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Abstract 

 

We develop an emotionally influenced goal-directed decision making model based on 

Levine’s architecture for cognitive-emotional decision making in the human animal. 

Employing the notion of strong attractor in Hopfield network, and integrating with the 

above model, we model attachment types and how they undergo change in 

psychotherapy. We also study how the degrees of strong patterns influence its stability in 

the present of other random patterns. Finally, we introduce a feedback control theory to 

mimic the control from orbitofrontal cortex to the amygdala, of which the outputs are 

influenced by heuristic signals when the cortex control is absent. 
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Chapter	  1	  

Introduction	  
	  

1.1 Introduction	  and	  Motivation	  

The World Health Organization (WHO) reports that there are over a third of people in most countries 
suffering from mental disorders, which has become the major issue of our society. A number of types of 
psychotherapy have been developed to deal with emotional problems and mental health conditions and 
have been proven to be effective, such as psychodynamic psychotherapy (Shedler, 2010) and cognitive 
behavioral therapy (Rothbaum, 2000). Furthermore, some researchers suggested that it is the time to 
model the behavior of the psychotherapy (Wedemann, 2009) mathematically.  

The Hopfield network (Hopfield, 1982), based on Hebbian’s rule for learning (Hebb, 1949), emerges to 
model a simple conceptual brain model. Edalat (2013a) and his students, via mathematically approaches 
and computer simulations, proved that the strong attractors are more stable than simple attractor in the 
Hopfield model and studied the relation between different strong attractors to show how a strong attractor 
could be replaced by other strong attractors. He proposed that strong attractors could be used to model 
attachment types in psychotherapy, and change between strong attractors could explain how attachment 
types undergo change. Such change can be achieved by reinforcement learning reinforcing the positive 
attachment types or behaviors because the brain is plastic and its structure can change during 
development. The best-known learning rule is spike time dependent plasticity (STDP), which can be 
thought of reinforcement learning in conjunction with a reward signal。 

The RBMs, a simplified form of Boltzmann machines (Hinton, 1986), is famous of its high efficiency and 
high effectiveness. It has successfully modelled different types of data, such as unlabelled images (Hinton, 
2006), user rating of movies (Salakhutdinov, 2007), temporal signals (Mohamed, 2010). We propose here 
that RBMs are able to category some metaphorical forms of emotional signals in one’s brain. 

The motivation of this project is, using computer technology, to build a brain model that mimics the 
change between super attractors under reinforcement learning, and the influence of the dominant 
attractors on subcortical decision making. We aim to use artificial neural networks (Hopfield model and 
RBM) to construct an artificial brain based on the brain model proposed by Levine (2009), which 
successfully describes an emotionally influenced, goal-directed decision making network in the human 
animal. 
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1.2 Report	  Structure	  

This report consists of an introduction chapter that has shown above and four main chapters: 

• Chapter2 constitutes a summary of background knowledge about content-addressable memory and 
Hopfield network, and an experiment on the study of stability of strong attractors in Hopfield model. 

• This report consists of an introduction chapter that has shown above and four main chapters: 

• Chapter3 constitutes a summary of background knowledge about restricted Boltzmann machine and 
descriptions of a RBM we trained for this project. 

• Chapter4 give a full description of Levine’s emotionally influenced goal-directed decision making 
model, and full description of how my model copes with Levine’s. 

• Chapter5 constitutes a summary of background knowledge about psychotherapy and Q-learning 
algorithm. We also put a full description of Q-learning algorithm designed to mimic the behavior of 
psychotherapy. We also studied the difference between the model with and without the control from 
OFC. 

• Chapter6 describes the entire system containing all components we designed in previous chapters, 
and it also describes how these components communicate with each other. 

• In Chapter7 we look our project back in a critical way, and suggest some points that can be 
improved in the future. 
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Chapter	  2	  

Hopfield	  Network	  

	  

2.1 Background	  Review	  

• The associative memory 
The Hopfield network can be thought of associative memory, where the network stores a set of 𝑝 
patterns 𝜉!

!, and recalls the most appropriate pattern when a stimulus, 𝜁!, to the network is presented. 
The patterns are labeled by 𝜇 = 1, 2,… , 𝑝, and the neurons in the network are label by 𝑖 = 1, 2,… ,𝑁. 
The most appropriate pattern recalled by the network is the pattern that is closet to 𝜁!. These stored 
patterns are called attractors in the space of all possible states of the network (see Fig 2.1). Different 
attractors have their own basins of attraction in the whole configuration space. The configuration states of 
the network will eventually converge into one of the attractors, as shown by the trajectories sketched. In 
the Hopfield network, the stored patterns are not the only attractor, and there are others such as spurious 
states, which will be discussed in the following section. 

 

FIGURE 2.1 Schematic configuration space of a model with three attractors. 
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• Hopfield model 
A basic Hopfield network is a form of single-layered recurrent network of artificial neurons, G =〈V, E〉, 
which comprises a set V of nodes (or McCulloch-Pitts neurons) and a set 𝐸 ⊆ 𝑉×𝑉 of edges (or 
connections). Each node of the network is connected symmetrically to any other node in V except for the 
node itself, that is, the network forbids self-connections. A connectivity matrix W can be generalized to 
account for different connection strength, which can be +1 (firing), -1 (not firing), or 0, accounts for 
disconnected pairs. The model neuron receives weighted outputs from other neurons, and yields a +1 or 
-1 signal according to whether the sum of the received signals is above or below a certain threshold, 
leading to the dynamics of the network to read 

 
𝑆! ≔ 𝑠𝑔𝑛 𝜔!"𝑆! − 𝜃!

!

 
 

(2.1) 

where the sign function 𝑠𝑔𝑛(𝑥) is taken to be 

 
𝑠𝑔𝑛 𝑥 = 1              𝑖𝑓  𝑥 ≥ 0;

−1        𝑖𝑓  𝑥 < 0; 
(2.2) 

and the threshold 𝜃! is dropped, taking 𝜃! = 0, because it makes no sense if the random patterns are 
considered to be stored in the network. Thus Equation (2.1) becomes 

 
𝑆! ≔ 𝑠𝑔𝑛 𝜔!"𝑆!

!

 
 

(2.3) 

The neurons of the network can be updated either synchronously or asynchronously. The synchronous 
updating rule updates all units simultaneously at each time step, while the asynchronous updating rule 
updates them one at a time. For this project, asynchronous updating rule is chosen because it is more 
natural for both brains and artificial networks. It will proceed in the way: 

At each time step, a unit will be selected randomly, and rule (2.3) is applied to the unit.  

 
• “Hebb rule” learning phase 
During a learning phase, the network memorizes desired patterns, 𝜉!, by changing the connectivity 
matrix according to  

 
𝜔!" =

1
𝑁

𝜉!
!𝜉!  

!
!

!!!

 
 

(2.4) 

where p is the total number of stored patterns labeled by 𝜇. 

As the hypothesis made by Hebb that “units that fire together, wire together” has similarity with (2.4), 
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this equation is usually called the “Hebb rule”. The “Hebb rule” Equation (2.4) accounts directly for the 
correlation between the firing of the pre/post neurons. However, Equation (2.4) is probably not 
physiologically reasonable because neither of the units is firing (𝜉!

! = 𝜉!  
! = −1) can change the weights 

positively. In this project, we use the unchanged form. 

 
• Stability 
The analysis of the stability of all stored patterns in the network is important because the configuration of 
the system is supposed to converge to some stable attractor that is near to the initial configuration. A 
particular pattern 𝜉!! is said to be stable if it satisfies the stability condition 

 𝑠𝑔𝑛 ℎ!! = 𝜉!! (for all 𝑖) (2.5) 

where the net input to unit 𝑖 in pattern 𝑣, ℎ!!, is the sum of weighted output from other neurons 

 ℎ!! ≡ 𝜔!"𝜉!!

!

 (2.6) 

and the Hebb rule allows to substitute 𝜔!" with !
!

𝜉!
!𝜉!  

!!
!!! , so that 

 
              ℎ!! =

1
𝑁

𝜉!
!𝜉!  !𝜉!!

!!

 
 

If we extract the special term 𝜇 = 𝜈 from the sum on 𝜇, the net input becomes 

 
ℎ!! = 𝜉!! +

1
𝑁

𝜉!
!𝜉!  

!𝜉!!

!!!!

 
 

If the second term, which is call the crosstalk term, were small enough or zero, pattern 𝜐 could be 
concluded to be stable immediately according to the stability condition described above, because the sign 
of ℎ!! will not change if the magnitude of the crosstalk term is small enough. Therefore, the number of 
stored patterns 𝑝 is supposed to be small enough (compared to the size of the system, 𝑁) to ensure that 
for all 𝑖 and 𝑣 the crosstalk term can be small enough, that is, all stored patterns are stable. Determining 
the maximum number of stored patterns refers to the analysis of storage capacity. 

 
• Storage capacity 
The storage capacity 𝑝!"# of the network is the fundamental analysis of the Hopfield network. It refers 
to the maximum number of patterns that can be stored with acceptable errors, in terms of 𝑃!!!"!, which is 
the probability of error per bit. To understand the term 𝑃!""#", let us multiply the crosstalk term by −𝜉!!, 
which is desired, obtaining the quantity 

(2.7)	  

(2.8)	  
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𝐶!! = −𝜉!!

1
𝑁

𝜉!
!𝜉!

!𝜉!!

!!!!

 
 

If unit 𝑖 of pattern 𝜈 is unstable, 𝐶!! is positive and larger than 1, which leads to the change of the sign 
of ℎ!!. For each unit of stored patterns that are generated randomly, the probability 𝑃!""#" that this unit 
is unstable: 

   𝑃!""#" = 𝑃𝑟𝑜𝑏(𝐶!! > 1) (2.10) 

With the assumption that both 𝑁 and 𝑝 are large compared to 1, the distribution of values for 𝐶!! is 
subject to a binomial distribution with mean zero and variance 𝜎! = 𝑝/𝑁. But this distribution can be 
thought of a Gaussian distribution with the same mean and variance (see Fig 2.2). Therefore, the 
probability 𝑃!""#" is defined as 

 
𝑃!""#" =

1
2𝜋𝜎

𝑒!!!/!!!𝑑𝑥
!

!
 

 

and then it can be expressed in terms of 𝑁 and 𝑝 

 
𝑃!""#" =

1
2
[1 − erf

𝑁
2𝑝

] 
 

where the term erf(𝑥) is called error function and it is defined by 

 
erf  (𝑥) ≡

2
𝜋

exp −𝑢! 𝑑𝑢
!

!
 

 

Once 𝑃!""#"  is defined in terms of 𝑝 and 𝑁, it is necessary to choose a criterion for acceptable 
performance so that we can find the maximum number of patterns that can be stored in the system with 
little bits slip compared to the desired pattern. For instance, if we accept that 0.37% of the bits are 
unstable initially, the maximum number of patterns can be 𝑝!"# = 0.138𝑁. The whole procedure above 
is based on the assumption that all stored patterns are generated randomly. However, realistic patterns 
will be somewhat correlated, so that the capacity of the system will decrease dramatically.  

 

• The Energy function 
Based on the two assumptions that symmetric connections and no self-connections, Hopfield introduced 
the idea of an energy function into the Hopfield network. The energy function is a Lyapunov function that 
decreases during the system evolves until its states reach some local minimum (stored pattern), and it is 
expressed as following: 

𝐻 = − !
!

𝜔!"𝑆!𝑆!!" .  (2.14) 

(2.9)	  

 (2.11)	  

(2.12)	  

 (2.13)	  



A	  Neural	  Model	  of	  Psychotherapy	  Motivated	  by	  Attachment	  and	  CBT	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   September	  2013	  
	  

	   7	  

 

 

FIGURE 2.2 The distribution of values for 𝐶!! given by (2.13). For 𝑝 random patterns and 𝑁 units this 
is a Gaussian function with mean zero and variance 𝜎! = 𝑝/𝑁 . The brushed area is 𝑃!!!"! , the 
probability of error per bit.  

 

And for symmetric connections Equation (2.14) can be separated into a term accounting for 
self-connections (𝑖𝑖 terms) and a term accounting for the distinct pairs 𝑖𝑗 

𝐻 = 𝐶 − 𝜔!"𝑆!𝑆!(!") .    (2.15) 

The new value 𝑆!! of 𝑆! is calculated using equation (2) for a particular i; the new value, 𝐻!, of the 
network after updating is as follows: 

𝐻! 𝑆 =   − !
!

𝜔!"𝑆!!𝑆!!!! .           (2.16) 

If the state of the unit is unchanged, 𝐻! 𝑆 − 𝐻 𝑆 = 0, otherwise, 𝑆!! = −  𝑆!, and the following is 
applied: 

𝐻! 𝑆 − 𝐻 𝑆 = −
1
2

𝜔!"𝑆!!𝑆!
!!!

+
1
2

𝜔!"𝑆!𝑆!
!!!

 

                                                                                                                          =   𝑆! 𝜔!"𝑆!!!!   

= 𝑆! 𝜔!"𝑆!! − 𝜔!!              (2.17) 

Because 𝑆!! and the term 𝜔!"𝑆!!  have the same sign, the left term must be negative. The right term is 
also negative because the Hebb rule defines 𝜔!! as the ratio of the number of stored patterns to the size 
of the network. Therefore, the energy of the network will always decrease until the network reaches a 
steady state (i.e., attractor) with its dynamical updating rule.  

𝑃(𝐶!!)	  

𝜎 = !𝑝/𝑁	  

𝐶!!	  

𝑃!""#! 	  
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For simplicity, we assign 𝜔!! = 0. It makes no significant difference to the stability of the patterns when 
the network size is very large. Additionally, it is proven (Kanter and Sompolinsky, 1987) that assuming 
𝜔!! = 0 prevents producing stable spurious states near a desired attractor. 

 
• Spurious states 
The Hebb rule shows that there are local minima of the energy function, i.e., attractors, at the desired 
pattern, 𝜉!. However, linear combinations of an odd number of patterns results in a stable mixture state, 
𝜉!!"#, leading to poor performance of the system. 

Consider the simplest case of these mixture states, the symmetric combinations of three stored patterns as 
follows: 

𝜉!!"# = 𝑠𝑔𝑛(±𝜉!
!! ± 𝜉!

!! ± 𝜉!
!!).  (2.18) 

It means that the 𝜉!!"# has the same sign as 𝜉!
!! if and only if 𝜉!

!! and 𝜉!
!! both are opposite to 𝜉!

!!. 
The Hamming distance from 𝜉!!"# to 𝜉!

!! is therefore N/4, where N is the size of the network. 

 
• The “temperature” 
The analogue of temperature can be introduced to network theory to use stochastic units. This is an idea 
borrowed from some simple models of magnetic materials in statistical physics. For deterministic units 
we have its dynamics that: 

𝑆! ≔
+1  if  ℎ! ≥ 0
−1  otherwise

,  (2.19) 

where ℎ! is the input to unit 𝑖, while the stochastic rule: 

𝑆! ≔
+1                        with  probability  𝑔 ℎ! ;
−1  with  probability  1 − 𝑔 ℎ! .

 (2.20) 

The pseudo temperature, 𝑇, characterises the function 𝑔(ℎ) and the sigmoid-shaped function is adopted 
to represent 𝑔(ℎ) 

𝑔(ℎ) = 𝑓!(ℎ) ≡
!

!!!"#  (!!!!)
 (2.21) 

where 𝛽 is related to 𝑇 by 

𝛽 = !
!
.  (2.22) 

The sigmoid function with different values of 𝛽 is illustrated in Fig 2.3. As  

1 − 𝑓! ℎ = 𝑓!(−ℎ) (2.23) 
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the dynamic rule (2.19) can be of the symmetrical form 

Prob 𝑆! = ±1 = 𝑓! ±ℎ! = !
!!!"# ∓!!!!

.  (2.24) 

As shown in Fig 2.3, we can find that when the value of the pseudo temperature 𝑇 → 0, the system 
dynamics become deterministic. 

 

 

 

FIGURE 2.3 The sigmoid function 𝑓!(ℎ) for several values of 𝛽. 

 
• Strong attractors of Hopfield network 
A strong attractor of Hopfield neural network is a pattern that has been stored 𝑑 times in the network. 
We denote that the degree of this pattern 𝜇 is 𝑑!, which means that pattern 𝜉! occurs 𝑑! times in the 
system that stores 𝑝 patterns in total. Pattern 𝜉! is thought of a strong pattern if 𝑑! > 1; otherwise the 
stored pattern is called sample pattern and its corresponding attractor is canned simple attractor. The 
properties, such as stability and the basin in the energy space, of the strong pattern have been examined 
by using fundamental mathematical techniques and various simulations (Edalat and Mancinelli, 2013a). 

The analysis of stability of strong patterns is similar to the analysis of stability of strong patterns: a 
normal distribution is introduced to obtain 𝑃!""#", the probability of error per bit. For a single strong 
pattern with degree 𝑑!, as 𝑁 → ∞, 𝑃!""#" is given by 

𝑃!""#" =
!
!
1 − erf 𝑑!

!
! !!!

,  (2.25) 

where the error function erf(𝑥) has been explain above. 

From Equation (2.25), it is clear that even though the total number of stored pattern 𝑝 is much greater 
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than the size of the system 𝑁, where the classical storage capacity is greatly exceeded, the probability 
that the strong pattern 𝜉! was stable is still very high if 𝑑! is large enough (the capacity becomes 
𝑝 = 0.138×𝑁×𝑑!!,which  has  been  proven  by  Edalat  (2013b)). And it is also confirmed that the higher 
the degree the bigger the basin size of the strong pattern. Therefore, if there exists multiple strong patterns, 
the system configuration will eventually converge to the higher degree attractor with higher probability.  

 
• Modelling attachment types using strong attractors 
	  
The main objective of this section is to model attachment types by using strong attractors in Hopfield 
network. In my project, different attachment types are interpreted as six basic emotions: anger, disgust, 
fear, happiness, sadness and surprise. In training phase, a Hopfield network stores these basic emotions as 
binary patterns. In addition, the changes that they can experience are modelled. 

Before we build the model, some properties of the system is examined. An experiment is set to analyse 
the relation between the degree of strong patterns and the maximum number of stored patterns, in terms 
of the similarity of the input pattern and the recalled pattern, with respect to hamming distance. Also, we 
study the performance of the Hopfield network when two strong patterns have the same degree. 

	  

2.2 Explore	  the	  Model	  

Six simple smiley images corresponding to the six basic emotions are treated as the stored patterns in the 
Hopfield network. These smiley images are useful since they somewhat represent the abstract concept of 
different attachment types.  

In this experiment the six emotion images are stored as the strong patterns with 𝑝! simple patterns that 
are greeted randomly, and I have chosen the anger image as the strongest pattern in the initial Hopfield 
network. This initial Hopfield network represents the memory that is inherited from the early relationship 
with primary caregiver in infancy.  

The six smiley images are that of an anger, a disgust, a fear, a happiness, a sadness and a surprise. These 
are binary images are of dimensions 25×25 pixels, as shown below: 
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FIGURE 2.4 Anger, disgust, fear, happiness, sadness and surprise smiley faces. 

 

• The Network 

The Hopfield network is composed of 625 McCulloch-Pitts neurons (one neuron corresponding to one 
pixel of the image) and edges connecting each pair of them. The updating rule is both deterministic (i.e. 
with pseudo temperature 𝑇 = 0), and asynchronous (updating them neurons one at a time).  This 
experiment will be carried out in two case: storing identical patterns and storing similar patterns. In the 
case that storing identical patterns, this network is storing happiness face for three times, sadness for two 
times, and each of disgust, fear and surprise once. In addition, as the strongest pattern, the degree of anger 
face 𝑘 will be greater than four. And the number 𝑝! of stored patterns that are generated randomly is 
chosen carefully so that the storage capacity does not exceed. For the case that storing similar patterns, 
we will firstly generate a cluster of each pattern by adding random noise on the original one, and store the 
random perturbation of the strong attractors instead of the original pattern. 

In the training phase, the changes of the weights 𝜔!" are subject to the standard Hebb rule, and the 
assumptions that 𝜔!" = 𝜔!" and 𝜔!! = 0 are applied. 

	  
• Storing Identical Patterns 

In this experiment, the original smiley images are stored in the Hopfield network, and the degree of each 
pattern is: 

• Happiness:  3 
• Sadness:    2 
• Disgust:    1 
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• Fear:    1 
• Surprise:  1 

The degrees of patterns above are constant, while the degrees of anger pattern and random pattern, 
notated as 𝑝! and 𝑝! respectively, are varying so that we can find the relation between the stability of 
strong patterns and its degree. 

The test image will be a random image, with equal probability for being firing and not firing for each 
unit. 

For each combination of 𝑝! and 𝑝!, the experiment is repeated for 20 times. And the number of update 
iteration will be up to 100. We determine the stability of the strong pattern by measuring the Hamming 
distance between the recalled pattern and the strongest pattern in the network. The results are displayed in 
Fig 2.5. 

 

• Comments 

As expected, the stability of a strong pattern decreases as the degree of other random patterns increases. 
The strong pattern can always stabilized if its degree is large enough, even in present of very high degree 
of random patterns. According to this result, we can propose that the strong attractors in a Hopfield 
network can be used to model the attachment type in developmental psychotherapy. 
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FIGURE 2.5 The relation between the strong pattern stability and the degrees of strong pattern and 
degrees of random patterns. The stability is measured using average Hamming distance from the recalled 
patterns and the stored strongest pattern. 
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Chapter	  3	  

Restricted	  Boltzmann	  Machine	  

3.1 Background	  Review	  

• Boltzmann machine 

The Boltzmann machine is a stochastic network with symmetric connections, 𝜔!" = 𝜔!", trained by a 
general learning rule introduced by Hinton and Sejnowski [Hinton and Sejnowski, 1983, 1986; Ackley, 
Hinton, and Sejnowski, 1985]. The probability of states of the Boltzmann machine is based on the 
Boltzmann distribution of statistical mechanics. It can be seen as a Hopfield network with a hidden layer 
(Figure 3.1), and the hidden layer has no connection to the outside world. The problem is thus to find the 
appropriate connection between every two units with the learning rule. It is unsupervised learning 
because the representations the hidden units use from the training patterns is not specified.  

 

 

 

FIGURE 3.1 A Boltzmann machine has visible units, vi, and hidden units, hi. This system is fully 
connected. 

 

• Restricted Boltzmann Machine 

Restricted Boltzmann machines (RBMs) are Boltzmann machines with no connections between units 
in the hidden layer or between units in the visible layer (Figure 3.2). Compared to Boltzmann machines, 
RBMs are less weighted and thus perform much faster. They have been applied to represent various types 
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of data, such as user ratings of movies (Salakhutdinov et al., 2007), labelled or unlabelled images (Hinton 
et al., 2006), and bags of words that represent documents (Salakhutdinov and Hinton, 2009). 

 

 

 

FIGURE 3.2 A Restricted Boltzmann machine has visible units, vi, and hidden units, hi. No visible unit is 
connected to any other visible unit, and no hidden unit is connected to any other hidden unit. 

 

An RBM has symmetric weight connections; thus its configuration states, (v, h), including both the 
visible units and hidden units, form an energy function, similar to the Hopfield networks, as follows: 

 𝐸 (𝒗,𝒉) = − 𝑎!𝑣!!∈!"#"$%& − 𝑏!ℎ!!∈!!""#$ − 𝑣!ℎ!𝜔!"!,!      (3.1) 

where 𝑣! and ℎ! represent the binary states of the visible units i and the hidden units j, with their biases 
𝑎! and 𝑏!, respectively, and 𝜔!" is the weight between them.  

This network uses the Boltzmann-Gibbs distribution from statistical mechanics to assign a 
probability to each pair of visible and hidden units as follows: 

𝑃 (𝒗,𝒉) = !
!
𝑒!! (𝒗,𝒉)                        (3.2) 

where the partition function, Z, is the appropriate normalisation factor as follows: 

𝑍 = 𝑒!! (!!,!!)!(!!,!!)                       (3.3) 

The probability of a visible unit, vi, irrespective to any hidden units, h, is given as follows: 

𝑃 (𝑣!) = !
!

𝑒!! 𝒗,𝒉
𝒉                      (3.4) 

 The network is trained by adjusting the weights and biases to minimise the energy of the desired 
patterns and to raise the energy of others because Equation (3.3) shows that the pattern with the lowest 
energy contributes the most to the partition function. The derivative of the log probability of a visible 
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vector with respect to a weight is as follows: 

! !"#!(𝒗)
!!!"

= 𝑣!ℎ! !"#" − 𝑣!ℎ! !"#$%                 (3.5) 

where <> denotes expectations over data or models according to their distribution. Application of 
Equation (3.5) results in a very simple learning rule with the training data as follows: 

∆𝜔!" = 𝜖 𝑣!ℎ! !"#" − 𝑣!ℎ! !"#$% ,               (3.6) 

where 𝜖 is the learning rate. 

An RBM has no direct connections between visible units or between hidden units; thus, given a 
visible vector, the binary state of each hidden unit, hj, is set to 1 with a probability as follows: 

𝑝 ℎ! = 1 𝒗) = 𝜎(𝑏! + 𝑣!𝜔!"! ),                  (3.7) 

where 𝜎(𝑥) is the logistic sigmoid. Given a hidden vector, an unbiased sample of the binary state of 
each hidden unit, vi, is set to 1 with a probability as follows: 

 𝑝 𝑣! = 1 𝒉) = 𝜎(𝑎! + ℎ!𝜔!"! ).                  (3.8) 

Using Equation (3.7), an unbiased sample, 𝑣!ℎ!, of 𝑣!ℎ! !"#" can be obtained. However, it is more 
difficult to obtain an unbiased sample of 𝑣!ℎ! !"#$%. It must be done by setting the state of all visible 
units randomly, and then performing alternating Gibbs sampling for a long time. One round of alternating 
Gibbs sampling involves updating all of the hidden units using Equation (3.7), and then updating all of 
the visible units using Equation (3.8). 

Hinton proposed a much simpler learning procedure in 2002, which is presented in Algorithm 1. This 
learning procedure has achieved success in many applications.  
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3.2 Training	  RBMs	  

A restricted Boltzmann machine is trained to accurately categorize the six emotional patterns and one 
metaphorical pattern, named “thoughtful” pattern (see image below) when the input is some image with 
noise. 

 

• Data 

The data used for this experiment are clusters of the seven images mentioned above. Clusters are 
generated by a simple probabilistic method, starting with a root image and flipping each bit with some 
probability 𝑝. Examples of each image with noise are displayed in Fig 3.3. 

ALGORITHM	  1:	  A	  learning	  procedure	  proposed	  by	  Hinton	  

1) Initialise	  all	  weights	  

2) for	  each	  epoch	  

3) 	   	   	   	   for	  each	  training	  example	  

4) 	   	   	   	   	   	   	   	   set	  visible	  units	  to	  a	  training	  example	  

5) 	   	   	   	   	   	   	   	   update	  hidden	  units	  using	  Equation	  (16)	  

6) 	   	   	   	   	   	   	   	   	   calculate	   〈𝑣!ℎ!〉!"#"	  

7) 	   	   	   	   	   	   	   	   	   “reconstruct”	  visible	  units	  using	  Equation	  (17)	  

8) 	   	   	   	   	   	   	   	   	   do	  step	  4	  

9) 	   	   	   	   	   	   	   	   	   calculate	   〈𝑣!ℎ!〉!"#$%	  

10) 	   	   	   	   	   	   	   	   	   ∆𝜔!" = 𝜖!〈𝑣!ℎ!〉!"#" − 〈𝑣!ℎ!〉!"#$%!	  

11) 	   	   	   	   	   	   	   	   	   update	  weights	  

12) 	   	   	   	   	   Until	  all	  training	  examples	  used	  

13) 	   Until	  maximum	  epoch	  reached	   	  
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Starting from one of the seven iamges, 50 patterns are generated for each root image flipping with 
probability 𝑝 = 0.1. 

 

               

                     

FIGURE 3.3 Anger, disgust, fear, happiness, sadness and surprise smiley faces with noise. 

 

• Implementation 
   The learning procedure is implemented based on Algorithm 1. In addition, some modifications are 
applied to improve the performance of the system. 
 
• Mini-batch Training 
   To increase training efficiency, the system divides all training examples into 10 mini-batches and then 
updates the network batch-by-batch, instead of updating the network example-by-example (see line 3 of 
Algorithm 1). Therefore, the training examples are first ordered randomly then placed into mini-batches 
of 10 examples each. 
 
• Initialisation  
   Large initial random values for the weights may result in a poor final network, even though the initial 
learning occurs faster. In this experiment, the weights are initially set to a small value, chosen from a 
Gaussian distribution with zero mean and a standard deviation of 0.01. All biases are initially set to 0.  
 
• Size of hidden layer 
The way to determine the number of hidden units in the hidden layer is different from the intuition 
derived from discriminative machine learning, where the number of output units is equal to the number of 
bits that is used to specify labels. In the generative learning, however, the model of high-dimension data 
uses more units to specify the latent properties of a training case than number of bits used to specify a 
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label.  
In this experiment, we varied the number of hidden units from 10 to 30, and observed that if the number 
were low, the learner would output an identical vector to specify different categories, namely, the learner 
is not able to distinguish some patterns mentioned above. On the other hand, if the number is too high, the 
learner will introduce some redundancy, using two or more vectors to describe one pattern.  
 
• Learning rate 

Keeping the learning rate reasonably low is a good choice since too large learning rate may make weights 
explode. The drawback of low parameter is it results in a slow learning procedure. 

• Results 

After many attempt, we finally determined the number of hidden units 𝑛! = 18, and the learning rate 
𝜆 = 0.25. Using this combination of parameters, we observed the trained RBM has the capability of 
identifying all of the 50 examples (described in the data section) belonging to any cluster by a 
distinguished vector. 

The binary vectors from the trained RBM corresponding to each pattern are shown below: 

n Anger →     [1  1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1] 
n Disgust →    [1  0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0] 
n Fear →      [1  1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 0] 
n Happiness → [1  0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0] 
n Sadness →   [1  0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0] 
n Surprise →   [1  0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0] 
n Thoughtful → [1  0 1 1 1 1 1 0 1 1 0 0 1 0 0 1 1 0] 
These binary vectors are thought of binary values that are decoded to values in decimal place. These 
decimal values are used for control and comparison purpose in the following section.  

 

• Remark 

In this experiment, we only cared about the ability of the trained RBM to categorize the seven clusters. 
We did not pay too much effort on the efficiency of the algorithm, such as tuning the learning rate 
carefully, considering the momentum, and studying the effect of different types of neurons. Furthermore, 
it is easy to obtain remarkable performance (100% accuracy) because the dimension of input images is 
small. More efforts have to be paid if a real face image is used. 
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Chapter	  4	  

Decision	  Making	  Network	  
	  
In human’s brain, multiple decision rules coexist and compete with each other. These rules are either 
irrationally heuristic or deliberative. The decision rules at different levels of sophistication activate the 
different regions of the brain.  

Levine [2009] presented that it is proved that the heuristic decisions are inherited from emotionally 
influenced decisions made by other mammals, and the deliberative decisions are involving logic 
calculation and working memory manipulation. He illustrated a decision-making system in one’s brain 
encompassing a network of needs, a network of decision rules, and the communication between these two 
subsystems. The network of needs involves physiological as well as psychological needs in different 
levels. These needs compete with each other, and the state of the needs network moves within these needs 
due to discontent. The network of decision rules consists four connected area: the amygdala, the 
orbitofrontal cortex (OFC), anterior cingulate (ACC) and dorsolateral prefrontal cortex (DLPFC), which 
account for various decision rules on specific tasks. These four regions comprise a three-layer network, in 
which the vigilance determines the status of activation of each layer. The state of the needs network 
influences the vigilance so that the winning needs can be dominant to implement the corresponding 
decision rules.  

 

4.1 The	  Network	  of	  Needs	  

• Levine’s Network of Needs 

The network of needs exists in the regions including hypothalamus, midbrain and brain stem. Theses 
regions comprise a competitive-cooperative network is assumed to be an attractor network with an energy 
function that decreases as the system evolving. These attractors stored in the system compete with each 
other, and the some more “optimal” attractors, having lower energy, have more chance to win, so that the 
state of the needs network will converge the them.  

The scheme of the needs network developed by Levine (see Fig 4.1) illustrates biologically how the state 
of the network moves from attractor with higher energy to the one with low energy. That is, as shown in 
Fig 4.1, states with the smallest values of the energy function 𝑉 are the most desirable. In the scheme, 
the world modeler, akin to working memory areas in DLPFC, accounts for calculating the energy 
function for each possible state of the need subsystem and memorizing the one with the lowest energy. 
The “creative discontent” module, which is analogous to some part of the amygdala, receives excitation 
𝑉 signal from the needs subsystem and inhibition 𝑉 signal from DLPFC, and it is activated when the 
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energy of current state of needs module is greater than the energy of the optimal state stored in DLPFC. 
Such activation will lead amygdala to send random noise to needs module so that the state can be changed 
to the global optimization with some probability, which is influenced by the amount of the generated 
noise. 

 

FIGURE 4.1 The schema of a competitive attractor network. This diagram is borrowed from Levine’s 
work (2009). Refer to his paper for detailed description. 

 

 

FIGURE 4.2 A neural network rendition of Maslow’s hierarchy of needs. This diagram is borrowed from 
Levine’s work (2009). Refer to his paper for detailed description. 
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• The Needs Module 

Levine developed the needs module as the interpretation of Maslow’s hierarchy of needs (1968). Maslow 
added the idea of psychological needs, such as love, esteem, and self-fulfillment, to the purely 
physiological needs. These needs in the needs module inhibit others while send excitatory signal to 
themselves, and normally the physiological needs have the strongest self-excitation (see Fig 4.2). The 
degrees of strong attractors in this network depend on the number of needs that these attractors have 
satisfied.  

• Modelling	  the	  Network	  of	  Needs	  with	  Hopfield	  Network	  

The rendition of Maslow’s hierarchy of needs in Fig 4.2 can be modified to a two-layer hierarchy 
containing need for cognition (Cacioppo & Petty, 1982) and need for cognitive closure (Webster 
&Kruglanski, 1994). Need for cognition is thought of the motivation to analyze arguments deeply, and 
individuals with high need for cognition are more likely to make deliberative decisions. Need for 
cognitive closure is thought of the motivation to make decisions without thinking about the relevant 
issues, and individuals with high need for cognitive closure are more likely to make heuristic decisions.  

Here we employ a standard Hopfield network designed in Section 2 to model Levine’s needs diagram. 
Six basic emotions and one “thoughtful” pattern are stored as strong patterns in the system with various 
degrees. Let us assume that the emotional patterns are strongly correlated to the need for cognition and 
the thoughtful pattern is strongly correlated to the need for cognitive closure. That is, increasing the 
degree of one of the emotional patterns leads to enhancing the satisfaction of need for cognitive closure, 
and increasing the degree of the “thoughtful” pattern leads to enhancing the satisfaction of need for 
cognition. As shown in Fig 4.3, the two needs compete with each other in the needs module, and the six 
emotional patterns compete with others within the need for cognitive closure. In the Hopfield network, 
the initial configuration of the system will be updated during iterations, and it will eventually converge to 
the strongest pattern with the biggest probability. Such process that travelling from a state with high 
energy to a state with the lowest energy is analogous to the process presented in Fig 4.1. 

For example, if the “thoughtful” pattern is the dominant attractor stored in the Hopfield network, that is, 
the “thoughtful” pattern has higher degree than any other strong pattern in the system, the brain model 
containing this Hopfield network is thought of having high need for cognition. Therefore, as in Levine’s 
model, the energy of “thoughtful” pattern will be stored in the working memory, and then any state of the 
network with higher energy will be disturbed by random noise so that the needs module can move to the 
“thoughtful” attractor. Similar to this process, given any initial configuration, the dynamics of the 
Hopfield network will eventually converge to its strongest attractor. Experiment 4.1 presents one example 
of the dynamics of the Hopfield network when the input pattern to the system is generated randomly. And 
Experiment 4.2 shows the dynamics of the system when the input pattern is another strong attractor stored 
in the network. On the other hand, if one of the six emotional patterns is the dominant attractor, the brain 
model is thought of having high need for cognitive closure. In this project, the initial configuration of the 
Hopfield network is designed to be an “anger” type (i.e. the anger emotion being dominant). 
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EXPERIMENT 4.1 Dynamics of the Hopfield network when the input pattern is random (top left corner). 
The system states eventually converge to strongest attractor (button right corner).  

 

 

 

 

 

EXPERIMENT 4.2 Dynamics of the Hopfield network when the input pattern is another strong attractor 
(top left corner). The system states eventually converge to strongest attractor (button right corner).  
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FIGURE 4.3 The Hopfield network containing the needs for cognitive closure and needs for cognition. 
The needs for cognitive closure are correlated to the six basic emotional patterns, and the needs for 
cognition are correlated to the “thoughtful” pattern. Similar to the relationship of the needs in Maslow’s 
hierarchy, each of these two kinds of needs receives inhibition signals from another and excitation signals 
from itself. 

 

4.2 The	  Network	  of	  Decision	  Rules	  

• Levine’s Network of Decision Rules 

The network of decision rules accounts for encoding various decision rules. These rules are generated in 
different regions of the brain. As fMRI measurement showed, the orbitofrontal cortex (OFC) and anterior 
cingulate (ACC) are activated more strongly than the amygdala when individuals violate the heuristic 
rules, while the amygdala is activated more strongly when individuals follow the heuristic rules. 
Furthermore, previous works (DeNeys et al., 2008) showed that there was greater activation of the 
dorsolateral prefrontal cortex (DLPFC), another region of prefrontal cortex, in individuals who are 
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dealing with sophisticated tasks that need calculation or probabilistic reasoning.  

Both of OFC and amygdala are involved in emotional process: OFC integrating sensory and affective 
information and amygdala dealing with primary emotional experience, but OFC is at higher level than the 
amygdala. Therefore, the amygdala and OFC are analogous to primary and secondary sensory cortex 
respectively.  

As presented in Levine’s paper (2009), Carpenter and Grossberg (1987) have successfully modelled the 
relationships between primary and secondary sensory cortex by adaptive resonance theory (ART). Fig 4.3 
shows a simple form of ART, containing a layer of primary sensory nodes 𝐹!, identified with amygdala, 
and a layer of secondary nodes 𝐹!, identified with OFC. The letter 𝑟 in the box is called vigilance. If the 
similarity of the output patterns from 𝐹! and 𝐹! is greater than 𝑟, the response of amygdala and OFC is 
said to be matching. If a matching occurs, enough nodes in 𝐹! will be excited; otherwise, 𝐹! activity 
will be shut off by 𝐹!. The bidirectional connections indicate that these two layers have effect on each 
other, that is, the OFC collects affective information from both secondary sensory cortex and amygdala, 
and the emotional reaction of the amygdala is controlled by OFC. It has been shown that the OFC is 
responsible to adjust the internal emotional signals so that appropriate response outputs is made to adapt 
to particular environments (Schore, 1998). This OFC-amygdala loops accounts for making both heuristic 
and deliberative rules. Next, we discuss the DLPFC-OFC loops, which are only required for deliberative 
rule. 

The DLPFC-OFC loops have similar structure to the OFC-amygdala loops. The feedback relationships 
between OFC and amygdala can be used to describe the relationships between DLPFC and OFC, that is, 
the DLPFC is at higher level of abstraction than OFC, and has ability to control the response of OFC 
(Levine, 2009, presented the work of Dias, Robbins, &Roberts, 1996, as evidence). fMRI measurements 
(Van Veen & Carter, 2006) also showed that the ACC can play the role of the orienting subsystem (the 
box with 𝑟) in Fig 4.3, because ACC accounts for conflict or potential error detection. 

Now, these regions, amygdala, OFC, ACC, and DLPFC can be integrated to build a three-layer 
hierarchical network that encodes both heuristic and deliberative rules (see Fig 4.4): OFC-amygdala loops 
generating simple heuristics and DLPFC-OFC loops dealing with complex tasks. The vigilance with high 
value makes individuals be aware of the conflict between heuristics and logical truth more easily.  

 

• Modeling the Network of Decision Rules with Restricted Boltzmann Machine 

Three identical restricted Boltzmann machines are introduced to simulate the behaviours of amygdala, 
OFC and DLPFC. This restricted Boltzmann machine, designed and trained in Section 3, is able to 
categorize seven different patterns (including six emotional patterns and one “thoughtful” pattern) and 
represent them using seven distinct 17-unit vectors. These three layers respond to input signals in 
different ways (discussed when combined with the network of needs in next subsection). And the outputs 
from them will be compared with respect to value 𝑟 in ACC. We say that mismatch occurs if the 
hamming distance from amygdala output to OFC output (or from OFC output to DLPFC output) is 
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smaller than 𝑟. For individuals with “thoughtful” pattern as the strongest attractor (high need for 
cognition), the vigilance (value 𝑟) is always very high, while for individuals with one of the emotional 
patterns as the strongest attractor (high need for cognitive closure), the vigilance is low. In other words 
mismatch is easier to happen in “thoughtful” person, while a person with low vigilance is always 
following the heuristic signals.  

As far as the control from OFC to amygdala (or from DLPFC to OFC) is concerned, we designed two 
versions of this brain system in this project: one regarding the OFC as a controller to adjust the outputs 
from amygdala, and another one disregarding the control activity of OFC. However, before we can design 
such controller to simulate the control activity of OFC, we have to firstly know the dynamics of the 
controlled system – the 17-neuron population in amygdala.  

 

 

FIGURE 4.3 Architecture of adaptive resonance theory. This diagram is borrowed from Levine’s work 
(2009). Refer to his paper for detailed description. 
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FIGURE 4.4 Network that encodes both heuristic and deliberative rules. This diagram is borrowed from 
Levine’s work (2009). Refer to his paper for detailed description. 

 

• Modeling and Feedback Controlling 

To model dynamics of the 17-neuron population in amygdala, we take these neurons as neural system 
existing in a neurobiological system, although the neurons used in this project are binary units. Dynamics 
of real neural population are very complex and highly nonlinear, but it is still a good approximation that 
considering the population system as a linear system, because nonlinear modeling cannot improve the 
estimate of behavior of real neural system (Rieke et al., 1997), and the techniques for nonlinear modeling 
related to neurobiological mechanisms are not well recognized. As mentioned in Eliasmith’s book, Neural 
Engineering (Page 112), such linear approximation is still biologically plausible because it is relevant to 
the production of postsynaptic currents (PSCs) in the postsynaptic cell. For simplicity, a PSC model can 
be written as 

ℎ!"# 𝑡 = 𝑒
! !
!!"#,  (4.1) 

where 𝜏!"# is the synaptic time constant. And we can apply this model to the population system, so that 
the transfer function of the 17-neuron population is  

ℎ 𝑡 = !
!
𝑒!!/!,  (4.2) 

where 𝜏 is the synaptic time constant. For convenience of control, we can rewrite Equation (4.2) in 
frequency domain using Laplace transformation: 
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ℒ 𝑓 𝑡 =    𝑒!!"𝑓 𝑡 𝑑𝑡
!

!
 

= 𝑓(𝑠). 

So, the Laplace transform, ℎ(𝑠), of ℎ(𝑡) as given by (4.2) is 

ℎ 𝑠 = !
!!!"

.   (4.3) 

Experiment 4.3 presents different system response to a unit input 𝑢 𝑡 = 1, with various time constant 𝜏. 
The system output 𝑦(𝑡) in terms of time 𝑡 is the convolution of the system dynamics ℎ(𝑡) and the 
input signal 𝑢(𝑡): 

𝑦 𝑡 = ℎ 𝑡 ∗ 𝑢(𝑡) 

= 𝑢 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏!!
!! .  (4.4) 

The Laplace form of 𝑦(𝑡) is 

𝑦 𝑠 = ℎ 𝑠 𝑢(𝑠),  (4.5) 

where 𝑢 𝑠 = !
!
 is the Laplace form of 𝑢(𝑡). 

In Experiment 4.3, all of the output signals converge to 1, and the system with smaller time constant 

 

EXPERIMENT 4.3 Dynamics of ℎ(𝑡) in response to a unit input for several values of time constant. 

 

Step	  Response	  

time	  (seconds)	  

A
m

plitude 
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Once a model of the system is identified, we can design an engineering feedback controller to control the 
system to output appropriate response. Here, we used a proportional gain controller to perform the control 
from the OFC to amygdala.  

A proportional gain controller (P controller) is the simplest feedback controller used in industrial control 
system. Fig 4.5 shows a schema of a feedback control loop with P controller. The controller 𝑐(𝑡) outputs 
a control signal 𝑢 𝑡  to the controlled system 𝑔(𝑡) according to the difference (error 𝑒(𝑡)) between the 
measured system output 𝑦(𝑡) and the desired reference 𝑟(𝑡). This controller attempts to minimize the 
error and increase the speed of system response.  

 

 

FIGURE 4.5 A block diagram of a P controller in a feedback loop. The dynamics of 𝑐(𝑡) and 𝑦(𝑡) are 
analogue to the control behavior of the OFC and the amygdala respectively.  

 

The P controller has a mathematical expression, referring to Fig 4.5: 

𝑐 𝑡 = 𝐾!  (4.6) 

where 𝐾! is called proportional gain, and the dynamics of the controller output can be expressed as 

𝑢 𝑡 = 𝐾!𝑒(𝑡),  (4.7) 

and  

𝑒 𝑡 = 𝑟 𝑡 − 𝑦 𝑡 .  (4.8) 

Experiment 4.4 shows how the parameter 𝐾! has effect on the dynamics of the feedback system. Giving 
the reference 𝑟 𝑡 = 1 and 𝜏 = 0.4, we tune the value of 𝐾! from 1 to 9 and observe the response of 
𝑔(𝑡) in terms of time 𝑡. As we increase the value of 𝐾!, the system responds faster, and the values that 
the system converges to are closer to the reference. However, a large 𝐾! may make the system unstable 
because a large change in control signals to the system will occur if the error signal is large. 

	   	  
	  

+ 

-‐ 

𝑟(𝑡)	   𝑒(𝑡)	   𝑢(𝑡)	   𝑦(𝑡)	  
𝑐(𝑡)	   𝑔(𝑡)	  
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EXPERIMENT 4.4 Dynamics of a feedback control system in response to a unit reference for several 
values of 𝐾!. 

 

4.3 Connection	  of	  Needs	  network	  and	  Decision	  network	  

Levine (2009) claimed that different needs in the module of Fig 4.2 could results in different vigilance in 
the network of Fig 4.4. Here, we assigned a low value of vigilance to the need for cognitive closure, and a 
high value to the need for cognition. Such that a model in which the thoughtful pattern is dominant has 
more ability to detect the mismatch between the OFC and amygdala (or the DLPFC and OFC) in Fig 4.4. 
In addition, if the vigilance is low, the OFC-amygdala loop is more activated than the DLPFC-OFC loop, 
and then the person will generate heuristic decisions; otherwise, the DLPFC-OFC loop is dominant in the 
network of decision rule, and the person will generate deliberative rules.  

In my DECIDER model, the input pattern will firstly stimulate the Hopfield network. The dynamics of 
the network will eventually bring its state to an attractor with the lowest energy. 

If the recalled pattern is “thoughtful” pattern, then the Hopfield network will send high-level vigilance (a 
constant 𝑟) to the error detector (ACC), and the DLPFC-OFC loop is chosen to generate complex 
decision rules. The RBM in the DLPFC receives a “thoughtful” signal from the Hopfield network, and 
categorizes it into a 17-unit vector. The RBM in the OFC accounts for categorizing the input pattern into 
another 17-unit vector. If the similarity (measured by Hamming distance) of these two generated vectors 
is smaller than the vigilance, then we say that a mismatch occurs and the DECIDER is supposed to 



A	  Neural	  Model	  of	  Psychotherapy	  Motivated	  by	  Attachment	  and	  CBT	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   September	  2013	  
	  

	   31	  

generate a deliberative rule. Because of the high vigilance, the DLPFC-OFC loop has no chance to make 
heuristic rules. It is noticeable that there is no control from DLPFC to OPC in my model. 

On the other hand, if the recalled pattern is one of the six emotional patterns, the Hopfield network will 
send low-level vigilance to ACC, and the OFC-amygdala loop is chosen to account for making decisions. 
Similar to the loop above, the RBM categorizes an emotional pattern from the Hopfield network, and 
OFC categorizes the input pattern. The Hamming distance between the two output vectors are compared 
to the low-level vigilance. A heuristic decision is generated if the similarity is higher than the vigilance; 
otherwise, a deliberative decision is made. Furthermore, the control from the OFC to amygdala has effect 
on the output of the RBM in amygdala. A well-trained OFC (i.e. the proportional gain 𝐾! is tuned to be 
appropriate) can adjust the amygdala output to some value close to the output of the OFC. 

 

• Experiments 

These experiments were carried out to study how the decisions were made in my model in two different 
situations: in the first experiment the dominant attractor in Hopfield network was “thoughtful” pattern, 
which satisfied the needs for cognition; in the second experiment the dominant attractor was a emotional 
pattern, which satisfied the needs for cognitive closure. We observed the performance of the three 
identical RMBs and how their outputs were compared so that decisions could be made. 

 

1. A “thoughtful” pattern recalled 

The Hopfield network was trained with  (pattern name: degree): 

n “Thoughtful”:  6 
n Anger:    4 
n Happiness:   3 
n Sadness:    2 
n Disgust:   1 
n Fear:   1 
n Surprise:  1. 

The “anger” smiley image is chosen to input to the system. And then the network recalls the “thoughtful” 
pattern. Therefore, the value of vigilance is chosen to be 16 (a high-level vigilance), and in the 
DLPFC-OFC loop, the RBM in the DLPFC categorises the “thoughtful” pattern into a 17-unit vector: 

1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 

and the OFC categorises the anger pattern into 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 
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The Hamming distance between these two vector is 5, so the similarity is 17 − 5 = 12, which is smaller 
than the vigilance. Therefore, the DECIDER is supposed to make deliberative decisions. 

 

2. An emotional pattern recalled 

The Hopfield network was trained with (pattern name: degree): 

n “Thoughtful”: 4 
n Anger: 3 
n Happiness: 6 
n Sadness:  2 
n Disgust:  1 
n Fear:  1 
n Surprise:  1. 

The “anger” smiley image is chosen to input to the system. And then the network recalls the happiness 
pattern. Therefore, the value of vigilance is chosen to be 2 (a low-level vigilance), and in the 
OFC-amygdala loop, the RBM in the amygdala categorises the happiness pattern into a 17-unit vector: 

1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 

and the OFC categorises the anger pattern into 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 

 

First, let us disregard the effect of the control from the OFC to amygdala. The Hamming distance 
between these two vector is 5, so the similarity is 17 − 5 = 12, which is higher than the vigilance. 
Therefore, the DECIDER is supposed to make heuristic decisions. Even though this two patterns are 
different. 

Then, let us take account of the effect of the control. The dynamics of the amygdala is designed as 

ℎ 𝑠 = !
!!!.!!

, 

and the OFC is thought of an well-trained P controller, therefore 

𝐾! = 9. 

The 17-unit vector is thought of being in a form of Gray code, which is a binary numerical system where 
two successive values differ in only one bit. So, these two vectors are transferred to decimal place 
according to the transformation mechanism of Gray code.  
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In the control loop, the decimal value of the OFC vector is treated as the reference signal. As shown in 
Experiment 4.4, the output of amygdala eventually converges to the output of the OFC. After controlling, 
the output of the amygdala in decimal place is encoded back to Gray code vector. By measuring the 
Hamming distance, we find that the similarity of these two outputs is increased. 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  



Zheng	  Lin	   Imperial	  College	   September	  2013	  
	  

	   	  34	  

Chapter	  5	  

Reinforcement	  Learning	  
	  

5.1 Psychotherapy	  

Psychotherapy is a form of therapeutic interaction where a trained therapist is involved to talk to a patient, 
client, patient, family, couple, or group who are suffering from emotional problems. Particularly 
Psychotherapy is used to treat depression and anxiety disorders, which are influenced by early attachment 
patterns. As Schore (2003, p. 69) stated, the developmentally based, affectively focused psychotherapy 
can alter early attachment patterns, especially from negative patterns to positive ones. Such altering 
process can be well understood referring to previous findings that the orbitofrontal system accounts for 
“emotion-relative learning” (Rolls, Hornak, Wade, & McGrath, 1994) and that it can be modified in the 
later periods of life (Barbas, 1995). Furthermore, the study by Hariri, Bookheimer, and Mazziotta (2000) 
proved that the most modern psychotherapeutic methods support the modulating process from high-level 
regions of the right prefrontal cortex, such as orbitofrontal cortex, to the most basic level in the brain. 

Cognitive behavioral therapy (CBT) is a form of psychotherapy that helps patients manage their problems 
by changing the way they think and behave, for example, breaking problems down into smaller parts, stop 
negative cycles due to the interconnections of feelings, thoughts, physical sensation and actions. CBT is 
different from other talking treatments, such as psychotherapy, because of its focus on current problems 
rather that past issues.  

There are several assumptions made by traditional CBT about patients (Young, 2003, p. 3-5). Firstly, it 
assumes that patients are willing to follow the treatment protocol rather than resisting it due to 
complicated therapy. Secondly, it assumes that patients can make use of their cognitions and emotions 
and report them to the therapist. It is difficult because patients in early stage of the therapy lose the ability 
to do so because of their engagement in cognitive and affective avoidance. Thirdly, patients are presumed 
to change their negative cognitions and behaviours after a series of practices. However, some patients are 
just thought of being hopeless to change because they are lack of psychological flexibility. Fourthly, it 
assumes that there is a collaborative relationship between the patient and the therapist. Finally, the patient 
is supposed to have easy-to-address targets. As a conclusion, the traditional CBT has trouble to succeed 
due to Early Maladaptive Schemas (Young, 2003, p. 43-44), which make it difficult to meet the 
assumptions above. 
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5.2 Q-‐learning	  

Q-learning algorithm (Watkins, 1989) is a well-known model-free reinforcement learning technique. For 
any given finite Markov decision process (MDP), the algorithm has the capability of helping an agent 
find the optimal action sequence, without building maps of the domains. 

The objective of using Q-learning algorithm is to find Q value for each combination of actions and states. 
The Q value is an estimated of the expected reward the agent will receive if it chose some action at some 
state. This estimation will converge to the true Q function if every state-action pair can be visited 
infinitely. To perform Q-learning algorithm, the optimal policy given a state is defined firstly: exploration 
strategy, immediate rewards or penalty associated with different chosen actions, learning rate, discount 
factor and initial conditions.  

• Exploration Strategy 

The exploration strategy refers to how the agent chooses an action for next state. A well-designed 
exploration strategy can prevent the solution getting stuck in the local minimum. 

• Immediate rewards or penalty 

The immediate rewards influence the re-evaluation of the quality of each state-action combination. For 
each state, this is the key to change the dominant action, for example, if the initial Q value for the action 
“smile”, associated with some state, is very low, due to emotional disorder, we can increase the Q value 
by giving rewards to “smile” and giving penalty to “be anger”. 

• Learning rate 

The learning rate determines how much old information will be neglected if new information is received. 
The learning rate varies from 0 to 1, and “1” means the learner considers the new information only and 
ignores all past information, while “0” means the learner does not learn anything. 

• Discount factor 

The discount factor determines to what extent the learner will consider the future rewards. The learner is 
thought of being “myopic” if the discount factor is “0”, meaning it only considers current rewards, or it 
considers long-term rewards if the factor is close to “1”. The Q function will diverge if the discount factor 
is greater than 1. 

• Initial conditions 

The initial conditions of Q function have to be defined before the learning starts otherwise such iterative 
algorithm does not work. The initial value can be designed in various ways (Shteingart, 2013 & 
Optimistic Initial Values). 

These defined policies are applied to update the Q values according to the conventional update rule: 
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𝑄 𝑠, 𝑎! ← 𝑄 𝑠, 𝑎! + 𝜆[𝑅!! 𝑠, 𝑠
! + 𝛾]  

where 

𝑄 𝑠, 𝑎! :  Q value of 𝑠-𝑎! combination 
𝑅!! 𝑠, 𝑠

! :  reward observed after perform 𝑎! in state 𝑠 

𝑠:    current state 
𝑎!:   chosen action in state 𝑠 
𝑠!:    observed state following 𝑎!  
𝜆:    learning rate (0 < 𝜆 ≤ 1) 

and 

𝛾 = 𝛿max
!!!

𝑄(𝑠!, 𝑎!! ) − 𝑄(𝑠, 𝑎!) 

where 𝛿 (0 ≤ 𝛿 ≤ 1) is the discount factor. 

	  

5.3 Design	  of	  Q-‐learning	  

• Aims and Objectives  

The main purpose of this work is to apply the Q-learning algorithm to mimic the psychotherapy process. 
Two experiments are carried out to study that how the discount factor is related to the therapeutic effect, 
and how the initial configuration of the attractor-competitive network influences the therapeutic effect. 

• Outline of Implementation 

As mentioned in previous section, the CBT is capable of changing attachment types, and as a kind of 
psychotherapy, it is also able to enhance to control from the orbitofrontal cortex to amygdala. In this 
project, such attachment types are modeled on a metaphorical level using the six emotional images and 
the “thoughtful” image. These images are stored in the Hopfield network as strong patterns with different 
degree 𝑘. The control behavior from OFC to amygdala is achieved implementing feedback controller 
with P controller. The parameter 𝑘! is analogous to the control strength. Finally, in this project, a 
Q-learning algorithm is designed to demonstrate that, during the period of receiving psychotherapy, how 
the modulating process from orbitofrontal cortex to amygdala is enhanced and how the patterns in the 
attractor-competitive network are altered between each other. That is, the degrees of patterns in Hopfield 
network, and the parameter 𝑘! are changing during the operation of Q-learning algorithm.  

• Hopfield network 

The Hopfield network is trained with eight kinds of patterns (anger, happiness, sadness, disgust, fear, 
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surprise, “thoughtful” and random pattern). The starting degrees of these patterns are denoted by 𝑎, 𝑏, 𝑐, 
𝑑, 𝑒, 𝑓, 𝑔, ℎ respectively. Four patterns (anger, happiness, sadness and “thoughtful”) are considered to 
change degree during the Q-learning process.  

• Feedback control loop 

The initial value of 𝑘! is set to 0.5. This value will increase after successful treatment. 

• Q-learning 

Based on the Q-learning algorithm designed by Cittern & Edalat(2013), we used and ordinal vector with 
four elements ([𝑡  𝑢  𝑣  𝑤]) to represent the states. Each element of such ordinal vector allocated to one of 
the four chosen patterns (see table below) and the value of each element is the rank of the degree of the 
corresponding pattern (see Table 5.1 for an example). The state therefore represents the relative values of 
pattern degrees: number 1 is assigned to the pattern with the highest degree and the number 4 is assigned 
to the pattern with the lowest degree. There are 4! states for the permutations of all strict ordinal vector 
(i.e. for the case where 𝑡 ≠ 𝑢 ≠ 𝑣 ≠ 𝑤), and 4!/2! states for the non-strict ordinal vector with two equal 
elements (𝑡 ≠ 𝑢 ≠ 𝑣 = 𝑤), and 4!/3! states for the non-strict ordinal vector with three equal elements 
(𝑡 ≠ 𝑢 = 𝑣 = 𝑤), and 4!/4! states for the case where all the elements are equal (𝑡 = 𝑢 = 𝑣 = 𝑤), giving a 
state space 𝑆 size of 41. 

 

Pattern name Anger Happiness Sadness Thoughtful 

Degree 10 14 3 5 

Ordinal vector 2 1 4 3 

TABLE 5.1 An example showing how the pattern degrees and the ordinal vector are related. In this case 
the degree of happiness pattern is the highest among these four patterns, so its value in the ordinal vector 
is 1. 

 

For each state 𝑠 ∈ 𝑆, there is a corresponding finite set of valid actions 𝐴 to choose. For simplicity it is 
assumed that all states share the same action set 𝐴 = {BeAngery, BeHappy, BeSad, BeThoughtful}, 
resulting in 41*4 state-action combinations.  

A probabilistic ‘Boltzmann’ action selection rule [Kaelbling et al., 1996] is introduced to prevent the Q 
values getting stuck in a local minimum. This rule allows state-action combination with low Q value to be 
chosen as much of the state space as possible. According to the rule, the probability that action 𝑎!" is 
selected is: 
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𝑃 𝑎!" 𝑠 =
𝑘!(!,!!")

𝑘!(!,!!")!
 

where 𝑘 is an exploration parameter, increasing which results in reducing the probability of selecting 
those actions with low Q value. Therefore, the action selection rule with high exploration parameter can 
be thought of deterministic selection rule (i.e. always choosing the action associated with the highest Q 
value). 

The discount factor varies from 0.1 to 0.9, and for simplicity the learning rate is set to 1. The purpose of 
CBT is to learn to deal with current problems in an appropriate way, so choosing the action 
“BeThoughtful” is supposed to receive the highest immediate rewards. As a result, we define the reward 
for each action as following: 

Pattern name Anger Happiness Sadness Thoughtful 

Reward 0 0.5 0.2 1 

 

The initial value of each state-action combination is equal to the value of the corresponding element in 
the state vector. For example, if some state 𝑠! is [1, 4, 2, 3], then the Q value of 𝑠!-BeAngery is 1, and 
of 𝑠!-BeHappy is 4. 

In conclusion, the Q-learning algorithm is working as shown in Algorithm 5.1. It is notable that the 
algorithm is terminated once the “thoughtful” pattern becomes the dominant pattern in the Hopfield. 
Otherwise, it will continue running until meet the maximum iteration.  

	  

5.4 Experiments	  

• Experiment 1 

In this experiment we studied the how the discount factor is related to the numbers of iterations required 
to change from one of the emotional pattern to “thoughtful” pattern. Also, the relation between the 
exploration rate 𝑘 in the probabilistic ‘Boltzmann’ action selection rule and the required rounds of 
iteration is interested. 

The experiment goes as follows: 

n The dominant pattern is initially set to anger pattern 

n The exploration rate 𝑘 varies from 1: 4 

n Discount factor varies from 0.1 to 0.9  
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n An individual experiment is running up to 10,000 rounds 

n The number of rounds required to meet “thoughtful” pattern is recorded 

n Each individual experiment is repeated for 20 times 

Initially the degrees of the eight patterns are set as follows 

n Anger: 8 
n Happiness: 5 
n Sadness: 3 
n Disgust: 1 
n Fear: 1 
n Surprise: 1 
n “Thoughtful”: 2 
n Random: 500 

Eventually, we obtain the values from 200 times of each individual experiment. And we take the mean 
values so that we can obtain a more accurate estimate for the Q-learning behavior. The results are 
displayed in Fig 5.1 

 

FIGURE 5.1 The average number of rounds required for a “thoughtful” pattern when a patient received 
CBT treatment for different discount factor (𝛿). Each line in the plot corresponds to a particular 
exploration rate (𝑘) in the action selection rule. The y-axis is presented in log scale because the values for 
𝛿 = 0.9 are unexpectedly high. 
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Comments 

As the exploration rate 𝑘 is increased, the average number of rounds required for obtaining a successful 
CBT treatment (i.e. “thoughtful” pattern becomes dominant in the Hopfield network) decreases. The 
patient with high value of 𝑘 is thought of a patient who is willing to comply with treatment protocol, 
which is a major assumption of traditional CBT. It is also observed that, in general, the patient with 
higher discount factor (i.e. the patient strives for long-term rewards) achieves a successful treatment 
slower than those who prefer immediate rewards. 

We also observed that the number of rounds required for “thoughtful” pattern being dominant is 
unexpected high when discount factor 𝛿 > 0.9 (i.e. the patient who prefer future rewards). The patient 
will receive rewards every time a reinforced action is chosen, even though there is no state transition 
occurring, that is, 𝑅!! 𝑠, 𝑠

! > 0 for 𝑠 = 𝑠!. Therefor, 𝑄 values for 𝑄(𝑠, 𝑎) are updated even if no 
state transition has occurred. For the situation that a patient has high discount factor 𝛿 > 0.9, these 
non-reinforced actions will receive large 𝑄 values when the patient takes some action 𝑎 in state 𝑠 that 
do not lead to any transitions. This results in more state-action exploration. 

 

• Experiment 2 

In this experiment we studied the how the initial degrees of the stored patterns in the Hopfield network 
are related to the numbers of iterations required to change from one of the emotional pattern to 
“thoughtful” pattern.  

The experiment goes as follows: 

n The dominant pattern is initially set to anger pattern 

n The initial degree of the anger pattern varies from 10 to 20 

n The initial degrees of other patterns are as constant 

n Discount factor 𝛿 = 0.2 

n Exploration rate 𝑘 = 2 

n An individual experiment is running up to 10,000 rounds 

n The number of rounds required to meet “thoughtful” pattern is recorded 

n Each individual experiment is repeated for 20 times 

Initially the degrees of the eight patterns are set as follows 

n Anger: 10 to 20 
n Happiness: 5 
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n Sadness: 3 
n Disgust: 1 
n Fear: 1 
n Surprise: 1 
n “Thoughtful”: 2 
n Random: 500 

Eventually, we obtain the values from 200 times of each individual experiment. And we take the mean 
values so that we can obtain a more accurate estimate for the Q-learning behavior. The results are 
displayed in Fig 5.2 

 

FIGURE 5.2 The average number of rounds required for a “thoughtful” pattern when a patient received 
CBT treatment for initial degree of anger pattern.  

 

Comments 

Expect for the anger pattern, the degrees of any other patterns are viewed as constants. In general, as the 
degree of anger pattern is increased, the average number of rounds required for obtaining a successful 
CBT treatment (i.e. “thoughtful” pattern becomes dominant in the Hopfield network) increases. The 
patient with high degree of anger pattern is thought of a patient who has difficulty to comply with 
treatment protocol, which is a major assumption of traditional CBT.  

	  

	  

Av
er
ag
e	  
N
um

be
r	  o
f	  R
ou
nd
s	  R
eq
ui
re
d	  
fo
r	  “
Th
ou
gh
tfu
l”	  
Pa
tt
er
n	  
	  	  

Degree	  of	  Anger	  Pattern	  



Zheng	  Lin	   Imperial	  College	   September	  2013	  
	  

	   	  42	  

Chapter	  6	  

Bring	  it	  All	  Together	  
	  
Integrating the components discussed above, we can now obtain a super-model containing a 
super-network DECIDER, which simulates how emotional connections influences decision rules, and 
reinforcement learning, which mimics the effect of CBT treatment. Fig 6.2 illustrates the structure of 
DECIDER and how subsystems inside communicate with each other. Fig 6.1 illustrates how DECIDERE 
copes with the input pattern from out side world and decisions as outputs. 

The Hopfield network contains two types of needs: needs for cognition and needs for cognitive closure. 
Each type of needs inhibits another one and excites itself. Needs for cognitive closure are associated with 
six basic emotional patterns: anger, happiness, disgust, sadness, surprise and fear. Needs for cognition are 
associated with a metaphorical pattern: “thoughtful”. These patterns are stored in the Hopfield network as 
strong attractors, recalled once the network receives stimulus. If the recalled attractor is one of the six 
emotional patterns, it will be treated as an input signal to amygdala; otherwise, it will be viewed as an 
input signal to DLPFC. 

Three identical well-trained restricted Boltzmann machines (RBMs) represent three regions accounting 
for various decision rules in one’s brain: dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex 
(OFC) and amygdala. This trained RBM has the capability of categorizing seven patterns (six emotional 
patterns plus “thoughtful” pattern). It receives binary images with 25*25 pixels as input, and reduces the 
dimension of the input to 17-unit vectors. As mentioned above, DLPFC receives the “thoughtful” pattern 
as input and amygdala receives the emotional patterns as inputs in addition, OFC categorizes the input 
patterns from outside world directly. The DLPFC-OFC loop works if the recalled pattern of Hopfield 
network is “Thoughtful”, and it accounts for generating deliberative rules. On the other hand, the 
OFC-amygdala works if the recalled pattern is one of the emotional patterns, and it deals with heuristic 
rules and some deliberative rules.  

The anterior cingulate (ACC) has a function to detect the potential conflict between the outputs of 
DLPFC and OFC (or OFC and amygdala). It is viewed as a selective constant vigilance: the vigilance is 
very high if the recalled pattern is the “thoughtful” pattern, or it is low if the recalled pattern is an 
emotional pattern. The decision-making loop outputs heuristic rules if the similarity between the two 
RBM outputs is higher than the vigilance; otherwise it makes deliberative decisions. Since the vigilance 
for the DLPFC-OFC loop is very high, it is impossible that the DLPFC-OFC loop makes heuristic 
decisions. For OFC-amygdala loop, if mismatch occurs (i.e. similarity smaller than the vigilance), the 
decisions are made based on the emotion output from amygdala; otherwise, it makes sophisticated rules. 

The first task of the reinforcement learning is to reinforce the positive patterns stored in the Hopfield 
network. It works with a variety of adjustable parameters, such as exploration rate, discount factor, and 
learning rate. Different combinations of the values of these parameters represent the patient in various 
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situations. Secondly, the reinforcement learning aims to reinforce the control from the OFC to amygdala 
by simply increasing the parameter of the controller in the feedback control system. Such feedback 
system consists of the OFC as controller, and the amygdala as the plant to be controlled. It aims to adjust 
the output of amygdala to get close to the output of OFC, which is treated as a reference signal in the 
control loop. 

FIGURE 6.1 An illustration of DECIDER coping with the outside world. 

	  

ALGORITHM	  5.1:	  A	  Q-‐learning	  algorithm	  

1) For	   each	   state-‐action	   pair	   (s,	   a),	   initialize	   the	   table	   entry	   𝑄(𝑠, 𝑎) 	   to	   the	  

corresponding	  value	  in	  the	  state	  vector	  

2) Observe	  state	   𝑠	  

3) do	  

4) 	   	   	   	   	   select	  and	  do	  action	  according	  to	  Boltzmann	  selection	  rule	  

5) 	   	   	   	   	   receive	  immediate	  rewards	   𝑟	  

6) 	   	   	   	   	   observe	  the	  new	  state	   𝑠!	  

7) 	   	   	   	   	   update	  the	  table	  entry	  for	   𝑄(𝑠, 𝑎)	   as	  following:	  

𝑄!𝑠, 𝑎!! ← 𝑄!𝑠, 𝑎!! + 𝜆[𝑅!!(𝑠, 𝑠
!) + 𝛾]	  

8) 	   	   	   	   	   	   𝑠 ← 𝑠!	  

9) until	  termination	  conditions	  met	  
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FIGURE 6.2 DECIDER model combining Hopfield network as needs network, and RBMs as decision 
network. Q-learning influences the attractors in the Hopfield network and the control from OFC to 
amygdala. Needs for cognitive closure outputs low-level vigilance signals to ACC. Needs for cognition 
outputs high-level vigilance signals to ACC. The control from OFC to amygdala is designed as a 
feedback back control loop. 
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Chapter	  7	  

Evaluation	  and	  Conclusion	   	  
	  

7.1 Evaluation	  

• Hopfield 

The experiments implemented in Chapter 2 have shown that increasing the degree of a strong attractor 
makes the attractor more stable, as well as that increasing the number of other simple attractors 
destabilizes the strong attractor. It proves the results of previous study on the stability of strong attractors 
(Edalat, 2003).   

Limitation 

As discussed Chapter2, the Hopfield network was trained using the standard Hebb’s rule, which is lack of 
the capability to deal with correlation issues. Correlation issues introduce some spurious states into the 
network. It may be a problem if there are two or more strong attractors having the same degree. The 
recalled pattern will be the linear combination of these attractors instead of any of them, which is 
meaningless and cannot be identified by the trained RBM. The correlation issue can be solved by some 
techniques such as pseudo-inverse methods. 

 

• Restricted Boltzmann Machine 

The RBM trained in Chapter 3 can precisely categorises the seven clusters, which are generated via 
adding random noise on seven emotion images.  

Limitation 

The training efficiency of this learner may not be good enough since we only cared about its classification 
performance. Furthermore, we used some emotion images as training examples rather than real emotional 
sequences, which made the classification task much simpler. 

 

• DECIDER and Reinforcement Learning 

The supermodel DECIDER consists of a needs network, which is thought of a competitive attractor 
network, and a decision making network, in which two loops work for decisions in different level. 
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DECIDER simulates the procedure for decision-making, which is emotionally influenced and 
goal-directed. In the DECIDER, the Hopfield network works as a competitive attractor network that is 
analogous to hypothalamic/midbrain/brain stem network in one’s brain. Emotional signals influencing the 
decision making is modelled using strong attractors stored in the Hopfield network. And then it outputs 
emotional signals or “thoughtful” signals to the decision making network, which is made of three 
identical trained RBMs. This network generates decisions dependent on the signals from the Hopfield 
network, and the similarity of the outputs of the three RBMs. We also simulated the control from the 
orbitofrontal cortex to amygdala using a feedback control loop. Reinforcement learning accounts for 
reinforcing the positive attractors in the Hopfield network and reinforcing the OFC control by simply 
increasing the value of the controller parameter.  

Limitation 

In the needs network, instead of the hierarchy of Maslow’s needs, we assumed that the needs included in 
it are needs for cognition, which is defined as the tendency to think about issues deeply, and needs for 
cognitive closure, which is defined as the tendency to make a decision quickly. 
 
When implementing the feedback control loop for simulating the control from the OFC to amygdala, we 
assumed that the neurons are neurobiological rather than binary units so that we can model the dynamics 
of the neuron population to be controlled. 
 
The OFC in the feedback control loop was assumed to be a proportional controller, which is the simplest 
controller in the control-engineering world. And the parameter is not refined during the procedure of the 
reinforcement learning. For simplicity, it is changed after the Q-learning finished. 
 
There is no control activity from the DLPFC to OFC.	  

7.2 Future	  Work	  

Here I concluded that works could be done for future research: 

• Improving the performance of the Hopfield network so that it is robust to correlation patterns. 

• Training the restricted Boltzmann machine to be able to categorise emotions on real human face, so 
that the system is able to cope with the real world. 

• Using artificial neural network to represent the control from the OFC to amygdala, so that the model 
is more biologically plausible. 

• Modeling the connections between the DLPFC to OFC. 

• Designing a reinforcement learning that reinforce the control in terms of time (or iteration in 
discrete domain) 
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• Redesigning the super model using spiking neurons. 

7.3 Conclusion	  

The	   model	   built	   here	   can	   be	   thought	   of	   the	   pioneer	   to	   model	   attachment	   types	   in	  
psychotherapy.	  There	  are	  still	   some	  assumptions	  we	  have	  made	  and	  drawbacks	  we	  have	  
not	  overcome	  due	  to	  the	  time	  restrictions.	  The	  topic	  that	  modelling	  the	  attachment	  types	  
and	  the	  changes	  between	  them	  in	  a	  neural	  network	  is	  interesting,	  and	  I	  will	  carry	  on	  in	  this	  
topic	  following	  the	  results	  I	  achieved	  in	  this	  project.	  
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