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A. Visual Hull from Imprecise Polyhedral
Scene - Supporting Material

A.1. Quadratic surface from 3 skewed lines

In the classical visual hull we encounter quadratic sur-
faces generated by three skewed lines.

Proposition A.1 Given three mutually skewed lines l0, l1
and l2, for every point q on any li, there is a unique line
that intersects all three lines. With q going through every
point on li (i = 0, 1 or 2), the line sweeps out a quadratic
surface Qpl0, l1, l2q such that

• if l0, l1 and l2 are parallel to a plane, the surface swept
out is a hyperbolic paraboloid,

• In other cases, the surface generated is a hyperboloid
of one piece.

In [1], Blinn presents a scheme in generating a quadratic
surface from 3 skewed lines as follows. We have used this
representation to generate the positive and negative regions
(half-spaces) induced by quadratic surfaces.

Given 2 points in homogeneous coordinates S �
rxs, ys, zs, wss and T � rxt, yt, zt, wts, we can represent
the line L connecting S and T by the antisymmetric matrix:

L �

�
���

0 p �q r
�p 0 s �t
q �s 0 u
�r t �u 0

�
���

where

p �

∣∣∣∣zs ws

zt wt

∣∣∣∣ , q �

∣∣∣∣ys ws

yt wt

∣∣∣∣ , r �

∣∣∣∣ys zs
yt zt

∣∣∣∣ ,
s �

∣∣∣∣xs ws

xt wt

∣∣∣∣ , t �

∣∣∣∣xs zs
xt zt

∣∣∣∣ , u �

∣∣∣∣xs ys
xt yt

∣∣∣∣ .
Let us consider L as the intersection of 2 planes in their

homogeneous representation: G � rag, bg, cg, dgs
T and

H � rah, bh, ch, dhs
T , we can represent L in another an-

tisymmetric form, namely:

L̃ �

�
���

0 e �f g
�e 0 h �j
f �h 0 k
�g j �k 0

�
���

where

e �

∣∣∣∣cg ch
dg dh

∣∣∣∣ , f �

∣∣∣∣bg bh
dg dh

∣∣∣∣ , g �

∣∣∣∣bg bh
cg ch

∣∣∣∣ ,
h �

∣∣∣∣ag ah
dg dh

∣∣∣∣ , j �

∣∣∣∣ag ah
cg ch

∣∣∣∣ , k �

∣∣∣∣ag ah
bg bh

∣∣∣∣ .

r

r

r
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Figure 1. (a) A quadratic surface is determined by 3 skewed lines:
red [R], green [G] and blue [B]. A point r on R and the line G
determine a plane N which intersects B at the point q. (b) The
view on the intersection plane N : the line G (the green line) is
embedded in N and the dashed line connecting r and q is the line
intersecting R, G and B. (c) Similar to (a) except that B has been
extended into a partial line PB. (d) The intersection of N and
the partial line PB is a polygon. The shaded area contains all the
straight lines intersecting R, G and a cross-section of PB. Two
edges perk0

and perk1
on PB satisfy Eq. (4)

There is a simple way to derive L̃ and L from each other.

e � u, f � �t, g � s, h � r, j � �q, k � p.

The quadratic surface QpK,L,Mq generated by the 3
skewed lines K, L and M is given by [1].

QpK,L,Mq �

KM̃L� LM̃K � LK̃M �MK̃L � ML̃K �KL̃M.

The matrix QpK,L,Mq is 4 � 4 and for any point P �
rxp, yp, zp, wps on the surface of the quadratic surface we
have:

PQPT � 0.

A.2. Proofs of the two Theorems

Theorem 4.5 Given 3 partial lines PL0, PL1 and PL2,
we have:

yPQpPL0, PL1, PL2q � (1)

£
t pQprpe0s, rpe1s, rpe2sq|pei an edge of PLi, i � 0, 1, 2u

1
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}PQpPL0, PL1, PL2q � (2)

£
t qQprpe0s, rpe1s, rpe2sq|pei an edge of PLi, i � 0, 1, 2u

Proof Recall that

yPQpPL0, PL1, PL2q �
£ pQppl0, pl1, pl2q;

}PQpPL0, PL1, PL2q �
£ qQppl0, pl1, pl2q,

where pli P SELpPLiq, i � 0, 1, 2. We will only prove
the positive region case Eq. (1) as the negative region case
is similar.

The subset relation£ pQppl0, pl1, pl2q �£ pQprpe0s, rpe1s, rpe2sq
is clear since each Qprpe0s, rpe1s, rpe2sq, is an instance of
Qppl0, pl1, pl2q.

For the subset relation in the other direction, we first
consider a simplified situation. Assume we have the par-
tial quadratic surface formed by two classical lines l0, l1
and a partial line PL2 that is formed by a set of edges
E � tpe0, pe1, ..., pen�1u. In the case that partial points
are hyper-rectangles, as we assume in this paper, we have
4 ¤ n ¤ 6. For any point r on l0, there is a classical
plane plnpr, l1q defined by r and l1. For any line selection
pl2 P SELpPL2q, the plane plnpr, l1q has a unique inter-
section point q with pl2. We have:

Qpl0, l1, pl2q X plnpr, l1q � lnpr, qq Y l1,

where lnpr, qq is the straight line connecting r and q.
As r moves along l0, the line lnpr, qq sweeps out the

quadratic surface Qpl0, l1, pl2q[3, 1]. Therefore,

Qpl0, l1, pl2q � (3)
¤
tlnpr, qq|q � plnpr, l1q X pl2, r P l0u

Furthermore, as shown in Fig. 1 (d), we can always find 2
edges of PL2, say perk0

and perk1
, such that:

lnpr, qq �
¤

t�0,1

cl
� qQpl0, l1, rperkt

sq
�
, (4)

where clrAs denotes the closure of the set A. Therefore, we
have

Qpl0, l1, pl2q �
¤
rPl0

¤
t�0,1

cl
� qQpl0, l1, rperkt

sq
�

�
s¤

j�0

cl
� qQpl0, l1, rpemj sq

�

where pemj
P E and s ¤ n� 1.

Hence, we obtain:

qQpl0, l1, pl2q �
s¤

j�0

cl
� qQpl0, l1, rpemj sq

�
.

Thus, for all pl2 P PL2 we have:

qQpl0, l1, pl2q �
n�1¤
j�0

cl
� qQpl0, l1, rpemj sq

�
,

and hence,

¤
pl2PPL2

qQpl0, l1, pl2q �
n�1¤
j�0

cl
� qQpl0, l1, rpemj

sq
�
,

Combining this with the Prop. 4.1 we have:

£
pl2PPL2

pQpl0, l1, plq �
n�1£
j�0

pQpl0, l1, rpejsq,
which finally implies:

yPQpl0, l1, PL2q �
n�1£
j�0

pQpl0, l1, rpejsq.
We can use a similar method when extending l0 and l1 in-

to their partial counterparts PL0 and PL1, which will com-
plete the proof of the theorem.

Theorem 5.6 A conservative partial EEE surface PEEEc

can be constructed from 3 PEi partial edges as follows:

PEEE�c |
lpi
lpi�1

:� Qplpi , l
p
i�1, l

n
i�2q|

lpi
lpi�1

; (5)

PEEE�c |
lni
lni�1

:� Qplni , l
n
i�1, l

p
i�2q|

lni
lni�1

. (6)

Proof We have to show that the partial surface defined by
the positive and negative classical surfaces in Equations 5
and 6 above is a partial EEE surface as defined in Defini-
tion 5.1 of the paper, i.e., that it contains all straight lines
that intersect the three partial edges. Let l be such a line
and fix a direction on the line.

The definition of PEEEc is equivalent to:

{PEEEc �
2£

i�0

pQplpi , lpi�1, l
n
i�2q; (7)

�PEEEc �
2£

i�0

qQplni , lni�1, l
p
i�2q. (8)

We first show that the intersection points of
l with Qplpi , l

p
i�1, l

n
i�2q are outside the region

Qplpi , l
p
i�1, l

n
i�2q|

lpi
lpi�1

. We will use the following two
properties:

2
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(i) There are at most 2 intersection points between a line
and a quadratic surface if the line is not contained in
the quadratic surface.

(ii) Each of the lines lpi and lni is the intersection line be-
tween two planes parallel to the edges of rPEis, the
infinite tube generated from PEi, and, therefore, lpi
and lni are parallel.

Consider the plane plnplpi�2, l
n
i�2q formed by lpi�2 and

lni�2. Then pi�2 :� l X plnplpi�2, l
n
i�2q lies in between lpi�2

and lni�2 on the plane plnplpi�2, l
n
i�2q. We have

pi�2 P pQplpi , lpi�1, l
n
i�2q. (9)

Similarly, for pi�1 � l X plnplpi�1, l
n
i�1q, we have

pi�1 P qQplpi , lpi�1, l
n
i�2q. (10)

Therefore, the line l must have an intersection point with

Qplpi , l
p
i�1, l

n
i�2q|

lpi�1

lpi�2
.

Similarly, we have

pi P qQplpi , lpi�1, l
n
i�2q, (11)

with pi � l X plnplpi , l
n
i q. Combining this with Eq. (10),

we deduce that the line l must have an even number of in-
tersection points with Qplpi , l

p
i�1, l

n
i�2q|

lpi
lpi�1

. It now follows
from property (i) above that there are actually no intersec-
tion points between l and Qplpi , l

p
i�1, l

n
i�2q|

lpi
lpi�1

. Therefore,
we have the following property:

lsppi, pi�1q � qQplpi , lpi�1, l
n
i�2q.

where lsppi, pi�1q is the line segment of l between points
pi and pi�1 with the same direction as l. Note that for one
value of i � 0, 1 or 2, the line segment lsppi, pi�1q goes
through the point at infinity. Similarly, we obtain:

lsppi, pi�1q � pQplpi , lpi�1, l
n
i�2q.

We conclude that

lsppi, pi�1q � qQplpi , lpi�1, l
n
i�2q X

pQplpi , lpi�1, l
n
i�2q

� BPPEEEc,

i.e., the segment of the line l between pi and pi�1 is indeed
contained in the partial surface PEEEc. Since this is true
of i � 0, 1, 2, the result follows.

A.3. Visibility Complex

The visibility complex [2] is a theoretical framework in
which the visibility information of the 3D space can be ef-
ficiently represented and calculated. According to [5], the

brute force method provided by Laurentini [4] can be fur-
ther simplified with the visibility complex polytope struc-
ture. If the polygonal scene has n vertices and m visual
event surfaces, it is claimed that the computational com-
plexity can be reduced from Opn12q to Oppn4�m3q log nq,
with m � Opn3q in the worst case.

However, with imprecision in the input data of the vis-
ibility complex, the intersection of different partial visual
event surfaces and the degenerate situations (e.g. collinear-
ity) needs to be handled carefully. How to generalize our
framework to the visibility complex and thus to obtain a
more practical algorithm for the visual hull with imprecise
input is the subject of our future work.
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