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Abstract

Solid modelling and computational geometry are based on classical topology
and geometry in which the basic predicates and operations, such as member-
ship, subset inclusion, union and intersection, are not continuous and therefore
not computable. But a sound computational framework for solids and geometry
can only be built in a framework with computable predicates and operations. In
practice, correctness of algorithms in computational geometry is usually proved
using the unrealistic Real RAM machine model of computation, which allows
comparison of real numbers, with the undesirable result that correct algorithms,
when implemented, turn into unreliable programs. Here, we use a domain-
theoretic approach to recursive analysis to develop the basis of an effective and
realistic framework for solid modelling. This framework is equipped with a
well-defined and realistic notion of computability which reflects the observable
properties of real solids. The basic predicates and operations on solids are com-
putable in this model which admits regular and non-regular sets and supports a
design methodology for actual robust algorithms. Moreover, the model is able
to capture the uncertainties of input data in actual CAD situations.

1 Introduction

The current frameworks for solid modelling and computational geometry are based,
on the one hand, on discontinuous predicates and Boolean operations, and, on the
other hand, on comparison of real numbers. These essential foundations of the
existing theory and implementations are both unjustified and unrealistic.

Topology and geometry, as mainstream mathematical disciplines, have been de-
veloped to study continuous transformations on spaces. It is therefore ironical that
the main building blocks of these subjects, namely the membership predicate of a
set, the subset inclusion predicate and the basic operations such as union and inter-
sections, are generally not continuous and therefore non-computable. For example,
in any Euclidean space the membership predicate of any proper subset is discontin-
uous at the boundary of the subset; whereas the binary intersection, as an operator



on compact subsets, is discontinuous with respect to the Hausdorff metric when-
ever the two input compact subsets touch each other. This non-continuity creates
a foundational problem in computation, which has so far been essentially neglected.
In fact, in order to construct a sound computational model for solids and geometry,
one needs a framework in which these elementary building blocks are continuous
and computable.

In practice, correctness of algorithms in computational geometry is usually proved
using the Real RAM machine [27] model of computation, in which comparison of
real numbers is considered to be decidable. Since this model is not realistic, correct
algorithms, when implemented, turn into unreliable programs. In CAGD modelling
operators, the effect of rounding errors on consistency and robustness of actual im-
plementations is an open question, which is handled in industrial software by various
unreliable and expensive “up to epsilon” heuristics that remain very unsatisfactory.

The solid modelling framework provided by classical analysis, which allows dis-
continuous behaviour and comparison of exact real numbers, is not realistic as a
model of our interaction with the physical world in terms of measurement and man-
ufacturing. Nor is it realistic as a basis for the design of algorithms implemented on
realistic machines, which can only deal with finite data. Industrial solid modelling
software used for CAGD (Computer Aided Geometric Design), CAM (Computer
Aided Manufacturing) or robotics is therefore infected by the disparity between the
classical analysis paradigm and feasible computations. This disparity, as well as the
representation of uncertainties in the geometry of the solid objects, is handled case
by case, by various expensive and unsatisfactory “up to epsilon” ad hoc heuristics.
It is difficult, if at all possible, to improve and generalize these techniques, since
their relatively poor success depends on the skill and experience of software engi-
neers rather than on a well formalised methodology. In practice, the maintenance
cost of some central geometric operators such as the Boolean operations or some
specific variants of the Minkowski sum has always remained critical [24, 14, 23].

The authors claim that a robust algorithm is one whose correctness is proved
with the assumption of a realistic machine model [22]. Recursive analysis defines
precisely what it means, in the context of the realistic Turing machine model of com-
putation, to compute objects belonging to non-countable sets such as the set of real
numbers. There are various approaches to computable analysis, including the Type
2 Theory of Effectivity (TTE) [21, 35, 36], based on a computation with a machine,
the algebraic domain approach [33, 34], based on embedding classical spaces into
algebraic domains, the continuous domain approach [9, 10, 13, 12], based on embed-
ding classical spaces into the set of maximal elements of continuous domains, and
the more recent approach by Equilogical Spaces [31, 4, 5], based on taking quotients
of Ty topological spaces. In recent years, Brattka and Weihrauch have also studied
the question of computability of closed and compact subsets of Euclidean spaces in
the context of TTE [6].

In this paper, which is based on the preliminary work in [11], we use a domain-
theoretic approach to recursive analysis to develop the foundation of an effective
framework for solid modelling. We introduce the continuous domain of solid objects



which gives a concrete model of computation on solids close to the actual practice
by CAD engineers. In this model, the basic predicates, such as membership and
subset inclusion, and operations, such as union and intersection, are continuous and
computable. The set-theoretic aspects of solid modelling are revisited, leading to a
theoretically motivated model that shows some interesting similarities with the Re-
quicha Solid Model [28, 29]. Within this model, some unavoidable limitations of solid
modelling computations are proved and a sound framework to design specifications
for feasible modelling operators is provided. Some consequences in computation
with the boundary representation paradigm are sketched that can incorporate exist-
ing methods [16, 32, 19, 17, 18] into a general, mathematically well-founded theory.
Moreover, the model is able to capture the uncertainties of input data [7, 25] in
actual CAD situations.
We need the following requirements for the mathematical model:

(1) the notion of computability of solids has to be well defined,
(2) the model has to reflect the observable properties of real solids,

(3) it has to be closed under the Boolean operations and all basic predicates and
operations have to be computable,

(4) non-regular sets' have to be captured by the model as well as regular solids,
(5) the model has to support a design methodology for actual robust algorithms.

A general methodology for the specification of feasible operators and the design
of robust algorithms should rely on a sound mathematical model. This is why the
authors believe that the domain-theoretic approach is a powerful framework both
to model partial or uncertain data and to guide the design of robust software.

The paper is organised as follows. In Section 2, we introduce the solid domain, a
mathematical model for computable rigid solids, which satisfies the above properties.
Section 3 shows that the basic predicates and Boolean operations are continuous
in this model. Using a standard theory of computability for domains, Section 4
presents a computability theory for our model, which is consistent with computing
solids with a realistic machine. Sections 5 and 6 enrich the domain-theoretic notion
of computability with a quantitative measure of convergence with respect to the
Hausdorff metric and the Lebesgue measure respectively. Section 7 presents our
conclusion and sketches the outline of future work including the implementation of
this framework. Finally, in the Appendix, we collect together the basic notions of
domain theory that we use in this paper.

2 The Solid Domain

In this section, we introduce the solid domain, a mathematical model for representing
rigid solids. We focus here on the set-theoretic aspects of solid modelling as Requicha

L An open set is regular if it is the interior of its closure.



did in introducing the r-sets model [28]. Our model is motivated by requirements
(1) to (5) given in the introduction.

For any subset A of a topological space, A, A°, A and A° denote respectively
the closure, the interior, the boundary and the complement of A. Recall, for example
from [8, page 92], that an open set is regular if it is the interior of its closure; dually,
a closed set is regular if it is the closure of its interior. The complement of a regular
open set then is a regular closed set and vice versa. The interior of a regular closed
set is a regular open set, whereas the closure of a regular open set is a regular closed
set. Finally, the intersection of two regular open sets is regular. The regularization
of an open set is the interior of its closure; the regularization of a closed set is the
closure of its interior. Therefore, the regularized binary union of open sets O; and
0, is the set (07 U O9)°.

Definition 2.1 The solid domain (SX,C) of a topological space X is the set of
ordered pairs (A, B) of disjoint open subsets of X endowed with the information
order: (Al,Bl) C (AQ,BQ) <— A; C Ay and By C Bs.

An element (A, B) of SX is called a partial solid: A and B are intended to
capture, respectively, the interior and the exterior (interior of the complement) of a
solid object, possibly, at some finite stage of computation. Note that (SX,C) is a
directed complete partial order; the least upper bound (lub) of a directed family of
partial solid objects (A;, B;)ier is given by | |;c;(4i, Bi) = (U;er Ais Ujer Bi). The
solid domain is isomorphic with the function space X — {tt,ff} |, i.e. the collection
of continuous functions f : X — {tt,ff}, ordered pointwise. Here, {tt,ff}, is
the lift of {tt,ff} equipped with its Scott topology. By duality of open and closed
sets, (SX, C) is also isomorphic with the collection of ordered pairs (A, B) of closed
subsets of X with AU B = X with the information ordering: (A;, B1) C (As, B2)
<= Ay C Ay and By C Bj.

In fact, S is a contravariant functor on the category TOP of topological spaces
and continuous maps. Given a continuous function f : X — Y of topological spaces
X and Y, we have a continuous function Sf : SY — SX defined by (Sf)(A, B) =

(f 1A f1B).

Proposition 2.2 The partial solid (A, B) € (SX,C) is a mazimal element iff A =
B and B = A“°.

Proof Let (A, B) be maximal. Since A and B are disjoint open sets, it follows that
A C B°°. Hence, (4,B) C (B, B) and thus A = B®°. Similarly, B = A°°. This
proves the “only if” part. For the “if part”, suppose that A = B°® and B = A°°.
Then, any proper open superset of A will have non-empty intersection with B and
any proper open superset of B will have non-empty intersection with A. Tt follows
that (A, B) is maximal. O

Corollary 2.3 If (A, B) is a mazimal element, then A and B are regular open sets.
Conversely, for any reqular open set A, the partial solid (A, A°°) is mazimal.



Proof For the first part, note that A is the interior of the closed set B¢ and is,
therefore, regular; similarly B is regular. For the second part, observe that A% =

(Aco(:)o — (A)o — A |:|
We define (A, B) € SX to be a classical solid object if AUB = X.
Proposition 2.4 Any mazimal element is a classical solid object.

Proof Suppose (A, B) is maximal. Then X = AU JA U A® = AU B, since
A=AU0A and A®® C A° =B. O

We need the following lemma, on regular open sets for later results.

Lemma 2.5 If A is a regular open set of a topological space, then A = O(A®").

Proof Suppose x € JA. Then any neighbourhood of x contains an element of
A C A“°. Assume now that O is a neighbourhood of z which does not contain
any element of A°. Then O C A, and hence by regularity of A, we have O C A
which contradicts z € OA. This shows that 9A C 9(A"). By symmetry we also get
DA D 9(A®), since A® is also a regular open set with A°°®° = A. [

We next show that the solid domain is continuous for a suitable class of topological
spaces.

Theorem 2.6 Let X be a locally compact Hausdorff space. Then the solid domain
(SX,C) is a bounded complete continuous domain and (Ay, B)) < (Ag, By) iff Ay
and By are compact subsets of Ay and Bs respectively. If X is second countable,
then (SX,C) is w-continuous.

Proof This is a simple exercise which can be proved directly or it can be deduced
from more general results as follows. From [15, page 129, I1.4.6], it follows that
(SX,C) is a continuous domain with (A, By) < (A, Bg) iff there are pairs (A3, By)
of compact sets such that Ay C A3 C Ay and By C B3y C By, which gives us
the desired condition since a closed subset of a compact set in a Hausdorff space
is compact. If X is second countable, then it will have a countable basis, which
contains the empty set, is closed under binary intersection and regularized binary
union, and consists of regular open sets whose closures are compact. The collection
of pairs of disjoint elements of this basis will provide a countable basis for (SX,C).
O

Proposition 2.7 Any classical solid object (A,B) € SX, with A # 0 # B, of a
connected, locally compact Hausdorff space X is mazimal with respect to the way-
below relation.

Proof If (A, B) < (A, B') € SX, then we must have A C A’ and B C B’. There-
fore, AU B" = X with A’ # (0 # B’. This contradicts the connectedness of X,
since A’ and B’ are disjoint open sets. Hence, (A, B) is maximal with respect to the
way-below relation. [



Remark 2.8 In fact if the lattice of open sets of a topological space X is contin-
uous, then [15, I1.4.6, page 129] implies that (SX,C) is a continuous domain. In
particular, it follows that one does not need X to be Hausdorff: the solid domain of
any locally compact space is continuous. In that case we have: (A1, B1) < (Ag, B3)
iff there are pairs (As, B3) of compact saturated sets® such that Ay C As C Ay and
By C By C By. In this paper, however, we will restrict our attention to locally
compact Hausdorff spaces only.

In practice, we are often interested in the subdomain Sy X of bounded partial solids
which is defined as S;X = {(4,B) € SX|B¢ is compact} U {(0,0)}, ordered by
inclusion. It is easy to see that Sy X is a subdcpo of SX. Moreover:

Proposition 2.9 If X is a (second countable) locally compact Hausdorff space, Sp X
is (w)-continuous with the way-below relation given by (A1, By) < (Aa, By) iff Ay is
a compact subset of Ay and B§ C B1°.

From now on, unless otherwise stated, X is a locally compact second countable
Hausdorff space.

3 Predicates and Operations on Solids

We will next define the membership predicate on SX. In order to motivate our
definition, assume for the discussion below that X = R?. Given any proper subset
of S C RY, the classical membership predicate €5: R? — {tt, ff} is continuous except
on 0S. In fact, if S is an open or closed set, then its boundary has empty interior
and it is not decidable that a point is on dS. For example if X = R and S is
the set of positive numbers, then a real number £ € R is on the boundary of S
iff z = 0 which is not decidable in computable analysis [26, page 23]. It therefore
makes sense from a computational viewpoint to redefine the membership predicate
as the continuous function: €%: R? — {tt,ff} | where the value L is taken on 95.
We call this the continuous membership predicate. Then, two subsets are equivalent
if and only if they have the same continuous membership predicate, i.e. if they have
the same interior and the same exterior (interior of complement). By analogy with
general set theory for which a set is completely defined by its membership predicate,
the solid domain can be seen as the collection of subsets that can be distinguished
by their continuous membership predicates. The definition of the solid domain is
then consistent with requirement (1) since a computable membership predicate has
to be continuous.

Our definition is also consistent with requirement (2) in a closely related way.
We consider the idealization of a machine used to measure mechanical parts. Two
parts corresponding to equivalent subsets cannot be distinguished by such a ma-
chine. Moreover, partial solids, and, more generally, domain-theoretically defined

2A set is saturated if it is upper closed with respect to the specialisation ordering.



data types allow us to capture partial, or uncertain input data [7, 25] encoun-
tered in realistic CAD situations. In order to be able to compute the continu-
ous membership predicate on X, we extend it to the upper space UX by defining
— € —:UX x SX — {tt,ff} | with:

tt fCCA
Ce(A,B)=< ff ifCCB
1 otherwise

Note that we use the infix notation for predicates and Boolean operations. When
X =R?, it is more convenient to use the interval domain IR? instead of the upper
space and define the membership predicate as: — € — : IR? x SR — {tt, ff} .

(A.B)

Figure 1: The membership predicate of a partial solid object of the unit square.

We define the predicate — C —: S X x SX — {tt,ff},, by

tt fBUC=X
(A,B) C(C,D)=< ff ifAND#0
1  otherwise

The restriction to Sy X will ensure that — C — is continuous, as we will see below.
Starting with the continuous membership predicate, the natural definition for the
complement would be to swap the values tt and ff. This means that the complement
of (A, B) is (B, A), cf. requirement (3).

As for requirement (4), the figure below represents a subset S of X = [0,1]? that
is not regular (Fig. 2). Its regularization removes both the external and internal
“dangling edge”. This set can be captured in our framework but not in the Requicha
model. Here and in subsequent figures, the two components A and B of the partial
solid are, for clarity, depicted separately below each picture.



(A.B)

7N\

Figure 2: Representation of a non-regular solid.

Next we consider the Boolean operators. First note that the regularization op-
erator R : SX — SX defined by R((4,B)) = ((A)°,(B)°) is not continuous, and
hence not computable. To see this, suppose X = R and consider the partial solid

(R\ {0},0). Then .
LI ®\ =, —1,0) = (®)\ {0},0),

n>1
but
L] REN -, 11,0) = L ®\[-, 21,0) = (R\{0},0) # (R, 0) = R((R\ {0}, 0).
n>1 n>1

Furthermore, the regularized union [28, 29] of two adjacent three dimensional boxes
(i.e. product of intervals) is not computable, since, to decide whether the adjacent
faces are in contact or not, one would have to decide the equality of two real numbers
which is not computable. Requirements (1) and (3) entail the existence of Boolean
operators which are computable with respect to a realistic machine model (e.g. the
Turing machine).

In order to define Boolean operators on the solid domain, we obtain the truth
table of logical Boolean operators on {tt,ff, L}. Consider the logical Boolean op-
erator “or”, which, applied to the continuous membership predicates of two partial
solids, would define their union.

V|t ffL
tt |ttt tt
ff |ttt ff L
1]ttt 1L L

This is indeed the truth table for parallel or in domain theory; see [2, page 133].
One can likewise build the truth table for “and”. Note the similarities with the
(In,On,Out) points classifications used in some boundary representation based al-
gorithms [30, 3]. From these truth tables, we can deduce the definition of Boolean



operators on partial solids:
(A1, B1) U (A2, By) = (A1 U Ay, By N By)

(Al,Bl) N (AQ,BQ) = (A1 N Ag, By U BQ)

One can likewise define the n-ary union and the n-ary intersection of partial solids.
Note that, given two partial solids representing adjacent boxes, their union would
not represent the set-theoretic union of the boxes, as illustrated in Fig. 3.

(Ar.By) (A2,B2) (A1,B)O(A2,B2)

A]DA2 B]ﬂBz

A, B, A

B>

Figure 3: The union operation on the solid domain.

Theorem 3.1 The following maps are continuous:

(i) The predicates, — € — : UX x SX — {tt,ff}; and — € — : IR? x SR? —
{tt, ff} .

(1) The binary union —U—: SX x SX — SX and more generally the n-ary union
U: (SX)" — SX for any topological space X.

(173) The binary intersection —N— : SX x SX — SX and more generally the n-ary
intersection [ : (SX)™ — SX for any topological space X.

(iv) — C —:SpX x SX — {tt,ff} |, for any Hausdorff space X.

Proof (i) The proof is similar in both cases. A function of two variables on domains
is continuous iff it is continuous in each variable separately when the other variable
is fixed [2, page 12]. From this, we obtain the required continuity, in both cases, by
observing that a non-empty compact set is contained in the union of an increasing
sequence of open sets iff it is contained in one such open set.

(i) This follows from the distributivity of U over N.

(iii) Follows from (ii) by duality.



(iv) The function C is clearly monotone. To see that it is continuous in the
first argument when the second argument (C, D) is held fixed, let (A;, B;)icr be
a directed family in S, X. Then, (J,c;Bi) UC = X iff (,o.; Bf C C iff there
exists i € I such that Bf C C, by compactness of Bf [8, page 226]. On the other
hand (U;c; 4i) N D # 0 iff there exists ¢ € I such that A; N D # 0. To show
that it is continuous in the second argument when the first argument (A, B) is
held fixed, let (Cj, D;)icr be a directed family in SX. Then, BU J;;Ci = X
iff B¢ C (J;e; Ci iff there exists ¢ € I such that B¢ C Cj, by compactness of B°.
Moreover, AN (U,c; Di) # 0 iff there exists 4 € I such that AND; # (. O
We can also show the stability of classical solids under Boolean operations:

Theorem 3.2 In any topological space, classical solid objects are stable under the
Boolean operations.

Proof We show that — N — preserves classical solids; the case of — U — follows by
duality. Let (A1, By) and (As, B2) be two classical solids of the topological space X,
so that A; UB; = X for i = 1,2. To show that (4; N A3) U (B; U By) = X, assume
z € X, with £ ¢ By U By. Then, there exist open neighbourhoods D; of z with
D;NB; =0,i=1,2. Hence, D; N Dy C A; N Ay. Let O be any neighbourhood of
z. We will show that ON Ay N Ay # (. Put D =0 N D;NDy. From D C A; N Ay,
it follows that there exists a non-empty open set D' C D with D' C A;. Since
D' C As, there exists a non-empty open set D" C D' with D" C A,. We conclude
that O N A; N A D D" # (), as required. O

3.1 Minkowski Sum

We now introduce the Minkowski sum operation for partial solids of X = R?. Recall
that the Minkowski sum of two subsets Si,S2 C R? is defined as

S1®52={$+y|$651,y652}

where x + y is the vector addition in R?. For convenience we will use the same
notation @ for the Minkowski sum on the solid domain, which is defined as a function
— @ —: (SpR?) x (SR?) — SRY by:

(A1, Br) @ (A2, B2) = ((A1 @ As), (BT ® B;)").
Lemma 3.3 — @ — : (SyR?) x (SR?) — SR? is well-defined.

Proof Since the Minkowski sum of an open set with any other set is always open,
A1 ® A is open. We show that the Minkowski sum K @ L of any compact set K
and any closed set L is always closed. It is sufficient to show that K & L contains
all its limit points. Let x, + y, with =, € K and y, € L be a convergent sequence
with limit z € RY. Since K is compact, z, has a convergent subsequence T,
with limit @ € K. Since the subsequence z,, + y,, converges to z, it follows that
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limy_yo0 Zp, = 2 —a € L, as L is closed. Hence z = a + (# —a) € K ® L and, thus,
K @ L is closed. Since, by assumption, Bf is compact, we conclude that (Bf & BS)°
is open. It remains to show that (4 @ A3) and (Bf @ BS)¢ are disjoint. This follows
easily as A; C Bf and Ay C BS implies (A; & A2) C (B @ BS). O

Corollary 3.4 The Minkowski sum operation restricts to a map:
— @ —: (SpR?) x (SyRY) — S,R4.

Proof This follows immediately from the fact that the Minkowski sum of two com-
pact sets is bounded as well as closed. [

Note that the Minkowski sum of two closed sets is not necessarily closed; for example,
in R?, the set S = {(z,y)|y > 0} ® {(x,y)|y > expx} is not closed as the sequence
(n,0) + (—n,exp(—n)) = (0,exp(—n)) converges to (0,0) ¢ S. That is why we need
to restrict the second argument of the Minkowski operator to SyR?.

Theorem 3.5 The map — @® — : (SpR?) x (SR?) — SR is continuous.

Proof Clearly & is monotonic in the first argument and also, because of two com-
plementation operations, in the second argument. We check the continuity in the
first argument when the second is fixed as (C, D). Let (A;, B;)ic, be an increasing
chain of partial solids with lub (A4, B). We have to show the following two relations:
Uiew(4i© C) 2 (Use, A1) ® C and Uje, (B ® D) 2 ((Use,, By)° ® DF)F. The first
is trivial; as for the second we need to show that: (), (Bf ® D) C (N;¢, Bf) ® D°.
Let z € ;e (Bf @ D). Then, for each natural number 4, there exists z; € Bf and
yi € D¢ such that z = z; + y;. Since B{ is compact, there exists a subsequence
(%i, )new which converges to z € B¢. Hence (y;, )new converges to z — x which must
belong to D°. Therefore, z = x + (2 — z) € ([, BY) @ D°. The continuity of — @ —
when the first argument is fixed is proved in a similar way. [

Unlike the two Boolean operations, the Minkowski operation does not preserve clas-
sical solid objects. For example, in S[0, 4]

([0,1), (1,4]) & (0,[0,4] \ {2}) = (0,[0,2) U (3,4)),
which is not a classical solid. However, we have the following:

Proposition 3.6 The map — @ — : (SR?) x (SR?) — SR? takes any two mazimal
elements to a classical solid.

Proof Let (A4, B) € SyR? and (C, D) € SR? be maximal elements. Then, B¢ = A
and D¢ = C. We show that A@C = A® C. Since B®® D¢ is closed, we have
A®C C A®C. On the other hand, let a + ¢ € A® C. Then, there are sequences
(an)new and (¢p)new, with a, € A and ¢, € C, for all n € w, such that a = lima,,
and ¢ = lim¢,,. Therefore, a+ ¢ = lima, +lime¢, = lim(a, +¢,) € A® C. It follows
that B @® D = A ® C, and we conclude that (A, B) @ (C,D) = (A& C,(A @ C)°)
is a classical solid. [J
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4 Computability on the Solid Domain

Let X be a second countable locally compact Hausdorff space. Then UX and
SX are both w-continuous bounded complete dcpo’s. We will now define effective
structures for UX and SX. Let O be a countable basis of regular open sets with
compact closure for X, which contains the empty set, is closed under regularized
binary unions and under binary intersections. Consider an effective enumeration,
i.e. a surjection, O : N — O, such that there is an effective procedure to obtain
O(i) for any 7 € N. For convenience, we write O; for O(i) and often denote the
enumeration O by (0;);c.,. Here, we assume that Oy = () and stipulate that, for any
n > 1, the relation O; C Ui<me<n Ojn is decidable. This, by the way, means that,
in the continuous lattice of open subsets of X, the way-below relation on the basis
O is decidable. Since O; = () iff O; C Oy, it follows that the equality relation O; = (}
is decidable and we can assume, by redefining the enumeration O, that O; = 0 iff
1 = 0. Furthermore, we assume that the binary intersection and the regularized
binary union of basis elements are computable, i.e. there exist two total recursive
functions ¢, : N x N — N such that (O; U 0;)° = Og; 5y and O; N O; = Oy 4)- In
particular, this implies that the relation O; N O; = 0 is decidable.

Y]

Definition 4.1 Let (O;);c be an effective enumeration of a basis of a second count-
able locally compact Hausdorff space X, consisting of reqular open sets with compact
closure. Assume further that the basis is closed under binary intersection and regu-
larized binary union. We say that the effective enumeration (O;)icw. is an effective
structure for X, if the following conditions hold:

e O, =0iffi=0.
e For any n > 1, the relation O; C Ui<men Ojn is decidable.

o There exist total recursive functions ¢,v : N x N = N such that (O; U O;)° =
Og(i) and O; N Oj = Oy j).-

If X is compact, we will assume the further condition that, for each positive integer
n, the relation J,<,,<, Oi,, = X is decidable.

Note that the closure of the basis under binary intersection and regularized union
implies its closure under finite intersections and regularized finite unions. For ex-
ample, if A, B and C are open sets then it is easy to check that (AU B UC)° =
((AU B)° U C)°. From the effective enumeration O of the basis O, we can obtain an
effective enumeration of the basis S of SX, consisting of pairs of disjoint elements
of O. In fact, there are total recursive functions a, 5 : N — N such that S: N — S,
with S, = (Oa(n)> Om)), gives an effective enumeration of S, with the relation
S; < S; decidable.

The collection C = {O|O € O} U {1} is a countable basis for the w-continuous
domain UX, with an effective enumeration C' : N — C defined by Cy = L and

12



C; = O; for i > 1. Notice that, we have C; < C;inUX iff O; C Oj; therefore, the
way-below relation, C; < C}, on C is decidable.

Having equipped SX and UX with the above effective structure, we can now
deduce the computability of the basic predicates and operations.

Theorem 4.2 The following functions are computable with respect to the effective
structures on UX and SX.

(i) The membership predicate, — € —: UX x SX — {tt,ff},.

(ii) The binary union —UJU—: SX x SX — SX and more generally the n-ary union
U: (SX)" — SX.

(113) The binary intersection, —N— : SX x SX — SX and more generally the n-ary
intersection N : (SX)" — SX.

(iv) — C —:SX x SX — {tt,ff} |, where X is assumed to be compact.

Proof (i) We have to show that the relations (C; € S,,) = tt and (C; € S,,) = ff are
both r.e. The first reduces to C; C Og(y), in other words, 0; C Oq(n), which is in
fact decidable by assumption. The second is similarly decidable.

(ii) We have to show, in the binary case, that the relation S, < S; U S;
is r.e. Writing this relation in detail, it reduces to (Oq(n); Ogm)) < (Oa) U
Oa(y)s Op(8),6)))> - Oa(n) € Oa(i) Y Oagy) and Opmy S Op(sii)p(j)): Which are
both decidable. The n-ary case is similar.

(iii) Dual to (ii).

(iv) The relations (S; C Sj) = tt and (S; C Sj) = ff reduce to Og;) U Opyjy = X
and Oy(a(i),3()) 7 ¥, which are both decidable. [

4.1 Effective structure over SR?

In order to endow SR? with an effective structure, we introduce two different count-
able bases that are recursively equivalent, but correspond to different types of al-
gorithms in use. The first basis, made of partial dyadic voxel sets, corresponds to
the discrete geometry approach, while the second one, made of partial rational poly-
hedra, is more consistent with the computational geometry point of view and will
be the basis for efficient algorithms. The computability of Boolean and Minkowski
operators is easier to prove using the partial dyadic voxel sets representation.

4.1.1 Partial dyadic voxel sets

A dyadic number is a rational number whose denominator is a power of 2. Given
a natural number n, we divide the cube [—27,2"]¢ into 2?14 small cubes each
of length 27", the coordinates of the 2% vertices of each small cube will then be
integer multiples of 27", that is, dyadic numbers. We consider these small cubes
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as closed cubes: two adjacent cubes overlap along their common face (or k-edge,
0<k<d-1).

A dyadic vozel set of order n is the interior of a finite union of these small cubes.
We have then 22°"""" distinct dyadic voxel sets of order n, including the trivial
ones, that is the empty set and the whole cube [—2",2"]¢ itself. Notice that dyadic
voxel sets of order n are regular open sets with compact closure(Fig. 4.

u

Dyadic voxel set of order 0 ‘ ‘ Dyadic voxel set of order 1 ‘ ‘ Dyadic voxel set of order 2

Figure 4: Voxel sets of different orders.

Of course, if n < m, the dyadic voxel sets of order n are dyadic voxel sets of
order m. We say that a voxel set V' has strict order n if V' is of order n but is not
of order k for k < n.

The set V of all the dyadic voxel sets of any order n = 0, 1,2, .. can be effectively
enumerated by V : N — V as follows. We put Vo = () and then start by first
enumerating, in a given prescribed way, the dyadic voxel sets of strict order 0, then
those of strict order 1, and so on. Then, there exists a total recursive function
r : N — N such that, for each 7 € N, V; will be a voxel set of strict order r(7), which
would be explicitly given as the interior of the union of its small cubes.

Clearly, V; = 0 iff i = 0 and the relations V; C U, <,,<,, Vi a0d Vi C U <nen Vim
are decidable for each n > 1. - -

The intersection and the regularized union of dyadic voxel sets of order n are
dyadic voxel sets of order n and computing the index of the binary intersection and
the regularized binary union of dyadic voxel sets from their indices is a finite proce-
dure. This therefore gives an effective structure for R” in the sense of Definition 4.1.
From the effective enumeration (V;);c,, one can construct an effective enumeration
(Vi)icw of the partial dyadic vozel sets, that is the pairs V; = (Voy, Va(iy), with «
and f total recursive functions, such that Vi) N V() = 0, with Vo = (0,0). Then,
(V;)icw provides us with a basis of SR? and a partial solid (A, B) € SR? is com-
putable if and only if the set {i € N|V; < (4, B)} is r.e. We can endow S[—a,a]?,
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where a > 0 is a computable real number, with an effective structure by using the
intersection of voxel sets with the cube S[—a,a]¢ .
One can then apply the results of the previous section to deduce:

Corollary 4.3 The following functions are computable with respect to the effective
structures on IR, SRY and S[—a, a]¢.

(i) — € —: IR x SR? — {tt,ff} |
(i) —U —: SR x SRY — SR?,
(iii) —N —: SR x SRY — SR,
(iv) — C —: S[—a,a]® x S[—a,a]? — {tt,ff},.

In order to study the computability of the Minkowski sum, we need a basis for the
domain SyR? of bounded partial solids. Recall that the non-bottom elements of S,R?
are of the form (A, B), with A and B open and B¢ bounded, and therefore compact.
The second component, B, will be approximated by the interiors of complements of
dyadic voxel sets.

From the effective enumeration (V;);c,, one can obtain an effective enumeration
(W;)iew of the partial bounded dyadic vozel sets. There are total recursive functions
v and § such that Wy = (0,0) and, for i > 0, W; = (V (3, Vf(i)o) where V. ;) C Vi),
which is decidable. This provides us with a basis for S,R¢.

Proposition 4.4 Given basis elements W; and V; of SyR? and SR respectively,
there is a total recursive function ¢ : NxXN — N such that Vy; ;) = W oV;. Given

basis elements W; and W; of SyR?, there is a total recursive function v such that
Wy(ig) =W, & W;.

Proof The computation reduces to computing either the Minkowski sum of two
dyadic voxel sets, or the Minkowski sum of a dyadic voxel set and the complement
of a dyadic voxel set. This is clearly a finite procedure. [

Corollary 4.5 The following maps are computable.
o — @ —:(SyR%) x (SRY) — SR?
o — @ —: (SpRY) x (SpRY) — SyRY

o — C —:(SpR%) x (SRY) — {tt,ff} .
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4.1.2 Partial rational polyhedra

A rational d-simplez in R? is the convex hull of d+ 1 points with rational coordinates
that do not lie on the same hyper-plane. An open rational polyhedron is the interior
of a finite union of rational d-simplexes. Starting with an effective enumeration of
the rational d-simplexes, one can obtain an effective enumeration (F;);c,, of the set
of open rational polyhedra with P; = () iff i = 0. The relations P; C Ui<m<n Pim
and P; C U,<,,<n, Pj.. are decidable for each n > 1. Rational polyhedra are closed
under the binary intersection and the regularized binary union. These operations
are computable as they rely only on rational arithmetic and comparison of rational
numbers.

A partial open rational polyhedron is a pair of disjoint open rational polyhedra.
From the effective enumeration (P;);c,, of open rational polyhedra, one can obtain
an effective enumeration (IP;);c., of the partial open rational polyhedra.

Partial dyadic voxel sets are trivially partial open rational polyhedra. Moreover,
they define the same notion of computability, in other words:

Proposition 4.6 P; <V, and V; K P; are decidable in i and j.

From this equivalence, it follows that a partial solid object, or a map, is com-
putable with respect to the effective structure by partial open rational polyhedra if
and only if it is computable with respect to the effective structure by partial dyadic
voxel sets.

One can define a basis of S;R? exactly in the same way as with rational partial
dyadic voxel sets.

Our domain-theoretic notion of computability so far has the essential weakness
of lacking a quantitative measure for the rate of convergence of basis elements to a
computable element. This shortcoming can be redressed by enriching the domain-
theoretic notion of computability with an additional requirement which allows a
quantitative degree of approximation. We will see in the next two sections that this
can be done in at least two different ways.

5 Hausdorff computability

In this section we will enrich the notion of computability with convergence with re-
spect to the Hausdorff metric. Let X be a compact metric space, with its solid
domain SX effectively given by a basis (S;)icw, with S; = (Oaz), Os(;))- Let
dg denote the Hausdorff distance between compact sets with the convention that
dip(0,0) =0 and for Y # 0, dg(0,Y) = co. We assume that the three double se-
quences (dg(0;,0;))ijew, (dm (O, 0%))ijew and (dm (Of, OF))ijew of real numbers
are computable.

Definition 5.1 A partial solid (A, B) is Hausdorff computable if there is a total
recursive function f such that:
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o A=, Oa(f(i)) with dr (A, Oa(f(z'))) < 27" and d (A, Oz(f(i))) < 27%,
e B = UiEw Oﬁ(f(i)) with dH(E, O,B(f(i))) <27 and dp(B€, O,??(f(i))) <270,

Lemma 5.2 Let (A;)ic, be a decreasing sequence of compact subsets of a compact

metric space X and (;o, Ai = A. Then dy(A;, A) = 0 and dp(AS, A¢) — 0.

€W
Proof Let B¢ be the open ball of radius € centred at the origin. Consider
A®B.={r € X|da € A. d(z,a) < €}.

Then, there exists i € w such that A; C A @ B, [8, page 226]. It follows that
dip(A;, A) < e Furthgmore, we have A¢ C Uicw A_f@_BE It follows that there
exists i € w such that A¢ C AY @ B, and hence, d(AS, A¢) <e. O

Proposition 5.3 A computable mazimal element of SX is Hausdorff computable.

Proof Let (A, B) be a computable maximal element of SX. From the regularity
of A and B, we get A = B® and B = A°. From the computability of (4, B) in
SX, it follows that there exists a total recursive function p such that (A4,B) =
(Uicw Oaopiys Uicw Opop(iy), where the sequences of basis elements are both in-
creasing with i. For convenience, put A; = Ogepi) and B; = Opgop(;)- We have,
A® = Ve Af and B =, Bf. Since X is compact, A°, A§, B® and B are also
compact.

Applying Lemma 5.2, we get: dg(AS, A°) — 0, dg(A;, A) — 0, dg(B¢, B®) —
0, and dg(B;, B) — 0. Using A = B¢ and the triangular inequality we deduce:
dp (A, BS) — 0 and similarly dg (B;, AS) — 0.

Since o, 8 and p are total recursive functions, (dg (A;, BY))icw, i-e- (dr (Ogop(iy Ofaop(i)))iGw

1Ew

and (dg (B, AS))icw, i-e. (dir(Ogop(s)s Ogop(i)))i@, are computable sequences of real
numbers. Therefore, we can effectively find the first integer k(7) € N such that:
A (Ayy, B,‘;(i)) < 27" and dg(By), AZ(z’)) < 27% Now, given three subsets E, F
and G, with F C F C G, we can check easily that: dy(E,F) < dy(E,G) and
dg(F,G) < dg(E,G). Applying this to ;) € A = B® C By, and By C B =
A° C Az(i), it follows that:

dH(Bk(z)ag) < 272‘7 dH(BcaBg(z)) < 272’7 dH(Ak(z)az) < 272‘7 dH(Aca Az(z)) < 272’7
which completes the proof. [

From the definition, it is clear that the complement (B, A) of a partial solid
(A, B) is Hausdorff computable if and only if (A, B) is Hausdorff computable. How-
ever, Boolean operators do not preserve Hausdorff computability in general, as we
will show in the following example(Fig. 5).
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Example 5.4 We will construct Hausdorff computable mazimal elements (A, B)
and (A', B") of S([0, 1]x[—1, 1]) which have a non-Hausdorff computable intersection.
Let (an)new be a computable, increasing sequence of rational numbers, with ag > 0,
whose limit is a non-computable, left-computable real number | < 1.

Let g, : [0,1] — [0,1], for n € N, be defined by

_ [ =b) dift<ay

Then, put fp, = max{g;|0 <i <n}, A, ={(z,y) € [0,1] x [-1,1]|fn(z) + 27" < y}
and By, = {(z,y) € [0,1] x [=1,1]ly < fn(2)}.

20

! ¥ [?

Figure 5: Intersection does not preserve Hausdorff computability.

The sets A = J;c, Ai and B = U, Bi are regular and (A, B) is a Hausdorff
computable, mazimal element of S([0,1] x [—1,1]). The partial solid (A', B") with
A" =1[0,1] x [-1,0) and B' = A"° = [0,1] x (0,1] is Hausdorff computable. Consider
the intersection (A,B) N (A",B") = (AN A,BUDB'). We have ANA" =0 and
BUB' = ([I,1] x {0})°.

If the last component were Hausdorff computable, there would be a computable
sequence of basis elements (X;)icw such that d(X¢,[I,1] x {0}) < 27*. But this is
in contradiction with the non-computability of 1.

6 Lebesgue Computability

We now consider the notion of measure-theoretic computability which is closed under
Boolean operations and can be expressed for solids on locally compact spaces as
well. Suppose we have the effective structure, introduced in Section 4, on the solid
domain SX of a second countable locally compact space X, given in terms of the
countable basis 0. Let u be a finite Borel measure on X, such that (u(0;))icw
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is a computable sequence of real numbers. If (A,B) € SX is computable then
(A,B) = |—|i6w S(;(Z) = I_liew(oa(t;(i))v 0/3(5(1))) for a total recursive function § : N —
N such that (Ss())icw is an increasing chain. Tt follows that (14(Oqas(i))))icw and
(11(Og(s5(1)) ) )icw are computable increasing sequences of real numbers which converge
to u(A) and p(B), respectively. Hence, u(A) and p(B) are left-computable real
numbers. We say that the computable partial solid (A, B) is p-computable if u(A)
and u(B) are both computable real numbers. It follows that, (A, B) is u-computable
iff there exists a total recursive function ¢ such that u(A) — u(Oniay)) < 2—11 and
1(B) = u(Op(seiyy) < %, for all i € N. The definition extends naturally to computable
elements of (SX)™ for any positive integer m.

Proposition 6.1 If u(X) is a computable real number and (A,B) € SX is com-
putable with (X \(AUB)) a left-computable real number, then (A, B) is p-computable.

Proof We have the disjoint union X = AU B U (X \ (AU B)). Since u(B) and
w(X\(AUB)) are left-computable, it follows that p(A) = pu(X)—p(B)—u(X\(AUB))
is also right-computable, and, hence, computable. Similarly p(B) is computable. [

Corollary 6.2 If u(X) is a computable real number and (A,B) € SX is a com-
putable maximal element with p(0A) =0, then (A, B) is p-computable.

Proof By Lemma 2.5, 9A = 0B. Hence u(X \ (AU B)) = u(0A) =0. 0O

We say that a computable sequence of partial solids ((Ay,, By))new 18 -computable
if (u(Ap))new and (4(Bp))new are computable sequences of real numbers. As for
computable elements, the definition extends naturally to computable sequences of
(SX)™ for any positive integer m. If ((Ap, Bn))new is a computable sequence
of partial solid objects, then there exist total recursive functions a and b with
(An, Bn) = icw(Oan,i)» Obn,iy) where the sequences of open sets are increasing
with ¢.

Lemma 6.3 Suppose ((An, Bp))new 8 a computable sequence of partial solids, with
(An, Bn) = Uicw(Oan,iy» Obn,iy) for total recursive functions a and b where the
sequences of open sets are increasing with 1. Then, ((An, Bn))necw 8 p-computable
iff there exist total recursive functions r,s : N x N = N such that

M(An) - M(Oa(n,r(n,i))) < 271‘7 :U‘(Bn) - :U‘(Ob(n,s(n,i))) < 272’-

Proof Since (14(0j));jew is a computable sequence of real numbers, it follows that
(11(Og(ni)))n.jew is a computable double sequence of real numbers. Since (1(Og(p.i)))njew
converges monotonically upwards to the sequence (11(A4,))new as j — oo, it follows
by [26, Proposition 2, Page 20], that the convergence is effective in both n and j,
i.e. the recursive function r, with the required property exists, iff (u(An))necw is a
computable sequence of real numbers. Similarly, the recursive function s with the
required property exists iff (4(By))necw is @ computable sequence of real numbers. [
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A computable function f : (SX)™ — SX is said to be u-computable if it takes
any pu-computable sequence of m-tuples of partial solids to a u-computable sequence
of partial solids.

Theorem 6.4 The binary operations — U — and — N — are p-computable. More
generally, the n-ary operations of U and N are p-computable.

Proof Let ((A,, Bn))necw and ((Cy, Dy))new be p-computable sequences of partial
solids with (AnaBn) = UiEw(Oa(n,i)aOb(n,i)) and (CnaDn) = l_liEa;(Oc(n,i)aOd(n,i))a
where the sequences of open sets are increasing and a, b, ¢ and d are total recursive
functions.

Since, by Theorem 4.2, — U — is computable, it sends computable sequences to
computable sequences. Hence, ((A, UCy, B, N Dy))pew is a computable sequence of
partial solids. We show that (u(A, UCp))new and (u(Bp N Dy))new are computable
sequences of real numbers.

Let r and s be total recursive functions, given by Lemma 6.3, such that

N’(An) - N’(Oa(n,r(n,i))) < 2_i7 :U*(Cn) - :U‘(Oc(n,s(n,i))) < 27",

Then, for the total recursive function u defined by u(n,i) = max(r(n,i), s(n,7)), we
have:

N’(An U Cn) - :U*(Oa(n,u(n,i)) U Oc(n,u(n,z))) N’((An U Cn) \ (Oa(n,u(n,i)) U Oc(n,u(n,z))))
N’((An \ Oa(n,u(n,i))) U (Cn \ Oc(n,u(n,z))))

N’EAn \ Oa(n,u(n,i))) + N’(Cn \ Oc(n,u(n,z)))

2 i+1

VAVANVANT!

We hayve:

M(Oa(n,u(n,i)) UOc(n,u(n,i))) = M(Oa(n,u(n,i)) )+M(Oc(n,u(n,z)) ) _M(Oa(n,u(n,i)) ﬁOc(n,u(n,i)))'

Since Oa(n,u(n,i)) N Oc(n,u(n,i)) = Ow(a(n,u(n,i)),c(n,u(n,i)))a it follows that

N’(Oa(n,u(n,i)) N Oc(n,u(n,i)))n,iGw

is a computable double sequence of real numbers. Therefore,

(N’(Oa(n,u(n,i)) U Oc(n,u(n,i)))n,iew

is the linear sum of three computable double sequences of real numbers. Hence,
(11(Ognu(ni)) Y Oc(nu(n,iy) Injicw is itself a computable double sequence of real num-
bers, which converges, as i — 00, to (u(A, U Cp))new effectively in i and n, as the
above calculation shows. Therefore, by Lemma 6.3, (u(A, UC},))necw is a computable
sequence of real numbers. Similarly, (4(Bp, N Dy))new is a computable sequence of
real numbers. This establishes the py-computability of — U —. The case of — N —
follows by duality. The case of the n-ary operations of U and N is similar. [
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Now suppose p is a locally finite Borel measure, i.e. one which is finite on any
compact subset of X, such that (4(0;))icw is a computable sequence of real numbers.

We say that a computable partial solid object (A, B) € SX is u-computable if
w(ANOy ) new and p(BNOy, )pew are computable sequences of real numbers. The com-
putable sequence of partial solids ((A, By))new is p-computable if (1(AnNOm))n,mew
and (u(BrNOm))n,mew are computable sequences of real numbers. These definitions
extend naturally to computable elements and to sequences of elements of (SX)* for
any positive integer k. We say that a computable map P : SX — SY is u-computable
if it takes any p-computable sequence of partial solids of to a u-computable sequence
of partial solids. We say that a map P : SX™ — SX is u-computable if it takes any
p-computable sequence of m-tuples of partial solids to a u-computable sequence of
partial solids.

Lemma 6.5 Suppose ((An, Bn))new 18 computable, with (An, Bn) = | |;c,(Oan,i)> Op(n,i))
for total recursive functions a and b where the sequences of open sets are increasing
with i. Then ((Apn, Bp))new 18 p-computable if and only if there exists total recursive
functions r and s such that

:U(Anmom)_N(Oa(n,r(n,m,i))ﬂom) < Z_ia M(Bnﬂom)_N(Ob(n,s(n,m,i))ﬂom) < 27",

Proof Since N(Oa(n’i)ﬂom) = N(O'zp(a(n,i),m))a it follows that (N(Oa(n’i)ﬂom))n’i’mgw
is a computable triple sequence of real numbers. This sequence converges mono-
tonically upwards to the sequence (u(A, N Om))nmew as i — oco. Hence, by [26,
Proposition 2, Page 20], the recursive function r with the required property exists if
and only if the sequence (p(Ayn N Op,))n,mew is computable. Similarly, the recursive
function s exists if and only if the sequence (u(By, N Op))n,mew is computable. [

As in the case of finite measures, the binary operations — U — and — N —, and,
more generally, the n-ary operations U and N are y-computable. The proof is similar
to that of Theorem 6.4, this time using Lemma 6.5.

Next, we consider the most important case, namely, when p is the Lebesgue
measure A on R?. We show that there are computable partial solids which are not
Lebesgue computable. In fact, we will provide an example of a computable maximal
element of S[—1, 1] which is not Lebesgue computable.

Example 6.6 This ezample uses a modification of a construction, due to Reinhold
Heckmann, of a regular open set of the real line which has a boundary with non-zero
Lebesgue measure. The construction is similar to that of the standard Cantor set
except that at each stage two open intervals, rather than just one, are removed. Let
(an)new be a strictly increasing computable sequence of rational numbers a, > 0
converging to the non-computable real number a < 1. Put by = ag and by,41 =
ant1 — ap for n > 0. Start with the closed interval [—1,1] and remove two open
intervals each of length by such that three closed intervals of equal length are left.
In each of these three closed intervals, remove two open intervals, each of length %1,
and so on. At the nth stage, there are 3™ closed intervals, in each we remove two
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open intervals each of length g—z, resulting in a total of 2 x 3™ open intervals(Fig. 6).
For 1 < m < 3", we denote by Bpy and Cyum, respectively, the left and the right
open intervals removed in the mth closed interval. Let B, = |J,<,,<3n Bam: Cn =
Ui<m<sn Cnm- Finally, put B =, c,, Bn and C = U, ¢, Cn. It is straightforward
to check that A\(B) = A(C) = a and that B and C are reqular open sets, with B = C°
and C = B®°. By construction (B,C) € S[—1,1] is a computable, mazimal solid
object, which is not Lebesque computable. This exzample can be lifted to R® by taking
the product of (B,C) with [—1,1]%71.

By Cy
bi/3 bi/3

}‘b_lq ﬁ I = I I I .
e ~

B, C,
b/ by bi/3 by bi/3
mémﬁ\ e b e — e e
B>

7

C

Figure 6: A non-Lebesgue computable regular solid.

One can also use a construction of a fractal Jordan curve by Ker-I-Ko and
Weihrauch [20] in R? to show that there is even a computable but non-Lebesgue
computable maximal solid object (B,C) € SR? such that the common boundary
0B = 0C' is a Jordan curve.

We conjecture that the Minkowski operation preserves Lebesgue computable
maximal elements, i.e. if (4, B), (C, D) € S[—a,a]? are Lebesgue computable maxi-
mal elements then (A4, B)® (C, D) is Lebesgue computable. However, the Minkowski
operation does not preserve Lebesgue computable elements in general as the follow-
ing example shows.

Example 6.7 Let 0 < I < 1 be a right computable, non-computable real num-
ber and consider the non-mazimal element (0, ([0,1] x {0})¢) € S[—2,2]?, which is
Lebesgue computable. Let By be the open ball of radius 1 around the origin. Then,
the Minkowski sum

(0, ([0,1] x {0})*) @ (B1, Bi”") = (0, (Br @ ([0,1] x {0}))°)

is not Lebesgue computable, since the second component has measure 16 — (m + 2I)
which is not a computable real number.

A computable partial solid (A, B), with u(X \ (AU B)) = 0, can be manufactured
with an error that can be made as small as we want in volume, assuming an idealized
manufacturing device.
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Despite their differences, the notions of Hausdorff computability, which measures
the visual proximity of objects effectively, and that of Lebesgue computability, which
measures the area or volume of objects effectively, both correspond to observable
properties of solids and are therefore both useful in practice.

7 Conclusion

As stated in the Introduction, the solid domain described here is based on a realistic
notion of computability which corresponds to the observable properties of solids; it
is also closed under Boolean operations which are computable in the model as are
the basic predicates. Furthermore, the model admits non-regular as well as regular
sets.

In order to design reasonably efficient algorithms based on our model, one should
carefully choose the representation for partial solids. Representations used in indus-
trial applications are generally polyhedra or B.Rep. (Boundary representation), that
is a set of faces (surfaces), edges (curves) and vertices, connected by an adjacency
graph featuring the boundary of the solid.

The dyadic voxel set representation can be made reasonably efficient using recur-
sive binary space subdivision, i.e. octree-like structure. For solids which have, as it
is often the case in applications, a boundary with a bounded curvature almost every-
where, partial rational polyhedra will provide a more efficient representation. The
performance of these representations can be formally compared by the growth rate,
as a function of n, of the volume of data (the number of bits) needed to represent a
partial solid up to the Hausdorff or Lebesgue accuracy of 27".

However, using partial rational polyhedra in a chain of successive Boolean opera-
tions would entail a prohibitive growth of the number of digits necessary to represent
the rational coordinates of the vertices. An effective way to overcome this problem
would be to use "dyadic polyhedra” together with a rounding process. The idea is
to use polyhedra whose vertex coordinates are dyadic numbers. Then, since these
polyhedra are not closed under Boolean operators, one can round the exact result
to some best approximation in terms of dyadic polyhedra. This process is similar
to rounding in fixed or floating point arithmetic. It is also related to some recent
works dealing with robustness in computational geometry.

Our future work will focus on realistic implementations based on these ideas as
well as theoretical definitions of complexity allowing a formal comparison between
algorithms and representations. Also, in order to apply this work to actual CAGD,
one needs to capture more information on solids and geometric objects. In particular,
we have to deal more generally with the boundary representation and the differential
properties of curves and surfaces.
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Appendix

We give here the formal definitions of a number of notions in domain theory used in
the paper; see [1, 2, 26] for more detail. We think of a partially ordered set (poset)
(P,C) as the set of output of some computation such that the partial order is an
order of information: in other words, ¢ C b indicates that a has less information
than b. For example, the set {0,1}° of all finite and infinite sequences of bits 0
and 1 with a C b if the sequence a is an initial segment of the sequence b is a
poset and a C b simply means that b has more bits of information than a. Any
Ty topological space has an inherent information ordering, called the specialisation
ordering, defined by a C b iff a € O = b € O, for all open subsets O. A non-empty
subset A C P is directed if for any pair of elements a,b € A there exists ¢ € A such
that a C cand b C ¢. A directed set is therefore a consistent set of output elements
of a computation: for every pair of output a and b, there is some output ¢ with more
information than a and b. A directed complete partial order (depo) or a domain is a
partial order in which every directed subset has a least upper bound (lub). We say
that a dcpo is pointed if it has a least element which is denoted by L and is called
bottom.

For two elements a and b of a dcpo we say a is way-below or approzimates b,
denoted by a < b, if for every directed subset A with b C | | A there exists ¢ € A
with ¢ C ¢. The idea is that a is a finitary approximation to b: whenever the lub
of a consistent set of output elements has more information than b, then already
one of the input elements in the consistent set has more information than a. In
{0,1}*°, we have a < b iff a C b and a is a finite sequence. The closed subsets of
the Scott topology of a domain are those subsets C' which are downward closed (i.e.
zr€C&yLCz = ye C) and closed under taking lub’s of directed subsets (i.e. for
every directed subset A C C' we have | |A € C).

A basis of a domain D is a subset B C D such that for every element x € D
of the domain the set B, = {y € Bly < z} of elements in the basis way-below z
is directed with z = | | B;. An (w)-continuous domain is a dcpo with a (countable)
basis. In other words, every element of a continuous domain can be expressed as
the lub of the directed set of basis elements which approximate it. In a continuous
depo D, subsets of the form Ta = {z € D|a < z}, for a € D, forms a basis for the
Scott topology. A domain is bounded complete if every bounded subset has a lub; in
such a domain every non-empty subset has an infimum or greatest lower bound.

It can be shown that a function f : D — FE between dcpo’s is continuous with
respect to the Scott topology if and only if it is monotone (i.e.a T b = f(a) C f(b))
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and preserves lub’s of directed sets i.e. for any directed A C D, we have f(| |, 4 a) =
|l,ca f(a). Moreover, if D is an w-continuous dcpo, then f is continuous iff it is
monotone and preserves lub’s of increasing sequences (i.e. f(||;c,, i) = Llic,, (i),
for any increasing (z;)icw)-

The interval domain I[0, 1] of the unit box [0, 1]™ C R" is the set of all non-empty
n-dimensional sub-rectangles in [0, 1] ordered by reverse inclusion. A basic Scott
open set is given, for every open subset O of R", by the collection of all rectangles
contained in O. The map z — {z} : [0,1]" — I[0,1]" is an embedding onto the set
of maximal elements of I[0, 1]”. Every maximal element {z} can be obtained as the
least upper bound (lub) of an increasing chain of elements, i.e. a shrinking, nested
sequence of sub-rectangles, each containing {z} in its interior and thereby giving an
approximation to {z} or equivalently to z. The set of sub-rectangles with rational
coordinates provides a countable basis. One can similarly define, for example, the
interval domain IR" of R”.

An important feature of domains, in the context of this paper, is that they can be
used to obtain computable approximations to operations which are classically non-
computable. For example, comparison of a real number with 0 is not computable.
However, the function N : I|—1,1] — {tt,ff}; with

tt ifb<O
N([a,b])) =< ff if0<a
1 otherwise

is the computable approximation to the comparison predicate. Here, {tt,ff} is the
three element pointed domain with two incomparable maximal elements tt and ff.

The upper space UX of a compact metric space X is the set of all non-empty
compact subsets of X ordered by reverse inclusion. In fact, UX is a generalization
of the interval domain and has similar properties; for example a basic Scott open set
is given, for every open subset O C X, by the collection of all non-empty compact
subsets contained in O. As with the interval domain, the map = — {z} : X - UX
is an embedding onto the set of maximal elements of UX. The upper space gives rise
to a computational model for fractals and for measure and integration theory [10].
The idea of the solid domain of [0,1]™ (see Section 2), represented by pairs of closed
subsets, is closely linked with U[0, 1]".

An w-continuous domain D with a least element | is effectively given wrt an
effective enumeration b : N — B of a countable basis B if the set {< m,n >
|bm, < by} is recursive, where < .,. >: N x N — N is the standard pairing function
i.e. the isomorphism (z,y) — w + z. This means that for each pair
of basis elements (b,,by,), it is possible to decide in finite time whether or not
b < b,. We say x € D is computable if the set {n|b, < =z} is r.e. This is
equivalent to say that there is a master programme which outputs exactly this set.
It is also equivalent to the existence of a recursive function g such that (by(n))new
is an increasing chain in D with x = | | . by If D is also effectively given wrt

new °g
to another basis B’ = {by, b}, b}, -} such that the sets {< m,n > |b,, < b),} and
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{< m,n > |b], < b,} are both decidable, then z will be computable wrt B iff it is
computable wrt B’. We say that B and B’ are recursively equivalent.

We can define an effective enumeration £ of the set D, of all computable elements
of D. Let 0,, n € w, be the nth partial recursive function. It can be shown [13]
that there exists a total recursive function ¢ such that ¢ : N — D, with &, =
Lico by, (y(i)> With (bgc(n)(i))i@ an increasing chain for each n € w, is an effective
enumeration of D.. A sequence (x;);c, is computable if there exists a total recursive
function A such that z; = §;) for all i € w.

We say that a continuous map f : D — FE of effectively given w-continuous
domains D (with basis {ag,ay---}) and E (with basis {by, by ---}) is computable if
the set {< m,n > |b,, < f(ap)} is r.e. This is equivalent to say that f maps
computable sequences to computable sequences. Computable functions are stable
under change to a recursively equivalent basis. Every computable function can be
shown to be a continuous function [35, Theorem 3.6.16]. It can be shown [13] that
these notions of computability for the domain IR of intervals of R induce the same
class of computable real numbers and computable real functions as in the classical
theory [26].

We also need the following classical definitions of sequences of real numbers. A
sequence (7;);e,, of rational numbers is computable if there exist three total recursive
functions a, b, and s such that b(i) # 0 for all i € w and

A computable double sequence of rational numbers is defined in a similar way. A
sequence (z;);e, of real numbers is computable if there exists a computable double
sequence (75)i jcw of rational numbers such that

|7~i]. — x| < 277 for all ¢ and j

A computable double sequence of real numbers is defined analogously. If (z,1)n kew is
a computable double sequence of real numbers which converges to a sequence (z,,)pew
effectively in k and n (i.e. there exists a total recursive function e : N x N — N
such that |z, — z,| < 27V for all k& > e(n,N)), then the sequence (,)nc, is
computable [26, Page 20].
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