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We construct an approximating chain of simple valuations on the upper space of a

compact metric space whose lub is a given probability measure on the metric space. We

show that whenever a separable metric space is homeomorphic to a G

�

subset of an

!-continuous dcpo equipped with its Scott topology, then the space of probability

measures of the metric space equipped with the weak topology is homeomorphic with a

subset of the maximal elements of the probabilistic power domain of the !-continuous

dcpo. Given an e�ective approximation of a probability measure by an increasing chain

of normalised valuations on the upper space of a compact metric space, we show that the

expected value of any H�older continuous function on the space can be obtained up to

any given accuracy. We present a novel application in computing integrals in dynamical

systems. We obtain an algorithm to compute the expected value of any H�older

continuous function with respect to the unique invariant measure of the Feigenbaum

map in the periodic doubling route to chaos.

1. Introduction

Domain theory was introduced by Dana Scott in 1970 as a mathematical foundation for

the semantics of programming languages (Scott 1970). It is now a basic paradigm in

denotational semantics in particular and in theoretical computer science in general.

A new direction for applications of domain theory has recently emerged. In particular,

a domain-theoretic framework for measure and integration theory on locally compact

second countable metric spaces has been developed in (Edalat 1995a; Edalat 1995b).

The upper space of a locally compact second countable metric space, i.e. the set of non-

empty compact subsets ordered by reverse inclusion, is an !-continuous dcpo (directed

complete partial order). On the other hand, the probabilistic power domain of any !-

continuous dcpo, i.e. the set of continuous valuations on the dcpo ordered pointwise, is

an !-continuous dcpo with a basis of simple valuations (Jones and Plotkin 1989). It was

shown in (Edalat 1995a) that the set of probability measures of any locally compact

second countable metric space can be injected into the set of maximal elements of the

probabilistic power domain of the upper space of the metric space. This provides a new

theory of approximation of measures and has led to a generalisation of the Riemann

integral (Edalat 1995b; Edalat and Negri 1996). There have been diverse applications in
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fractal geometry (Edalat 1996), neural nets (Edalat 1995d), statistical physics (Edalat

1995c), stochastic processes and image compression (Edalat 1995e).

In this paper, we solve the following two basic problems in constructive and computa-

tional mathematics.

Suppose a probability measure on a compact metric space is given by its values on a

countable base closed under �nite unions and intersections. We construct an increasing

chain of simple valuations on the upper space of the metric space, i.e. an approximating

chain in the probabilistic power domain of the upper space, whose least upper bound is

the probability measure.

In order to state the second problem, we �rst recall a fundamental feature of the vari-

ous domain-theoretic models for classical Hausdor� spaces, e.g. the Cantor domain �

1

(consisting of the set of �nite and in�nite sequences over a countable alphabet � with the

pre�x ordering), the dcpo of closed intervals of the unit interval ordered by reverse inclu-

sion, the upper space of a second countable locally compact Hausdor� space (Edalat

1995a), the space of formal balls of a complete separable metric space (Edalat and

Heckmann 1996) and Lawson's maximal hulls for Polish spaces (Lawson 1996). In all

these models, an !-continuous dcpo provides a computational framework for a separable

metrizable space identi�ed as the set of the maximal points of the dcpo equipped with

the relative Scott topology. In other words, the relative Scott topology and the classical

Hausdor� topology coincide. In this paper we examine this basic property for the spaces

of probability measures equipped with the weak topology.

We show that whenever a separable metric space is homeomorphic to a G

�

subset of

an !-continuous dcpo equipped with its Scott topology, then the space of probability

measures of the metric space equipped with the weak topology is homeomorphic with a

subset of the maximal elements of the probabilistic power domain of the !-continuous

dcpo.

Since the weak topology is the most important topology in measure theory, the above

coincidence of the weak and the relative Scott topologies highlights a satisfactory con-

nection between classical measure theory and domain theory.

We give a necessary and su�cient condition that the least upper bound (lub) of an

increasing chain of normalised simple valuations on the upper space of a compact metric

space gives a probability measure on the metric space and show that when this condition

is e�ectively satis�ed one can compute the expected value of any H�older continuous map

with respect to the probability measure up to any given accuracy.

We illustrate the computational signi�cance of these results in evaluating integrals with

a novel application in chaos theory. Periodic doubling bifurcation to chaos is a universal

route in which a one-parameter family of one-dimensional maps becomes chaotic. The

Logistic family of maps on the unit interval is the prototype of such a system. As the

parameter is increased, the family goes through an in�nite sequence of periodic doubling

bifurcations. At the limit of these parameter values, the map is at the edge of chaos and is

an example of a Feigenbaum map, the prototype of an in�nitely renormalizable map (de

Mello and van Strien 1993). The unique ergodic measure of a C

2

Feigenbaum map with

a non-at critical point can be obtained in a natural way as the lub of an increasing

chain of simple valuations on the dcpo of the closed intervals of the unit interval. We use
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this construction to obtain an algorithm to compute the expected value of any H�older

continuous function with respect to the ergodic measure of a Feigenbaum map.

2. The domain-theoretic framework

In this section, we briey review from (Edalat 1995a; Edalat 1995b) the domain-theoretic

framework for measure and integration theory on compact metric spaces which we need

in this paper.

First, recall the basic notions in domain theory (Jung and Abramsky 1994). A non-

empty subset A � P of a poset (P;v) is directed if for any pair of elements x; y 2 A

there is z 2 A with x; y v z. A directed complete partial order (dcpo) is a partial order

in which every directed subset A has a least upper bound (lub), denoted by

F

A. An

open set O � P of the Scott topology of a dcpo is a set which is upward closed (i.e.

x 2 O & x v y ) y 2 O) and is inaccessible by lubs of directed sets (i.e. if A is

directed, then

F

A 2 O ) 9x 2 A: x 2 O). The topology of a dcpo in this paper is

always assumed to be the Scott topology. It can be shown that a function f : D ! E

from a dcpo D to another one E is continuous with respect to the Scott topology i�

it is monotone, i.e. x v y ) f(x) v f(y), and preserves lubs of directed sets, i.e.

F

i2I

f(x

i

) = f(

F

i2I

x

i

), where fx

i

j i 2 Ig is any directed subset of D. From this it

follows that a continuous function f : D ! D on a dcpo D with least element (or bottom)

? has a least �xed point given by

F

n�0

f

n

(?). Given two elements x; y in a dcpo, we

say x is way-below y or x approximates y, denoted by x� y, if whenever y v

F

A for a

directed set A, then there is a 2 A with x v a. We say that a subset B � D is a basis

for D if for each d 2 D the set A of elements of B way-below d is directed and d =

F

A.

We say D is continuous if it has a basis; it is !-continuous if it has a countable basis.

We denote the set of maximal elements of a dcpo D by max(D).

Let X be a compact metric space andUX the upper space ofX, consisting of the non-

empty compact subsets of X ordered by reverse inclusion. Then UX is an !-continuous

dcpo and a basis of its Scott topology is given by collections of the form 2a = fC 2

UX j C � ag, for any open set a � X. The singleton map s : X ! UX de�ned by

s(x) = fxg embeds X onto the set of maximal elements ofUX. It sends any open subset

of X to a G

�

subset (i.e. a countable intersection of open subsets) of UX and any Borel

subset of X into a Borel subset of UX (Edalat 1995a).

We will consider the probabilistic power domain PUX of the upper space of X. Recall

the basic de�nitions. A valuation (Saheb-Djahromi 1980; Lawson 1982; Jones 1989) on a

topological space Y is a map � : 
Y ! [0;1), where 
Y is the lattice of open subsets,

which satis�es: (i) �(a) + �(b) = �(a [ b) + �(a\ b) (modularity), (ii) �(;) = 0, and (iii)

a � b ) �(a) � �(b). A continuous valuation (Lawson 1982; Jones and Plotkin 1989;

Jones 1989) is a valuation such that whenever A � 
(Y ) is a directed set (wrt �) of

open sets of Y , then �(

S

O2A

O) = sup

O2A

�(O).

For any b 2 Y , the point valuation based at b is the valuation �

b

: 
(Y ) ! [0;1)

de�ned by

�

b

(O) =

�

1 if b 2 O

0 otherwise:
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Any �nite linear combination

P

n

i=1

r

i

�

b

i

of point valuations �

b

i

with constant coe�cients

r

i

2 [0;1), (1 � i � n) is a continuous valuation on Y , which we call a simple valuation.

The probabilistic power domain, PY , of a topological space Y consists of the set of

continuous valuations � on Y with �(Y ) � 1 and is ordered as follows: � v � i�, for

all open sets O of Y , �(O) � �(O). The partial order (PY;v) is a dcpo with bottom in

which the lub of a directed set h�

i

i

i2I

is given by

F

i

�

i

= �, where for O 2 
(Y ) we have

�(O) = sup

i2I

�

i

(O). For an (!)-continuous dcpo D equipped with its Scott topology,

PD is also (!)-continuous and has a basis consisting of simple valuations (Jones and

Plotkin 1989). Moreover, any continuous valuation � on an !-continuous dcpo extends

uniquely to a Borel measure on the dcpo (Norberg 1989). For convenience, we denote

this unique extension by � as well. If D has a bottom element ?, then the normalised

probabilistic power domain, P

1

D, is the subdomain P

1

D = f� 2 PD j �(D) = 1g

which is also an !-continuous dcpo with bottom �

?

and a basis of normalised simple

valuations (Edalat 1995b). It is easy to see that PD and P

1

D have the same set of

maximal elements, i.e. max(PD) = max(P

1

D).

Let M

1

X be the space of probability measures (normalised measures) on X with the

weak topology, i.e. the coarsest topology on the set of normalised measures such that the

functional

F

g

: M

1

X ! R

� 7!

R

g d�

is continuous for all bounded continuous maps g : X ! R.

In (Edalat 1995b), it was shown that for any compact metric space X the embedding

of X onto the set of maximal elements of the upper space UX of X by the singleton

map s : X !UX induces an injective map e :M

1

X ! P

1

UX given by e(�) = � � s

�1

.

The image of e consists of continuous valuations on UX whose unique extension to a

measure is supported on s(X), the maximal elements of UX. That is to say,

im(e) = f� 2 PUX j �(s(X)) = 1g = f� 2 P

1

UX j �(UX n s(X)) = 0g:

This provides a domain-theoretic framework for classical measure theory. In fact, P

1

UX

is !-continuous with a basis of simple valuations. It follows that for any � 2M

1

X there

exists an increasing chain of simple valuations h�

m

i

m�0

in P

1

UX (m � 0) with

� =

G

m�0

�

m

: (1)

These simple valuations provide �nite approximations to the measure �. It was also

shown in (Edalat 1995a), in fact for the more general case of a second countable locally

compact Hausdor� space X, that im(e) � max(PUX) and it was conjectured that

im(e) = max(PUX). This conjecture was later proved, in a more general setting, by J.

Lawson (Lawson 1995).

This framework also leads to a generalisation of the Riemann theory of integration on

a compact metric space (Edalat 1995b). Simple valuations are used to obtain generalised

lower and upper Darboux sums and Riemann sums for any bounded real-valued function

on X. For any simple valuation � =

P

b2B

r

b

�

b

2 PUX, the lower sum and the upper
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sum of f with respect to � are, respectively,

S

`

(f; �) =

X

b2B

r

b

inf f [b]; S

u

(f; �) =

X

b2B

r

b

sup f [b]:

Furthermore, for a choice function � : B ! X with �

b

2 b for each b 2 B, the sum

S

�

(f; �) =

X

b2B

r

b

f(�

b

)

is a generalised Riemann sum for f with respect to �. It is then shown that, with respect

to the chain of simple valuations �

m

(m � 0) with lub �, the lower sums corresponding to

�

m

(m � 0) increase, the upper sums decrease and the Riemann sums tend to the integral

of f with respect �, provided that f is bounded and continuous almost everywhere with

respect to �:

S

`

(f; �

m

)%

Z

f d�; S

u

(f; �

m

)&

Z

f d�

S

�

m

(f; �

m

)!

Z

f d�: (2)

The fact that P

1

UX is an !-continuous dcpo only guarantees the existence of the in-

creasing chain of simple valuations �

m

in Equation (1) which approximate a �nite measure

� on X. A basic question is how to explicitly construct such a chain of approximations.

In the next section, we will give a solution to this problem.

3. Approximation of Measures

Assume � 2 M

1

X is a given probability measure on a compact metric space X. Let

A = hA

1

; A

2

; : : : ; A

N

i be any ordered open covering of the compact metric space X, i.e.,

A

i

� X is open i = 1; : : : ; N and X =

S

N

i=1

A

i

. We �rst show that A induces a simple

valuation below �. Denoting the closure of a set A by A, let

�

A

=

N

X

i=1

r

i

�

A

i

; (3)

where r

i

= �(A

i

n

S

j<i

A

j

). Since the sets A

i

n

S

j<i

A

j

(1 � i � N ) are disjoint and

their union is X, we have

P

N

i=1

r

i

= 1, and therefore �

A

2 P

1

UX.

Proposition 3.1. For any open subset O � X, we have:

�

A

(2O) =

X

A

i

�O

r

i

� �(O) �

X

A

i

\O 6=;

r

i

:

Corollary 3.1. For any � 2 M

1

X and any ordered open covering A of X we have

�

A

v � � s

�1

in P

1

UX.

Proof. For any open set V � UX, we have V � 2 s

�1

V . Therefore, by Proposition 3.1

with O = s

�1

V we have:

�

A

(V ) � �

A

(2 s

�1

V ) � �(s

�1

V ):



Abbas Edalat 6

De�nition3.1. For two ordered open coveringsA = hA

1

; : : : ; A

N

i and B = hB

1

; : : : ; B

M

i,

the re�nement A ^ B of A by B is the ordered open covering with subsets of the form

C

(i;j)

= A

i

\B

j

, 1 � i � N and 1 � j � M , ordered lexicographically, i.e., (i; j) < (i

0

; j

0

)

i� either i < i

0

or i = i

0

and j < j

0

.

Put r

i

= �(A

i

n

S

j<i

A

j

) as before, and let

r

(i;t)

= �(C

(i;t)

n

[

(i

0

;t

0

)<(i;t)

C

(i

0

;t

0

)

):

Proposition 3.2. �

A

v �

A^B

.

Proof.

Note that

[

1�t�M

C

(i;t)

n

[

(i

0

;t

0

)<(i;t)

C

(i

0

;t

0

)

=

[

1�t�M

[C

(i;t)

n

[

(i;1)�(i;t

0

)<(i;t)

C

(i;t

0

)

)] n

[

(i

0

;t

0

)<(i;1)

C

(i

0

;t

0

)

=

[

1�t�M

[A

i

\ (B

t

n

[

t

0

<t

B

t

0

)] n

[

i

0

<i

A

i

0

= (A

i

\X) n

[

j<i

A

j

= A

i

n

[

j<i

A

j

:

Since, for 1 � t � M , the sets C

(i;t)

n

S

(i

0

;t

0

)<(i;t)

C

(i

0

;t

0

)

are disjoint, it follows that:

r

i

=

P

1�t�M

r

(i;t)

. Therefore, for any open subset O of UX we have:

�

A^B

(O) =

X

A

i

\B

t

2O

r

(i;t)

�

X

1�t�M

X

A

i

2O

r

(i;t)

=

X

A

i

2O

X

1�t�M

r

(i;t)

=

X

A

i

2O

r

i

= �

A

(O):

Lemma 3.1. Let � and � be continuous valuations on a topological space Y . Suppose

B � 
Y is a basis which is closed under �nite intersections. If �(O) = �(O) for all

O 2 B, then � = �.

Proof. Given any valuation � on Y , we can deduce from modularity and a simple

induction that

�(

n

[

i=1

O

i

)

=

X

1�i�n

�(O

i

)�

X

1�i

1

<i

2

�n

�(O

i

1

\O

i

2

) +

X

1�i

1

<i

2

<i

3

�n

�(O

i

1

\O

i

2

\O

i

3

)�

� � �+ � � � � � � (�1)

n+1

�(

\

1�i�n

O

i

);

for any �nite collection of open subsets hO

i

i

1�i�n

. Let B

0

� 
Y be the set of all �nite

unions of open sets in B. It follows by the above relation that � and � coincide on all

elements of B

0

. Since any open set in Y is the directed union of elements of B

0

, the result

follows.
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Assume B

n

is an ordered covering of open subsets of X with diameters less than 1=n for

n � 1. De�ne A

n

for n � 1 inductively by A

1

= B

1

and A

n+1

= A

n

^ B

n+1

.

Theorem 3.1. � =

F

m�1

�

A

m

.

Proof. For any open set O � X, the set 2O = fC 2 UX j C � Og is a basic open

subset of UX. Also we have (2O

1

) \ : : : \ (2O

n

) = 2(O

1

\ : : : \ O

n

), and therefore

these basic open sets are closed under �nite intersections. By Lemma 3.1, it is su�cient

therefore to show that sup

m�1

�

A

m

(2O) = �(O), for all open subsets O � X. Let

O � X be open. We know by Corollary 3.1 and Proposition 3.2 that h�

A

m

i

m�1

is

an increasing chain with

F

m�1

�

A

m

v � � s

�1

. It is therefore su�cient to check that

sup

m�1

�

A

m

(2O) � �(O), for all open subsets O � X. Let � > 0 be given. As X is a

normal space, O is the directed union of all open subsets whose closures are contained in

O. Therefore, there exists an open set U � X with U � O such that �(O)��(U ) < �. It

follows that there exists M � 1 such that the distance between U and the complement of

O is at least 1=M . Assume A

M

= hA

1

; : : : ; A

N

i and �

A

M

=

P

N

i=1

r

i

�

A

i

, where r

i

is given

by the formula below Equation (3). Since A

i

has diameter less than 1=M for 1 � i � N ,

it follows that A

i

\U 6= ; implies A

i

� O. Therefore,

�

A

M

(2O) =

X

A

i

�O

r

i

�

X

A

i

\U 6=;

r

i

by the above remark

� �(U ) by Proposition 3.1

> �(O) � �

Since � > 0 is arbitrary, the proof is complete.

4. The Scott topology versus the weak topology

In this section, we assume that X is a separable metric space, D is an !-continuous dcpo

equipped with the Scott topology and s : X ! D is a topological embedding such that

s(X) � D is a G

�

subset.

Proposition 4.1.

(i) s(X) � max(D).

(ii) s takes open sets and closed sets to G

�

subsets.

(iii)s takes Borel sets to Borel sets.

Proof. (i) Let x; y 2 X with s(x) v s(y) and let O � X be an open neighbourhood

of x. Then s(O) = O

0

\ s(X) for some open O

0

� D. Since O

0

is an upper set we get

s(y) 2 s(O). This holds for any open neighbourhood O of x in the Hausdor� space X.

Hence, x = y. On the other hand, s(X), being a G

�

subset, is an upper set. Therefore,

s(X) � max(D).

(ii) If O � X is open then s(O) = O

0

\ s(X) where O

0

� D is open and s(X) is a G

�

set.

Hence, s(O) is a G

�

set. Let C � X be closed. Since any closed subset of a metric space

is a G

�

subset, we have C = \

i�0

O

i

where O

i

� X are open. Then, s(C) = \

i�0

s(O

i

) is

a G

�

set since each s(O

i

) is a G

�

set.
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(iii) This follows from (ii); see (Edalat 1995b, Corollary 5.11).

Recall from Section 1 that any continuous valuation � 2 PD extends uniquely to a

measure on D. Let e :M

1

X ! PD be de�ned by e(�) = � � s

�1

. The next proposition

is the generalisation of the corresponding result in (Edalat 1995b) with respect to the

embedding of a second countable locally compact metric space into the set of maximal

elements of it upper space. Recall that any probability measure � on a metric space is

regular (Billingsley 1979), i.e. for any Borel subset B,

�(B) = inff�(O)jO open; B � Og = supf�(C)jC closed; B � Cg:

Proposition 4.2.

(i) e is one to one.

(ii) im(e) = f� 2 PD j �(s(X)) = 1g and e :M

1

X ! im(e) has inverse j : im(e)!M

1

X

given by j(�) = � � s.

(iii) im(e) � max(D).

Proof.

(i) For any open subset O � X, there exists, by Proposition 4.1(ii), open subsets O

i

� D

(i � 0) with s(O) = \

i�0

O

i

. Hence, O = \

i�0

s

�1

(O

i

) and we have

�(O) = inf

i�0

�(s

�1

(O

i

)) = inf

i�0

(e(�))(O

i

):

It follows that if e(�) = e(�) then �(O) = �(O) for all open sets O � X, and therefore

� = � by regularity.

(ii) We have s(X) = \

i�0

O

i

, for some open sets O

i

� D. Then, for any � 2M

1

X,

(e(�))(s(X)) = inf

i�0

(e(�))(O

i

) = inf

i�0

�(s

�1

(O

i

)) = inf

i�0

�(X) = 1:

On the other hand if � 2 PD with �(s(X)) = 1, then j(�) = ��s is a probability measure

on X and for any open O � D we have (e(j(�)))(O) = �(s(s

�1

(O))) = �(O \ s(X)) =

�(O) since � is supported on s(X). Hence, e(j(�)) = � and � 2 im(e). Finally, for any

� 2M

1

X, we have j(e(�)) = (� � s

�1

) � s = �.

(iii) Let �; � 2 PD with � 2 im(e) and � v �. We have �(B) � �(B) for all G

�

subsets

B � D. In particular, it follows that �(s(X)) = 1. Suppose � 6= �. Then �(O) < �(O),

i.e. �(O\ s(X)) < �(O\ s(X)), for some open O � D. The set X n s

�1

O is a closed and

therefore a G

�

subset of the metric space X. Hence, s(X n s

�1

O) = s(X) n (O \ s(X))

is, by Proposition 4.1(ii) a G

�

subset of D. Therefore,

�(s(X)) = �(O \ s(X)) + �(s(X) nO \ s(X))

> �(s(X) \O) + �(s(X) nO \ s(X)) = 1;

which is a contradiction.

We will show below that e is a topological embedding. This means that the topology on

im(e) induced from the weak topology by e :M

1

X ! P

1

D and the relative Scott topol-

ogy on im(e) � PD coincide. We �rst state a suitable characterisation of convergence of

a sequence of measures on X in the weak topology.



Mathematical Structures in Computer Science 9

Proposition4.3. (Stroock 1993) For a separable metric spaceX and a sequence h�

m

i

m�0

in M

1

X, we have: lim

m!1

�

m

= � in the weak topology i�

lim inf

m!1

�

m

(O) � �(O)

for all open subsets O � X.

The theorem below gives a similar criterion for the convergence of a sequence of valu-

ations in PD.

Lemma 4.1. (Kirch 1993, page 46) Let � =

P

a2A

r

a

�

a

be a simple valuation and �

a continuous valuation on a continuous dcpo D. Then � � � i� for all B � A we have

P

a2B

r

a

< �(

"

"B), where

"

"B = fx 2 D j 9b 2 B: b� xg.

Theorem 4.1. Suppose D is an !-continuous dcpo and h�

m

i

m�0

is a sequence in PD.

Then, �

m

! � as m!1 in the Scott topology i�

lim inf

m!1

�

m

(O) � �(O)

for all Scott open subsets O � D.

Proof. Suppose �

m

! � as m ! 1 and let O � D be Scott open. Assume � > 0 is

given. Since PD is continuous with a base of simple valuations, � is the directed lub of

simple valuations way below it. As �(O) = sup

���

�(O), there exists � � � such that

�(O) > �(O)� �. Since �

m

! � and

"

"� is Scott open, there exists N � 0 such that for

all m � N we have � � �

m

. Therefore, �

m

(O) � �(O) > �(O)� � for all m � N . This

shows that lim inf

m!1

�

m

(O) � �(O).

Conversely, suppose h�

m

i

m�0

does not converge to � in the Scott topology. Since the

simple valuations below � induce a neighbourhood basis for �, there exists a sim-

ple valuation � =

P

a2A

r

a

�

a

with � � � and a subsequence h�

m

i

i

i�0

such that

� �6 �

m

i

for all i � 0. By Lemma 4.1, for each i � 0 there exists B � A with

�

m

i

(

"

"B) � �(

"

"B) < �(

"

"B). Since the set of subsets of A is �nite, there exist B � A and

a subsequence h�

m

i

j

i

j�0

such that �

m

i

j

(

"

"B) � �(

"

"B) < �(

"

"B) for all j � 0. Therefore,

lim inf

m!1

�

m

(

"

"B) � �(

"

"B) < �(

"

"B) which contradicts our assumption.

The above theorem can be easily generalised to converging nets in PD for any continuous

dcpo D.

Corollary 4.1. The mapping e :M

1

X ! PD is a topological embedding.

Proof. To show that e is continuous, let h�

m

i

m�0

be a sequence in M

1

X with

lim

m!1

�

m

= �. We need to check that e(�

m

) ! e(�) in PD as m ! 1. For any

open subset O � D we have:

lim inf

m

(e(�

m

))(O)

= lim inf

m

�

m

(s

�1

(O))

� �(s

�1

(O)) by Proposition 4.3

= (e(�))(O):

It follows by Theorem 4.1 that e(�

m

)! e(�) as m!1.

To show that j : im(e) !M

1

X is continuous, let h�

m

i

m�0

be a sequence in im(e) with

lim

m!1

�

m

= �. Since s : X ! D is an embedding, for any open subset O � X we have



Abbas Edalat 10

s(O) = O

0

\ s(X) for some open subset O

0

� D. Therefore,

lim inf

m

(j(�

m

))(O)

= lim inf

m

�

m

(sO)

= lim inf

m

�

m

(O

0

\ sX)

= lim inf

m

�

m

(O

0

) �

m

is supported in sX

� �(O

0

) by Theorem 4.1

= �(O

0

\ sX) � is supported in sX

= (j(�))(O):

It follows by Proposition 4.3 that j(�

m

)! j(�) as m!1.

We conclude that in the domain-theoretic framework for measure theory, the Scott topol-

ogy is indeed an extension of the classical weak topology on measures, the most important

topology used in measure theory.

We conclude this section with an application in iterated function system (IFS) theory.

An IFS with probabilities on a compact metric space X is given by a �nite collection

of continuous maps f

i

: X ! X each with a probability weight p

i

> 0, i 2 �

N

=

f1; 2; � � �; Ng with

P

N

i=1

p

i

= 1. The Markov operator T :M

1

X !M

1

X is given by

T (�)(B) =

N

X

i=1

p

i

�(f

�1

i

(B))

for any Borel subset B � X. An IFS with probabilities is hyperbolic if the maps f

i

are

contracting for i = 1; : : : ; N . For such an IFS, Hutchinson (Hutcjinson 1981) showed, by

de�ning a metric on M

1

X with respect to which the Markov operator is a contracting

map, that this operator has a unique �xed point, the so-called the invariant measure of

the IFS.

A generalisation of the above notion of an IFS was introduced in (Edalat 1996). An

IFS with probabilities is weakly hyperbolic if for each in�nite sequence i

1

i

2

: : : 2 �

!

N

,

the intersection

T

n�1

f

i

1

f

i

2

: : : f

i

n

X is a singleton set. Note that this de�nition also

makes sense for an IFS with probabilities on a compact metrizable space. It was shown

in (Edalat 1996) that for a weakly hyperbolic IFS with probabilities the Markov operator

has a unique �xed point �

�

. In fact �

�

� s

�1

, where s : X ! UX is the singleton map,

is the unique �xed point of the map

H : P

1

UX ! P

1

UX

� 7! H(�)

de�ned by H(�)(O) =

P

N

i=1

p

i

�(f

�1

i

(O)). We can now obtain the full generalization of

Hutchinson's result.

Theorem 4.2. For any weakly hyperbolic IFS with probabilities, the sequence hT

m

�i

m�0

of the iterates of the Markov operator T converges in the weak topology, for any initial

� 2M

1

X, to the unique invariant measure �

�

of the IFS.

Proof. Since �

X

is the least element of P

1

UX, we have �

X

v ��s

�1

. By monotonicity

of H we obtain H

m

�

X

v H

m

(� � s

�1

) = (T

m

�) � s

�1

. Since the sequence hH

m

�

X

i

m�0
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converges in the Scott topology to �

�

� s

�1

=

F

m�0

H

m

�

X

, it follows that the same is

true for the sequence (T

m

�) � s

�1

. By Corollary 4.1, hT

m

�i

m�0

converges in the weak

topology to �

�

.

5. Computation of Integrals

In Section 3, we showed how a normalised measure � on a compact metric space X can

be obtained, via the embedding of M

1

X onto the set of maximal elements of P

1

UX, as

the lub of an increasing chain of simple valuations onUX. In this section we will examine

the converse problem. Suppose A � P

1

UX is a directed set of simple valuations, and we

would like to know when the lub

F

A of A determines a Borel measure on X. We obtain

a necessary and su�cient condition such that

F

A is a maximal element of P

1

UX and

therefore corresponds to an element � 2M

1

X. We then show that when this condition is

e�ectively satis�ed, we can compute the expected value of any H�older continuous function

with respect to � up to any desired accuracy. We denote the diameter of any compact

subset c � X by jcj.

Proposition 5.1. We have

F

A 2 M

1

X i� for all � > 0 and all � > 0, there exists

P

c2C

r

c

�

c

2 A with

P

jcj��

r

c

< �.

Proof. The `only if' part is proved in (Edalat 1995b, Proposition 4.14). For the `if'

part, assume � =

F

A =2 M

1

X. Then �(s(X)) < 1. For each n � 1, let fb

i

j i 2 I

n

g

be the collection of all open balls of X with radius less than

1

n

. Put O

n

=

S

i2I

n

2b

i

.

We have s(X) =

T

n�1

O

n

. Therefore, �(s(X)) = inf

n

�(O

n

) < 1 and there exists n � 1

such that 1 � �(O

n

) = � > 0. By assumption there exists � =

P

c2C

r

c

�

c

2 A with

P

jcj�1=n

r

c

< �. It follows that �(O

n

) � �(O

n

) > 1� � which is a contradiction.

Corollary 5.1. If for all � > 0 there exists

P

c2C

r

c

�

c

2 A with jcj � � for all c 2 C,

then

F

A 2M

1

X.

We say an increasing chain h�

i

i

i�0

of simple valuations in P

1

UX with lub � 2 M

1

X

is an e�ective approximation of � if for all positive integers m and n there exists i � 0,

recursively given in terms of m and n, such that �

i

=

P

c2C

r

c

�

c

satis�es

P

jcj�1=m

r

c

<

1=n.

Example 5.1. For any � 2 M

1

X, which is given by its values on a countable basis of

X closed under �nite unions and intersections, the chain of simple valuations �

A

i

, i � 1,

in Section 3 is an e�ective approximation of � since �

A

i

is made up of compact subsets

with diameters less than 1=i.

Suppose � 2M

1

X has an e�ective approximation by a chain of simple valuations h�

i

i,

i � 0. Assume that we have a H�older continuous function f : X ! R, i.e. there are

constants k � 0 and h > 0 such that jf(x)� f(y)j � k(d(x; y))

h

for all x; y 2 X, and let

jXj be the diameter of X. We can then compute the expected value of f with respect to

� up to any given accuracy as follows. Let � > 0 be given. Choose the positive integers

m and n with 1=m < (�=2k)

1=h

and 1=n < �=(2kjXj

h

), and let the integer i be such that

�

i

=

P

c2C

r

c

�

c

satis�es

P

jcj�1=m

r

c

< 1=n. We have

S

`

(f; �

i

) �

Z

f d� � S

u

(f; �

i

); S

`

(f; �

i

) � S

�

(f; �

i

) � S

u

(f; �

i

)
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where S

�

(f; �

i

) is any generalised Riemann sum for �

i

. For any c 2 C we have sup f [c]�

inf f [c] � kjXj

h

; whereas for c 2 C with jcj < 1=m we have sup f [c] � inf f [c] < �=2.

Hence,

j

R

f d�� S

�

(f; �

A

)j � S

u

(f; �

i

)� S

`

(f; �

i

) =

N

X

c2C

r

c

(sup f [c]� inf f [c])

=

X

jcj�1=m

r

c

(sup f [c]� inf f [c]) +

X

jcj<1=m

r

c

(sup f [c]� inf f [c])

� �=2 + �=2 = �:

Therefore any Riemann sum for �

i

gives the value of the integral up to � accuracy. We

have then shown:

Theorem 5.1. The expected value of any H�older continuous function on a compact

metric space can be obtained up to any given accuracy with respect to any normalised

measure with an e�ective approximation by an increasing chain of normalised valuations

on the upper space of the metric space.

6. Computation at the Edge of Chaos

Feigenbaum's discovery of the periodic doubling route to chaos is one of the major scien-

ti�c achievements of the recent decades. We �rst give a brief account of the subject (De-

vaney 1989; de Mello and van Strien 1993).

The prototype of a dynamical system following this universal route to chaos is provided

by the Logistic family,

f

c

: [0; 1] ! [0; 1]

x 7! cx(1� x)

where c is a real number which increases from 1 to 4.

For 1 = c

0

< c < 3, the orbit hf

n

c

(x)i

n�0

of any x 2 (0; 1) converges to the unique

attracting �xed point

c�1

c

of f

c

. At c = c

1

= 3, a periodic doubling bifurcation takes

place: The attracting �xed point loses its stability and becomes repelling; at the same

time an attracting periodic orbit of period two is born nearby. For c

1

< c < c

2

, where

c

2

� 3:499, the !-limit set

y

of the orbit of any point x 2 (0; 1) n f

c�1

c

g is the period-

two orbit. At c = c

2

, the family undergoes another period doubling bifurcation. The

period-two orbit becomes repelling and at the same time an attracting period-four orbit

is created nearby.

This periodic doubling scenario is repeated ad in�nitum at c

1

< c

2

< c

3

< : : : <

c

n

< : : :, such that at c

n

(n � 1) the attracting orbit of period 2

n�1

becomes repelling,

but in its neighbourhood an attracting orbit of period 2

n

is created. For each n � 1,

the dynamics of f

c

for c

n�1

< c < c

n

is quite simple: the !-limit set of the orbit of

almost all points in [0; 1] is the periodic orbit of period 2

n�1

. In the limit, we have

c

1

= lim

n!1

c

n

� 3:569. For c > c

1

, the system can exhibit chaotic behaviour. This

y

The !-limit set of a sequence is the set of limits of all its convergent subsequences.
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Fig. 1. Periodic doubling bifurcation of the Logistic family

means that the !-limit set of the orbit of a typical point is a strange attractor: the orbit

wanders around an attracting in�nite set and the orbits of two close points will eventually

diverge from each other. Figure 1 depicts the attractor of the system as c increases from

1 to c

1

.

At c = c

1

the system is at the edge of chaos, which we will now study.

The dynamics of f

c

1

is determined by the orbit x

n

= f

n

c

1

t (n � 0) of the turning

point t = :5 where the derivative of f

c

vanishes. See Figure 2.

In fact f

c

1

is an example of a Feigenbaum map. Feigenbaum maps are the prototype

of in�nitely renormalizable maps, which are of basic importance in discrete dynamical

systems. We will not de�ne these terms here and refer to (de Mello and van Strien 1993)

for the precise de�nitions. Here, we need to use some basic properties of a Feigenbaum

map which we will now state.

A Feigenbaum map f : [0; 1] ! [0; 1] with f(0) = f(1) = 0 is piecewise monotone,

continuous and has precisely one turning point t which is therefore a maximum. Fur-

thermore, for each n � 0, the 2

n+1

points hx

n

i

2

n+1

n=1

of the orbit of the turning point t

induce 2

n

disjoint closed intervals I

n

j

, with end points x

j

= f

j

(t) and x

j+2

n

= f

j+2

n

(t)

(1 � j � 2

n

) such that

(i) fI

n

j

= I

n

j+1

(j � 1, mod 2

n

). The orbit of any x 2 (0; 1) is eventually trapped in

I

n

=

S

1�j�2

n

I

n

j

for each n � 0.

(ii)The intervals I

n+1

j

(1 � j � 2

n+1

) are nested in the intervals I

n

j

(1 � j � 2

n

) for

each n � 0, as shown for f

c

1

in Figure 3.

This is similar to the way the Cantor set is constructed. In fact, assume from now

on that f is C

2

(i.e. has a continuous second derivative) and that t is a non-at point

(i.e. there exists a C

2

di�eomorphism � : R! [0; 1] with �(0) = t such that f � � is a
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Fig. 2. The graph of f

c

1

and the orbit of 0.5

Fig. 3. The construction of the attractor of the Feigenbaum map

polynomial near the origin (de Mello and van Strien 1993, page 156)) then the length of

the longest interval among I

n

j

(j = 1; : : : ; 2

n

) tends to zero as n! 1. In this case, the

intersection A =

T

n�0

I

n

is indeed a Cantor set which is the strange attractor of the

system. (See (de Mello and van Strien 1993, pages 113 and 350).)

Furthermore, it is also known that there exists a unique probability measure �

�

2

M

1

[0; 1] which is invariant with respect to f , i.e. it is a �xed point of the map

M

1

f : M

1

[0; 1] ! M

1

[0; 1]

� 7! � � f

�1

:

The support of �

�

is the strange attractor A and �

�

is the unique Bowen-Ruelle-Sinai
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measure for f , i.e. it satis�es,

lim

n!1

1

n

n

X

i=1

�(f

i

x) =

Z

�d�

�

;

for any continuous function � : [0; 1]! Rand almost all x 2 [0; 1]. Indeed �

�

is an ergodic

measure: The time average of any continuous function � (LHS of the above equation) is

the same as its space average with respect to �

�

(RHS of the equation). Moreover, if for

x

n

2 I

n

we put

�

n

=

1

2

n

2

n

X

j=1

�

x(j;n)

;

where x(j; n) = f

j

x

n

, then lim

n!1

�

n

= �

�

in the weak topology. Therefore, for any

continuous function � : [0; 1]! Rwe have:

lim

n!1

Z

�d�

n

= lim

n!1

1

2

n

2

n

X

j=1

�(f

j

x

n

) =

Z

�d�

�

:

We obtain an algorithm to compute

R

�d�

�

for a H�older continuous function � up

to a given threshold of accuracy � >0. This can be achieved by moving from the space

M

1

[0; 1] equipped with the weak topology into the larger space P

1

I[0; 1] equipped with

the Scott topology. Here, I[0; 1] is the !-continuous dcpo of closed subintervals of the

unit interval ordered by reverse inclusion. Alternatively, we can work with P

1

U[0; 1].

Put

�

n

=

1

2

n

2

n

X

j=1

�

I

n

j

:

We have the following domain-theoretic construction of the invariant measure of f .

Theorem 6.1. The unique invariant measure of a C

2

Feigenbaum map with a non-at

turning point is �

�

=

F

n�0

�

n

.

Proof. As the intervals I

n+1

j

are nested in I

n

j

, it follows, by the Splitting Lemma (Edalat

1995b), that �

n

v �

n+1

for each n � 0. Since the length of the longest interval among I

n

j

(j = 1; : : : ; 2

n

) tends to zero as n!1, it follows by Corollary 5.1 that

F

n�0

�

n

2 im(e)

and it therefore gives a measure on [0; 1]. Furthermore, each �

n

is a �xed point of

P

1

If : P

1

I[0; 1] ! P

1

I[0; 1]

� 7! � � f

�1

;

because

�

n

� f

�1

=

1

2

n

2

n

X

j=1

�

fI

n

j

= �

n

as f permutes the 2

n

intervals I

n

j

(j � 1, mod 2

n

). Since P

1

If is Scott continuous, the

lub

F

n�0

�

n

is a �xed point of P

1

If and hence a �xed point ofM

1

f . By the uniqueness

of the invariant measure �

�

, it follows that �

�

=

F

n�0

�

n

.

Note that �

n

v �

n

in P

1

I[0; 1] for each n � 0: Without loss of generality assume
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x

n

2 I

n

1

, then f

j

x

n

2 I

n

j+1

for j � 1, mod 2

n

. By the Splitting Lemma, we obtain

�

n

v �

n

for each n � 0.

Assume that � : [0; 1]! R is a H�older continuous function satisfying j�(x)� �(y)j �

c(jx� yj)

h

for all x; y 2 [0; 1] for some c � 0 and h > 0. Let � > 0. To compute

R

�d�

�

up to � accuracy, we obtain the least n � 0, say n

�

, such that the length of the longest

interval among I

n

j

(1 � j � 2

n

) is less than (�=c)

1=h

, i.e. jf

j

(t)� f

j+2

n

(t)j � (�=c)

1=h

for

all j = 1; 2; : : : ; 2

n

. A Riemann sum for �

n

�

is given by

S

�

=

1

2

n

�

2

n

�

X

j=1

�(f

j

(t)):

It follows as in Section 5 that jS

�

�

R

�d�

�

j � �. Therefore S

�

is the required approxi-

mation.

The above domain-theoretic technique can also be applied to Fibonacci maps which

are the prototype of non-renormalizable maps (de Mello and van Strien 1993) and one

can compute the expected value of any H�older continuous map with respect to the unique

invariant measure of a Fibonacci map.
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