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Abstract

We show that the Scott topology induces a topology for redled Lips-
chitz maps on Banach spaces which we call the L-topologg.ttié weakest
topology with respect to which the L-derivative operata,asecond or-
der functional which maps the space of Lipschitz functiaris the function
space of non-empty weak* compact and convex valued mappegivith
the Scott topology, is continuous. For finite dimensionatlieiean spaces,
where the L-derivative and the Clarke gradient coincideprewide a simple
characterization of the basic open subsets of the L-togoldé use this to
verify that the L-topology is strictly coarser than the wetlown Lipschitz
norm topology. A complete metric on Lipschitz maps is cangied that is
induced by the Hausdorff distance, providing a topology ihatrictly finer
than the L-topology but strictly coarser than the Lipschmitzm topology.
We then develop a fundamental theorem of calculus of secatet @ finite
dimensions showing that the continuous integral operaton the continu-
ous Scott domain of non-empty convex and compact valuedifingcto the
continuous Scott domain of ties is inverse to the continwpesator induced
by the L-derivative. We finally show that in dimension one thderivative
operator is a computable functional.

Key Words: Domain theory, Clarke gradient, Weakest topology, Secanéro
functionals, Hausdorff metric, Fundamental Theorem otGlak.
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1 The case for Lipschitz maps in computation

Real-valued Lipschitz maps on Euclidean spaces have a nuohiendamental
properties that make them into a suitable class of functiomsvariety of contexts
with wide applications in pure and applied mathematics. tRese, they are the
appropriate choice of functions in many different areasoohputation.

Closed under composition and sitting between the class miiremus func-
tions and those of continuously differentiable functiohgschitz maps contain
the important class of piecewise polynomial functions, clhére widely used in
geometric modelling, approximation and interpolation anel supported in Mat-
Lab [10]. They are uniformly continuous and have much bétkeariant properties
than differentiable maps as they are closed under the fuadi@imin and max
operations. Lipschitz maps with uniformly bounded Lip$ztdonstants are also
closed under convergence with respect to the sup norm. Ithéey and appli-
cation of ordinary differential equations, Lipschitz mappresent the most funda-
mental class of maps in view of their basic and essentialtivalted property that
a Lipschitz vector field irR™ has a unique solution in the initial value problem [9].

In a more theoretical direction, Lipschitz maps are, by Raaeher’'s theorem,
differentiable almost everywhere on finite dimensional IEi@an spaces [8, page
148], and by Kirszbraun’s theorem [27, page 202], enjoy tbsirdble property
that they can be extended from any subset of a Hilbert spatieetavhole space
with the same Lipschitz constant. Lipschitz maps are at #rg foundation of
non-linear functional analysis [2] and have been the sulgea hugely growing
research in the theory of manifolds including Riemanniaffeses at the forefront
of development of mathematics in relation to theoreticaisuts [6].

In the past quarter of a century, a new notion of derivativeLipschitz maps
has emerged that extends the classical (Fréchet) deeviati continuously differ-
entiable functions and is moreover always defined and cantis with respect to
what is in fact the Scott topology on a domain. The Scott togwl[1, 28], which
has proved to be an essential tool in the theory of computatias now found a
new area of application in mathematical analysis.

In 1980’s, motivated by applications in non-smooth analysptimization and
control theory, Frank Clarke developed a set-valued déveséor real-valued Lip-
schitz maps on Euclidean spaces, which is now called th&€radient [7]. On
finite dimensional Euclidean spaces, the Clarke gradiesthioa-empty compact
and convex subsets of the Euclidean space as its valuesx&opke, the absolute
value function, which is not classically differentiablezatro, is a Lipschitz map
that has Clarke gradieft-1, 1] at zero.

It is of great interest to computer science that the Clarkeignt of a Lipschitz
map is upper semi-continuous as a function, i.e., it is coloiis with respect to the



upper topology on the hyperspace of the non-empty compactamvex subsets
of the Euclidean space. In finite dimensions, the upper tapoktoincides with
the Scott topology on the hyperspace when it is ordered Brsevinclusion (i.e.,
its specialization order). Furthermore, on infinite dimenal Banach spaces the
Clarke gradient, which takes non-empty weak* compact amdecosubsets of the
dual of the Banach space as its values, remains Scott consr{see acknowledge-
ments).

In a series of papers, Borwein and his collaborators hawkestwarious prop-
erties of the Clarke gradient and developed new relatedm®{3, 4, 5]. In partic-
ular, given a weak* upper semi-continuous maghat is non-empty, convex and
compact set-valued from a Banach space to the space of sulfset dual, ag-
Lipschitz mags defined as one whose Clarke gradient at every point is ic@uta
in the set value ofy at that point. Various interesting properties of the setlbf a
g-Lipschitz maps, including some residual properties ofaiersubsets of it, are
shown for separable Banach spaces as well as general Bapwss$5].

Despite the central place Lipschitz maps occupy in manydbras of compu-
tation as well as in pure and applied mathematics, they halvgat been a subject
of study in computable analysis to the extent that no merafohipschitz maps
can be found in the standard texts in computable analysis3g3

In [18], a domain-theoretic derivative was introduced fealrvalued func-
tions of the real line, which was later extended to higheratisions [19, 15] and
shown to be mathematically equivalent to the Clarke grddiefinite dimensional
spaces [15]. The L-derivative, as the domain-theoretitvaéve is now called, has
a number of distinct features compared with the Clarke gradi

() Whereas the Clarke gradient of a Lipschitz map is defingdusing the
generalized directional derivative based on taking thedimof the rate of
change of the function along a given direction, the L-ddiieas constructed
by collecting together some finitary generalized Lipscipitaperties of the
map that allow a natural way of approximating the L-deriatising domain
theory.

(i) Any generalized Lipschitz property also gives rise t@@responding set
of primitive maps, which provides a fundamental theorem al€ulus for
Lipschitz maps, a duality between primitive maps and thedekivatives,
that extends the classical theorem in calculus for contislyodifferentiable
functions to Lipschitz maps. This duality, which is a consmace of gen-
eralized Lipschitz properties of maps, is used in Borweialgb], for any
derivativeg, to actually define the set of the so-calledLipschitz maps. In
finite dimensions, where the L-derivative is known to be étmthe Clarke



gradient, the set of-Lipschitz maps coincides with the set of primitives of
g.

(iii) The L-derivative gives rise to a continuous Scott damaith an effective
structure for real-valued Lipschitz maps on finite dimenaloEuclidean
spaces.

This work has led to a domain-theoretic framework for sajvinitial value
problems [17, 24, 20, 22] including the use of the “rectaagul-derivative in the
second order Euler method [19], a domain-theoretic frannkewbthe implicit and
inverse function theorem for Lipschitz functions [21] andesnotational semantics
for hybrid systems [23].

Two fundamental and related questions arise:

(1) What is the appropriate topology on the space of Lipgahiaps in compu-
tation?

(2) Can we obtain a second order typed Fundamental Theor€alofilus with
a continuous derivative operator and a corresponding rmautis integral op-
erator as inverses of each other?

We use two different methods, one classical and one dorhainrtic, to tackle
and answer the first question:

(i) We obtain the weakest (i.e., the initial) topology on gpace of Lipschitz
functions that makes the L-derivative operator acting al-valued Lips-
chitz maps on Banach spaces a continuous functional. Tasmiar to
characterizing the>'! topology on continuously differentiable real-valued
maps as the weakest topology that makes the classicaldtréetivative op-
erator continuous as a second order functional. It is aldore with the
way some of the fundamental topologies, such as the subspaaegy, the
weak topology of a normed vector space and the weak* topadogys dual
are defined.

(i) We obtain the topology on the space of Lipschitz mapg thakes the in-
sertion of these maps onto the set of maximal elements ofdheaih for
Lipschitz maps a topological embedding. This is in line witinstructing
computational models for classical spaces in mathemati¢s30] by em-
bedding them into the set of maximal elements of suitableaiosn

These two approaches lead to an identical result: the Symdtdgy, both on
the hyperspace in (i) and on the domain of Lipschitz mapsijraiove, induces



a topology for maps, called the D-topology, whose inteisaawith the C° norm

topology provides a new topology, called the L-topology, lfgpschitz maps. We
compare the L-topology with the well-known Lipschitz noropoblogy for real-
valued Lipschitz maps, which we now describe. Given anyimspaceg X, d), the

collection Lip(X, d) of bounded real-valued Lipschitz functions &his equipped
with its Lipschitz norm| - || .;, defined as

1fllzip = LI+ 1 flla 1)

where|| f|| = sup{|f(z)| : « € X'} is the sup norm and

| flla = sup{|f(z) = f(Y)l/d(z,y) : 2,y € X,z # y}.

If (X,d)is complete then so is the Lipschitz norm [35].
The relationship between these topologies is depictedeimiggram below:

C' topology

Lipschitz norm topology

L-topology

T

C° topology D-topology

In the finite dimensional case, we derive an elementary cheriaation of the
basic open subsets of the L-topology in terms of ties or pvmimaps. This is used
to prove that the L-topology is strictly coarser than thescipitz norm topology.
In the one dimensional case, we further prove a density lefomapschitz maps
which we use to show that the basic open subsets of the Legpalre regular.

Using the Hausdorff distance between non-empty compadessitof finite
dimensional Euclidean spaces, we also construct a compietiec for Lipschitz
maps which induces a topology strictly finer than the L-toggland strictly coarser
than the Lipschitz norm topology.

Next, we verify that in finite dimensions the domain-thewrstructure of the
space of non-empty compact and convex valued maps is pessafter restricting
to integrable maps and also after identifying maps that knest everywhere the



same. This enables us to derive, using domain theory, a dewrder typed fun-
damental theorem of calculus showing that the integralaijmer and the induced
L-derivative operation are continuous inverses of eachroth

Finally, in dimension one, we identify the L-derivative og®r as an element
of an effectively given continuous Scott domain of funcésmand use this to show
that the L-derivative is a computable functional.

2 Clarke’s gradient

LetU C X be an open subset of the Banach sp&cand letf : U — R be locally
Lipschitz. Thegeneralized directional derivativly, Chapter 2] off at z in the

direction ofv is
fo(-%" ’U) _ limsup f(y + t’l}) B f(y) ]
’ y—x t[0 t

2
Thegeneralized gradientf f atx, denoted by f(z) is the subset oK * given by
{Ae X" : f(z;v) > A(v) forallv € X}.

It is shown in [7, page 27] that
e O0f(x)is anon-empty, convex, weak* compact subseXof
e Forv € X, we have:
fo(@;v) = max{A(v) : A € 9f (2)}. €)
We will use the following result several times in this padest U ¢ R” be an
open subset.

Theorem 2.1 (Rademache) [8, page 148] If f : U — R is Lipschitz, then it is
differentiable almost everywhere.

There is an alternative characterization of the geneilggadient whenX = R,
whose proof uses Rademacher’s Theoren dis the nullset where the Lipschitz
map f : U — R fails to be differentiable then:

0f(x) = |liminf f'(z;), limsup f'(z;) | | @)

xigﬂf xigéQf

see [7, page 63] and [5, Corollary 5].



We now present the notion @f-Lipschitz functions due to Borwein et al [5].
LetT : U — 2X" be non-empty, convex and weak* compact set-valued function
on the non-empty open subgétof a Banach spac&. Then,T is said to beveak*
upper semi-continuous$ {z € X : T'(z) C W} is open inU for any weak* open
subsefi’ c X*. The set ofl’-Lipschitz maps$s now defined as

YTr={f:U —R: fislocally Lipschitz andf(z) C T'(x) forall z € U}.

A number of closure properties and residual properties dbua subsets ofr
have been shown in [5] in the case of separable and also fargeBanach
spaces. In particular, it is shown tHAf- is a convex sub-lattice of the locally Lip-
schitz functions defined ol and that(Yr, p) is a complete metric space, where

p(f,9) :==min{l,[|f —g| : x € U}.

3 Lipschitz derivative

In this section we establish our notation and review the el@mof the domain-
theoretic differential calculus that we need here. For §igity we start with real-
valued Lipschitz maps on finite dimensional Euclidean spaefore looking at the
infinite dimensional case. Then, we extend a number of keytsasreviously only
known in dimension one to higher dimensions that will be nesgliin this paper
and finally recall how the domain for Lipschitz maps is comstied.

We consider continuous maps of type U — R whereU C R" is an open
subset. The set of all such functions is denotedy— R). The choice oU as
an open subset makes the extension of our results to infimterngional Banach
spaces smooth and uniform. But for finite dimensional spagesan also choose
U to be a regular compact subset suctitas]”.

By a domain we mean a directed complete partial order (ddfpf@)assume the
reader is familiar with the elements of domain theory, irtipatar the way-below
relation, continuous Scott domains, as well as the Scott.amgon topologies [1,
37, 28]. In particular, we recall that in any continuous dom® with a basis
B C D, subsets of the forrz = {y : = < y}, wherex € B form a collection of
basic Scott open sets.

Let (C(R"™), C) denote the domain of all non-empty convex and compact sub-
sets ofR"™, augmented with a least element denotedlhyrdered by reverse in-
clusion. The maximal elements are singleton $etsfor = € R™; for convenience
we write any maximal elemert:} simply asz. The depo(C(R™), C) is a contin-
uous Scott domain as it is a continuous retract [1] of the uppaceU(R"), the
set of non-empty compact subsetsiSf ordered by reverse inclusion, which is a
continuous Scott domain [13]. In fact, the convex hull ntap U(R") — U(R"™)
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that takes any non-empty compact subset to its convex hallSsott continuous
map withC(R™) as its image. When = 1, the dcpoC(R) is simply the domain
IR of the non-empty compact intervals Rfordered by reverse inclusion.

The left and right end points of any non-empty bounded istervC R are
denoted by~ andc* respectively. Thus, a non-empty compact intewvat R
is written in terms of its ends points as= [¢, c¢']. For any topological space
Y, a Scott continuous functiofi : Y — IR is characterized by a lower and an
upper semi-continuous functiong,”, f* : Y — R respectively, withf(z) =
[f~(x), fT(x)]; we write f = [f~, fT]. The scalar product of vectors ", i.e.,
the map— - — : R" x R” — Rwithz -y = Y " | 2,yn, is extended to a map
—-—: C(R") x R" — IR with b - r = {z - 7|z € b}. The Euclidean nornjjz||
of z € R™is given by||z|| = v/z - z. For a subse#! of a topological space, Cll),
A°, A€ denote the closure, interior and complementdofespectively. IfA is a
subset of a metric spacé&’, d) then for anyt > 0 we denote the-neighbourhood
of Aby Ay ={x €Y :3yec A.d(z,y) < t}.

For a topological spac&’, we denote its lattice of open subsets GyY').
Given a dcpaD with bottom L, the single-step functioby, : Y — D, where
a € O(Y) is an open set antl € D, is defined ad9x,(z) = bif x € a and L
otherwise. Thedomain dom(f), of a Scott continuous functiofi : Y — D is
given by dontf) = {z € Y : f(x) # L}. SinceU with its Euclidean topology
is a locally compact Hausdorff space, its lattice of opensetgis continuous.
It follows by [28, Proposition 11-4.20(iv)] (equivalentlfrom [26]) that the space
(U — C(R™)) of all Scott continuous functions ordered pointwise is aticmous
Scott domain and any € (U — C(R")) can be expressed as the supremum of
single-step functions way-below it = sup{bx, : bx. < g}. Lubs of finite and
consistent sets of such single-step functions form a baesigf — C(R")). Note
that here we use the standard notation for step functiorerinst of characteristic
functions as in [28].

Any single step function of typé& — C(R"™) defines a family of maps of
type U — R as follows [15]. We sayf € (U — R) hasan interval Lipschitz
constanth € C(R™) in a convex open subsetC U if for all z,y € a we have:
b-(z—y) C f(x)—f(y),l.e.,f(x)—f(y) € b-(x—y). Thesingle tieof by,, denoted
by 6(bxa), is the collection of all real-valued continuous functighen U that have
an interval Lipschitz constaritin a. Note that in our previous work the notation
d(a,b) was used instead 0fby,). The new notation emphasizes more explicitly
the connection between a single-tie and its associatetesitgp function, which
is more convenient for expressing the results of this pdpgr.e d(bx,) thenf is
Lipschitz ina with Lipschitz constant suf|z|| : z € b} and the same is true for
the extension of by continuity to C{a).

A tieis any intersection of single-ties, including the emptgisection. For any
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indexing set/, the family of single-step function®;x., )icr is bounded iU —
CR™)) if N,y 0(bixa;) # 0 [15, Proposition 3.9]. Moreover, fup;c; bixa, T
sup,¢ s bixa,, then we have [15, Corollary 3.12]:

ﬂ 5(biXai) 2 ﬂ 5(bixai)'

el e

It follows that any non-empty tie\ = (1,_; d(b;x4,) is uniquely associated with
the Scott continuous function = sup;c; b;x,, and we writeA = §(g). There-
fore, §(g) is a family of Lipschitz functions whose local Lipschitz pevties are
expressible by single-ties provided by the single-stegtions belowg. We note
thato(g) is always non-empty for = 1 but can be the empty set in higher dimen-
sionsn > 1. In [19, Section 6], an example of a step functigifior dimension
n = 2 is given withd(g) the empty set. A functiog € (U — C(R")) is called
integrableif 5(g) # 0.

Let (T(U), D) be the partial order of ties of continuous functions of type-
R ordered by reverse inclusion. The set of L-primitives of atScontinuous
function is precisely the tie associated with it. Tlherimitive mapis defined by

[+ (U—=CR"Y) — T(U)
f = 0(f).

The set[ f is the collection of the_-primitivesof f and the map/ is continuous
with respect to the Scott topologies 6if — C(R™)) andT(U). In this paper,
it is convenient to usé(g), whenevery is a step function, i.e. the lub of a finite
bounded set of single-step functions, and yisefor a general Scott continuous
function.

The interval Lipschitz constants for a map provide us wiHatal differential
properties, which can be collected to define its global @érie. TheLipschitz
derivativeor thelL-derivativeof a continuous functiorf : U — R is accordingly
defined as the Scott continuous map

Lf:U — CR"), %)

given by
Lf =sup{bxa: f € d(bxa)}- (6)

Example 3.1 The b-cone Letv € a C U, r € R and letb be any non-empty
convex and compact subset Rf. We construct two functiong®, f : « — R
with f“(v) = fl(v) = r andLf%(v) = Lf'(v) = b. The graphs off* and f
are respectively the upper and lower parts of a conR’in' , called theb-cone
with vertex at(v, r), denoted byKy(v,r). Forn = 1, we haveb = [b—,b"] and
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Ky (v,r) is simply the cone with vertew, ) € R? generated by the two lines with
slopeb— andb™. For example, wheh = [—1,1] andz = r = 0, then the)-cone
is given by the two lines with slopes1 and1 through the origin corresponding
to the two functionsf* = Az.|z| and f' = A\z. — |z|. Forn > 1, let P be
the hyperplane iR"*! that is perpendicular t&”, passes througtw,r) and is
parallel with the unit vector. € R™. ThenP,! intersectsk (v, r) in the hyper-line
that stands at angkerctan((b - u)™) with the R™ hyperplane.

Proposition 3.2 [15, Corollary 8.2] In finite dimensional Euclidean spacése
L-derivative coincides with the Clarke gradient.

3.1 Infinite dimensional case

The L-derivative can be extended to real-valued functiomsuaoy Banach space
X [15]; we will briefly sketch the way this is done here. LLétC X be any open
subset ofX . We consider the differential properties of continuous syapU — R
with respect to the norm topology oXi. The L-derivative off at any point inU
where the function is locally Lipschitz will be a non-emptgnvex and weak*
compact subset of the dual spaké. Let C(X*) denote the dcpo of such subsets
ordered by reverse inclusion. Then the notion of tie of a fien¢ which we have
seen in the finite dimensional ca®®, can be extended to any Scott continuous
functiong : U — C(X*) that is expressible as the lub of step functions. These
functions form a sub-dcp@U —, C(X™)) of (U — C(X*)) which includes all
classical functions that map any point Gfto a singleton point, i.e. a maximal
point, of C(X™*). Ties of functions are then used to define the L-derivativaryf
continuous mag : U — R as

Lf:U — C(X")

with its values given byCf = sup{bx, : f € d(bxa)} as in Equation 6. Itis
shown in [15] thatl f is Scott continuous. It is not known if the L-derivative ireth
infinite dimensional case coincides with the Clarke graidien

The Gateaux derivative of at z, when it exists, belongs to the L-derivative.
Similarly for the Fréchet derivative. [15, Corollary 4.7]

Note that since the L-derivative can be extended to infiriiteedsional Banach
spaces, it can be applied to functionals of higher order syjob agU — R) — R.
In fact, if U C X is an open subset of a Banach spatethen the function space
(U — R) of continuous functions of typ& — R, equipped with the operator
norm, forms a Banach space and therefore the L-derivativeelsdefined and
Scott continuous on functionals of type& — R) — R or, inductively, of higher

types.
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3.2 Properties of ties

For real-valued functions on any Banach space, the first dyged Fundamental
Theorem of Calculus (FTC) between the L-derivative and jpries gives us the
relation [15]:

fe/giffggﬁf. @

It is an extension of the classical version of the FTC. In,fimta continuous real-
valued functiory, we havef € [ giff fisC!with f’ = g wheref’ is the classical
(Fréchet) derivative of.

Note that in our domain-theoretic setting the gt of g-Lipschitz maps, as
in [5], is characterized by:,f € T, iff ¢ T Jf. For real-valued functions on
a general Banach space, we know thgt C 9f ( [15, Corollary 4.9]) and thus
in general[ g C Y,. Since in finite dimensions the Clarke gradient and the L-
derivative coincide (Proposition 3.2), we obtain from FhCEquation 7:

Corollary 3.3 In finite dimensions, the set of primitives ¢fe (U — C(R"))
coincides with the set @gfLipschitz maps, i.e.[ g = 1.

The following notions and results generalize those for disien one in [18].
We define the function

r: (U — CR") — (U? - IR) (8)
with the lower and upper parts ofg) : U? — IR for g € (U — C(R™)) given by

YEd g, [z,y] C dom(g)
otherwise

)" < ) = { ol

wherev = ﬁ for z # y andyy, , is the one dimensional Lebesgue measure

on the line segment
[z,y] ={tz + (1 —t)y: 0 <t <1}, €)

and for any Lebesgue integrable functifn [z, y] — R, we have:

1 1
}fduz/o f((l—t)w+ty)dt=/0 Fla+ty — o) dt.

[z,y

Note that, by the monotone convergence theorem, themisy®cott continuous.
Let B(w, d) denote the open ball of radidscentred atv € R™.
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Lemma 3.4 Leth : U — R be Lipschitze, y € U, withx # y, and supposé > 0
is such thatB(w, 0) C U for all w € [z,y]. Then, we have:

h(z+y)—h(z+z) = / v Azt 2,244
[z+z,z+y]

wherev = (y — z)/|ly — ||, for almost allz € R™ with |z| < § with respect to the
Lebesgue measure @i,

Proof Sinceh, being Lipschitz, is differentiable almost everywherdimwith re-
spect to then-dimensional Lebesgue measure, it follows from Fubinisottem
that for almost all: € U with |z| < ¢ the maph is differentiable almost every-
where onfy + z,x + z] with respect tquj, . .- If 2 € U with [z| < § is such

a value, then the restriction éfon [y + z, x + z] is absolutely continuous and the
result follows.[]

Lemma 3.5 Leta be a convex open subsetldfandb € C(R"). If h: U — Ris
Lipschitz and for almost alt: € a« we haveh/(x) € b, thenL(h) 3 by,.

Proof Letz,y € a. Suppose& > 0 is such thatB(w,d) C a for all w € [z,y].
By Lemma 3.4, for almost alt € R™ with |z| < ¢, we have:

1
Wz +2) — h(y + 2) :/ Wy + 2+t —y))- (@ —y)dt € b-(z —y).
0
Sinceh is continuous, by letting — 0, we obtain:
h(z) —h(y) € b (z —y).
Hence,h € 6(by,) and the result follows]

Corollary 3.6 Supposg; € (U — C(R™)) andh : U — R is Lipschitz. If for
almost allz € dom(g) we haveh/(z) € g(x), thenLh 3 g.

Proposition 3.7 (i) h € [ giff
Va,y € U.(r(9))” (z,y) < h(y) — h(z) < (r(9)) " (z,y)

(i) If gis anintegrable map, then the two functiong (r(g)) ™ (z,y) and\y.(r(g)) " (z, y)
are Lipschitz and are respectively the least and greatesttfonsh € [ g
with h(z) = 0.

(iii) The following two conditions are equivalent:
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(@) g1 C g2 a.e., i.e.gi(x) C go(x) for almost allx € U with respect to
then-dimensional Lebesgue measureldn

(0) 7(g1) E 7(g2)-

(iv) The equivalent conditions (a) and (b) in (iii) imply:

© [g12 [ g

(v) If g is integrable then (c) in (iv) above implies (a) and (b) in)(ii

Proof (i) Suppose: € [ g andz,y € U withz # y. ThenLh J g andh/(z) €
(Lh)(z) C g(x) for all z € dom(g) by [15, Corollary 4.7]. Let > 0 be such that
B(w,d) Cc U forallw € [z,y]. By Lemma 3.4, for almost af with |z| < §, we
get:

[ @0 ey B -he) < [ (00) iy
[z+2z,y+2] [z+2z,y+2]

wherev = (y — z)/(]|ly — z||). Thus, we have

1 1
| o (-aptsata) it < hyra)-hia+2) < [ (g0)" (g-altra+2)at,
0 0
(10)
for almost allz with |z| < 0. Lete > 0 be given. Since:, being Lipschitz, is
continuous at: andy, there exist$, > 0 such that forlz| < ¢ we have:

[(h(y + 2) = h(z + 2)) = (h(y) — h(z))] < €/2. (11)

On the other hand, since the two maps (g-v)~ : [0,1] — Randt — (g-v)* :
[0,1] — R are respectively lower and upper semi-continuous on thepectset
[0, 1], it follows that there exists; > 0 such that for allz| < ¢, and allt € [0, 1],
we have the following inequalities:

1 1
/ (v-g)((y—x)t+x)dt—§</ (v-g9) ((y—x)t+z+2)dt, (12)
0 0

1 1
/ (v-g)+((y—x)t+w+z)dt</ (v-g)Jr((y—x)t—i-w)dt—i—g. (13)
0 0

Thus, combining the inequalities in 10, 11, 12 and 13, we have

1 1
/<g-v><<y—x>t+x>dt—e<h<y)—h<x></ (9-0)* (y— )t + ) dt +c
0 0
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and, since > 0 is arbitrary, we obtain

1 1
[0 -atraa <) -h) < [ (g0 (-t +a)di
0 0

as required.
On the other hand, suppose the above two inequalities hadx B y, let
y=xz+tvwithv = (y —z)/(||ly — =||) andt = ||y — z||. Then

f[Ly} (9-v)" du < h(z + tv) — h(z) - f[Ly} (g-v)*du
t - t - t ’
By Rademacher's theorem agaih,has Fréchet derivative almost everywhere.
Therefore, taking the limit — 0 we obtain for almost alt € U:

(g-v)"(x) <v-W(x) <(9-v)"(2).

Sincew is an arbitrary unit vector, it follows that for almost alle U we have:

I (x) € g(z). By corollary 3.6, we geth J g as required.

(i) The mapsg~ - v andg™ - v are lower and upper semi-continuous functions re-
spectively and therefore attain their minimum and maximaiues, respectively,
on the compact sét, y|. Thus, the two mapsy.(r(g)) ™ (z,y) andAy.(r(g)) " (z,y)
are Lipschitz. From (i), it follows that they are the leastlareatest functions

h € [ gwith h(z) = 0.

(iii) (8)=-(b). This follows from monotonicity of.

(b)=(a). Supposéz,y] C dom(g) and[2’,y'] C [z,y]. Fromr(g)(z’,y’) C
r(g2)(2',y") we obtain:

/ (91 -v)_dué/ (g2-v)” du
(2] [z",y/]

/ (91-0)" dp Z/ (g2 -v)" dp.

[=",y'] [z",y]

Since the above inequalities hold for all,y/] C [z, ], it follows that for almost
all z € [x,y] with respect to the one-dimensional Lebesgue measure dinthe
segmentz, y] we have the two inequalities{g; - v)~(z) < (g2 - v)~(2) and
(g1 -v)"(2) > (g2 - v)*(2). Fix the unit vector. Then by Frobenius theorem
(g1 -v) (2) < (g92-v) (2) and (g1 - v)*(2) > (g2 - v)T(2) for almost allz € U
with respect to thes-dimensional Lebesgue measure. Finally, by using Frolseniu
theorem with spherical integration we obtai{z) C g2(z) for almost allz € U.
(iv) (@=(c). Fromg; C g, a.e. we obtain'(g;) = r(g2). Thus by (i) we obtain
he [qiifhe [go.

(v) From (i), we obtain (iii)(b)..CJ
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3.3 Lipschitz Domain and computability

In [14], adomain-theoretic computational model a classical spac¥ is defined
to be a domairD with a topological embedding (i.e., a continuous and opgtin
tion) of X into a subset of maximal elements Dfequipped with its relative Scott
topology. For a countably based locally compact Hausdpdte, the upper space
(the collection of the non-empty compact subsets of theespadered by reverse

domain of formal balls [16] for a complete separable metpiace (Polish space),
the computational model is an-continuous domain. In these two instances, the
embedding is actually onto the set of maximal elements oftiitinuous domain
under consideration. However, there are important clasfsiemction spaces with
an embedding into a proper subset of the maximal elementscoh@nuous do-
main. A basic example is the embedding of the sp@eel] — R) of C° func-
tions into the set of maximal elements @0, 1] — IR). For example, the map
f:1]0,1] — IR with

0 x<0
T 1 x>0,
[01] z=0

is a maximal element fi0, 1] — IR), which is not in the image of the embedding
E : ([0,1] — R) — (][0,1] — IR) given byg — Az.{g(x)}. For the case when
the embedding is onto the set of maximal elements, Lawsen $diowed that an
w-continuous domain is a computational model for a Polislcept the relative
Scott topology and the relative Lawson topology coincidé®the set of maximal
elements. [30, 31].

The Scott continuous domaif™(U) for real-valued Lipschitz maps on an
open subseV C R" is the set of pairgf,g) € (U — IR) x (U — C(R"))
that areconsistenti.e., for which there exists a Lipschitz map: U — R with
f E handg C Lh; see [15]. Fom = 1, it was shown in [18] that consistency
on the basis consisting of step functions given by rationahiners is decidable,
implying that D" (U) can be given an effective structure. A similar result was
given in [19] forn > 1 in the case of the “rectangular” L-derivative of a function
h : U — R, whose values, for a fixed coordinate system, at each pgirt U is
the smallest hyper-rectangle Ri* that contains the non-empty compact and con-
vex set(Lh)(zp). The proofs for the special case of “rectangular” L-deiixet
in [19] can be extended to show that consistency is decidable > 1, giving
an effective structure fob™(U) in the finite dimensional case. Equipped with an
effective structure, the domaid™ (U ) provides an enumeration of the computable
pairs(f,Lf) € D™(U). Thus, the notions of a computable map and a computable
L-derivative are inseparable in this context and are buithiw the domain of Lip-
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schitz maps.
Similarly, the domainD(U ) for real-valued Lipschitz maps on an open subset
U C X of a Banach space is constructed by taking the consisterg phihe
product domain
(U —g IR) X (U —g C(X*)),

where(U —, IR) is the sub-dcpo ofU — IR) consisting of Scott continuous
functions that are the supremum of step functions; see fr5]dtails.

4 Weak Topology for Lipschitz maps

In this section we derive a new topology for Lipschitz mapthasveakest topology
that makes the the L-derivative operator continuous.

We note that th€! topology on the space of continuously differentiable func-
tions can be characterized as the weakest topology thatstlaéelassical Fréchet
derivative operation continuous. In fact, &% (U) andC'(U) be, respectively, the
Banach spaces of continuous functions and continuousigréiitiable functions
on an open subsét C R™. Consider the pairing map

(Id, %) :CNU) - CO(U) x (U — R")

where |d is the identity function angé is the Fréchet derivative operation, i.e.
(Id, &LY(f) = (f, f"). TheC! norm topology onC'(U) is precisely the weakest
topology such that the above pairing function is continuous

The above observations lead us naturally to a concrete schem to define
the weak topology for Lipschitz maps. Instead of the claddtcéchet derivative,
we will use the L-derivative. We therefore define theopologyon the collection
(U — R), of real-valued continuous functions @h to be the weakest topology
on (U — R) such that the pairing map

(Id,£): (U —-R)— (U—-R)x (U— C(X"))

with f — (f, £f) is continuous, where the function spaéé — R) in the range
of the pairing function above is equipped with & norm topology andU —
C(X™)) is equipped with its Scott topology.

Let theD-topologyon (U — R) be the weakest topology such that

L:(U—-R)— (U—C(X")

is continuous. Note that the D-topology, like tfie ||; norm topology in the def-
inition of the Lipschitz norm topology - ||z, in Equation 1, is nofly as any two
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functions differing by a constant always belong to the samepBn sets. The
L-topology, however, is the intersection (i.e. join) of tH& topology and the D-
topology on(U — R) and is thus Hausdorff.

Since the L-derivative of & function coincides with its Fréchet derivative, it
follows that theC'! topology onC'(U) is precisely the relative L-topology for the
subspac&’ (U).

The L-topology has also a domain-theoretic charactedmadis follows. Con-
sider the domairD(U) for real-valued Lipschitz maps dii, whereU C X is an
open subset and is R™ or an infinite dimensional Banach space.

Proposition 4.1 The L-topology orfU — R) is precisely the topology that makes
the insertion map
fe=(f,£f):(U—R)— D)

a topological embedding with respect to the Scott topolagy>oU ), i.e., the L-
topology is the topology that makéXU') a computational model.

Proof We first note that for eaclf € (U — R), the pair(f,L£f) € D(U) is
maximal [15, Proposition 5.8] and that the insertion maprie t one. Next we
note that the function spa¢& — R), equipped with its sup norm, is homeomor-
phic with the subset of maximal elements(6f — IR), equipped with its relative
Scott topology, under the corresponderfcer Axz.{ f(z)}; see [18, Theorem 2.2].
The statement that the L-topology is the weakest topologyiakes the operator
(Id,L) : f — (f,Lf): (U —R) — (U —5 IR) x (U —4 C(X*)) continuous
is equivalent to the assertion that the insertion map isimootis and that it is an
open mapl]

5 L-topology in finite dimensions
WhenX = R", the pairing map reduces to:

(1d,£): (U - R) — D"(U)

whereD"(U) C (U — IR) x (U — C(R™)) is a continuous Scott domain. Since
the space of Lipschitz maps equipped with the L-topologyrécigely the set of
maximal elements oD"(U), it follows that this space is a Polish space, i.e., a
separable completely metrizable topological space [28pieh V-6].

Corollary 5.1 In finite dimensions, the L-topology admits a complete metri
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Furthermore, the L-topology has an elementary charaet@siz in terms of
ties of functions: the D-topology has a basis consistingulifsets of the form
5(g) :== L1(1g) for any step functiory € (U — C(R™)) with Tg # 0.

We note that ifg = sup;c; bixa,, for a finite indexing setl, then g =
Mier T(bixa;). Since, by FTC (Equation 7)(bx,) = £~ (1(bxa)), it follows that

9]

d(bxa) C d(bx,) and more generally for any step functigre (U — C(R™)):

9]

0(g) C 6(g)- (14)

The countable collection of step functions of the fdr_, .., (bixa,) Where,
for 1 < i < m, the subset, is the interior of a convex rational polyhedron whereas
the subsed; is the closed hull of a rational convex polyhedron, providesuntable
basis of the Scott topology of/ — C(R")). Since theC® norm topology is
second countable, it follows that the D-topology and thssritersection with the
C° norm topology are both second countable.

In this section and in Section 8, closure and interior of stdare meant to be
with respect to the L-topology.

Proposition 5.2 Any tie is closed in the L-topology.

Proof Since a tie is an intersection of single-ties, it is suffitienshow the state-
ment for a single-tiey(bx,). Since the L-topology is second countable, it suffices
to prove the closure property for sequences. (fel;>o be a sequence if(by,)
which converges to a functiofi: U — R in the L-topology and thus in particular
in the C? norm topology. Then, for each> 0, we haveb-(z—vy) C fi(x)— f;(y).
From the compactness bf (x — y), we conclude by taking the limit that for all
x,y € awe haveb - (r —y) C f(x) — f(y) as required]

From Equation 14, we conclude:

Corollary 5.3 If g is a step function, then: C§) C d(g).

Corollary 5.4 The L-topology is the weakest topology (@h — R) such that the
pairing map

(1d,£): (U —-R) — (U —R) x (U— C(R"))
is continuous, where the function spgéé — R) in the range of the pairing func-

tion above is equipped with itS8° norm topology andU — C(R")) is equipped
with its Lawson topology.
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Proof The Scott topology o(lU — C(R™)) is refined by the Lawson topology by
taking T¢g as sub-basic closed subsets for all step functipnBut £=1(Tbx,) =
d(bxa) is closed in the L-topology by Proposition 5(2.

We say that the way-below relation in a continuous domiaiis meet-stable if
r < yandr < zimply x <« y M z for all z, y andz in the domain. For example,
the continuous Scott domafi(R™) is meet-stable, a property which follows easily
from the characterization of the way-below relation givgnb< B iff B° C A.
Similarly, the latticeOQ(U) of open subsets of any open $&tC R" is meet-stable.

Proposition 5.5 [1, Theorem 4.2.18.] The lattice of Scott open sets of anyt Sco
continuous domain (more generally of any F-S domain) is raizdte.

It is easy to check thab is meet-stable if the meet-stability relation holds for
the elements of a basis closed under binary meet. In fagiosethe meet-stability
relation holds for such a basis anddet y andx < z. By the interpolation prop-
erty of the way-below relation in a continuous domain we cad basis elements
b;forl <i <4suchthatr <« b; < by < yandz < b3 < by < z. Then we
havex C by M bg with by M by < by andb; M bg < by. By assumption, it follows
thatb, M b3 < by M by from which we obtainz <« y M z.

Definition 5.6 We say an element of a continuous Scott domaib is regular if
r=inf{y : z < y}.

For example, inC(R") the regular elements are precisely those subsets that are
regular as compact subsets®f. It follows that C(R™) has a countable basis

of regular elements (consisting for example ofraltlimensional rational convex
polyhedra regarded as compact subsets). Similarly, apyfstetion of typelU —
C(R™) whose values are regular elements@fR") is a regular element of the
function spacdU — C(R™)) and this function space has a basis of regular step
functions. The next result furnishes a connection betwkenvay-below relations

on a continuous Scott domain and its lattice of open subsets.

Proposition 5.7 Leta andb be two elements in any continuous Scott dondain
(i) We havela < Thif b < a.

(i) SupposeD is meet-stable and is regular. Therb < a if Ta < 1.
Proof (i) Supposeb < a and assuméb C |J,.; O; where(O;);¢; is a directed

set of open subsets. It follows that theré is I with a € O; and thusfa C O; as
required.
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(ii) Supposefa < 1b. We havelb = (J{fc : b < ¢} where the collection of
open subset§fc : b < c} is directed sinceD is meet-stable. Thus for somes R
we havefa C Tc. By the regularity ofa, we obtainb < ¢ C inf{z : ¢ < 2} C
inf{x : a < x} = a, as required]

If D is a continuous Scott domain afdis a topological space with a continuous
lattice of open sets, then, as we have already pointed aufutiction spac¢y —
D) is a continuous Scott domain [28, Proposition 11-4.20(ivHurthermore, we
have:

Proposition 5.8 SupposeD is a continuous Scott domain andis a topological
space with a meet-stable continuous lattice of open sets.ULe Y be open,
se€Dandf € (Y — D). Thensyo < fiff O < f~1(%s).

Proof [26, Proposition 5]

Proposition 5.9 If D is a continuous Scott domain andis a topological space
with a meet-stable continuous lattice of open sets, thefutietion spac&” — D
is meet-stable.

Proof By the remark after Proposition 5.5, it is sufficient to chabk meet-
stability condition for step functions, which form a basistlee function space.
LetO C Y beopens € Dandf,g € (Y — D) with syo < fandsxo < g.
Then, by Proposition 5.8, we have < f~!(Ts) andO <« g~'(1s). Thus, by
meet-stability ofO(Y"), we haveO < f~1(Ts)ng=1(Ts) = (f M g)~1(Ts). It
follows, by Proposition 5.8 again, thaio < f Mg, from which the result follows
since any step function is a finite supremum of single-staeptfans.

Corollary 5.10 For any open subsdt C R", the function spacéU — C(R"))
is meet-stable.

Corollary 5.10 will be used to prove the computability of thelerivative operator
in Section 10 (Proposition 10.6). We now proceed to obtaimale characteriza-
tion of the basic open subsets of the L-topology.

Lemma5.11 Let D be a continuous Scott domain with a meet-stable way-below

relation andY a topological space such th&?(Y") is a meet-stable continuous
lattice. Then for any open setC Y ands € D we have

Tlsxa) = {1 txe) ra < b&s <t} = | J{T(tx) ra < b&s < 1.

20



Proof We show the first equality from which the second follows gasibince
O(Y') is a meet-stable continuous lattice alds a continuous Scott domain, we
have, from Proposition 5.8, the following relation:

sXa < f = a< fH(Ts) (15)

Thus,a < b & s < t implies T(txs) C T(sxa). It remains to show the reverse
inclusion. Let(sx,) < f. Then, sinceD is a continuous domain, there exists a
step functiorsup,; sixq;, wherel is a finite indexing set, with

$Xa K SUP SiXa, < f
iel

Fromsx, < sup{sixa, : 1 <1i <m}, by Equation 15, we get

a < U{ﬂ aj s < sups;}.
JCI jeJ i€s

Since the way-below relation ify is meet-stable, we have

s < inf {sup s; : s < sups;}.
JCl jeg jeJ

Lets’ € D be such that < s' < inf cr{sup,c;s;j : s < sup;c;s;}- Also let
a’ be an open subset &f with

a<ad < U{ﬂ aj s < sups;}.
JCI jeJ J€s

Then we havey, < s'xo < f, which completes the proofl

Since finite intersection distributes over arbitrary unime can conclude with
the same assumptions &hand D:

Corollary 5.12 For any step functioy € (Y — D) we have:
g = U{Th : g < h step function}

= | J{fh: g < h step function}.

These results now translate to basic L-open subsets, fmgvadsimple characteri-
zation of these subsets.

Corollary 5.13 We have for any step functign: U — CR", we have:
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(i) d(g) = U{6(h) : g < h step function}.
(i) 6(g9) = U{d(h) : g < h step function}.

Proof SinceO(U) andC(R"™) are, by the remark preceding Proposition 5.5, re-
spectively a meet-stable continuous lattice and a meblestantinuous Scott do-
main, the two equalities in Corollary5.12 hold, to which vpply the inverse map
£~ to obtain the required resultsl

6 L-topology and Lipschitz norm

Recall the definition of the Lipschitz norm in Section 1. Inittndimensions we
can show the following:

Theorem 6.1 The L-topology is coarser than the Lipschitz norm topolagfriite
dimensions.

Proof Let f € S(bxa) for some single-step functioby, € (U — C(R")). We
will find a neighbourhood of in the Lipschitz norm topology that is contained in

9]

d(bxa). We havef € §(dx.) for somea < ¢ andb < d. Thus,

flx) = fly)ed-(z—y), (16)

for all z,y € Cl(c). Lete be such thab < e < d. Then there exists > 0 such
thatd; C e. (Recall that4; is thet-neighbourhood of a set.) It follows that for
all z,y € cwith x # y we have

(d ’ (.%' - y))tH:cfyH Ce- (1‘ - y) (17)

Consider any Lipschitz mapwith || f — k|| < t. Then, we have:

|(h(z) = h(y)) = (f(z) = fF)] = [(h(z) = f(2)) = (h(y) = FW)| < tlz —yl,

forall z,y € Cl(c). Itfollows, by Equations 16 and 17, thatx)—h(y) € e-(z—y)
and thush € d(ex.) C 0(bxa). O

Next, we show that the L-topology is strictly coarser thaa tthipschitz norm
topology in finite dimensions. We recall the following natirom classical mea-
sure theory.

Definition 6.2 A measurable subset C [0, 1] is splitting if for any interval I C
[0, 1] of length4(I) > 0 we have:0 < u(AxNI) < ¢(I), whereu is the Lebesgue
measure.
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It is well-known that splitting sets exist; see [29]. M is splitting andf =
Ax. fox x4 du, then the Clarke gradient (equivalently the L-derivatiige)easily
seen to have constant vali@ 1], i.e., 0f(xz) = [0,1] for all z € [0,1]. [32,
Proposition 1.9]).

Proposition 6.3 The L-topology is strictly coarser than the Lipschitz noopdl-
ogy in finite dimensions.

Proof It is sufficient to prove the proposition in dimension one,,iwe assume
U =[0,1] c R. LetA c [0,1] be a splitting set and lef = \z. [ xadpu,
which is Lipschitz withL f = A\z. [0, 1]. We claim that there is no open subset of
the L-topology which containg and is contained in the open ball with cenfe
and radiusl /2 with respect to the Lipschitz norm. Lete (([0,1] — IR) be any
step function withCf € Tg. Letc € dom(g) ande > 0 be small enough so that
[c,c+ €] € dom(g). PutD = A\ (¢,d) and fe = Ax. [ xadu. Then, we have
Lf(x)=[0,1xp, Lf € Tg andf. — f inthe sup norm as — 0F. But for any
e > 0, we have

wp @ = L) = (@ —JleD _ @) = f@

c<z<d r—c c<z<d r—=c

and thus|| f — fe||rip > 1, which proves the claim.

7 Hausdorff induced metric for Lipschitz maps

In this section, we derive a complete metric on Lipschitz snap(U — R)
induced from the Hausdorff metric and show that it is styidther than the L-
topology and strictly coarser than the Lipschitz norm togyl Recall that, given
any Hausdorff spacé, the Vietoris topology on the Vietoris spad&(X), i.e.,
the space of non-empty compact subsetX ohas basic open subsets of the form
000 N Ny<j<m ©O; WwhereO; C R™ (i = 0,--- ,m) are open and’ € [J(O)
if C ¢ O whereasC' € QO if CNO # (. If X is locally compact then so is
V(X), and the way-below relation on the basic open subsefi M (X)) satisfy:
O00N (N1 <i<m ©0i) < BOOHN(N1<iem 000 iff O3 < Olfori=0,--- ,m.In
this case, the partial ord¢V (X), D) is a continuous Scott domain with the pro-
viso that it has no bottom element. The Lawson topology heirecies with the
Vietoris topology. ForX = R™ we will always use a basis of convex and relatively
compact open subsets f@f*. Let C*(R") denote the domai(R") without its
bottom element.

The Vietoris topology on the Vietoris space of any metriccgps equivalent
to the topology induced by the Hausdorff metric which we derlay dy, i.e.,
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dg(Cy,C9) is the Hausdorff distance between two non-empty, compédrtets
on X [36, Theorem 7.4.3]. This gives a metric topology on the fiomcspace
(U — CT(R™)), by puttingd;; (f, 9) = sup,cr du(f(x), g(z)). Since the metric
dy is complete, it follows that the function space metij¢ is also complete [12,
Theorem 2.6].

Lemma 7.1 Supposekx C C*(R™) is compact with respect to the Lawson topol-
ogy. Then, the unio) ., C C R™ is compact with respect to the Euclidean
topology.

Proof We will show that any sequende,, ),»>o in Uccx C C R™ has a conver-
gent subsequence. Lé&t, € K be such that,, € C,, for m > 0. Then the
sequencé’,, in the compact sek has a convergent subsequel¢g, — D € K
with dg (Cn,, D) — 0 as as — oo. Thus, for each, there existg;; € D with
d(xm,;,yi) < du(Cn,, D). SinceD C R™ is compact, there is a subsequence
yi, — y € D ast — oo and it follows thatr,,,, — y and the proof is completé]

Proposition 7.2 The function space metri¢;, is strictly finer than the Lawson
topology on(U — C*(R")).

Proof Suppose thaf € (U — C*(R")) and f € Ts N (N;c,(19;)°), which
is a basic open subset of the Lawson topology for step fumgtoand g; with

Jj € J, whereJ is a finite indexing set. Assume = sup,.; s; for a finite set
of single-step functions; = b;xo,. Then,s; < f and, by Proposition 5.8, we
haveO; < f~!(1b;) for eachi € I. Thus, the closur®; is compact and, by the
continuity of £, the setf[0;] c 1b; ¢ C*(R"™) is compact with respect to the
Lawson topology. By Lemma 7.1, the 6t = | J{C : C € f[O;]} C (b;)° C R"
is compact and thus there exists> 0 such that(C;)., C (b;)°. It follows that
for e = min{¢; : i € I} we haveh € Tsif d¥(f,h) < e. On the other hand, for
j € J, there exist; € U such thatf (x;) ¢ 1g;(z;), i.e.,f(x;)\gj(z;) # 0. Let
d; = inf{d : f(z;) C (g;(z;))s}. Thend*(f,h) < & impliesh(z;)\ g;(z;) # 0
and hencer € (1g;)¢. Putd = min{e, d; : j € J}. Thend*(f,h) < ¢ implies
hefsn (Njes(195)¢), which shows that the}; metric topology is finer than the
Lawson topology. Next we show that thg, metric topology is strictly finer than
the Lawson topology. Consider the constant functios= Az. [0, 1]. We claim
that there is no Lawson open subset which contains the aurfstactionh and is
contained in thel;; ball of centreh and radiusl /2 with respect to thel;, metric.
Let 4 be in the basic Lawson open sefo N (;<;<,,(1gi)¢, with step functions
gi € (U — IR) for 0 < i < m. Then there are points; € U with [0,1] IZ g;(=;)
for1 <i<m. Let[e,d] C U\ {z;:1<i<m}andputf = I[0,1]xp, where
D =U\(¢,d). Then,f € Tgo NNy<icm(19:)° bUtdy; (f,h) = 1.0
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We note also that for any compact subgetC U the d*-metric topology on
(V. — C(R™)) will be equivalent to the compact-open topology of the fiorct
space as an instance of a general result on metrics for fumspaces [12, pages
269-270].

For Lipschitz mapy, g : U — R, we now define a metric.

Definition 7.3 The induced Hausdorff metrion Lipschitz functions is given by
by d;:
dr(f,9) = max(|[f — gll, dg (Lf, Lg)).

Theorem 7.4 The induced Hausdorff metric is complete on the space othifrs
maps.

Proof Let (f;);>0 be a Cauchy sequence of Lipschitz maps with respect to the L-
metric. Thus,(fi):>o and (L f:);>o are Cauchy sequences with respect todfe
norm topology and/}; respectively. Letim; . f; = f in the C° norm topology
andlim; .. Lf; = g in the d}; metric. Since the convergence is uniforifijs
continuous. We will now show that = £ f by using Proposition 7.2 which tells
us that thelx; metric topology is finer than the Lawson topology (@ — CR™).
Supposéy, < g. Then, as/by, is Lawson open, there exisié such that for all

i > N we havebx, < Lf;, which impliesb - (x —y) C f;(x) — fi(y) for all
x,y € a. Taking the limiti — oo, we haveb - (x —y) T f(x) — f(y) for all
x,y € a. It follows thatby, C Lf and thusg C L f. To show the reverse relation,
assuméy, < Lf. Then there exists < c andb < d such thatdy, < Lf.
Thus, f € d(c,d) and in particular we havef(xz) — f(y) € d - (x — y) for all
x,y € Cl(a). So, for the compact sétf (x) — f(y) : =,y € Cl(a)}, we have:

{f(z) = f(y) 1@,y € Cl(a)} C

d-{x—y:2z,y€Cla)} C0° -{x—y:x,y €Clla)}.
Sinceb® - {x —y : z,y € Cl(a)} is an open interval and we have the convergence
fi — fintheC® norm topology and thus uniformly, there exists an inteljer 0
such that forali > N and for allz, y € Cl(a) we havef;(x)— fi(y) € b°-(x—y).
In particular for alli > N we havef; € §(bx,), i.e.,bxqs T Lf;. SinceT(bx,)
is closed in the Vietoris (Lawson) topology addf; — g in the finerd;; metric
topology, we obtairby, T g. We conclude thaL f C g which completes the
proof. [

We now compare thé;-metric topology with the L-topology.

Proposition 7.5 Thed;, metric topology on Lipschitz functiorig — R is strictly
finer than the L-topology.
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Proof That thed; metric topology is finer the L-topology follows immediately
from Proposition 7.2. To show that it is strictly finer, létC [0, 1] be a splitting
set (Definition 6.2), and lef = )\x.fox x4 dp, which is Lipschitz withLf =
Az. [0,1]. We claim that there is no open subset of the L-topology whimftains

f and is contained in the open ball with cenfreand radiusl /2 with respect to
the d;, metric. Letg € (U — C(R")) be any step function witi f € Tg.
Let ¢ € dom(g) ande > 0 be small enough so that,c + ¢] € dom(g). Put
D = A\ (¢,d) and fe = Az. [ xadp. Then, we haveCfc(z) = [0,1]xp,
Lf. € Tgandf. — finthe sup norm as — 0F. But for anye > 0, we have
dy; (f, fe) = 1 which proves the claini]

Next we compare the induced Hausdorff metfic with the Lipschitz norm.
Recall that any convex subsdt ¢ R" is the intersection of the half-spaces that
contain it, i.e.[\{S : A C S, for a half-space5}. Itis also easy to show:

Lemma 7.6 For any convex subset C R", we have: A, = [{S. : A C
S, S a half-spacé.

Proposition 7.7 The Lipschitz norm topology is finer than the induced Haudor
metric topology.

Proof Let f : U — R be Lipschitz and let > 0 be given. We will show that the
open ball around of radiuse /2 with respect to the Lipschitz norm is contained in
the open ball around of radiuse with respect to thel;, metric. In fact, suppose

IS = glluip < /2. The,|f — g < ¢/2and|f = glla < /2, i,
aup U@ = 9@) = W) =9I _ (18)

TFy |:C - y|
Letv € R™ be any unit vector. By Equations 2 3, for any Lipschitz mapl — R

we have: h . h
v - Lh(z) = limsup y+t) - (y)
y—zx t|0 t
On the other hand, using Equation 18, we obtain:

gly +tv) — g(y)

lim sup
y—zx t|0 t
_ (g(y + tv) — fly +tv) — (9(y) — f(¥)) N fly+tv) — f(y)
S ¢ t
< sup I(f(x) —g(x)) = (f(y) — 9(y))| 4 limsup fly+tv) — f(y)
Ty |$ - y| y—z t|0 t

fly +tv) — f(y)
‘

< 5 + limsup
y—x t|0
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Thus,v - Lg(z) < e +v - Lf(z)and similarly,v - Lf(z) < e + v - Lg(x) for any
unit vectorv € R™. By Lemma 7.6, it follows thail}, (Lg, Lf) < € as required]

Finally, we will show that the induced Hausdorff metg is strictly coarser
than the Lipschitz norm topology. This requires some prielary work.

We construct below a one-parameter family of Lipschitz mgps[0,1] — R
for k € [0,2] such thatC fi.(x) = [0, 1] for all z € [0, 1] with the property that, as
k /' 1, we havef, — f1 inthed;, metric topology but not in the Lipschitz norm
topology.

Fork € [0,2], we let f, = Az. [ x4, du Wherey is the Lebesgue measure
and the measurable sdy; is splitting with u(Ay) = k/2.

The setA, can be constructed as the countable union of a double farhily o
Cantor sets that are obtained in a sequence of stages. ¥Whef, these Cantor
sets will have positive Lebesgue measure.

We first adopt the following uniform scheme, similar to thasiuction of the
standard Cantor set, to construct a Cantor set of Lebesgasumes > 0 in a
compact interval of length > 0 with » > s. In the first stage the symmetrically
placed middle open interval of length — s)/3 is removed, then in the remaining
left and right closed intervals, the two middle open inté\@ach of length{r —
s)/9, and so on. The total Lebesgue measure of the countable semafved
intervals is thus—== (1 + % + % +---) =r — s. Thus the Cantor set has Lebesgue
measure: — (r — s) = s.

Now we use our uniform scheme to construgt. In the first stage, a Cantor
set of measuré: /4 is constructed o0, 1]. Therefore, the first middle interval,
denoted byC, to be removed has length — %)/3, the next two middle intervals
to be removed, denoted lyC' and RC, are in the remaining two intervals and
R on the left and right respectively and have each lerigith %)/9, and so on.

Then in each previously removed interval a new Cantor sebmstecucted so
that the total measure of the countable union of the new Caets isk/8. This
is done by constructing a Cantor set of measyfts in C, then constructing two
Cantor sets each of measuirg4 x 16) (i.e. with total measurg/32) in the left and
the right middle intervals, namelyC and RC', then constructing four Cantor sets
each of measurk/(4 x 64) (i.e, with total measuré/64) in the middle intervals
LLC,LRC,RLC,RRC of LL, LR, RL, RR respectively, and so on.

The procedure is then repeated ad infinitum so that a Carttgs senstructed
in any previously removed interval. The s&t will be the countable union of the
countable unions of Cantor sets constructed at each stdggseTCantor sets are
dense in[0, 1]: any non-trivial subinterval of0, 1] contains one of these Cantor
sets. We also have(Ay) = & + £+ & ... = £ sothat0 < p(4x) < 1 for
k € (0,2).
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| LL LC LR | CR CC CIJ RL RC
=
(1-k/4)/3 RR

Our labelling scheme for the intervals in the above contibads an instance of

a general method in symbolic dynamics [11]. For a gikea [0, 2], we represent
each point of0, 1] by an infinite sequence df, C, R, denoting the position of the
the point on the Left, Center or Right interval at each stdgmostruction process,
i.e., puttingX = {L,C, R}, we have a surjectiof, : ¥“ — [0, 1] that takes any
sequence to a point i, 1]. As each new interval is a contracting affine image of
a previous interval, it follows that fas € X, we havePy(s) = A(s) + B(s)k
whereA, B : ¥* — [0, 1].

Furthermore, by constructiorfy (x) = fox X4, dp is the sum of the Lebesgue
measure of the Cantor sets constructedDin:). Since the Lebesgue measure of
each such Cantor set is a multiple af we have: fx(Px(s)) = D(s)k where
D : 3% — [0,1]. Note that for allx € [0, 1], we have:fy(x) = 0 (each Cantor set
constructed in this case has Lebesgue measure zero) wifefeas= = (the sum
of the Lebesgue measures of all constructed Cantor séislihis 1).

Lemma 7.8 For all £ € (0,2) andz € [0, 1], we have:L(fx)(z) = [0,1].
Proof This is an instance of [32, Proposition 1.9].

It follows that for eacht € [0.2], the mapf; is Lipschitz with Lipschitz con-
stantl.

Lemma 7.9 We havef;, — f, in the induced Hausdorff metri¢;, ask ko, for
anyky € (0,2].

Proof SinceLlf; = [0, 1] foranyk € (0,2), it follows trivially that £ fi, — L fx,
in thed* metric ask , kg. Thus it remains to show thgj, — f, in the sup norm
ask /" ko. We will show that for any fixed: € [0, 1], the functionk — fi(z) is
strictly increasing witht and thatf,(z) — fx,(z) pointwise ask  ko. Sincef;,
is continuous for alk € [0, 2], the result will then follow a well known result in
analysis [34, see 7.13]. Sing¢g, being Lipschitz, is continuous for eaghe [0, 2],
it suffices to show the above two properties for a dense swifget1]. To show
that fx, (z) < fi,(x) for ky < ko, we consider the dense subget : t € X*},

28



wherez, := P, (tRL“). Since for each fixed € [0, 1], the mapf, is increasing
and fork; < ko by construction we have, (tRL¥) < Py, (tRL*), we obtain:

fk1 (.%'t) = fkl (Pkl (tRLw)) = D(tRLw)kl < D(tRLw)kQ

= ka(PkQ(tRLw)) < sz(Pk‘l (tRLw)) = sz(wt)7

which proves the first assertion. For the second assertiergonsider the dense
subset{y; : t € ¥*}, wherey; := P, (tLR*). Since fork < ko we have
Pi(tLR*) < Py, (tLR*), we obtain:

D(LR)k < fie(ye) < fio(ye) = D(ELE)ko,

and it follows thatfy, (v:) — fx,(y) ask " ko, which proves the second assertion,
completing the proof]

Finally, we can show thaf, /4 f; in the Lipschitz norm topology as — 1.

Proposition 7.10 There exists no open set of tHg metric topology around the
map fi, as constructed above, that is contained in the open{lfall ||| f — f1| zip <
1} of unit radius with respect to the Lipschitz norm aroufid i.e., thed; metric
topology is strictly coarser than the Lipschitz norm toppto

Proof Consider the familyf; constructed above fat < [0,1]. For any non-
negativek < 1, the mapgr, = f1 — f&, being the difference of two Lipschitz
maps, is Lipschitz and is differentiable almost everywheith ¢, = f' — f]
almost everywhere. Sincg and f; are, almost everywhere, equal {0, and
X 4, respectively, they take valu@sand1 almost everywhere. Thug has values
—1, 0 or 1 almost everywhere. Buj, cannot take valu® almost everywhere,
since this would imply thay,; would be constant with constant valyg(0) =
f1(0) = fx(0) = 0, giving f1 = £ which contradictsf; (1) = 1/2 # k/2 = f,(1).
Thus, sincey,(0) = 0 for all k € [0, 2], we have:

sup fgk(x) - gk(y)\ > sup ’gk(x)‘
THY ‘.%' - y‘ x#0 T

> 1,

and thus||gi||rip > 1 for all & € [0,1). Thereforeg, 4 0ask — ko, which
completes the prodf]
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8 L-topology in dimension one

In dimension oner{ = 1), we assume, for convenience, that the donfaic R
of our continuous functions ifU — R), is a compact interval. We are able
to show here that a basic L-open subsgf) is the interior (with respect to the
L-topology) of the associated ti&g). Recall that in dimension one, any Scott
continuous functiory € (U — IR) is integrable, i.e., there exists € | g with
g C Lh. Infact, itis shown in [18, section 6] that given any lowemseontinuous
functionu : U — R there exists a least functioffu, g) : dom(g) — R such that
u < s(u,g) andg C Ls(u, g). Furthermore, iy : U — IR is a step function and
u is the lower part of a step function of typé — IR, thens(u, g) is a piecewise
linear map in each connected componeng;afee [17, Section 3]. In the following
we deduce that whemis fixed, the least function(u, g) will depend continuously
on g with respect to the metric induced on step functions by thesdarff metric.
Recall that our basis elements for the L-topology are giveteims of step
functionsg with ¢ # (. This means that if two adjacent intervals in dg@m each
with a constant value fog, have a common boundary point then the intersection
of their corresponding values will have non-empty interidhus, the connected
components of the closure @bm(g)) have disjoint closures. Dealing with these
connected components separately,(lét—" IR) be the collection of step func-
tionsg € (U — IR) with Tg # ) such that Qldom(g)) has a single connected
component and dofg) N dom(u) # 0. Forg = [¢~,g*] € (U =" IR), let

S(u,g): UxU —R

xr

(2, o { u(y) + fyy g+(t) dt x>y

uy) = [, gt@)dt z<y
Let P, be the partition of the interval dofy) U dom(u) obtained as the common
refinement of the partition induced by the step funcjaand that by the piecewise
constant map such that in each interval iR the values ofy andwu are constant
(note that forg these values are non-empty compact intervals and. finey are
real numbers). Then, as in [17], we have:

s(u,g) = Azx.
max{u(z)} U {lir;jgp S(u,g)(x,y) : z € Pyndom(u)}.

Consider(U —" IR) with the partial distance function induced from the Haus-
dorff metric onIR, namely:d(g1, g2) = sup{dg(g1(x), g2(z)) : = € dom(gy) N
dom(go)} and consider the partial mapsi¥ — R with their partial sup norm:

Hf1 — fQH = sup{]fl(x) — fg(m‘)’ cx edom(f) N dOfT(fQ)} We then have:
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Lemma 8.1 The functions
@) g— S(u,g) (U -"1IR) — (U2 — R)
(i) g S@g) : (U—="1IR) — (U —R)

are continuous with respect to partial distance @h —* IR) and the partial sup
norm on(U? — R).

Proof Note that isg™ is lower semi-continuous and the Lebesgue integrals in the
definition of S(u, g) depend continuously on~. Also, the finite set?, changes
continuously with respect to the Hausdorff metricjashanges continuously with
respect to the partial distance i —* IR). The result follows as(u, g) is the
minimum of a finite number of functions that vary continugusith ¢. (J

In order to obtain the regularity results of this section, meed the following
density lemma.

Lemma 8.2 (Density Lemma) Let f € (g), with step functiory € (U — IR)
and lete > 0 be given. Then there exists a step functioand a functionk with
g < handk € §(h) such thatl| f — k|| <.

Proof Consider the open region formed by the graphg-6t andf —e. We regard

/ as an element of the function spade— IR of all Scott continuous functions
from U to IR ordered by pointwise reverse inclusion. Since this fumcpace

is a continuous Scott domairf, will be the lub of an increasing sequence of step
functions: f = sup,~ w;. We havdim;_, uj —u,; = 0, andthus there exisis>

0 such that” —u; < ¢/3. For simplicity we let: := u; . Consider the decreasing
sequence of step functiong; /,,,))m>n for a positiveN such that every value of

g has length greater tha2y N. For the sake of a more convenient notation, we
putg,, := gp/m for allm > N. Now by Lemma 8.15(u,5,,)) — s(u,g)
with respect to the sup norm on the space of continuous fametiionig) — R.
Let M > 0 be such thatn > M implies ||s(u,g,,) — s(u,g)|| < €¢/3. Thus,
for all m > M, we haveg < §,, C Ls(u,g,,) andf —€/3 < u < s(u,g,,)-
Furthermores(u,g,,) < s(u,g) +¢€¢/3 < f+¢/3, i.e. forallm > M and all

x € dom(g) we have: f(z) — €¢/3 < s(u,7,,)(z) < f(z) + ¢/3. It remains to
show that there exists&: > M such that we haves(u,g,,)(x) — f(x)| < e for

x € dom(g,,) \ dom(g). If Cl(dom(g)) = U then we putk := s(u,g,,) and

h = gy Then, sinces(u,g,;) € 0(g,,), the proof is complete. Otherwise, at
least one of(dom(g,,,))~, (dom(g))~] or [((dom(g)) ™", (dom(g,,,)) ] will be non-
empty. LetM;, be such that forn > M, both these intervals are non-empty if
suchM; exists or one of the two otherwise. Singés continuous and defined on
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the compact sef,, = [(dom(g,,)) ", (dom(g))~] U [((dom(g)) ™, (dom(g,,,))*],
there exists @ > 0 such that f(z) — f(y)| < ¢/3if |z —y| < tforz,y € Cp,.
Then, there existd/, > M; such thatn > M, implies domg)); C dom(g,,, ).

Fix m > M. Note thats(u, g,,,) is made up of line segments with slope bounded
by the upper and lower values gf If A > 0 is an upper bound for the maximum
of the absolute value of these, thpttu,g,,)(z) — s(u,3g,,)(y)| < Alx — y| for
x,y € Cp,. Thus,|s(u,7,,)(z) — s(u,7,,)(y)| < ¢/3if |x —y| < ¢/(3A). Now

let y;kn =0 | (don.(g))s/(BA)' Then18(u’§:(n) € 6(?:71) Putk := S(u’y;kn) and

h =73}, . have forx € C,:

where we have two cases: we use= (dom(g))~ if z € [(dom(g},))~, (dom(g))~]
and we usery = (dom(g))™ if = € [(dom(g))™, (dom(g,))t]. O

Proposition 8.3 For any step functio € (U — IR) we have:é(g) c Cl(3(g)).

Proof Supposef € d(g). We show that any basic L-open set containjfhayill
intersectS(g). Letf € S(go) for some step functiop, and consider any open ball
Oc(f) of radiuse > 0, aroundf in the sup norm iU — R). Then,f € §(g1)
for someg; with g9 < ¢1. Thus,Lf J gandLf 3 g;. Putgs := g U g1.
Thenf € 6(g2). By Lemma 8.2, there exists a step functipmvith g < h and
k€ (U — R)with ||f — k| < eandk € §(h). Thus,gy < h andg < h and we
have:d(g) N é(go) N Oc(f) # 0 as required

Recalling Corollary 5.3, we have now all together proved.
Corollary 8.4 For any step functio € (U — IR) we have:s(g) = CI(é(g)).
Proposition 8.5 For any step functio € (U — IR) we have:6°(g) = 4(g).

Proof Sinced(g) = Cl(d(g)), we already know thai°(g) > 4(g). To show the
converse, leff € §°(g), i.e., there exists a step functiagnsuch thatf € §(h) C

d(g). The latter relation implies, by Corollary 5.13(i), that tmy% with » < k we
haves(k) C 6(g). It follows thath 3 g. On the other hand € §(k) implies there
exists a step functioh with h < k andf € 6(k). Thus,f € 6(k) € &(h) C 4(g),

where the latter relation follows from Corollary 5.13(ii).

Corollary 8.6 The basic open and closed subsfs(@) andd(g) are regular open
and closed sets respectively.
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The results of this section can be extended, with some effoeny finite dimen-
sionn > 1, by using properties of the L-derivative which extend thimsgl9] for
the “rectangular” derivative.

9 Fundamental Theorem of Calculus

Recall the Fundamental Theorem of Calculus of the first ci&quation 7. In
this section we develop the FTC of second order in finite dsimral Euclidean
spaces hy constructing continuous second order typedratieg and differential
operators that are inverses of each other.

Throughout this section, we considgf — C(RR™)) with its Scott topology.
Since we will be dealing with the primitive maps of functian§U — C(R"™)), we
will identify maps that are almost everywhere equal in thisction space. We say
f,g € (U — C(R™)) are equivalent and writg = g if f = g a.e.,i.e.iff(x) =
g(x) for almost allz € U with respect to the:-dimensional Lebesgue measure on
U. We denote the equivalence classfdby E(f). The set of equivalence classes
is partially ordered by definind’(f) C E(g) if f C g a.e. Itis easy to check
that this partial order of equivalence classes, which wetehy (U —. C(R")),
is directed complete and the m&p: (U — C(R")) — (U —. C(R™)), which
takes a map to its equivalence class is Scott continuous.

Proposition 9.1 Any equivalence class of maps has a lulglin— C(R"™)) which
is in the same class.

Proof Consider an equivalence clag f). We claim that it has a lub. Since
(U — C(R™)) is a continuous Scott domain, it is sufficient to show thay) is

a bounded set; this follows if we prove that any finite set opmm E(f) has a
lub. In fact, we show that any two members B{f) have a lub inE(f), from
which the claim follows. Leyy = f and for the sake of a contradiction, suppose
f(z) N g(x) = 0 for somex € U. Then, by the Scott continuity of andg,
there would exist an open neighbourhoodrathat is mapped by andg to two
disjoint open subsets containinfx) and g(x) respectively. But this contradicts
the assumption that = ¢ a.e. It remains to show thatp E(f) € E(f). Since
E(f) is adirected set, by the Scott continuity of the magf Equation 8, we have
r(sup E(f)) = r(f). From proposition 3.7(iii), we obtairkup E(f) = f a.e..

Let ' : (U —. C(R")) — (U — C(R"™)) be the map which takes any equiva-
lence clas#(f) toits lub, i.e. F(E(f)) = sup E(f). We have the following.

Proposition 9.2 The pair(F, E) is a continuous section-retraction pair, witfi o
E 31d, i.e., itis a continuous insertion-closure operation.
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Corollary 9.3 The dcpo(U —. C(R™)) is a continuous Scott domain and
preserves the way-below relation.

Proof By [1, Theorem 3.14 and Proposition 3.1.14].

Thus, (U —. C(R™)) is, by identifying it with its image under the map, in
effect a continuous Scott sub-domain (@ — C(R™)). We know thatf = g
a.e. implies that/ f = [ g, therefore elements of the same class have the same
primitive maps. We conclude that taking quotients underettpgivalence relation
of equality almost everywhere preserves the domain-thiesteucture. Therefore,
we adapt the same convention as in classical measure théanewnaps that are
almost everywhere equal are identified. This means that frmmon we implicitly
considerg € (U — C(R™)) as an equivalence class of maps and all relations
between maps are assumed to be between their equivalesseslaTherefore
f = g means thaf andg are in the same equivalence class. ife= g a.e.

To deal with the primitive maps of — C(R")), we still need to restrict
to a smaller subdomain, namely that of the integrable maes, if € (U —
C(R™)) with [ f # 0. The integrable maps ¢/ — C(R")) form a Scott closed
subset, and thus a continuous Scott subdomaiof~ C(R")) [19]. By taking
retraction under the restrictions Bfand F', we obtain the Scott continuous domain
of equivalence classes of integrable maps which we denot& by:; C(R")).

Let 7*(U) be the dcpo of non-empty ties. Define

L:T*(U) — (U —; C(R™))
by £(A) = inf{Lh : h € A}.

Proposition 9.4 The integral map[ : (U —; C(R")) — T*(U) and £ are
inverses of each other.

Let C?(U) denote the set of integrabteé® real-valued vector fields of type
U — R™ on the open subsé&f C R" equipped with the subspace’ topology.
Let {C'(U)} be the equivalence classes of real-vald&dmaps onUU under the
equivalence relatiorf « g if f — g is a constant real number. Thef¢''(U)}
inherits theC'! norm topology. LetZ; andZ, be respectively the insertion of
{CY(U)} andC?(U) into the maximal elements of the continuous Scott domains
T*(U) and (U —; C(R™)). These insertions are topological embeddings with
respect to the Scott topology on the two continuous Scottaiiosn

34



ﬁI{Cl(U)}
{ctony—__ = C(U)

Jieow

71 Zo

i
TU)—/— T (U—=iCR)

J

Corollary 9.5 Second order typed FTCThe Scott continuous maps and J
furnish an isomorphism between the Scott continuous darfainties and L-
derivatives, extending the Fundamental Theorem of Cadcofitsecond order via
the topological embeddingg andZ to Lipschitz maps.

10 L-derivative operator in dimension one

Let ([0,1] —p R) be the set of Lipschitz maps equipped with the D-topology. In
this section, we show that in dimension one the functionspgo, 1] —p R) —
([0,1] — IR)) of Scott continuous functionals from the function spéiéel] —p
R), equipped with its D-topology, to the function spa¢e, 1] — IR)), equipped
with its Scott topology, is a continuous Scott domain wheis jpartially ordered
by pointwise ordering of functionals. We will then show thiails domain can be
given an effective structure and that, with respect to smobffective structure, the
L-derivative is a computable functional.

We recall the following definition from [5]. Lef be an open interval iR and
let f: I — R. Then,f is said to beobustly lower (upper) semi-continuoifs

ygN JEN
for each Lebesgue null sé&¥ of I. The following result has been proved in [5,
Corollary 5] using various results on the residual propsrtif subsets df-Lipschitz
maps. Here, we give a short and direct proof using splittatg.s

f(z) = liminf f(y) (f () = limsup f (y)) ;

Proposition 10.1 Letg = [¢—,¢7"] € ([0,1] — IR)), whereg—,g* : [0,1] — R
are, respectively, robustly lower and upper semi-contirsioThen, there exists a
locally Lipschitz magh on [0, 1] such thatCh = [g—, gT].
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Proof LetS C [0,1] be a splitting subset, and plit= g~ xs + ¢ (1 — xs). Then

h is measurable and we defiffe [0,1] — R for eachz € [0, 1] by the Lebesgue
integral f (z) = fox h(t) dt. Sincef is Lipschitz, by Rademacher’s Theorem 2f1,
is differentiable almost everywhere with respect to thedsglue measure and for
almost allz € [0, 1] we have:

Since in finite dimensions, the L-derivative and the Clarkadgent coincide, it
follows by Equation 4 thatl f = g as requiredd

Corollary 10.2 For any step functiory € ([0,1] — IR), there exists a locally
Lipschitz maph : [0, 1] — R with Lh = g.

Proof We haveg = sup;-,,<., s» Where eachs,, = [s,,, s;"]x0, IS a single-step
function with an open intervaD,, and real numbers, < st. If g = [¢—, g7] then
g~ = max{s, x0, : 1 <n <m}andgt = min{sxo, : 1 < n < m} are,
respectively, robustly lower-semi-continuous and upgeemi-continuous]

Corollary 10.3 The lattice mapC~! : O([0,1] — IR) — O([0,1] —p R) is an
isomorphism.

Proof Let 01,02 € O([0,1] — IR) be Scott open subsets with'(0;) =
L7Y09). If g € Oy is a step function, then, by Corollary 10.2, there exists a
locally Lipschitz functionh : [0,1] — R with £h = ¢. Thus,h € £L71(O,) and it
follows thatg = Lh € O,. ThereforeO; andO, contain the same step functions
and thusO; = O, as([0,1] — IR) is a continuous Scott domain. Since, the D-
topology is the weakest topology that mak&s' continuous, it follows that !

is also one to oné.]

Next we show that the D-topology on the function sp&te —p R) has a
meet-stable continuous lattice of open sets. This follawmfa general result as
follows.

Corollary 10.4 The function spacé€0, 1] —p R) equipped with the D-topology
has a meet-stable continuous lattice of open sets.

Proof By Corollary 10.3, the lattice mag—! : O([0,1] — IR) — O([0,1] —p
R) is an isomorphism. Since the function spélfe 1] — IR) is a continuous Scott
domain, it has a meet-stable continuous lattice of openessb$hus, the lattice of
open subsets of the D-topology is continuous and meetestabl
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Corollary 10.5 The function spacé([0,1] —p R) — ([0,1] — IR)) of Scott
continuous functionals from the function spdf® 1] —p R), equipped with its
D-topology, to the function spad¢é, 1] — IR)), equipped with its Scott topology,
is a continuous Scott domain when it is partially ordered binfwise ordering of
functionals.

Proof This follows from [28, Proposition 11-4.20(iv)], since tHattice of open
subsets of the D-topology dif0, 1] —p R) is continuous and sindgo, 1] — IR)
is a continuous Scott domaiil

We now construct an effective structure on the function spgo, 1] — R) —
([0,1] — IR)) which is induced from the following effective structure @6, 1] —
IR). We start with an effective countable ba#ig of IR consisting of the regular
(i.e., non-trivial) compact rational intervals @& This leads to an effective count-
able basis3; for ([0,1] — IR) as follows: An element oB; is a step function
s = sup;cs bixo,, Wherel is a finite indexing set, such thay; C R is a rational
open intervalp; is an element o5, for eachi € I and the values of are regular
compact subsets, i.€.), ; b; is aregular compact interval whene@fe, 0; # 0.
Hence, elements df; are regular as in Definition 5.6. Fro, we immediately
obtain an effective countable badfs, of the D-topology on([0,1] — R), with
By = {£L7Y(s) : s € B1}. Finally, we obtain an effective countable basis of
(([0,1] — R) — ([0,1] — IR)) consisting of step functions made from single-
step functions of the formyo whereO € Bs ands € Bj. It is easy to see that
the restrictions to the basi$; of the partial ordef= and the way-below relation
< of (([0,1] — R) — (]0,1] — IR)) are both decidable. By taking effective
enumerations o5y, 3; and B, we obtain an effective enumeration Bf. Thus,
we equip(([0,1] — R) — ([0, 1] — IR)) with an effective structure.

We will now show that theC operator as an element of the effectively given
continuous Scott domaif([0,1] — R) — ([0,1] — IR)) is computable. For
this, we need to prove that with respect to an effective ematios ( f;);>( of the
basisB; the set{i : f; < L} is recursively enumerable [25, Definition 2]. We
will actually prove more and show that the above set is réeyrge., the relation
fi < Lis decidable.

Proposition 10.6 For any elemeny of the basis3s, the relationf <« L is decid-
able.

Proof We havef = sup,.; g; where eacly; is a single-step function anflis a
finite indexing set. Thenf < L iff Vi € I.g; < £ and it is sufficient to prove
that the latter relation is decidable. Now each single-giaption g; is of the form

37



txo Wheret € B; andO € By with, say,0 = L£~!(s) for somes € B;. We
have:

X1ty <€ L <+ L7'(1s)< £71(1t) By Proposition 5.8
= Ts < 1t By Corollary 10.3

= t<s By Corollary. 5.10, regularity of
and Prop. 5.7(ii)

Assumes = sup,c;bjxo; andt = supye i brxo,- Then, we have < s iff
Vk € K.bpxo, < supje;bjxo, iff (by Proposition 5.8 againyk € K.O) <
U;je{0) & b < bs}. Since the relatio), < (J;c;{0; : by < b;} is decid-
able, it follows that the relatioﬁxﬁfl(Ts) < L is decidable and hence <« L is
decidable[]

Corollary 10.7 The L-derivative operator is a computable functional ofty{0, 1] —
R) — ([0,1] — IR).O

Note that to prove the above main result of this section, veel ke fact that the
step functions in([0, 1] — IR) are in the image of’, a property that has only
been proved here for = 1. All other properties we used were valid for any finite
dimensionn > 1.

11 Further work and open problems

We list here three open questions: (i) Is the set of the stegtifons in([0, 1]* —
CR") in the image ofL for finite dimensions: > 1? If so, all the results in
Section 10 would extend to higher finite dimensions, i.ee, ltkderivative would
be a computable functional. (i) Can any of the results foitdilimensions be
extended to infinite dimensions? (iii) Can one constructhgi complete metric
for the L-topology by using the Hausdorff metric to comparddrivatives?
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