+1

We have:

�(O

a(n;u(n;i))

[O


(n;u(n;i))

) = �(O

a(n;u(n;i))

)+�(O


(n;u(n;i))

)��(O

a(n;u(n;i))

\O


(n;u(n;i))

):

Sin
e O

a(n;u(n;i))

\O


(n;u(n;i))

= O

 (a(n;u(n;i));
(n;u(n;i)))

, it follows that

�(O

a(n;u(n;i))

\O


(n;u(n;i))

)

n;i2!

is a 
omputable double sequen
e of real numbers. Therefore,

(�(O

a(n;u(n;i))

[O


(n;u(n;i))

)

n;i2!

is the linear sum of three 
omputable double sequen
es of real numbers. Hen
e,

(�(O

a(n;u(n;i))

[O


(n;u(n;i))

)

n;i2!

is itself a 
omputable double sequen
e of real num-

bers, whi
h 
onverges, as i ! 1, to (�(A

n

[ C

n

))

n2!

e�e
tively in i and n, as the

above 
al
ulation shows. Therefore, by Lemma 6.3, (�(A

n

[C

n

))

n2!

is a 
omputable

sequen
e of real numbers. Similarly, (�(B

n

\D

n

))

n2!

is a 
omputable sequen
e of

real numbers. This establishes the �-
omputability of � [ �. The 
ase of � \ �

follows by duality. The 
ase of the n-ary operations of [ and \ is similar. �
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Now suppose � is a lo
ally �nite Borel measure, i.e. one whi
h is �nite on any


ompa
t subset ofX, su
h that (�(O

i

))

i2!

is a 
omputable sequen
e of real numbers.

We say that a 
omputable partial solid obje
t (A;B) 2 SX is �-
omputable if

�(A\O

n

)

n2!

and �(B\O

n

)

n2!

are 
omputable sequen
es of real numbers. The 
om-

putable sequen
e of partial solids ((A

n

; B

n

))

n2!

is �-
omputable if (�(A

n

\O

m

))

n;m2!

and (�(B

n

\O

m

))

n;m2!

are 
omputable sequen
es of real numbers. These de�nitions

extend naturally to 
omputable elements and to sequen
es of elements of (SX)

k

for

any positive integer k. We say that a 
omputable map P : SX ! SY is �-
omputable

if it takes any �-
omputable sequen
e of partial solids of to a �-
omputable sequen
e

of partial solids. We say that a map P : SX

m

! SX is �-
omputable if it takes any

�-
omputable sequen
e of m-tuples of partial solids to a �-
omputable sequen
e of

partial solids.

Lemma 6.5 Suppose ((A

n

; B

n

))

n2!

is 
omputable, with (A

n

; B

n

) =

F

i2!

(O

a(n;i)

; O

b(n;i)

)

for total re
ursive fun
tions a and b where the sequen
es of open sets are in
reasing

with i. Then ((A

n

; B

n

))

n2!

is �-
omputable if and only if there exists total re
ursive

fun
tions r and s su
h that

�(A

n

\O

m

)��(O

a(n;r(n;m;i))

\O

m

) � 2

�i

; �(B

n

\O

m

)��(O

b(n;s(n;m;i))

\O

m

) � 2

�i

:

Proof Sin
e �(O

a(n;i)

\O

m

) = �(O

 (a(n;i);m)

), it follows that (�(O

a(n;i)

\O

m

))

n;i;m2!

is a 
omputable triple sequen
e of real numbers. This sequen
e 
onverges mono-

toni
ally upwards to the sequen
e (�(A

n

\ O

m

))

n;m2!

as i ! 1. Hen
e, by [26,

Proposition 2, Page 20℄, the re
ursive fun
tion r with the required property exists if

and only if the sequen
e (�(A

n

\O

m

))

n;m2!

is 
omputable. Similarly, the re
ursive

fun
tion s exists if and only if the sequen
e (�(B

n

\O

m

))

n;m2!

is 
omputable. �

As in the 
ase of �nite measures, the binary operations � [� and � \�, and,

more generally, the n-ary operations [ and \ are �-
omputable. The proof is similar

to that of Theorem 6.4, this time using Lemma 6.5.

Next, we 
onsider the most important 
ase, namely, when � is the Lebesgue

measure � on R

d

. We show that there are 
omputable partial solids whi
h are not

Lebesgue 
omputable. In fa
t, we will provide an example of a 
omputable maximal

element of S[�1; 1℄ whi
h is not Lebesgue 
omputable.

Example 6.6 This example uses a modi�
ation of a 
onstru
tion, due to Reinhold

He
kmann, of a regular open set of the real line whi
h has a boundary with non-zero

Lebesgue measure. The 
onstru
tion is similar to that of the standard Cantor set

ex
ept that at ea
h stage two open intervals, rather than just one, are removed. Let

(a

n

)

n2!

be a stri
tly in
reasing 
omputable sequen
e of rational numbers a

n

> 0


onverging to the non-
omputable real number a < 1. Put b

0

= a

0

and b

n+1

=

a

n+1

� a

n

for n � 0. Start with the 
losed interval [�1; 1℄ and remove two open

intervals ea
h of length b

0

su
h that three 
losed intervals of equal length are left.

In ea
h of these three 
losed intervals, remove two open intervals, ea
h of length

b

1

3

,

and so on. At the nth stage, there are 3

n


losed intervals, in ea
h we remove two
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open intervals ea
h of length

b

n

3

n

, resulting in a total of 2�3

n

open intervals(Fig. 6).

For 1 � m � 3

n

, we denote by B

nm

and C

nm

, respe
tively, the left and the right

open intervals removed in the mth 
losed interval. Let B

n

=

S

1�m�3

n

B

nm

, C

n

=

S

1�m�3

n

C

nm

. Finally, put B =

S

n2!

B

n

and C =

S

n2!

C

n

. It is straightforward

to 
he
k that �(B) = �(C) = a and that B and C are regular open sets, with B = C




Æ

and C = B




Æ

. By 
onstru
tion (B;C) 2 S[�1; 1℄ is a 
omputable, maximal solid

obje
t, whi
h is not Lebesgue 
omputable. This example 
an be lifted to R

d

by taking

the produ
t of (B;C) with [�1; 1℄

d�1

.

b0b0
b1/3b1/3b1/3

B2 C2

b0b0

B0 C0

b0b0
b1/3b1/3b1/3

B1 C1

Figure 6: A non-Lebesgue 
omputable regular solid.

One 
an also use a 
onstru
tion of a fra
tal Jordan 
urve by Ker-I-Ko and

Weihrau
h [20℄ in R

2

to show that there is even a 
omputable but non-Lebesgue


omputable maximal solid obje
t (B;C) 2 SR

2

su
h that the 
ommon boundary

�B = �C is a Jordan 
urve.

We 
onje
ture that the Minkowski operation preserves Lebesgue 
omputable

maximal elements, i.e. if (A;B); (C;D) 2 S[�a; a℄

d

are Lebesgue 
omputable maxi-

mal elements then (A;B)�(C;D) is Lebesgue 
omputable. However, the Minkowski

operation does not preserve Lebesgue 
omputable elements in general as the follow-

ing example shows.

Example 6.7 Let 0 < l < 1 be a right 
omputable, non-
omputable real num-

ber and 
onsider the non-maximal element (;; ([0; l℄ � f0g)




) 2 S[�2; 2℄

2

, whi
h is

Lebesgue 
omputable. Let B

1

be the open ball of radius 1 around the origin. Then,

the Minkowski sum

(;; ([0; l℄ � f0g)




)� (B

1

; B

1




Æ

) = (;; (B

1

� ([0; l℄ � f0g))




)

is not Lebesgue 
omputable, sin
e the se
ond 
omponent has measure 16 � (� + 2l)

whi
h is not a 
omputable real number.

A 
omputable partial solid (A;B), with �(X n (A [ B)) = 0, 
an be manufa
tured

with an error that 
an be made as small as we want in volume, assuming an idealized

manufa
turing devi
e.
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Despite their di�eren
es, the notions of Hausdor� 
omputability, whi
h measures

the visual proximity of obje
ts e�e
tively, and that of Lebesgue 
omputability, whi
h

measures the area or volume of obje
ts e�e
tively, both 
orrespond to observable

properties of solids and are therefore both useful in pra
ti
e.

7 Con
lusion

As stated in the Introdu
tion, the solid domain des
ribed here is based on a realisti


notion of 
omputability whi
h 
orresponds to the observable properties of solids; it

is also 
losed under Boolean operations whi
h are 
omputable in the model as are

the basi
 predi
ates. Furthermore, the model admits non-regular as well as regular

sets.

In order to design reasonably eÆ
ient algorithms based on our model, one should


arefully 
hoose the representation for partial solids. Representations used in indus-

trial appli
ations are generally polyhedra or B.Rep. (Boundary representation), that

is a set of fa
es (surfa
es), edges (
urves) and verti
es, 
onne
ted by an adja
en
y

graph featuring the boundary of the solid.

The dyadi
 voxel set representation 
an be made reasonably eÆ
ient using re
ur-

sive binary spa
e subdivision, i.e. o
tree-like stru
ture. For solids whi
h have, as it

is often the 
ase in appli
ations, a boundary with a bounded 
urvature almost every-

where, partial rational polyhedra will provide a more eÆ
ient representation. The

performan
e of these representations 
an be formally 
ompared by the growth rate,

as a fun
tion of n, of the volume of data (the number of bits) needed to represent a

partial solid up to the Hausdor� or Lebesgue a

ura
y of 2

�n

.

However, using partial rational polyhedra in a 
hain of su

essive Boolean opera-

tions would entail a prohibitive growth of the number of digits ne
essary to represent

the rational 
oordinates of the verti
es. An e�e
tive way to over
ome this problem

would be to use "dyadi
 polyhedra" together with a rounding pro
ess. The idea is

to use polyhedra whose vertex 
oordinates are dyadi
 numbers. Then, sin
e these

polyhedra are not 
losed under Boolean operators, one 
an round the exa
t result

to some best approximation in terms of dyadi
 polyhedra. This pro
ess is similar

to rounding in �xed or 
oating point arithmeti
. It is also related to some re
ent

works dealing with robustness in 
omputational geometry.

Our future work will fo
us on realisti
 implementations based on these ideas as

well as theoreti
al de�nitions of 
omplexity allowing a formal 
omparison between

algorithms and representations. Also, in order to apply this work to a
tual CAGD,

one needs to 
apture more information on solids and geometri
 obje
ts. In parti
ular,

we have to deal more generally with the boundary representation and the di�erential

properties of 
urves and surfa
es.
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Appendix

We give here the formal de�nitions of a number of notions in domain theory used in

the paper; see [1, 2, 26℄ for more detail. We think of a partially ordered set (poset)

(P;v) as the set of output of some 
omputation su
h that the partial order is an

order of information: in other words, a v b indi
ates that a has less information

than b. For example, the set f0; 1g

1

of all �nite and in�nite sequen
es of bits 0

and 1 with a v b if the sequen
e a is an initial segment of the sequen
e b is a

poset and a v b simply means that b has more bits of information than a. Any

T

0

topologi
al spa
e has an inherent information ordering, 
alled the spe
ialisation

ordering, de�ned by a v b i� a 2 O ) b 2 O, for all open subsets O. A non-empty

subset A � P is dire
ted if for any pair of elements a; b 2 A there exists 
 2 A su
h

that a v 
 and b v 
. A dire
ted set is therefore a 
onsistent set of output elements

of a 
omputation: for every pair of output a and b, there is some output 
 with more

information than a and b. A dire
ted 
omplete partial order (d
po) or a domain is a

partial order in whi
h every dire
ted subset has a least upper bound (lub). We say

that a d
po is pointed if it has a least element whi
h is denoted by ? and is 
alled

bottom.

For two elements a and b of a d
po we say a is way-below or approximates b,

denoted by a � b, if for every dire
ted subset A with b v

F

A there exists 
 2 A

with a v 
. The idea is that a is a �nitary approximation to b: whenever the lub

of a 
onsistent set of output elements has more information than b, then already

one of the input elements in the 
onsistent set has more information than a. In

f0; 1g

1

, we have a � b i� a v b and a is a �nite sequen
e. The 
losed subsets of

the S
ott topology of a domain are those subsets C whi
h are downward 
losed (i.e.

x 2 C & y v x ) y 2 C) and 
losed under taking lub's of dire
ted subsets (i.e. for

every dire
ted subset A � C we have

F

A 2 C).

A basis of a domain D is a subset B � D su
h that for every element x 2 D

of the domain the set B

x

= fy 2 Bjy � xg of elements in the basis way-below x

is dire
ted with x =

F

B

x

. An (!)-
ontinuous domain is a d
po with a (
ountable)

basis. In other words, every element of a 
ontinuous domain 
an be expressed as

the lub of the dire
ted set of basis elements whi
h approximate it. In a 
ontinuous

d
po D, subsets of the form

"

"a = fx 2 Dja � xg, for a 2 D, forms a basis for the

S
ott topology. A domain is bounded 
omplete if every bounded subset has a lub; in

su
h a domain every non-empty subset has an in�mum or greatest lower bound.

It 
an be shown that a fun
tion f : D ! E between d
po's is 
ontinuous with

respe
t to the S
ott topology if and only if it ismonotone (i.e. a v b ) f(a) v f(b))
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and preserves lub's of dire
ted sets i.e. for any dire
ted A � D, we have f(

F

a2A

a) =

F

a2A

f(a). Moreover, if D is an !-
ontinuous d
po, then f is 
ontinuous i� it is

monotone and preserves lub's of in
reasing sequen
es (i.e. f(

F

i2!

x

i

) =

F

i2!

f(x

i

),

for any in
reasing (x

i

)

i2!

).

The interval domain I[0; 1℄

n

of the unit box [0; 1℄

n

� R

n

is the set of all non-empty

n-dimensional sub-re
tangles in [0; 1℄

n

ordered by reverse in
lusion. A basi
 S
ott

open set is given, for every open subset O of R

n

, by the 
olle
tion of all re
tangles


ontained in O. The map x 7! fxg : [0; 1℄

n

! I[0; 1℄

n

is an embedding onto the set

of maximal elements of I[0; 1℄

n

. Every maximal element fxg 
an be obtained as the

least upper bound (lub) of an in
reasing 
hain of elements, i.e. a shrinking, nested

sequen
e of sub-re
tangles, ea
h 
ontaining fxg in its interior and thereby giving an

approximation to fxg or equivalently to x. The set of sub-re
tangles with rational


oordinates provides a 
ountable basis. One 
an similarly de�ne, for example, the

interval domain IR

n

of R

n

.

An important feature of domains, in the 
ontext of this paper, is that they 
an be

used to obtain 
omputable approximations to operations whi
h are 
lassi
ally non-


omputable. For example, 
omparison of a real number with 0 is not 
omputable.

However, the fun
tion N : I[�1; 1℄! ftt;�g

?

with

N([a; b℄) =

8

<

:

tt if b < 0

� if 0 < a

? otherwise

is the 
omputable approximation to the 
omparison predi
ate. Here, ftt;�g

?

is the

three element pointed domain with two in
omparable maximal elements tt and �.

The upper spa
e UX of a 
ompa
t metri
 spa
e X is the set of all non-empty


ompa
t subsets of X ordered by reverse in
lusion. In fa
t, UX is a generalization

of the interval domain and has similar properties; for example a basi
 S
ott open set

is given, for every open subset O � X, by the 
olle
tion of all non-empty 
ompa
t

subsets 
ontained in O. As with the interval domain, the map x 7! fxg : X ! UX

is an embedding onto the set of maximal elements ofUX. The upper spa
e gives rise

to a 
omputational model for fra
tals and for measure and integration theory [10℄.

The idea of the solid domain of [0; 1℄

n

(see Se
tion 2), represented by pairs of 
losed

subsets, is 
losely linked with U[0; 1℄

n

.

An !-
ontinuous domain D with a least element ? is e�e
tively given wrt an

e�e
tive enumeration b : N ! B of a 
ountable basis B if the set f< m;n >

jb

m

� b

n

g is re
ursive, where < :; : >: N � N ! N is the standard pairing fun
tion

i.e. the isomorphism (x; y) 7!

(x+y)(x+y+1)

2

+ x. This means that for ea
h pair

of basis elements (b

m

; b

n

), it is possible to de
ide in �nite time whether or not

b

m

� b

n

. We say x 2 D is 
omputable if the set fnjb

n

� xg is r.e. This is

equivalent to say that there is a master programme whi
h outputs exa
tly this set.

It is also equivalent to the existen
e of a re
ursive fun
tion g su
h that (b

g(n)

)

n2!

is an in
reasing 
hain in D with x =

F

n2!

b

g(n)

. If D is also e�e
tively given wrt

to another basis B

0

= fb

0

0

; b

0

1

; b

0

2

; � � �g su
h that the sets f< m;n > jb

m

� b

0

n

g and
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f< m;n > jb

0

m

� b

n

g are both de
idable, then x will be 
omputable wrt B i� it is


omputable wrt B

0

. We say that B and B

0

are re
ursively equivalent.

We 
an de�ne an e�e
tive enumeration � of the set D




of all 
omputable elements

of D. Let �

n

, n 2 !, be the nth partial re
ursive fun
tion. It 
an be shown [13℄

that there exists a total re
ursive fun
tion � su
h that � : N ! D




with �

n

:=

F

i2!

b

�

�(n)

(i)

, with (b

�

�(n)

(i)

)

i2!

an in
reasing 
hain for ea
h n 2 !, is an e�e
tive

enumeration of D




. A sequen
e (x

i

)

i2!

is 
omputable if there exists a total re
ursive

fun
tion h su
h that x

i

= �

h(i)

for all i 2 !.

We say that a 
ontinuous map f : D ! E of e�e
tively given !-
ontinuous

domains D (with basis fa

0

; a

1

� � �g) and E (with basis fb

0

; b

1

� � �g) is 
omputable if

the set f< m;n > jb

m

� f(a

n

)g is r.e. This is equivalent to say that f maps


omputable sequen
es to 
omputable sequen
es. Computable fun
tions are stable

under 
hange to a re
ursively equivalent basis. Every 
omputable fun
tion 
an be

shown to be a 
ontinuous fun
tion [35, Theorem 3.6.16℄. It 
an be shown [13℄ that

these notions of 
omputability for the domain IR of intervals of R indu
e the same


lass of 
omputable real numbers and 
omputable real fun
tions as in the 
lassi
al

theory [26℄.

We also need the following 
lassi
al de�nitions of sequen
es of real numbers. A

sequen
e (r

i

)

i2!

of rational numbers is 
omputable if there exist three total re
ursive

fun
tions a, b, and s su
h that b(i) 6= 0 for all i 2 ! and

r

i

= (�1)

s(i)

a(i)

b(i)

:

A 
omputable double sequen
e of rational numbers is de�ned in a similar way. A

sequen
e (x

i

)

i2!

of real numbers is 
omputable if there exists a 
omputable double

sequen
e (r

ij

)

i;j2!

of rational numbers su
h that

jr

ij

� x

i

j � 2

�j

for all i and j

A 
omputable double sequen
e of real numbers is de�ned analogously. If (x

nk

)

n;k2!

is

a 
omputable double sequen
e of real numbers whi
h 
onverges to a sequen
e (x

n

)

n2!

e�e
tively in k and n (i.e. there exists a total re
ursive fun
tion e : N � N ! N

su
h that jx

nk

� x

n

j � 2

�N

for all k � e(n;N)), then the sequen
e (x

n

)

n2!

is


omputable [26, Page 20℄.
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