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Abstract Symmetry reduction techniques aim to combat the state-space explosion
problem for model checking by restricting search to representative states from
equivalence classes with respect to a group of symmetries. The standard approach
to representative computation involves converting a state to its minimal image under
a permutation group G, before storing the state. This is known as the constructive
orbit problem (COP), and is NP hard. It may be possible to solve the COP efficiently
if G is known to have certain structural properties: in particular if G is isomorphic
to a full symmetry group, or G is a disjoint/wreath product of subgroups. We
extend existing results on solving the COP efficiently for fully symmetric groups,
and investigate the problem of automatically classifying an arbitrary permutation
group as a disjoint/wreath product of subgroups. We also present an approximate
COP strategy based on local search, and some computational group-theoretic op-
timisations to improve the basic approach of solving the COP by symmetry group
enumeration. Experimental results using the TopSPIN symmetry reduction package,
which interfaces with the computational group-theoretic system GAP, illustrate the
effectiveness of our techniques.
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1 Introduction

A major problem in software design is to prove that a complex system will behave
as expected. For example, errors due to the interleaving behaviour of concurrent
processes of a system may not be detected until testing is performed on a prototype,
by which time they are difficult—and expensive—to correct.

Model checking [8, 23] is a popular, automated technique which allows errors
in a software-controlled system to be found early on in the design process. The
modeller writes a description that captures the essential aspects of the system
(e.g. communication) but ignores implementation detail. The system description
is typically constructed via a specification language (such as Promela [23] or the
Reactive Modules language [1]) and converted to a finite-state model, usually a
Kripke structure, by a model checker such as SPIN [23] or SMV [31]. Basic properties
such as lack of deadlock, or more complicated properties expressed in a temporal
logic, can then be checked by searching the state-space associated with the model.

The main barrier to the widespread use of model checking is the state-space
explosion problem: as the number of processes in a system increases, the size
of the state-space associated with a model of the system grows combinatorially,
becoming too large to search exhaustively. A significant area of model checking
research focusses on techniques to ameliorate this problem, either by storing states
in a compact form (e.g. symbolically [31]), or by analysing the system specification
to determine tighter bounds on the number of states which must be checked to
determine the truth of a given property.

One popular technique of the latter type is symmetry reduction (see e.g. [7, 16, 24],
or [33] for a recent survey). Replication of processes in a concurrent system fre-
quently induces replication, or symmetry, in the state-space associated with a model
of the system. Symmetries between indistinguishable processes form a group which
acts on the state-space, partitioning it into equivalence classes called orbits. To model
check a particular class of temporal property it is sufficient to search one state
per orbit. As long as it is possible to obtain information about symmetry from a
specification without constructing the associated state-space, symmetry reduction can
result in more efficient verification.

Given a group G, the standard approach to ensuring that equivalent states are
recognised during search is to convert a newly encountered state s into min[s]G, the
smallest state in the orbit of s (under a suitable total ordering) before it is stored. Thus
the crux of exploiting symmetry is being able to efficiently compute min[s]G. This is
known as the constructive orbit problem (COP), and has been shown to be NP hard
[6]. However, it is possible to solve the COP in polynomial time for full symmetry
groups, and groups which decompose as disjoint or wreath products of subgroups
[6]. Alternatively, it is safe (though not memory-optimal) to approximate the COP
by computing a small number of representatives from each equivalence class [2, 6, 7].
On the other hand, if G is not too large then min[s]G can be computed by brute-force
enumeration of G [2, 13].

After a discussion of related work (Section 2) and a summary of some necessary
background on model checking, group theory and symmetry reduction (Section 3),
we provide some optimisations based on standard computational group theory
(CGT) for efficient enumeration of an arbitrary group (Sections 4.1 and 4.2). We
then present a polynomial time strategy for solving the COP when G is isomorphic
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to the symmetric group Sm for some m > 0 (Section 4.3). This generalises a result
on symmetric groups presented in [6]. To handle large, arbitrary groups we propose
COP strategy which uses local search to approximate min[s]G (Section 4.4).

We then turn our attention to groups which decompose as disjoint or wreath
products of subgroups. Techniques for exploiting these kinds of group are only useful
for automatic model checking if it is possible to determine, before search, whether an
arbitrary group does in fact decompose as an appropriate product of subgroups. We
provide two techniques for computing disjoint product decompositions: an efficient,
sound, incomplete approach which works directly with symmetry group genera-
tors, and a complete approach which, in the worst case, runs in exponential time
(Section 5). We then present an algorithm for automatically determining whether an
arbitrary transitive group decomposes as a wreath product, and describe an extension
to this algorithm for intransitive wreath products (Section 5).

The paper concludes with a discussion of experimental results using the TopSPIN

symmetry reduction package for the SPIN model checker, which show that solving the
constructive orbit problem efficiently using our theoretical techniques can result in
significant savings, both in memory and verification time (Section 8).

2 Related work

The COP was introduced in [6], together with basic techniques for solving the
COP efficiently when G is a fully symmetric group, or a disjoint/wreath product
of subgroups. This paper puts these results into practice by extending the class of
fully symmetric groups for which the COP can be efficiently solved, and providing
automatic techniques for detecting the case where G is a disjoint/wreath product of
subgroups. The convention of taking min[s]G as a representative for [s] has been
relatively widely adopted [2, 6, 12, 13, 29], but is not universal. The symmetry-based
model checker (SMC) [37], for example, uses the first state encountered from a given
orbit as the representative of that orbit.

The idea of easing the complexity of symmetry reduction by using multiple
representatives from each orbit was introduced in the context of symbolic model
checking [7]. Multiple representatives in explicit state model checking are used by
the SymmSpin and SMC packages (see [2] and [37] respectively) for the special case
of fully symmetric groups. The local search strategy presented here is more general,
allowing symmetry reduction via multiple representatives for an arbitrary group.

The results of this paper are presented in the context of a simple model of com-
putation where the local state of each process in a concurrent system is abstracted
into an integer value, and processes do not hold references to one another. In [14]
we have considered the problem of extending the model of computation to allow
inter-process references.

An approach to symmetry breaking in constraint programming requires an ef-
ficient solution to a COP-related problem: determining whether a given partial
assignment of variables in the search tree is lexicographically least in its orbit.
The key difference between this problem and the COP is that the COP requires
the minimal orbit representative to be explicitly computed; the approach of [25]
merely requires a yes/no answer as to whether a given assignment is minimal. An
efficient implementation of the techniques presented in [25] uses a computational
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group-theoretic algorithm for finding the smallest image of a set of points under
a permutation group acting on the points [30]. This problem can be shown to be
equivalent to the COP, thus the algorithm of [30] provides a general COP solution.
The main difference between our work and that of [30] is that our techniques allow
polynomial-time solutions to the COP for certain types of group and an approximate
solution to the COP for arbitrary groups, whereas the approach in [30] provides a
non-polynomial time (but often efficient) exact solution to the COP for arbitrary
groups.

Some of the results in this paper were presented, in a preliminary form, in [13].

3 Background

We provide an introduction to model checking (Section 3.1), a summary of some
group-theoretic definitions and theorems (Section 3.2), and an introduction to sym-
metry reduction theory (Section 3.3).

3.1 Model checking

The model checking problem involves determining whether or not a finite-state
model, describing the behaviour of a concurrent system, satisfies a temporal logic
formula, specifying a desired safety or liveness property of the system. A Kripke
structure is the common formalism for representing a finite-state model, and temporal
logic formulas are usually expressed in (a sub-logic of) CTL� [8].

We use a simple model to represent the computation of a system comprised of n
communicating processes, interleaving concurrently [6, 17]. Let I = {1, 2, . . . , n} be
the set of process identifiers (for some n > 0), and let ∅ �= L ⊂ Z denote a finite set
of possible local states of the processes. A Kripke structure is defined in terms of L
and n as follows:

Definition 1 A Kripke structure M is a tuple M = (S, S0, R) where:

1. S = Ln is a non-empty, finite set of states
2. S0 ⊆ S is a set of initial states
3. R ⊆ S × S is a transition relation

A path in M from a state s ∈ S is an infinite sequence of states π = s0, s1, s2, . . .

where s0 = s, such that for all i > 0, (si−1, si) ∈ R. A state s ∈ S is reachable if there
is a path s0, s1, . . . , s, . . . in M where s0 ∈ S0. When checking properties of a Kripke
structure we are interested only in its reachable states.

Figure 1 shows the reachable part of a Kripke structure for a model of two process
mutual exclusion. The model consists of two processes, each with three local states.
For convenience we denote these local states N, T and C rather than using three
integers. The values N, T and C denote that a process is in the neutral, trying or
critical state respectively. For A ∈ {N, T, C} we use Ai to assert that process i is in
local state A. Only if process i is in the trying state (i.e., Ti holds) and process j �= i
is not in the critical state (i.e., ¬C j holds) can process i can move into the critical
state. Thus in the model it is not possible for both processes to be in the critical state.
That is, the mutual exclusion property holds. Note that there is a single initial state
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Fig. 1 Kripke structure for
two-process mutual exclusion
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(indicated by an incoming edge with no predecessor state in Fig. 1). In the initial state
both processes are in the neutral location.

To express properties of Kripke structures it is typical to use the branching time
temporal logic CTL� (or one of its sub-logics). The set of CTL� formulas are defined
inductively over propositions Ai, where A ∈ L and 1 ≤ i ≤ n. The quantifiers A and
E are used to denote for all paths, and for some path respectively. In addition, X, U, F
and G represent the standard next-time, strong until, eventually and always operators.
For a CTL� property φ, we write M, s |= φ if φ holds at state s of M, and M |= φ

if φ holds for every initial state of M. For the scope of this paper it is unnecessary
to formally present the syntax and semantics of CTL�, which are detailed in [8]. We
can express the mutual exclusion property in CTL� as: AG(¬(C1 ∧ C2)). The Kripke
structure of Fig. 1 clearly satisfies this property as (C, C) is not a reachable state.

3.1.1 SPIN and Promela

In Section 8 we provide experimental results using the SPIN model checker [23]. The
SPIN tool allows verification by model checking for specifications written in Promela,
a high level language geared towards modelling communication protocols associated
with concurrent, distributed systems. A Promela specification consists of a series of
parameterised process definitions, a set of global variables and communication chan-
nels, an initialisation process which instantiates multiple copies of the parameterised
processes.

The SPIN tool explores the state-space associated with a Promela specification,
which is generated by considering the interleaving behaviour of these concurrent
processes. SPIN provides model checking algorithms to verify deadlock freedom,
absence of assertion violations, and more complex temporal properties expressed
in LTL (a sub-logic of CTL�). To manage state-space explosion, SPIN incorporates
a variety of state compression and state-space reduction techniques. Partly due to
the success of these techniques, SPIN has been widely used in industry and academia
for reasoning about communications protocols. Nevertheless, state-space explosion
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remains a problem when attempting to verify complex specifications. The TopSPIN

tool [12], which incorporates the symmetry reduction techniques described in this
paper, provides further state-space reduction by exploiting symmetry.

3.2 Basic group theory

We present some basic definitions and results from group theory, and introduce the
computational group theoretic package GAP.

Definition 2 A group is a non-empty set G together with a binary operation ◦ : G ×
G → G which satisfies:

– For all α, β, γ ∈ G, α ◦ (β ◦ γ ) = (α ◦ β) ◦ γ

– There is an element id ∈ G such that, for all α ∈ G, α = id ◦ α = α ◦ id. The
element id is called the identity of G

– For all α ∈ G there is an element β ∈ G such that α ◦ β = β ◦ α = id. The
element β is called the inverse of α, denoted α−1.

In practice, the binary operation ◦ is usually composition of mappings, so we omit it,
writing αβ for α ◦ β.

Let G be a group and let H ⊆ G. If αβ ∈ H for all α, β ∈ H (i.e., H is closed under
the binary operation) then H is also a group, and we say that H is a subgroup of G,
denoted H ≤ G. If H ⊂ G then H is a proper subgroup of G, denoted H < G.

Definition 3 Let X ⊆ G. Then 〈X〉 denotes the smallest subgroup of G which
contains X, and is called the subgroup generated by X. If α1, α2, . . . , αk ∈ G then
we use the notation 〈α1, α2, . . . , αk〉 to denote the group 〈{α1, α2, . . . , αk}〉.

For any group G, if X ⊆ G has the property that G = 〈X〉 then X is called a set of
generators for G. It can be shown that if G is a finite group, there exists a generating
set X for G with |X| ≤ log2 |G|. As a result, it is often convenient to work with a
small generating set for a large group.

Definition 4 Let H be a subgroup of G, and let α ∈ G. Then the set Hα = {βα : β ∈
H} is a (right) coset of H in G.

A similar definition can be given for left cosets of H in G. We will henceforth
use coset to mean right coset. It can be shown that the set of cosets of H in G is a
partition of G. A set of coset representatives for H in G is a subset of G which consists
of exactly one element from each coset of H in G.

A mapping between two groups which preserves products of elements is called a
homomorphism:

Definition 5 Let (G1, ◦), (G2, �) be groups. A homomorphism from G1 to G2 is a
mapping θ : G1 → G2 which satisfies, for all α, β ∈ G1,

θ(α ◦ β) = θ(α) � θ(β).
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If θ is injective then θ is a monomorphism from G1 to G2. If θ is bijective then θ is
an isomorphism from G1 to G2, and G1 and G2 are said to be isomorphic, denoted
G1

∼= G2.

Isomorphic groups are algebraically indistinguishable, and in some sense can
be thought of as equal—they differ only in that their elements may be labelled
differently [21]. However, two isomorphic groups may have distinct actions on a set
(see below).

The following standard theorem shows that if there is a monomorphism from a
group G1 to a group G2 then G1 is isomorphic to a subgroup of G2:

Theorem 1 Let G1, G2 be groups and θ : G1 → G2 a monomorphism. Then G1
∼=

θ(G1) ≤ G2, where θ(G1) = {θ(α) : α ∈ G1}.

Let X be a non-empty set. A permutation of X is a bijection α : X → X. The
set of all permutations of X forms a group under composition of mappings, denoted
Sym(X). Given set of permutations P ⊆ Sym(X), we use moved(P) to denote the
subset of X which is affected by P: moved(P) = {x ∈ X : α(x) �= x for some α ∈ P}.
For α ∈ Sym(X) we define moved(α) = moved({α}). The degree of a permutation
group G is defined to be |moved(G)|.

If X is finite then it can be shown that |Sym(X)| = |X|!, and an element of Sym(X)

can be conveniently expressed using disjoint cycle form. Let α ∈ Sym(X). If α = id
then we write id for α as usual. Otherwise, we can write α as a product of cycles as
follows:

α = (
a1,1 a1,2 . . . a1,s1

)(
a2,1 a2,2 . . . a2,s2

)
. . .

(
at,1 at,2 . . . at,st

)

where t > 0, 2 ≤ si ≤ |X| (1 ≤ i ≤ t), ai, j ∈ X (1 ≤ i ≤ t, 1 ≤ j ≤ si), and the ai, j are
all distinct. In this form, for x ∈ X, if x = ai, j for some i and j then α(x) = ai, j′ where
j′ = j + 1 if j < si and j′ = 1 if j = si; if x �= ai, j for any i and j then α(x) = x.

Definition 6 Let X be a non-empty set, G ≤ Sym(X), x ∈ X and Y ⊆ X.

– The stabiliser of x in G is the set stabG(x) = {α ∈ G : α(x) = x}
– The pointwise stabiliser of Y in G is the set stab∗

G(Y) = {α ∈ G : α(y) = y ∀ y ∈
Y} = ⋂

y∈Y stabG(y)

– The setwise stabiliser of Y in G is the set stabG(Y) = {α ∈ G : α(Y) = Y}, where
α(Y) = {α(y) : y ∈ Y} ⊆ X.

It is straightforward to show that stabG(x), stab∗
G(Y) and stabG(Y) are all subgroups

of G.

The stabiliser stabG(x) of a single point under G can be computed in low-degree
polynomial time using standard CGT techniques, as can the pointwise stabiliser
stab∗

G(Y) for a set Y of points. With current methods, the setwise stabiliser stabG(Y)

cannot be computed in polynomial time: this subgroup is computed via backtrack
search using a base and strong generating set [3].
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Definition 7 Let G ≤ Sym(X) where X is a non-empty set. The group G induces
an equivalence relation ≡G on X thus: x ≡G y ⇔ x = α(y) for some α ∈ G. The
equivalence class under ≡G of an element x ∈ X, denoted [x]G, is called the orbit
of x under G. The group G is transitive if there is a single orbit, X. An orbit 	 ⊆ X
is non-trivial if |	| > 1.

When considering actions of G on two distinct sets X and Y, it is sometimes
convenient to write [x]G for the orbit of x ∈ X under G, and orbG(y) for the orbit of
y ∈ Y under G.

An important class of permutation groups are the symmetric groups:

Definition 8 For n > 0, the group Sym({1, 2, . . . , n}) is called the symmetric group of
degree n, denoted Sn. From the above, we have |Sn| = n!. Sn is often referred to as
the full symmetry group on n points.

Fundamental to most applications of symmetry reduction in model checking is the
idea that a group of permutations of a given set induces a group of permutations on
another (usually larger) set. For example, a group of process identifier permutations
naturally induces a group of permutations of the set of states associated with a
specification. We describe this idea formally using group actions. The following
definition and theorem are adapted from [35].

Definition 9 We say that a group G acts on the non-empty set X if to each α ∈ G
and x ∈ X there corresponds a unique element α(x) ∈ X and that, for all x ∈ X and
α, β ∈ G,

– (αβ)(x) = α(β(x))

– id(x) = x.

Theorem 2 Let G act on X. Then to each α ∈ G there corresponds an element ρα ∈
Sym(X) defined by ρα(x) = α(x) for all x ∈ X, and the map ρ : G → Sym(X) defined
by ρ : α �→ ρα is a homomorphism.

We call the homomorphism ρ the permutation representation of G corresponding
to the group action.

Certain groups can be described as products of their subgroups. Two important
kinds of product are disjoint and wreath products, which we introduce in Definitions
10 and 11 respectively.

Definition 10 Let G ≤ Sym(X), where X is a non-empty set. Suppose
H1, H2, . . . , Hk (k > 1) are subgroups of G such that G = {α1α2 . . . αk : αi ∈
Hi (1 ≤ i ≤ k)} and moved(Hi) ∩ moved(Hj) = ∅ for all 1 ≤ i �= j ≤ k. Then G is
denoted H1 • H2 • · · · • Hk, and called the disjoint product of the Hi, and the set
of Hi a disjoint product decomposition for G. The disjoint product is said to be
non-trivial if G �= Hi �= {id} for all 1 ≤ i ≤ k.
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If G has two disjoint product decompositions such that the constituent subgroups
of the second product are all subgroups of constituent subgroups of the first, then we
say that the second decomposition is finer than the first.

The following definition of the wreath product of two permutation groups is
adapted from a definition given in [26], and allows us to identify an existing group
as a wreath product of subgroups.

Definition 11 Let H ≤ Sm and K ≤ Sd for some m, d > 0. Let X be a set with |X| =
md, and {X1, X2, . . . , Xd} a partition of X into equal-sized subsets, where Xi has the
form Xi = {xi,1, xi,2, . . . , xi,m} for some xi, j ∈ X (1 ≤ i ≤ d, 1 ≤ j ≤ m). We define an
action for K, and d distinct actions for H, on X.

For β ∈ K and x ∈ X, suppose x ∈ Xi for some 1 ≤ i ≤ d, so that x = xi,t for
some 1 ≤ t ≤ m. Define β(x) = xβ(i),t. Let σ be the permutation representation
corresponding to this action of K on X.

For α ∈ H, x ∈ X and 1 ≤ i ≤ d, suppose x ∈ X j for some 1 ≤ j ≤ d, so that x =
x j,t for some 1 ≤ t ≤ m. Define α(x) = x if i �= j and α(x) = x j,α(t) otherwise. Let σi be
the permutation representation corresponding to this action of H on X.

If G = {σ(β)σ1(α1)σ2(α2) . . . σd(αd) : β ∈ K, αi ∈ H (1 ≤ i ≤ d)} then G is the
wreath product of H and K, also denoted H � K.

Note that we must specify the partition X = {X1, X2, . . . , Xd} when reasoning
about a wreath product. We refer to the triple (H, K,X ) as a wreath product
decomposition for G, and say that the decomposition is non-trivial if both H and
K are non-trivial. The order of H � K depends on the orders of H and K, and the
degree of K:

Theorem 3 If G is a wreath product H � K then |G| = |H|d × |K|, where d is the
degree of K.

Definition 11 describes a wreath product with the imprimitive action [5]. There are
other definitions of wreath products with other kinds of action, and it is important to
note that the results on wreath products which we present in Section 6 are specific to
the imprimitive action.

GAP (groups, algorithms and programming) [18] is a computational algebra
system which provides data structures and algorithms for working with a variety of
algebraic structures. In particular, GAP includes a large library of permutation group
algorithms. Given generators (specified in disjoint cycle form) for a permutation
group G acting on the set {1, 2, . . . , n}, GAP functions can be used to compute,
for example, subgroups of G with particular properties (such as point- and set-
stabilisers); the orbits of G on {1, 2, . . . , n}; coset representatives for a subgroup H
of G; and homomorphisms from G to another group. The fundamental permutation
group algorithms which GAP uses are detailed in [3, 22]. We use GAP to present
examples throughout the paper, and our TopSPIN symmetry reduction package (see
Section 8) interfaces with GAP to perform CGT calculations.
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3.3 Symmetry reduction

Definition 12 Let M = (S, S0, R) be a Kripke structure. An automorphism of M
is a permutation α : S → S which preserves the transition relation and set of initial
states. That is, α satisfies the following conditions:

1. For all s, t ∈ S, (s, t) ∈ R ⇔ (α(s), α(t)) ∈ R
2. α(S0) = S0.

The set of all automorphisms of a Kripke structure M forms a group under
composition of mappings, denoted Aut(M).

In a model of a concurrent system with many replicated processes, Kripke struc-
ture automorphisms usually involve the permutation of process identifiers through-
out all states of the model. In this case there is a group G which permutes a (typically
small) set of process identifiers, and an action of G on S (see Definition 9). Let ρ

be the permutation representation corresponding to this action (see Theorem 2).
The group of automorphisms of M induced by G is ρ(G), the image of G under the
permutation representation. Given α ∈ G, rather than referring to the automorphism
ρα of M we sometimes say simply that α is an automorphism of M.

Given a subgroup G of Aut(M), the orbits of S under G (see Definition 7) can be
used to construct a quotient Kripke structure MG as follows:

Definition 13 The quotient Kripke structure MG of M with respect to G is a tuple
MG = (SG, S0

G, RG) where:

– SG = {repG(s) : s ∈ S} (where repG(s) is a unique representative of [s]G)
– S0

G = {repG(s) : s ∈ S0}
– RG = {(repG(s), repG(t)) : (s, t) ∈ R}.

If G is non-trivial then the quotient structure MG is smaller than M. For any
s ∈ S, the size of [s]G is bounded by |G|, and so the theoretical minimum size of SG

is |S|/|G|. Since for highly symmetric systems we may have |G| = n!, where n is the
number of processes, symmetry reduction potentially offers a considerable reduction
in memory requirements.

To give an example of a quotient structure, for the mutual exclusion example
shown in Fig. 1, observe that swapping the process indices 1 and 2 throughout all
states is an automorphism of the structure. If α denotes this automorphism then for
this example Aut(M) = {α, id}, where id is the identity mapping. Choosing a unique
representative from each orbit we obtain the quotient Kripke structure MAut(M)

illustrated by Fig. 2.
It can be shown that a model and its quotient model satisfy the same symmetric

CTL� formulas [7, 16]. A CTL� formula φ is symmetric, or invariant, with respect to
G if for every maximal propositional sub-formula f appearing in φ, and for every
α ∈ G, M, s |= f ⇔ M, α(s) |= f .

Theorem 4 If M and MG denote a model and its quotient model with respect
to a group G respectively, then M |= φ ⇔ MG |= φ, for every symmetric CTL�

formula φ.
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Fig. 2 Quotient Kripke
structure for two-process
mutual exclusion

N , N

T , N

C, N

C, T

T , T

Note that Theorem 4 can be used to find errors as well as prove properties since
the implication is two-way. Consider the two-process mutual exclusion property
AG(¬(C1 ∧ C2)). Let us call this property φ1. Clearly φ1 is symmetric with respect to
the automorphism group G = {α, id}, where α is defined as above. Thus the Kripke
structure M (represented by Fig. 1) satisfies φ1 if and only if the quotient structure
MG (represented by Fig. 2) does. Therefore, to check the mutual exclusion property,
it is sufficient to check the quotient model only. Note that MG also satisfies the
property φ2 defined as AG(¬C2). However, as φ2 is not symmetric with respect to the
automorphism group, we cannot infer the truth (or otherwise) of φ2 for M. (Indeed,
clearly M �|= φ2.)

Algorithm 1 (adapted from [16, 24]), shows how a quotient structure can be
constructed incrementally if symmetries of the Kripke structure can be identified
before search. The successors of a given state are determined by the transition rules
of a high level specification. Using Algorithm 1 it may be possible to build a quotient

Algorithm 1 Algorithm to construct a quotient Kripke structure
SG := {repG(s) : s ∈ S0}
unexplored := {repG(s) : s ∈ S0}
RG := ∅
while unexplored �= ∅ do

remove a state s from unexplored
for all successor states t of s do

add s → repG(t) to RG

if repG(t) /∈ SG then
add repG(t) to SG

add repG(t) to unexplored
end if

end for
end while
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structure even though the associated unreduced structure is intractably large. To
determine a unique element repG(s) for each orbit [s]G, we require a canonicalisation
function. Methods for efficient canonicalisation functions are the focus of our paper,
and are discussed in detail below.

3.3.1 Symmetry detection

In this paper, we are concerned with techniques for exploiting process symmetries
during model checking, rather than detecting symmetry before search. Structural
symmetries of a model M are typically inferred by extracting a communication graph
from the initial specification. The vertex set of this graph is the set I, representing the
processes of the system. Provided that the specification obeys certain restrictions so
that processes of the same type are not explicitly distinguished, automorphisms of
the communication graph induce automorphisms of M. Since the communication
graph is typically small, these automorphisms can be computed automatically using
a package such as saucy [9]. Practical examples of communication graphs include the
static channel diagram of a Promela specification [11], and the coloured hypergraph
[6] of a shared variable concurrent program.

For illustration, throughout this paper we consider a system with a three-tiered
architecture, illustrated by the communication graph of Fig. 3. Let M3T be a model
of the system. Using the saucy program, we compute G3T , the automorphism group
of the communication graph in terms of generators:

G3T = 〈(1 2), (2 3), (4 5), (5 6), (7 8), (8 9), (10 11),

(12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)〉.
Note that the last two elements of the generating set of G3T are products of
transpositions. We assume that ρ(G3T) ≤ Aut(M3T) (where ρ is the permutation
representation of G3T on the states of M3T), and will use this group and its subgroups
as examples to illustrate some of our techniques.

3.3.2 The constructive orbit problem

The crux of exploiting symmetry when model checking is that during search, when a
state t is reached, it is necessary to test whether a state u has already been reached
such that t ≡G u (i.e., t = α(u) for some α ∈ G). This is known as the orbit problem
[7], and is central to all model checking methods that exploit symmetry. Techniques
must be used to either solve the orbit problem efficiently, or to find some kind of
approximate solution.

Fig. 3 Communication
structure for a three-tiered
architecture
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On encountering a state t, Algorithm 1 checks whether there is some α ∈ G such
that α(t) ∈ SG by checking whether repG(t) ∈ SG, where rep is a function which com-
putes a unique representative of [t]G. Since the algorithm only stores representative
states, if some state u with u ≡G t has been encountered then repG(u) ∈ SG. Since
repG(u) = repG(t) (which follows from u ≡G t), the test repG(t) ∈ SG returns true. As
a consequence, there is no need for the successors of t to be added to the unexplored
set: these successor states are all equivalent to successors of repG(u), which have
already been added to unexplored.

An element α ∈ Sn acts naturally on a state s = (x1, x2, . . . , xn) ∈ Ln as follows:
α(s) = (xα−1(1), xα−1(2), . . . , xα−1(n)).1 This action makes sense provided the local state
of a process does not include variables which take process identifiers as values. This
complex situation is treated in [14].

Let ≤ denote the usual lexicographic ordering on vectors in Ln: for s, t ∈ Ln where
s = (x1, x2, . . . , xn), t = (y1, y2, . . . , yn), s ≤ t if s = t or there is some 1 ≤ i ≤ n such
that x j = y j for each 1 ≤ j < i, and xi < yi. When attempting to exploit symmetry
with this model of computation, it is convenient to use the lexicographically least
element in the orbit as a representative.

Definition 14 The constructive orbit problem (COP) [6, 26] Given a group G ≤ Sn

and a state s ∈ Ln, find the lexicographically least element in the orbit of s.

In other words, the COP is the problem of computing min≤[s]G.

Theorem 5 [6, 26] The COP is NP-hard.

Despite this discouraging result, it has been shown that the COP can be solved
efficiently for certain classes of symmetry group: fully symmetric groups, disjoint
products and wreath products [6]. We investigate these kinds of symmetry group
further in Sections 4.3, 5 and 6 respectively. Alternatively, it may be possible to
efficiently compute an approximate solution to the COP, resulting in a quotient
model which uses multiple representatives from each orbit. We propose one such
approximate solution in Section 4.4.

In the worst case, we can solve the COP exactly by enumerating over the group
G. While this is impractical for large groups, it can be a practical solution for smaller
symmetry groups.

4 Exploiting basic symmetry groups

In this section we discuss two optimisations to the basic enumeration strategy
which exploit the decomposition of permutations into transpositions and the use of
stabiliser chains respectively. We then present a result which generalises the class of

1It may appear more straightforward to define α(s) in terms of elements xα(i) rather than xα−1(i) (1 ≤
i ≤ n). However, our definition is intuitive in practice, e.g. if s = (7, 5, 4) and α = (1 2 3) then α(s) =
(4, 7, 5) as one would expect. Defining α(s) in terms of elements xα(i) would yield α(s) = (5, 4, 7),
which is less intuitive.
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fully symmetric groups for which the COP can be efficiently solved, and propose an
approximate COP strategy for arbitrary groups, based on local search.

4.1 Efficient application of permutations

Consider the problem of applying a permutation α to a state s, i.e., computing α(s)
where s has the form (x1, x2, . . . , xn). Direct application of α to s clearly requires
exactly n operations: we must compute xα−1(i) for each i. On the other hand, applying
a transposition (i j) to s is a constant time operation—the local states xi and x j are
simply exchanged.

Lemma 1 Let α ∈ Sn. Then α can be expressed as a product of at most n − 1
transpositions.

Proof If α is a cycle (a1 a2 . . . am) for some m ≤ n then α can be expressed as
a product of m − 1 transpositions: α = (a1 a2)(a1 a3) . . . (a1 am) [21]. Suppose α is
instead a product of l disjoint cycles, α1, α2, . . . , αl , for some l > 0, where cycle αi has
length mi (1 ≤ i ≤ l). We have

∑l
i=1 mi ≤ n. Since each αi can be written as a product

of mi − 1 transpositions, α can be written as a product of
∑l

i=1(mi − 1) ≤ n − 1
transpositions. ��

Note that expressing and applying permutation α as a list of up to n − 1 trans-
positions does not change the complexity of applying α to a state, which remains
an O(n) operation. However, in practice many permutations can be expressed as a
product of a small number of transpositions, in which case the transposition method is
more efficient than direct application. In Section 8 we provide experimental evidence
that representing a permutation α as a list of transpositions, and computing α(s)
by successively applying these transpositions, speeds up symmetry reduction by a
significant constant factor.

4.2 Enumerating small groups

The most obvious strategy for computing min[s]G is to consider each state in [s]G, and
return the smallest. This can be achieved by enumerating the elements α(s), α ∈ G.
If G is small then this strategy is feasible in practice, and provides an exact symmetry
reduction strategy. The SymmSpin package provides an enumeration strategy for
full symmetry groups, which is optimised by generating permutations incrementally
by composing successive transpositions.

We generalise this optimisation for arbitrary groups using stabiliser chains. A
stabiliser chain for G is a series of subgroups of the form G = G(1) ≥ G(2) ≥ · · · ≥
G(k) = {id}, for some k > 1, where G(i) = stabG(i−1) (x) for some x ∈ moved(G(i−1))

(2 ≤ i ≤ k). If U (i) is a set of representatives for the cosets of G(i) in G(i−1) (2 ≤ i ≤
k), then each element of G can be uniquely expressed as a product ukuk−1 . . . u2,
where ui ∈ U (i) (1 < i ≤ k) [3]. Permutations can be generated incrementally using
elements from the coset representatives, and the set of images of a state s under
G computed using a sequence of partial images (see Algorithm 2). To ensure
efficient application of permutations, the coset representatives are stored as a list of
transpositions, applied in succession, as described in Section 4.1. Applying sequences
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Algorithm 2 Computing min[s]G using a stabiliser chain
min[s]G := s
for all u2 ∈ U2 do

s2 := u2(s)
for all u3 ∈ U3 do

s3 := u3(s2)
...

for all uk ∈ Uk do
sk := uk(sk−1)

if sk < min[s]G then
min[s]G := sk

end if
end for
...

end for
end for

of transpositions works particularly well here since each coset representative can
typically be represented as a product of a small number of transpositions.

GAP provides functionality to efficiently compute a stabiliser chain and associated
coset representatives for an arbitrary permutation group (as discussed in Section 3.2,
computing point stabilisers is a polynomial-time operation). Although this approach
still involves enumerating the elements α(s) for every α ∈ G (and is thus infeasible
for large groups), calculating each α(s) is faster. The experimental results of Section 8
show an improvement over basic enumeration. Additionally, it is only necessary to
store coset representatives, rather than all elements of G.

Stabiliser chains are used extensively in computational group theory [3, 18], and
have been utilised in symmetry breaking approaches for constraint programming
[19]. We are, to our knowledge, the first to apply these techniques to model checking.

We have used stabiliser chains to efficiently enumerate elements of a group, which
requires CGT calculations to be performed before search, to work out sets of coset
representatives for use by Algorithm 2. Further gains in efficiency may be possible
by using CGT methods during search. The orbit of a state s can be significantly
smaller than associated symmetry group G, in which case it would be more efficient
to compute the orbit of s directly via CGT methods, which use a base and strong
generating set [3] instead of relying on enumeration. We intend to investigate this
optimisation, which would require the integration of non-trivial CGT algorithms with
the model checking process, as future work.

4.3 Minimising sets for G if G ∼= Sm (m ≤ n)

For systems where there is full symmetry between processes, the smallest state in the
orbit of s = (x1, x2, . . . , xn) can be computed by sorting the tuple s lexicographically.
[2, 6]. For example, for a system with four processes, sorting equivalent states
(3, 2, 1, 3) and (3, 3, 2, 1) yields the state (1, 2, 3, 3), which is clearly the smallest state
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in the orbit. Since sorting can be performed in polynomial time, this provides an
efficient solution for the COP when G = Sn.

Recall the group G3T of automorphisms of the communication graph of Fig. 3.
Consider the subgroup:

H = 〈(12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)〉.
This group permutes server processes 12, 13 and 14, with their associated blocks of
client processes. It is clear that H is isomorphic to S3, the symmetric group on 3
objects. However, we cannot compute min[s]H by sorting s in the usual way, since
this is equivalent to applying an element α ∈ S16 to s, which may not belong to H.

We can deal with a group G acting in this way using a minimising set. Using
terminology from [17], G is said to be nice if there is a small set X ⊆ G such that,
for any s ∈ S, s = min[s] ⇔ s ≤ α(s) ∀ α ∈ X. In this case we call X a minimising set
for G. If a small minimising set X can be found for a large group G, then computing
the representative of a state involves iterating over the small set X, minimising the
state until a fix-point is reached. At this point, no element of the minimising set maps
the state to a smaller image, thus the minimal element has been found. This approach
is formalised by Algorithm 3.

We show that for a large class of groups which are isomorphic to Sm for some
m ≤ n, a minimising set with size polynomial in m can be efficiently computed.
This minimising set is derived from the swap permutations used in a selection-sort
algorithm. As discussed in Definition 7, we use orbG(i) rather than [i]G to refer to
the orbit of i ∈ I under G. This is to avoid confusion between orbits of states and
orbits of process identifiers.

Theorem 6 Suppose that, for each x ∈ I such that orbG(x) is non-trivial (see
Definition 7), stabG(x) fixes exactly one element from each non-trivial orbit of G acting
on I, and that G ∼= Sm, where m = |orbG(y)| > 1 for some y ∈ I. Then there is an
isomorphism θ : Sm → G such that {θ((i j)) : 1 ≤ i < j ≤ m} is a minimising set for G.

Proof Assume without loss of generality that all orbits of I under G are non-trivial,
and let 	 = {x1, x2, . . . , xm} be one of the orbits. For 1 ≤ i ≤ m, let Ci = {x ∈ I :
α(x) = x for all α ∈ stabG(xi)}. By our hypothesis, Ci consists of one element from
each orbit 1 ≤ i ≤ m, and it is easy to show that the Ci are disjoint. We call each Ci

a column. There is an isomorphism θ from G′ (the action of G on the columns) to G
acting on I. Since G ∼= Sm, G′ contains all column transpositions (i j), so θ((i j)) ∈ G

Algorithm 3 State minimisation using a minimising set X
min := s
repeat

min′ := min
for α ∈ X do

if α(min′) < min then
min := α(min′)

end if
end for

until min′ = min
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for any 1 ≤ i < j ≤ m. The element θ((i j)) maps all elements of column i to elements
of column j.

Now consider states s and s′, where s′ = α(s) for some α ∈ G. Let i be the smallest
index for which s(i) �= s′(i). Let j be the index such that j = α−1(i). All of the elements
in the column containing j (column j′ say) are mapped via α to the column containing
i (column i′ say). Then s′ < s iff θ((i′ j′))(s) < s. Hence s is minimal in its orbit iff
θ((i j))(s) ≥ s for all i < j. So the set {θ((i j)) : 1 ≤ i < j ≤ m} is a minimising set
for G. ��

Note that the minimising set is much smaller than G, and the conditions of
Theorem 6 can be easily checked using GAP. Although testing two arbitrary groups
for isomorphism can be expensive, if a set of m candidate columns is found, testing
whether the action of G on the columns is isomorphic to Sm can be performed
efficiently using the GAP function IsNaturalSymmetricGroup(G).

It may seem that the conditions of Theorem 6 are unnecessary, and that, given any
isomorphism θ : Sm → G, the set {θ((i j)) : 1 ≤ i < j ≤ m} is a minimising set for G.
However, consider the group G below, which is a subgroup of the symmetry group
of a hypercube:

G = 〈(1 2)(5 6)(9 10)(13 14), (1 2 4 8)(3 6 12 9)(5 10)(7 14 13 11)〉 ≤ S14

The group G is isomorphic to S4: an isomorphism θ : S4 → G is de-
fined on generators by θ((1 2 3 4)) = (1 2 4 8)(3 6 12 9)(5 10)(7 14 13 11), θ((1 2)) =
(4 8)(5 9)(6 10)(7 11). However, the state

s = (6, 10, 3, 6, 3, 5, 7, 10, 4, 8, 2, 1, 9, 3) ∈ {1, 2, . . . , 10}14

can not be minimised using the set {θ((i j)) : 1 ≤ i < j ≤ 4}.

Theorem 7 If G satisfies the conditions of Theorem 6 and X = {θ((i j)) : 1 ≤ i < j ≤
m} then min[s]G can be computed in O(m3) time for any s ∈ Ln, using Algorithm 3.

Proof Clearly |X| = |{θ((i j)) : 1 ≤ i < j ≤ m}| = m(m − 1)/2.
A column entry for a state s with respect to a column Ci is a tuple of local states of

s whose indices (in s) belong to Ci. Column entries can be ordered lexicographically.
An element θ((i j)) of X has the effect of transposing two column entries for a given
state s. We say that the column entry for s with respect to Ci has index i. Now suppose
that the smallest column entry for s has index j. Then clearly min{α(s) : α ∈ X} =
θ((i j))(s). Hence, after the first iteration of the outer loop of Algorithm 3, the first
(left-most) column entry for state min′ is in the smallest possible position. Similarly,
after the second iteration min′ has (at least) its first and second column entries as
small as possible, and after m iterations all column entries are ordered in such a way
that min′ = min, in which case the outer loop terminates.

We have shown that, in the worst case, the outer loop of Algorithm 3 iterates m
times. Since each iteration of this loop involves iterating over a set of size m(m − 1)/2
the complexity of Algorithm 3 is O(m3) as required. ��

Each iteration of the outer loop of Algorithm 3 applies every element of X to min′,
the minimum state found by the previous iteration, and updates min′ to the smallest
image under X. Algorithm 4 works similarly, but updates the current minimum every
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Algorithm 4 Optimised state minimisation using a minimising set X
min := s
repeat

min′ := min
for α ∈ X do

if α(min) < min then
min := α(min)

end if
end for

until min′ = min

time an element of X is found which yields a smaller image. We have found that this
works better in practice.

4.4 Local search for unclassified groups

If G is a large group then computing min[s]G by enumeration of the elements
of G may be infeasible, even with the group-theoretic optimisations discussed in
Sections 4.1 and 4.2. If no minimising set is available for G, and G cannot be classified
as a composite symmetry group (see Sections 5 and 6) then we must exploit G via an
approximate symmetry reduction strategy.

We propose an approximate strategy based on gradient-descent local search,2

which has proved successful for a variety of search problems in artificial intelligence
[36]. In this case the function min works by performing a local search of [s]G starting
at s, using the generators of G as operations from which to compute a successor state.
The search starts by setting t = s, and proceeds iteratively. On each iteration, α(t) is
computed for each generator α of G. If t ≤ α(t) for all α then a local minimum has
been reached, and t is returned as a representative for [s]G. Otherwise, t is set to the
smallest image α(t), and the search continues.

The effectiveness of local search is dependent on the set of group generators used:
adding elements to the generating set can potentially improve the accuracy of search,
at the expense of speed. In the extreme, G could be used as a generating set, in
which case the strategy would compute min[s]G precisely, but less efficiently even
than brute-force enumeration.

In Section 8 we show that the local search algorithm is effective when exploring
the state-spaces of various configurations of message routing in a hypercube network.
For these experiments, the generating set is taken to be the set of generators for the
group of a hypercube computed by the saucy graph automorphism program.

There are various local search techniques which could be employed to attempt
to improve the accuracy of this strategy. Random-restart local search [36] involves
the selection of several random elements of [s]G in addition to s, and performing
local search from each of them, returning the smallest result. In our case we could
apply such a technique by finding the image of a state s under distinct, random
elements of G (GAP provides functionality for generating random group elements).

2This is referred to in [13] as hillclimbing local search.
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Another potential improvement would be to use simulated annealing [27] to escape
local minima.

5 Exploiting disjoint products

Certain kinds of symmetry group can be decomposed as products of subgroups. In
this case it may be possible to solve the COP separately for each subgroup, providing
a solution to the COP for the whole group. In particular, if a symmetry group
permutes disjoint sets of processes independently then the group can be described
as the disjoint product of the groups acting on these disjoint sets (see Definition 10).

Disjoint products occur frequently in model checking problems. For example, the
symmetry group associated with a prioritised resource-allocation system, with k > 0
priority levels, is a disjoint product of k groups, each of which permutes processes
with a specific priority level. In our three-tiered architecture example (see Fig. 3), the
group G3T can be shown to decompose as a disjoint product G3T = H1 • H2 where:

H1 = 〈(1 2), (2 3), (4 5), (5 6), (7 8), (8 9),

(12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)〉
H2 = 〈(10 11)〉.

If G is a disjoint product of subgroups H1, H2, . . . , Hk then we have min[s]G =
min[. . . min[min[s]H1 ]H2 . . . ]Hk [6], so the COP for G can be solved by considering
each subgroup Hi in turn. Even if it is necessary to enumerate over the elements of
each Hi, it is more efficient to enumerate over the resulting

∑k
i=1 |Hi| elements than

the
∏k

i=1 |Hi| elements of G. Furthermore, it may be that some or all of the Hi can
be handled using minimising sets (see Section 4.3) or wreath product decompositions
(see Section 6).

However, the above result is only useful when designing a fully automatic sym-
metry reduction package if it is possible to automatically and efficiently determine,
before search, whether or not G decomposes as a disjoint product of subgroups. From
the above discussion it is clear that the finer the disjoint product decomposition the
better, thus we would ideally like a complete automatic method: one which computes
the finest non-trivial disjoint product decomposition for G, if such a decomposition
exists.

We present two solutions to this problem: a sound, incomplete approach which
runs in polynomial time, and a sound, complete approach which in the worst case
runs in exponential time. We show that the second approach can be optimised using
CGT to run efficiently for the kinds of symmetry group which arise in model checking
problems.

5.1 Efficient, sound, incomplete approach

Let G = 〈X〉 for some X ⊆ G with id /∈ X. Define a binary relation B ⊆ X2 as
follows: for all α, β ∈ X, (α, β) ∈ B ⇔ moved(α) ∩ moved(β) �= ∅. Clearly B is sym-
metric, and since for any α ∈ G with α �= id, moved(α) �= ∅, B is reflexive. It follows
that the transitive closure of B, denoted B∗, is an equivalence relation on X. We now
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show that if B∗ has multiple equivalence classes then each class generates a subgroup
of G which is a non-trivial factor for a disjoint product decomposition of G.

Lemma 2 Suppose that α, β ∈ X, and that (α, β) /∈ B∗. Then moved(α) ∩
moved(β) = ∅ and α and β commute.

Proof If moved(α) ∩ moved(β) �= ∅ then (α, β) ∈ B ⊆ B∗, a contradiction, thus
moved(α) ∩ moved(β) = ∅. Therefore if α1 and β1 are cycles in the disjoint cycle
forms of α and β respectively then α1 and β1 are disjoint and therefore commute.
By repeatedly swapping disjoint cycles, it follows that αβ = βα. ��

Theorem 8 Suppose C1, C2, . . . , Ck are the equivalence classes of X under B∗ where
k ≥ 2. For 1 ≤ i ≤ k let Hi = 〈Ci〉. Then G = H1 • H2 • · · · • Hk, and Hi �= {id} (1 ≤
i ≤ k).

Proof If α ∈ G then α = α1α2 . . . αd for some α1, α2, . . . , αd ∈ X, d > 0. By Lemma 2
we can arrange the αl so that elements of Ci appear before those of C j whenever
i < j. It follows that we can write α as β1β2 . . . βk where βi is the product of all the α j

belonging to Ci, with βi = id if there are no such α j (1 ≤ i ≤ k). In other words, α =
β1β2 . . . βk where βi ∈ Hi (1 ≤ i ≤ k). Again by Lemma 2, moved(Hi) ∩ moved(Hj) =
∅ for 1 ≤ i �= j ≤ k and so G = H1 • H2 • · · · • Hk, where (since id /∈ X) the Hi are
non-trivial. ��

Consider the group G3T generated by the set X = {(1 2), (2 3), (4 5), (5 6),

(7 8), (8 9), (12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9), (10 11)}. It is straightfor-
ward to check that the equivalence classes under B∗ for this example are as follows:

C1 = {(1 2), (2 3), (4 5), (5 6), (7 8), (8 9), (12 13)(1 4)(2 5)(3 6),

(13 14)(4 7)(5 8)(6 9)}
C2 = {(10 11)},

which generate the groups H1 and H2 respectively, described at the start of Section 5.
This is the finest disjoint product decomposition of G3T .

The approach is incomplete as it does not guarantee the finest decomposition of
an arbitrary group G as a disjoint product. To see this, suppose that the element
(1 2)(10 11) is added to the generating set for the group G3T . This causes the
equivalence classes C1 and C2 to merge, and a non-trivial disjoint decomposition
for G3T is not obtained.

However, in practice we have not found a case in which the finest decomposition
is not detected when generators have been computed by a graph automorphism
program. The approach is very efficient as it works purely with the generators of
G, of which there are typically few.

5.2 Sound and complete approach

If generators for a symmetry group G have been specified manually, or returned
as the result of a CGT-based calculation (e.g. if G is a subgroup of a wreath product
decomposition, computed using the methods of Section 6) then these generators may



On the constructive orbit problem 21

not be in a palatable form for the “generators-only” approach of Section 5.1, which
may not provide the finest possible disjoint product decomposition. Recall that the
finer the decomposition the more efficiently we can compute min[s]G.

We now present an algorithm for computing the finest non-trivial decomposition
of G as a disjoint product of subgroups. The algorithm runs in exponential time in
the worst case, but for many groups which arise in model checking problems we
can obtain polynomial run-time via a CGT-based optimisation. We present three
lemmas, the straightforward proofs of which we omit (they are presented in full in
[10]). Throughout this section we use (variations of) 	 and O to refer to orbits and
sets of orbits respectively.

Let G ≤ Sn, and O the set of all non-trivial orbits of G. For O′ ⊆ O, any α ∈ G can
be written as α = α1α2 . . . αsβ1β2 . . . βt, where moved(αi) ⊆ 	′

i ∈ O′ (1 ≤ i ≤ s) and
moved(β j) ⊆ 	 j ∈ (O \ O′) (1 ≤ j ≤ t). With α in this form, the restriction of α to O′
is the permutation αO′ = α1α2 . . . αs. In general, αO′

/∈ G. For H ≤ G, the restriction
of H to O′ is the group HO′ = {αO′ : α ∈ H}. In general, HO′ �≤ G. For a single orbit
	, we use H	 to denote H{	}.

Lemma 3 Suppose G = H1 • H2 where H1 �= {id} and H2 �= {id}. Then there are sets
O1, O2 of non-trivial orbits of G such that {O1,O2} is a partition of O and for i ∈ {1, 2},
Hi = GOi .

Lemma 4 If {O1,O2} is a partition of O and GOi ≤ G for i ∈ {1, 2} then G = GO1 •
GO2 .

Algorithm 5 is a recursive algorithm for computing a disjoint decomposition of G.
If G can be decomposed, then by Lemma 3 there is some partition {O1,O2} of O such
that G = GO1 • GO2 . The algorithm uses Lemma 4 to detect when a partition with
this property has been found. Once a decomposition of the form G = GO1 • GO2 has
been found, the groups GO1 and GO2 are recursively decomposed. This guarantees
the finest decomposition of G as a disjoint product, thus Algorithm 5 is complete.

Computing GOi by restricting each generator of G to Oi is trivial. Testing whether
GOi ≤ G can be performed in low-degree polynomial time using standard CGT data
structures [3]. Thus the complexity of Algorithm 5 is dominated by the number of
partitions of O which must be considered in the worst case. If G does not decompose
as a disjoint product then every partition of O of size two must be considered. The
number of such partitions is S(|O|, 2), a Stirling number of the second kind [20]. It
can be shown that S(|O|, 2) = 2|O|−1 − 1. In the worst case, |O| may be n/2, thus the
complexity of Algorithm 5 is O(2n).

Algorithm 5 disjoint_decomposition(G,O)—G is a group and O its non-trivial orbits
for all partitions {O1,O2} of O do

if GO1 ≤ G and GO2 ≤ G then
return disjoint_decomposition(GO1 ,O1) • disjoint_decomposition(GO2 ,O2)

end if
end for
return G
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5.2.1 A computational group theoretic optimisation

We can optimise the performance of Algorithm 5 for many commonly occurring
symmetry groups using the notion of dependent orbits. Recall from Definition 6
that stab∗

G(Y) denotes the pointwise stabiliser of Y in G, which can be computed
in polynomial-time.

Definition 15 Let 	1, 	2 ∈ O. We say that 	1 is dependent on 	2 if
∣
∣stab∗

G

(
	2

)	1
∣
∣ <

∣
∣G	1

∣
∣.

Intuitively, 	1 is dependent on 	2 if fixing each point in 	2 has an effect on the
action of G on 	1. It is easy to show that 	1 is dependent on 	2 iff 	2 is dependent
on 	1, so we say that two orbits are dependent if one is dependent on the other. It
can be shown that dependent orbits must belong to the same element of the partition
of Lemma 3:

Lemma 5 Let {O1,O2} be a partition of O such that G = GO1 • GO2 (as in Lemma 3).
Suppose 	i, 	 j ∈ O are dependent. Then {	i, 	 j} ⊆ O1 or {	i, 	 j} ⊆ O2.

Define a binary relation B ⊆ O × O as follows: (	1, 	2) ∈ B if 	1 and 	2 are
dependent. We have already established that B is symmetric, and it is obviously
reflexive. We have not determined whether B is, in general, transitive, so we use
B∗ to denote the transitive closure of B. Suppose {O1,O2} is a partition of O
with G = GO1 • GO2 (as in Lemma 3). If C is an equivalence class of B∗, called a
dependency class, then by Lemma 5 and induction, C ⊆ Oi for some i.

Since Algorithm 5 depends critically on the size of the set O, we can potentially
improve performance by taking O to be the set of all dependency classes, rather
than the set of all orbits, if there are fewer dependency classes. Computing the
dependency classes involves computing pointwise stabilisers which, as noted above,
is a polynomial time operation [3].

5.2.2 Examples

We illustrate the sound and complete approach using a group for which the optimisa-
tion above reduces the problem so that there is only one potential partition {O1,O2}
to consider. We also give a pathological example for which our optimisation does not
help at all.

Let G be the following group:

G = 〈(1 2 3)(4 5 6)(7 8 9)(10 11 12)(14 15)(17 18)(20 21),

(2 3)(5 6)(8 9)(11 12)(13 14 15)(16 17 18)(19 20 21)〉.
Due to the manner in which the generators of G have been presented, applying
the sound and incomplete approach of Section 5.1 does not yield a disjoint product
decomposition. Using GAP, we find that G has seven non-trivial orbits:

O = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12},
{13, 14, 15}, {16, 17, 18}, {19, 20, 21}}
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and there are S(7, 2) = 63 partitions of these orbits. However, analysing these orbits
for dependency, we find that the orbits O1 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}
are all dependent, and O2 = {{13, 14, 15}, {16, 17, 18}, {19, 20, 21}} are all dependent.
There is only one partition of O which preserves these dependencies—the partition
{O1,O2}. It is straightforward to check that

G = GO1 • GO2

= 〈(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12), (1, 2)(4, 5)(7, 8)(10, 11)〉
• 〈(13, 14, 15)(16, 17, 18)(19, 20, 21), (13, 14)(16, 17)(19, 20)〉.

This is an example for which the CGT optimisation is very effective.
Now consider, for any even n > 2, the following group:

Gn = 〈(1 2)(3 4),

(3 4)(5 6),

...

(n − 5 n − 4)(n − 3 n − 2),

(n − 3 n − 2)(n − 1 n)〉.
i.e., Gn = 〈{(2i − 1 2i)(2i + 1 2i + 2) : 1 ≤ i < n/2}〉.

It is clear that Gn has n/2 non-trivial orbits: O = {{1, 2}, {3, 4}, {5, 6}, . . . , {n −
1, n}}. It is not so obvious, but easy to check, that no two orbits are dependent.
Hence the CGT optimisation does not reduce the number of partitions of O which
must be checked to determine whether Gn decomposes as a disjoint product. The
number of partitions is S( n

2 , 2) = 2n/2 − 1, and all of these must be checked, since Gn

does not decompose as a non-trivial disjoint product for any n (this can be proved
by induction). Note that this is a contrived example: we have not encountered this
group in association with a model checking problem.

An open problem in this area is to determine whether there is a polynomial time
algorithm for finding the finest disjoint product decomposition of an arbitrary group
G. A possible approach is to find a stronger notion of dependent orbits, with the
property that if C1, C2, . . . , Ch are the dependency classes of the orbits then G =
GC1 • GC2 • · · · • GCh .

This problem is of computational group theoretic interest. From a model checking
perspective, the sound and incomplete approach of Section 5.1 returns the finest
disjoint product decomposition of groups whose generators have been automatically
computed. The sound, complete approach, with our CGT optimisation, can effi-
ciently handle all the types of symmetry group which we have observed in connection
with model checking problems, regardless of the way their generators are presented.

6 Exploiting wreath products

Suppose that a symmetry group partitions the processes of a system into subsets such
that there is analogous symmetry within each subset, and symmetry between the
subsets. Then the group can be described as the wreath product of the group which
acts on the subsets, and the group which permutes the subsets (see Definition 11).
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Wreath products occur in model checking problems when systems are modelled
using a tree structure. Recall the group G3T introduced in Section 3.3. In Section 5,
we showed that G3T decomposes as a disjoint product H1 • H2. We now show that
the factor H1 of this product decomposes as a wreath product.

We have H1 ≤ Sym(X) where X = {1, 2, . . . , 9, 12, 13, 14}. Consider the following
partition {X1, X2, X3} of X, where we describe each Xi as an ordered set of elements
Xi = {xi,1, xi,2, . . . , xi,4} (as in Definition 11):

X1 = {1, 2, 3, 12}
X2 = {4, 5, 6, 13}
X3 = {7, 8, 9, 14}

Taking K = S3 and H = S3,3 let σ be the permutation representation correspond-
ing to the action of K on X and σ1, σ2 and σ3 those for H on X as in Definition 11.
Then:

σ(K) = 〈(1 4)(2 5)(3 6)(12 13), (4 7)(5 8)(6 9)(13 14)〉
σ1(H) = 〈(1 2), (2 3)〉
σ2(H) = 〈(4 5), (5 6)〉
σ3(H) = 〈(7 8), (8 9)〉

The group σ(K) permutes the partition {X1, X2, X3}, whereas each group σi(H)

permutes the set Xi. One can verify (e.g. using GAP) that H1 = {β α1 α2 α3 : β ∈
σ(K), α1 ∈ σ1(H), α2 ∈ σ2(H), α3 ∈ σ3(H)}, i.e., H1 = H � K.

Let G ≤ Sn act on a set X with partition X . Suppose that G has a non-
trivial wreath product decomposition of the form (H, K,X ), with associated
permutation representations σ, σ1, σ2, . . . , σd for the actions of K and H on
{1, 2, . . . , n} (where d = |X |). For a state s ∈ Ln it can be shown that min[s]G =
min[min[. . . min[min[s]σ1(H)]σ2(H) . . . ]σd(H)]σ(K) [6]. This means that the COP for G can
be solved by considering each subgroup σi(H) in turn, followed by the subgroup
σ(K). Even if we have to deal with these groups using enumeration, it is more
efficient to enumerate over the resulting d × |H| + |K| elements than all |H|d|K|
elements of G. Furthermore, it may be possible to deal with the groups σ(K)

and σi(H) (1 ≤ i ≤ d) efficiently using minimising sets or further disjoint/wreath
decompositions.

As with the similar result for disjoint products presented in Section 5, the result
for wreath products is only useful for automatic symmetry reduction if we can
automatically determine, before search, whether an arbitrary permutation group
is a wreath product. We present an algorithm to determine whether a group G
decomposes as a wreath product for the case when G is transitive (see Definition 7).
We then propose an extension of our approach to the case where G may not be
transitive.

3The group H can be thought of as the subgroup of Sym({1, 2, 3, 4}) which fixes the point 4, i.e.,
H = stabS4 (4) = S3.
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6.1 Wreath product decomposition for transitive groups

If G is a transitive permutation group then we can determine whether G has wreath
product structure by considering the block systems of G. We introduce some standard
definitions and results on block systems. See [22, 35] for details.

Definition 16 Let G ≤ Sym(X) and Y ⊆ X, where X is a non-empty set. Then Y is
a block for G iff, for all α ∈ G, α(Y) = Y or α(Y) ∩ Y = ∅.

Essentially a block is a subset of X which is either fixed by an element of G, or
moved completely by the element. The sets X, {x} (for any x ∈ X), and ∅ are always
blocks for G, and are called trivial blocks. Given a non-empty block Y, it can be
shown that the set {α(Y) : α ∈ G} is a partition of G, each set in this partition is a
block, and all the blocks have the same size. Such a partition is called a block system
for G, generated by Y. In general, rather than singling out a specific block, we say
that a partition X = {X1, X2, . . . , Xd} of X is a block system for G if each Xi is a
block for G, and the blocks are all images of each other under G. A non-trivial block
system is one for which the blocks are non-trivial.

Definition 17 Let {X1, X2, . . . , Xd} be a block system for G ≤ Sym(X). For 1 ≤ i ≤
d, the group (stabG(Xi))

Xi is called the block stabiliser for Xi.

This is the restriction of the group stabG(Xi) to the block Xi, and is analogous to
the restriction of a group to a union of orbits in Section 5.2. This restriction is well-
defined since Xi is clearly a union of orbits of stabG(Xi). It can be shown that for
any blocks Xi, X j, (stabG(Xi))

Xi and (stabG(X j))
X j are identical up to renaming of

the points on which they act. If the blocks have size m then, for all 1 ≤ i ≤ d, we can
identify group (stabG(Xi))

Xi with a group H ≤ Sm by renaming points in the obvious
way. We call H the block stabilizer for the system.

The block stabiliser for Xi shows the effect of G on the points contained in Xi. The
effect of G on the blocks, regarded as “black boxes”, is characterised by the block
permuter:

Definition 18 Let X = {X1, X2, . . . , Xd} be a block system for G where G ≤
Sym(X). For α ∈ G, define α(X) = {α(x) : x ∈ X} in the usual way. It is easy to
check that this is an action of G on X (see Definition 9). Let σ be the permutation
representation of this action so that σ(G) ≤ Sym(X ). We can identify Sym(X ) with
Sd by renaming Xi as i (1 ≤ i ≤ d). The group obtained by regarding σ(G) as a
subgroup of Sd is called the block permuter for X .

The following important theorem in wreath product theory (see, for example, [32]
for a proof) shows that if G is a transitive permutation group which admits a non-
trivial block system then G is contained in a wreath product. The theorem is followed
by two straightforward lemmas.
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Theorem 9 Let G ≤ Sym(X) be transitive and X a non-trivial block system for G. Let
H and K be the block stabiliser and block permuter for X respectively. Then H and
K are non-trivial and G is contained in the (non-trivial) wreath product of H and K
with associated partition X , i.e., G ≤ H � K.

Lemma 6 Let H � K be the wreath product of Theorem 9, with associated block system
X . Let σ1, σ2, . . . , σd be the actions of H on X described in Definition 11. Then
σi(H) = (stabG(Xi))

Xi , the stabiliser of block Xi (1 ≤ i ≤ d).

Conversely to Theorem 9, a wreath product naturally exhibits a block system:

Lemma 7 Let G ≤ Sym(X) and suppose G is a wreath product H � K with associated
partition X = {X1, X2, . . . , Xd}. Then X is a block system for G.

The next theorem is a direct consequence of Theorem 9, Lemma 7 and Theorem 3
(Section 3.2).

Theorem 10 Let G ≤ Sym(X) be transitive. Then G can be decomposed as a non-
trivial wreath product H � K, with associated partition X , iff X is a non-trivial block
system for G, K and H are the block permuter and block stabiliser for X respectively,
and |G| = |H||X ||K|.

The consequence of Theorem 10 is that our search for a non-trivial wreath
product decomposition of an arbitrary transitive permutation group G boils down
to searching the non-trivial block systems for G. Given a block system, we know
that G is contained in the wreath product associated with the block system, and can
determine whether G is this wreath product by checking the order of G. Algorithm
6.1 (the correctness of which follows from Theorem 10) can be used to find a
non-trivial wreath product decomposition for a transitive group G, if one exists.
Rather than returning a decomposition in the form (H, K,X ), the algorithm returns
the groups σ(K) and σi(H) (1 ≤ i ≤ d), which are all that we require to solve the
constructive orbit problem efficiently.

For each non-trivial block system X , the block permuter K and a single block
stabiliser (stabG(X1))

X1 are computed. Since (stabG(X1))
X1 is isomorphic to the block

stabiliser for X it is sufficient to compare |G| with |(stabG(X1))
X1 |d|K| to determine

(by Theorem 10) whether the current block system corresponds to a wreath product
decomposition. In the case where equality of orders holds, by Lemma 6 the groups
σi(H) can be computed as block stabilisers. The challenge is to compute σ , the
permutation representation of the action of K. We know that σ maps K to an
isomorphic subgroup of G, therefore σ must be a monomorphism (see Theorem 1,
Section 3.2). Furthermore, the restriction of σ(K) to act on the blocks, i.e., the group
θ(σ (K)), must be equal to K. Therefore σ can be computed by considering (in the
worst case) all monomorphisms from K to G.

6.1.1 Efficiency

We can compute θ , K and an individual block system for G, and determine the
orders of K and (stabG(X1)

X1) in polynomial time using algorithms presented in
[22]. Although (as discussed in Section 3.2) polynomial time algorithms are not
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Algorithm 6 Computing a wreath product decomposition for a transitive permutation
group G

for all non-trivial block systems X = {X1, X2, . . . , Xd} for G do
K := block permuter for X
θ : G → K := permutation representation of action of G on X
σ1(H) := (stabG(X1))

X1

if |G| = |σ1(H)|d|K| then
for all i ∈ {2, . . . , d} do

σi(H) := (stabG(Xi))
Xi

end for
for all monomorphisms σ : K → G do

if K = θ(σ (K)) then
return σ(K), σ1(H), . . . , σd(H)

end if
end for
{Unreachable: there will always be a suitable monomorphism}

end if
end for
return fail

available for computation of arbitrary setwise stabilisers, a block stabiliser stabG(Xi)

can be computed in polynomial time [22], after which computing the restricted group
(stabG(Xi))

Xi is straightforward. The potential bottlenecks of Algorithm 6.1 are: the
number of block systems which may need to be considered, and the computation of
all monomorphisms from K to G.

It can be shown (by counting chains of blocks) that an upper bound for the number
of distinct block systems for a permutation group G is nlog2 n, where n is the degree of
G (personal communication, P. J. Cameron 2007). This upper bound is not too large
for the sizes of n which occur in model checking problems.

Computing all monomorphisms from K to G can be achieved via the GAP

function IsomorphicSubgroups(G,K). The complexity of this algorithm is not
documented, but it is not a polynomial-time algorithm (personal communication, S.
Linton 2007). An alternative algorithm for computing σ(K) is presented as part of
a constructive proof [28, Lemma 2.4], though this algorithm does not appear to be
more efficient than the algorithm provided by GAP. Note that it is only necessary to
compute the monomorphism σ if G does indeed decompose as a wreath product.
The benefits which can result from having a wreath product decomposition for G
may therefore justify this computation.

We have observed that in many practical examples σ is the mapping defined as
follows: σ(β)(xi, j) = xβ(i), j, where each block Xi has the form {xi,1, xi,2, . . . , xi,m} with
xi, j < xi,k whenever j < k. Our implementation of Algorithm 6.1 tries this simple pre-
test for σ before resorting to monomorphism computation.

6.2 Extending the approach to intransitive permutation groups

The results of Section 6.1 provide a solution to the wreath product decomposition
problem for transitive groups. However, wreath product groups which occur in model
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checking problems are not necessarily transitive. Consider the subgroup H1 of G3T

(see Sections 5 and 3.3 respectively). H1 has two orbits, {1, 2, . . . , 9} and {12, 13, 14}.
More generally, the symmetry group associated with a rooted tree is an intransitive
wreath product [26]: nodes at differing depths in the tree, or nodes at the same depth
which occur in non-isomorphic sub-trees, must be in separate orbits. Unfortunately,
there is very little literature on intransitive wreath products. Even works dedicated
to wreath products either assume transitivity throughout [28], or only briefly discuss
the intransitive case [32].

Transitivity is imposed in Section 6.1 due to Theorem 9. The need for transitivity
in the proof of Theorem 9 (see [32]) is unclear: it appears that transitivity is required
simply because the theorem appears in the context of imprimitive permutation
groups, which are transitive by definition [35]. We conjecture that Theorem 9 holds
when the transitivity condition is omitted.

Assuming this conjecture, there is a further problem: techniques for computing
block systems are restricted to transitive groups [22]. We use an algorithm to work
around this problem as follows: if G has f > 1 distinct orbits then for each orbit 	

we find a (possibly trivial) block system for G	. We then attempt to construct a block
for G which is the union of f blocks, one from each orbit.

Formally, assume that the orbits of G are 	1, 	2, . . . , 	 f , and assume without loss
of generality that these orbits are non-trivial. For each 	i, let blocks(	i) be the set of
all block systems for G	i , excluding {	i} but including the trivial system {{x} : x ∈ 	i}.
For each X1 ∈ blocks(	1), consider every set of block systems {X1,X2, . . . ,X f } such
that Xi ∈ blocks(	i), |Xi| = |X1| for all i > 1, and at least one Xi is non-trivial. We
attempt to construct a block from the Xi as follows: Set B = X1 where X1 is any block
in X1. Find a block X2 ∈ X2 such that B ∪ X2 is a block for G, and set B = X1 ∪ X2.
Continue this process until no suitable Xi exists, or B = X1 ∪ X2 ∪ · · · ∪ X f is a block
for G (Xi ∈ Xi, 1 ≤ i ≤ f ). In the latter case, store the block system generated by B.
Algorithm 6.1 can be applied to the set of block systems for G obtained via this
process, to obtain a wreath product decomposition.

The symmetry reduction package TopSPIN (see [12] and Section 8) uses the
techniques described above to compute wreath product decompositions for arbitrary
groups. If our conjecture above proves to be incorrect, it is possible that our imple-
mentation may compute an erroneous wreath product decomposition for a group G.
The worst case scenario then is that representative computation for G might result in
multiple orbit representatives. This compromises the optimality, but not the sound-
ness, of symmetry reduction: the groups σ(K), σ1(H), σ2(H), . . . , σd(H) returned by
Algorithm 6.1 are all subgroups of G. Even if the wreath product decomposition
is erroneous, by setting min[s]G = min[min[. . . min[min [s]σ1(H)]σ2(H) . . . ]σd(H)]σ(K) we
still have min[s]G ∈ [s]G, which is sufficient to guarantee soundness of symmetry
reduction.

7 Choosing a strategy for G

The strategies which we have presented for minimising a state with respect to basic
and composite groups can be combined to yield a symmetry reduction strategy for
an arbitrary group G by classifying the group using a top-down recursive algorithm.

The algorithm starts by searching for a minimising set for G of the form prescribed
in Theorem 6, so that min[s]G can be computed as described in Section 4.3. If no
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such minimising set can be found, a decomposition of G as a disjoint/wreath product
is sought. In this case the algorithm is applied recursively to obtain a minimisation
strategy for each factor of the product so that min[s]G can be computed using these
strategies as described in Sections 5 and 6 respectively. If G remains unclassified and
|G| is sufficiently small, enumeration is used (Section 4.2), otherwise local search is
selected (Section 4.4).

8 Symmetry reductions in practice

8.1 Extending the model of computation

When processes do not hold references to one another, the simple model of
computation and the action of a permutation on a state (described in Sections 3.1
and 3.3 respectively) are sufficient to reason about concurrent systems, since it is
always possible to represent the local state of a process using an integer. However,
if processes can hold references to one another then any permutation that moves
process i will also affect the local state of any processes which refer to i.

Sophisticated specification languages such as Promela [23] include special data-
types to represent process and channel identifiers. An extended model of com-
putation for such languages is presented in [14]. Neither the results presented in
[6] on solving the COP for groups which decompose as disjoint/wreath products,
or our results on minimising sets for fully symmetric groups (see Section 4.3)
hold in general for this extended model of computation: for Promela specifications
where local variables refer to process and channel identifiers, the efficient symmetry
reduction strategies presented above are not always exact—in some cases they yield
an approximate implementation of the min function. As with the approximate local
search strategy proposed in Section 4.4, this does not compromise the safety of
symmetry reduced model checking. Indeed, for large models, there are many states
for which the strategies do give exact representatives in an extended model of
computation as the experimental results in Section 8.2 show. We present a solution
to the problem of extending symmetry reduction techniques to a realistic model of
computation in [14].

8.2 Experimental results

We have implemented the strategies discussed in Sections 4–6 as TopSPIN [12], a
fully automatic symmetry reduction package for the SPIN model checker. We present
experimental results applying our symmetry reduction techniques to a variety of
Promela examples.

8.2.1 Specification families

We consider four specification families which exhibit full symmetry groups. Three
are mutual exclusion protocols: a simple mutual exclusion protocol based on the
Kripke structure of Fig. 1; a specification of Peterson’s n-process mutual exclusion
protocol [34] used for experiments with the SymmSpin symmetry reduction package
[2], and a more realistic, less atomic version of this specification. The other family of
fully symmetric specifications model an email system, adapted from [4], consisting of
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n client processes, which communicate by sending messages to a mailer process via
a network channel component. These four specification families all exhibit groups
which are isomorphic to Sn, where n is the configuration size. For the mutual
exclusion examples, the group actually is Sn—there is full symmetry between the
competing processes, and these are the only system components. The symmetry
group associated with an email specification consists of all permutations of the n
client processes which simultaneously permute their corresponding input channels.
For configurations in each of these families, TopSPIN automatically classifies the
associated symmetry group, and computes a minimising set.

To illustrate disjoint product groups, we consider specifications of a resource
allocator, where prioritised client processes compete for exclusive access to a shared
resource. A resource allocator configuration with k priority levels in which there
are ai clients with priority level i (1 ≤ i ≤ k) is denoted a1-a2-. . . -ak. The symmetry
group associated with such a specification is a disjoint product H1 • H2 • · · · • Hk,
where Hi

∼= Sai for each 1 ≤ i ≤ k. The group Hi consists of all permutations of client
processes with priority level ai which simultaneously permute the client communica-
tion channels. TopSPIN automatically computes this disjoint product decomposition
(using the approach presented in Section 5.1), and identifies a minimising set for each
factor of the product.

Wreath product groups are associated with configurations of a three-tiered archi-
tecture specification, introduced in [15], which exhibit network topologies similar to
the communication graph of Fig. 3. We consider three-tiered architecture specifica-
tions which are balanced—that is, there are m server processes, and a set of n client
processes connected to each server process (for some m, n > 0). Such a configuration
is denoted n-n- . . . -n︸ ︷︷ ︸

m

, and the associated symmetry group is a wreath product H � K,

where H ∼= Sn and K ∼= Sm. The wreath product contains m copies of H, each of
which permutes client processes and channels within one of the sets. The group K
permutes the m server processes, and an element of K which maps server i to server
j also maps the set of clients connected to server i to the set of clients connected to
server j. It is clear that these wreath product groups are intransitive. TopSPIN uses the
techniques of Section 6 to automatically compute wreath product decompositions,
and then computes distinct minimising sets for each copy of H and a minimising set
for K.

To illustrate the case where the symmetry group associated with a specification
cannot be handled using a minimising set, or via a disjoint/wreath product de-
composition, we use specifications of a hypercube system, also introduced in [15].
An n-dimensional hypercube specification consists of 2n node processes which pass
messages using a simple routing algorithm. The hypercube examples exhibit fairly
large groups, for which TopSPIN selects the local search strategy.

8.2.2 Discussion

Figure 4 shows experimental results for various configurations of the above families.
For each configuration, we give the number of model states without symmetry
reduction (states orig), with memory optimal symmetry reduction using the enumer-
ation strategy (states red), and with symmetry reduction using the strategy chosen
by TopSPIN (states fast). When the number of model states is the same using the
enumeration and fast strategies, ‘=’ appears in the states fast column, indicating that
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Config states time states time time states time
orig orig red basic enum fast fast

simple mutex
5 113 0.09 12 0.10 0.10 = 0.06

10 6145 0.11 22 - 1088 = 0.05
15 278529 5 - - - 32 0.08
20 1.2  107 561 - - - 42 0.12

Peterson
3 2636 0.35 494 0.08 0.02 = 0.35
4 60577 0.60 3106 0.04 0.20 = 0.41
5 1.6  106 11 17321 16 7 = 1
6 4.5 ×

×

×

×
×

×

×
×

×

×

×

×

×

×

×

×

107 2666 89850 722 304 = 7
7 - - 442481 30458 13885 = 56
8 - - - - - 2.1  106 412
9 - - - - - 9.6  106 3034

Peterson without atomicity
2 291 0.36 148 0.34 0.34 = 0.34
3 75356 1 12706 0.83 0.68 = 0.62
4 - - 3.6332  106 3426 972 3.6335  106 427

resource allocator
3-3 16768 0.2 1501 0.9 0.3 = 0.1
4-4 199018 2 3826 57 19 = 0.4
5-5 2.2  106 42 8212 4358 1234 = 2

4-4-4 2.4  107 1587 84377 - 12029 = 17
5-5-5 - - - - - 254091 115

three-tiered architecture
3-3 103105 5 2656 7 4 = 2
4-4 1.1 106 37 5012 276 108 = 2

3-3-3 2.5 107 4156 50396 4228 1689 = 19
4-4-4 - - - - - 130348 104

email
3 23256 0.1 3902 0.9 0.8 3908 0.2
4 852641 9 36255 13 6 38560 2
5 3.04 107 3576 265315 679 253 315323 40
6 - - 1.7  106 - 13523 2.3  106 576
7 - - - - - 1.5  107 6573

hypercube
3d 13181 0.3 308 0.6 0.3 468 0.2
4d 380537 18 1240 58 34 6986 13
5d 9.6 10 6 2965 3907 7442 5241 90442 946

Fig. 4 Experimental results for symmetry reduction with TopSPIN

the value for this column matches the value in the states red column. The use of state
compression (a state-space reduction technique provided by SPIN [23]) is indicated
by the number of states in italics. This option was selected for three configurations
to allow verification without symmetry reduction more efficiently, with an associated
time overhead.

Verification times (in seconds) are given for the enumeration strategy with and
without the group-theoretic optimisations of Section 4.2 (time basic and time enum
respectively), for the fast (time fast) option, as well as for the case where symmetry
reduction is not applied (time orig). Verification attempts which exceed available
resources, or do not terminate within 15 hours, are indicated by ‘-’. All experiments
are performed on a PC with a 2.4GHz Intel Xeon processor, 3Gb of available main
memory, running SPIN version 4.2.3.
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Figure 5 provides details of the symmetry group associated with each specification
configuration. The “|G|” column shows the size of each group. For groups which
TopSPIN was able to automatically classify, the “G ∼=” column describes the structure
of the group as a disjoint/wreath product of symmetric groups (to which the group is
isomorphic). The time, in seconds, taken to run the classification algorithm for each
configuration is also presented (classify time). This is less than a second in all cases.

For all specification families except the hypercube family, the application of
symmetry reduction allows the verification of larger configurations—even using state
compression, memory requirements were quickly exceeded when symmetry reduc-
tion was not applied. In all cases, the enumeration strategy without optimisations is
significantly slower than the optimised enumeration strategy, which is in turn slower
than the strategy chosen by TopSPIN (see columns time basic, time enum and time
fast of Fig. 4 respectively).

Processes in the simple mutex configurations do not hold references to one
another, so the fast strategy provides exact symmetry reduction, as expected. The
difference in verification time between the fast and enumeration strategies (columns

Fig. 5 Details of symmetry
groups associated with
specifications, and time taken
to classify each group

Config jGj G  D classify time

simple mutex
5 120 S5 0.19

10 3.6  106 S10 0.14
15 1.3  1012 S15 0.17
20 2.4  1018 S20 0.23

Peterson
3 6 S3 0.13
4 24 S4 0.13
5 120 S5 0.13
6 720 S6 0.13
7 5040 S7 0.13
8 40320 S8 0.14
9 362880 S9 0.14

Peterson without atomicity
2 2 S2 0.33
3 6 S3 0.14
4 24 S4 0.13

resource allocator
3-3 36 S3  S3 0.17
4-4 576 S4  S4 0.19
5-5 14400 S5  S5 0.16

4-4-4 13824 S4  S4  S4 0.19
5-5-5 1728000 S5  S5  S5 0.17

three-tiered architecture
3-3 72 S3 S2 0.41
4-4 1152 S4 S2 0.44

3-3-3 1296 S3 S3 0.41
4-4-4 82944 S4 S3 0.51

email
3 6 S3 0.16
4 24 S4 0.16
5 120 S5 0.13
6 720 S6 0.14
7 5040 S7 0.14

hypercube
3d 48 - 0.07
4d 384 - 0.07
5d 3840 - 0.10

×
×
×

�

�

�

� �

� �
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time enum and time fast of Fig. 4) is especially marked for the simple mutex 10
configuration, where the symmetry group is much larger than even the unreduced
state-space. Configurations in all the other families consist of processes which do
hold references to one another, in which case the fast strategy does not promise
exact symmetry reduction even when the associated symmetry group can be classified
appropriately (see Section 8.1). However, for the Peterson, resource allocator and
three-tiered architecture specifications, the occurrence of ‘=’ in the states fast column
of Fig. 4 indicates that exact symmetry reduction is obtained using the exact strategy
(at least for the configurations to which we could apply the enumeration strategy).

Exact symmetry reduction using the fast strategy is not obtained for the email
configurations, or for the Peterson without atomicity 4 configuration. Nevertheless, a
large factor of reduction is gained by exploiting symmetry in this way, and verification
is fast. The difference in model sizes using the fast and enumeration strategies for the
Peterson without atomicity configuration is small.

As discussed above, TopSPIN uses local search when the fast strategy is applied
to the hypercube specifications. The difference between the states red and states fast
columns of Fig. 4 for these specifications shows that local search requires storage
of more states than the enumeration strategy, but considerably fewer states than
without symmetry reduction (cf. the states orig column). Comparing the time orig,
time enum and time fast columns we see that symmetry reduced verification using
the local search strategy is the fastest method for the hypercube specifications.

9 Conclusions and future work

We have presented a number of theoretical results and strategies for solving the
constructive orbit problem (COP) for model checking. We have identified optimi-
sations to the basic approach of solving the COP by symmetry group enumeration;
a general local search strategy which can be used to approximate the COP, and
a wide class of symmetric groups for which the COP can be solved in polynomial
time. One of the main contributions of this paper has been to provide techniques to
automatically determine whether an arbitrary group decomposes as a disjoint/wreath
product of subgroups. Given a product decomposition for a group G, the COP can be
solved efficiently for G by applying solutions for each factor of the product in turn.
Our techniques for automatically detecting product decompositions allow efficient
symmetry reduction techniques to be fully automated. Experimental results using the
TopSPIN symmetry reduction package show that our symmetry reduction techniques
are effective in practice.

Future work includes further analysis of the complexity of computing the finest
disjoint product decomposition for an arbitrary permutation group and determining
the exact complexity of the wreath product decomposition problem. Since the
methods used by TopSPIN to tackle these problems work well in practice, this open
problem is of more interest to the computational group theory community than
to the model checking community. We also intend to investigate the use of CGT
calculations during search for optimised equivalence class enumeration as discussed
in Section 4.2.

From a model checking perspective, an important area for future work involves
extending TopSPIN to support the verification of temporal logic (LTL) properties—
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currently the tool is restricted to checking basic safety properties expressed via
assertions in a Promela specification.

As discussed in Section 2, our efficient methods for solving the COP in polynomial
time for specific types of group contrasts with a generic, non-polynomial approach
presented in [30]. In future work we plan to carry out an experimental comparison
of these distinct approaches.
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