
Uniform Differentiation and Domains of Computation for Real and Complex
Lipschitz Vector Functions

Abbas Edalat
Department of Computing, Imperial College London, UK

Abstract

We introduce the notion of a partial extension of an ar-
bitrary, not necessarily continuous, map from a subset of a
topological space into a continuous Scott domain and de-
duce a universal property for such a domain with respect
to partial maps. It is then proved that the Clarke gradi-
ent of a Lipschitz map between two finite dimensional real
Euclidean spaces is the partial extension of the classical
derivative of the Lipschitz map, which exists on a dense
subset. A uniform domain-theoretic formalism is developed
for deriving, stage by stage, the so-called L-derivative of
a Lipschitz map from a Hilbert space into a finite dimen-
sional Hilbert space over the field of real or complex num-
bers respectively. In the real case, it is shown that the L-
derivative of a map between finite dimensional Euclidean
spaces always coincides with the Clarke gradient. In the
complex case, we derive a generalisation of Cauchy Rie-
mann equations for Lipschitz maps between finite dimen-
sional complex vector spaces by introducing the notion of
multi-dimensional angular derivative of a complex map.
We then introduce the notion of distance to the maximal
elements for Scott continuous maps that are, like the L-
derivative, compact valued, and prove that it has a Scott
continuity property. Finally, we use Arzelà-Ascoli’s theorem
to construct for the first time continuous Scott domains of
computation for Lipschitz maps between finite dimensional
real or complex vector spaces.

1 Introduction

The aim of this paper is to show that a simple domain-
theoretic method can be developed and uniformly used to
define the notion of the so-called L-derivative for Lipschitz
vector maps on real or complex finite or infinite dimensional
Hilbert spaces. The domain-theoretic L-derivative of a Lip-
schitz map at a point is obtained simply as the intersection
of a family of non-empty convex and compact subsets. In
previous work on the subject [10, 7, 11], only scalar maps
had been treated and it was shown that for real-valued Lip-

schitz maps on finite dimensional real Euclidean spaces the
L-derivative coincides with the Clarke gradient [4], which
had been introduced using several higher order concepts in
non-smooth optimisation and control in 1970’s. We note,
in passing, that another application of domain theory in dif-
ferential calculus, not directly related to this work, has been
established in [3].

We have developed new techniques and results in two
different areas in order to extend the theory further to vector
functions on infinite dimensional vector spaces. These ex-
tensions are required to develop domain-theoretic models of
real or complex Lipschitz manifolds on the one hand and for
applications in quantum computation which involves maps
between finite dimensional complex vector spaces.

First, in the theory of Hilbert spaces, we show that a cer-
tain logical predicate, with quantifiers of depth one, on a
non-empty, convex weak* compact subset of a finite prod-
uct of the dual of the Hilbert space is equivalent to the con-
tainment of the zero functional. This property actually al-
lows us to show that the L-derivative of any vector Lips-
chitz map on a finite or infinite dimensional Hilbert space
is a Scott continuous map extending the classical counter-
parts in differentiable calculus and complex analysis: the
L-derivative of a C1 vector map and that of an analytic vec-
tor map coincide with their classical derivatives. To make
the paper more accessible, we will first introduce the result
for the logical predicate in the Basic Lemma 3.4 for finite
dimensional real or complex Euclidean spaces before pre-
senting the result for infinite dimensional Hilbert spaces.

Second, in domain theory, the notion of extension of a
domain map is generalised to that of a partial extension. We
define a partial extension of an arbitrary (not necessarily
continuous) map from a subset of a topological space into
a continuous Scott domain, by stipulating that the extended
map is below the original map wherever the latter is de-
fined. This can be interpreted by saying that a partial exten-
sion is sound but not necessarily complete. We then show
that continuous Scott domains have the universal property
that every map from a dense subset of a topological space
into a continuous Scott domain has a maximal continuous
partial extension to the whole space. This should be com-
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pared with the characterisation of continuous Scott domains
as densely injective spaces, which were introduced by Dana
Scott [22]. Continuous Scott domains are characterised by
the universal property that any continuous map from a dense
subset of a topological space into a continuous Scott do-
main has a continuous extension to the whole space. Our
result strengthens this universal property by showing that
the original map need not be continuous and yet we obtain
a continuous partial extension. In addition, if the original
map is continuous at a given point then the partial exten-
sion coincides with the original map at that point. We then
show that the generalised Jacobians of a Lipschitz map be-
tween finite dimensional Euclidean spaces are simply the
partial extension of the classical derivative which exists on
a dense set for the Lipschitz map by Rademacher’s theo-
rem [5, p. 148]. This allows us to prove the equivalence of
the Clarke gradient and the L-derivative for maps between
finite dimensional Euclidean spaces.

The uniform and simple method of deriving the L-
derivative of a complex Lipschitz map between finite di-
mensional complex vector spaces allows us to find a con-
nection between this L-derivative and the L-derivatives of
the real and imaginary parts of the function, which gives
a multi-dimensional generalisation of the Cauchy-Riemann
equations, which generalises the one dimensional result
in [8]. This is achieved by introducing a multi-dimensional
notion of complex angular derivative which extends the
one-dimensional angular derivative, which is attributed to
Riemann [15, p. 14].

We also formulate a measure of proximity of the L-
derivative to a C1 map or to an analytic map as the distance
of the map to the set of maximal elements of the function
space which correspond to the classical derivatives of maps.
We use König’s lemma to show that this distance is Scott
continuous if we restrict the maps to a compact set.

Two main results in this paper use the L-derivative for
Lipschitz vector maps to construct, for the first time, con-
tinuous domains for Lipschitz maps between finite dimen-
sional real or complex Euclidean spaces. We employ two
fundamental theorems in mathematical analysis for this
construction: (i) Kirszbraun’s theorem [5, p. 8] that a Lip-
schitz map can be extended from any subset of a Hilbert
space to the whole space with the same Lipschitz constant
and (ii) the celebrated Arzelà-Ascoli theorem for a uni-
formly bounded and equi-continuous family of maps.

Finally, we show that for the case of real Lipschitz vector
maps, we can obtain an effective structure for our continu-
ous Scott domain if we approximate the L-derivative of the
vector map by the product of the best axis aligned rectangu-
lar approximations, as is done in interval analysis [19]. We
also construct a bigger continuous Scott domain for Lips-
chitz complex maps which we propose would be suitable
for developing an effective structure.

1.1 Notation and terminology

Let F be the field of real numbers R or that of complex
numbers C and H a Hilbert space over F. For u ∈ F, we
denote by |u| its absolute value if u ∈ R and its modulus
|u| =

√
u21 + u22 (also called its absolute value) if u = u1+

iu2 ∈ C. For any positive integerm, we equip Fm, with the
Euclidean norm ‖v‖ =

√∑m
i=1 |vi|2. If u, v ∈ F then uw

denotes their real product if u,w ∈ R and their complex
product uw = (u1w1−u2w2) + i(u1w2 +u2w1) if u,w ∈
C with u = u1 + iu2 and w = w1 + iw2. From these
usual conventions, it follows that for a vector v ∈ Fn and
a linear map of type Fn → Fm, represented in the standard
coordinate system by the matrix A ∈ Fm×n, the value of
the linear map A at v is written as usual by Av ∈ Fm with
(Av)i =

∑n
j=1Aijvj where Aijvj is the product in R or

C.
We equip the vector space Fm×n of m×n matrices over

F with the Frobenius norm ‖A‖ given by

‖A‖2 =
∑

1≤i≤m

∑
1≤j≤n

|Aij |2

for A ∈ Fm×n. Note that the Frobenius norm is subordi-
nate to the Euclidean norm of vectors in Fn, i.e., ‖Av‖ ≤
‖A‖‖v‖. Consider the domain C(Fm×n) of non-empty,
convex and compact subsets of Fm×n ordered by reverse in-
clusion and augmented with C(Fm×n). By [14, Proposition
II-4.20(iv)], it is a continuous Scott domain with the way-
below relation given by b � c iff c ⊆ b◦, where b◦ is the
interior of b. For n = 1 we identify C(Fm×1) with the do-
main C(Fm) of non-empty compact and convex subsets of
Fm. We extend the notion of Frobenius norm to C(Fm×n),
by putting ‖b‖ = {‖A‖ : A ∈ b} for b ∈ C(Fm×n). We
denote by IR the continuous Scott domain of the non-empty
compact intervals of R ordered with reverse inclusion and
augmented with R as the bottom element. As usual, we
identify any singleton element {x} of IR or C(Fm×n) with
x ∈ R or x ∈ Fm×n, respectively. The characteristic func-
tion of a set A is denoted by χA.

For an open subset U ⊆ Fn, consider locally Lipschitz
maps of type U → Fn, i.e., there exists k ≥ 0 such that
‖f(v)− f(w)‖ ≤ k‖v −w‖. The total derivative of a map
f : U → Y at x ∈ U , when it exists, is a bounded linear
map L : Fn → Fm with

lim
‖h‖→0

‖f(x+ h)− f(x)− L(h)‖
‖h‖

= 0.

When F = R, this is simply the Fréchet derivative [24].
In this case, if the total derivative f ′ exists in an open set
O ⊂ U and the map x 7→ f ′(x) is continuous, then we say
f is C1 in O. When F = C, if the total derivative exists
then all partial derivatives ∂fj

∂zi
exists for 1 ≤ j ≤ m and
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1 ≤ i ≤ n. Thus, if the total derivative exists in a an open
set, then fj : (z1, . . . , zn) 7→ fj(z1, . . . , zn) is analytic
separately in each complex variable zi, which by definition
implies that fi, and thus f , is analytic [20] as a function of
several complex variables.

1.2 Partial Extension of Domain Maps

Recall that a T0 topological space Z is densely injec-
tive if every continuous map f : X → Z extends continu-
ously to any space Y containing X as a dense subset; and
furthermore, a T0 space is densely injective iff it is a con-
tinuous Scott domain equipped with its Scott topology [14,
p. 181-182]. This provides a topological characterisation of
continuous Scott domains, also referred to as bounded com-
plete domains. We will now observe, with a simple proof,
that continuous Scott domains have in fact a stronger prop-
erty, regarding extension of functions that are not necessar-
ily continuous. This gives a domain-theoretic generalisation
of the notion of the lower envelop of a real valued function
in mathematical analysis.

Definition 1.1. Assume that Z is a continuous Scott do-
main and f : X → Z is any map where X is a subset of
a topological space Y . We say a map f∗ : Y → Z is a
partial extension of f if f∗(x) v f(x) for x ∈ X . We say a
continuous partial extension f∗ is maximal if for any other
continuous partial extension g of f , we have g(y) v f∗(y)
for y ∈ Y .

Proposition 1.2. If X is a dense subset of Y then, any map
f : X → Z has a maximal continuous partial extension
f∗ : Y → Z given by

f∗(y) := sup{inf f(O ∩X) : O is open, y ∈ O}.

Moreover, if f is continuous at x ∈ X then f∗(x) = f(x).

Proof. Clearly f∗(x) v f(x) for x ∈ X , and thus f∗ is a
partial extension. We now note that the proof of continu-
ity of f∗ given in [14, p. 181], for the case when f is itself
continuous, does not actually use the continuity of f . More-
over, in the above proof, in showing that f∗(x) = f(x) for
any x ∈ X , only the continuity of f at x is used. Thus, by
using these two parts of the proof in [14], it follows that
in our case too f∗ is continuous and if f is continuous at
x ∈ X then f(x) = f∗(x). It remains to show that f∗ is
the maximal extension. Let y ∈ Y and q � g(y), where
g is another continuous partial extension of f . Then, there
exists an open set O containing y such that q � u for all
u ∈ g(O). Thus,

q v inf g(O) v inf g(O ∩X) v f(O ∩X) v f∗(y).

Since this holds for all q � g(y), we obtain g(y) v f∗(y).

There are many simple examples of partial extension of
maps in analysis. For example, take the step function S :
R → R ⊆ IR defined by S(x) = 0 if x < 0, S(x) = 1 if
x > 0 and S(0) = a for some a ∈ [0, 1]. Then S∗(x) = 0
if x < 0, S∗(x) = 1 if x > 0 and S∗(0) = [0, 1]. We give
two other examples.

Example 1.3. Consider the sawtooth wave S : R → R ⊆
IR as a periodic function defined by S(x) = x − bxc.
Clearly, S has a discontinuity at each n ∈ Z. Its partial
extension S∗ : R→ I[0, 1] is given by S∗(x) = x− bxc if
x /∈ Z and S∗(x) = [0, 1] for x ∈ Z.

Example 1.4. We now give an example, presented in [9,
Example 6.6], of a map f : [−1, 1]→ [0, 1] ⊆ I[0, 1] whose
set of discontinuities is uncountable with positive Lebesgue
measure λ. Take any positive real number a < 1. The
construction in [9] gives two disjoint open subsets B,C ⊆
[−1, 1] with λ(B) = λ(C) = a and B = (Cc)◦, i.e., the
interior of the complement Cc of C. Define f : [−1, 1] →
I[0, 1] with f(x) = 0 if x ∈ cl(B) and f(x) = 1 if x ∈
C, where cl(B) is the closure of B. Then D := [−1, 1] \
(B ∪ C) is the set of discontinuities of f and has Lebesgue
measure λ(D) = 2 − 2a. The partial extension is given by
f∗ : [−1, 1] → I[0, 1] with f∗(x) = 0 if x ∈ B, f(x) = 1
if x ∈ C and f(x) = [0, 1] if x ∈ D.

We will see a prominent example of partial extension of
domain maps in the next section.

2 Generalised Jacobians

The notion of partial extension can be applied to non-
smooth analysis. We recall the notion of generalised Ja-
cobians of real Lipschitz vector functions as introduced by
Clarke and presented in [4, section 2.6]. First, note that
by Rademacher’s theorem [5, page 148], a locally Lipschitz
map f : U ⊆ Rn → Rm is differentiable almost every-
where with respect to the Lebesgue measure. Let Ωf be the
null set where f fails to be differentiable. The generalised
(Clarke) Jacobian ∂f is defined to be:

∂f(x) = conv{ lim
j→∞

Jf(xj) : xj → x, xj /∈ Ωf}, (1)

where Jf(x) denotes the Jacobian of f at x ∈ U . The
above formula is to be interpreted as follows. There are
many sequences (xj) on U \ Ωf , which converge to x such
that Jh(xj) also converges to a limit; the generalised Ja-
cobian ∂f(x) is the convex hull of all such limits. Let the
the vector space, Rm×n, of m× n matrices over real num-
bers be equipped with the Frobenius norm. By [4, Propo-
sition 2.6.2], ∂fj(x) is a non-empty convex compact sub-
set of Rm×n, and the map ∂f : U → C(Rm×n) is upper
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semi-continuous (equivalently Scott continuous). We have:
∂f(x) ⊆ ∂f1(x)× . . .× ∂fm(x), where the latter denotes
the set of m × n matrices whose jth row belong to fj(x).
Note that from the definition, we may in principle obtain
a different set ∂Af(x) if instead of Ωf we use a null set
A ⊃ Ωf instead of Ωf . The problem whether ∂f(x) has an
intrinsic value independent of any such null set A remained
an open problem until a non-elementary proof was given
in [23] to show that ∂f(x) has indeed an intrinsic value.

2.1 Representation by Partial Extension

We will now show that for any Lipschitz map f : U ⊆
Rn → Rm, the generalised Jacobian ∂f is simply the partial
extension of the derivative map f ′ : U0 → Rm×n, where
U0 ⊆ U is the dense subset where f is differentiable. Note
that Rm×n can be considered as a subset of the maximal ele-
ments of the bounded complete domain C(Rm×n), i.e., the
set of non-empty compact and convex subsets of the space
of m× n real matrices Rm×n ordered by reverse subset in-
clusion and augmented with a bottom element that can be
regarded as the whole space Rm×n. Thus, we can consider
f ′ as a map of type U0 → C(Rm×n). We need the follow-
ing theorem of Carathéodory on convex hulls:

Theorem 2.1. [6] Any point of the convex hull of a subset
S ⊆ Rp lies in the convex hull of at most p+ 1 points in S.

By allowing some of the points in Carathéodory’s theo-
rem to be the same points if necessary, we can assume that
any point of the convex hull of a subset S ⊆ Rp lies in the
convex hull of p+ 1 points in S.

Recall that the Hausdorff metric dH on the set of non-
empty compact subsets of Rp is defined by dH(A,B) =
inf{r > 0 : A ⊆ Br and B ⊆ Ar} where for any non-
empty compact set A and r > 0, the r-neighbourhood Ar
of A is defined by Ar = {x ∈ Rp : ∃y ∈ A. |x− y| ≤ r}.

Theorem 2.2. For any Lipschitz map f : U ⊆ Rn → Rm,
the generalised Jacobian is the partial extension of the
derivative map:

∂f = (f ′)∗

Proof. Let x ∈ U . We will show that ∂f(x) = (f ′)∗(x).
Suppose y ∈ ∂f(x). Then by Clarke’s definition of
generalised Jacobian, there exists a sequence xn ∈ U0,
n ≥ 0, such that the limit limn→∞ f ′(xn) exists and
y = limn→∞ f ′(xn). Let O ⊆ U be an open set with
x ∈ O. Then there exists N ≥ 0 such that n ≥ N im-
plies xn ∈ O, i.e., f ′(xn) ∈ f ′(O ∩ U0) for all n ≥ N .
If k ≥ 0 is a Lipschitz constant for f then ‖f ′(x)‖ ≤ k
for any x ∈ U0 and thus f ′(O ∩ U0) ⊆ Bk(0), where
Bk(0) is the compact unit ball of radius k in Rm×n. Hence,
inf f ′(O ∩ U0) ∈ C(Rm×n) is the convex hull of the clo-
sure of f ′(O ∩ U0), which implies y ∈ f ′(O ∩ U0), i.e.,

f ′(O ∩ U0) v y. Since this holds for any open set O con-
taining x, it follows that

y ∈ sup{inf f ′(O ∩ U0) : x ∈ O, O open}

i.e., y ∈ (f ′)∗(x).
Next suppose y ∈ (f ′)∗(x). Let cl(A) denote the closure

of A. For any k ∈ N, let Ok := Ox(1/2k) be the open ball
of radius 1/2k centred at x. Since

y ∈ inf f ′(Ok ∩ U0) = Conv(cl(f ′(Ok ∩ U0))),

the convex hull of the closure of f ′(Ok ∩ U0), it follows
from Carathéodory’s theorem, applied to the point y of the
mn dimensional Euclidean space Rm×n, that there exist
mn+1 points yik ∈ cl(f ′(Ok ∩ U0)), for 1 ≤ i ≤ mn+1,
such that

y ∈ Conv{yik : 1 ≤ i ≤ mn+ 1}.

By the definition of the closure of a set, let xik ∈ f ′(Ok) ∩
U0 be such that ‖f ′(xik) − yik‖ < 1/2k for each k ∈ N.
Since the subset inf f ′(Ok ∩ U0) is compact for each k ∈
N, there is a subsequence yik` such that the limits yi :=
lim`→∞ yik` exist for 1 ≤ i ≤ mn + 1. By continuity, we
have

y ∈ Conv{yi : 1 ≤ i ≤ mn+ 1}.

In fact the polyhedron P` := Conv{yik` : 1 ≤ i ≤ mn+1}
converges to P := Conv{yi : 1 ≤ i ≤ mn + 1}
in the Hausdorff metric dH on C(Rm×n) which implies
d(P, y) = lim`→∞ d(P`, y) = 0 since d(P`, y) = 0 for
each ` ∈ N, where d(A, y) is the minimum distance from
the point y to a compact set A. By construction, we have
lim`→∞ xik` = x and lim`→∞ f ′(xik`) = yi. By the
definition of the generalised Jacobians, we conclude that
y ∈ ∂f(x).

We note that we cannot directly use the standard exten-
sion of continuous maps to obtain Theorem 2.2. In fact,
there are Lipschitz functions which are not continuously
differentiable at any point. For example, in [17] a Lip-
schitz map f : [0, 1] → R has been constructed with
∂f(x) = [0, 1] for all x ∈ [0, 1]. It follows that f is not
continuously differentiable at any point x ∈ [0, 1] since at
such a point we would have ∂f(x) = f ′(x) 6= [0, 1].

A number of properties of the generalised Jacobians that
are proved in [4] now simply follow as a corollary of Theo-
rem 2.2.

Corollary 2.3. For any Lipschitz map f : U ⊆ Rn → Rm
and x ∈ U we have:

(i) The set ∂f(x) is non-empty, convex and compact.
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(ii) The map ∂f is the maximal Scott continuous partial
extension of f ′ : U0 → C(Rm×n).

(iii) If f is continuously differentiable at x then ∂f(x) =
f ′(x).

Proof. (i) This follows immediately from Theorem 2.2.

(ii) Since (f ′)∗ is a partial extension of f ′, we have
∂f(x) = (f ′)∗(x) v f ′(x).

(iii) By Proposition 1.2, ∂f(x) = (f ′)∗(x) = f ′(x).

Theorem 2.2 also shows by an elementary proof that the
generalised Jacobian has an intrinsic value independent of
any null set used in defining it.

3 L-derivative for vector functions

The definition of generalised Jacobians in Equation 1,
uses several notions of higher order type. We will show
that the simple domain-theoretic definition used in [10, 7,
11] can be extended to provide a uniform method to define
an L-derivative for both real and complex Lipschitz vector
functions which also works in the case of vector functions
defined on infinite dimensional spaces.

The local differential properties of a function are for-
malised in the domain-theoretic framework by the notion
of a set-valued Lipschitz constant. Assume U ⊆ Fn is an
open subset. A map f : U ⊂ Fn → Fm is a vector function
with components fi : U → F for i = 1, . . . ,m. Given a
matrix v ∈ Fm×n, we let vi ∈ Fn be the ith row of v. We
define the vector-wise action of f on v by the column vector

f [v] = (f1(v1), . . . , fm(vm))T ∈ Fm

We call f [v] the vector-wise action of f to distinguish it
from f(u) for u ∈ Fn, which is the usual action of f . Simi-
larly, a matrix A ∈ Fm×n is considered as representation of
m linear maps by them rowsAi ofA. Thus, forA ∈ Fm×n
and v ∈ Fm×n we define the vector-wise evaluation

ev(A, v) = A[v] = (A1v
T
1 , . . . , Amv

T
m)T ∈ Fm

where AivTi ∈ F is the usual action of the row vector Ai on
the column vector vTi (i.e., the scalar product of Ai and vi).
We also use below the notation Av :=

∑m
i=1

∑n
j=1Aijvij ,

(in contrast to A[v]), which is the usual action of A consid-
ered as a single row vector A = (A1, A2, . . . , Am) on the
single column vector v = (v1, v2, . . . , vm)T . This means
that we consider v ∈ Fm×n, depending on the context, both
as an m × n matrix of F elements and also as a single col-
umn vector in the mn dimensional vector space Fmn. The
vector-wise evaluation map is extended pointwise to

ev : C(Fm×n)× Fm×n → C(Fm)

by ev(b, v) = b[v] = {A[v] : A ∈ b}.
In the following, we use the notation: f [x + v] :=

(f1(x + v1), . . . , fm(x + vm))T , i.e., a copy of x is used
for each input to fi. For v = 0 this convention means that
f [x] = (f1(x), . . . , fm(x))T = f(x).

Definition 3.1. The continuous function f : U → Fm has
a non-empty, convex and compact set-valued Lipschitz con-
stant b ∈ C(Fm×n) in an open subset a ⊆ U if for all
u,w ∈ am we have: b[u − w] v f [u] − f [w]. The single-
step tie δ(a, b) of a with b is the collection of all partial
functions f on U with a ⊆ dom(f) ⊆ U in C0(U) which
have b as a non-empty convex compact set-valued Lipschitz
constant in a.

For a single-step tie δ(a, b), one can think of b as the
non-empty compact-set Lipschitz constant for the family of
functions in δ(a, b). The classical Lipschitz constant for f
would simply be k = ‖b‖ ≥ 0. By generalising the concept
of a Lipschitz constant in this way, one is able to obtain
essential information about the differential properties of the
function.

In particular, if f ∈ δ(a, b) for a 6= ∅ and b 6= ⊥, then the
induced function f : a → Fm is Lipschitz: for all x, y ∈ a
we have ‖f(x) − f(y)‖ ≤ ‖b‖‖x − y‖. For the rest of
this section, we assume we are in dimension n ≥ 2 and for
convenience we write C0 for C0(U).

Definition 3.2. A step tie of C0 is any finite intersection⋂
i∈I δ(ai, bi) ⊆ C0, where I is a finite indexing set. A tie

of C0 is any intersection ∆ =
⋂
i∈I δ(ai, bi) ⊆ C0, for an

arbitrary indexing set I . The domain of a non-empty tie ∆
is defined as dom(∆) =

⋃
i∈I{ai | bi 6= ⊥}.

A non-empty step tie with rational intervals gives us a
family of functions with a finite set of consistent differen-
tial properties, and a non-empty general tie gives a family
of functions with a consistent set of differential properties.
Recall that a function f : U → R defined on the open set
U ⊆ Rn is locally Lipschitz if it is Lipschitz in a neigh-
bourhood of any point in U .

The following lemma plays a crucial role in deducing our
results. Let the unit sphere in Fm×n by be denoted S and
let 0 denote the zero vector in Fm. For a matrix A ∈ Fm×n,
and 1 ≤ i ≤ m, let Ai denote the ith row of A, i.e., Ai =
(Ai1, Ai2, . . . , Aij , . . . , Ain).

Definition 3.3. Given b ∈ C(Fm×n), we say b satisfies the
zero containment predicate if the following holds:

Z(b,Fm×n) ≡ ∀ε > 0.∀v ∈ S. ∃A ∈ b. ‖A[v]‖ ≤ ε

As the name implies, we have the following Basic
Lemma.
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Lemma 3.4. If b ∈ C(Fm×n) then Z(b,Fm×n) iff 0 ∈ b.

Proof. The right to left implication is trivial. For Left to
Right implication: Suppose 0 /∈ b. Let r = inf{‖A‖ :
A ∈ b} > 0. By compactness of b we have r > 0 and
there exists C ∈ b with ‖C‖ = r. (Note that the Frobenius
norm of the matrix C ∈ Fm×n is the same as the Euclidean
norm of C considered as a vector in Fmn). Now we put
v = C/‖C‖ ∈ S, where C is the complex conjugate of
C, i.e., (C)ij = Cij for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
For any A ∈ b we have A = k C

‖C‖ + B where k ∈ F
with |k| ≥ r and B is in the orthogonal complement of C,
i.e., Bv = 0. Thus, Av = k and hence |Av| ≥ r. Recall
that for any vector x ∈ Fn we have ‖x‖21 ≤ n‖x‖22 where
‖x‖1 and ‖x‖2 are respectively the `1 norm and the `2 (i.e.,
Euclidean) norm of x. Therefore for any A ∈ b and each
i = 1, . . . ,m we have: |AivTi |2 ≥ 1

n

∑n
j=1 |Aijvij |2 and

thus:
‖A[v]‖2 =

m∑
i=1

|AivTi |2 ≥
1

n

m∑
i=1

n∑
j=1

|Aijvij |2 =
1

n
|Av| ≥ r2/n

We therefore obtain a contradiction by taking ε = r/(2
√
n)

with v = C/‖C‖ ∈ S.

We now collect some simple properties of step ties,
which we will use later.

Proposition 3.5. Suppose the total derivative f ′(x) of f :
U → Fm exists for all x ∈ a. If f ∈ δ(a, b) then f ′(x) ∈ b
for all x ∈ a.

Proof. Suppose f ∈ δ(a, b) and x ∈ a. We show that Z(b−
f ′(x),Fm×n). Let ε > 0 and v ∈ S be given, where S is
the unit sphere in Fm×n. Consider the rows vi of v for i =
1, . . . ,m. For each i = 1, . . . ,m, for sufficiently small k >
0 we have by the existence of the total derivative f ′(x) ∈
Fm×n of f at x: ‖f(x+kvi)−f(x)−f ′(x)kvi‖ ≤ εk/

√
m

and thus

‖fi(x+ kvi)− fi(x)− k(f ′(x))ivi‖ ≤ εk/
√
m (2)

for each i, where, we recall, (f ′(x))i is the ith row of the
matrix f ′(x) ∈ Fm×n. Therefore, from Equation 2, using
our notation explained before Definition 3.1, we obtain:

‖f [x+ kv]− f [x]− kf ′(x)[v]‖ ≤ εk (3)

Take k > 0 to be small enough so that x + kvi ∈ a, for all
i = 1, . . . ,m. Then from our assumption that f ∈ δ(a, b)
we have: f [x + kv] − f [x] ∈ kb[v]. Thus, there exists
B ∈ bwith f [x+kv]−f [x] = kB[v], which by Equation 3,
implies ‖Bkv− kf ′(x)[v]‖ ≤ εk or ‖(B − f ′(x))[v]‖ ≤ ε.
Thus, Z(b − f ′(x),Fm×n) and we conclude that f ′(x) ∈
b.

Proposition 3.6. For any indexing set I , the family of step
functions (biχai)i∈I is consistent if

⋂
i∈I δ(ai, bi) 6= ∅.

Proof. Suppose f ∈
⋂
i∈I δ(ai, bi). We will show that

every finite subfamily (biχai)i∈J , where J ⊆ I is a fi-
nite subset, is consistent, from which the result follows
as C(Fm×n) is bounded complete. It suffices to prove
that for any finite subset J ⊆ I we have

⋂
j∈ bj 6= ∅ if⋂

j∈J aj 6= ∅. This we will show by induction on the cardi-
nality |J | of J . For |J | = 1, this vacuously holds. Suppose
now |J | > 1 and a :=

⋂
j∈J aj 6= ∅. Let k ∈ J . Then by

the inductive hypothesis
⋂
j∈J\{k} bj 6= ∅. If

⋂
j∈J bj = ∅,

then put b :=
⋂
j∈J\{k} bj . assume, for a contradiction,

that b∩ bk = ∅. Since b and bk are non-empty, compact and
convex sets, so is b − bk = {A − B : A ∈ b, B ∈ bk},
which is the Minkowski sum of two compact and convex
sets b and−bk. We will show that 0 ∈ b− bk which implies
that b ∩ bk 6= ∅, a contradiction. Fix x ∈ a. Let ε > 0
and v ∈ S, where S is the unit sphere in Fm×n. Let c ∈ F
with |c| > 0 sufficiently small such that x + cvi ∈ a for
i = 1, . . . ,m. Then, from f ∈

⋂
i∈I δ(ai, bi) we obtain

f [x + cv] − f [x] ∈ cb[v] and f [x + cv] − f [x] ∈ cbk[v],
which imply that there exists A ∈ b and B ∈ bk with
cA[v] = cB[v] or (A−B)[v] = 0, where A−B ∈ b− bk.
Since, ‖(A − B)[v]‖ = 0 we have Z(b − bk,Fm×n) and
Lemma 3.4 gives 0 ∈ b− bk, which completes the proof.

One important corollary of this is that consistency of a
family of step functions can be determined from the as-
sociated ties in a finitary manner: The family (biχai)i∈I
is consistent if for any finite subfamily J ⊆ I we have⋂
i∈J δ(ai, bi) 6= ∅.
Let (T 1(U),⊇) be the dcpo of ties of C0 ordered by

reverse inclusion.

Definition 3.7. The primitive map
∫

: (U → CFm×n) →
T 1(U) is defined by

∫
(g) =

⋂
i∈I δ(ai, bi), where g =

supi∈I biχai . We usually write
∫

(f) as
∫
f and call it the

set of primitives of f .

The primitive map is well-defined, onto and continuous,
which is a generalisation of [7, Proposition 3.17].

Given a continuous function f : U → Fm, the relation
f ∈ δ(a, b) provides, as we have seen, finitary information
about the local differential properties of f . By collecting all
such local information, we obtain the complete differential
properties of f , namely its derivative.

Definition 3.8. The derivative of a continuous function f :
U → C(Fm×n) is the map

Lf =
⊔

f∈δ(a,b)

bχa : U → C(Fm×n).

Theorem 3.9. (i) Lf is Scott continuous.

6



(ii) If f ′(x) exists, then f ′(x) ∈ Lf(x).

(iii) If f ∈ C1(U) then Lf = f ′.

(iv) If Lf(x) is a singleton, then f ′(x) exists and f ′(x) =
Lf(x).

Proof. (i) This follows from Proposition 3.6.
(ii) This follows from Proposition 3.5 and the definition

of Lf(x).
(iii) and (iv) See the Appendix.

We now show that when F = R, the L-derivative Lf
of a locally Lipschitz map f : U → Rm coincides with
Clarke’s generalised Jacobian. We will now prove that the
L-derivative and the generalised Jacobian of a locally Lip-
schitz map coincide which gives an elementary proof that
the generalised Jacobian has an intrinsic value.

Theorem 3.10. For any locally Lipschitz map f : U →
Rm, we have ∂f = Lf .

Proof. By Corollary 2.3(ii), ∂f is the maximal Scott con-
tinuous partial extension of the map f ′ : U0 → Rm×n ⊆
C(Rm×n). By Theorem 3.9(i) and (ii), Lf is a continu-
ous partial extension of f ′ : U0 → Rm×n ⊆ C(Rm×n).
Thus, by Proposition 1.2, all we need to check is that for all
x ∈ U , we have Lf(x) ⊆ ∂f(x).

Let b � ∂f(x). By the Scott continuity of ∂f at x
(Corollary 2.3(ii)), there is an open set a ⊆ U with x ∈ a
such that b � ∂f(y) for all y ∈ a. Let u, v ∈ am with
v 6= u. Fix i with 1 ≤ i ≤ m. Consider the n − 1
dimensional open discs Dui

(δ) and Dvi(δ), orthogonal to
the vector vi − ui, with centres at ui and vi respectively
and each of radius δ. Take small enough δ > 0 such
that Dui

(δ) and Dvi(δ) are both contained in a. Since
fi has a total derivative for almost all points y ∈ a, by
Fubini’s theorem the set of points w ∈ Dui

such that fi
has a total derivative for almost all points on the line seg-
ment {w + t(vi − ui) : t ∈ [0, 1]}, with respect to the 1-
dimensional Lebesgue measure on the line segment, has full
n−1 dimensional Lebesgue measure onDui

. Let w ∈ Dui

be such a point and consider the path p : [0, 1] → a given
by p(t) = w+ t(vi−ui) with p′(t) = vi−ui. Since fi has
for almost all t ∈ [0, 1] total derivative at p(t), and since
f equals to the integral of its derivative on a path that the
derivative exists almost everywhere, we have:

fi(w + (vi − ui))− fi(w) =

1∫
0

f ′i(p(t))p
′(t) dt

=

1∫
0

f ′i(w + t(vi − ui))(vi − ui) dt.

From b � ∂f(y) for all y ∈ a and by Rademacher’s
theorem, we deduce that f ′(y) ∈ b for almost all y ∈ a.
Thus for almost all t ∈ [0, 1], f ′i(w+ t(vi−ui))(vi−ui) ∈
(b(vi−ui))i = {Ai(vi−ui) : A ∈ b}. Since {Ai(vi−ui) :
A ∈ b} is compact and convex, it follows from [8, Lemma
4.5], that fi(w + (v − u)) − fi(w) ∈ {Ai(vi − ui) : A ∈
b}. By continuity and compactness this holds in the limit
as w → ui and thus fi(vi) − fi(ui) ∈ {Ai(vi − ui) :
A ∈ b}. Since this holds for all i = 1, . . . ,m, we obtain:
f [v]− f [u] ∈ b[v − u] and we conclude that f ∈ δ(a, b) or
equivalently b v Lf(x). Since b � ∂f(x) is arbitrary, we
get ∂f(x) v Lf(x).

4 Infinite Dimensions

We will now show that the L-derivative extends to Lips-
chitz vector maps on any Hilbert space H over the field F,
of real or complex numbers, with inner product 〈., .〉. Re-
call that the dual H∗ of H is itself a Hilbert space as it is
equipped with its operator norm which is complete and in-
duces an inner product. By Riesz’s representation theorem,
H∗ is anti-isomorphic to H if F = C and is isomorphic to
H if F = R: For any u ∈ H, there is a unique φu ∈ H∗ such
that φu(v) = 〈v, u〉 for all v ∈ H. And for each φ ∈ H∗
there exists a unique uφ ∈ H such that 〈x, uφ〉 = φ(x) for
all x ∈ H. Moreover, we have 〈φ, ψ〉 = 〈uψ, uφ〉.

In both case of real and complex Hilbert spaces, the unit
ball ofH is, by Alaoglu’s theorem [21, 3.15], compact with
respect to the weak* topology.

Let S = {u ∈ H : ‖u‖ = 1} be the unit sphere in H.
Consider bounded linear maps of type H → Fm equipped
with the product weak* topology (H∗)m, i.e., the weak-
est topology on the function space of bounded linear func-
tionals f : H → Fm such that for all v ∈ H the maps
v 7→ fi(v) : H → F are continuous for all i = 1, . . . ,m.
By Tychonoff’s theorem the unit ball in (H∗)m is compact
with respect to the weak* product topology. Let C((H∗)m)
be the bounded complete directed complete partial order of
the non-empty and convex subsets of (H∗)m that are com-
pact with respect to the product weak* topology ordered
by reverse inclusion and augmented with (H∗)m as a bot-
tom element. Note that in the infinite dimensional case,
C((H∗)m) is no longer a continuous Scott domain but most
of the results in the finite dimensional case do extend, per-
haps surprisingly, to infinite dimensional real and complex
Hilbert spaces.

The definition of a single-step ties is syntactically the
same as before using the notion of vector-wise evaluation.
Let 0 ∈ (H∗)m denote the trivial linear function with value
zero. It is easy to extend the Basic Lemma 3.4 to infinite di-
mensional Hilbert spaces. Using this lemma, it is straight-
forward to check that Proposition 3.5 and Proposition 3.6
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extend to the infinite dimensional case. It then follows, in
particular, that we can define the L-derivative of a continu-
ous map f : X → Fm to be the Scott continuous map:

Lf =
⊔

f∈δ(a,b)

bχa : U → C((H∗)m),

which has the property that f ′(x) ∈ Lf(x) whenever f ′(x)
exists.

In the full version of the paper, we will show that the
L-derivative can also be defined for a continuous function
f : B → Rm where B is any real Banach space and that for
m = 1 the L-derivative coincides with Clarke’s gradient on
Banach spaces.

5 Generalised Cauchy Riemann equations

In this section we establish a relation between the L-
derivative of a complex map f : U → Cm, where U ⊆ Cn
is an open subset, and the L-derivative of its real and imagi-
nary part. This will provide a new interpretation for the total
derivative of a complex function and presents a generalisa-
tion of Cauchy Riemann equations [8] to Lipschitz maps in
higher dimensions.

We now fix some notations for dealing with a complex
map which can also be interpreted as a pair of real maps.
For any z = x + iy ∈ C, the conjugate complex num-
ber is denoted by z = x − iy; moreover, the same nota-
tion is used to denote the pointwise extension of conjuga-
tion to sets of complex numbers, i.e., for C ⊆ C, we write
C = {z : z ∈ C}. Furthermore, all basic arithmetic oper-
ations on complex numbers are extended pointwise to sub-
sets of complex numbers, e.g., for a subset C ⊆ C, we
write iC := {iz : z ∈ C}. In order to keep the pre-
sentation as simple as possible, we use the isomorphism
H : x + iy 7→ (x, y) to identify the complex plane C,
regarded as a group under addition of complex numbers,
and the real two dimensional Euclidean plane R2, regarded
as a group under the addition of vectors: we move from
one plane to the other plane while suppressing any explicit
reference to H or its pointwise extension to subsets of C
wherever convenient. In particular, an expression contain-
ing complex conjugation or multiplication by i can in fact
be interpreted, after carrying out the complex number op-
erations, in the real plane, for example, iA, for a subset
A ⊆ R2, denotes the set H[i[H−1[A]]] ⊆ R2, i.e., the sub-
set A is rotated by π/2 around the origin and is then re-
flected through the x-axis. i.e., an overall reflection through
the line y = −x.

We now introduce the generalised multi-dimensional di-
rectional derivative of f which extends the one dimensional
notion [15, p. 27].

Definition 5.1. A map f : U ⊆ Cn → Cm has generalised
directional derivative for θ ∈ [0, 2π)n at z ∈ Cn if there

exists a linear map Lθ : U ⊆ Cn → Cm such that

lim
‖h‖→0

‖f(z + h)− f(z)− Lθh‖
‖h‖

= 0 (4)

where h ∈ Cn with hj = |hj |eiθj for 1 ≤ j ≤ n.

In order to determine a relation between the generalised
directional derivative of f = V + iW and the directional
derivatives of V and W we write z = (z1, . . . , zn) ∈ Cn '
(R2)n as zj = xj + iyj with (xj , yj) ∈ R2 for 1 ≤ j ≤ n.
To any φ ∈ [0, 2π), we associate the unit vector Nφ =
(cosφ, sinφ)T ∈ R2.

Proposition 5.2. If f = V + iW : U ⊆ Cn → Cm
is Lipschitz then for almost all z ∈ Cn it has a gen-
eralised directional derivative at z ∈ Cn for all θ =
(θ1, . . . , θj , . . . , θn) ∈ [0, 2π)n, which is given by

(Lθ)kj = e−iθj (V ′kj ·Nθj + iW ′kj ·Nθj ),

where V ′ and W ′ are the total derivatives of V and W at
(xj , yj)1≤j≤n ∈ R2n with zj = (xj , yj) for 1 ≤ j ≤ n.
[Note that in our notation V ′kj = (∂Vk

∂xj
, ∂Vk

∂yj
) and similarly

for W ′kj .]

Proof. Let f = V + iW where V,W : R2n → Rm are
the real and imaginary parts of f . Then V and W are Lip-
schitz maps and are therefore differentiable for almost all
(xj , yj)1≤j≤n ∈ R2n with respect the Lebesgue measure
on R2n. Let (xj , yj)1≤j≤n ∈ R2n be such a point. We
will compute the kth component of the term in Equation 4
at z ∈ Cn with zj = xj + iyj with Lθ given above with
Nθj = (cos θj , sin θj)

T . First, we note that since V and W
have total derivative at (xj , yj)1≤j≤n ∈ R2n, it follows that

lim
‖h‖→0

∆Vk −
∑n
j=1 |hj |V ′kj ·Nθj
‖h‖

= 0 (5)

where

∆Vk
= Vk((xj + |hj | cos θj , yj + |hj | sin θj)j)− Vk((xj , yj)j).

Similarly,

lim
‖h‖→0

∆Wk −
∑n
j=1 |hj |W ′kj ·Nθj
‖h‖

= 0 (6)

where

∆Wk

= Wk((xj + |hj | cos θj , yj + |hj | sin θj)j)−Wk((xj , yj)j).

But
fk(z + h)− fk(z)− (Lθh)k

= ∆Vk + i (∆Wk)
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−
n∑
j=1

|hj |V ′kj ·Nθj + i

 n∑
j=1

|hj |W ′kj ·Nθj


and thus from Equations (5) and (6), we obtain:

lim
‖h‖→0

‖fk(z + h)− fk(z)− (Lθh)k‖
‖h‖

= 0

We will show that the L-derivative of a complex Lips-
chitz map coincides with the convex hull of all its gener-
alised directional derivatives, which will give a generalisa-
tion of Cauchy Riemann equations. We note that the kj
entry of the matrix Lθ namely

(Lθ)kj = e−iθj (V ′kj ·Nθj + iW ′kj ·Nθj )

with θj ∈ [0, 2π) moves along a circle in C named after
Kasner, though it appeared in some other notation in Rie-
mann’s PhD thesis [15, p. 27]. The two points V ′kj and
iW ′kj are at the end of a diameter of this circle and we
denote the disk in C whose boundary is the Kasner cir-
cle by D(V ′kj , iW

′
kj) [8]. We now aim to express the L-

derivative of f in terms of the L-derivative of the real-valued
function f̂ : (R2)n → (R2)m given by (f̂((x, y))k =
(Vk((x, y)),Wk((x, y))).

Definition 5.3. The total directional derivative of a Lip-
schitz map f = V + iW : U ⊆ Cn → Cm, where
V,W : U ⊆ (R2)n → Rm is defined, via the dense em-
bedding property, as the maximal continuous partial exten-
sion ∂d := (∂0d)∗ of the map ∂0d : U0 ⊆ U ⊆ Cn →
(C(C))m×n with (∂0df(z))kj = D(V ′kj(x, y), iW ′kj(x, y))

where f̂ : U0 ⊆ U ⊆ (R2)n → (R2)m is assumed to
be differentiable at (x, y) ∈ U0 with zk = xk + iyk, for
1 ≤ k ≤ n. With our notation, f̂k : U → R2 is the kth R2

block in (R2)m which has m such blocks.

From the definition it follows that for z = x+ iy:

Proposition 5.4.

(∂df(z))kj = Conv
⋃
{D(v, iw) :

(
v
w

)
∈ (Lf̂k(x, y))j}

The proof of the following multi-dimensional generali-
sation of the Cauchy-Riemann equations, extending the 1
dimensional case in [8], is given in the Appendix.

Theorem 5.5. If f : U ⊆ Cn → Cm is locally Lipschitz
then Lf = ∂df .

To see that we indeed have a multi-dimensional gener-
alisation of the Cauchy-Riemann equations, suppose f is

indeed analytic as a vector function of several complex vari-
ables. Then each component fk (1 ≤ k ≤ m) is separately
analytic [20], i.e.

∂fi
∂zj

= 0 (7)

In this case, the two points V ′kj(x, y) and iW ′kj(x, y) co-
incide for all k and j and Theorem 5.5 gives ∂fk

∂zj
=

V ′kj(x, y) = iW ′kj(x, y) which is equivalent to Equation 7.

Example 5.6. Assume f : U ⊆ C2 → C with f =
g(z1, z2) + h(z1, z2), where g and h are both analytic.
Then f is the sum of an anti-analytic (also called anti-
holomorphic) and an analytic map. In this case, writing
z = (z1, z2), a simple calculation yields:

(Lf)1(z) =
∂h

∂z1
+ D

(
∂g

∂z1
(z),− ∂g

∂z1
(z)

)

(Lf)2(z) =
∂h

∂z2
+ D

(
∂g

∂z2
(z),− ∂g

∂z2
(z)

)

6 Distance to Maximal Elements

We have seen in Theorem 3.9(iii) and (iv) that a real or
complex Lipschitz map f : U → Fm is C1 or analytic, re-
spectively, in an open set if and only if its L-derivative is a
singleton at each point in the open set. Then, the map Lf :
U → C(Fm×n) is a maximal element of U → C(Fm×n)
and moreover it sends every element of U to a maximal
element of C(Fm×n), namely an element of Fm×n. In
domain-theoretic terminology, Lf can be regarded as a total
element of the function space U → C(F) [12, 2, 13]. This
motivates a quantitative measure for how close a vector Lip-
schitz map is to the maximal elements as follows. Consider
the upper-extended real line R+∪{∞}with its upper topol-
ogy which coincides with the Scott topology on R+ ∪ {∞}
if the latter is ordered by the reverse order of real numbers,
with 0 as the top element.

Definition 6.1. The t-distance function

d : (U → C(Fm×n))→ R+ ∪ {∞},

is defined by d(g) = sup{diam(g(z)) : z ∈ U}, where
diam(A) is the diameter ofA ∈ C(Fm×n) with diam(⊥) =
∞.

Clearly, d is monotone; we will show in the Appendix
that it satisfies a continuity property as well.

Proposition 6.2. The t-distance is Scott continuous on Scott
continuous functions restricted to a compact subset of U .
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One can easily compute the t-distance of the L-derivative
of complex Lipschitz map f provided in Example 5.6, in
which the two components of the L-derivative contain a disk
of radius | ∂g∂z2 (z)| and a disk of radius | ∂g∂z2 (z)|:

d(f) = max

{
sup
z∈U

∣∣∣∣ ∂g∂z1 (z)

∣∣∣∣ , sup
z∈U

∣∣∣∣ ∂g∂z2 (z)

∣∣∣∣} (8)

Domain-theoretically, the t-distance relates to the more ab-
stract notion of the distance of an element of a domain to
the set of maximal elements of that domain as in the notion
of measurement [18].

7 Domain for real Lipschitz vector functions

A domain for locally Lipschitz functions and for C1(U)
is constructed as follows. First suppose that F = R. We
will assume that U is a relatively compact open set, i.e, its
closure is compact. The canonical example is U = (0, 1)n.
The idea is to use U → IRm to represent the function and
U → CRm×n to represent the differential properties (par-
tial derivatives) of the function. Thus, we aim to define a
domain for Lipschitz vector functions as a sub-domain of
(U → Rm) × (U → C(Rm×n)), where (U → Rm) is
the set of continuous functions from U to Rm with the sup
norm. Consider the consistency relation

Cons ⊆ (U → Rm)× (U → C(Rm×n)),

defined by (f, g) ∈ Cons if ↑f∩
∫
g 6= ∅, i.e., ∃h : U → Rm

with g v h and f v Lh. For a consistent (f, g), we think of
f as the function part or the function approximation and g
as the derivative part or the derivative approximation. We
will show that the consistency relation is Scott closed. It
follows immediately from the definition that consistency is
downward closed. Recall that by Kirszbraun’s theorem [5,
p. 8], a Lipschitz map can be extended from any subset of
a Hilbert space to the whole space with the same Lipschitz
constant.

Proposition 7.1. The relation Cons is Scott closed.

Proof. Let (fi, gi)i≥0 be an increasing sequence of pairs of
step functions with (fi, gi) ∈ Cons with f = supi≥0 fi
and g = supi≥0 gi, where dom(f) =

⋃
i≥0 domfi and

dom(g) =
⋃
i≥0 domgi. Without loss of generality assume

g0(x) 6= ⊥ for some x ∈ U . Let hi : U → Rm be a par-
tial map that is the Lipschitz witness of consistency such
that f−i ≤ hi ≤ f+i and gi v Lhi. By using Kirszbraun’s
theorem we extend the domain of definition of each hi to
cl(U) so that the extended map ĥi is still Lipschitz with a
Lipschitz constant given by ci := maxx∈dom(gi)

‖gi(x)‖,
which is the maximum Lipschitz constant possible for con-
sistency with gi. Since fiand gi are increasing chains in

U → Rm and U → C(Rm×n) respectively, (f−i )i≥0 and
(f+i )i≥0 are increasing and decreasing functions respec-
tively and ci is a decreasing sequence for i ≥ 0. It follows
for all i ≥ 0 the map ĥi has lower and upper bounds given
by: M−0 −c0d ≤ ĥi ≤M

+
0 +c0d, whereM−0 andM+

0 are,
respective, the minimum of f−0 and the maximum values of
f+0 , and d is the diameter of U . Thus, the family (ĥi)i≥0
is uniformly bounded. In addition, ‖hi(x) − hi(y)‖ ≤
c0‖x−y‖ and thus the family (ĥi)i≥0 is equi-continuous. It
follows by Arzelà-Ascoli theorem [21, p.369] that the fam-
ily (ĥi)i≥0 has a convergent subsequence, say (ĥik)k≥0.
Suppose limk→∞ hik = h. Since f−ik ≤ hik ≤ f+ik for
all k ≥ 0, we have f− ≤ h ≤ f+. Let A ⊆ dom(g) be a
connected component of g. Assume A ∩ dom(f) 6= ∅. We
have Lhik w gik for all k ≥ 0. Thus, h�A w gik �A for all
k ≥ 0, which implies h�A w g�A. Thus, h is a witness for
consistency of (f, g).

Define

D0(U) :=
{(f, g) ∈ (U → Rm)× (U → C(Rm×n)) : Cons(f, g)}.

Corollary 7.2. The domain D0(U) is a bounded complete
continuous dcpo, i.e., a continuous Scott domain.

8 Domain for complex Lipschitz maps

Now let F = C and let U ⊆ Cn be a relatively com-
pact open set. In order to construct a domain for complex
Lipschitz maps of type (U → Cm), we use the continuous
Scott domain (U → R2)m to represent the function part
of the map as Cm ' (R2)m, and the continuous Scott do-
main (U → Cm×n) ' (U → (R2)m×n) to represent the
L-derivative, together with a consistency condition between
the function part and the derivative part. We actually will
construct two such domains, one that carries the minimal
information required and a larger domain that carries extra
information we can use to develop an effectively given do-
main.

The consistency relation is defined as

Cons0 ⊆ (U → (R2)m)× (U → C(Cm×n)),

defined by (f, g) ∈ Cons0 if ↑f ∩
∫
g 6= ∅. The condition

is equivalent to the existence of h = V + iW : Cn →
Cm, where V,W : (R2)n → Rm with fj v (Vj ,Wj), for
1 ≤ j ≤ m, and g v Lh. In the Appendix, as in the case
of real maps, we use the two theorems by Kirszbraun and
Arzelà-Ascoli to show:

Proposition 8.1. The predicate Cons0 is Scott closed.

We thus define our domain for complex maps as:
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C0(U) := {(f, g) ∈ (U → (IR2)m)× (U → C(Cm×n)) :
(f, g) ∈ Cons0}

From Proposition (8.1), we obtain:

Corollary 8.2. C0(U) is a continuous Scott domain.

9 Effective structure

In the domains we have constructed the L-derivative will
be generated by a basis consisting of rational convex poly-
topes. Since the decidability of the consistency predicate
Cons in this setting remains an open problem even in the
case of F = R, n = 2 and m = 1 [11], we will construct
two other domains, one for real and one complex vector
maps, in which the L-derivative of the underlying real maps
are approximated, as in interval analysis [19], by the small-
est axis aligned hyper-rectangles. For the ease of presenta-
tion, for real maps we confine ourselves with m = n = 2,
i.e., maps of type U ⊆ R2 → R2, while for complex maps
we assume m = n = 1, i.e., maps of type U ⊆ C→ C.

Let IR2×2 be the set of all 2 × 2 matrices whose
entries are non-empty compact real intervals ordered by
component-wise reverse inclusion and augmented with a
least element ⊥ represented as the 2 × 2 matrix with R
for all its entries. Let ρi : R2×2 → R2, for i = 1, 2,
project any 2× 2 matrix to the ith row and let πi : R2 → R
for i = 1, 2 be the standard projection to the first and sec-
ond coordinate axis. These maps extend pointwise to maps
C(R2×2) → C(R2) and C(R2) → IR, which for conve-
nience we still denote by ρi and πj respectively. Note that
ρ1(Lĥ(x, y)) = LV (x, y) and ρ2(Lĥ(x, y)) = LW (x, y)

with Lĥ(x, y)) ⊆ LV (x, y) × LW (x, y). Furthermore
π1LV (x, y)×π2LV (x, y) ⊃ LV (x, y) and π1LW (x, y)×
π2LW (x, y) ⊃ LW (x, y). Thus, we have the following
two conservative approximations:

A(i) LV (x, y)× LW (x, y) approximates Lĥ(x, y).

A(ii) π1LV (x, y) × π2LV (x, y) and π1LW (x, y) ×
π2LW (x, y) approximate LV (x, y) and LW (x, y).

The combined result of A(i) and A(ii) is that we obtain
the smallest axis aligned hyper-rectangle in R2×2 which
contains Lĥ(x, y). More formally, for any Lipschitz map
f : R2 → R2, with components f1 and f2, we define
Lrf(x, y) ∈ IR2×2, with the ij entry given by

(Lrf(x, y))ij = πj(ρi(Lf(x, y))). (9)

Since the projections ρi and π are continuous, their exten-
sions to non-empty compact sets are also continuous with
respect to the Hausdorff metric. It follows that the map

Lrf : U → IR2×2 is Scott continuous. We say Lrf is the
rectangular approximation to Lf and define the domain,

D1(U) := {(f, g) ∈ (U → IR)2 × (U → IR2)2 :
Cons(fi, gi), i = 1, 2}

For step functions (fi, gi) ∈ (U → IR)×(U → IR2), with
rational rectangles as values, the predicate Cons(fi, gi) is
decidable, for i = 1, 2, by [11, Corollary 3.9]. This means
that D1(U) can be given an effective structure.

9.1 Another Domain for Complex Maps

We now construct a bigger domain for complex Lipschitz
vector maps, restricting ourselves to m = n = 1. Con-
sider tuples ((r, s), (v, w), g) with r, s : U ⊆ R2 → IR,
v, w : U → IR2 and g : U → C(C). The pair r and s repre-
sent approximations, respectively, to the real and imaginary
parts of a complex map f = V +iW : U → C, and g repre-
sents an approximation to Lf , while (v, w) represent rect-
angular approximations, respectively, to the L-derivatives
LV and LW of the real functions V,W : U → R, In other
words, we approximate Lf̂ by the hyper-rectangle

((π1ρ1LV )× (π2ρ1LV ))× ((π1ρ2LW × (π2ρ2LW )))

in R2×2. We therefore define

Cons1 ⊆ (U → (IR2 × (IR2)2 ×C(C)))

with ((r, s), (v, w), g) ∈ Cons1 if there exists a complex
map f = V + iW : U → C such that r v V , s v W , v v
LV , w v LW and g v Lf . We denote the sub-domain of
consistent elements with respect to Cons1 by C1(U). From
Proposition (7.1) and Proposition (8.1), we conclude:

Corollary 9.1. C1(U) is a continuous Scott domain.

In fact, C0(U) is a retraction of C1(U), i.e., there exist
Scott continuous maps E : C0(U) → C1(U), called a sec-
tion, and R : C1(U)→ C0(U), called a retraction, such that
R ◦ E = Id where Id is the identity map on C0(U) [1]. To
show this, we need the follow lemma, which follows from
Proposition 5.4.

Lemma 9.2. If f = V + iW : U → Cm, then LV ⊆ Lf
and LW ⊆ iLf .

Let T : C(C) → IR2 be the Scott continuous map that
sends every convex compact polygon to the smallest axis
aligned rectangle containing it. Put T+ : (U → C(C)) →
(U → IR2) by (T+(g))(z) = T (g(z)) for all z ∈ C. Then
T+ is Scott continuous and we define:

E((f, g)) = (f, T+(g), T+(i g), g)
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and F ((f1, f2), (v, w), g) = (f, g) where f = (f1, f2). Us-
ing the lemma it is easy to check that the E and F are well-
defined and provide a section-retraction pair.

We propose that C1(U) which contains a substructure
equivalent to D1 can be made into an effective continuous
Scott domain.

10 Further work

As pointed out in the last section, one area for further
work is to investigate if the consistency predicate Cons1
used in defining the continuous Scott domain C1(U) is de-
cidable on rational step functions, i.e., those basis elements
whose values are compact rational axis aligned rectangles
or rational compact polygons. We propose that Tarski’s the-
orem on the elimination of quantifiers in real closed fields
can be invoked to prove this decidability result.

An area for future work is to use the continuous Scott do-
mains constructed in this paper for Lipschitz maps between
finite dimensional real and complex Euclidean spaces to de-
velop domains of computation for real and complex Lips-
chitz manifolds, in which the transition maps in charts are
Lipschitz.

Another area is to show that the results in the paper can
be extended to real vector Lipschitz maps on real Banach
spaces, using a separation property in the dual of a real Ba-
nach space, which has been proved in [7]. Since we do not
know if the latter separation property holds for complex Ba-
nach spaces, the question remains if the same thing can be
done for maps on complex Banach spaces.
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Appendix

Theorem 3.9

(i) Lf is Scott continuous.

(ii) If f ′(x) exists, then f ′(x) ∈ Lf(x).
(iii) If f ∈ C1(U) then Lf = f ′.

(iv) If Lf(x) is a singleton, then f ′(x) exists and f ′(x) =
Lf(x).

Proof. (i) and (ii) have already been proved.
(iii) By Proposition 3.5, we know that if f ′(x) exists then

f ′(x) ∈ b whenever f ∈ δ(a, b) and x ∈ a. Thus f ′(x) w
Lf(x). To show equality, let x ∈ U and put L := f ′(x).
By the continuity of the total derivative f ′ : U → Fm×n at
x, for each integer n > 0, there exists an open ball a ⊆ U
with x ∈ a such that f ′(y) ∈ B1/n(L) for y ∈ a, where
Br(L) ⊆ Fm×n is the open ball of radius r and centre L. We
have f ′ w Lf w cl(B1/n(L))χa, where cl(Br(L)) is the closed
ball centred at Lwith radius r. Since

⋂
n≥0 cl(B1/n(L)) = f ′(x)

we conclude that f ′(x) = Lf(x).
(iv) Assume Lf(x) = L ∈ Fm×n ⊆ C(Fm×n) is a singleton.

Let ε > 0 be given. Consider the open ball Oε(L) ⊆ Fm×n with
centre L and radius ε/2 with respect to the Frobenius norm. By
the definition of Lf(x) and the intersection property of compact
sets in a Hausdorff space, there exists δ(a, b), with f ∈ δ(a, b),
such that x ∈ a and b ⊆ Oε(L). Thus, for h ∈ Fn with ‖h‖ small
enough so that x+ h ∈ a we have f [x+ h]− f [x] ∈ b[h] which
is identical to:

f(x+ h)− f(x) ∈ bh
or

f(x+ h)− f(x)− Lh ∈ (b− L)h
But ‖b−L‖ < ε and thus ‖(b−L)h‖ < ‖h‖ε, since the Frobenius
norm is subordinate to the Euclidean norm. Thus, we obtain:

‖f(x+ h)− f(x)− Lh‖
‖h‖ < ε

which shows that f ′(x) = L and completes the proof.

Theorem 5.5 If f : U ⊆ Cn → Cm is locally Lipschitz then
Lf = ∂df .

Proof. Let z0 ∈ U . Let b ∈ (C(C))m×n with b � Lf(z0).
Then for some open set a ⊆ U we have b v Lf(z) for all z ∈ a,
which implies f ∈ δ(a, b). Let h ∈ Cn with hj 6= 0 and hl = 0
for l 6= j. Then we have fk(z + h) − fk(z) ∈ bkjhj . Assume
f̂ : (R2)n → (R2)n is differentiable at (x, y). If hj = |hj |eiθj
then lim‖h‖→0(fk(z + h)− fk(z))/‖h‖ converges to a point on
the boundary of D(V ′kj(x, y), iW

′
kj(x, y)) and{

lim
‖h‖→0

(fk(z + h)− fk(z))/‖h‖ : θj ∈ [0, 2π)

}
is the whole boundary of D(V ′kj(x, y), iW

′
kj(x, y)). Since b is

convex, it follows that D(V ′kj(x, y), iW
′
kj(x, y)) ⊆ bkj . Since

this holds for a dense set of points z ∈ a where f̂ is differentiable

at the induced point (x, y), it follows that ∂d(z0) ⊆ b. Since
b� Lf is arbitrary, it follows that ∂d(z0) ⊆ Lf(z0).

Next assume b � ∂d(z0). Taking the kj component of b
the result follows as in the one dimensional generalisation of the
Cauchy-Riemann equations [8, Theorem 4.7] and Theorem 3.10.

To prove the continuity property of t-distance, we first need a
lemma. Recall that a crescent is the intersection of an open and
a closed set. Each step function g ∈ (X → D), where X is a
topological space and D is a domain, is given by a finite number
of disjoint crescents in each of which the value of the step function
is constant. From the Scott continuity of step functions, we can
immediately deduce the following.

Lemma 10.1. Suppose x belongs to the domain of definition of a
step function g ∈ (X → D). If x is a point on the boundary of a
crescent K of g, then g(x) v g(y) for y ∈ K.

Moreover, any step function can be extended by Scott continu-
ity to the closure of its domain of definition.

Proposition 6.2 The t-distance is Scott continuous on Scott con-
tinuous functions restricted to a compact subset of U .

Proof. Let X ⊆ U be a fixed compact subset endowed with the
relative subset topology induced from the open set U ⊆ Fn. Let
g ∈ (U → C(C)) and suppose for some c > 0 we have d(g�X) <
c. Let g = supi≥1 gi where gi � g for all i ≥ 1 is an increasing
sequence of step functions. It is sufficient to find i ≥ 1 such that
d(gi�X) < c. Assume, for a contradiction, that for each i ≥ 1
we have d(gi�X) ≥ c. For each i ≥ 1, consider the crescents,
Ki1,Ki2, . . . ,Kini of X , such that

(i) in each of which the value of gi�X is constant and has diam-
eter greater or equal to c and

(ii) the crescents Ki1,Ki2, . . . ,Kini refine the crescents
K(i−1)1,K(i−1)2, . . . ,K(i−1)ni−1

, for i > 1.

Note that our second requirement (ii) implies that the value
of gi for i > 1 can be the same on some crescents among
Ki1,Ki2, . . . ,Kini . By Lemma (10.1), it follows that in fact the
value of gi�X on any point of the closure cl(Kij) in X will have
diameter greater or equal to c. Consider now the tree T whose
root node is C and whose nodes on level i ≥ 1 consist of the
compact sets cl(Ki1), cl(Ki2), . . . , cl(Kini), and a node cl(Kij)
for 1 ≤ j ≤ ni is a parent of a node cl(Ki+1,k) for some k
with 1 ≤ k ≤ ni+1 if and only if Kij ⊃ Ki+1,k. Since the
crescents of gi�X are disjoint, it follows that any node on level
i + 1 will have a unique parent node on level i ≥ 0. By our
assumption, the tree is infinite since for each i ≥ 1, there is at
least one crescent for which the constant value of gi has diam-
eter greater or equal to c. By König’s lemma [16], T will have
an infinite branch which gives a shrinking sequence of non-empty
compact convex subsets of X with non-empty intersection. Let
x0 ∈ X belong to this intersection. Then diam(gi�X(x0)) ≥ c
for all i ≥ 1. Since g�X(x) =

⋂
i≥0 gi�X(x), it follows that

diam(g�X(x) = infi≥0 diam(gi�X(x) ≥ c, which gives a contra-
diction.
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Note that the t-distance map may fail to be continu-
ous on non-compact sets. For example, let F = C with
U = {z ∈ C : |z| < 1} be the interior of the unit disk centred at
the origin, and for n ≥ 1 define fn : U → C(C) by fn(z) = z if
|z| < 1− 1

n
and fn(z) = ⊥ otherwise. Then, clearly f = sup fn

is the identity map on U with d(f) = 0 but d(fn) = ∞ for all
n ≥ 1.

Proposition 8.1 The predicate Cons0 is Scott closed.

Proof. Let (fi, gi)i≥0 be an increasing sequence of pairs of step
functions with (fi, gi) ∈ Cons, with fi ∈ (U → R2)m and
gi ∈ (C(C))m×n. Let f = supi≥0 fi and g = supi≥0 gi, where
dom(f) =

⋃
i≥0 domfi and dom(g) =

⋃
i≥0 domgi. Without

loss of generality assume g0(x) 6= ⊥ for some x ∈ U . Let
hi : U → Cm be a partial map that is the Lipschitz witness of
consistency such that f−i ≤ hi ≤ f+

i and gi v Lhi. Similar
to the case of real vector maps, we can show that hi is uniformly
bounded and equi-continuous, from which we obtain a uniformly
convergent subsequence (hik )k≥0d, whose limit h : U → Cm,
say, will satisfy f v h and g v Lh, i.e., it will be a witness for
the consistency of (f, g).
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