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Abstract We introduce a specification language, Promela-Lite, which captures the
essential features of Promela but which, unlike Promela, has a formally defined
semantics. We show how we can detect symmetry in specifications defined in
Promela-lite by constructing a directed, coloured bipartite digraph called a static
channel diagram, and applying computational group theoretic techniques. We extend
our approach to Promela and introduce a tool, SymmExtractor, for automatically
detecting symmetries of Promela specifications. We demonstrate the effectiveness of
our approach via experimental results for a suite of Promela specifications. Unlike
previous approaches our technique is fully automatic, and not restricted to fully
symmetric systems.

Keywords Automatic verification · Promela · Model checking · Symmetry reduction

1 Introduction

Errors in hardware and software development often appear at the design stage,
yet are not detected until the final testing stage. The later errors are found, the
more expensive they are to correct. Model checking [5, 7, 10, 36] is a popular
automatic method that helps to find errors quickly by building small logical models
of a system which can be automatically checked. Model checking is most commonly
used to verify finite state concurrent systems, like those associated with intricate
communications protocols and sequential circuits.
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Model checking involves constructing an underlying model, usually a Kripke
structure, from a description of a system expressed using a specification language
like Promela (for SPIN [28]), the Reactive Modules Language (for SMV [33]) or
extended timed automata (for UPPAAL [31]). As the number of components in a
system increases, the size of the underlying Kripke structure can grow exponentially.
This phenomenon is known as state space explosion and can prohibit verification of
complex systems. Many systems, however, consist of clusters of sets of identical (up
to process id) components, resulting in symmetry of the underlying state space. If
this symmetry can be detected it can often be exploited to reduce the cost of model
checking sufficiently to allow for full verification.

Symmetry reduced model checking [8, 24, 30] involves checking a smaller quotient
structure rather than the entire Kripke structure associated with a specification. The
quotient structure is constructed during search using knowledge of the symmetry
present in the original system. Provided a property to be checked is preserved by the
symmetry used, searching the quotient structure is sufficient for verifying the truth
or otherwise of the property for the system.

Most approaches to symmetry reduction in model checking require the user to
manually specify the symmetry to be exploited, either directly [6, 27, 35] or by
annotating the specification using additional keywords [2, 30]. This approach is error-
prone and requires the user to have an in-depth knowledge of symmetry reduction
theory. In many cases systems are assumed to be fully symmetric: all components are
identical up to permutation of identifiers. However, this situation arises in practice
only for very simple systems.

In order for symmetry reduced model checking to be a viable technique for
verification of large, hitherto intractable models, it is vital to provide automatic
means to extract symmetry information for any system (whether fully symmetric
or not). Clearly, since construction of the entire state-space is (assumed to be)
infeasible, any such technique must be static and rely only on the system specification.

In this paper we concentrate on the problem of automatic symmetry detection.
We define a specification language Promela-Lite which captures the essential fea-
tures of Promela but which, unlike Promela, has a formally defined semantics. We
describe an automatic technique for detecting symmetry statically from Promela-
Lite specifications. Given a Promela-Lite specification P representing a concurrent
system, our approach involves extracting a graphical representation of the com-
munications structure of the system, called a static channel diagram, SCD from P .
Having obtained a group of symmetries from SCD(P) we use computational group
theory techniques to infer symmetries of the model associated with P . Although
our results apply specifically to Promela-Lite specifications, they extend naturally
to specifications presented in a restricted version of Promela. We introduce a tool,
SymmExtractor, for the automatic detection of symmetry in Promela specifications,
and demonstrate its effectiveness via a series of experiments for a variety of families
of Promela specifications.

In Section 2 we discuss related work and in Sections 3 and 4 we provide the
necessary background material on model checking, Promela and SPIN, and group
theory. We describe the process of symmetry reduction for model checking using
quotient structures in Section 5. In Section 6 we introduce our specification language
Promela-Lite and in Section 7 we formally define a static channel diagram and show
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how it is used to detect symmetry in Promela-Lite specifications. We describe our
SymmExtractor tool in Section 8 and provide experimental results and analysis. Our
conclusions are presented in Section 9.

2 Related Work

Most symmetry reduction implementations involve replacing sets of states with
equivalence class representatives [8, 22, 24]. Implementations include symmetry
reduction for the Murφ verification system [30] and a purpose-built model checker
(SMC – Symmetry Model Checker), designed for the verification of highly symmetric
systems [40].

A symmetry reduction package for SPIN, SymmSpin [2], exists but, like the
Murφ implementation, relies on user-defined symmetry implemented using a spe-
cial datatype, a scalarset [30]. In a similar technique symmetry is again identified
within Promela programs via the use of keywords [13] in a less restricted model of
computation.

Neither of these approaches to symmetry reduction for SPIN involve automatic
symmetry detection. The user has to specify symmetry via annotation of the specifi-
cation to indicate the presence of symmetry.

Our approach to symmetry detection is fully automatic. The use of static channel
diagrams for symmetry detection for Promela has been previously described in [16]
(previous version appeared in proceedings of AVoCS 2004) and [19]. However, no
proofs of theoretical results were provided. In this paper we introduce Promela-Lite
for the first time and use it to provide a rigorous justification of our previous theoret-
ical results in the context of Promela-Lite. We also include extensive experimental
results and analysis, for a range of Promela specifications.

3 Model Checking, Promela and Spin

Verification of a concurrent system design by temporal logic model checking involves
first specifying the behaviour of the system at an appropriate level of abstraction.
The specification P is described using a high level formalism (often similar to a
programming language), the semantics of which are an associated finite state model,
M(P). A requirement of the system is specified as a temporal logic property, φ.

A software tool called a model checker then exhaustively searches the finite state
model M(P), checking whether φ is true for the model. In Linear Time Temporal
Logic (LTL) model checking this involves checking that φ holds for all paths of
the model. If φ does not hold for some path, an error trace or counter-example is
reported. Manual examination of this counter-example by the system designer can
reveal that φ does not adequately specify the behaviour of the system, that φ does
not accurately describe the given requirement, or that there is an error (bug) in the
design. In this case, either P , φ, or the system design (and thus also P and possibly φ)
must be modified, and re-checked. This process is repeated until the model checker
reports that φ holds in every initial state of M(P), in which case we say M(P)

satisfies φ, written M(P) |= φ. The model checking process is illustrated by Fig. 1.



254 A.F. Donaldson, A. Miller

YES NO

+ trace to errorProperty is satisfied

Specification Property

Model Checker: ?

State-space

Improve design
and /or and

Counter-example

Fig. 1 The model checking process

Assuming that the specification and temporal properties have been constructed
with care, successful verification by model checking increases confidence in the
system design, which can then be refined towards an implementation.

In many cases the finite state model is a Kripke structure. Let V = {v1, v2, . . . , vk}
be a finite set of system variables, where each vi ranges over a finite non-empty set
Di of possible values. Then D = D1 × D2 × · · · × Dk is the set of all possible system
states. A Kripke structure is defined in terms of D as follows:

Definition 1 A Kripke structure M over D is a tuple M = (S, S0, R) where:

1. S = D is a non-empty, finite set of states
2. S0 ⊆ S is a set of initial states
3. R ⊆ S × S is a transition relation

A path in M from a state s ∈ S is an infinite sequence of states π = s0, s1, s2, . . .

where s0 = s, such that for all i > 0, (si−1, si) ∈ R. For states s and t, it is common
to denote the transition (s, t) by s → t. A state s ∈ S is reachable if there is a path
s0, s1, . . . , s, . . . in M where s0 ∈ S0. A transition (s, t) ∈ R is reachable if s is a
reachable state.

We usually consider Kripke structures which have a single initial state s0 ∈ S,
in which case we write M = (S, s0, R). Note that, following the convention of e.g.
[9, 24], Definition 1 does not include a labelling function. Such a structure is some-
times referred to simply as a transition system [9]. We could equivalently define states
as being labelled with atomic propositions of the form (vi = di) (where di ∈ Di) [10].

Figure 2 shows the reachable part of a Kripke structure for a model of two process
mutual exclusion. The model consists of two processes, each with three local states
N, T and C. Each process has a single state variable, sti say (i ∈ {1, 2}). Here V =
{st1, st2} and D1 = D2 = {N, T, C}. The values N, T and C denote that a process is in
the neutral, trying or critical state respectively. For A ∈ {N, T, C} we abbreviate the
proposition sti = A by Ai. Only if process i is in the trying state (i.e. Ti holds) and
process j �= i is not in the critical state (i.e. ¬C j holds) can process i can move into
the critical state. Thus in the model it is not possible for both processes to be in the
critical state. That is, the mutual exclusion property holds. Note that there is a single
initial state in which both processes are in the neutral state.
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Fig. 2 Kripke structure for
two-process mutual exclusion
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The model checker SPIN (simple Promela interpreter) [28] allows one to reason
about specifications written in the model specification language Promela (process
meta language).

Promela is an imperative style specification language designed for the description
of network protocols. In general, a Promela specification consists of a series of global
variables, channel declarations and process type (proctype) declarations, together
with an initialisation process. Logical properties are either specified using assertions
embedded in the body of a proctype, or via LTL properties. Each proctype in a
Promela specification can be viewed as a finite automaton, and the model associated
with this specification is the asynchronous product of the automata for all proctype
instantiations. This global automaton can be viewed as a Kripke structure, so we
refer to the Kripke structure, rather than the automaton, associated with a Promela
specification.

We do not give full details of Promela, but refer the reader to [28] and provide an
illustrative example in Fig. 3, which shows a specification for a five-process version
of the mutual exclusion protocol described in Section 3. In the example we specify
that certain sequences of statements should be executed as a single update, using
an atomic block. In addition we use a repetitive choice statement of the form do
〈options〉 od, where 〈options〉 is a list of Promela fragments, separated by the ::
token. A process executes a do..od statement by repeatedly executing one of the
options, if any are executable. A break or goto statement may be used to exit
a do..od loop. Non-repetitive choice can be specified similarly using an if..fi
construct.

The specification of Fig. 3 consists of: an enumerated type definition for the
symbolic constants N, T and C; a global array st which is used to hold the state of
each process; a user proctype, and an init process which instantiates a number of
user processes. The body of the user proctype consists of a single do..od statement.
Each option in this loop is a atomic block consisting of a guard (e.g. st[_pid]==N)
followed by an update (e.g. st[_pid]=T). A user process proceeds by repeatedly
executing one of the atomic blocks, if any are executable. The init process
consists of a sequence of run statements, each instantiating a user process. The run
statements are contained within an atomic block, so that they are executed as an
indivisible sequence.
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Fig. 3 Promela specification of mutual exclusion with 5 processes

The declaration and use of channels is illustrated in Fig. 4. There is a single channel
of length 1. The agent that reads a message first from the channel declares itself the
winner. Note that the model has a deadlock, because the test for channel status and
the send/receive is not executed atomically. Both processes can enter the first branch
of the if statement, but only one of them will be able to send and declare itself the
winner. The other process will be blocked. Note that printf statements are used to
display information during simulation, but have no effect on verification.

4 Group Theory

Symmetries of a Kripke structure form a group, thus we require some definitions and
results from group theory. For more details, see e.g. [3, 37].

Fig. 4 Promela specification
with a buffered channel
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4.1 Groups, Graphs and Automorphisms

Definition 2 A group is a non-empty set G together with a binary operation ◦ : G ×
G → G which satisfies:

– For all α, β, γ ∈ G, α ◦ (β ◦ γ ) = (α ◦ β) ◦ γ

– There is an element id ∈ G such that, for all α ∈ G, α = id ◦ α = α ◦ id. The
element id is called the identity of G

– For all α ∈ G there is an element β ∈ G such that α ◦ β = β ◦ α = id. The
element β is called the inverse of α, denoted α−1.

In this paper, the binary operation ◦ is always composition of mappings, so we
omit it, writing αβ for α ◦ β.

A directed graph (referred to as a digraph) is a pair (V, E) where V is a set of
vertices and E a set of edges – ordered pairs of vertices written as a pair (u, v)

(u, v ∈ V). A digraph (V, E) is bipartite if V = V1 ∪ V2, where V1 ⊂ V and V2 ⊂ V
are disjoint non-empty sets and, for (u, v) ∈ E, u ∈ V1 and v ∈ V2, or u ∈ V2 and
v ∈ V1. A colouring of digraph (V, E) is a mapping Υ : V → K, where K is a finite
set of colours. A coloured digraph is a triple (V, E, Υ ) such that (V, E) is a digraph
and Υ a colouring of (V, E).

Definition 3 Let � = (V, E, ϒ) be a coloured digraph and α a permutation of V.
Then α is an automorphism of � if the following conditions are satisfied:

– For all (u, v) ∈ E, (α(u), α(v)) ∈ E
– For all v ∈ V, Υ (v) = Υ (α(v)).

The set of all automorphisms of a coloured digraph � forms a group under
composition of mappings, denoted Aut(�).

Let G be a group and let H ⊆ G. If H is non-empty and is itself a group under the
binary operation then H is a subgroup of G, denoted H ≤ G. If H ⊂ G then H is a
proper subgroup of G, denoted H < G.

Definition 4 Let X ⊆ G. Then 〈X〉 denotes the smallest subgroup of G which
contains X, and is called the subgroup generated by X. If α1, α2, . . . , αk ∈ G then
we use the shorthand 〈α1, α2, . . . , αk〉 to denote 〈{α1, α2, . . . , αk}〉.

For any group G, if X ⊆ G has the property that G = 〈X〉 then X is called a set of
generators for G. It can be shown that if G is a finite group, there exists a generating
set X for G with |X| ≤ log2 |G|. As a result, it is often possible to work with a small
generating set for a large group.

Definition 5 Let H be a subgroup of G and α ∈ G. Then the set Hα = {βα : β ∈ H}
is a (right) coset of H in G.

A similar definition can be given for a left coset of H in G. We will use coset to
mean right coset. A set of coset representatives for H in G is a subset of G containing
exactly one element from each coset of H in G.
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A mapping between two groups which preserves products of elements is called
a homomorphism. If a homomorphism θ from G1 to G2 is bijective, then θ is an
isomorphism from G1 to G2, and G1 and G2 are said to be isomorphic, denoted G1

∼=
G2. Isomorphic groups differ only in that their elements may be labelled differently.

4.2 Permutation Groups and Group Actions

Let X be a non-empty set. A permutation of X is a bijection α : X → X. The set of all
permutations of X forms a group under composition of mappings, denoted Sym(X).

If X is finite then it can be shown that |Sym(X)| = |X|!, and an element α ∈
Sym(X) can be conveniently expressed using disjoint cycle form: if α = id then we
write id for α as usual. Otherwise, we can write α as a product of cycles as follows:

α = (a1,1 a1,2 . . . a1,s1)(a2,1 a2,2 . . . a2,s2) . . . (at,1 at,2 . . . at,st )

where t > 0, 2 ≤ si ≤ |X| (1 ≤ i ≤ t), ai, j ∈ X (1 ≤ i ≤ t, 1 ≤ j ≤ si), and the ai, j are
all distinct. In this form, for x ∈ X, if x = ai, j for some i and j then α(x) = ai, j′ where
j′ = j + 1 if j < si and j′ = 1 if j = si; otherwise α(x) = x.

Definition 6 Let G ≤ Sym(X) where X is a non-empty set. The group G induces
an equivalence relation ≡G on X thus: x ≡G y ⇔ x = α(y) for some α ∈ G. The
equivalence class under ≡G of an element x ∈ X, denoted [x]G, is called the orbit
of x under G.

An important class of permutation group is the symmetric groups:

Definition 7 For n > 0, the group Sym({1, 2, . . . , n}) is called the symmetric group of
degree n, denoted Sn. From the above, we have |Sn| = n!. Sn is often referred to as
the full symmetry group.

Fundamental to most applications of symmetry reduction in model checking is the
idea that a group of permutations of a given set induces a group of permutations on
another (usually larger) set. For example, a group of process identifier permutations
naturally induces a group of permutations of the set of states associated with a
specification. We describe this idea formally using group actions. The following
definition and theorem are adapted from [11] and [37].

Definition 8 Let X be a non-empty set and G a group. A group action of G on X is
a mapping μ : X × G → X such that for every x ∈ X and α, β ∈ G,

– μ(x, αβ) = μ(μ(x, α), β)

– μ(x, id) = x

If there is a group action of G on X we say that G acts on X. From now on we write
α(x) for μ(x, α), since the action μ is always clear from the context.

Theorem 1 Let G act on X. Then to each α ∈ G there corresponds an element ρα ∈
Sym(X) defined by ρα : x �→ α(x), and the map ρ : G → Sym(X) defined by ρ : α �→
ρα is a homomorphism.
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We call the homomorphism ρ the permutation representation of G corresponding
to the group action.

Many of the groups that arise naturally from specifications of systems consisting
of clusters of identical processes consist of products of smaller groups. Specific types
of group product include the (internal) direct product, denoted G = H1 × H2 × · · · ×
Hk for subgroups H1, H2, . . . , Hk, and the wreath product, a product of two specific
groups H and K, denoted H � K. We do not give details of these products here, but
instead refer the reader to [3, 37].

5 Symmetry Reduction Using Quotient Structures

Although this paper is not concerned with symmetry reduction, but with symmetry
detection, we include here the basic theory behind the technique for symmetry
reduction using quotient structures. A full survey of symmetry reduction methods
for temporal logic model checking is presented in [34].

Definition 9 Let M = (S, S0, R) be a Kripke structure over D. An automorphism
of M is a permutation α : S → S which preserves the transition relation and set of
initial states. That is α satisfies:

1. For all s, t ∈ S, (s, t) ∈ R ⇒ (α(s), α(t)) ∈ R
2. α(S0) = S0.

It can be shown that the automorphisms of a Kripke structure M form a group
under composition of mappings, denoted Aut(M). Note that in condition 1 of
Definition 9 we only require implication in one direction (⇒). Implication in the
other direction (⇐) follows from the fact that Aut(M) is a group: if (α(s), α(t)) ∈ R
then, since α−1 ∈ Aut(M), we have (α−1(α(s)), α−1(α(t))) ∈ R, i.e. (s, t) ∈ R.

In a model of a concurrent system with many replicated processes, Kripke struc-
ture automorphisms typically involve the permutation of process identifiers through-
out all states of the model. There is a group G which permutes the set of process
identifiers, and an action of G on S (see Definition 8). Let ρ be the corresponding
permutation representation (see Theorem 1). The group of automorphisms of M
induced by G is ρ(G), the image of G under the permutation representation. Given
α ∈ G, rather than referring to the automorphism ρα of M we say simply that α is an
automorphism of M.

Given a subgroup G of Aut(M), the orbits of S under G (see Definition 6) can be
used to construct a quotient Kripke structure MG as follows:

Definition 10 The quotient Kripke structure MG of M with respect to G is a tuple
MG = (SG, S0

G, RG) where:

– SG = {repG(s) : s ∈ S} (where repG(s) is a unique representative of [s]G)
– S0

G = {repG(s) : s ∈ S0}
– RG = {(repG(s), repG(t)) : (s, t) ∈ R}.
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Efficiently restricting state-space search to a unique representative from each orbit
is a challenging problem that has been considered in several symmetry reduction
implementations [2, 6, 20, 22, 40].

If G is non-trivial then the quotient structure MG is smaller than M. For any
s ∈ S, the size of [s]G is bounded by |G|, and so the theoretical minimum size of
SG is |S|/|G|. Since for highly symmetric systems we may have |G| = n!, where n
is the number of components, symmetry reduction potentially offers a considerable
reduction in memory requirements.

Consider the model M for the mutual exclusion example shown in Fig. 2.
Swapping process indices 1 and 2 throughout all states gives an automorphism, α say,
of M, and Aut(M) = {α, id}, where id is the identity mapping. Choosing a unique
representative from each orbit we obtain the quotient Kripke structure MAut(M)

illustrated by Fig. 5.
The following result [8, 24] states that a model and its quotient model satisfy

the same symmetric CTL� formulas (see e.g. [10] for details of the temporal logic
CTL�). A CTL� formula φ is symmetric, or invariant, with respect to G if for
every maximal propositional sub-formula f appearing in φ, and for every α ∈ G,
M, s |= f ⇔ M, α(s) |= f . In this case, G is an invariance group for φ.

Theorem 2 If M and MG denote a model and its quotient model with respect to a
group G respectively, M |= φ ⇔ MG |= φ for all symmetric CTL� formulas φ.

Consider the two-process mutual exclusion property φ1 = AG(¬(C1 ∧ C2)).
Clearly φ1 is symmetric with respect to the automorphism group G = {α, id}, where
α is defined as above. Thus the Kripke structure M (represented by Fig. 2) satisfies
φ1 if and only if the quotient structure MG (represented by Fig. 5) does. Therefore,
to check the mutual exclusion property, it is sufficient to check the quotient model
only.

The first step which must be accomplished by any reduction method which exploits
symmetry is the identification of a suitable symmetry group G. Clearly we can not use
M itself to find G as we only use symmetry reduction methods in situations where it
is not possible to construct M.

In most cases where symmetry reduction is used in model checking, the user is
required to manually specify the symmetry present in a model [6, 35]. However this

Fig. 5 Quotient Kripke
structure for two-process
mutual exclusion N , N

T , N

C, N

C, T

T , T
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is error-prone and is only realistic in cases where there is full symmetry, i.e. the
symmetry group contains all permutations of component ids.

A popular approach to symmetry detection involves annotation of the system
description via a purpose-built data type [30]. The data type is called a scalarset,
and acts as documentation that certain symmetries are present in a specification
expressed in the Murφ description language [14]. A scalarset is an integer sub-range
with restricted operations. These restrictions are sufficient to ensure that consistent
permutation of scalarset variables in all states corresponds to an automorphism of the
state-space. Scalarsets have been used to implement symmetry reduction techniques
for the SPIN model checker via the SymmSpin tool [2].

Unlike SymmSpin, our approach to symmetry detection using static channel
diagrams (see Section 7) is fully automatic, and not restricted to full symmetry.

6 Promela-Lite

In order to support our techniques with a formal proof, we present Promela-Lite,
a specification language which captures the essential features of Promela. The
Promela language includes a large set of keywords and language features to specify
complex communication protocols. Consequently, proving properties about Promela
specifications is laborious, requiring many case-by-case arguments. Rigorous proofs
are also hindered by the lack of a formal definition of the semantics of Promela as
implemented by SPIN.

Promela-Lite is a smaller specification language that includes core Promela
features such as parameterised processes, first-class channels and global variables,
but omits many language features such as enumerated types, record types, arrays
and rendez-vous channels. We present a full grammar and type system for this
smaller language, as well as a precise Kripke structure semantics for Promela-Lite
specifications. In Section 7 we prove the correctness of our symmetry detection
techniques for Promela-Lite. As Promela-Lite and Promela are so closely related,
our results lend considerable weight to the proposition that our results can be applied
to (a restricted form of) Promela. Omitting the more ornate features of Promela from
Promela-Lite makes our proof easier to transfer to other specification formalisms.

It is important to stress that we do not intend to implement a Promela-Lite
model checker, or for users to write Promela-Lite specifications in practice (though
we do illustrate the language with an example specification). While it may seem
that the restricted syntax of Promela-Lite does not meet our aim of reducing the
restrictions placed on the form of a specification, the restricted syntax is only for ease
of presentation of our results. Our Promela implementation (see Section 8) lifts most
of these restrictions.

The name Promela-Lite was inspired by Featherweight Java, a calculus which
captures the core object oriented features of Java (classes, methods and inheritance),
but omits features of the full language [29].

To illustrate features of Promela-Lite we discuss an example specification of a
message passing system, given in Fig. 6. The specification consists of three server
processes, six client processes and three load-balancer processes. A particular client
has been blocked by the system, indicated by the global pid variable blocked_client.
A load-balancer process continuously receives requests sent by client processes. A
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Fig. 6 Promela-Lite specification of a load-balancing system

request consists of two parts: the identity of a client (derived from its _pid variable),
and the input channel of the client. If the message originates from the blocked client
then the load-balancer returns the value 0, indicating that the request has been
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denied. Otherwise the load-balancer forwards the name of the input channel of the
given client to the server with the shortest queue of incoming messages (choosing
non-deterministically between servers which share the shortest queue length). On
receiving a client channel name, a server uses it to send the value 1 to the client.

6.1 Syntax

We use the standard Backus-Naur form (BNF, see e.g. [1]) to specify the syntax of
Promela-Lite.

Let 〈prod〉 be a BNF production rule. We use the following shorthand notation to
refer to occurrences of 〈prod〉 on the right hand side of other production rules:

– 〈prod〉? denotes an optional occurrence of 〈prod〉
– 〈prod〉∗ denotes a sequence of zero or more occurrences of 〈prod〉
– 〈prod〉+ denotes a sequence of one or more occurrences of 〈prod〉
– 〈prod-list, ‘◦’〉 denotes a ◦-separated list of one or more occurrences of 〈prod〉.

6.1.1 Syntax of Types

The syntax of Promela-Lite data types is summarised in Fig. 7 (see Fig. 8 for details
of the 〈name〉 production rule).

The language includes two primitive data types, int and pid, representing integer
values and process id values respectively. Basic channel types have the form chan{T},
where T denotes a comma-separated list of types (which could include channel
types).

It can be useful for a channel of type T to accept a channel of type T as
one of its arguments. In this case, T is a recursive type. Accordingly, Promela-
Lite includes syntax for recursive channel types (the 〈recursive〉 rule of Fig. 7).
For example, consider a type T of the form rec X . chan{X, int}. Then T denotes a
channel which accepts messages consisting of two fields: a channel of type T, and
an integer. This recursive type can be unfolded by removing the initial ‘rec X . ’
and substituting ‘X’ for the original expression, resulting in the type expression
chan{rec X . chan{X, int}, int}. Note that although Promela does not allow explicit
declaration of recursive types, recursive channel types can be introduced implicitly
via channel usage [18]. We use chan{T} to refer to an arbitrary channel type, since a
channel type of the form rec X . chan{. . . } can always be unfolded into this form.

Fig. 7 Promela-Lite type
syntax
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Fig. 8 Syntax of Promela-Lite

6.1.2 Syntax of the Language

A Promela-Lite specification consists of a series of channel and global variable
declarations, one or more proctypes, and an init process. In the example spec-
ification of Fig. 6 there is a sequence of channel declarations, a global variable
declaration (blocked_client), proctypes loadbalancer, server and client
and an init process.

The syntax of Promela-Lite is given in Fig. 8, in which we have simplified the
presentation of the rules 〈name〉 and 〈number〉. In the 〈guard〉 production rule, ��
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denotes an operator taken from the set {==,!=,<,<=,>,>=}. For simplicity, to avoid
the need for detailed semantics for division-by-zero errors, we have not included the
division operator in Promela-Lite.

A channel declaration chan c = [a] of {T} defines a buffered channel c with
type chan{T} and length a > 0. This is similar to a globally instantiated channel in
Promela. We define the signature of c by signature(c) = (a, {T}) and call channels
declared in this way static channels. In Fig. 6 channel se1 has type chan{chan{int}}
and length 3, and signature(se1) = (3, {chan{int}})

A static channel name cannot be re-assigned (via assignment or a channel receive
operation). A global variable declaration T x = a associates a name x with a type
T ∈ {int, pid} and an initial value a. Note that this restriction on T is imposed by the
type system, not the grammar. Our channel requirements are formally specified in
Appendix A via typing rules.

A Promela-Lite proctype is a parameterised process definition consisting of a list
of parameters, and a set of statements contained in a do. . .od loop. For simplicity
we do not allow proctypes to declare local variables. In Promela, parameters to
a proctype and local variables are treated identically, thus any local variable can
be equivalently declared as a parameter, with an initial value supplied as a run
statement argument. For this reason we use the terms parameter and local variable
interchangeably.

Each statement has the form atomic { 〈guard〉 -> 〈update-list, ‘;’〉 } where
〈guard〉 is a boolean expression over variables and 〈update-list, ‘;’〉 a sequence of
updates to variables and channels. The atomic block surrounding the guard and
updates ensures that executing the statement results in a single transition of the
system. In Fig. 6 every guard of the client proctype contains a proposition relating
to the program counter pc of the associated process, and in some cases also a check
on the status of a channel. Promela keywords len, nfull and nempty are retained
in Promela-Lite.

The init process consists of a set of run statements contained within an atomic
block. If process i is an instantiation of proctype p, we write proctype(i) = p.

A special channel literal null, denoting an undefined channel reference, can be
used as a default value. The value 0 can be used as a default value for variables with
pid type. Like Promela, each Promela-Lite process has a built in constant, _pid,
which records its run-time instantiation number. This is defined as the position of its
run statement in the init process.

6.2 Type System and Kripke Structure Semantics

We say that a Promela-Lite specification P is well-typed if the statements and
declarations in P are well-formed according to the typing rules of Appendix A.
We note some important properties of well-typed specifications that are used in our
proofs in Section 7.3.

1. The fullness/emptiness of a channel is checked before it is used for
communication.

2. A Promela-Lite statement involves at most one send or receive update (at the
beginning of the sequence of updates for the sequence).

3. If a guard has the form e1==e2 or e1!=e2, where e1 and e2 are expressions, then
e1 and e2 have the same type.



266 A.F. Donaldson, A. Miller

4. Similarly if a guard has the form e1 �� e2 where �� ∈ {<,<=, >, >=} then e1 and
e2 have type int.

A literal value in the range {0, 1, . . . , n} has both type pid and int according to the
type system. Such a literal occurs in a pid context if it is assigned to a pid variable,
sent as a pid argument on a channel, passed as a pid argument in a run statement, or
compared with a pid variable using == or !=. We say that a literal a has type pid if it
occurs in a pid context, otherwise it has type int.

Unlike Promela, there is a fully documented Kripke structure semantics for
Promela-Lite (which we present in full in Appendix B). For each update u described
by the 〈update〉 rule in Fig. 8, the effect of u on a state s can be defined via a further
set of rules, presented in Fig. 1. Note that a state s ∈ S can be expressed as an
ordered tuple consisting of a value for each variable and channel (see Definition
1). However, it is more convenient here to reason about s as a set of propositions,
one for each variable and channel of P . Note also that for a proctype p, variable
name x and process identifier i with proctype(i) = p, we define var(x) to be x if x is
a global variable, and p[i].x otherwise. In addition, when representing the contents
of a channel, �a denotes a tuple of values (one per message field). In each case we
define the update u, the conditions under which u applies, and the result of applying
u to s (denoted execp,i(s, u)). For an expression e appearing in proctype p, evalp,i(s, e)
denotes the (boolean or integer) result of evaluating e for process i at state s, where
proctype(i) = p.

Given a sequence of updates u1, u2, . . . , uk and a state s the rules of Fig. 1 can
be applied repeatedly to define the state reached by executing the ui in sequence,
starting in state s (assuming that the conditions of the updates are satisfied in the
relevant intermediate states - otherwise the Kripke structure is deadlocked). The
resulting state is denoted execp,i(s, u1; u2; . . . ; uk), where

execp,i(s, u1; u2; . . . ; uk) = execp,i(. . . execp,i(execp,i(s, u1), u2) . . . , uk).

A statement is said to be well-defined if the application conditions of the statement
are sufficient to ensure that the sequence of updates result in a well-defined state. A
transition between well defined states is said to be a well-defined transition. A Kripke
structure M associated with a Promela-Lite specification P is said to be well-defined
if all of its states and transitions are well-defined. Note that M has a single initial
state s0.

In Appendix B we prove the following:

Theorem 3 If P is a well-typed Promela-Lite specification then its associated model
M is well-defined.

Note that Promela-Lite is not a subset of Promela since it includes extended
notation for channel types, and the built-in null constant.

Let P be a Promela-Lite specification. Then P can be converted into a Promela
specification as follows. First, unfold all recursive type expressions in P so that
they have the form chan{T} (where the types comprising T may be recursive).
Second, replace every type expression of the form chan{T} with chan. Finally, add
the declaration chan null = [0] of {T} to the beginning of the specification,
where T is any Promela type (e.g. bit).

The Promela-Lite semantics are based on the informal semantics for Promela
described in [28] and the SPIN source code. They have been designed so that if
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P is a well-typed Promela-Lite specification and P ′ the corresponding Promela
specification, then P and P ′ have the same associated model.

7 Finding Symmetry by Static Channel Diagram Analysis

In this section we introduce the static channel diagram of a Promela-Lite specifica-
tion. This is a graphical structure that can be extracted by syntactic inspection of a
specification. We formally establish a correspondence between automorphisms of the
static channel diagram and automorphisms of the Kripke structure associated with a
Promela-Lite specification.

We present a symmetry detection technique based on this correspondence, which
can be summarised as follows: generators for a group of candidate symmetries for a
Promela-Lite specification are found by analysing the static channel diagram of the
specification. These generators are checked individually against the specification to
see if they induce valid automorphisms of the associated model. Starting with the set
of candidate generators which are valid, the largest possible subgroup of candidate
symmetries which are all valid is computed. These symmetries can then be used for
reduced model checking.

Our approach can detect arbitrary component symmetries arising from the com-
munication structure of a specification, and can be fully automated requiring no
additional information from the user. The only requirement is that the specification
satisfies the formally defined restrictions imposed by the Promela-Lite type system,
which can be automatically checked. These restrictions are less strict than those
imposed by, for example, the scalarset data type [30].

7.1 Static Channel Diagrams

Let P be a Promela-Lite specification with n processes. Let VP = {1, 2, . . . , n} be the
set of process identifiers, and VC the set of static channel names for P . Recall that
a Promela-Lite statement involves at most one send or receive update, which must
appear at the beginning of the sequence of updates for the statement.

Definition 11 The static channel diagram associated with P is a coloured, bipartite
digraph SCD(P) = (V, E, Υ ) where:

– V = VP ∪ VC is the set of process identifiers and static channel names in P
– For i ∈ VP, c ∈ VC and proctype(i) = p,

– (i, c) ∈ E iff p has a statement of the form
‘atomic { g -> 〈name〉!e1, e2, . . . , ek; u2; . . .; ul }’ where 〈name〉 is c, or
〈name〉 is a parameter of p initialised with value c

– (c, i) ∈ E iff p has a statement of the form
‘atomic { g -> 〈name〉?x1, x2, . . . , xk; u2; . . .; ul }’ where 〈name〉 is c,
or 〈name〉 is a parameter of p initialised with value c

– Υ is a colouring function defined by Υ (v) = proctype(v) if v ∈ VP, and Υ (v) =
signature(v) if v ∈ VC.
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Note that a static channel diagram is similar to a channel diagram [38]. The
difference is that the channel diagram records all possible channel-based commu-
nication, whereas the static channel diagram records potential communication on
certain channels. The static channel diagram of a specification can be seen as a
static approximation of the communication structure for the specification. It does
not capture communication arising from dynamic passing of channel references, and
edges of the diagram may result from send/receive updates which in practice cannot
be executed in any reachable state of M. Nevertheless, our symmetry detection
techniques can be applied successfully to specifications which use dynamic channel
passing. Note that, unlike channel diagrams, a static channel diagram SCD(P) can
be computed directly from P without constructing M.

Given a Promela-Lite specification P , SCD(P) can be efficiently derived via a
single pass of P . The node set and colouring can be deduced immediately from the
declaration of static channels and the run statements.

If a proctype p involves an explicit send (receive) on static channel c then an edge
(i, c) ((c, i)) is added to the diagram for each i ∈ VP such that proctype(i) = p. Each
channel parameter x of p is marked as a send parameter and/or a receive parameter
if p contains an update of the form x!e1, e2, . . . , ek and/or x?x1, x2, . . . , xk. For each
i ∈ VP with proctype(i) = p, suppose the actual value for x in the ith run statement is
c (where c is a static channel name). If x is marked as a send/receive parameter then
an edge (i, c)/(c, i) is added to the diagram. The time taken to construct SCD(P) is
linear in the size of P .

Figure 9 shows the static channel diagram for the Promela-Lite specification of
the load-balancer system, given in Fig. 6. Ovals and rectangles are used to represent
processes and channels respectively. The type of a process is its proctype name,
and channel signatures are indicated using the key in the figure. Note that there
are no outgoing edges from the server processes to the client input channels as
communication from a server process to a client channel is achieved dynamically.

Fig. 9 Static channel diagram associated with the load-balancer specification (Fig. 6)
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7.2 Static Channel Diagram Automorphisms

An automorphism of the static channel diagram SCD(P) = (V, E, Υ ) is an auto-
morphism of the directed, coloured graph (V, E, Υ ) (see Definition 3). The group of
all automorphisms of SCD(P) is denoted Aut(SCD(P)). For α ∈ Aut(SCD(P)) we
define α(0) = 0 and α(null) = null.

Since SCD(P) is relatively small, Aut(SCD(P)) can be efficiently computed
directly using a standard algorithm such as nauty [32]. Let P denote the load-balancer
specification of Fig. 6 with static channel diagram SCD(P) shown in Fig. 9. Recalling
that i is the pid of the ith proctype instantiated in the init process, we find:

Aut(SCD(P)) = 〈(7 8)(cl1 cl2), (9 10)(cl3 cl4), (11 12)(cl5 cl6),

(4 5)(lb1 lb2)(7 9)(cl1 cl3)(8 10)(cl2 cl4),

(5 6)(lb2 lb3)(9 11)(cl3 cl5)(10 12)(cl4 cl6),

(1 2)(se1 se2), (2 3)(se2 se3)〉
It is straightforward to check that each generator of this group is indeed an

automorphism of SCD(P). We have used the computational group theory package
GAP (groups, algorithms and programming) [26] to show that Aut(SCD(P)) ∼=
S3 × (S2 � S3) (see Section 4.2). Intuitively, the wreath product S2 � S3 arises due to
symmetry within each of the three blocks of clients (the group S2), combined with
symmetry between the three blocks (the group S3). The group S3 on the left hand
side of the direct product corresponds to permutation of the server processes (and
their associated channels).

We now define the image of P under an element of Aut(SCD(P)), and an action
of Aut(SCD(P)) on the states of M – the underlying Kripke structure associated
with P .

Let α ∈ Aut(SCD(P)). The specification α(P) is obtained from P by replacing
every applied occurrence of a static channel name c with α(c); every occurrence of a
value a ∈ {1, 2, . . . , n} in a pid context (see Section 6.2) with α(a), and permuting the
order of run statements so that run statement i appears in position α(i) in α(P) (1 ≤
i ≤ n).

Similarly, given an expression e, guard g, update u or statement s of P , the
expression α(e), guard α(g), update α(u) or statement α(s) is obtained by replacing
every static channel name c and pid literal a with α(c) and α(a) respectively.

We consider the action of Aut(SCD(P)) on the states of M. Let α ∈
Aut(SCD(P)). We first define the effect of α on propositions which refer to variables
and static channels of P . Note that for a well-formed type T, lit(T) denotes the set of
all possible literal values which can have type T in the specification P .

– Let (x = a) be a proposition referring to a global variable x with x : T and
a ∈ lit(T), where T = pid or T = int. If T = pid then α((x = a)) = (x = α(a)),
otherwise α((x = a)) = (x = a).

– For some proctype p and process i such that proctype(i) = p, let (p[i].x = a) be
a proposition referring to a local variable x of process i, with x : T and a ∈ lit(T).
If T = pid or T = chan{T} then we have α((p[i].x = a)) = (p[α(i)].x = α(a)).
Otherwise α((p[i].x = a)) = (p[α(i)].x = a). Since α preserves the colouring of
processes according to their proctype, process α(i) is also an instantiation of
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proctype p and therefore the local variable p[α(i)].x exists. Thus the action of
α is well-defined.

– Let (c = [�a1, �a2, . . . , �am]) be a proposition referring to a static channel c with
signature (l, {T}) where 0 ≤ m ≤ l. Then

α((c = [�a1, �a2, . . . , �am])) = (α(c) = [�a α
1 , �a α

2 , . . . , �a α
m])

If �ai = (a1, a2, . . . , ak) then �a α
i = (b 1, b 2, . . . , b k) where bi = α(ai) if Ti = pid

or Ti = chan{U} and bi = ai otherwise. The action of α is well-defined as α

preserves the signature of static channels.

Let M = (S, s0, R) be the model associated with P . Treating a state s as set of
propositions as in Section 6.2, the state α(s) is defined as follows: α(s) = {α(z) : z ∈ s}.

For all s ∈ S and α, β ∈ Aut(SCD(P)), it is clear that (αβ)(s) = α(β(s)) and id(s) =
s, therefore the definition of α(s) is an action of Aut(SCD(P)) on S (See Definition 8).

7.3 Correspondence

Let ρ be the permutation representation of Aut(SCD(P)) corresponding to its action
on S. By Theorem 1, ρ(Aut(SCD(P))) ≤ Sym(S). Now Aut(M) ≤ Sym(S), but we
cannot, in general, say anything about the relationship between ρ(Aut(SCD(P)))

and Aut(M).
In this section we define what it means for an element of Aut(SCD(P)) to be

valid for P , and show that the set of all valid elements of Aut(SCD(P)) form a
group G ≤ Aut(SCD(P)). We prove that if α ∈ Aut(SCD(P)) is valid for P then
ρ(α) ∈ Aut(M). Thus ρ(G) ≤ Aut(M). The relationship between the various groups
is illustrated in Fig. 10.

Fig. 10 Relationship between valid automorphisms of SCD(P) and automorphisms of M
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7.3.1 Valid Elements of Aut(SCD(P))

We say that two Promela-Lite specifications P1 and P2 are equivalent, and write
P1 ≡ P2, if they are identical up to re-arrangement of statements in the do. . .od
construct, and operands to the commutative operators +, *, && and ||. An element
α ∈ Aut(SCD(P)) is valid for P if α(P) ≡ P .

Theorem 4 Let G = {α ∈ Aut(SCD(P)) : α is valid for P}. Then G ≤ Aut(SCD(P)).

Proof Since id(P) = P , clearly id(P) ≡ P , so id ∈ G. Associativity is inherited from
Aut(SCD(P)). Let α, β ∈ G. Then αβ(P) ≡ P (by applying the re-arrangements of α

to those of β), i.e. αβ ∈ G. As Aut(SCD(P)) is finite, α−1 = αk for some k > 0, thus
α−1 ∈ G by the above argument. ��

If H is a subgroup of Aut(SCD(P)) such that every element of H is valid for P we
say that H is valid for P . The group G of Theorem 4 is the largest valid subgroup of
Aut(SCD(P)).

To check whether P ≡ α(P) for α ∈ Aut(SCD(P)), we use a function normalise.
The specification normalise(P) is obtained from P by sorting the statements in the
do...od loop of a proctype and the operands of commutative operators, using
the natural ordering on strings. It is clear that if two specifications are equal after
normalisation then they are equivalent. Thus α ∈ Aut(SCD(P)) is valid for P if
normalise(P) = normalise(α(P)). This provides an efficient, conservative test of
validity for elements of Aut(SCD(P)). Since the complexity of sorting a list of length
k is O(k log(k)), the complexity of checking whether P ≡ α(P) is O(|P| log(|P|)).

7.3.2 Correspondence Theorem

In this section we prove the following theorem:

Theorem 5 Let P be a Promela-Lite specification, and α ∈ Aut(SCD(P)). If α is valid
for P then ρ(α) ∈ Aut(M).

The proof of Theorem 5 uses four technical lemmas, which we prove below. First
we clarify some notation.

As in Section 6.2, if p is a proctype and i an identifier for which proctype(i) = p,
then: for an expression e appearing in proctype p, evalp,i(s, e) denotes the (boolean or
integer) result of evaluating e for process i at state s; for a list of updates u1, u2, . . . , uk,
execp,i(s, u1; u2; . . . ; uk) denotes the state resulting from the ordered execution of
updates u1, u2, . . . , uk by process i in state s. Similarly, for guard g appearing in
proctype p, we use s |=p,i g to assert that g holds for process i at state s.

Treating a state s as set of propositions as in Section 6.2, if φ is a proposition, and
s a state, we say φ ∈ s to denote that φ holds at s.
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Lemma 1 Let α ∈ Aut(SCD(P)), and let e be an expression in P . If e : int then

evalp,i(s, e) = evalp,α(i)(α(s), α(e))

and if e : pid or e : chan{T} then

evalp,α(i)(α(s), α(e)) = α(evalp,i(s, e)).

Proof If e has type int then the Promela-Lite syntax (Fig. 8) restricts e to a simple
expression of the form:

1. a, where a ∈ Z

2. x, where x is a local or global variable of type int
3. len(null)
4. len(c), where c is a static channel name
5. len(x), where x is a local variable of type chan

or an arithmetic combination of the above. Since α only acts on static channel
names and values of type pid, if e is a simple expression of one of the first three
forms above, clearly α(e) = e and it follows that evalp,i(s, e) = evalp,α(i)(α(s), α(e)) =
evalp,α(i)(α(s), e).

If e has the form len(c) where c is a static channel, and (c = [�a1, �a2, . . . , �am]) ∈
s then α(e) has the form len(α(c)), (α(c) = [�a α

1 , �a α
2 , . . . , �a α

m]) ∈ α(s), and
evalp,i(s, e) = evalp,α(i)(α(s), α(e)) = m. If e has the form len(x) where x is a
local variable of P and (x = c) ∈ s, with c a static channel name or null, then
evalp,i(s, e) = evalp,i(s,len(c)). By the above argument, evalp,i(s,len(c)) and
evalp,α(i)(s,len(α(c))) are both equal to evalp,α(i)(α(s), α(e)).

If e is an arithmetic combination of simple expressions of type int, the result holds
by induction.

If e has type pid then e has one of the forms:

1. a where a ∈ lit(pid) and a occurs in a pid context,
2. _pid
3. x where x is a global/local variable with type pid.

Suppose e has the form a where a ∈ lit(pid) and a occurs in a pid context. Then
α(e) = α(a). We have

evalp,α(i)(α(s), α(e)) = evalp,α(i)(α(s), α(a))

= α(a) = α(evalp,i(s, a)) = α(evalp,i(s, e)).

If e has the form _pid then evalp,α(i)(α(s), α(e)) = evalp,α(i)(α(s),_pid) = α(i). Since
it is also the case that α(i) = α(evalp,i(s,_pid)) = α(evalp,i(s, e)), the result follows.

Now suppose e has the form x where x is a global variable with x : pid. If
(x = a) ∈ s, so that (x = α(s)) ∈ α(s). Then evalp,α(i)(α(s), α(e)) = evalp,α(i)(α(s), x) =
α(a). Since α(a) = α(evalp,i(s, x)) which is equal to α(evalp,i(s, e)), the result follows.
The case where x is a local variable with x : pid is similar.

If e has type chan{T} then it has one of the following forms:

1. null
2. c where c is a static channel name
3. x where x is a local variable with type chan{T}.
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If e has the form null then

evalp,α(i)(α(s), α(e)) = evalp,α(i)(α(s),null)

= null = α(null) = α(evalp,i(s, e)).

The arguments for the cases where e is a static channel name, or e is a local variable
with type chan{T}, are analogous to those where e is a pid literal, or e is a local/global
variable with type pid. ��

Lemma 2 If α ∈ Aut(SCD(P)) and g is a guard in P then s |=p,i g ⇔ α(s) |=p,α(i)

α(g).

Proof A guard consists of a boolean combination of propositional formulas. Define
the length of a guard to be one plus the number of (propositional) occurrences of !,
&& and || or of () appearing in g.

If g has length 1 then g has one of the following forms:

1. e1 �� e2 for expressions e1 and e2, where �� ∈ {==,!=,<,<=,>,>=}
2. nfull(c) or nempty(c) where c is a global channel name
3. nfull(x) or nempty(x) where x is a local variable of p with x : chan{T}.
If g has the form e1==e2 then, by the typing rules we must have e1 : T and e2 : T
for some type T. If T = int then by Lemma 1 evalp,i(s, e j) = evalp,α(i)(α(s), α(e j)) for
j ∈ {1, 2}. We have

s |=p,i e1==e2 ⇔ evalp,i(s, e1) = evalp,i(s, e2)

⇔ evalp,α(i)(α(s), α(e1)) = evalp,α(i)(α(s), α(e2))

⇔ α(s) |=p,α(i) α(e1)==α(e2).

If T = pid then by Lemma 1 evalp,α(i)(α(s), α(e j)) = α(evalp,i(s, e j)) for j ∈ {1, 2}. We
have

s |=p,i e1==e2 ⇔ evalp,i(s, e1) = evalp,i(s, e2)

⇔ α(evalp,i(s, e1)) = α(evalp,i(s, e2))

⇔ evalp,α(i)(α(s), α(e1)) = evalp,α(i)(α(s), α(e2))

⇔ α(s) |=s,α(i) α(e1)==α(e2).

If T = chan{T} the result follows similarly using Lemma 1. The case where g has the
form e1!=e2 is similar.

If g has the form e1 < e2 then e1 : int and e2 : int. We have

s |=p,i e1 < e2 ⇔ evalp,i(s, e1) < evalp,i(s, e1)

and

α(s) |=p,α(i) α(e1) < α(e2) ⇔ evalp,α(i)(α(s), α(e1)) < evalp,α(i)(α(s), α(e2)).

By Lemma 1, evalp,i(s, e1) = evalp,α(i)(α(s), α(e1)) and evalp,i(s, e2) = evalp,α(i)(α(s),
α(e2)). Therefore

evalp,i(s, e1) < evalp,i(s, e1) ⇔ evalp,α(i)(α(s), α(e1)) < evalp,α(i)(α(s), α(e2))
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i.e.

s |=p,i e1 < e2 ⇔ α(s) |=p,α(i) α(e1) < α(e2).

The cases e1 <= e2, e1 > e2 and e1 >= e2 are similar.
Suppose g has the form nfull(c) where c is a static channel name, and that (c =

[�a1, �a2, . . . , �ak]) ∈ s for some 0 ≤ k ≤ cap(c) (where cap(c) denotes the capacity of
channel c). Then (α(c) = [�a α

1 , �a α
2 , . . . , �a α

k ]) ∈ α(s) and

s |=p,i nfull(c) ⇔ cap(c) > k

⇔ α(s) |=p,α(i) nfull(α(c)).

The case g has the form nempty(c) is similar.
Let g be nfull(x) where x is a local variable of p and x : chan{T}. If (p[i].x =

null) ∈ s, then it follows that (p[α(i)].x = null) ∈ α(s), and we have s �|=p,i

nfull(x) and α(s) �|=p,α(i) nfull(x). Suppose instead that (p[i].x = c) ∈ s where c
is a static channel name. Then (p[α(i)].x = α(c)) ∈ α(s). We have

s |=p,i nfull(x)

⇔ s |=p,i nfull(c)

⇔ α(s) |=p,α(i) nfull(α(c)) (by the above argument for static channels)

⇔ α(s) |=p,α(i) nfull(x).

The case where g is nempty(x) where x is a local variable and x : chan{T} is similar.
Now suppose that g has length m > 1 and that the result holds for all guards of

length less than m. Let g1, g2 be guards with length less than m.
If g has the form !g1 then

s |=p,i g ⇔ s �|=p,i g1

⇔ α(s) �|=p,α(i) α(g1) (by inductive hypothesis)

⇔ α(s) |=p,α(i) !α(g1)

⇔ α(s) |=p,α(i) α(g).

If g has the form (g1) the result follows similarly.
If g has the form g1 && g2 then s |=p,i g ⇔ s |=p,i g1 and s |=p,i g2. Now, by the in-

duction hypothesis, s |=p,i g1 ⇔ α(s) |=p,α(i) α(g1) and s |=p,i g2 ⇔ α(s) |=p,α(i) α(g2).
So

s |=p,i g ⇔ α(s) |=p,α(i) α(g1) and α(s) |=p,α(i) α(g2)

⇔ α(s) |=p,α(i) α(g1) &&α(g2)

⇔ α(s) |=p,α(i) α(g).

If g has the form g1 || g2 the result follows similarly. ��
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Lemma 3 Let u be an update of P , α ∈ Aut(SCD(P)) and s a state such that
execp,i(s, u) is well-defined. Then execp,α(i)(α(s), α(u)) = α(execp,i(s, u)).

Proof If u is skip the result is immediate.
Suppose u has the form x = e. As for Section 6.2, for a proctype p, variable name

x and process identifier i with proctype(i) = p, we define var(x) to be x if x is a global
variable, and p[i].x otherwise. Define α(var(x)) = x if var(x) = x, and α(var(x)) =
p[α(i)].x if var(x) = p[i].x.

If x : int then suppose (var(x) = a) ∈ s. Then α((var(x) = a)) = (var(x) = a) ∈
α(s) also. Suppose evalp,i(s, e) = b . Then evalp,α(i)(α(s), α(e)) = b by Lemma 1. Now
we have α((var(x) = b)) = (var(x) = b), and so, from Table 1:

execp,α(i)(α(s), ‘x = α(e)’) = (
α(s) \ {(var(x) = a)}) ∪ {(var(x) = b)}

= α
((

s \ {(var(x) = a)}) ∪ {(var(x) = b)})

= α(execp,i(s, ‘x = e’)).

If x : pid, then suppose (var(x) = a) ∈ s. Then α((x = a)) = (α(var(x)) = α(a)) ∈
α(s) also. Suppose evalp,i(s, e) = b . Then evalp,α(i)(α(s), α(e)) = α(b) by Lemma 1.
We have

α((var(x) = b)) = (α(var(x))

= α(b))

Table 1 Update execution rules

u Conditions on s Resulting state execp,i(s, u)

‘skip’ None s
‘x = e’ (var(x) = a) ∈ s

(
s \ {(var(x) = a)})∪
{(var(x) = evalp,i(s, e))}

‘c!e1, e2, (c = [�a1, �a2, . . . , �am]) ∈ s
(
s \ {(c = [�a1, �a2, . . . , �am])})∪

. . . , ek’ s |=p,i nfull(c) {(c = [�a1, �a2, . . . , �am, (evalp,i(s, e1),

evalp,i(s, e2), . . . , evalp,i(s, ek))])}
‘c?x1, x2, (c = [(a1,1, a1,2, . . . , a1,k),

(
s \ {(c = [(a1,1, a1,2, . . . , a1,k), �a2, . . . , �am]),

. . . , xk’ �a2, . . . , �am]) ∈ s (var(x1) = b1), (var(x2) = b 2), . . . ,

s |=p,i nempty(c) (var(xk) = bk)})
(var(x j) = b j) ∈ s ∪{(c = [�a2, . . . , �am]), (var(x1) = a1,1),

(1 ≤ j ≤ k) (var(x2) = a1,2), . . . , (var(xk) = a1,k)}
‘x!e1, e2, (p[i].x = c) ∈ s execp,i(s, ‘c!e1, e2, . . . , ek’) (if well-defined)

. . . , ek’
‘x?x1, x2, (p[i].x = c) ∈ s execp,i(s, ‘c?x1, x2, . . . , xk’) (if well-defined)

. . . , xk’

Rules interpreted in the context of process i, an instantiation of proctype p
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and so

execp,α(i)(α(s), ‘x = α(e)’) = (
α(s) \ {(α(var(x)) = α(a))}) ∪ {(α(var(x)) = α(b))}

= α
((

s \ {(var(x) = a)}) ∪ {(var(x) = b)})

= α(execp,i(s, ‘x = e’).

The argument is similar if x : chan{T}.
Suppose u has the form x!e1, e2, . . . , ek, where x is a static channel name, and

that x : chan{T1, T2, . . . , Tk} so that e j : T j (1 ≤ j ≤ k). If (x = [�a1, �a2, . . . , �am]) ∈ s
for some m < cap(x) it follows that

α((x = [�a1, �a2, . . . , �am])) = (α(x) = [�a α
1 , �a α

2 , . . . , �a α
m]) ∈ α(s).

For 1 ≤ j ≤ k, let a j denote evalp,i(s, e j), and let b j = a j if T j = int, and b j =
α(a j) otherwise, then by Lemma 1 we have b j = evalp,α(i)(α(s), α(e j)). Thus
(b 1, b 2, . . . , b k) = (a1, a2, . . . , ak)

α (using the notation of Section 7.2). Then

execp,α(i)(α(s), ‘α(x)!α(e1), α(e2), . . . , α(ek)’)

= (
α(s) \ {(α(x) = [�a α

1 , �a α
2 , . . . , �a α

m])})

∪ {(α(x) = [�a α
1 , �a α

2 , . . . , �a α
m, (b 1, b 2, . . . , b k)])}.

Now since
(
α(s) \ {(α(x) = [�a α

1 , �a α
2 , . . . , �a α

m])})

∪ {(α(x) = [�a α
1 , �a α

2 , . . . , �a α
m, (b 1, b 2, . . . , b k)])}

= (
α(s) \ {(α(x) = [�a α

1 , �a α
2 , . . . , �a α

m])})

∪ {(α(x) = [�a α
1 , �a α

2 , . . . , �a α
m, (a1, a2, . . . , ak)

α])}
= α

((
s \ {(x = [�a1, �a2, . . . , �am])})

∪ {(x = [�a1, �a2, . . . , �am, (a1, a2, . . . , ak)])}
)

= α(execp,i(s, ‘x!e1, e2, . . . , ek’))

the result follows.
If x is a local variable of p and (x = c) ∈ s, where c is a static channel name, then

(x = α(c)) ∈ α(s), and

execp,α(i)(α(s), ‘x!α(e1), α(e2), . . . , α(ek)’)

= execp,α(i)(α(s), ‘α(c)!α(e1), α(e2), . . . , α(ek)’)

= α(execp,i(s, ‘c!e1, e2, . . . , ek’)) (by the above argument)

= α(execp,i(s, ‘x!e1, e2, . . . , ek’)).

Suppose that u has the form x?x1, x2, . . . , xk where x is a static channel
name with type chan{T1, T2, . . . , Tk} so that x j has type T j (1 ≤ j ≤ k).
Suppose that, for some m < cap(x) and (var(x j) = b j) ∈ s (1 ≤ j ≤ k), (x =
[(a1,1, a1,2, . . . , a1,k), �a2, . . . , �am]) ∈ s. Define d1, j = a1, j if T j = int, and d1, j = α(a1, j)

otherwise (1 ≤ j ≤ k). Then, using the notation of Section 7.2, (d1,1, d1,2, . . . , d1,k) =
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(a1,1, a1,2, . . . , a1,k)
α and α(var(x j) = a1, j) = α(var(x j) = d1, j) (1 ≤ j ≤ k). Simi-

larly, define d j = b j if x j : int, and d j = α(b j) otherwise. Then α((var(x j) =
b j)) = (α(var(x j)) = d j). Since we have α((x = [(a1,1, a1,2, . . . , a1,k), �a2, . . . , �am])) =
(α(x) = [(d1,1, d1,2, . . . , d1,k), �aα

2 , . . . , �aα
m]) which is in α(s) and α((var(x j) = b j)) = (α

(var(x j)) = d j) ∈ α(s) (1 ≤ j ≤ k), by Table 1 we have:

execp,α(i)(α(s), ‘α(x)?x1, x2, . . . , xk’)

= (
α(s) \ {(α(x) = [(d1,1, d1,2, . . . , d1,k), �a α

2 , . . . , �a α
m]),

(α(var(x1)) = d1), (α(var(x2)) = d2), . . . , (α(var(xk)) = dk)}
) ∪

{(α(x) = [�a α
2 , . . . , �a α

m]), (α(var(x1)) = d1,1), (α(var(x2)) = d1,2),

. . . , (α(var(xk)) = d1,k)}
= (

α(s) \ {(α(x) = [(a1,1, a1,2, . . . , a1,k)
α, �a α

2 , . . . , �a α
m]),

α((var(x1) = b 1)), α((var(x2) = b 2)), . . . , α((var(xk) = b k))}
) ∪

{(α(x) = [�a α
2 , . . . , �a α

m]), α((var(x1) = a1,1)), α((var(x2) = a1,2)),

. . . , α((var(xk) = a1,k))}
= α

((
s \ {(x = [(a1,1, a1,2, . . . , a1,k), �a2, . . . , �am]),

(var(x1) = b 1), (var(x2) = b 2), . . . , (var(xk) = b k)}
) ∪

{(x = [�a2, . . . , �am]), (var(x1) = a1,1), (var(x2) = a1,2), . . . , (var(xk) = a1,k)}
)

= α(execp,i(s, ‘x?x1, x2, . . . , xk’)).

If x is a local variable of p and (x = c) ∈ s, where c is a static channel name. Then
(x = α(c)) ∈ α(s), and

execp,α(i)(α(s), ‘x?x1, x2, . . . , xk’) = execp,α(i)(α(s), ‘α(c)?x1, x2, . . . , xk’)

= α(execp,i(s, ‘c?x1, x2, . . . , xk’)) (by the above argument)

= α(execp,i(s, ‘x?x1, x2, . . . , xk’)). ��

The following lemma follows from the repeated application of Lemma 3:

Lemma 4 Let u1, u2, . . . , uk be updates of P , α ∈ Aut(SCD(P)) and s a state such that
execp,i(s, u1; u2; . . . ; uk) is well-defined. Then

execp,α(i)(α(s), α(u1); α(u2); . . . ; α(uk)) = α(execp,i(s, u1; u2; . . . ; uk)).

We can now prove the major result of this paper, Theorem 5:

Proof (Theorem 5) By Definition 9, we must show that (i) if (s, t) ∈ R then
(α(s), α(t)) ∈ R, and (ii) α(s0) = s0.

If (s, t) ∈ R then there is a process with pid i such that proctype(i) = p (for some
proctype p), and a statement z in p such that the guard of z holds for process i at s,
and execution of the updates of z by process i at s leads to state t. Since α(P) ≡ P
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the statement α(z) (possibly re-arranged) also appears in proctype p. By Lemma 2,
the guard of α(z) holds for process α(i) at α(s), and by Lemma 4, execution of the
updates of α(z) by process α(i) at α(s) leads to state α(t). Therefore (α(s), α(t)) ∈ R.

We must show that for any proposition (v = d) in s0, α((v = d)) ∈ s0 also. In s0, all
static channels are empty, so for any static channel c, the propositions (c = [ ]) and
α((c = [ ])) = (α(c) = [ ]) both belong to s0. For each global variable x, (x = x0) ∈ s0,
where x0 is the initial value for x (specified at declaration). If x : int then α((x =
x0)) = (x = x0) ∈ s0. If x : pid then we must have α(x0) = x0 (since α(P) ≡ P), so
α((x = x0)) = (x = α(x0)) = (x = x0) ∈ s0.

For any local variable x, suppose x0 is the initial value given for x in run
statement i. Then (p[i].x = x0) ∈ s0. Let y0 be the initial value given for x in run
statement α(i), so that (p[α(i)].x = y0) ∈ s0. If x : int then, since P ≡ α(P), the
value for x in run statements i and α(i) must be the same, i.e. x0 = y0. So we
have α((p[i].x = x0)) = (p[α(i)].x = x0) = (p[α(i)].x = y0) ∈ s0. Suppose that x : pid
or x : chanT. Then, since P ≡ α(P), the value for x in run statement α(i) is the
image under α of the value for x in run statement i, i.e. y0 = α(x0). We have
α((p[i].x = x0)) = (p[α(i)].x = α(x0)) = (p[α(i)].x = y0) ∈ s0. ��

7.4 Finding the Largest Valid Subgroup of Aut(SCD(P))

Let G be the largest subgroup of Aut(SCD(P)) which is valid for P .
Our algorithm for finding G (Algorithm 1) starts with a known valid subgroup

H of Aut(SCD(P)), and adds valid coset representatives (see Definition 5) to the
generators of H to obtain successively larger valid subgroups.

It can be shown [19] that

Theorem 6 Algorithm 1 computes the largest valid subgroup of Aut(SCD(P)).

We illustrate Algorithm 1 using the load-balancer example. Let P be the
specification of Fig. 6. Generators for Aut(SCD(P)) computed by nauty are
given in Section 7.2. The generators which do not fix the process identifier 9

Algorithm 1 Algorithm to find the largest valid subgroup of Aut(SCD(P))

X := generators of Aut(SCD(P))

H := 〈{α ∈ X : α(P) ≡ P}〉
U := representatives of right cosets of H in Aut(SCD(P)) except H
while U �= ∅ do

U := U \ {α}
if α(P) ≡ P then

H := 〈H ∪ {α}〉
if |Aut(SCD(P))|/|H| < |U | then

U := representatives of right cosets of H in Aut(SCD(P)) except H
end if

end if
end while
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are not valid for P since, if α is one of these generators, the declaration pid
blocked_client = 9 in P is replaced with pid blocked_client = α(9),
and α(9) �= 9, thus α(P) �≡ P . The other generators are valid for P , so H =
〈(7 8)(cl1 cl2), (11 12)(cl5 cl6), (1 2)(se1 se2), (2 3)(se2 se3)〉 is valid for P . GAP tells
us that |Aut(SCD(P))| = 288 and |H| = 24, so there are |Aut(SCD(P))|/|H| =
12 cosets of H in Aut(SCD(P)). We can use GAP to compute representatives
α1, α2, . . . , α11 for the 11 cosets of H in Aut(SCD(P)) which are distinct from H.
The first nine of these are not valid for P , but

α10 = (4 6)(lb1 lb3)(7 11)(cl1 cl5)(8 12)(cl2 cl6)

is valid for P . When α10 is added to the generators of H, |H| = 48, so there are now
|Aut(SCD(P))|/|H| = 6 cosets of H in Aut(SCD(P)). It is more efficient to check
the final original coset representative α11 than to compute and check a new set of
coset representatives. This is the purpose of the innermost conditional statement in
Algorithm 1. As α11 is not valid for P ,

H = 〈(7 8)(cl1 cl2), (11 12)(cl5 cl6), (1 2)(se1 se2), (2 3)(se1 se2),

(4 6)(lb1 lb3)(7 11)(cl1 cl5)(8 12)(cl2 cl6)〉

is the largest subgroup of Aut(SCD(P)) which is valid for P .
Algorithm 1 performs badly if the initial group H is small, and Aut(SCD(P))

very large. If H is the largest valid subgroup then (|Aut(SCD(P))|/|H|) − 1 coset
representatives must be checked. For many examples, the initial size of H can be
increased using an optimisation based on random conjugates [17, 19]. However, in
the worst case, the largest valid subgroup may turn out to be trivial, thus the worst
case complexity of Algorithm 1 is O(|Aut(SCD(P))|).

It is possible to construct a Promela-Lite specification P such that an element
α ∈ Aut(SCD(P)) is invalid, but induces a genuine automorphism of the model M
associated with P . Thus, while Algorithm 1 is complete in that it computes the
largest valid subgroup of Aut(SCD(P)), our notion of validity could be extended to
determine more accurately whether an element of Aut(SCD(P)) induces a Kripke
structure automorphism. As long as the set of valid elements of Aut(SCD(P)) still
forms a group and validity can be checked automatically, Algorithm 1 can be used to
compute the largest valid subgroup as usual.

8 SymmExtractor

In this Section we describe SymmExtractor, an automated symmetry detection tool
for Promela based on the static channel diagram analysis techniques of Section 7.
After providing an overview of the tool, we discuss the restrictions on the form of a
Promela specification which must be satisfied before SymmExtractor can be applied.
We then discuss two problems related to typechecking which SymmExtractor solves:
how to deduce the type of an incompletely specified channel, and how to compare
channel types.
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We show how the GAP and saucy tools are used to compute the largest valid sub-
group of Aut(SCD(P)), and give experimental results showing how SymmExtractor
performs on a variety of example specifications.

8.1 An Overview of SymmExtractor

SymmExtractor is a Java program based on a Promela parser generated using the
SableCC compiler generation framework [25]. The Promela grammar is adapted
from a BNF grammar presented in [28], with the SPIN source code used to resolve
ambiguity in the grammar specification.

The abstract syntax tree representation of the input specification is typechecked.
Unlike for Promela-Lite, Promela specifications do not always contain the complete
channel type information required by our approach, so we employ a type reconstruc-
tion algorithm from [18] to recover this information. Reconstructed channel types
which are recursive are then converted to a minimised canonical form. The typed
abstract syntax tree is checked to see whether it satisfies certain restrictions imposed
by the theory of Section 7. If these restrictions are satisfied then the static channel
diagram SCD(P) for the specification P is derived, and its automorphisms computed
using the saucy program [12]. Algorithm 1 of Section 7.4 is then used to compute the
largest subgroup of Aut(SCD(P)) which is valid for P . Checking validity depends
on the reconstructed type information obtained by SymmExtractor. SymmExtractor
uses a GAP implementation of Algorithm 1 together with an optimisation based
on random conjugates (see Section 7.4) to compute the largest valid subgroup of
Aut(SCD(P)). The automatic symmetry detection process is summarised in Fig. 11.

result : mtype

;

proctype

link

!

result

;

proctype

!

: chan{mtype}link

Valid subgroup

Largest subgroup of
Aut which is valid
for symmetry reduction

saucy

Static channel diagram

H

GAP

G

Promela
spec.

Typed syntax treeSyntax tree

SableCC parser Type reconstruction

Fig. 11 The automatic symmetry detection processes used by SymmExtractor
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SymmExtractor imposes two important restrictions on the form of a Promela
specification. First, the init process must have the form:

init {
atomic {
run 〈name〉1(. . . );
run 〈name〉2(. . . );

...

run 〈name〉n(. . . );
〈statement-list, ‘;’〉

};
〈statement-list, ‘;’〉

}

where the list 〈statement-list, ‘;’〉 of statements within the atomic block must be
assignments of literal values to distinct variables. All run statements must appear
within the atomic block of the init process. This ensures that the specification
consists of a fixed number of running processes.

Second, the static channel diagram approach requires that all global channel
declarations include a channel initialiser, and names of global channels are not
reassigned.

The tool imposes some further minor restrictions which are documented in [17].
SymmExtractor also supports Promela features such as synchronous channels which,
for ease of presentation, are not part of Promela-Lite. In particular, SymmExtractor
allows a specification to include a never claim, an additional process used for LTL
model checking [28]. A never claim can be viewed as a proctype with a single running
instance, thus provision for never claims is handled by the theory of Section 7.
Furthermore, since a valid static channel diagram automorphism must respect the
structure of a never claim, a group of valid static channel diagram automorphisms is,
by default, an invariance group for the property represented by a never claim.

8.2 Experimental Results

We now present experimental results running SymmExtractor on a variety of config-
urations of six families of Promela specifications.

8.2.1 Specification Families and Configurations

The families of specifications we consider are: simple mutex, Peterson, Peterson
without atomicity, resource allocator, three-tiered architecture and hypercube.

The simple mutex, Peterson and Peterson without atomicity families are versions of
mutual exclusion protocols. The first of these is illustrated in Fig. 3 for 5 processes and
the others are based on variations of a specification presented in [2]. Configurations
are identified via the number n of processes.

The resource allocator families consist of a set of prioritised client processes,
each of which requires access to a resource, and a resource allocator process which
takes requests from the clients wishing to use the resource, granting access to one
client at a time, according to priority. The model is similar to an example used for
symmetry reduction in partially symmetric systems [39]. We consider two kinds of
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configuration. A configuration has signature a0-a1-. . . -ak−1, where ai > 0 (0 ≤ i < k)
if there are k > 1 distinct priority levels and client processes 1, 2, . . . , a0 have priority
level 0, a0 + 1, a0 + 2, . . . , a1 have priority level 1, etc. An alternating configura-
tion, referred to as alternating x, where x > 0 is even, has two priority levels, x
client processes, and the priority levels alternate between 0 and 1 every three client
processes. For example, alternating 10 denotes a 10-client configuration where client
processes 1, 2, 5, 6, 9 and 10 have priority level 0 and client processes 3, 4, 7 and 8
have priority level 1.

A configuration in the three-tiered architecture consists of three process types:
client, server and database. Each client process sends request messages to the database
process, via their neighbouring server process, and data is returned to the client
process (again, via the server). All channels are synchronous.

A configuration with k > 0 server processes and ai > 0 client processes connected
to server i (1 ≤ i ≤ k) has signature a1-a2-. . . -ak. For example, 5-5-5-5 denotes a
configuration with 4 servers and 20 clients, 5 connected to each server.

A member of the hypercube family consists of a set of Node processes sending
messages through an m-dimensional hypercube network using a simple routing
algorithm [41]. An m-dimensional hypercube is denoted md.

8.2.2 Results and Discussion

In Table 2 we give results for various configurations of the families described above.
All of the Promela specifications used for these experiments are available online [15].

In each case we evaluate the following:

– |Aut(SCD(P))| – size of the automorphism group of the static channel diagram
associated with configuration P

– |H| – size of the initial subgroup generated by the valid generators of
Aut(SCD(P))

– |G| – size of the largest valid subgroup of Aut(SCD(P)), computed using
Algorithm 1 (Section 7.4)

– saucy time – time (in seconds) for saucy to compute generators for Aut(SCD(P))

– find largest time– time (in seconds) to compute G given generators for
Aut(SCD(P))

– optimised find largest time – time (in seconds) to compute G given generators for
Aut(SCD(P)), using the random conjugates optimisation.

When all generators of Aut(SCD(P)) are valid, Aut(SCD(P)), H and G are
equal, so there is no need to use Algorithm 1 (denoted by ‘=’). In this case the
random conjugates optimisation is irrelevant, indicated by the entry ‘−’. The entry
‘>12 h’ indicates that |G| could not be computed within 12 h. All experiments were
performed on a PC with a 2.4 Intel Xeon processor and 3 Gb of main memory. The
‘saucy time’ column illustrates an overhead associated with using saucy to compute
Aut(SCD(P)), whatever its size.

Results for the three mutual exclusion families, as well as three-tiered architecture
configurations, show that SymmExtractor is very efficient when all of the generators
of Aut(SCD(P)) are valid. Here the value in the ‘find largest time’ column is the time
taken to check validity of the generators against P . The results for simple mutex
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Table 2 Experimental results for automatic symmetry detection

Configuration |Aut(SCD(P))| |H| |G| Saucy Find largest Optimised find
P |Aut(SCD(P))| |H| |G| time time largest time

Simple mutex
5 120 = = 0.03 0.07 −
10 3.6 × 106 = = 0.03 0.20 −
20 2.4 × 1018 = = 0.03 0.59 −
40 8.1 × 1037 = = 0.03 1.64 −

Peterson
3 6 = = 0.03 0.06 −
6 720 = = 0.02 0.16 −
9 362880 = = 0.04 0.30 −
12 4.8 × 108 = = 0.03 0.56 −

Peterson without atomicity
3 6 = = 0.03 0.08 −
6 720 = = 0.08 0.25 −
9 362880 = = 0.03 0.52 −
12 4.8 × 108 = = 0.03 0.89 −

Resource allocator
3-4 5040 144 144 0.03 1.52 =
2-2-3 5040 24 24 0.03 5.24 =
5-5 3.6 × 106 14400 14400 0.05 8.34 =
3-3-4 3.6 × 106 864 864 0.03 114.49 =
Alternating 10 3.6 × 106 32 17280 0.03 18.12 8.5
Alternating 12 4.7 × 108 64 518400 0.04 314.87 33.59
Alternating 14 8.7 × 1010 128 2.9 × 106 0.06 >12 h 116.39
Alternating 16 2.1 × 1013 256 1.6 × 109 0.05 >12 h 543.87

Three-tiered architecture
3-3-2 144 = = 0.04 0.09 −
3-3-3 1296 = = 0.05 0.14 −
4-4-3 6912 = = 0.05 0.17 −
4-4-4 82944 = = 0.05 0.26 −
5-5-5-5 5.0 × 109 = = 0.07 0.55 −

Hypercube
2d 8 2 4 0.04 0.59 0.84
3d 48 2 8 0.03 2.50 1.98
4d 384 2 16 0.04 99.11 26.73
5d 3840 2 32 0.08 7171.57 957.79

40 and 5-5-5-5 in the three-tiered architecture family show that SymmExtractor is
sufficiently robust to handle large Promela specifications.

For the first four resource allocator configurations the initial valid subgroup H is
the largest valid subgroup of Aut(SCD(P)). Since H �= Aut(SCD(P)), it is necessary
to run Algorithm 1 to confirm this. This is time-consuming for the 3-3-4 configuration.
In these cases the random conjugates optimisation offers no benefit, indicated by the
entry ‘=’.

For the alternating resource allocator and hypercube specifications {id} ⊂ H ⊂
G ⊂ Aut(SCD(P)). Even when the number of cosets of H in Aut(SCD(P)) is large,
if G is much larger than H the number of coset representatives which need to be
checked for validity diminishes rapidly as valid representatives are found. However,
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for the alternating 14 and alternating 16 configurations the number of cosets of H
in Aut(SCD(P)) is so large that G could not be computed within 12 h without the
random conjugates optimisation.

When P is the 3-dimensional hypercube specification, Aut(SCD(P)) has order
48. However G, the largest valid subgroup of Aut(SCD(P)), has order only 8. By
examining the output from SymmExtractor it is clear that 2 of the 3 generators of
Aut(SCD(P)) are discarded in this case simply because they do not strictly preserve
run statements, so contravening the definition of validity given in Section 7.3.1.
Since the effect on the run statements is superficial in this case, a slight relaxation
of the notion of validity would allow us to automatically detect a much larger
symmetry group. We observe a similar situation for the higher dimension hypercube
specifications.

8.3 Integration with Spin

The SymmExtractor implementation forms part of TopSPIN, our symmetry reduction
package for the SPIN model checker [20].

Given a Promela specification, the SPIN tool outputs a C program, pan.c, which
is then compiled and executed to produce a verification result. TopSPIN uses the
symmetry information provided by SymmExtractor to add symmetry reduction algo-
rithms to pan.c. For details of these algorithms, together with experimental results
showing the savings achieved by reduced model checking, see [17, 21]. Symmetry
reduction using the groups computed by SymmExtractor makes verification of many
of the specifications discussed in Section 8.2.2 tractable. However, verification of the
larger, more complex specifications (e.g. Peterson 12, Peterson without atomicity 6+,
and three-tiered architecture 5-5-5-5) remains intractable.

SymmExtractor also runs as a stand-alone tool which can be used as a front-end
to other symmetry reduction packages for Promela specifications.

As discussed in Section 2, other implementations of symmetry reduction for SPIN

allow the user to specify the presence of symmetry using scalarsets. Our automatic
approach has the advantage of requiring no user input and handling more general
types of symmetry. However, the scalarset approach is very efficient since the
scalarset conditions can be statically checked and require no computational group
theoretic calculations. For a large, evolving specification with several families of
processes, which is to be regularly modified and checked, we envisage a process
where symmetry is initially detected using our automatic techniques. The modeller
may then recognise that symmetries reported by our tool between a given set of
components are amenable to specification via scalarsets. The modeller could then
speed up symmetry detection by adding scalarset annotations to the parts of the
specification modelling these components. This process would require a combination
of our techniques with existing methods involving scalarsets.

9 Conclusions

In order to develop automatic symmetry detection techniques for Promela, we have
presented the syntax and type system for Promela-Lite, a specification language
which captures the essential features of Promela, but has a full Kripke structure
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semantics and is sufficiently self-contained to allow for rigorous proof of theoretical
results.

We have defined the static channel diagram SCD(P) associated with a Promela-
Lite specification P and shown that it can be efficiently computed via a single pass
of P . After defining a group action of the automorphism group Aut(SCD(P)) on
the states S of M, the model associated with P , we have proved that there is a
largest valid subgroup G ≤ Aut(SCD(P)) for which ρ(G) ≤ Aut(M), where ρ is the
permutation representation of the group action. Furthermore, we have presented a
computational group theoretic algorithm for computing the group G. This technique
allows a subgroup of Aut(M) to be efficiently derived from the specification P which
can be exploited for symmetry reduced model checking.

We have described our tool SymmExtractor for the automatic detection of
symmetry in Promela specifications. By imposing a small set of restrictions to the
format of specifications accepted by SymmExtractor we can be confident, thanks
to our thorough theoretical analysis of our techniques for Promela-Lite, that our
approach is sound.

We have provided concrete evidence, via detailed experiments for a range of
Promela specifications, of the usefulness of our tool.

Future work includes relaxing the restrictions on Promela-Lite to allow for the
use of process identifiers in arithmetic operations, the automatic detection of other
types of symmetry (arising from permutations of global variables, for example), the
automatic detection of partial symmetry [23], and the combination of our automatic
techniques with symmetry specification methods involving scalarsets.

Acknowledgements We would like to thank Simon Gay for his advice concerning the type theoretic
aspects of this work, and the anonymous referees for their valuable suggestions towards improving
this paper.

Appendix A Type System for Promela-Lite

An overview of the type system of Promela-Lite is given in Figs. 13 and 14. The
notation used for typing rules is taken from [4]. The forms of type judgement that we
use, together with the general form of a typing rule are summarised in Fig. 12.

For presentation of the type system we introduce a tuple type, to represent the
form of arguments for a proctype. A proctype which accepts an ordered list of
arguments of types T1, T2, . . . , Tk has type (T1, T2, . . . , Tk) (k > 0). For brevity, we
use T to refer to a list of types T1, T2, . . . , Tk (k > 0), and similar notation for lists of
expressions, literals, etc.

In the T-Pid-Literal typing rule, n denotes the number of process in the Promela-
Lite specification. This information is necessary for type-checking since a pid variable
must only be assigned to a literal value in the set {0, 1, . . . , n} (where 0 is used as a
default value).

A recursive channel type can always be equivalently expressed in the form
chan{T} by a one-step unfolding. For ease of presentation, the typing rules assume
that all recursive types have been unfolded in this way. A type variable ‘X’ is said to
be bound if it is introduced by the prefix ‘rec X . ’ and then occurs within the scope
of this prefix. A type variable which is not bound is said to be free. A well-formed
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Fig. 12 Notation for type rules

type is one for which there are no free type variables. The types int, chan{int} and
rec X . chan{X, int} are all well-formed; the type chan{X} is not (Figs. 13 and 14).

Appendix B Kripke Structure Semantics for Promela-Lite

Let P be a Promela-Lite specification with n processes for some n > 0 (i.e. there are n
run statements in the init { atomic {. . .} } block). We now detail the semantics
of P as a Kripke structure M. We show that if P is well-typed according to the type
system of Section 6.2 then the Kripke structure M is well-defined.

For a well-formed type T, let lit(T) denote the set of all possible literal val-
ues which can have type T in the specification P . Thus lit(int) = Z,1 lit(pid) =
{0, 1, . . . , n} and lit(chan{T}) = {c : c is the name of a static channel with c :
chan{T}} ∪ {null}. Note that typing rule T-Null ensures that null is a literal value
for any well-formed channel type.

We define the domain of a variable or static channel as follows. If x is a global or
local variable of type T then the domain of x is lit(T). If c is a static channel with
signature(c) = ({T1, T2, . . . , Tk}, l) (for some k, l > 0) then the domain of c is the set:

{[(a1,1, a1,2, . . . , a1,k), (a2,1, a2,2, . . . , a2,k), . . . , (am,1, am,2, . . . , am,k)]
: 0 ≤ m ≤ l, ai, j ∈ lit(T j) (1 ≤ i ≤ m, 1 ≤ j ≤ k)}.

This set consists of all possible sequences of messages for the channel, including the
empty sequence [ ].

Let p be a proctype in P , and x a parameter of p. Suppose that proctype(i) = p
for some i (1 ≤ i ≤ n). We use p[i].x to denote the local variable x for this process. If
c is a channel with type chan{T1, T2, . . . , Tk}, we use �a as a shorthand for a message
(a1, a2, . . . , ak) on c (where ai : Ti, 1 ≤ i ≤ k).

1In practice, lit(int) is a finite range of integers which can be represented using a fixed word size.
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Fig. 13 Type system for Promela-Lite

States of a Specification

A state of a Promela-Lite specification P can be expressed as an ordered tuple
consisting of a value for each variable in the specification. However, as in Section
7.3, it is more convenient here to reason about a state as a set of propositions.

The set S of (potential) states of M consists of every possible assignment to
variables and channels of P . Since the range of allowed integer values is finite, S
is a finite set.
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Fig. 14 Type system for Promela-Lite contd

Initial State

The values with which global variables are assigned on declaration, together with
the parameter values which are passed to proctypes in run statements, determine the
initial state of M.

For a global variable x with x : T, let init(x) denote the value in lit(T) to which x
is assigned at its declaration. For a local variable p[i].x with p[i].x : T, let init(p[i].x)
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denote the initial value in lit(T) to which x is assigned in the ith run statement. M
has a single initial state s0, defined thus:

so = {(c = [ ]) : c is a static channel name in P} ∪
{(x = init(x)) : x is a global variable of P} ∪
{(p[i].x = init(p[i].x)) : x is a parameter of proctype p

instantiated by the ith run statement (1 ≤ i ≤ n)}

Expression Evaluation

Function evalp,i is defined in Section 6.2. Let s ∈ S be a state of M. Then:

– evalp,i(s, x) = a if (x = a) ∈ s (i.e. x is a global variable)
– evalp,i(s, x) = a if (p[i].x = a) ∈ s (i.e. x is a local variable of p)
– evalp,i(s, c) = c if c is a static channel name or null
– evalp,i(s, a) = a if a ∈ Z

– evalp,i(s,_pid) = i
– evalp,i(s,len(c)) = k if c is a static channel and (c = [�a1, �a2, . . . , �am]) ∈ s (0 ≤

k ≤ cap(c))
– evalp,i(s,len(null)) = 0
– evalp,i(s,len(x)) = evalp,i(s, len(c)) if (p[i].x = c) ∈ s
– evalp,i(s,(e)) = evalp,i(s, e)
– evalp,i(s, e1 ◦ e2) = evalp,i(s, e1) ◦ evalp,i(s, e2) (where ◦ ∈ {+,−, ∗}).

In practice int is a finite range of integers. Let min(int) and max(int) denote the
minimum and maximum values in this range, and assume min(int) < 0. If the result
evalp,i(s, e1) ◦ evalp,i(s, e2) falls outside of the allowed range, we define evalp,i(s, e1 ◦
e2) to be

((evalp,i(s, e1) ◦ evalp,i(s, e2) + |min|) mod (max − min)) − |min|.
This definition means that the result of such a calculation is truncated so that e.g.
max(int) + 1 = min(int). This follows the approach used by SPIN to deal with out-of-
range operations in Promela specifications [28].

Satisfaction of Guards

We use the evalp,i function to define a relation |=p,i between states and guards which
determines whether a guard holds at a given state. For a guard g of the form 〈guard〉
(see Fig. 8) and a state s ∈ S, with p and i as above, s |=p,i g means that the state s
satisfies the guard g in the context of p and i. The relation |=p,i is defined as follows:

– s |=p,i e1 �� e2 ⇔ evalp,i(s, e1) �� evalp,i(s, e2) (where �� ∈ {==,!=,<,<=,>,

>=})2

2Strictly, �� on the right hand side of ‘⇔’ is =, �=, ≤ or ≥ if �� on the left hand side is ==,!=,<= or >=
respectively.
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– s |=p,i nfull(c) ⇔ (c = [�a1, �a2, . . . , �am]) ∈ s and cap(c) > m, where c is a static
channel

– s |=p,i nempty(c) ⇔ (c = [�a1, �a2, . . . , �am]) ∈ s and m > 0, where c is a static
channel

– s |=p,i nfull(x)/nempty(x) ⇔ (p[i].x = c) ∈ s and s |=p,i nfull(c)/
nempty(c), where x is a local declared channel of p

– s |=p,i !g iff s �|=p,i g
– s |=p,i g1 && g2 iff s |=p,i g1 and s |=p,i g2

– s |=p,i g1 || g2 iff s |=p,i g1 or s |=p,i g2

– s |=p,i (g) iff s |=p,i g.

Effect of Updates

For a variable x, define var(x) as for Section 6.2. For each update u described by the
〈update〉 rule in Fig. 8, the effect of u on a state s (in the context of a process i with
proctype p) is given in Table 1.

Note that for certain updates it may be the case that none of the rules of Table 1
are applicable. For example, suppose (c = [a1, a2, . . . , am]) ∈ s, where m = cap(c),
i.e. the static channel c is full in state s. In this case there is no rule which defines the
effect of executing ‘c!e1, e2, . . . , ek’, since a condition of the rule for sending on static
channels is that the channel must not be full. We say that execp,i(s, u) is undefined if
no rule of Table 1 is applicable.

A state s is well-defined if it can be equivalently expressed as a tuple. This is only
the case if it contains exactly one proposition for each variable of P . Thus for the
resulting state t to be well-defined it must be the case that the rule corresponding
to an update removes propositions about a distinct set of variables, then adds one
proposition for each variable. For an arbitrary Promela-Lite specification this is not
necessarily the case. Consider an update ‘c?x, x’, where c is a static channel and x
is a global variable. Suppose (x = a) ∈ s, (c = [(a1, a2)]) ∈ s and a1 �= a2. The rule
for executing receive updates constructs state execp,i(s, ‘c?x, x′) by removing (x = a)

from s, then adding the propositions (x = a1) and (x = a2). Thus execp,i(s, ‘c?x, x′) is
not well-defined.

Theorem 3 (Section 6.2) holds if, for a well-typed Promela-Lite specification P ,
if the guard associated with a statement of P is satisfied at state s ∈ M, then the
rules of Table 1 lead to a well-defined next-state t. In other words, the theorem holds
if execution of a well-typed specification at a given state can always progress when
some process has a guard which is true at the state.

The proof of Theorem 3 relies on the following lemma:

Lemma 1 Let P , M and s be as above. Let u be an update appearing in a statement
of proctype p, and suppose proctype(i) = p. If u is ‘skip’ or ‘x = e’ then execp,i(s, u)

is well-defined.

Proof If u is ‘skip’ then the definition of execp,i(s, u) places no conditions on s, and
it follows that execp,i(s, u) = s.

Let Γ be the typing environment comprised of entries for the global variables and
static channels of P , proctypes appearing before p in P , and the local variables of
p. If u has the form ‘x = e’, where x is an identifier and e an expression then, since
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� � u OK, x is not a static channel name, and both x and e have type T where T is a
well-formed type which is not the type of a proctype (rule T-Assign). Thus x is the
name of a global variable or a local variable of p.

If x is the name of a global variable then we must have (x = a) ∈ s for some a ∈
T. Therefore, according to Table 1, execp,i(s, u) = (

s \ {(x = a)}) ∪ {(x = evalp,i(e))},
which is clearly well-defined.

On the other hand if x is the name of a local variable then (p[i].x = a) ∈ s for some
a ∈ T, and we have execp,i(s, u) = (

s \ {(p[i].x = a)}) ∪ {(p[i].x = evalp,i(e)}. Again,
this is a well-defined state. The result follows. ��

Proof of Theorem 3 Let Γ be the typing environment as defined in the proof of
Lemma 1, and let 〈stmnt〉 denote the Promela-Lite statement atomic { g -> u1;
u2; . . . ul }. We must show that if s |=p,i g then execp,i(s, u1, u2) . . . , ul) is well-
defined.

Suppose u1 has the form skip or x = e. Then by Lemma 1, execp,i(u1) is well-
defined.

Suppose u1 has the form x!e. Then x has type chan{T} in �, so x is either a local
variable of p, or a static channel name. There is no typing rule from which � � u1 OK
can be inferred, thus rule T-Update cannot be used to infer that � � 〈stmnt〉 OK.
Thus � � 〈stmnt〉 OK must follow from rule T-Send. Therefore the guard g must
have the form (h) &&nfull(x), or just nfull(x) (see Section 6.2). Since, by
hypothesis, s |=p,i g, we must have s |=p,i nfull(x). Suppose x is a static channel
name, so that (x = [�a1, �a2, . . . , �am]) ∈ s, where 0 ≤ m < cap(x). The conditions on s
required by the rule for execp,i(s, u1) are satisfied. It is easy to see that the resulting
state is well-formed. If x is a local variable of p then (p[i].x = c) ∈ s, where c is a
static channel name or null. However, s |=p,i nfull(x) ⇔ s |=p,i nfull(null),
and we cannot have s |=p,i nfull(null). Thus c is a static channel name, and
execp,i(s, u1) = execp,i(s, c!e), which is well-defined by the above argument.

Suppose u1 has the form x?x. Then by a similar argument (using the fact that the xi

must be distinct, and that no xi is a static channel name), execp,i(s, u1) is well-defined.
We have shown that execp,i(s, u1) is well-defined. Suppose that execp,i(s, u j) is well-

defined for some 1 ≤ j < l. The type rules for statements (T-Update, T-Send and
T-Recv) ensure that u j+1 has the form skip or x = a. By Lemma 1 it follows that
execp,i(execp,i(s, u j), u j+1) is well-defined.

Since execp,i(s, u1) is well-defined,

execp,i(. . . execp,i(execp,i(s, u1), u2) . . . , ul) = execp,i(s, u1; u2; . . . ; ul)

is well-defined. ��

Deriving a Kripke Structure

Let P be a Promela-Lite specification. The states S and initial state s0 of M are
as defined above. The transition relation R is defined as follows. Let s ∈ S and let
atomic { g -> u1; u2; . . .; uk } be a statement of proctype p in P . Suppose
process i is an instantiation of p. If s |=p,i g then (s, execp,i(s, u1; u2; . . . ; uk)) ∈ R.
By the above theorem, execp,i(s, u1; u2; . . . ; uk) is well-defined.
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