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Abstrat

Solid modelling and omputational geometry are based on lassial topology

and geometry in whih the basi prediates and operations, suh as member-

ship, subset inlusion, union and intersetion, are not ontinuous and therefore

not omputable. But a sound omputational framework for solids and geometry

an only be built in a framework with omputable prediates and operations. In

pratie, orretness of algorithms in omputational geometry is usually proved

using the unrealisti Real RAM mahine model of omputation, whih allows

omparison of real numbers, with the undesirable result that orret algorithms,

when implemented, turn into unreliable programs. Here, we use a domain-

theoreti approah to reursive analysis to develop the basis of an e�etive and

realisti framework for solid modelling. This framework is equipped with a

well-de�ned and realisti notion of omputability whih reets the observable

properties of real solids. The basi prediates and operations on solids are om-

putable in this model whih admits regular and non-regular sets and supports a

design methodology for atual robust algorithms. Moreover, the model is able

to apture the unertainties of input data in atual CAD situations.

1 Introdution

The urrent frameworks for solid modelling and omputational geometry are based,

on the one hand, on disontinuous prediates and Boolean operations, and, on the

other hand, on omparison of real numbers. These essential foundations of the

existing theory and implementations are both unjusti�ed and unrealisti.

Topology and geometry, as mainstream mathematial disiplines, have been de-

veloped to study ontinuous transformations on spaes. It is therefore ironial that

the main building bloks of these subjets, namely the membership prediate of a

set, the subset inlusion prediate and the basi operations suh as union and inter-

setions, are generally not ontinuous and therefore non-omputable. For example,

in any Eulidean spae the membership prediate of any proper subset is disontin-

uous at the boundary of the subset; whereas the binary intersetion, as an operator
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on ompat subsets, is disontinuous with respet to the Hausdor� metri when-

ever the two input ompat subsets touh eah other. This non-ontinuity reates

a foundational problem in omputation, whih has so far been essentially negleted.

In fat, in order to onstrut a sound omputational model for solids and geometry,

one needs a framework in whih these elementary building bloks are ontinuous

and omputable.

In pratie, orretness of algorithms in omputational geometry is usually proved

using the Real RAM mahine [27℄ model of omputation, in whih omparison of

real numbers is onsidered to be deidable. Sine this model is not realisti, orret

algorithms, when implemented, turn into unreliable programs. In CAGD modelling

operators, the e�et of rounding errors on onsisteny and robustness of atual im-

plementations is an open question, whih is handled in industrial software by various

unreliable and expensive \up to epsilon" heuristis that remain very unsatisfatory.

The solid modelling framework provided by lassial analysis, whih allows dis-

ontinuous behaviour and omparison of exat real numbers, is not realisti as a

model of our interation with the physial world in terms of measurement and man-

ufaturing. Nor is it realisti as a basis for the design of algorithms implemented on

realisti mahines, whih an only deal with �nite data. Industrial solid modelling

software used for CAGD (Computer Aided Geometri Design), CAM (Computer

Aided Manufaturing) or robotis is therefore infeted by the disparity between the

lassial analysis paradigm and feasible omputations. This disparity, as well as the

representation of unertainties in the geometry of the solid objets, is handled ase

by ase, by various expensive and unsatisfatory \up to epsilon" ad ho heuristis.

It is diÆult, if at all possible, to improve and generalize these tehniques, sine

their relatively poor suess depends on the skill and experiene of software engi-

neers rather than on a well formalised methodology. In pratie, the maintenane

ost of some entral geometri operators suh as the Boolean operations or some

spei� variants of the Minkowski sum has always remained ritial [24, 14, 23℄.

The authors laim that a robust algorithm is one whose orretness is proved

with the assumption of a realisti mahine model [22℄. Reursive analysis de�nes

preisely what it means, in the ontext of the realisti Turing mahine model of om-

putation, to ompute objets belonging to non-ountable sets suh as the set of real

numbers. There are various approahes to omputable analysis, inluding the Type

2 Theory of E�etivity (TTE) [21, 35, 36℄, based on a omputation with a mahine,

the algebrai domain approah [33, 34℄, based on embedding lassial spaes into

algebrai domains, the ontinuous domain approah [9, 10, 13, 12℄, based on embed-

ding lassial spaes into the set of maximal elements of ontinuous domains, and

the more reent approah by Equilogial Spaes [31, 4, 5℄, based on taking quotients

of T

0

topologial spaes. In reent years, Brattka and Weihrauh have also studied

the question of omputability of losed and ompat subsets of Eulidean spaes in

the ontext of TTE [6℄.

In this paper, whih is based on the preliminary work in [11℄, we use a domain-

theoreti approah to reursive analysis to develop the foundation of an e�etive

framework for solid modelling. We introdue the ontinuous domain of solid objets
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whih gives a onrete model of omputation on solids lose to the atual pratie

by CAD engineers. In this model, the basi prediates, suh as membership and

subset inlusion, and operations, suh as union and intersetion, are ontinuous and

omputable. The set-theoreti aspets of solid modelling are revisited, leading to a

theoretially motivated model that shows some interesting similarities with the Re-

quiha Solid Model [28, 29℄. Within this model, some unavoidable limitations of solid

modelling omputations are proved and a sound framework to design spei�ations

for feasible modelling operators is provided. Some onsequenes in omputation

with the boundary representation paradigm are skethed that an inorporate exist-

ing methods [16, 32, 19, 17, 18℄ into a general, mathematially well-founded theory.

Moreover, the model is able to apture the unertainties of input data [7, 25℄ in

atual CAD situations.

We need the following requirements for the mathematial model:

(1) the notion of omputability of solids has to be well de�ned,

(2) the model has to reet the observable properties of real solids,

(3) it has to be losed under the Boolean operations and all basi prediates and

operations have to be omputable,

(4) non-regular sets

1

have to be aptured by the model as well as regular solids,

(5) the model has to support a design methodology for atual robust algorithms.

A general methodology for the spei�ation of feasible operators and the design

of robust algorithms should rely on a sound mathematial model. This is why the

authors believe that the domain-theoreti approah is a powerful framework both

to model partial or unertain data and to guide the design of robust software.

The paper is organised as follows. In Setion 2, we introdue the solid domain, a

mathematial model for omputable rigid solids, whih satis�es the above properties.

Setion 3 shows that the basi prediates and Boolean operations are ontinuous

in this model. Using a standard theory of omputability for domains, Setion 4

presents a omputability theory for our model, whih is onsistent with omputing

solids with a realisti mahine. Setions 5 and 6 enrih the domain-theoreti notion

of omputability with a quantitative measure of onvergene with respet to the

Hausdor� metri and the Lebesgue measure respetively. Setion 7 presents our

onlusion and skethes the outline of future work inluding the implementation of

this framework. Finally, in the Appendix, we ollet together the basi notions of

domain theory that we use in this paper.

2 The Solid Domain

In this setion, we introdue the solid domain, a mathematial model for representing

rigid solids. We fous here on the set-theoreti aspets of solid modelling as Requiha

1

An open set is regular if it is the interior of its losure.

3



did in introduing the r-sets model [28℄. Our model is motivated by requirements

(1) to (5) given in the introdution.

For any subset A of a topologial spae, A, A

Æ

, �A and A



denote respetively

the losure, the interior, the boundary and the omplement of A. Reall, for example

from [8, page 92℄, that an open set is regular if it is the interior of its losure; dually,

a losed set is regular if it is the losure of its interior. The omplement of a regular

open set then is a regular losed set and vie versa. The interior of a regular losed

set is a regular open set, whereas the losure of a regular open set is a regular losed

set. Finally, the intersetion of two regular open sets is regular. The regularization

of an open set is the interior of its losure; the regularization of a losed set is the

losure of its interior. Therefore, the regularized binary union of open sets O

1

and

O

2

is the set (O

1

[O

2

)

Æ

.

De�nition 2.1 The solid domain (SX;v) of a topologial spae X is the set of

ordered pairs (A;B) of disjoint open subsets of X endowed with the information

order: (A

1

; B

1

) v (A

2

; B

2

) () A

1

� A

2

and B

1

� B

2

.

An element (A;B) of SX is alled a partial solid: A and B are intended to

apture, respetively, the interior and the exterior (interior of the omplement) of a

solid objet, possibly, at some �nite stage of omputation. Note that (SX;v) is a

direted omplete partial order; the least upper bound (lub) of a direted family of

partial solid objets (A

i

; B

i

)

i2I

is given by

F

i2I

(A

i

; B

i

) = (

S

i2I

A

i

;

S

i2I

B

i

). The

solid domain is isomorphi with the funtion spae X ! ftt;�g

?

, i.e. the olletion

of ontinuous funtions f : X ! ftt;�g

?

ordered pointwise. Here, ftt;�g

?

is

the lift of ftt;�g equipped with its Sott topology. By duality of open and losed

sets, (SX;v) is also isomorphi with the olletion of ordered pairs (A;B) of losed

subsets of X with A [ B = X with the information ordering: (A

1

; B

1

) v (A

2

; B

2

)

() A

2

� A

1

and B

2

� B

1

.

In fat, S is a ontravariant funtor on the ategory TOP of topologial spaes

and ontinuous maps. Given a ontinuous funtion f : X ! Y of topologial spaes

X and Y , we have a ontinuous funtion Sf : SY ! SX de�ned by (Sf)(A;B) =

(f

�1

A; f

�1

B).

Proposition 2.2 The partial solid (A;B) 2 (SX;v) is a maximal element i� A =

B



Æ

and B = A



Æ

.

Proof Let (A;B) be maximal. Sine A and B are disjoint open sets, it follows that

A � B



Æ

. Hene, (A;B) v (B



Æ

; B) and thus A = B



Æ

. Similarly, B = A



Æ

. This

proves the \only if" part. For the \if part", suppose that A = B



Æ

and B = A



Æ

.

Then, any proper open superset of A will have non-empty intersetion with B and

any proper open superset of B will have non-empty intersetion with A. It follows

that (A;B) is maximal. �

Corollary 2.3 If (A;B) is a maximal element, then A and B are regular open sets.

Conversely, for any regular open set A, the partial solid (A;A



Æ

) is maximal.
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Proof For the �rst part, note that A is the interior of the losed set B



and is,

therefore, regular; similarly B is regular. For the seond part, observe that A



Æ



Æ

=

(A



Æ



)

Æ

= (A)

Æ

= A. �

We de�ne (A;B) 2 SX to be a lassial solid objet if A [B = X.

Proposition 2.4 Any maximal element is a lassial solid objet.

Proof Suppose (A;B) is maximal. Then X = A [ �A [ A



Æ

= A [ B, sine

A = A [ �A and A



Æ

� A



Æ

= B. �

We need the following lemma on regular open sets for later results.

Lemma 2.5 If A is a regular open set of a topologial spae, then �A = �(A



Æ

).

Proof Suppose x 2 �A. Then any neighbourhood of x ontains an element of

A � A



Æ



. Assume now that O is a neighbourhood of x whih does not ontain

any element of A



Æ

. Then O � A, and hene by regularity of A, we have O � A

whih ontradits x 2 �A. This shows that �A � �(A



Æ

). By symmetry we also get

�A � �(A



Æ

), sine A



Æ

is also a regular open set with A



Æ



Æ

= A. �

We next show that the solid domain is ontinuous for a suitable lass of topologial

spaes.

Theorem 2.6 Let X be a loally ompat Hausdor� spae. Then the solid domain

(SX;v) is a bounded omplete ontinuous domain and (A

1

; B

1

) � (A

2

; B

2

) i� A

1

and B

1

are ompat subsets of A

2

and B

2

respetively. If X is seond ountable,

then (SX;v) is !-ontinuous.

Proof This is a simple exerise whih an be proved diretly or it an be dedued

from more general results as follows. From [15, page 129, II.4.6℄, it follows that

(SX;v) is a ontinuous domain with (A

1

; B

1

)� (A

2

; B

2

) i� there are pairs (A

3

; B

3

)

of ompat sets suh that A

1

� A

3

� A

2

and B

1

� B

3

� B

2

, whih gives us

the desired ondition sine a losed subset of a ompat set in a Hausdor� spae

is ompat. If X is seond ountable, then it will have a ountable basis, whih

ontains the empty set, is losed under binary intersetion and regularized binary

union, and onsists of regular open sets whose losures are ompat. The olletion

of pairs of disjoint elements of this basis will provide a ountable basis for (SX;v).

�

Proposition 2.7 Any lassial solid objet (A;B) 2 SX, with A 6= ; 6= B, of a

onneted, loally ompat Hausdor� spae X is maximal with respet to the way-

below relation.

Proof If (A;B) � (A

0

; B

0

) 2 SX, then we must have A � A

0

and B � B

0

. There-

fore, A

0

[ B

0

= X with A

0

6= ; 6= B

0

. This ontradits the onnetedness of X,

sine A

0

and B

0

are disjoint open sets. Hene, (A;B) is maximal with respet to the

way-below relation. �
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Remark 2.8 In fat if the lattie of open sets of a topologial spae X is ontin-

uous, then [15, II.4.6, page 129℄ implies that (SX;v) is a ontinuous domain. In

partiular, it follows that one does not need X to be Hausdor�: the solid domain of

any loally ompat spae is ontinuous. In that ase we have: (A

1

; B

1

)� (A

2

; B

2

)

i� there are pairs (A

3

; B

3

) of ompat saturated sets

2

suh that A

1

� A

3

� A

2

and

B

1

� B

3

� B

2

. In this paper, however, we will restrit our attention to loally

ompat Hausdor� spaes only.

In pratie, we are often interested in the subdomain S

b

X of bounded partial solids

whih is de�ned as S

b

X = f(A;B) 2 SXjB



is ompatg [ f(;; ;)g, ordered by

inlusion. It is easy to see that S

b

X is a subdpo of SX. Moreover:

Proposition 2.9 If X is a (seond ountable) loally ompat Hausdor� spae, S

b

X

is (!)-ontinuous with the way-below relation given by (A

1

; B

1

)� (A

2

; B

2

) i� A

1

is

a ompat subset of A

2

and B



2

� B

1



Æ

.

From now on, unless otherwise stated, X is a loally ompat seond ountable

Hausdor� spae.

3 Prediates and Operations on Solids

We will next de�ne the membership prediate on SX. In order to motivate our

de�nition, assume for the disussion below that X = R

d

. Given any proper subset

of S � R

d

, the lassial membership prediate 2

S

: R

d

! ftt;�g is ontinuous exept

on �S. In fat, if S is an open or losed set, then its boundary has empty interior

and it is not deidable that a point is on �S. For example if X = R and S is

the set of positive numbers, then a real number x 2 R is on the boundary of S

i� x = 0 whih is not deidable in omputable analysis [26, page 23℄. It therefore

makes sense from a omputational viewpoint to rede�ne the membership prediate

as the ontinuous funtion: 2

0

S

: R

d

! ftt;�g

?

where the value ? is taken on �S.

We all this the ontinuous membership prediate. Then, two subsets are equivalent

if and only if they have the same ontinuous membership prediate, i.e. if they have

the same interior and the same exterior (interior of omplement). By analogy with

general set theory for whih a set is ompletely de�ned by its membership prediate,

the solid domain an be seen as the olletion of subsets that an be distinguished

by their ontinuous membership prediates. The de�nition of the solid domain is

then onsistent with requirement (1) sine a omputable membership prediate has

to be ontinuous.

Our de�nition is also onsistent with requirement (2) in a losely related way.

We onsider the idealization of a mahine used to measure mehanial parts. Two

parts orresponding to equivalent subsets annot be distinguished by suh a ma-

hine. Moreover, partial solids, and, more generally, domain-theoretially de�ned

2

A set is saturated if it is upper losed with respet to the speialisation ordering.
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data types allow us to apture partial, or unertain input data [7, 25℄ enoun-

tered in realisti CAD situations. In order to be able to ompute the ontinu-

ous membership prediate on X, we extend it to the upper spae UX by de�ning

� 2 � : UX � SX ! ftt;�g

?

with:

C 2 (A;B) =

8

<

:

tt if C � A

� if C � B

? otherwise

Note that we use the in�x notation for prediates and Boolean operations. When

X = R

d

, it is more onvenient to use the interval domain IR

d

instead of the upper

spae and de�ne the membership prediate as: � 2 � : IR

d

� SR

d

! ftt;�g

?

.

(A,B)

B

A

 ff

 ⊥⊥

 tt

 ⊥⊥

 ⊥⊥

Figure 1: The membership prediate of a partial solid objet of the unit square.

We de�ne the prediate � � � : S

b

X � SX ! ftt;�g

?

, by

(A;B) � (C;D) =

8

<

:

tt if B [C = X

� if A \D 6= ;

? otherwise

The restrition to S

b

X will ensure that � � � is ontinuous, as we will see below.

Starting with the ontinuous membership prediate, the natural de�nition for the

omplement would be to swap the values tt and �. This means that the omplement

of (A;B) is (B;A), f. requirement (3).

As for requirement (4), the �gure below represents a subset S of X = [0; 1℄

2

that

is not regular (Fig. 2). Its regularization removes both the external and internal

\dangling edge". This set an be aptured in our framework but not in the Requiha

model. Here and in subsequent �gures, the two omponents A and B of the partial

solid are, for larity, depited separately below eah piture.
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(A,B)

A B

Figure 2: Representation of a non-regular solid.

Next we onsider the Boolean operators. First note that the regularization op-

erator R : SX ! SX de�ned by R((A;B)) = ((A)

Æ

; (B)

Æ

) is not ontinuous, and

hene not omputable. To see this, suppose X = R and onsider the partial solid

(R n f0g; ;). Then

G

n�1

(R n [�

1

n

;

1

n

℄; ;) = (R n f0g; ;);

but

G

n�1

R(Rn [�

1

n

;

1

n

℄; ;)) =

G

n�1

(R n [�

1

n

;

1

n

℄; ;) = (Rnf0g; ;) 6= (R; ;) = R((R nf0g; ;)):

Furthermore, the regularized union [28, 29℄ of two adjaent three dimensional boxes

(i.e. produt of intervals) is not omputable, sine, to deide whether the adjaent

faes are in ontat or not, one would have to deide the equality of two real numbers

whih is not omputable. Requirements (1) and (3) entail the existene of Boolean

operators whih are omputable with respet to a realisti mahine model (e.g. the

Turing mahine).

In order to de�ne Boolean operators on the solid domain, we obtain the truth

table of logial Boolean operators on ftt;�;?g. Consider the logial Boolean op-

erator \or", whih, applied to the ontinuous membership prediates of two partial

solids, would de�ne their union.

_ tt � ?

tt tt tt tt

� tt � ?

? tt ? ?

This is indeed the truth table for parallel or in domain theory; see [2, page 133℄.

One an likewise build the truth table for \and". Note the similarities with the

(In,On,Out) points lassi�ations used in some boundary representation based al-

gorithms [30, 3℄. From these truth tables, we an dedue the de�nition of Boolean
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operators on partial solids:

(A

1

; B

1

) [ (A

2

; B

2

) = (A

1

[A

2

; B

1

\B

2

)

(A

1

; B

1

) \ (A

2

; B

2

) = (A

1

\A

2

; B

1

[B

2

):

One an likewise de�ne the n-ary union and the n-ary intersetion of partial solids.

Note that, given two partial solids representing adjaent boxes, their union would

not represent the set-theoreti union of the boxes, as illustrated in Fig. 3.

(A2,B2)

A2 B2

(A1,B1)

A1
B1

(A1,B1)∪(A2,B2)

A1∪A2 B1∩B2

Figure 3: The union operation on the solid domain.

Theorem 3.1 The following maps are ontinuous:

(i) The prediates, � 2 � : UX � SX ! ftt;�g

?

and � 2 � : IR

d

� SR

d

!

ftt;�g

?

.

(ii) The binary union �[� : SX�SX ! SX and more generally the n-ary union

S

: (SX)

n

! SX for any topologial spae X.

(iii) The binary intersetion �\� : SX�SX ! SX and more generally the n-ary

intersetion

T

: (SX)

n

! SX for any topologial spae X.

(iv) � � � : S

b

X � SX ! ftt;�g

?

, for any Hausdor� spae X.

Proof (i) The proof is similar in both ases. A funtion of two variables on domains

is ontinuous i� it is ontinuous in eah variable separately when the other variable

is �xed [2, page 12℄. From this, we obtain the required ontinuity, in both ases, by

observing that a non-empty ompat set is ontained in the union of an inreasing

sequene of open sets i� it is ontained in one suh open set.

(ii) This follows from the distributivity of [ over \.

(iii) Follows from (ii) by duality.
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(iv) The funtion � is learly monotone. To see that it is ontinuous in the

�rst argument when the seond argument (C;D) is held �xed, let (A

i

; B

i

)

i2I

be

a direted family in S

b

X. Then, (

S

i2I

B

i

) [ C = X i�

T

i2I

B



i

� C i� there

exists i 2 I suh that B



i

� C, by ompatness of B



i

[8, page 226℄. On the other

hand (

S

i2I

A

i

) \ D 6= ; i� there exists i 2 I suh that A

i

\ D 6= ;. To show

that it is ontinuous in the seond argument when the �rst argument (A;B) is

held �xed, let (C

i

;D

i

)

i2I

be a direted family in SX. Then, B [

S

i2I

C

i

= X

i� B



�

S

i2I

C

i

i� there exists i 2 I suh that B



� C

i

, by ompatness of B



.

Moreover, A \ (

S

i2I

D

i

) 6= ; i� there exists i 2 I suh that A \D

i

6= ;. �

We an also show the stability of lassial solids under Boolean operations:

Theorem 3.2 In any topologial spae, lassial solid objets are stable under the

Boolean operations.

Proof We show that � \ � preserves lassial solids; the ase of � [ � follows by

duality. Let (A

1

; B

1

) and (A

2

; B

2

) be two lassial solids of the topologial spae X,

so that A

i

[B

i

= X for i = 1; 2. To show that (A

1

\A

2

) [ (B

1

[B

2

) = X, assume

x 2 X, with x =2 B

1

[B

2

. Then, there exist open neighbourhoods D

i

of x with

D

i

\ B

i

= ;, i = 1; 2. Hene, D

1

\D

2

� A

1

\ A

2

. Let O be any neighbourhood of

x. We will show that O \A

1

\A

2

6= ;. Put D = O \D

1

\D

2

. From D � A

1

\A

2

,

it follows that there exists a non-empty open set D

0

� D with D

0

� A

1

. Sine

D

0

� A

2

, there exists a non-empty open set D

00

� D

0

with D

00

� A

2

. We onlude

that O \A

1

\A

2

� D

00

6= ;, as required. �

3.1 Minkowski Sum

We now introdue the Minkowski sum operation for partial solids of X = R

d

. Reall

that the Minkowski sum of two subsets S

1

; S

2

� R

d

is de�ned as

S

1

� S

2

= fx+ yjx 2 S

1

; y 2 S

2

g

where x + y is the vetor addition in R

d

. For onveniene we will use the same

notation � for the Minkowski sum on the solid domain, whih is de�ned as a funtion

��� : (S

b

R

d

)� (SR

d

)! SR

d

by:

(A

1

; B

1

)� (A

2

; B

2

) = ((A

1

�A

2

); (B



1

�B



2

)



):

Lemma 3.3 ��� : (S

b

R

d

)� (SR

d

)! SR

d

is well-de�ned.

Proof Sine the Minkowski sum of an open set with any other set is always open,

A

1

� A

2

is open. We show that the Minkowski sum K � L of any ompat set K

and any losed set L is always losed. It is suÆient to show that K � L ontains

all its limit points. Let x

n

+ y

n

with x

n

2 K and y

n

2 L be a onvergent sequene

with limit z 2 R

d

. Sine K is ompat, x

n

has a onvergent subsequene x

n

k

with limit a 2 K. Sine the subsequene x

n

k

+ y

n

k

onverges to z, it follows that

10



lim

k!1

x

n

k

= z � a 2 L, as L is losed. Hene z = a+ (z � a) 2 K � L and, thus,

K �L is losed. Sine, by assumption, B



1

is ompat, we onlude that (B



1

�B



2

)



is open. It remains to show that (A

1

�A

2

) and (B



1

�B



2

)



are disjoint. This follows

easily as A

1

� B



1

and A

2

� B



2

implies (A

1

�A

2

) � (B



1

�B



2

). �

Corollary 3.4 The Minkowski sum operation restrits to a map:

��� : (S

b

R

d

)� (S

b

R

d

)! S

b

R

d

:

Proof This follows immediately from the fat that the Minkowski sum of two om-

pat sets is bounded as well as losed. �

Note that the Minkowski sum of two losed sets is not neessarily losed; for example,

in R

2

, the set S = f(x; y)jy � 0g � f(x; y)jy � expxg is not losed as the sequene

(n; 0) + (�n; exp(�n)) = (0; exp(�n)) onverges to (0; 0) =2 S. That is why we need

to restrit the seond argument of the Minkowski operator to S

b

R

d

.

Theorem 3.5 The map ��� : (S

b

R

d

)� (SR

d

)! SR

d

is ontinuous.

Proof Clearly � is monotoni in the �rst argument and also, beause of two om-

plementation operations, in the seond argument. We hek the ontinuity in the

�rst argument when the seond is �xed as (C;D). Let (A

i

; B

i

)

i2!

be an inreasing

hain of partial solids with lub (A;B). We have to show the following two relations:

S

i2!

(A

i

�C) � (

S

i2!

A

i

)�C and

S

i2!

(B



i

�D



)



� ((

S

i2!

B

i

)



�D



)



. The �rst

is trivial; as for the seond we need to show that:

T

i2!

(B



i

�D



) � (

T

i2!

B



i

)�D



.

Let z 2

T

i2!

(B



i

�D



). Then, for eah natural number i, there exists x

i

2 B



i

and

y

i

2 D



suh that z = x

i

+ y

i

. Sine B



0

is ompat, there exists a subsequene

(x

i

n

)

n2!

whih onverges to x 2 B



. Hene (y

i

n

)

n2!

onverges to z � x whih must

belong to D



. Therefore, z = x+ (z � x) 2 (

T

i

B



i

)�D



. The ontinuity of ���

when the �rst argument is �xed is proved in a similar way. �

Unlike the two Boolean operations, the Minkowski operation does not preserve las-

sial solid objets. For example, in S[0; 4℄

([0; 1); (1; 4℄) � (;; [0; 4℄ n f2g) = (;; [0; 2) [ (3; 4℄);

whih is not a lassial solid. However, we have the following:

Proposition 3.6 The map ��� : (S

b

R

d

)� (SR

d

)! SR

d

takes any two maximal

elements to a lassial solid.

Proof Let (A;B) 2 S

b

R

d

and (C;D) 2 SR

d

be maximal elements. Then, B



= A

and D



= C. We show that A�C = A � C. Sine B



� D



is losed, we have

A� C � A � C. On the other hand, let a+  2 A� C. Then, there are sequenes

(a

n

)

n2!

and (

n

)

n2!

, with a

n

2 A and 

n

2 C, for all n 2 !, suh that a = lima

n

and  = lim 

n

. Therefore, a+  = lima

n

+lim 

n

= lim(a

n

+ 

n

) 2 A�C. It follows

that B



�D



= A� C, and we onlude that (A;B)� (C;D) = (A� C; (A� C)



)

is a lassial solid. �
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4 Computability on the Solid Domain

Let X be a seond ountable loally ompat Hausdor� spae. Then UX and

SX are both !-ontinuous bounded omplete dpo's. We will now de�ne e�etive

strutures for UX and SX. Let O be a ountable basis of regular open sets with

ompat losure for X, whih ontains the empty set, is losed under regularized

binary unions and under binary intersetions. Consider an e�etive enumeration,

i.e. a surjetion, O : N ! O, suh that there is an e�etive proedure to obtain

O(i) for any i 2 N. For onveniene, we write O

i

for O(i) and often denote the

enumeration O by (O

i

)

i2!

. Here, we assume that O

0

= ; and stipulate that, for any

n � 1, the relation O

i

�

S

1�m�n

O

j

m

is deidable. This, by the way, means that,

in the ontinuous lattie of open subsets of X, the way-below relation on the basis

O is deidable. Sine O

i

= ; i� O

i

� O

0

, it follows that the equality relation O

i

= ;

is deidable and we an assume, by rede�ning the enumeration O, that O

i

= ; i�

i = 0. Furthermore, we assume that the binary intersetion and the regularized

binary union of basis elements are omputable, i.e. there exist two total reursive

funtions �;  : N � N ! N suh that (O

i

[O

j

)

Æ

= O

�(i;j)

and O

i

\O

j

= O

 (i;j)

. In

partiular, this implies that the relation O

i

\O

j

= ; is deidable.

De�nition 4.1 Let (O

i

)

i2!

be an e�etive enumeration of a basis of a seond ount-

able loally ompat Hausdor� spae X, onsisting of regular open sets with ompat

losure. Assume further that the basis is losed under binary intersetion and regu-

larized binary union. We say that the e�etive enumeration (O

i

)

i2!

is an e�etive

struture for X, if the following onditions hold:

� O

i

= ; i� i = 0.

� For any n � 1, the relation O

i

�

S

1�m�n

O

j

m

is deidable.

� There exist total reursive funtions �;  : N � N ! N suh that (O

i

[O

j

)

Æ

=

O

�(i;j)

and O

i

\O

j

= O

 (i;j)

.

If X is ompat, we will assume the further ondition that, for eah positive integer

n, the relation

S

1�m�n

O

i

m

= X is deidable.

Note that the losure of the basis under binary intersetion and regularized union

implies its losure under �nite intersetions and regularized �nite unions. For ex-

ample, if A, B and C are open sets then it is easy to hek that (A [B [ C)

Æ

=

((A [B)

Æ

[ C)

Æ

. From the e�etive enumeration O of the basis O, we an obtain an

e�etive enumeration of the basis S of SX, onsisting of pairs of disjoint elements

of O. In fat, there are total reursive funtions �; � : N ! N suh that S : N ! S,

with S

n

= (O

�(n)

; O

�(n)

), gives an e�etive enumeration of S, with the relation

S

i

� S

j

deidable.

The olletion C = fOjO 2 Og [ f?g is a ountable basis for the !-ontinuous

domain UX, with an e�etive enumeration C : N ! C de�ned by C

0

= ? and

12



C

i

= O

i

for i � 1. Notie that, we have C

j

� C

i

in UX i� O

i

� O

j

; therefore, the

way-below relation, C

i

� C

j

, on C is deidable.

Having equipped SX and UX with the above e�etive struture, we an now

dedue the omputability of the basi prediates and operations.

Theorem 4.2 The following funtions are omputable with respet to the e�etive

strutures on UX and SX.

(i) The membership prediate, � 2 � : UX � SX ! ftt;�g

?

.

(ii) The binary union �[� : SX�SX ! SX and more generally the n-ary union

[ : (SX)

n

! SX.

(iii) The binary intersetion, �\� : SX�SX ! SX and more generally the n-ary

intersetion \ : (SX)

n

! SX.

(iv) � � � : SX � SX ! ftt;�g

?

, where X is assumed to be ompat.

Proof (i) We have to show that the relations (C

i

2 S

n

) = tt and (C

i

2 S

n

) = � are

both r.e. The �rst redues to C

i

� O

�(n)

, in other words, O

i

� O

�(n)

, whih is in

fat deidable by assumption. The seond is similarly deidable.

(ii) We have to show, in the binary ase, that the relation S

n

� S

i

[ S

j

is r.e. Writing this relation in detail, it redues to (O

�(n)

; O

�(n)

) � (O

�(i)

[

O

�(j)

; O

 (�(i);�(j))

), i.e. O

�(n)

� O

�(i)

[ O

�(j)

and O

�(n)

� O

 (�(i);�(j))

, whih are

both deidable. The n-ary ase is similar.

(iii) Dual to (ii).

(iv) The relations (S

i

� S

j

) = tt and (S

i

� S

j

) = � redue to O

�(i)

[O

�(j)

= X

and O

 (�(i);�(j))

6= ;, whih are both deidable. �

4.1 E�etive struture over SR

d

In order to endow SR

d

with an e�etive struture, we introdue two di�erent ount-

able bases that are reursively equivalent, but orrespond to di�erent types of al-

gorithms in use. The �rst basis, made of partial dyadi voxel sets, orresponds to

the disrete geometry approah, while the seond one, made of partial rational poly-

hedra, is more onsistent with the omputational geometry point of view and will

be the basis for eÆient algorithms. The omputability of Boolean and Minkowski

operators is easier to prove using the partial dyadi voxel sets representation.

4.1.1 Partial dyadi voxel sets

A dyadi number is a rational number whose denominator is a power of 2. Given

a natural number n, we divide the ube [�2

n

; 2

n

℄

d

into 2

(2n+1)d

small ubes eah

of length 2

�n

, the oordinates of the 2

d

verties of eah small ube will then be

integer multiples of 2

�n

, that is, dyadi numbers. We onsider these small ubes

13



as losed ubes: two adjaent ubes overlap along their ommon fae (or k-edge,

0 � k � d� 1).

A dyadi voxel set of order n is the interior of a �nite union of these small ubes.

We have then 2

2

(2n+1)d

distint dyadi voxel sets of order n, inluding the trivial

ones, that is the empty set and the whole ube [�2

n

; 2

n

℄

d

itself. Notie that dyadi

voxel sets of order n are regular open sets with ompat losure(Fig. 4.

Dyadic voxel set of order 2Dyadic voxel set of order 1Dyadic voxel set of order 0

Figure 4: Voxel sets of di�erent orders.

Of ourse, if n < m, the dyadi voxel sets of order n are dyadi voxel sets of

order m. We say that a voxel set V has strit order n if V is of order n but is not

of order k for k < n.

The set V of all the dyadi voxel sets of any order n = 0; 1; 2; :: an be e�etively

enumerated by V : N ! V as follows. We put V

0

= ; and then start by �rst

enumerating, in a given presribed way, the dyadi voxel sets of strit order 0, then

those of strit order 1, and so on. Then, there exists a total reursive funtion

r : N ! N suh that, for eah i 2 N, V

i

will be a voxel set of strit order r(i), whih

would be expliitly given as the interior of the union of its small ubes.

Clearly, V

i

= ; i� i = 0 and the relations V

i

�

S

1�m�n

V

j

m

and V

i

�

S

1�m�n

V

j

m

are deidable for eah n � 1.

The intersetion and the regularized union of dyadi voxel sets of order n are

dyadi voxel sets of order n and omputing the index of the binary intersetion and

the regularized binary union of dyadi voxel sets from their indies is a �nite proe-

dure. This therefore gives an e�etive struture for R

n

in the sense of De�nition 4.1.

From the e�etive enumeration (V

i

)

i2!

one an onstrut an e�etive enumeration

(V

i

)

i2!

of the partial dyadi voxel sets, that is the pairs V

i

= (V

�(i)

; V

�(i)

), with �

and � total reursive funtions, suh that V

�(i)

\ V

�(i)

= ;, with V

0

= (;; ;). Then,

(V

i

)

i2!

provides us with a basis of SR

d

and a partial solid (A;B) 2 SR

d

is om-

putable if and only if the set fi 2 NjV

i

� (A;B)g is r.e. We an endow S[�a; a℄

d

,
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where a > 0 is a omputable real number, with an e�etive struture by using the

intersetion of voxel sets with the ube S[�a; a℄

d

.

One an then apply the results of the previous setion to dedue:

Corollary 4.3 The following funtions are omputable with respet to the e�etive

strutures on IR

d

, SR

d

and S[�a; a℄

d

.

(i) � 2 � : IR

d

� SR

d

! ftt;�g

?

(ii) � [� : SR

d

� SR

d

! SR

d

.

(iii) � \� : SR

d

� SR

d

! SR

d

.

(iv) � � � : S[�a; a℄

d

� S[�a; a℄

d

! ftt;�g

?

.

In order to study the omputability of the Minkowski sum, we need a basis for the

domain S

b

R

d

of bounded partial solids. Reall that the non-bottom elements of S

b

R

d

are of the form (A;B), with A and B open and B



bounded, and therefore ompat.

The seond omponent, B, will be approximated by the interiors of omplements of

dyadi voxel sets.

From the e�etive enumeration (V

i

)

i2!

one an obtain an e�etive enumeration

(W

i

)

i2!

of the partial bounded dyadi voxel sets. There are total reursive funtions

 and Æ suh that W

0

= (;; ;) and, for i > 0, W

i

= (V

(i)

; V



Æ(i)

Æ

) where V

(i)

� V

Æ(i)

,

whih is deidable. This provides us with a basis for S

b

R

d

.

Proposition 4.4 Given basis elements W

i

and V

j

of S

b

R

d

and SR

d

respetively,

there is a total reursive funtion � : N�N ! N suh that V

�(i;j)

= W

i

�V

j

. Given

basis elements W

i

and W

j

of S

b

R

d

, there is a total reursive funtion  suh that

W

 (i;j)

= W

i

� W

j

.

Proof The omputation redues to omputing either the Minkowski sum of two

dyadi voxel sets, or the Minkowski sum of a dyadi voxel set and the omplement

of a dyadi voxel set. This is learly a �nite proedure. �

Corollary 4.5 The following maps are omputable.

� � �� : (S

b

R

d

)� (SR

d

)! SR

d

� � �� : (S

b

R

d

)� (S

b

R

d

)! S

b

R

d

� � � � : (S

b

R

d

)� (SR

d

)! ftt;�g

?

.
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4.1.2 Partial rational polyhedra

A rational d-simplex in R

d

is the onvex hull of d+1 points with rational oordinates

that do not lie on the same hyper-plane. An open rational polyhedron is the interior

of a �nite union of rational d-simplexes. Starting with an e�etive enumeration of

the rational d-simplexes, one an obtain an e�etive enumeration (P

i

)

i2!

of the set

of open rational polyhedra with P

i

= ; i� i = 0. The relations P

i

�

S

1�m�n

P

j

m

and P

i

�

S

1�m�n

P

j

m

are deidable for eah n � 1. Rational polyhedra are losed

under the binary intersetion and the regularized binary union. These operations

are omputable as they rely only on rational arithmeti and omparison of rational

numbers.

A partial open rational polyhedron is a pair of disjoint open rational polyhedra.

From the e�etive enumeration (P

i

)

i2!

of open rational polyhedra, one an obtain

an e�etive enumeration (P

i

)

i2!

of the partial open rational polyhedra.

Partial dyadi voxel sets are trivially partial open rational polyhedra. Moreover,

they de�ne the same notion of omputability, in other words:

Proposition 4.6 P

i

� V

j

and V

i

� P

j

are deidable in i and j.

From this equivalene, it follows that a partial solid objet, or a map, is om-

putable with respet to the e�etive struture by partial open rational polyhedra if

and only if it is omputable with respet to the e�etive struture by partial dyadi

voxel sets.

One an de�ne a basis of S

b

R

d

exatly in the same way as with rational partial

dyadi voxel sets.

Our domain-theoreti notion of omputability so far has the essential weakness

of laking a quantitative measure for the rate of onvergene of basis elements to a

omputable element. This shortoming an be redressed by enrihing the domain-

theoreti notion of omputability with an additional requirement whih allows a

quantitative degree of approximation. We will see in the next two setions that this

an be done in at least two di�erent ways.

5 Hausdor� omputability

In this setion we will enrih the notion of omputability with onvergene with re-

spet to the Hausdor� metri. Let X be a ompat metri spae, with its solid

domain SX e�etively given by a basis (S

i

)

i2!

, with S

i

= (O

�(i)

; O

�(i)

). Let

d

H

denote the Hausdor� distane between ompat sets with the onvention that

d

H

(;; ;) = 0 and for Y 6= ;, d

H

(;; Y ) = 1. We assume that the three double se-

quenes (d

H

(O

i

; O

j

))

i;j2!

, (d

H

(O

i

; O



j

))

i;j2!

and (d

H

(O



i

; O



j

))

i;j2!

of real numbers

are omputable.

De�nition 5.1 A partial solid (A;B) is Hausdor� omputable if there is a total

reursive funtion f suh that:
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� A =

S

i2!

O

�(f(i))

with d

H

(A;O

�(f(i))

) < 2

�i

and d

H

(A



; O



�(f(i))

) < 2

�i

.

� B =

S

i2!

O

�(f(i))

with d

H

(B;O

�(f(i))

) < 2

�i

and d

H

(B



; O



�(f(i))

) < 2

�i

.

Lemma 5.2 Let (A

i

)

i2!

be a dereasing sequene of ompat subsets of a ompat

metri spae X and

T

i2!

A

i

= A. Then d

H

(A

i

; A)! 0 and d

H

(A



i

; A



)! 0.

Proof Let B

�

be the open ball of radius � entred at the origin. Consider

A�B

�

= fx 2 Xj9a 2 A: d(x; a) < �g:

Then, there exists i 2 ! suh that A

i

� A � B

�

[8, page 226℄. It follows that

d

H

(A

i

; A) � �. Furthermore, we have A



�

S

i2!

A



i

� B

�

. It follows that there

exists i 2 ! suh that A



� A



i

�B

�

, and hene, d

H

(A



i

; A



) � �. �

Proposition 5.3 A omputable maximal element of SX is Hausdor� omputable.

Proof Let (A;B) be a omputable maximal element of SX. From the regularity

of A and B, we get A = B



and B = A



. From the omputability of (A;B) in

SX, it follows that there exists a total reursive funtion � suh that (A;B) =

(

S

i2!

O

�Æ�(i)

;

S

i2!

O

�Æ�(i)

), where the sequenes of basis elements are both in-

reasing with i. For onveniene, put A

i

= O

�Æ�(i)

and B

i

= O

�Æ�(i)

. We have,

A



=

T

i2!

A



i

and B



=

T

i2!

B



i

. Sine X is ompat, A



, A



i

, B



and B



i

are also

ompat.

Applying Lemma 5.2, we get: d

H

(A



i

; A



) ! 0, d

H

(A

i

; A) ! 0, d

H

(B



i

; B



) !

0, and d

H

(B

i

; B) ! 0. Using A = B



and the triangular inequality we dedue:

d

H

(A

i

; B



i

)! 0 and similarly d

H

(B

i

; A



i

)! 0.

Sine �, � and � are total reursive funtions, (d

H

(A

i

; B



i

))

i2!

, i.e. (d

H

(O

�Æ�(i)

; O



�Æ�(i)

))

i2!

and (d

H

(B

i

; A



i

))

i2!

, i.e. (d

H

(O

�Æ�(i)

; O



�Æ�(i)

))

i2!

, are omputable sequenes of real

numbers. Therefore, we an e�etively �nd the �rst integer k(i) 2 N suh that:

d

H

(A

k(i)

; B



k(i)

) < 2

�i

and d

H

(B

k(i)

; A



k(i)

) < 2

�i

. Now, given three subsets E, F

and G, with E � F � G, we an hek easily that: d

H

(E;F ) � d

H

(E;G) and

d

H

(F;G) � d

H

(E;G). Applying this to A

k(i)

� A = B



� B



k(i)

and B

k(i)

� B =

A



� A



k(i)

, it follows that:

d

H

(B

k(i)

; B) < 2

�i

; d

H

(B



; B



k(i)

) < 2

�i

; d

H

(A

k(i)

; A) < 2

�i

; d

H

(A



; A



k(i)

) < 2

�i

;

whih ompletes the proof. �

From the de�nition, it is lear that the omplement (B;A) of a partial solid

(A;B) is Hausdor� omputable if and only if (A;B) is Hausdor� omputable. How-

ever, Boolean operators do not preserve Hausdor� omputability in general, as we

will show in the following example(Fig. 5).

17



Example 5.4 We will onstrut Hausdor� omputable maximal elements (A;B)

and (A

0

; B

0

) of S([0; 1℄�[�1; 1℄) whih have a non-Hausdor� omputable intersetion.

Let (a

n

)

n2!

be a omputable, inreasing sequene of rational numbers, with a

0

> 0,

whose limit is a non-omputable, left-omputable real number l < 1.

Let g

n

: [0; 1℄! [0; 1℄, for n 2 N, be de�ned by

g

n

(t) =

�

2

�n

(1�

t

a

n

) if t < a

n

0 if t � a

n

Then, put f

n

= maxfg

i

j0 � i � ng, A

n

= f(x; y) 2 [0; 1℄ � [�1; 1℄jf

n

(x) + 2

�n

< yg

and B

n

= f(x; y) 2 [0; 1℄ � [�1; 1℄jy < f

n

(x)g.

Bn

An

a0 a1

g0

g1

g22
-2

2
0

2
-1

B ∪∪ B’

l ?

Figure 5: Intersetion does not preserve Hausdor� omputability.

The sets A =

S

i2!

A

i

and B =

S

i2!

B

i

are regular and (A;B) is a Hausdor�

omputable, maximal element of S([0; 1℄ � [�1; 1℄). The partial solid (A

0

; B

0

) with

A

0

= [0; 1℄� [�1; 0) and B

0

= A

0



= [0; 1℄� (0; 1℄ is Hausdor� omputable. Consider

the intersetion (A;B) \ (A

0

; B

0

) = (A \ A

0

; B [ B

0

). We have A \ A

0

= ; and

B [B

0

= ([l; 1℄ � f0g)



.

If the last omponent were Hausdor� omputable, there would be a omputable

sequene of basis elements (X

i

)

i2!

suh that d

H

(X



i

; [l; 1℄ � f0g) < 2

�i

. But this is

in ontradition with the non-omputability of l.

6 Lebesgue Computability

We now onsider the notion of measure-theoreti omputability whih is losed under

Boolean operations and an be expressed for solids on loally ompat spaes as

well. Suppose we have the e�etive struture, introdued in Setion 4, on the solid

domain SX of a seond ountable loally ompat spae X, given in terms of the

ountable basis O. Let � be a �nite Borel measure on X, suh that (�(O

i

))

i2!

18



is a omputable sequene of real numbers. If (A;B) 2 SX is omputable then

(A;B) =

F

i2!

S

Æ(i)

=

F

i2!

(O

�(Æ(i))

; O

�(Æ(i))

) for a total reursive funtion Æ : N !

N suh that (S

Æ(i)

)

i2!

is an inreasing hain. It follows that (�(O

�(Æ(i))

))

i2!

and

(�(O

�(Æ(i))

))

i2!

are omputable inreasing sequenes of real numbers whih onverge

to �(A) and �(B), respetively. Hene, �(A) and �(B) are left-omputable real

numbers. We say that the omputable partial solid (A;B) is �-omputable if �(A)

and �(B) are both omputable real numbers. It follows that, (A;B) is �-omputable

i� there exists a total reursive funtion Æ suh that �(A) � �(O

�(Æ(i))

) <

1

2

i

and

�(B)��(O

�(Æ(i))

) <

1

2

i

, for all i 2 N. The de�nition extends naturally to omputable

elements of (SX)

m

for any positive integer m.

Proposition 6.1 If �(X) is a omputable real number and (A;B) 2 SX is om-

putable with �(Xn(A[B)) a left-omputable real number, then (A;B) is �-omputable.

Proof We have the disjoint union X = A [ B [ (X n (A [ B)). Sine �(B) and

�(Xn(A[B)) are left-omputable, it follows that �(A) = �(X)��(B)��(Xn(A[B))

is also right-omputable, and, hene, omputable. Similarly �(B) is omputable. �

Corollary 6.2 If �(X) is a omputable real number and (A;B) 2 SX is a om-

putable maximal element with �(�A) = 0, then (A;B) is �-omputable.

Proof By Lemma 2.5, �A = �B. Hene �(X n (A [B)) = �(�A) = 0. �

We say that a omputable sequene of partial solids ((A

n

; B

n

))

n2!

is �-omputable

if (�(A

n

))

n2!

and (�(B

n

))

n2!

are omputable sequenes of real numbers. As for

omputable elements, the de�nition extends naturally to omputable sequenes of

(SX)

m

for any positive integer m. If ((A

n

; B

n

))

n2!

is a omputable sequene

of partial solid objets, then there exist total reursive funtions a and b with

(A

n

; B

n

) =

F

i2!

(O

a(n;i)

; O

b(n;i)

) where the sequenes of open sets are inreasing

with i.

Lemma 6.3 Suppose ((A

n

; B

n

))

n2!

is a omputable sequene of partial solids, with

(A

n

; B

n

) =

F

i2!

(O

a(n;i)

; O

b(n;i)

) for total reursive funtions a and b where the

sequenes of open sets are inreasing with i. Then, ((A

n

; B

n

))

n2!

is �-omputable

i� there exist total reursive funtions r; s : N � N ! N suh that

�(A

n

)� �(O

a(n;r(n;i))

) � 2

�i

; �(B

n

)� �(O

b(n;s(n;i))

) � 2

�i

:

Proof Sine (�(O

j

))

j2!

is a omputable sequene of real numbers, it follows that

(�(O

a(n;i)

))

n;j2!

is a omputable double sequene of real numbers. Sine (�(O

a(n;i

)))

n;j2!

onverges monotonially upwards to the sequene (�(A

n

))

n2!

as j ! 1, it follows

by [26, Proposition 2, Page 20℄, that the onvergene is e�etive in both n and j,

i.e. the reursive funtion r, with the required property exists, i� (�(A

n

))

n2!

is a

omputable sequene of real numbers. Similarly, the reursive funtion s with the

required property exists i� (�(B

n

))

n2!

is a omputable sequene of real numbers. �
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A omputable funtion f : (SX)

m

! SX is said to be �-omputable if it takes

any �-omputable sequene of m-tuples of partial solids to a �-omputable sequene

of partial solids.

Theorem 6.4 The binary operations � [ � and � \ � are �-omputable. More

generally, the n-ary operations of [ and \ are �-omputable.

Proof Let ((A

n

; B

n

))

n2!

and ((C

n

;D

n

))

n2!

be �-omputable sequenes of partial

solids with (A

n

; B

n

) =

F

i2!

(O

a(n;i)

; O

b(n;i)

) and (C

n

;D

n

) =

F

i2!

(O

(n;i)

; O

d(n;i)

),

where the sequenes of open sets are inreasing and a, b,  and d are total reursive

funtions.

Sine, by Theorem 4.2, � [ � is omputable, it sends omputable sequenes to

omputable sequenes. Hene, ((A

n

[C

n

; B

n

\D

n

))

n2!

is a omputable sequene of

partial solids. We show that (�(A

n

[C

n

))

n2!

and (�(B

n

\D

n

))

n2!

are omputable

sequenes of real numbers.

Let r and s be total reursive funtions, given by Lemma 6.3, suh that

�(A

n

)� �(O

a(n;r(n;i)

)) � 2

�i

; �(C

n

)� �(O

(n;s(n;i)

)) � 2

�i

:

Then, for the total reursive funtion u de�ned by u(n; i) = max(r(n; i); s(n; i)), we

have:

�(A

n

[ C

n

)� �(O

a(n;u(n;i))

[O

(n;u(n;i))

) = �((A

n

[ C

n

) n (O

a(n;u(n;i))

[O

(n;u(n;i))

))

� �((A

n

n O

a(n;u(n;i))

) [ (C

n

n O

(n;u(n;i))

))

� �(A

n

n O

a(n;u(n;i))

) + �(C

n

nO

(n;u(n;i))

)

� 2

�i+1

We have:

�(O

a(n;u(n;i))

[O

(n;u(n;i))

) = �(O

a(n;u(n;i))

)+�(O

(n;u(n;i))

)��(O

a(n;u(n;i))

\O

(n;u(n;i))

):

Sine O

a(n;u(n;i))

\O

(n;u(n;i))

= O

 (a(n;u(n;i));(n;u(n;i)))

, it follows that

�(O

a(n;u(n;i))

\O

(n;u(n;i))

)

n;i2!

is a omputable double sequene of real numbers. Therefore,

(�(O

a(n;u(n;i))

[O

(n;u(n;i))

)

n;i2!

is the linear sum of three omputable double sequenes of real numbers. Hene,

(�(O

a(n;u(n;i))

[O

(n;u(n;i))

)

n;i2!

is itself a omputable double sequene of real num-

bers, whih onverges, as i ! 1, to (�(A

n

[ C

n

))

n2!

e�etively in i and n, as the

above alulation shows. Therefore, by Lemma 6.3, (�(A

n

[C

n

))

n2!

is a omputable

sequene of real numbers. Similarly, (�(B

n

\D

n

))

n2!

is a omputable sequene of

real numbers. This establishes the �-omputability of � [ �. The ase of � \ �

follows by duality. The ase of the n-ary operations of [ and \ is similar. �
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Now suppose � is a loally �nite Borel measure, i.e. one whih is �nite on any

ompat subset ofX, suh that (�(O

i

))

i2!

is a omputable sequene of real numbers.

We say that a omputable partial solid objet (A;B) 2 SX is �-omputable if

�(A\O

n

)

n2!

and �(B\O

n

)

n2!

are omputable sequenes of real numbers. The om-

putable sequene of partial solids ((A

n

; B

n

))

n2!

is �-omputable if (�(A

n

\O

m

))

n;m2!

and (�(B

n

\O

m

))

n;m2!

are omputable sequenes of real numbers. These de�nitions

extend naturally to omputable elements and to sequenes of elements of (SX)

k

for

any positive integer k. We say that a omputable map P : SX ! SY is �-omputable

if it takes any �-omputable sequene of partial solids of to a �-omputable sequene

of partial solids. We say that a map P : SX

m

! SX is �-omputable if it takes any

�-omputable sequene of m-tuples of partial solids to a �-omputable sequene of

partial solids.

Lemma 6.5 Suppose ((A

n

; B

n

))

n2!

is omputable, with (A

n

; B

n

) =

F

i2!

(O

a(n;i)

; O

b(n;i)

)

for total reursive funtions a and b where the sequenes of open sets are inreasing

with i. Then ((A

n

; B

n

))

n2!

is �-omputable if and only if there exists total reursive

funtions r and s suh that

�(A

n

\O

m

)��(O

a(n;r(n;m;i))

\O

m

) � 2

�i

; �(B

n

\O

m

)��(O

b(n;s(n;m;i))

\O

m

) � 2

�i

:

Proof Sine �(O

a(n;i)

\O

m

) = �(O

 (a(n;i);m)

), it follows that (�(O

a(n;i)

\O

m

))

n;i;m2!

is a omputable triple sequene of real numbers. This sequene onverges mono-

tonially upwards to the sequene (�(A

n

\ O

m

))

n;m2!

as i ! 1. Hene, by [26,

Proposition 2, Page 20℄, the reursive funtion r with the required property exists if

and only if the sequene (�(A

n

\O

m

))

n;m2!

is omputable. Similarly, the reursive

funtion s exists if and only if the sequene (�(B

n

\O

m

))

n;m2!

is omputable. �

As in the ase of �nite measures, the binary operations � [� and � \�, and,

more generally, the n-ary operations [ and \ are �-omputable. The proof is similar

to that of Theorem 6.4, this time using Lemma 6.5.

Next, we onsider the most important ase, namely, when � is the Lebesgue

measure � on R

d

. We show that there are omputable partial solids whih are not

Lebesgue omputable. In fat, we will provide an example of a omputable maximal

element of S[�1; 1℄ whih is not Lebesgue omputable.

Example 6.6 This example uses a modi�ation of a onstrution, due to Reinhold

Hekmann, of a regular open set of the real line whih has a boundary with non-zero

Lebesgue measure. The onstrution is similar to that of the standard Cantor set

exept that at eah stage two open intervals, rather than just one, are removed. Let

(a

n

)

n2!

be a stritly inreasing omputable sequene of rational numbers a

n

> 0

onverging to the non-omputable real number a < 1. Put b

0

= a

0

and b

n+1

=

a

n+1

� a

n

for n � 0. Start with the losed interval [�1; 1℄ and remove two open

intervals eah of length b

0

suh that three losed intervals of equal length are left.

In eah of these three losed intervals, remove two open intervals, eah of length

b

1

3

,

and so on. At the nth stage, there are 3

n

losed intervals, in eah we remove two
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open intervals eah of length

b

n

3

n

, resulting in a total of 2�3

n

open intervals(Fig. 6).

For 1 � m � 3

n

, we denote by B

nm

and C

nm

, respetively, the left and the right

open intervals removed in the mth losed interval. Let B

n

=

S

1�m�3

n

B

nm

, C

n

=

S

1�m�3

n

C

nm

. Finally, put B =

S

n2!

B

n

and C =

S

n2!

C

n

. It is straightforward

to hek that �(B) = �(C) = a and that B and C are regular open sets, with B = C



Æ

and C = B



Æ

. By onstrution (B;C) 2 S[�1; 1℄ is a omputable, maximal solid

objet, whih is not Lebesgue omputable. This example an be lifted to R

d

by taking

the produt of (B;C) with [�1; 1℄

d�1

.

b0b0
b1/3b1/3b1/3

B2 C2

b0b0

B0 C0

b0b0
b1/3b1/3b1/3

B1 C1

Figure 6: A non-Lebesgue omputable regular solid.

One an also use a onstrution of a fratal Jordan urve by Ker-I-Ko and

Weihrauh [20℄ in R

2

to show that there is even a omputable but non-Lebesgue

omputable maximal solid objet (B;C) 2 SR

2

suh that the ommon boundary

�B = �C is a Jordan urve.

We onjeture that the Minkowski operation preserves Lebesgue omputable

maximal elements, i.e. if (A;B); (C;D) 2 S[�a; a℄

d

are Lebesgue omputable maxi-

mal elements then (A;B)�(C;D) is Lebesgue omputable. However, the Minkowski

operation does not preserve Lebesgue omputable elements in general as the follow-

ing example shows.

Example 6.7 Let 0 < l < 1 be a right omputable, non-omputable real num-

ber and onsider the non-maximal element (;; ([0; l℄ � f0g)



) 2 S[�2; 2℄

2

, whih is

Lebesgue omputable. Let B

1

be the open ball of radius 1 around the origin. Then,

the Minkowski sum

(;; ([0; l℄ � f0g)



)� (B

1

; B

1



Æ

) = (;; (B

1

� ([0; l℄ � f0g))



)

is not Lebesgue omputable, sine the seond omponent has measure 16 � (� + 2l)

whih is not a omputable real number.

A omputable partial solid (A;B), with �(X n (A [ B)) = 0, an be manufatured

with an error that an be made as small as we want in volume, assuming an idealized

manufaturing devie.
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Despite their di�erenes, the notions of Hausdor� omputability, whih measures

the visual proximity of objets e�etively, and that of Lebesgue omputability, whih

measures the area or volume of objets e�etively, both orrespond to observable

properties of solids and are therefore both useful in pratie.

7 Conlusion

As stated in the Introdution, the solid domain desribed here is based on a realisti

notion of omputability whih orresponds to the observable properties of solids; it

is also losed under Boolean operations whih are omputable in the model as are

the basi prediates. Furthermore, the model admits non-regular as well as regular

sets.

In order to design reasonably eÆient algorithms based on our model, one should

arefully hoose the representation for partial solids. Representations used in indus-

trial appliations are generally polyhedra or B.Rep. (Boundary representation), that

is a set of faes (surfaes), edges (urves) and verties, onneted by an adjaeny

graph featuring the boundary of the solid.

The dyadi voxel set representation an be made reasonably eÆient using reur-

sive binary spae subdivision, i.e. otree-like struture. For solids whih have, as it

is often the ase in appliations, a boundary with a bounded urvature almost every-

where, partial rational polyhedra will provide a more eÆient representation. The

performane of these representations an be formally ompared by the growth rate,

as a funtion of n, of the volume of data (the number of bits) needed to represent a

partial solid up to the Hausdor� or Lebesgue auray of 2

�n

.

However, using partial rational polyhedra in a hain of suessive Boolean opera-

tions would entail a prohibitive growth of the number of digits neessary to represent

the rational oordinates of the verties. An e�etive way to overome this problem

would be to use "dyadi polyhedra" together with a rounding proess. The idea is

to use polyhedra whose vertex oordinates are dyadi numbers. Then, sine these

polyhedra are not losed under Boolean operators, one an round the exat result

to some best approximation in terms of dyadi polyhedra. This proess is similar

to rounding in �xed or oating point arithmeti. It is also related to some reent

works dealing with robustness in omputational geometry.

Our future work will fous on realisti implementations based on these ideas as

well as theoretial de�nitions of omplexity allowing a formal omparison between

algorithms and representations. Also, in order to apply this work to atual CAGD,

one needs to apture more information on solids and geometri objets. In partiular,

we have to deal more generally with the boundary representation and the di�erential

properties of urves and surfaes.
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Appendix

We give here the formal de�nitions of a number of notions in domain theory used in

the paper; see [1, 2, 26℄ for more detail. We think of a partially ordered set (poset)

(P;v) as the set of output of some omputation suh that the partial order is an

order of information: in other words, a v b indiates that a has less information

than b. For example, the set f0; 1g

1

of all �nite and in�nite sequenes of bits 0

and 1 with a v b if the sequene a is an initial segment of the sequene b is a

poset and a v b simply means that b has more bits of information than a. Any

T

0

topologial spae has an inherent information ordering, alled the speialisation

ordering, de�ned by a v b i� a 2 O ) b 2 O, for all open subsets O. A non-empty

subset A � P is direted if for any pair of elements a; b 2 A there exists  2 A suh

that a v  and b v . A direted set is therefore a onsistent set of output elements

of a omputation: for every pair of output a and b, there is some output  with more

information than a and b. A direted omplete partial order (dpo) or a domain is a

partial order in whih every direted subset has a least upper bound (lub). We say

that a dpo is pointed if it has a least element whih is denoted by ? and is alled

bottom.

For two elements a and b of a dpo we say a is way-below or approximates b,

denoted by a � b, if for every direted subset A with b v

F

A there exists  2 A

with a v . The idea is that a is a �nitary approximation to b: whenever the lub

of a onsistent set of output elements has more information than b, then already

one of the input elements in the onsistent set has more information than a. In

f0; 1g

1

, we have a � b i� a v b and a is a �nite sequene. The losed subsets of

the Sott topology of a domain are those subsets C whih are downward losed (i.e.

x 2 C & y v x ) y 2 C) and losed under taking lub's of direted subsets (i.e. for

every direted subset A � C we have

F

A 2 C).

A basis of a domain D is a subset B � D suh that for every element x 2 D

of the domain the set B

x

= fy 2 Bjy � xg of elements in the basis way-below x

is direted with x =

F

B

x

. An (!)-ontinuous domain is a dpo with a (ountable)

basis. In other words, every element of a ontinuous domain an be expressed as

the lub of the direted set of basis elements whih approximate it. In a ontinuous

dpo D, subsets of the form

"

"a = fx 2 Dja � xg, for a 2 D, forms a basis for the

Sott topology. A domain is bounded omplete if every bounded subset has a lub; in

suh a domain every non-empty subset has an in�mum or greatest lower bound.

It an be shown that a funtion f : D ! E between dpo's is ontinuous with

respet to the Sott topology if and only if it ismonotone (i.e. a v b ) f(a) v f(b))
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and preserves lub's of direted sets i.e. for any direted A � D, we have f(

F

a2A

a) =

F

a2A

f(a). Moreover, if D is an !-ontinuous dpo, then f is ontinuous i� it is

monotone and preserves lub's of inreasing sequenes (i.e. f(

F

i2!

x

i

) =

F

i2!

f(x

i

),

for any inreasing (x

i

)

i2!

).

The interval domain I[0; 1℄

n

of the unit box [0; 1℄

n

� R

n

is the set of all non-empty

n-dimensional sub-retangles in [0; 1℄

n

ordered by reverse inlusion. A basi Sott

open set is given, for every open subset O of R

n

, by the olletion of all retangles

ontained in O. The map x 7! fxg : [0; 1℄

n

! I[0; 1℄

n

is an embedding onto the set

of maximal elements of I[0; 1℄

n

. Every maximal element fxg an be obtained as the

least upper bound (lub) of an inreasing hain of elements, i.e. a shrinking, nested

sequene of sub-retangles, eah ontaining fxg in its interior and thereby giving an

approximation to fxg or equivalently to x. The set of sub-retangles with rational

oordinates provides a ountable basis. One an similarly de�ne, for example, the

interval domain IR

n

of R

n

.

An important feature of domains, in the ontext of this paper, is that they an be

used to obtain omputable approximations to operations whih are lassially non-

omputable. For example, omparison of a real number with 0 is not omputable.

However, the funtion N : I[�1; 1℄! ftt;�g

?

with

N([a; b℄) =

8

<

:

tt if b < 0

� if 0 < a

? otherwise

is the omputable approximation to the omparison prediate. Here, ftt;�g

?

is the

three element pointed domain with two inomparable maximal elements tt and �.

The upper spae UX of a ompat metri spae X is the set of all non-empty

ompat subsets of X ordered by reverse inlusion. In fat, UX is a generalization

of the interval domain and has similar properties; for example a basi Sott open set

is given, for every open subset O � X, by the olletion of all non-empty ompat

subsets ontained in O. As with the interval domain, the map x 7! fxg : X ! UX

is an embedding onto the set of maximal elements ofUX. The upper spae gives rise

to a omputational model for fratals and for measure and integration theory [10℄.

The idea of the solid domain of [0; 1℄

n

(see Setion 2), represented by pairs of losed

subsets, is losely linked with U[0; 1℄

n

.

An !-ontinuous domain D with a least element ? is e�etively given wrt an

e�etive enumeration b : N ! B of a ountable basis B if the set f< m;n >

jb

m

� b

n

g is reursive, where < :; : >: N � N ! N is the standard pairing funtion

i.e. the isomorphism (x; y) 7!

(x+y)(x+y+1)

2

+ x. This means that for eah pair

of basis elements (b

m

; b

n

), it is possible to deide in �nite time whether or not

b

m

� b

n

. We say x 2 D is omputable if the set fnjb

n

� xg is r.e. This is

equivalent to say that there is a master programme whih outputs exatly this set.

It is also equivalent to the existene of a reursive funtion g suh that (b

g(n)

)

n2!

is an inreasing hain in D with x =

F

n2!

b

g(n)

. If D is also e�etively given wrt

to another basis B

0

= fb

0

0

; b

0

1

; b

0

2

; � � �g suh that the sets f< m;n > jb

m

� b

0

n

g and
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f< m;n > jb

0

m

� b

n

g are both deidable, then x will be omputable wrt B i� it is

omputable wrt B

0

. We say that B and B

0

are reursively equivalent.

We an de�ne an e�etive enumeration � of the set D



of all omputable elements

of D. Let �

n

, n 2 !, be the nth partial reursive funtion. It an be shown [13℄

that there exists a total reursive funtion � suh that � : N ! D



with �

n

:=

F

i2!

b

�

�(n)

(i)

, with (b

�

�(n)

(i)

)

i2!

an inreasing hain for eah n 2 !, is an e�etive

enumeration of D



. A sequene (x

i

)

i2!

is omputable if there exists a total reursive

funtion h suh that x

i

= �

h(i)

for all i 2 !.

We say that a ontinuous map f : D ! E of e�etively given !-ontinuous

domains D (with basis fa

0

; a

1

� � �g) and E (with basis fb

0

; b

1

� � �g) is omputable if

the set f< m;n > jb

m

� f(a

n

)g is r.e. This is equivalent to say that f maps

omputable sequenes to omputable sequenes. Computable funtions are stable

under hange to a reursively equivalent basis. Every omputable funtion an be

shown to be a ontinuous funtion [35, Theorem 3.6.16℄. It an be shown [13℄ that

these notions of omputability for the domain IR of intervals of R indue the same

lass of omputable real numbers and omputable real funtions as in the lassial

theory [26℄.

We also need the following lassial de�nitions of sequenes of real numbers. A

sequene (r

i

)

i2!

of rational numbers is omputable if there exist three total reursive

funtions a, b, and s suh that b(i) 6= 0 for all i 2 ! and

r

i

= (�1)

s(i)

a(i)

b(i)

:

A omputable double sequene of rational numbers is de�ned in a similar way. A

sequene (x

i

)

i2!

of real numbers is omputable if there exists a omputable double

sequene (r

ij

)

i;j2!

of rational numbers suh that

jr

ij

� x

i

j � 2

�j

for all i and j

A omputable double sequene of real numbers is de�ned analogously. If (x

nk

)

n;k2!

is

a omputable double sequene of real numbers whih onverges to a sequene (x

n

)

n2!

e�etively in k and n (i.e. there exists a total reursive funtion e : N � N ! N

suh that jx

nk

� x

n

j � 2

�N

for all k � e(n;N)), then the sequene (x

n

)

n2!

is

omputable [26, Page 20℄.
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