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Abstract—Symmetry reduction is a technique for combating
state-space explosion in model checking. The generic represen-
tatives approach to symmetry reduction uses a language-level
translation of symmetric models to a reduced form, making
it straightforward to combine with existing tools and imple-
mentations. These techniques have been proposed for both
non-probabilistic and probabilistic model checking, but are
currently difficult to apply to complex models due to prohibitive
restrictions in the modelling language. We present a much
richer language, which allows specification of probabilistic
systems in a way that guarantees the applicability of the
generic representatives technique, together with an extended
translation algorithm, and demonstrate the effectiveness of our
techniques on a large set of case studies.

Keywords-Symmetry reduction; probabilistic model check-
ing; counter abstraction

I. INTRODUCTION

Probabilistic model checking provides a powerful set
of techniques for formally verifying quantitative properties
of systems that exhibit stochastic behaviour. As with any
exhaustive approach to formal verification, when applying
these methods to real-life systems it quickly becomes es-
sential to use techniques that improve the efficiency of the
process. For probabilistic model checking, the need for such
techniques is particularly acute since it requires not only
an exhaustive state-space exploration, but also a numerical
solution phase to compute probabilities or other quantitative
values. Possible approaches include generating a compact
model representation, e.g. with state compaction or symbolic
(BDD-based) data structures, and reducing the size of the
model to be analysed, e.g. via abstraction, bisimulation
minimisation, partial order or symmetry reduction.

In this paper, we consider symmetry reduction [1], [2], [3],
[4], which exploits the presence of replication in a system.
Symmetry is in fact prevalent in many of the application
domains to which probabilistic model checking has already
proved valuable, e.g. randomized distributed algorithms,
communication protocols and biological systems.

Symmetry reduction via generic representatives [5], [6]
combines the benefits of symmetry reduction and symbolic
representation. A system specification is translated into a
reduced form with a set of counters that represent the
behaviour of processes generically, keeping track how many

processes reside in each local state, but not of individual
process identities. The semantics of the generic specification
is isomorphic to the symmetry-reduced model associated
with the original specification. In most cases, the new model
is not only significantly smaller, but also has a more compact
symbolic representation. This is particularly beneficial in
the context of probabilistic model checking since, for many
state-of-the-art implementations (including the PRISM tool,
to which we apply our techniques), both model size (number
of states) and the size of a symbolic representation are crit-
ical. Initial results applying symmetry reduction by generic
representatives to probabilistic model checking indicate that
this is indeed the case [7], [8].

Although effective for certain examples, the original
generic representatives technique has limited application: it
can only be applied to a single family of identical processes
(or one with an additional singleton process [6]) where the
local state of each process is modelled by a single variable.

In this paper we significantly extend the application of
generic representatives. We expand the theory to specifica-
tions consisting of multiple families of identical processes,
whose state can be represented by multiple local variables,
and whose behaviour can be described by guarded com-
mands involving the kind of complex expressions over local
and global variables required to model realistic systems.

We present our results by introducing Symmetric Prob-
abilistic Specification Language (SPSL), a modelling lan-
guage for symmetric systems with shared-variable commu-
nication, designed to guarantee applicability of the generic
representatives approach. We focus on a Markov decision
process (MDP) semantics for SPSL. Since MDPs gener-
alise Kripke structures, SPSL also represents a significant
improvement to the applicability of generic representatives
to non-probabilistic model checking.

We present an algorithm for translating SPSL specifi-
cations to generic form, such that the symmetry-reduced
semantics can be analysed using the PRISM model checker
[9]. We have implemented the translation in a tool, GRIP,
and have applied it to a wide range of case studies. We
provide a comprehensive experimental evaluation, illustrat-
ing that our techniques provide excellent improvements in
efficiency, both in terms of the feasibility of verifying large



models and the time required for model construction and
analysis. We also study the relative merits of a complemen-
tary symmetry reduction approach for PRISM [10].

II. SYMMETRY REDUCTION FOR MDPS

We review some background material on Markov decision
processes (MDPs), symmetry reduction and, in particular,
generic representatives.

A. Markov decision processes

We use Dist(S) to denote the set of discrete probability
distributions over a set S.

Definition 1: A Markov decision process (MDP) is a
tuple M = (S, s0,Steps), where S is a finite set of states,
s0 ∈ S an initial state, and Steps : S → 2Dist(S) a
probabilistic transition function.

An MDP M represents a system which exhibits both
nondeterministic and probabilistic behaviour (for example,
the asynchronous parallel composition of a set of random-
ized processes). Intuitively, in each state s ∈ S, there is a
nondeterministic choice between the elements of Steps(s).
The next state of the model to which a transition will occur is
then chosen probabilistically according to the selected distri-
bution µ ∈ Steps(s). A path through an MDP is obtained by
resolving both probabilistic and non-deterministic choices.
To do this one assumes that non-deterministic choices are
resolved by an adversary which selects a choice based
on the history of choices so far. A probability measure is
defined that allows one to calculate the maximal and minimal
probability for a set of paths.

B. Automorphisms and quotient MDPs

Definition 2: Let M = (S, s0,Steps) and M′ =
(S′, s′0,Steps ′) be MDPs, and α : S → S′ a bijection.
Suppose α(s0) = s′0, and for s ∈ S, µ ∈ Steps(s) iff
there exists µ′ ∈ Steps ′(α(s)) such that, for all t ∈ S,
µ(t) = µ′(α(t)). Then α is an isomorphism from M to
M′, and M and M′ are said to be isomorphic.

Definition 3: An automorphism ofM is an isomorphism
from M to M. The set of all automorphisms of M forms
a group under composition of mappings, denoted Aut(M).

Definition 4: Let G ≤ Aut(M). The orbit relation for G
is the set θ = {(s, α(s)) : s ∈ S, α ∈ G} ⊆ S × S. For s ∈
S, the orbit of s under G is the set [s]G = {t : (s, t) ∈ θ}.
If G is clear from the context, we write [s] rather than [s]G.

Definition 5: Suppose that we have a total ordering for
S and let min[s] denote the smallest element of [s] for any
state s. For any G ≤ Aut(M), the quotient MDP for M
w.r.t. G is the MDP M = (S, s0,Steps) where:
• S = {min[s] : s ∈ S} and s0 = min[s0] = s0

• for each min[s] ∈ S and µ ∈ Steps(min[s]),
Steps(min[s]) contains a distribution µ ∈ Dist(S)
where, for min[t] ∈ S, µ(min[t]) =

∑
x∈[t] µ(x).

We follow the widely used convention of choosing min[s]
as a unique representative of [s].

Let A be a set which we call atoms. In our application
domain, an atom is a boolean expression over variables
of a concurrent system. The logic PCTL (probabilistic
computation tree logic) [11], [12] is defined as a set of state
and path formulae over a set of atoms A. If s is a state
of MDP M and a ∈ A is an atom, then M, s |= a if a
evaluates to true at s. If ./∈ {<,≤, >,≥}, p ∈ [0, 1] and
ψ is a path formula, then M, s |= P./p[ψ] if the probability
q of a path from s satisfying ψ is such that q ./ p for all
adversaries. If s0 is the initial state of M and φ is a PCTL
formula, we write M |= φ to denote that M, s0 |= φ. For
full details on PCTL, see [11], [12].

The following theorem, proved in [13], establishes a
correspondence between PCTL properties of isomorphic
MDPs under an appropriate transformation of atoms.

Theorem 1: Let M = (S, s0,Steps) and M′ =
(S′, s′0,Steps ′) be MDPs, A and A′ sets of atoms, γ : A→
A′ a bijection, and δ an isomorphism from M to M′ such
that, for every s ∈ S and a ∈ A, M, s |= a⇔M′, δ(s) |=
γ(a). Then for any PCTL formula φ over A and s ∈ S,

M, s |= φ⇔M′, δ(s) |= γ(φ)

where γ(φ) is the PCTL formula over A′ obtained by
replacing every atom a occurring in φ with γ(a).

For G ≤ Aut(M) and φ a PCTL formula, we say that
φ is symmetric with respect to G if, for every maximal
propositional sub-formula f appearing in φ and for any state
s ∈ S, we have M, s |= f ⇒

∧
s′∈[s]M, s′ |= f [2].

The following theorem, proved in [13], shows that if φ
is a PCTL formula which is symmetric with respect to a
group of MDP automorphisms then we can check whether
φ holds forM by considering the quotient MDPM (which
may be considerably smaller than M).

Theorem 2: Let φ be a PCTL formula which is symmet-
ric w.r.t. G ≤ Aut(M). Let M be the quotient MDP for
M w.r.t. G. Then M |= φ⇔M |= φ.

For any s ∈ S, the size of [s] is bounded by |G|, so
the theoretical minimum size of S is |S|/|G|. For highly
symmetric systems with n components we may have |G| =
n!, in which case exploiting symmetry potentially offers a
considerable reduction in memory requirements.

C. Generic representatives

In the context of symbolic model checking, construction
and representation of the orbit relation can be very costly.
The generic representatives method of symmetry reduction



avoids construction of the orbit relation by applying symme-
try at the language level via a source-to-source translation
[5], [6], and thus requires no modification of existing model
checking algorithms.

The idea is best explained using an example. Consider
a mutual exclusion algorithm for three identical processes,
each with 3 local states neutral (N ), trying (T ) and critical
(C). The global states (N,N, T ), (T,N,N) and (N,T,N)
are symmetrically equivalent and have generic representative
(2N, 1T ). A generic representative indicates how many pro-
cesses are in each local state, without referring to individual
processes.

The technique involves translating a fully symmetric
specification P , consisting of multiple instances of a single
process type, into a generic form h(P) where processes
are replaced by counters. In h(P) a counter variable is
defined for each process local state indicating the number of
processes currently in that state. Translation rules ensure that
the model M(h(P)) for h(P) is isomorphic to the quotient
model M(P) for P [6]. Thus the state-space reduction
potentially available by model checking M(P) can be
realised by instead model checking M(h(P)). Theoretical
and experimental results show that for systems consisting
of many processes, where each process has a small local
state-space, the BDD representation of M(h(P)) can be
significantly smaller than the BDD for M(P) or M(P).
The approach is extended to provide symmetry reduction
for MDPs in [7].

As discussed in Section I, a major drawback to current
generic representatives techniques is the fact that specifi-
cations must be expressed in an extremely restricted input
language before translation to generic form can be per-
formed. Here we significantly extend the approach to work
with a richer input language supporting multiple families of
symmetric processes. The state of each process is determined
by the values of multiple local variables, and sophisti-
cated process behaviour can be specified via arithmetic and
boolean expressions over local and global variables.

III. SYMMETRIC PROBABILISTIC SPECIFICATION
LANGUAGE

We define a simple but general language for specifying
symmetric, probabilistic systems, which we call Symmetric
Probabilistic Specification Language (SPSL). This is loosely
based on Symmetric PRISM [7], a subset of the model
specification language for PRISM [9]. The connection with
PRISM is beneficial for several reasons. Firstly, other tools
make direct use of the PRISM modelling language or accept
inputs that can be generated by PRISM. Secondly, transla-
tions have been developed to the PRISM language from a
variety of specification formalisms (including probabilistic
variants of several process calculi).

A. Syntax
The syntax for SPSL is presented via a BNF-like gram-

mar in Fig. 1. Note that ./ is a binary operator in
{+,−, ∗, /, **, <,≤, >,≥,=, 6=,∧,∨}, where ** denotes
exponentiation;© is an operator in {

∑
,
∏
,
∧
,
∨
}; number

denotes a numeric literal; name is the name of a variable,
and local-name/global-name is the name of a local/global
variable specifically.

An SPSL specification consists of an optional set of
global variable declarations followed by a set of module
type declarations, each representing a particular class of
symmetric processes.

A variable declaration consists of a name, type and initial
value. For simplicity, we use a basic type system in which
variables are either booleans or finite integer ranges. The
domain and initial value of a variable v are denoted by
dom(v) and init(v), respectively.

A module type declaration consists of a name (M ), an
integer specifying the number of running instances of M
(denoted #M ), a set of local variable declarations and a set
of statements. The set of all module type names is denoted
M and we refer to the running instances of M ∈ M as
M1,M2, . . . ,M#M .

The set of global variables is denoted global and the
variables local to module type M are denoted var(M). For
simplicity, but without loss of generality, we assume that all
variable names and module type names in a specification
are distinct. For variable v ∈ var(M), we write vi for the
corresponding local variable of module instance Mi. We use
var t(M) to denote the t-th variable in the specification of
M , and var t(M)i the copy belonging to Mi.

The behaviour of instances of module type M is given
by a set of statements defined with respect to a symbolic
module instance Mi; the behaviour of a concrete instance
Mz (for any 1≤z≤#M ) is derived from these statements by
replacing each symbolic variable vi with the corresponding
concrete variable vz . Statements are guarded commands:
the guard is an expression determining whether a statement
is executable in a given state; the effect of the statement
is defined by a stochastic update, which takes the form
e1:u1+e2:u2+. . .+ek:uk where the ej are expressions (giv-
ing probability) and the uj updates. Each update uj is either
a no-op (skip), or a set of concurrent updates (denoted by
‖) to distinct variables that are either global or local to M .

Guards, probabilities and updates to variables in module
type M are given by expressions derived from the production
rule expr(Mi). This is defined in terms of two other rules:
loc-expr(M), which permits expressions over variables from
var(M), and symm-expr, which defines fully symmetric ex-
pressions composed of globals, constants and combinations
of a local expression instantiated over all modules of a
given type. Thus expr(Mi) defines expressions which are
symmetric with respect to Mi. These are composed of fully
symmetric expressions, combinations of a local expression



specification ::= global-variables? module+

global-variables ::= globals { var-decl+ }
module ::= module M [number]{

var-decl∗ statement(M)+ }

var-decl ::= name : type init constant

type ::= [number..number] | bool
constant ::= true | false | number

statement(M) ::= expr(Mi)→ st-update(M)
st-update(M) ::= expr(Mi):update(M) + . . .

+ expr(Mi):update(M)
update(M) ::= skip | (name:= expr(Mi))

‖ . . . ‖(name:= expr(Mi))
symm-expr ::= constant | global-name

| ©1≤j≤#N loc-expr(N)j

(for some module type N )
| symm-expr ./ symm-expr
| ¬symm-expr | (symm-expr)

loc-expr(M) ::= constant | local-name
| loc-expr(M) ./ loc-expr(M)
| ¬loc-expr(M)
| (loc-expr(M))

expr(Mi) ::= loc-expr(M)i | symm-expr
| ©1≤j 6=i≤#M loc-expr(M)j

| expr(Mi) ./ expr(Mi)
| ¬expr(Mi) | (expr(Mi))

Figure 1. Syntax of Symmetric Probabilistic Specification Language
(SPSL).

instantiated over all modules of type M except Mi and local
expressions of the form loc-expr(M)i.

The symmetric conjunctions and disjunctions of SPSL
generalise simple symmetric boolean expressions provided
by previous approaches [5], [6]. Additionally, SPSL allows
symmetric summations and products, and allows expressions
to operate on a mixture of local and global variables. This
affords a great deal more flexibility when modelling.

B. MDP semantics

We now define semantics for an SPSL specification P in
terms of an MDP M(P) = (S, s0,Steps). For brevity, we
do not consider errors such as division-by-zero or probability
distributions which do not sum to one; it is easy to extend
the semantics to handle this via a designated error state.

The local state-space for a single module Mi of type M
is S(Mi) =

⊗
v∈var(M) dom(v) and the state-space for the

global variables of P is G =
⊗

v∈global dom(v). The global
state-space of M(P) is:

S = G×
( ⊗

M∈M

( ⊗
1≤i≤#M

S(Mi)
))

Let e be an expression of the form expr(Mi), and s
a (local or global) state. Then eval(s, e) is the result of
evaluating the expression e at s. If e is a boolean expression,
we use s |= e as shorthand for eval(s, e) = true .

Let s ∈ S and u an update of the form (v1 := e1)‖
(v2 := e2)‖ . . . ‖(vk := ek), where the vj are distinct vari-
ables. Then exec(s, u) is the state identical to s except that
the value of each variable vj is equal to eval(s, ej). We also
define exec(s,skip) = s.

We now define the probabilistic transition function Steps .
Let s ∈ S, M ∈ M and 1≤z≤#M . Let ez → uz be
a concrete statement of module Mz . Suppose uz has the
form e1:u1+e2:u2+. . .+ek:uk. If s |= ez then µ ∈ Steps(s),
where µ : S → [0, 1] is defined as follows: for t ∈ S,
µ(t) =

∑
1≤j≤k,exec(s,uj)=t eval(s, ej).

C. Symmetric PCTL

Let P be an SPSL specification, and A the set of all ex-
pressions of the form symm-expr defined over the variables
of P . Taking A to be our set of atoms, we refer to the set of
PCTL formulae over A as symmetric PCTL (SPCTL). The
SPCTL logic allows us to reason about properties of SPSL
specifications which do not distinguish between individual
modules within a given module type.

D. Running example

To illustrate the SPSL language and associated techniques,
we introduce a running example: a simple SPSL specifica-
tion, describing 3 master processes and a pool of 10 worker
processes. A master probabilistically issues requests to the
workers via a shared channel m_to_w, modelled abstractly
as a counter, becoming inactive only when no worker
processes remain active. A worker process continuously
removes requests from the shared channel by decrementing
the counter. When not processing work, a worker process
may go to sleep with probability 0.1.

Fig. 2 shows the master/worker SPSL specification. The
labels (1) to (7) are used for explanation in Section IV-C
and should otherwise be ignored.

The following SPCTL property states that the probability
of reaching a state where all workers are asleep and there
are outstanding requests on the shared channel is less than
0.01: P<0.01[ ♦ (m_to_w > 0 ∧

∧
1≤j≤10 awakej = 0)].

E. SPSL Specifications are Symmetric

SPSL has been designed to guarantee full symmetry
between instances of each module type. Formally, this
can be stated as follows. For a module type M of P ,
let Sym(M) denote the group of permutations of the set
{M1,M2, . . . ,M#M}. Elements of Sym(M) act on a state
s of M(P) in the obvious way. Suppose that M =
{M1,M2, . . . ,Md}. Then Sym(M) = {α1α2 . . . αd : αj ∈
Sym(M j) (1≤j≤d)} is the largest group of module per-
mutations that preserves module types. The fully symmetric



globals { m_to_w : [0..5] init 0 }
module master[3] {

active : bool init true
(1) activei ∧

P
1≤j≤10 awakej > 0 ∧ m_to_w < 5→

0.5:(m_to_w:=m_to_w+ 1) + 0.5:skip
(2) activei ∧

P
1≤j≤10 awakej = 0→

1:(activei :=false)
(3) ¬activei → 1:skip
}
module worker[10] {

awake : [0..1] init 1
working : bool init false

(4) ¬workingi ∧ awakei = 1 ∧ m_to_w > 0→
1:(workingi :=true) ‖ (m_to_w:=m_to_w−1)

(5) workingi → 1:(working:=false)
(6) ¬workingi ∧ awakei = 1→

0.1:(awakei := 0)+0.9: skip
(7) awakei = 0→ 1: skip
}

Figure 2. Example SPSL specification for the master/worker system
described in Section III-D.

syntax of SPSL guarantees that every element of Sym(M)
is an automorphism of M(P), and any SPCTL formula is
symmetric w.r.t. Sym(M). This, with Theorem 2, leads to
the following result:

Theorem 3: Let M(P) denote the quotient MDP for
M(P) w.r.t. Sym(M) and let φ be an SPCTL formula.
Then M(P) |= φ⇔M(P) |= φ.

Suppose the module types for P are M1,M2, . . . ,Md

for some d > 0. It is easy to show that |Sym(M)| =
|#M1|! × |#M2|! × · · · × |#Md|!. Since the extent of
symmetry reduction depends on the size of the symmetry
group (see Section II), there is potential for a large reduction
factor with multiple instances of each module type.

IV. TRANSLATION TO GENERIC FORM

We now show how an SPSL specification P together
with an SPCTL property φ can be translated into a generic
specification h(P) and property h(φ), such that M(P) |=
φ⇔M(h(P)) |= h(φ).

In this section, we impose a restriction on P , requiring
that in a an update vi := e to a local variable, expression e
contains only local variables and constants.

A. The translation algorithm

Fig. 3 presents a set of syntax-directed translation rules,
based on the SPSL grammar of Fig. 1, for translation of
an SPSL specification P into a generic SPSL specification,
h(P). We call h the translation function.

We introduce some additional notation. Let S(M) denote
the local state-space for some module type M (which is the
same for any instance of M ) and let |S(M)| = t. Using
the natural lexicographic ordering over tuples in S(M), we

define a bijection fM : S(M) → {1, 2, . . . , t}. For an
expression e, SATM (e) = {l ∈ S(M) : l |= e} denotes
the subset of local states of M in which e holds.

The first two rules in Fig. 3 state that the global vari-
ables of h(P) are the same as for P and that, for every
module type declaration M in P , h(P) contains a single
instance of a module of type generic M . This module
has |S(M)| counter variables with range 0, . . . ,#M . Each
variable count M j records the number of instances of
M residing in state f−1

M (j) (for 1≤j≤t). We initialise
count M fM (init(M)) to #M and all others to 0.

When translating statements for a module type declaration
M , we must consider the fact that these statements comprise
not only symmetric expressions, but also expressions refer-
ring to the local state of M (i.e. those from the grammar
production loc-expr(M) in Fig. 1). For the purposes of
translation, we assume that the guard of a statement is of
the form ei ∧ expr(Mi), where e has the form loc-expr(M).
We then split the translation into cases, one for each
l ∈ SATM (e). This loses no generality since, in the worst
case, a guard of the general form expr(Mi) is trivially of
the form given above, by taking ei to be true . In this case
|SATM (e)| = |S(M)|, i.e. each local state of M is treated
separately, meaning that the worst case complexity for our
translation algorithm is O(|P| × maxM∈M |S(M)|) where
|P| is the number of statements in P . In practice, guarded-
command style descriptions of multi-process systems are
very often written with guards of the form ei ∧ expr(Mi)
where ei is reasonably strong, so the worst case complexity
is rarely realised.

Given a statement x of the form ei ∧ expr(Mi) →
stoch-update(M), we generate, for each l ∈ SATM (e)
a separate generic statement corresponding to the original
statement x as follows. The ei part of the guard is translated
into the condition count M fM (l) > 0. This condition
asserts that some instance of M has local state l and thus
the local part of the guard is satisfied for this module. The re-
mainder of the guard, of the form expr(Mi), and the stochas-
tic update stoch-update(M), are translated in the context of
l using the rules h(expr(Mi), l) and h(stoch-update(M), l).

The most intricate part of the translation process is the
translation of variable updates. Consider an update:

(v1
i :=e

1
i )‖ . . . ‖(vt

i:=e
t
i)‖(g1:=d1)‖ . . . ‖(gr:=dr)

where vj ∈ var(M), ej (according to our restriction) has
the form loc-expr(M) (1≤j≤t), gj ∈ global and dj has the
form expr(Mi) (1≤j≤r).

Let l′ be the local state reached by executing all local
variable updates (which can be statically computed). The
update h(u, l) (see Fig. 3) has the effect of: decrementing
count M fM (l) (representing a process leaving state l),
incrementing count M fM (l′) (representing this process
entering state l′), and updating the value of each global
variable gj according to the generic expression h(dk, l)



P h(P)
global-variables module . . . module global-variables h(module) . . . h(module)
module h(module), with m = init(M) and t = |S(M)|

module M [k] {
var-decl∗

statement(M) . . . statement(M)
}

module generic M [1] {
count M 1 : [0..k] init 0
. . . count M fM (m) : [0..k] init k . . .
count M t : [0..k] init 0
h(statement(M)) . . . h(statement(M))
}

statement(M), where e has form local-expr(M) h(statement(M)), with SATM (e) = {l1, . . . , lz}
ei ∧ expr(Mi) count M fM (l1) > 0 ∧ h(expr(Mi), l1)
→ stoch-update(M) → h(stoch-update(M), l1) . . .

count M fM (lz) > 0 ∧ h(expr(Mi), lz)
→ h(stoch-update(M), lz)

stoch-update(M) h(stoch-update(M), l)
expr(Mi):update(M) + . . . h(expr(Mi), l):h(update(M), l) + . . .

+expr(Mi):update(M) +h(expr(Mi), l):h(update(M), l)
update(M), where vj ∈ var(M), gj ∈ global h(update(M), l), where
and ej /dj has form local-expr(M)/expr(Mi) l′ = l[v1:=eval(l, e1), . . . , vt:=eval(l, et)]
skip skip
(v1

i :=e
1
i )‖ . . . ‖(vt

i:=e
t
i) (count M fM (l):=count M fM (l)− 1)

‖(g1:=d1)‖ . . . ‖(gr:=dr) ‖(count M fM (l′):=count M fM (l′) + 1)
‖(g1:=h(d1, l))‖ . . . ‖(gr:=h(dr, 1))

expr(Mi), where e has form local-expr(M) h(expr(Mi), l)
ei eval(l, e)
symm-expr h(symm-expr)∑

1≤j 6=i≤#M ej

∑
m∈S(M)(eval(m, e) ∗ count M fM (m))− eval(l, e)∏

1≤j 6=i≤#M ej

∏
m∈S(M)(eval(m, e)**count M fM (m))/eval(l, e)∧

1≤j 6=i≤#M ej

∑
m∈SATM (e) count M fM (m) = #M (if l |= e)∑
m∈SATM (e) count M fM (m) = #M − 1 (if l 6|= e)∨

1≤j 6=i≤#M ej

∑
m∈SATM (e) count M fM (m) > 0 (if l 6|= e)∑
m∈SATM (e) count M fM (m) > 1 (if l |= e)

expr(Mi) ./ expr(Mi) h(expr(Mi), l) ./ h(expr(Mi), l)
¬expr(Mi) ¬h(expr(Mi), l)
(expr(Mi)) (h(expr(Mi), l))
symm-expr, where e has form local-expr(N) h(symm-expr)
constant constant
name (where name is a global variable) name∑

1≤j≤#N ej

∑
l∈S(N)(eval(l, e) ∗ count N fN (l))∏

1≤j≤#N ej

∏
l∈S(N)(eval(l, e)**count N fN (l))∧

1≤j≤#N ej

∑
l∈SATN (e) count N fN (l) = #N∨

1≤j≤#N ej

∑
l∈SATN (e) count N fN (l) > 0

symm-expr ./ symm-expr h(symm-expr) ./ h(symm-expr)
¬symm-expr ¬h(symm-expr)
(symm-expr) (h(symm-expr))

Figure 3. Rules for translating an SPSL specification P to a generic form h(P).



(1≤j≤r).
The remaining rules in Fig. 3 are concerned with transla-

tion of expressions of the forms expr(Mi) and symm-expr.
The rationale for these rules is similar to the rationale pre-
sented in [6], generalised to our more expressive language,
and extended with symmetric summations and products.

B. Model checking M(P) via M(h(P))

Let φ be an SPCTL property over P . Recall from
Section III-C that the atoms of φ are expressions of the form
symm-expr over the variables of P . We translate φ into a
generic SPCTL property h(φ) over h(P) by replacing each
atom e appearing in φ with h(e), using the translation rules
for symm-expr in Fig. 3.

Let P be an SPSL specification with associated MDP
M(P) = (S, s0,Steps). Since h(P) is itself an SPSL spec-
ification, the MDP M(h(P)) = (S′, s′0,Steps ′) associated
with h(P) can be derived directly as shown in Section III-B.
However, it is useful to describe the states ofM(h(P)) with
reference to P . If M is the set of module types for P , the
state set S′ associated with M(h(P)) is:

S′ = G×
( ⊗

M∈M

S(generic M)
)
.

We define a function δ : S → S′ that maps equivalent
states in S to a single state in S′ – a generic representative.

For M ∈ M, s ∈ S and l ∈ S(M), δl
M (s) de-

notes the number of instances of M with local state l
at s. Thus δl

M maps S to {0, 1, . . . ,#M}. Suppose that
S(M) = {l1 < l2 < · · · < lt} for some t ≥ 0.
Let δM (s) = (δl1

M (s), δl2
M (s), . . . , δlt

M (s)). The mapping
δM : S → S(generic M) transforms s into a tuple
counting the number of instances of M residing in each
local state of S(M).

Suppose that the module types for P are, for some d > 0,
M1,M2, . . . ,Md, and let s = (sglobal , slocal) ∈ S. Then
we define δ(s) = (sglobal , δM1(s), δM2(s), . . . , δMd(s)).
We therefore have δ(s)global = sglobal and δ(s)local =
(δM1(s), δM2(s), . . . , δMd(s)).

We use the function δ to give a list of properties of our
translation method (see [14] for proofs).

1) If e has the form symm-expr then eval(s, e) =
eval(δ(s), h(e)). If e is boolean then s |= e⇔ δ(s) |=
h(e).

2) If e has the form expr(Mi) and Mi has local state l at
s then eval(s, e) = eval(δ(s), h(e, l)). If e is boolean
then s |= e⇔ δ(s) |= h(e, l).

3) If u has the form update(M) and Mi has local state
l at s then exec(δ(s), h(u, l)) = δ(exec(s, u)).

The above results allow us to prove that the reachable
parts of M(P) and M(h(P)) are isomorphic, and that
we can infer SPCTL properties of M(P) by checking
M(h(P)). (See [14] for proofs.)

Without loss of generality, in the following theorems we
consider MDPs to be restricted to reachable states.

Theorem 4: Let P be an SPSL specification. Let
M(P) = (S, s0,Steps) be the quotient MDP for M(P) =
(S, s0,Steps) w.r.t. the group Sym(M). Then δ, restricted
to S, is an isomorphism from M(P) to M(h(P)).

Theorem 1 now applies, in which γ is taken to be the
translation function h, which is indeed a bijection over the
atoms of SPCTL, i.e. expressions of the form symm-expr.

Theorem 5: M(P) |= φ⇔M(h(P)) |= h(φ).

Two extensions to our approach that have been imple-
mented and deserve note are: the relaxation of the restriction
to variable updates described above to allow updates to local
variables with expressions involving globals; and the exten-
sion of the approach to several other model types (Kripke
structions, Discrete Time Markov Chains and Continuous
Time Markov Chains). We do not include details here for
space reasons.

C. Running example

Fig. 4 shows the generic version of the running exam-
ple of Fig. 2. Counter variables count master j and
count worker j are abbreviated to m_j and w_j, respec-
tively. There are two counter variables for the generic master
process, since there are two possible master local states, (T )
and (F ) depending whether boolean local variable active
is true or false. Similarly, there are four worker local states,
(0, F ), (0, T ), (1, F ), (1, T ), corresponding to the possible
configurations of the awake and working local variables.
For each statement labelled (1) to (7) in Fig. 2, Fig. 4
contains a label associated with corresponding statements in
the reduced specification. We describe the translation process
for statements (1) and (5).

Consider statement (1) of Fig. 2. The guard for this
statement has the form ei ∧ d where e is active
and d is

∑
1≤j≤10 awakej > 0. We statically compute

SATmaster(active) = {(T )}, where (T ) = l, say. We
have fmaster(l) = 2, so we output a single generic statement
with guard m_2 > 0 ∧ h(d, l). According to the translation
rules of Fig. 3, h(d, l) reduces to h(d′) > 0, where d′ is
the sum of the expression awake over all worker modules.
The translated expression h(d′) is a linear combination over
the counter variables representing worker local states. For
worker local state m, the linear combination includes the
term eval(m,awake)∗w_fworker(m). This is the contribu-
tion to the original sum for every worker module in state m.
Thus for m = (0, F ) we output the term 0 ∗ w_1 because
eval(m,awake) = 0 and fworker(m) = 1. For m = (1, T )
we have fworker(m) = 4 and eval(m,awake) = 1,
resulting in the term 1 ∗ w_4. The complete generic guard
is shown in statement (1) of Fig. 4. (A constant folding
optimization can be used to simplify this guard by removing



globals { m_to_w [0..5] init 0 }
module generic_master[1] {

m_1 : [0..3] init 0 // num. masters in state (F)
m_2 : [0..3] init 3 // num. masters in state (T)

(1) m_2 > 0 ∧ 0 ∗ w_1+ 0 ∗ w_2+ 1 ∗ w_3+ 1 ∗ w_4 > 0
∧ m_to_w<5 → 0.5:(m_to_w:=m_to_w + 1) +

0.5:skip
(2) m_2 > 0 ∧ 0 ∗ w_1+ 0 ∗ w_2+ 1 ∗ w_3+ 1 ∗ w_4 = 0
→ 1:(m_2:=m_2− 1) ‖ (m_1:=m_1+ 1)

(3) m_1 > 0→ 1:skip
}
module generic_worker[1] {

w_1 : [0..10] init 0 // num. workers in state (0,F)
w_2 : [0..10] init 0 // num. workers in state (0,T)
w_3 : [0..10] init 10 // num. workers in state (1,F)
w_4 : [0..10] init 0 // num. workers in state (1,T)

(4) w_3 > 0 ∧ m_to_w > 0→ 1:(w_3:=w_3− 1)
‖ (w_4:=w_4+ 1) ‖ (m_to_w:=m_to_w− 1)

(5) w_2 > 0→ 1:(w_2:=w_2− 1) ‖ (w_1:=w_1+ 1)
w_4 > 0→ 1:(w_4:=w_4− 1) ‖ (w_3:=w_3+ 1)

(6) w_3 > 0→
0.1:(w_3:=w_3 − 1) ‖ (w_1:=w_1 + 1) +

0.9:skip
(7) w_1 > 0→ 1:skip

w_2 > 0→ 1:skip
}

Figure 4. Generic SPSL specification corresponding to the master/worker
specification of Fig. 2.

redundant multiplications by zero and one.) The stochastic
update associated with the reduced statement is the same
as for the original, since the update does not modify local
state. Note that the probability distribution is passed through
unchanged.

The guard for statement (5) in Fig. 2, for a worker module,
can be re-written as workingi ∧ true, which has the
form local-expr(worker)i ∧ expr(workeri). We compute
SATworker(working) = {(0, T ), (1, T )} and generate a
generic statement for each of these local states. Considering
the second local state, (1, T ) = l say, we have fworker(l) =
4, so the generic guard is w_4 > 0 ∧ true, or just
w_4 > 0. The stochastic update associated with the state-
ment consists of one local update, workingi := 0. Given
that the worker module executing this update is in local
state l = (1, T ), after the update the worker has local state
m = (1, F ). Since fworker(l) = 4 and fworker(m) = 3, the
generic update involves decrementing w_4 and incrementing
w_3.

Recall the SPCTL property for the master/worker specifi-
cation presented at the end of Section III-D. We convert this
property to generic form by applying the translation function
h to each subformula of the form symm-expr. Subformula
m_to_w > 0 is left unchanged by h. Continuing to use the
abbreviations m_j and w_j, we have:

h(
∧

1≤j≤10 awakej = 0)

= (
∑

l∈SATworker(awake=0)
w_fworker(l) = 10)

= (
∑

l∈{(0,F ),(0,T )} w_fworker(l) = 10)
= (w_fworker((0, F )) + w_fworker((0, T )) = 10)
= (w_1+ w_2 = 10)

Thus the generic SPCTL formula is:
P<0.01[ ♦ (m_to_w > 0 ∧ w_1+ w_2 = 10)].

V. EXPERIMENTAL RESULTS

We have implemented our techniques in a tool, GRIP
(Generic Representatives in PRISM). It accepts a PRISM
specification conforming to a syntax analogous to SPSL,
and outputs a generic specification for model checking with
PRISM. GRIP supports MDP, DTMC and CTMC specifica-
tions, with associated symmetric temporal properties.

We apply GRIP to seven case studies: Aspnes & Herlihy’s
randomised consensus protocol (consensus); a randomised
Byzantine agreement protocol (byzantine); the randomised
mutual exclusion protocols of Pnueli & Zuck (mutex) and
Rabin (rabin); a simplified model of the Fibroblast Growth
Factor signalling pathway (fgf ); a peer-to-peer protocol
based on BitTorrent (peer2peer); and Dolev et al.’s mini-
mum space shared memory leader election protocol (leader).
All models, properties and references, as well as binary and
source code versions of GRIP, can be found at [15].

We compare the performance of GRIP with PRISM and
PRISM-symm [10], a symmetry reduction tool, implemented
in PRISM, that constructs a symbolic (MTBDD) represen-
tation for the unreduced model and then performs symmetry
reduction at the level of the MTBDD data structure. Experi-
ments were performed on a 2.40 GHz PC with 2 GB RAM,
running PRISM version 3.2 under Linux.

A. Results

Experimental results are shown in Fig. 5. For each family
of specifications, #M denotes the number of symmetric
modules in a particular specification and |S(M)| the num-
ber of local states of each symmetric module (all of our
examples consist of multiple instances of a single module
type).

Columns 3–7 give the sizes of the unreduced and reduced
models (produced by either GRIP or PRISM-symm) and the
model storage requirements. The latter is given in terms of
the number of nodes in the MTBDD used by PRISM to
represent the model (one node uses 20 bytes of storage).

Columns 8-13 give the time required to build each model
and perform probabilistic model checking. For the model
building process, all three tools start from the same high-
level model specification. For PRISM, this specification is
translated into an MTBDD representation of the correspond-
ing probabilistic model, the set of all reachable states is com-
puted, and all unreachable states are removed. PRISM-symm
performs the same model construction process, and then
applies symmetry reduction to the MTBDD representation.
GRIP first applies the language-level symmetry reduction



process described in this paper then passes the resulting
generic model specification to PRISM for construction. The
models constructed by each tool are model checked using
PRISM, applying the fastest available technique of the tool.

B. Discussion

As is clearly illustrated by the table in Fig. 5, the reduc-
tions in state-space provided by symmetry reduction are
substantial. This has a significant effect on the efficiency
or feasibility of applying probabilistic model checking. This
is because, in many cases, when numerical computations
are performed on the model, storage proportional to the
number of states is required (even when using compact,
symbolic techniques to store the model itself). For some
examples symmetry reduction permits verification where it
was previously impossible due to insufficient memory or
prohibitively long solution times.

Another important factor for the efficiency of model
checking is the size of the MTBDD representing the model.
In 4 out of 7 case studies, GRIP produces a smaller MTBDD
than both PRISM and PRISM-symm. In other cases both
GRIP and PRISM-symm produce a larger MTBDD than
PRISM, despite the much smaller state-space. This is caused
by the loss of regularity in the probabilistic model, once
symmetric states have been collapsed.

From Fig. 5, we see that in terms of model construction
time GRIP also performs better than the other tools on 4 out
of 7 examples. In two cases GRIP performs poorly – this is
due to the size of the MTBDDs produced for these models.

A comparison of GRIP and PRISM-symm in terms of
verification time is also interesting. For three case stud-
ies, model checking is much faster on the GRIP-reduced
models, despite the fact the symmetric quotient model is
the same. For two of these (consensus and byzantine) the
cause is a side-effect of the PRISM-symm reduction process
whereby duplicated probability distributions can appear in
the quotient MDP. This has no effect on the correctness of
verification, but can slow down the process. On the third
case study (rabin), the superior performance of GRIP is due
to the fact that it results in a much smaller MTBDD.

On another example (peer2peer), model checking of the
GRIP-reduced model is slower than for PRISM-symm. Here,
the large number of variables in the GRIP model results in
an MTBDD which is expensive to manipulate. Typically,
GRIP is faster for systems comprising a large number of
simple modules, whereas PRISM-symm will perform better
on a small number of more complex modules.

VI. RELATED WORK

Symmetry reduction techniques for model checking were
originally proposed in [1], [2], [3] and have been studied
extensively since (see [4] for a survey). The use of generic
representatives in model checking was proposed in [5] and

extended in [6], [16]. The approach was extended to proba-
bilistic model checking [7] via the definition of Symmetric
PRISM, a precursor to SPSL. A tool paper describing a
preliminary version of the GRIP tool appeared as [8].

Another approach to symmetry reduction for probabilistic
model checking is given in [10], which performs a model-
level reduction built into the symbolic implementation of the
PRISM tool. This approach is based on dynamic symmetry
reduction for non-probabilistic model checking [17], [18].
Language-level exploitation of symmetry has also been ex-
plored for several other probabilistic modelling formalisms,
for example, stochastic process algebrae [19], stochastic
Petri nets [20] and stochastic activity networks [21].

VII. CONCLUSIONS AND FUTURE WORK

We have introduced SPSL, a simple but general language
for specifying symmetric, probabilistic systems. We have
provided an algorithm, based on the generic representatives
approach to symmetry reduction, which translates an SPSL
specification into an equivalent generic form. This can then
be used to model check symmetric properties of the original
model, with considerable increase in efficiency thanks to
the reduced size of the generic model. SPSL is a much
richer language than those provided by existing generic
representatives techniques, allowing for example multiple
families of symmetric processes, multiple local variables per
process and complex expressions over these variables. We
have implemented our techniques in a tool, GRIP, which
targets the PRISM modelling language, and have presented
very positive results for a large set of case studies.

We plan to extend this work in a number of directions.
Firstly, some useful features of the PRISM modelling lan-
guage, notably synchronisation between modules, have not
yet been incorporated into SPSL. We hope to extend our
generic representatives approach to include these. Secondly,
the fact that these techniques are based on language-level
translations raises a number of interesting issues concerning,
for example, the provision to the user of probabilistic coun-
terexamples or optimal adversaries. Finally, we plan to inves-
tigate optimising symbolic implementations of probabilistic
model checking for generic representatives, for example
using zero-suppressed variants of binary decision diagrams.
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