
Vector Symmetry Reduction

Alastair F. Donaldson1

Codeplay Software
45 York Place

Edinburgh, Scotland.

Abstract

Symmetry reduction is an effective state-space reduction technique for model checking, and works by re-
stricting search to equivalence class representatives with respect to a group of symmetries for a model. A
major problem with symmetry reduction techniques is the time taken to compute the representative of a
state, which can be prohibitive. In efficient implementations of symmetry reduction, a symmetry is applied
to a state as a sequence of operations which swap component identities. We show that vector processing
technology, common to modern computers, can be used to implement a vectorised swap operation, which
can be incorporated into the representative computation algorithm to accelerate symmetry reduction. Via
a worked example, we present details of this vector symmetry reduction method. We have implemented
our techniques in the TopSPIN symmetry reduction package for the SPIN model checker, and present experi-
mental results showing the speedups obtained via vectorisation for two case-studies running on a PowerPC
vector processor.
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1 Introduction

Verification of a concurrent system by model checking [5,17] involves exhaustively
searching the state-space associated with a finite state model of the system, checking
whether a given temporal property holds at each state. For models of realistic
systems, the size of the state-space associated with a model grows exponentially
with the number of system components (where a component is e.g. a process or
channel). This exponential growth means that the state-space for a system with
many components may be prohibitively large, rendering straightforward exhaustive
search impossible within practical limits.

Symmetry reduction techniques (see e.g. [4,10,19] or [21] for a survey) aim to
alleviate the state-space explosion problem by exploiting replication in a concurrent
system. If a system contains many identical processes connected in a regular topol-
ogy (e.g. a star or clique) then a system state s belongs to a class of states which are
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all identical to s, up to rearrangement of process identifiers by permutations which
preserve the system topology. When checking a system property which does not re-
fer explicitly to an individual process (e.g. deadlock freedom) it is sufficient to check
a single representative state from each such symmetric equivalence class (or, alter-
natively, a small set of representatives from each class [3,4]). If system symmetries
can be identified before search (automatically [6] or via user-supplied information
[19]) then a significant reduction in memory requirements for verification can be
realised [1,8,23].

The main drawback to the use of symmetry reduction is the prohibitive time
which may be required to compute equivalence class representatives. A common
approach to this problem involves taking the representative for a state s to be the
smallest state in the equivalence class for s, under a suitable ordering of states [1,8].
In this case, the process of representative computation involves repeatedly applying
symmetries from a group G to the state s. In efficient implementations of symmetry
reduction, a symmetry is applied to a state as a sequence of operations which swap
component identities. As a result, the most frequently executed operation during
representative computation is that of applying a component identifier swap (i j) to
a state s. This operation can be broken down into two steps:

(i) The local state for component i at s is exchanged with the local state for
component j at s

(ii) For each component identifier variable v, if v = i at s then v is set to j; if v = j

at s then v is set to i; otherwise v is left unchanged.

For a concurrent system with many references between components, the swap
operation is dominated by step (ii) above.

We present an approach to speeding up symmetry reduction by parallelising
step (ii), the swapping of component identifiers. We develop an efficient vector swap
procedure, and show that by organising a state so that component identifiers are
stored contiguously it is possible to swap process identifiers in parallel using vector
instructions common to modern processor architectures. We have implemented this
technique in TopSPIN [7], a symmetry reduction package for the SPIN model checker
[17], and present experimental results showing the speedups obtained by vectorising
symmetry reduction for two case-studies running on the Cell Broadband Engine
processor [16].

We introduce a running example and show how states for this example are
represented by the explicit-state model checker SPIN (§2). Using this example, we
describe the process of symmetry reduction by state minimisation (§3). We then
present our vector swap procedure, and show how the state minimisation process
can be adapted to take advantage of vectorisation (§4). Using two case-studies,
we demonstrate the effectiveness of a SPIN-based implementation of our techniques
(§5). The paper concludes (§7) after a discussion of related work (§6). We assume
basic knowledge of the C programming language [20] throughout.

A.F. Donaldson / Electronic Notes in Theoretical Computer Science 250 (2009) 3–184



2 State Representation for Explicit State Model Check-
ing

For illustration throughout the paper, we introduce a simple running example. We
use this example to present a possible representation of states in an explicit-state
model checker, as well as a representation of states suitable for formal reasoning.

2.1 Example: message passing system

Consider a simple concurrent system comprised of eight Client processes which
route messages to one another in a peer-to-peer fashion. We refer to this example
as the message passing system. The state of each client in the message passing
system consists of an integer program counter together with two variables, sender
and receiver, which holds process identifiers relevant to the message which a given
client is currently routing.

The following listing shows skeleton Promela code for the message passing sys-
tem. We do not specify the behaviour of a Client process: for our purposes it
is sufficient to assume that clients are identical up to re-arrangement of process
identifiers.

proctype Client () {

// Program counter variable is implicit
pid sender;
pid receiver;

// Behaviour
}

init {
atomic {

run Client (); run Client (); run Client (); run Client ();
run Client (); run Client (); run Client (); run Client ();

}
}

Note that in Promela each running process has an implicit program counter
variable, recording the current point of execution for the process in the body of its
associated proctype.

2.2 SPIN state representation for the message passing system

The following declarations illustrate the representation used by the SPIN model
checker to store states for the message passing system: 2

// The number of processes
#define N 8

typedef unsigned char uchar;

typedef struct Client_s {
uchar program_counter; // implicit in the specification

2 In practice, the true SPIN representation is somewhat more complex, allowing for the possibility of a
dynamically changing pool of processes, and including several additional internal variables. We omit such
details, which are not relevant to the presentation of our results.
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uchar sender; // id variable
uchar receiver; // id variable

} Client;

typedef struct State_s {
Client clients[N];

} State;

The state of a Client consists of three variables, and a state is represented by
an array of N = 8 clients.

2.3 Reasoning about states formally

We are concerned with symmetry reduction in the general setting, where processes
in a concurrent system may hold references to one another via local variables. We
present some definitions (adapted from [9]) for formally reasoning about states in
this model of computation.

Let I = {1, 2, . . . , n} be a set of component identifiers. The local state of a
component is comprised of two parts, a control state and a reference state.

The control state of a component is determined by the values of all local variables
of that component which are not references to other components, e.g. the program
counter variable in the message passing system. Without loss of generality we can
represent a local control state abstractly as an integer in the set Lc = {0, 1, 2, . . . , k}
for some k ≥ 0.

The reference state of a component is determined by the values of all local
variables which are references to other components, for example the sender and
receiver variables in the message passing system. Thus a reference state is a tuple
in the set Lr = (I ∪{0})m for some m ≥ 0. Here m is the number of references held
by a component, and 0 is used as a default value. For the message passing system,
m = 2 and e.g. sender and receiver can be set to 0 when a Client process has no
message to forward.

A global state s ∈ (Lc × Lr)n has the form:

s = ((l1, (r1,1, r1,2, . . . , r1,m)), (l2, (r2,1, r2,2, . . . , r2,m)), . . . , (ln, (rn,1, rn,2, . . . , rn,m))),

where li ∈ Lc represents the control state of component i, and ri,j ∈ I ∪ {0} is the
value of the jth reference variable of component i (i ∈ I, 1 ≤ j ≤ m).

Assuming that k ≥ 24, a potential state t for the message passing example is as
follows:

t = ( (12, (1, 2)), (14, (2, 3)), (20, (1, 4)), (24, (2, 5)),
(20, (0, 0)), (10, (6, 7)), (10, (7, 6)), (12, (2, 5)) ).

At state t, the program counter for Client 1 is 12, and the values of sender and
receiver for Client 1 are 1 and 2 respectively. The sender and receiver variables for
Client 5 are both set to the default value 0.

In the context of Promela and SPIN, a component is a process or a channel.
The reference state for a process component consists of all variables of the process
which have type pid or chan; the control state for a process is derived from all other
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variables for the process. The reference state for a channel component consists of
the fields of all messages on the channel which have type pid or chan; the channel
control state is derived from the remaining message fields.

3 Symmetry Reduction for Explicit State Model Check-
ing

We use the message passing system to provide a practical overview of symmetry
reduction for explicit-state model checking, concentrating on a possible symmetry
reduction implementation for the SPIN model checker. See [21] for a survey of
symmetry reduction techniques.

3.1 Automorphisms and quotient models

For a system comprised of n components, let s ∈ (Lc × Lr)n be as in §2.3, and
α ∈ Sn, where Sn is the group of all permutations of the set {1, 2, . . . , n}. We define
an action for α on s which yields another state α(s) ∈ (Lc × Lr)n. The application
of α to s can be considered as a two-stage process. For each i, first the local state of
component i is replaced by the local state of component α−1(i). Then α is applied
to each reference variable of component i (with α(0) = 0). Thus:

α(s) = ( lα−1(1), (α(rα−1(1),1), α(rα−1(1),2), . . . , α(rα−1(1),m)),
lα−1(2), (α(rα−1(2),1), α(rα−1(2),2), . . . , α(rα−1(2),m)), . . . ,
lα−1(n), (α(rα−1(n),1), α(rα−1(n),2), . . . , α(rα−1(n),m)) ).

where rα−1(i),j denotes the j-th reference held by component α−1(i). For example,
let t be the state for the message passing system as in §2.3, and let α = (1 2 3).
Then

α(t) = ( (20, (2, 4)), (12, (2, 3)), (14, (3, 1)), (24, (3, 5)),
(20, (0, 0)), (10, (6, 7)), (10, (7, 6)), (12, (3, 5)) ).

Let M = (S, R) be the model associated with a concurrent system comprised of
n components, where S ⊆ (Lc × Lr)n is a set of states and R ⊆ S × S a transition
relation on S. We say that α ∈ Sn is an automorphism of M if, for each (s, t) ∈ R,
(α(s), α(t)) ∈ R also. It can be shown that the set of all automorphisms of M forms
a group, denoted Aut(M).

In §2.1 we assumed that all Client processes in the message passing example
are identical up to re-arrangement of process identifiers. In this scenario, we have
Aut(M) = Sn, i.e. there is full symmetry between Client processes.

Let G be a subgroup of Aut(M) (written G ≤ Aut(M)). Then G induces an
equivalence relation on S, where the equivalence class or orbit of s ∈ S is the set
[s]G = {α(s) : α ∈ G}. If rep is a function which maps every state to a unique
representative from its equivalence class, then the quotient Kripke structure of M
by G can be defined as follows: MG = (SG, RG) where SG = {rep(s) : s ∈ S},
RG = {(rep(s), rep(t)) : (s, t) ∈ R}. In general MG is a smaller structure than
M, but MG and M are equivalent in the sense that they satisfy the same set of
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logic properties which are invariant under the group G (that is, properties which
are “symmetric” with respect to G). For a proof of the following theorem, together
with details of the temporal logic CTL∗, see [5].

Theorem 3.1 Let M be a Kripke structure, G a subgroup of Aut(M) and φ a
CTL∗ formula. If φ is invariant under G then

M, s |= φ iff MG, rep(s) |= φ.

In practice, Theorem 3.1 does not require the function rep to return a unique
representative from [s]G, and holds for any rep such that rep(s) ∈ [s]G. An im-
plementation of rep which yields unique representatives results in the maximum
possible compression by exploiting symmetry. However, an implementation of rep
which results in multiple representatives per orbit [3,4] may result in faster symme-
try reduction while maintaining a reasonable state-space reduction.

3.2 Symmetry reduction by state minimisation

Given a symmetry group G, a practical approach to symmetry reduction involves
choosing a subset X of G and taking rep(s) to be the minimal image of s under
X, with respect to a suitable total ordering on states. That is, given an ordering
�, rep(s) = min�{α(s) : s ∈ X}. The approach is formalised as Algorithm 1. To
obtain full symmetry reduction we can take X = G. If G is large then this approach
may not be feasible, and setting X to a suitable proper subset of G may result in a
reasonable reduction in states with an acceptable overhead.

More sophisticated techniques for computing rep(s) have been developed [1,8,9,13].
These techniques involve minimising states with respect to suitably chosen subsets
of G. We present our vectorisation techniques in terms of the basic approach to
symmetry reduction, but our methods can be readily applied in more sophisticated
settings.

Algorithm 1 Minimising state original with respect to a subset X of a symmetry
group.

procedure minimise(original , X) is
smallest := original
for each α ∈ X do

temp := apply(α, original)
if temp ≺ smallest then

temp := smallest
end if

end for
return smallest

end procedure

Algorithm 1 requires a function apply(α, s) which applies permutation α to state
s. Any permutation α ∈ Sn can be represented as a product of at most n −
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1 transpositions [15]. Given such a representation for α, the state α(s) can be
efficiently computed by applying α to s one transposition at a time [8]. This is
illustrated by Algorithm 2.

Algorithm 2 Applying permutation α to state s via incremental transpositions.
procedure apply(α, s) is

result := s

let α = (ik jk)(ik−1 jk−1) . . . (i2 j2)(i1 j1)
for d in [1 . . . k] do

result := (id jd)result
end for
return result

end procedure

It is clear from Algorithms 1 and 2 that the most frequently executed operation
during state minimisation is that of applying a transposition (i j) to a state. In §4
we show that vectorisation techniques can be used to speed up this operation.

3.3 State minimisation for the message passing system

We now show how state minimisation can be implemented for the message passing
system. Our presentation is based on the approach used by the TopSPIN symmetry
reduction tool [7], and extends the state representation code given in §2.2.

A permutation can be represented as a product of transpositions by the following
data structure:

typedef struct Permutation_s {
int numSwaps; // integer in range 0..N-1
uchar from[N-1];
uchar to[N-1];

} Permutation;

The numSwaps field records how many transpositions comprise a permutation
α. If the k-th transposition for α is (i j) then we have from[k]= i and to[k]= j.
Setting N − 1 as the maximum length for from and to (where N = 8 is the number
of Client processes) is sufficient since, as discussed in §3.2, any permutation α ∈ SN

can be represented as a product of at most N − 1 transpositions.
Given this representation for permutations, the following code can be used to

minimise a state:

void minimise(const State* original , State* smallest ,
Permutation* perms , int numPerms)

{
State temp;

memcpy(smallest , original , sizeof(State ));

for(int i = 0; i < numPerms; i++) {

memcpy (&temp , original , sizeof(State ));

for(int j = 0; j < perms[i]. numSwaps; j++)
applySwapToState (&temp , perms[i]. from[j], perms[i].to[j]);
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if(memcmp (&temp , smallest , sizeof(State)) < 0)
memcpy(smallest , &temp , sizeof(State ));

}
}

Listing 1: State minimisation.

Listing 1 is based on Algorithm 1, with the following differences: instead of re-
turning the minimal state smallest, Listing 1 assigns to this state via a pointer pa-
rameter; the call to apply in Algorithm 1 is replaced with a call to applySwapToState
(code for which is given below); the ≺ operator is replaced with a call to the stan-
dard C function memcmp, which provides a suitable total ordering by comparing
regions of memory byte-by-byte. Note that Listing 1 does not refer to details of the
message passing system, and is therefore a general routine for state minimisation.

Implementation of the applySwapToState procedure does require specific details
of the message passing system:

void applySwapToState(State* s, const int a, const int b) {

Client tempClient;

for(int i = 0; i < N; i++) {

uchar id;

id = s->clients[i]. sender;
s->clients[i]. sender = ( id == a ? b : (id == b ? a : id ) );

id = s->clients[i]. receiver;
s->clients[i]. receiver = ( id == a ? b : (id == b ? a : id ) );

}

tempClient = s->clients[a];
s->clients[a] = s->clients[b];
s->clients[b] = tempClient;

}

Listing 2: Applying a process id transposition to a state of the message passing
system.

This procedure considers each Client process in turn. If the sender variable for
a Client is set to a then the value of this variable is switched to b, and vice-versa.
The receiver variable is treated similarly. The final three lines of the procedure
use a temporary Client variable to swap the local states of Client processes a and b.
This is in accordance with the application of permutations to states defined formally
in §3.1.

4 Vectorised State Minimisation

Recall from §2.3 that the local state of a component is comprised of a reference
state and a control state. The for loop of Listing 2 has the effect of applying the
transposition (a b) to each entry in the reference state for every component. Since
there are 8 Client processes in the message passing system, this involves applying
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16 swap operations.
In general, for a system comprised of n components where the reference state

for each component has size m, m × n such swap operations are required to apply
a transposition to a state. For examples where m and n are reasonably large, these
swap operations dominate the state minimisation process.

We show that by reorganising the structure of a state we can use vector opera-
tions to parallelise the swapping of process identifiers.

4.1 A vector swap procedure

We develop a vector swap procedure based on data types and operations available
in the AltiVec instruction set [14]. AltiVec units are common to systems based
on the PowerPC architecture, in particular the Power Processing Unit of the Cell
Broadband Engine Architecture [16].

We make uses of the following vector data types:

• vector unsigned char – a vector of 16 unsigned characters, abbreviated to vector uchar

• vector bool – a vector of 16 booleans,

and the following operations on these types (where, for a vector v, vi denotes the
i-th element of v):

• vec splats(x) – takes uchar x, returns vector uchar with x in every position
• vec cmpeq(u, v) – takes vector uchars u and v, returns vector bool w such that

wi = true ⇔ ui = vi

• vec sel(b, u, v) – takes vector bool b and vector uchars u, v, returns vector uchar w

such that wi = ui if bi is true, and wi = vi otherwise.

We use an example to show how these data types and operations can be used to
implementa swap operation on a single vector. Let v=(1,3,2,4,5,4,6,7,4,5,3,3,5,1,2,3),
a = 3 and b = 5. Suppose we wish to compute a vector, w, identical to v except
that occurrences of a and b are swapped. We proceed as follows:

• Let vec a be a vector where every entry is a: vec a = vec splats(a). In our
example this yields vec a = (3, 3, . . . , 3).

• Similarly, let vec b = vec splats(b) = (5, 5, . . . , 5).
• Let is a be a boolean vector indicating which entries of vector v are equal to

scalar a: is a = vec cmpeq(v, vec a) = (f, t, f, f, f, f, f, f, f, f, t, t, f, f, f, t).
• Similarly, let is b = vec cmpeq(v, vec b) = (f, f, f, f, t, f, f, f, f, t, f, f, t, f, f, f).
• Set each entry in w to b if the corresponding entry in v is a, and to the existing en-

try in v otherwise: w = vec sel(is a, vec b, v) = (1, 5, 2, 4, 5, 4, 6, 7, 4, 5, 5, 5, 5, 1, 2, 5).
• Finally, set each entry in w to a if the corresponding entry in v is b, otherwise leave

the entry of w alone: w = vec sel(is b, vec a, w)=(1, 5, 2, 4, 3, 4, 6, 7, 4, 3, 5, 5, 3, 1, 2, 5)
as required.

This procedure for applying a swap to a single vector can be extended to operate
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in-place on an array of data, as the following C code illustrates:

void vectorSwap(uchar* data , int size , uchar a, uchar b) {

// Assume that size is a multiple of 16

vector uchar vec_a = vec_splats(a);
vector uchar vec_b = vec_splats(b);

// Process data in vector -sized chunks
for(int i=0; i<size; i+=16)
{

// Load vector of data to be swapped
vector uchar x = *( vector uchar *)( data + i);

vector bool is_a = vec_cmpeq(x, a);
vector bool is_b = vec_cmpeq(x, b);

x = vec_sel(is_a , vec_b , x);
x = vec_sel(is_b , vec_a , x);

// Store vector of swapped data
*( vector uchar *)( data + i) = x;

}
}

Listing 3: A vectorised swap procedure.

4.2 Using vector swap during symmetry reduction

The vector swap procedure of §4.1 cannot be directly incorporated into our state
minimisation procedure since the swap procedure is designed to operate on contigu-
ous data, and the component identifiers in a state are not all contiguous. Contiguity
is a requirement for efficient loading of vector uchar data from memory into registers.

We overcome this problem as follows. Before minimising a state s, we extract
all identifier variables from s and place the values of these variables in a contiguous
block of memory, the identifier block, temporarily assigning the identifier variables
in s the default value 0. With s and its identifier block in this form, we can use an
efficient procedure to apply transpositions to s during minimisation. This procedure
is presented below, and makes use of the vectorSwap outine of Listing 3. At the end
of minimisation the identifier block is merged back into the resulting state, which
is returned.

We now sketch the data structures and algorithms used to implement this ap-
proach for the message passing system. We refer to a state extended with an
identifier block as an augmented state:

typedef struct AugmentedState_s {
State state;
uchar identifierBlock [2*N];

} AugmentedState;

Here the identifierBlock consists of 2 × N = 16 unsigned characters since
there are 8 Client processes, each of which has two process identifier variables. For
reasons of efficiency, we pad the identifier block if necessary to ensure that its size
is a multiple of 16.
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Given an augmented state s and component identifier values a and b, the fol-
lowing procedure applies the transposition (a b) to s:

void applySwapToStateVectorised(AugmentedState* s, uchar a, uchar b)
{

Client tempClient;
uchar tempIds [2];

vectorSwap(s->identifierBlock , N*2, a, b);

tempClient = s->state.clients[a];
s->state.clients[a] = s->state.clients[b];
s->state.clients[b] = tempClient;

tempIds [0] = s->identifierBlock[offset[a]];
tempIds [1] = s->identifierBlock[offset[a]+1];

s->identifierBlock[offset[a]] = s->identifierBlock[offset[b]];
s->identifierBlock[offset[a]+1] = s->identifierBlock[offset[b]+1];

s->identifierBlock[offset[b]] = tempIds [0];
s->identifierBlock[offset[b]+1] = tempIds [1];

}

Listing 4: Applying transposition (a b) to an augmented state.

The vectorSwap procedure (Listing 3) is first invoked to efficiently swap occur-
rences of a and b in the identifier block for s. The variable tempClient is then
used analogously as in Listing 2 to swap the local states of Client processes a and
b in the original state. This swapping of Client state involves a small amount of
redundancy since the component identifier variables for Client processes are still
exchanged even though these are all set to the default value 0.

The last four statements in Listing 4 have the effect of swapping the portion of
the identifier block holding values relevant to Client a with the portion for Client
b. This involves looking up a pre-computed array of offsets, the details of which we
do not show.

An augmented state t is constructed from a regular state s by copying the
contents of s into the state field of t, then filling the identifier block of t according
to the values of reference variables in the state field. After a reference variable
has been copied into the identifier block its value in the state field is set to 0.
The following listing shows how augmented states are constructed for the message
passing example:

void constructAugmentedState(const State* original , AugmentedState* s) {

int index = 0;

memcpy (&(s->state), original , sizeof(State ));

for(int i = 0; i < N; i++) {

s->identifierBlock[index] = s->state.clients[i]. sender;
s->state.clients[i]. sender = 0;
index ++;

s->identifierBlock[index] = s->state.clients[i]. receiver;
s->state.clients[i]. receiver = 0;
index ++;

}
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}

A similar function, collapseAugmentedState, is used to obtain a regular state
from an augmented state. This function works by copying the contents of the
identifier block for the augmented state back into the state component, which is
then copied into the result state.

Combining the above routines leads to a vectorised state minimisation procedure
which can be used in place of the minimise procedure of Listing 1 for efficient
symmetry reduction:

void minimiseVectorised(const State* original , State* smallest ,
Permutation* perms , int numPerms)

{
AugmentedState originalAugmented;
AugmentedState smallestAugmented;
AugmentedState temp;

constructAugmentedState(original , &originalAugmented );

memcpy (& smallestAugmented , &originalAugmented , sizeof(AugmentedState ));

for(int i = 0; i < numPerms; i++) {

memcpy (&temp , &originalAugmented , sizeof(AugmentedState ));

for(int j = 0; j < perms[i]. numSwaps; j++)
applySwapToStateVectorised (&temp , perms[i]. from[j], perms[i].to[j]);

if(memcmp (&temp , &smallestAugmented , sizeof(AugmentedState )) < 0)
memcpy (& smallestAugmented , &temp , sizeof(AugmentedState ));

}

collapseAugmentedState (& smallestAugmented , smallest );
}

4.3 A formal description of augmented states

Recall from §3.1 that a state s belongs to the set (Lc × Lr)n described in §2.3. We
can view an augmented state as belonging to the set (Lc × {0}m)n × (I ∪ {0})n×m.
The following rule defines an invertible mapping which converts a state to/from its
augmented form:

((l1, (r1,1, r1,2, . . . , r1,m)), (l2, (r2,1, r2,2, . . . , r2,m)), . . . , (ln, (rn,1, rn,2, . . . , rn,m)))

↔ ( ((l1, (0, 0, . . . , 0)), (l2, (0, 0, . . . , 0)), . . . , (0, 0, . . . , 0)),

(r1,1, r1,2, . . . , r1,m, r2,1, r2,2, . . . , r2,m, rn,1, rn,2, . . . , rn,m) )
This mapping corresponds to the procedures discussed in §4.2 for constructing

and collapsing augmented states.
For the message passing system, consider the state t introduced in §2.3:

t = ( (12, (1, 2)), (14, (2, 3)), (20, (1, 4)), (24, (2, 5)),
(20, (0, 0)), (10, (6, 7)), (10, (7, 6)), (12, (2, 5)) ).

Augmenting t leads to the augmented state t′:

t′ = ( ((12, (0, 0)), (14, (0, 0)), (20, (0, 0)), (24, (0, 0)),
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(20, (0, 0)), (10, (0, 0)), (10, (0, 0)), (12, (0, 0))),
(1, 2, 2, 3, 1, 4, 2, 5, 0, 0, 6, 7, 7, 6, 2, 5) ).

We could avoid the need for augmented states in the first place by reorganising
our state structure, so that a state s belongs to the set Ln

c × (I ∪ {0})m×n. In this
form, identifier variables are stored contiguously at the end of a state, which allows
vectorised minimisation to be directly applied. We have presented our results in
terms of augmented states to match the state structure for the SPIN model checker,
illustrating the practical issues associated with implementing state-space reduction
techniques in an existing model checker.

Note that our implementation of vectorised symmetry reduction is only appli-
cable to platforms with support for the AltiVec instruction set. The vectorised
approach could easily be implemented for other vector instruction sets which in-
clude equivalent instructions to those described in §4.

5 Experimental Evaluation

We have implemented the vector symmetry reduction technique of §4 as part of
the TopSPIN symmetry reduction for the SPIN model checker. We now present ex-
perimental results showing the speedups obtained by applying vectorised symmetry
reduction over standard symmetry reduction.

5.1 Experimental setup

Experiments are performed using a 3.2GHz Cell processor on a Sony PlayStation
3 console, running Fedora Linux, with IBM SDK 3.0. This is a suitable platform
since the Power Processing Unit of the Cell processor is equipped with an AltiVec
unit which includes the vector instructions required by our approach. The C files
produced by SPIN (v4.2.6) and TopSPIN are compiled using the ppu-gcc compiler
(v4.1.1), with the -O2 optimisation flag. The TopSPIN enumeration strategy is
used for symmetry reduction.

We illustrate the differences in verification time for model checking with stan-
dard symmetry reduction and with vectorised symmetry reduction using various
configurations of two Promela examples: an email system, and a loadbalancer. For
both examples, we verify safety properties embedded in the specifications as asser-
tions. Results showing the state-space reduction achieved by applying symmetry
reduction to the email and loadbalancer examples are presented in [9]; here we
concentrate on the difference in performance between standard (serial) symmetry
reduction and vectorised symmetry reduction.

The email example is adapted from [2] and used as a case study for symmetry
reduction in [8,9]. A configuration of the system consists of p symmetric client
processes, which communicate by sending messages to a mailer process via a net-
work channel component. Components in a Promela specification of the system use
reference variables to keep track of the sender and recipient of a given message. A
configuration of the email example with p clients is denoted email p.
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(b) Loadbalancer configurations with 2 to 4

server and 6 to 7 client processes.

Fig. 1. Speedups obtained via vector symmetry reduction for Promela examples.

Components in a configuration of the loadbalancer example, also studied in [9],
are a set of p server and q client processes with associated communication channels,
and a loadbalancer process (with a dedicated input channel). The load of a server is
the number of messages queued on its input channel. Client processes send requests
to the loadbalancer, and if some server channel is not full, the loadbalancer forwards
a request nondeterministically to one of the least loaded server queues. Each request
contains a reference to the input channel of its associated client process, and the
server designated by the loadbalancer uses this channel to service the request. A
configuration with p clients and q is denoted p/q. There is full symmetry between
the p servers and also between the q clients.

5.2 Discussion

Figures 1(a) and 1(b) show the speedups obtained by applying vectorisation to
configurations of the email and loadbalancer examples respectively. For each con-
figuration we measured the time taken for the symmetry-aware SPIN model checking
algorithm to explore 1000 symmetrically distinct states, with and without vectori-
sation. The bar associated with each configuration indicates the speedup factor for
vectorisation normalised against serial execution.

Vectorisation provides a modest speedup for the email configuration with three
client processes. As client processes are added, vectorisation becomes more effec-
tive, doubling the speed of verification for the configuration with 8 clients. The
reason for this increase in effectiveness is that the number of identifier variables
increases with the number of clients, and so the portion of execution time dedicated
to identifier swapping, and thus the potential for acceleration via vectorisation, is
proportional to the number of clients. It is unclear why vectorisation does not scale
well between configurations of the email example with 5 and 6 clients. Results for
the loadbalancer example show similar speedups, with the vectorised model checking
algorithm running between 1.3 and 1.9 times faster than the serial version.
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While the speedups obtained through vectorisation for our example specifica-
tions are significant, they do not approach the theoretical maximum speedup factor
for vectorisation. This factor is 16 on the PowerPC architecture, since vector oper-
ations allow 16 operations on characters to be performed using a single instruction.
One reason why the speedups we have observed do not approach the theoretical limit
is that memory copy and comparison operations contribute significantly to the time
taken for representative computation, and these operations are more expensive to
perform on augmented states than on standard states.

6 Related Work

To our knowledge, this is the first paper to investigate the application of paral-
lel processing technology to symmetry reduction for model checking; research into
parallel model checking has previously concentrated on distributing the state-space
search algorithm over multiple workstations [22] or processor cores [18].

The approach to exploiting symmetry by applying permutations to states used
throughout the paper follows the implementation of the TopSPIN tool [7], which in
turn is based on SymmSpin [1], another symmetry reduction package for the SPIN

model checker.
Not all symmetry reduction techniques work by applying permutations to states.

For example, the SMC model checker [23] chooses the first state encountered for a
given equivalence class as the representative for that class, and detects equivalence
of states via a hash function which hashes equivalent states to the same location.
Symmetry reduction via generic representatives [11,12] avoids computing equiva-
lence class representatives during search by exploiting symmetry at the source code
level. The vectorisation technology developed in this paper is therefore not appli-
cable to these methods, though it is conceivable that the SMC hash function could
be accelerated using vector arithmetic operations.

7 Conclusions and Future Work

We have shown that vector processing techniques can be applied to symmetry re-
duction for explicit state model checking. We have provided experimental results
showing that vectorisation significantly speeds up verification for various configura-
tions of two benchmark examples running on the Cell BE processor.

Our current implementation incorporates vectorisation into the enumeration
strategy provided by the TopSPIN symmetry reduction package, where the represen-
tative for a state is computed by applying each symmetry group element to the state
and returning the smallest image. Future work involves applying vectorisation to
a wider range of examples, and investigating the combination of vectorisation with
other symmetry reduction strategies based on minimising sets [7,13] and stabilisers
[1,9].

We have investigated the parallelisation of symmetry reduction at a fine level
of granularity by parallelising identifier swapping, which is the innermost part of
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the representative computation algorithm. Another area for future work is to inves-
tigate a coarse-grained approach to parallel symmetry reduction, distributing the
representative computation algorithm across multiple processor cores.
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