
Compile-time and Run-time Issues in an
Auto-parallelisation system for the Cell BE Processor

Alastair F. Donaldson1, Paul Keir2, and Anton Lokhmotov3

1 Codeplay Software, 45 York Place, Edinburgh, EH1 3HP, UK
2 Department of Computing Science, University of Glasgow,

18 Lilybank Gardens, Glasgow, G12 8QQ, UK
3 Department of Computing, Imperial College London,

180 Queen’s Gate, London, SW7 2AZ, UK

Abstract. We describe compiler and run-time optimisations for effective auto-
parallelisation of C++ programs on the Cell BE architecture. Auto-parallelisation
is made easier by annotating sieve scopes, which abstract the “read in, com-
pute in parallel, write out” processing paradigm. We show that the semantics of
sieve scopes enables data movement optimisations, such as re-organising global
memory reads to minimise DMA transfers and streaming reads from uniformly
accessed arrays. We also describe run-time optimisations for committing side-
effects to main memory. We provide experimental results showing the benefits
of our optimisations, and compare the Sieve-Cell system with IBM’s OpenMP
implementation for Cell.

1 Introduction

The Cell Broadband Engine (BE) processor [4] is a heterogeneous multi-core chip,
which consists of a Power Processing Element (PPE) and eight Synergistic Processing
Elements (SPEs). To avoid memory bottlenecks, each SPE is equipped with 256KB of
fast local memory, which can be viewed as an extended register file for intensive calcu-
lations, and accesses main memory via DMA transfers. This approach allows scalable
parallelisation over SPEs for suitable algorithms. Abandoning the convenient shared
memory paradigm, however, makes the Cell processor difficult to program correctly
and efficiently: the programmer needs to write separate programs for the PPE and SPEs,
pack data into vectors for SIMD processing, and orchestrate data movement explicitly
using untyped DMA transfers.

Codeplay’s Sieve C++ [2, 5] is a C++ extension to aid automatic parallelisation. The
principal language construct is the sieve block – a lexical scope prefixed with the sieve
keyword. By placing code inside a sieve block, the programmer instructs the compiler
to delay writes to memory locations defined outside the block (global memory) and
apply them in order on exit from the block. Conceptually, global memory is read on
entry to the block and written to on exit from the block. Thus, the compiler is free to
re-order computation within a sieve block, if it has no dependences on memory loca-
tions defined within the block (local memory). Restricting dependence analysis to local
memory makes C++ code more amenable to deterministic automatic parallelisation.

In the context of the Cell processor, a sieve block makes explicit the notion of sep-
arate memory spaces: code outside a sieve block runs on the PPE and accesses main
memory as usual; code inside a sieve block is a candidate for parallelisation over SPEs,
with local variables to be placed in local store. The sieve semantics enables streaming
between global memory and local store.

Sieve blocks are similar to tasks in Stanford’s Sequoia [3] and BSC’s CellSs [1] in
that they specify a fragment of code to be executed on SPEs. Unlike a task, a sieve block
leaves unspecified the working set of code, making optimisation of sieved code more
challenging. However, while a task (a leaf task in Sequoia) is intended for execution
on a single SPE, the sieve semantics parallelisation of a sieve block across multiple
SPEs. The sieve construct is similar to the bulk-synchronous parallel (BSP) model [6]:
it separates computation (on data brought into local memory) and communication (of
results into global memory). Communication in BSP, however, is non-deterministic.

We have previously described Sieve C++ and its other constructs facilitating auto-
matic parallelisation via software thread-level speculation [2]. Our contributions in this
paper are: a discussion of the components of the Sieve-Cell system (§2); the description
of optimisation techniques concerning the movement of data between main memory and
local store (§3); and a comprehensive experimental evaluation showing the speedups af-
forded by our optimisations and comparing the Sieve-Cell system with IBM’s OpenMP
implementation for Cell (§4). We conclude (§5) with an outline of future work.

2 Sieve Overview

We illustrate the sieve concept and its advantages using a molecular dynamics example
(§2.1), and describe a sieve implementation for the Cell BE processor (§2.2).

2.1 Sieve scopes and outer pointers in a molecular dynamics example

In addition to marking sieve blocks, the sieve keyword can be used as a function
qualifier indicating that the function may be called from a sieve block (or other sieve
functions) and therefore should be compiled with the semantics of delayed writes to
global memory. (Sieve blocks and functions constitute sieve scopes.)

The outer qualifier applied to a pointer declared within a sieve scope indicates that
the pointer points to data in global memory. (Pointers declared outside a sieve scope are
outer by default.) Hence, writes via outer pointers occuring in a sieve scope get delayed.

The following listing shows a function, computeForces, which takes input arrays
representing masses and positions for each particle in a system, and computes an output
array representing forces exerted upon each particle, according to the law of gravity:
extern int Size;

sieve float3 rNormalised(outer float3 *Pos, int i, int j);

void computeForces(float3 *Forces, float3 *Pos, float* Mass) {
sieve {
for(int i=0; i<Size; ++i) {

float3 Potential = { 0.0f, 0.0f, 0.0f };
for(int j=0; j<Size; ++j)

Potential -= rNormalised(Pos, i, j) * Mass[j];
Forces[i] = Potential * Mass[i]; // Delayed write

} } // Side-effects to Forces[] committed here
}

Listing 1. Molecular dynamics code, annotated with a sieve block.
We do not show code for the float3 class (a floating point vector class with stan-

dard operations), or for the sieve function rNormalised which, given Pos, i and j,
returns (0, 0, 0) if i=j, and (Pos[i]−Pos[j])/|(Pos[i]−Pos[j])|3 otherwise.

Consider the standard C++ code obtained by removing the sieve and outer key-
words from Listing 1. In this form, the code is hard to automatically parallelise for
the following reasons. First, the compiler must conservatively assume that the arrays
Forces and Mass may overlap, which would lead to a carried dependence on the outer
loop due to the write to Forces. Second, note that both loops are bounded by the ex-
ternal global variable Size. The compiler has to assume that Size may be modified
during calls to the rNormalised function (for which the compiler does not necessarily
have source code), which would destroy the regular structure of the loops. Similarly,
the array Pos is passed as a parameter to rNormalised. The compiler must therefore
assume that memory accessed via Pos could be modified by this function call, which
would introduce carried dependences on both loops in the nest.

For the molecular dynamics example, this conservativeness is due to the mechan-
ical compiler lacking domain-specific information. In a sensibly-written application,
computeForces will be called with arrays that do not overlap, and Size and Pos will
not be modified by the pure function rNormalised. The intention that the input param-
eters refer to distinct memory regions can be stated using the C99 restrict qualifier,
but restricted pointers do not help with a possible modification by the called function.

The sieve block of Listing 1 tears down these barriers to parallelisation. The Pos,
Mass and Forces parameters are outer pointers, since they are declared outside the
sieve block. As a result, during sieve block execution, any modification to data via
these pointers is delayed until the end of the block. This change in semantics means
that there are no loop-carried dependences even if the arrays do overlap. The compiler
knows that rNormalised is a sieve function, compiled with delayed semantics, so that
if the function (or a function it calls in turn) writes to global variable Size, or via outer
pointer Pos, these writes will be delayed, having no effect on sieve block computation.

Clearly, the semantics of the sieve block will depart from the conventional seman-
tics if the code does involve a write to, followed by a read from, a global memory
location. While parallelising such code with standard semantics would result in non-
deterministic, undefined behaviour, the sieve semantics mean that parallel code is de-
terministic, regardless of how many cores are employed. If sieved code does not behave
as expected (due to a programmer error, or to a sieve block being applied to code which
involves read-after-write dependences by design) the guarantee of determinism means
that the programmer can debug their multi-core application on a single core.

2.2 The Sieve-Cell System

The Sieve concept fits neatly with systems having multiple levels of memory hierarchy,
in particular, the Cell BE processor. The programmer uses a sieve block to specify that

a portion of code should be distributed across the SPEs. Variables declared inside sieve
scopes reside in SPE local store; variables declared in standard scopes are located in
main memory, and data structures in main memory can be traversed on an SPE via outer
pointers. A read inside a sieve block from global memory results in the transfer of data
into local store via DMA; a write to global memory results in an entry being appended
to a queue of side-effects, to be applied at the end of the sieve block. The Sieve compiler
and run-time system take care of the low-level details associated with data movement.
The programmer is able to write a unified application for the Cell processor, rather than
being forced to write separate PPE and SPE programs with explicit communication
via mailbox messages and DMA transfers (which cannot be typechecked). Annotat-
ing blocks of code, as opposed to outlining code into functions, also aids productivity,
allowing Sieve versions of serial C++ codes to be developed quickly.

Sieve Compiler The compiler processes a Sieve C++ application and outputs a set of
ANSI C files, which we refer to as OutputC files, together with a makefile. The makefile
uses third party C compilers for the PPE and SPE processors to compile these C files,
linking the resulting object files with the Sieve run-time library and other PPE/SPE
libraries to produce a Cell executable. The Sieve compiler provides full support for
PPU and SPU vector intrinsics.

The sieve and outer keywords allow type-checking across the PPE/SPE bound-
ary, ensuring for example that SPE code does not accidentally de-reference a pointer to
PPE data. The occurrence of a sieve block in a Sieve C++ application causes a call to a
function named runSieve to be generated at a corresponding position in the OutputC
code. This function is part of the Sieve-Cell PPE run-time library. Given a pointer to
an SPE program for the associated sieve block, the runSieve function manages the
distribution of sieve scope execution across available SPEs.

PPE Runtime After loading each SPE with the sieve block program,4 the PPE run-
time issues each SPE with a speculative work unit. A work unit consists of a program
point in the sieve block at which execution should begin, called a split point, together
with speculated values for variables which are live at the given split point, and an integer
specifying how many further split points should be crossed before execution of the work
unit is completed [2]. Execution of a work unit also completes if the end of the sieve
block is reached before the given number of split points is crossed. To ease speculation
(e.g. for automatic loop parallelisation), the compiler requires that the only variables
live across split points are iterators – instances of special user-defined classes having
methods for prediction of class state after traversal of a given number of split points.

After issuing work units, the PPE run-time sleeps, waking up when an SPU thread
interrupts to indicate completion of work. On receiving a completed work unit from
an SPE, the PPE issues the SPE with a fresh work unit, then attempts to validate the
completed work – checking that the predicted iterator values for the work unit match
the actual values computed by the previous work unit. A completed work unit contains
a queue of associated side-effects. Side-effects for a valid work unit are kept until the
end of the sieve block; side-effects for an invalid work unit are discarded. At the end of

4 A run-time check ensures that SPEs are not needlessly re-issued sieve block code if the same
sieve block is executed in succession.

the sieve block, the PPE run-time invokes a function, runSideEffects, which takes
the side-effects generated by all valid work units (by which time all side-effects have
been transferred to main memory), and commits these side-effects in order.

SPE Runtime The SPE program for a sieve block consists of a small run-time system
loop together with code for work unit execution, which must all fit within the SPE local
store. Each SPE has an outbound interrupt mailbox, which it uses to request a work
unit from the PPE. Using the interrupt mailbox means that the PPE can sleep when not
servicing an SPE, avoiding a busy-wait loop. The PPE responds to the SPE, via the
SPE’s inbound mailbox, with a pointer to a work unit. The SPE uses this pointer to
fetch the work unit via DMA, after which the SPE executes the work unit.

By default, reads from main memory are via an SPE software cache, based on an
implementation provided by IBM as part of the Cell SDK for Linux. Alternative meth-
ods for reading data from main memory are discussed in §3. For each write to main
memory inside a sieve scope, the compiler generates a call to the delayedStore func-
tion in the SPU run-time. This function takes pointers to a SPU source address and
PPU destination address, and an integer specifying the size of the data to be stored.
The function adds a (PPU address, size, data) triple to a queue on the SPE. When an
SPE’s local side-effect queue reaches an upper bound (specified at compile-time), the
SPE transfers the contents of its queue to a temporary location in main memory, and
continues execution with an empty local queue. The PPE run-time is responsible for
managing SPE requests to allocate main memory for temporarily storing side-effects.

3 Sieve-Cell optimisations

Efficient data movement is key to achieving high-performance on the Cell processor. We
describe compiler and run-time data-movement optimisations in the Sieve-Cell system.

3.1 Streaming DMA Reads

A common DMA transfer optimisation involves fetching data from main memory in
large chunks before processing. For example, given an SPU loop which on each itera-
tion fetches and processes an element of main memory array A[0..N-1], it is typically
more efficient to transfer A[0..N-1] into local memory before executing the loop. This
is due to high cost of initiating a DMA transfer compared with the cost of transferring
additional bytes once a DMA has been initiated. If N is large then it may be worth over-
lapping communication with computation, streaming data from A in chunks and using
double-buffering to process chunk n while fetching chunk n+1. Indeed, streaming may
be necessary if N is large enough that A[0..N-1] does not fit into local store.

The Sieve compiler exploits the delayed semantics to generate efficient DMA stream-
ing code when compiling regularly structured loops which read through outer pointers.
We illustrate this using the molecular dynamics example of Listing 1 as follows:
void computeForces(float3 *Forces, float3 *Pos, float* Mass) {

sieve {
DMAStream<sizeof(float)> MassStr_i, MassStr_j;
int LocalSize = Size;

MassStr_i.start(Mass);
for(int i=0; i<LocalSize; ++i) {

float3 Potential = { 0.0f, 0.0f, 0.0f };
MassStr_j.start(Mass);
for(int j=0; j<LocalSize; ++j)

Potential -= MassStr_j.read(j) * rNormalised(Pos, i, j);
Forces[i] = Potential * MassStr_i.read(i);

}
MassStr_j.destroy(); MassStr_i.destory();

} }

Listing 2. Optimised molecular dynamics code.
The compiler spots that the outer loop of the sieve block includes a statement read-

ing from the base address Mass with offset i. Since i can be identified as an index
variable for the outer loop, the compiler generates a DMA stream object, MassStr_i,
and replaces the read from Mass[i] with a read from MassStr_i. Similarly, the regu-
lar reads from Mass offset by index variable j in the inner loop are replaced with reads
from a stream, MassStr_j.5

A DMA stream can be thought of as a window into an array in main memory. In our
double-buffered implementation, a stream is an SPU-side record consisting of a pair
of buffers, a pointer to the current buffer, a base address for the PPU array to which
the stream corresponds, an address indicating the main memory address to which the
current buffer refers, and a DMA tag to monitor completion of prefetching operations.

The declaration DMAStream<elem size> stream name declares a DMA stream with
a fresh DMA tag, with the capacity to store elem num elements of size elem size (where
the elem num parameter may vary at run-time). A fresh tag means that simultaneous
DMA requests for multiple streams can be issued simultaneously and managed inde-
pendently. The stream name.start(base address) operation issues and waits for a
DMA operation to copy elem size × elem num bytes of data into the current buffer for
the stream. A DMA request to fill the other buffer with the next elem size × elem num
bytes of data is also issued, but not waited for. The stream name.read(offset) first
checks that the current buffer contains sufficient data to return the element at the speci-
fied offset. If not, this data will reside in the other buffer, so the pending DMA request
to fill the other buffer is waited for. A new DMA request is issued to re-fill the current
buffer, and the buffer pointer is switched. Now that the required data is ready, elem size
bytes are copied from the current buffer and returned. To avoid stack corruption, the
compiler must ensure that all pending DMA operations are completed before returning
from a sieve function which uses DMA streams.

3.2 Pre-fetching Global Variables

Consider the global variable Size used to control the for loops in Listing 1. Since
Size is in main memory, its value must be fetched using a software cache read. Al-
though this is more efficient than simply fetching Size by DMA, Size is accessed

5 For readability, we use C++ template notation to describe streams. Note that streams are gener-
ated in the Sieve compiler intermediate representation, and are not exposed to the programmer
as our example suggests.

many times which results in frequent cache reads. The sieve semantics allow us to
optimise further by hoisting the read from Size to the start of the sieve block. This
is safe even though Size could be modified by the call to rNormalised: because
rNormalised is a sieve function, any potential write to Size would be delayed.

Listing 2 illustrates this optimisation: the first executable statement in the sieve
block copies the value of Size to a local variable LocalSize, and all reads from Size

in the sieve block are changed to read from LocalSize.

3.3 Combining Delayed Writes

A write to global memory occurring in a sieve scope causes a call to a delayedStore
function in the SPU run-time system. As discussed in §2.2, this function appends a side-
effect node of the form (PPU address, size, data) to a local queue, streaming the local
queue to PPE memory when full. A sieve scope with many side-effects will cause the
SPE side-effect queues to fill up quickly, resulting in frequent DMA transfers to stream
side-effects to main memory. In addition, at the end of the sieve block, the PPE must
commit this large number of side-effects to memory individually.

If these side-effects are the result of small delayed writes (e.g. 4 bytes or less) then
the 8 byte PPE address + size overhead associated with each side-effect may be the
main reason why the local side-effect queue fills up. In many practical examples, de-
layed writes are to contiguous memory locations, e.g. elements of an array in global
memory. Consider the delayed store to Forces[i] in the molecular dynamics code of
Listing 1. It is clear that each iteration of the outer loop will write to an element of
Forces. Since the loop uses stride 1 access, these writes are contiguous.

The Sieve-Cell system uses a run-time optimisation to take advantage of com-
monly occurring contiguous delayed writes. Suppose the delayedStore function is
called with the side-effect node (addrn, sizen, datan), and that the last side-effect in
the queue is (addrn−1, sizen−1, datan−1). The run-time checks whether addrn =
addrn−1 +sizen−1. If this is the case then the new side-effect can be handled by re-
placing the last side-effect node with (addrn−1, sizen−1 + sizen, datan−1++datan),
where ++ denotes concatenation of bits. Otherwise, the new side-effect node is added to
the queue as usual. The contiguity check bears a (small) run-time overhead, and while
effective when delayed stores are contiguous, may be onerous when delayed stores are
fragmented.

We could extend the check to eliminate redundant side-effects by spotting cases
where multiple stores are made to the same memory location; we have not found this to
be a useful optimisation for practical examples.

4 Experimental Evaluation

4.1 Experimental Setup

We present experimental data for single-precision benchmark programs implemented in
standard C++, Sieve C++, and OpenMP C++. The Sieve versions of the programs were
developed from serial base codes by the addition of Sieve annotations, and elimination

of global variable updates within kernels. In all cases, a small number of preprocessor
macros were then sufficient to allow OpenMP, Sieve, and serial code to coexist in one
set of files. We also present results for standard and Sieve C++ versions of three further
programs which, due to limitations of the (Alpha version of) XL C++, we were not able
to implement using OpenMP; these benchmarks are marked † in the following list:

SGEMV: Matrix-vector multiply (8192 × 4096)
GRAVITY: An N -body molecular dynamics simulation of 8192 particles
NOISE RGB: Noise reduction filter applied to a 512 × 512 colour image
NOISE GREY: Noise reduction filter applied to a 512 × 512 greyscale image
CRC: Cyclic redundancy check on a random 8M (1M=220) word message
MAND: Calculates a 1024 × 1024 fragment of the Mandelbrot set
FFT3D: Fast Fourier transform of a complex 1283 data set†

JULIA: Ray traces a 512 × 512 3D slice of a 4D quaternion Julia set†

MAND+SIMD: The MAND program optimised using SPU SIMD intrinsics†

Experiments are performed on a Sony PlayStation 3 console (on which only six of
the SPEs are available to the programmer), running Fedora Core 7 Linux, with IBM
SDK v3.0.0. The OutputC code produced by the Sieve compiler is compiled using
ppu-gcc and spu-gcc, and Sieve results are compared against programs in standard
C++ compiled with ppu-g++ (all GNU compilers are v4.1.1). OpenMP examples are
compiled using the IBM XL C/C++ Single-Source compiler (Alpha Edition, v0.9), and
compared against serial code compiled with the same compiler, using the -qnosmp to
specify that OpenMP directives should be ignored. Both serial versions run on the PPU.

Figure 1(a) plots the speedup of each Sieve C++ program relative to a single SPU
when data movement optimisations are applied. Figure 1(b) demonstrates the effec-
tiveness of these optimisations for code parallelised over 6 SPEs, showing speedups
for each optimisation and for their combination relative to performance without data
movement optimisations. Figure 2 shows the speedup of each Sieve/OpenMP applica-
tion relative to serial code compiled with ppu-g++/XL C++. For the Sieve applications,
the number of SPUs is indicated above the corresponding bar. For OpenMP, the number
indicated is the number of active parallel threads, which ranges from 1 to 7 since the
IBM OpenMP implementation supports parallelisation across the SPUs and PPU. The
rules as to when a thread is spawned on the PPU rather than an SPU are undocumented;
the results indicate that the distribution strategy varies between input programs.

4.2 Discussion

Figure 1(a) shows that six of our nine benchmarks scale almost linearly as the number
of active SPUs increases, with GRAVITY showing the best scaling. Of the remaining
three benchmarks, MAND+SIMD scales slightly worse than MAND: the gain from
using vector intrinsics is high for a small number of SPUs, but more active SPUs leads
to higher bus traffic due to side-effect transfer. This slows down the SPUs, making
the impact of vector instructions less significant. Analysis using an in-house Codeplay
profiler attributes the reasonable but sub-linear FFT3D scaling and the poor SGEMV
scaling to high bus activity. These benchmarks involve a high rate of data movement in
small chunks both to and from SPU local store.

0

1

2

3

4

5

6

1 2 3 4 5 6

Number of active SPEs

S
p
ee

d
u
p

SGEMV

GRAVITY

NOISE RGB

NOISE GREY

CRC

MAND

FFT3D

JULIA

MAND+SIMD

(a) Scaling w.r.t. one SPE.

0

0.5

1

1.5

2

2.5

3

3.5

4

SGEMV GRAVITY NOISE

RGB

NOISE

GREY

CRC MAND FFT3D

DMA streaming

Write combining

Both

(b) Effectiveness of Sieve-Cell optimisations.

Fig. 1. Benchmark results for Sieve C++ programs.

Our data movement optimisations provide no performance improvement for JULIA
and MAND+SIMD, which are therefore not shown in Figure 1(b). DMA streaming does
not apply to these benchmarks (or to MAND) since they do not read data from global
memory. Delayed write combining is effective for MAND and FFT3D, which involve
frequent delayed stores. MAND+SIMD involves fewer delayed stores than MAND
since the former benchmark writes back pixels in vector chunks. For NOISE RGB,
delayed write combining has little effect alone but provides an improvement when com-
bined with streaming. This works the other way for FFT3D, where streaming provides
a more significant speedup when applied with write combining.

The results of Figure 2 show that automatic parallelisation using Sieve and OpenMP
can lead to significant speedups over PPU-only code, and thus commends both systems.
The Sieve results are competitive with those for OpenMP, showing better scaling for
three benchmarks. Both approaches perform poorly compared with serial SGEMV. For
the GRAVITY benchmark, although scaling is good, the performance of Sieve code
with six SPUs is roughly equal the performance of serial code; OpenMP code using all
seven parallel threads runs 1.3 times faster than the XL C++ serial version. Of the Sieve-
only benchmark programs, MAND+SIMD shows excellent scalability, approaching the
performance of hand-written parallel Cell code. Nevertheless, our 4-pixel SIMD exe-
cution path prevents an ideal quadrupling of performance. A modest 1.6 times speedup
with 6 SPUs is achieved for JULIA. As with GRAVITY, Sieve code for FFT3D with 6
SPUs runs at roughly the same speed as the serial ppu-g++ code. Further investigation
of the weaker speedup responses has shown that programs with a high rate of data trans-
fer between SPE and PPE memory are most strongly affected, due to the cost of DMA
operations and the attendant overhead of the delayed store function. The final writeback
of side-effects by the PPE does not make a significant contribution.

1

1

1
1 1

1
1

1

1

1

1

1

1 1

1

2 2 2 2
2

2

2

2

2

2

2

2

2 2

2

3 3
3 3

3

3

3

3

3

3

3

3

3
3

3

4 4
4 4

4

4

4

4

4

4

4

4

4
4

5 5

5
5

5

5

5

5

5

5

5

5

5

5

6 6

6
6

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

0

2

4

6

8

10

12

14

16

SGEMV-

Sieve

SGEMV-

OpenMP

GRAV.-

Sieve

GRAV.-

OpenMP

NOISE

RGB-

Sieve

NOISE

RGB-

OpenMP

NOISE

GREY-

Sieve

NOISE

GREY-

OpenMP

CRC-

Sieve

CRC-

OpenMP

MAND-

Sieve

MAND-

OpenMP

FFT3D-

Sieve

JULIA-

Sieve

MAND

SIMD-

Sieve

S
p

ee
d

u
p
 (

w
.r

.t
.

se
ri

al
 P

P
E

 c
o

d
e)

MAND+SIMD
30 times faster

with 6 SPEs

The number of SPE

cores/PPE+SPE threads

used by Sieve/OpenMP

Fig. 2. Scaling for Sieve and OpenMP benchmarks with respect to serial PPE versions.

5 Conclusions and Future Work

We have presented the Sieve-Cell system – an auto-parallelisation system for the Cell
BE processor based on the Codeplay Sieve C++ language. We have described compile-
time and run-time data movement optimisations, and presented experimental results
which show the effectiveness of these optimisations on a number of benchmarks, as
well as the scaling of parallel code over multiple SPUs. Our experimental results also
show that Sieve is competitive with IBM’s OpenMP implementation for Cell.

Future work includes comparing the Sieve-Cell system against Sequoia and CellSs
on a number of representative benchmarks, and performance comparisons with other ar-
chitectures. Similar experiments on double-precision data using PowerXCell8i will also
be attempted. The design and implemention of advanced data movement techniques for
complex access patterns is also underway, as is the development of an overlay system
to allow larger applications to be parallelised over SPUs.
Acknowledgements Thanks to all at Codeplay for their work on the Sieve-Cell sys-
tem, Mike Houston for providing Sequoia benchmark source code, and the anonymous
reviewers for their comments which have helped to improve the paper.

References
1. Bellens, P., Perez, J., Badia, R., Labarta, J.: CellSs: a programming model for the Cell BE

architecture. In Supercomputing’06, page 86. ACM Press (2006)
2. Donaldson, A. F., Riley, C., Lokhmotov, A., Cook, A.: Auto-parallelisation of Sieve C++

programs. In Euro-Par’07 Workshops, pp. 18–27, LNCS 4854. Springer (2008)
3. Fatahalian, K. et al.: Sequoia: programming the memory hierarchy. In Supercomputing’06,

page 83. ACM Press (2006)
4. Hofstee, H. P.: Power efficient processor architecture and the Cell processor. In HPCA’05,

pp. 258–262. IEEE Computer Society (2005)
5. Lokhmotov, A., Mycroft, A., Richards, A.: Delayed side-effects ease multi-core program-

ming. In Euro-Par’07, pp. 629–638, LNCS 4641. Springer (2007)
6. Valiant, L.: A bridging model for parallel computation. Commun. ACM 33(8):103-111 (1990)

