
Tightening Test Coverage Metrics:
A Case Study in Equivalence Checking

using k-Induction?

Alastair F. Donaldson1, Nannan He1, Daniel Kroening1, and Philipp Rümmer2

1 Computer Science Department, Oxford University, UK
2 Uppsala University, Department of Information Technology, Uppsala, Sweden

Abstract. We present a case study applying the k-induction method to
equivalence checking of Simulink designs. In particular, we are interested
in the problem of equivalence detection in mutation-based testing: given
a design S, determining whether a “mutant” design S′ derived from S by
syntactic fault injection is behaviourally equivalent to S. In this situation,
efficient equivalence checking techniques are needed to avoid redundant
and expensive search for test cases that observe differences between S
and S′. We have integrated k-induction into our test case generation
framework for Simulink. We show, using a selection of benchmarks, that
k-induction can be effective in detecting equivalent mutants, sometimes
as a stand-alone technique, and sometimes with some manual assistance.
We further discuss how the level of automation of the method can be
increased by using static analysis to derive strengthening invariants from
the structure of the Simulink models.

1 Introduction

Mutation-based testing [20] is an effective technique for generating high-quality
test suites for software systems. The technique is based on the hypothesis that
a test capable of detecting a small, synthesized error in a program may very
likely be able to detect real defects introduced accidentally by programmers.
Applying mutation-based testing typically works as follows. A set of mutations
is identified. These are small syntactic changes to the system under test. An
example mutation might be the replacement of operator + by * at a particular
program point, or the modification of a signal in a dataflow program by injecting
a new computation block. Then, a search is carried out to find a set of test cases
that kill many of the mutants: a test case kills a mutant if it exposes the fact that
the behaviours of the original and mutated system diverge. The more mutants
a test suite kills the higher the coverage of the suite, while the smaller the test
suite the more efficiently it can be executed during software development. Given
a sufficiently rich set of mutation operators, mutation coverage subsumes many

? This research is supported by the EU FP7 STREP MOGENTES (project ID ICT-
216679), the ARTEMIS CESAR project, the EU FP7 STREP PINCETTE (project
ID ICT-257647), and EPSRC grant EP/G051100.

other popular notions of coverage, such as location coverage and MC/DC for
software and stuck-at faults for hardware [24].

Ideally, we would like to be able to efficiently derive a small set of test cases
that kill all of a given set of mutants. A problem with this ideal is the possibility
of equivalent mutants. Because mutants are obtained in a lightweight, syntactic
fashion, there is no guarantee that a given mutant will in fact exhibit different
behaviour from the original system. If no such difference can ever be observed,
we say that that mutant is equivalent to the original system. Clearly, no test case
can ever kill an equivalent mutant. We do not wish to waste time attempting to
derive such test cases, and it would be unfair to regard a test suite to be of low
quality because it does not kill mutants that are actually equivalent. Thus there
is a need for techniques to automatically detect equivalence of mutants.

In previous work [5] we proposed a mutation-based test case generation ap-
proach for Simulink models. The basic idea is to inject multiple mutants into a
Simulink model to obtain a mutated design. The original and mutated designs
are automatically translated into an ANSI-C program that runs the designs in-
step, asserting that they are observationally equivalent. Then, bounded model
checking (BMC) [3] using a tool such as Cbmc [6] is performed to check whether
the designs really are observationally equivalent up to a given execution depth.
Bounded equivalence is checked using a SAT solver like MiniSat, such that non-
equivalence is detected when the solver finds a satisfying assignment to the as-
sociated SAT problem. Such satisfying assignments are used to derive test cases
to kill the injected mutants.

While effective, this BMC-based approach is expensive, thus we would like
to avoid applying it to injected mutants which are equivalent. In this work, we
present a case study using the k-induction method [26] for equivalence checking
in the Simulink domain. We show, using a selection of benchmarks, that k-
induction can be effective in detecting equivalent mutants, sometimes as a stand-
alone technique, and sometimes with some manual assistance. We further discuss
how the level of automation of the method can be increased by using static
analysis to derive strengthening invariants from the structure of the Simulink
models.

2 Mutation-based Test Case Generation for Simulink

2.1 Matlab Simulink

Matlab Simulink is a graphical dataflow language that is commonly used in
industry for modeling or implementing control applications. Simulink models
consist of a set of blocks that are connected by signals specifying the flow of data.
Blocks are taken from pre-defined block libraries (covering generic functions such
as addition or logical operators, but also domains like fuzzy logic or network
communication) and receive a specific number of input signals from which output
signals are computed. Stateful systems are modeled with the help of feedback
loops. Models can be structured hierarchically with the help of subsystems, and

2

1
In1

In2 1/z

+

-
1

Out1

Switch

delay

Add

(a) Original Simulink model

2

1
In1

In2 1/z

+

-
1

Out1

Switch

delay

Add
-

|U|

Abs

(b) Mutated Simulink model

Fig. 1. Example of a mutated Simulink model

can be simulated, analyzed, or compiled to code using the Matlab tool-suite and
third-party products.

For the purposes of this paper, we only consider discrete-time Simulink mod-
els, which means that signals represent (potentially infinite) streams of values
governed by a global clock. The semantics of blocks is synchronous in the sense
that every block is evaluated and performs exactly one computation step per
time unit. As a whole, a Simulink program receives a number of (potentially
infinite) streams of input values (specified using inports in the Simulink model)
and generates a number of output streams (described using outports).

An example of a Simulink model is given in Fig. 1(a). This model has two
inports In1, In2, and one outport Out1. The inputs are connected to a Switch
(a multiplexer) that forwards either In1 or the output of delay, depending on
the value of In2. The unit-delay block delay is responsible for storing the output
of Switch for one time unit, thus preventing a cyclic definition caused otherwise
by the feedback loop from Switch to itself. All instances of the unit-delay block
must be initialized. The default initialization value is 0. The block Add (actually
performing subtraction) computes the difference between the results of Switch
and delay and feeds it to the outport Out1.

2.2 Mutation-based Test Case Generation

In this paper, we consider test case generation (TCG) strategies for Simulink
models built on top of the mutation-based TCG approach defined in [5], which
uses bounded model checking techniques to systematically construct test cases.
Mutation-based TCG proceeds by injecting syntactic mutations (in this context
sometimes also called faults) into a given Simulink model S, generating from S
a set M of mutants. We use S′ to refer to a mutant in M .

Fig. 1 is an example mutant derived from the Simulink model of Fig. 1(a). In
the mutant, the output of Switch is replaced by its absolute value before being
input to Add. Assume that an input has the form (In1 , In2), where In2 causes
the top input of Switch to be selected if it is 1, otherwise the bottom input is to
be selected; and initial outputs for all unit delay blocks are 1. An example input
sequence 〈(1, 1), (−1, 1)〉 leads to the output sequence of Fig. 1(a) as 〈0, -2〉,
while applied to Fig. 1(b), the output sequence is 〈0,0〉 (recall that, as discussed
in §2.1, the Add blocks of Fig. 1 actually perform subtraction). The difference
in final values for these output sequences, highlighted in bold, indicates that the
models behave differently.

The goal of TCG is to find a set of test cases (finite sequences of inputs for
the model S) that kill each of the mutants in M , which means that the test case
makes a mutant S′ ∈ M produce outputs that differ from those of the original
model S. For example, as argued above, the test case {((1, 1), (−1, 1))} kills
the mutant of Fig. 1. The main hypothesis underlying mutation testing is that
such test cases, which are able to detect simple bugs like the injected syntactic
mutations, are also useful for finding real, potentially more complicated defects
(this is called the coupling effect [9]).

In the style of bounded model checking [2], both the original model S and each
of its mutants S′ ∈M can abstractly be modeled using transition relations T and
T ′ and formulae I, I ′ defining the initial states. Like in equivalence checking [21],
observational equivalence of S and S′ during the first d computation steps can
then be expressed using the following formula:

I(s0) ∧
d−1∧
i=0

T (si, si+1)︸ ︷︷ ︸
first model

∧ I ′(s′0) ∧
d−1∧
i=0

T ′(s′i, s
′
i+1)︸ ︷︷ ︸

second model

∧
d∧

i=0

si.i = s′i.i︸ ︷︷ ︸
equality of all inputs

⇒
d∧

i=0

si.o = s′i.o︸ ︷︷ ︸
equality of all outputs

(1)

Any countermodel to this formula represents two executions of S and S′ that
yield a different output sequence; the projection of the assignment to the inputs
corresponds to a test case. As most Simulink models operate on scalar datatypes
such as integers or floating-point arithmetic, and therefore have a finite state
space, countermodels can be constructed using SAT/SMT-based techniques.

2.3 From Simulink to C: Our Test Case Generation Tool Chain

Due to the complexity of the Simulink language and the size of commonly used
block type libraries, the development of analysis tools directly operating on
Simulink models is a huge effort. We therefore follow a compilation approach and
convert Simulink models to C programs prior to test case generation. Further
processing can then be performed by ANSI-C analysis tools, in our case based on

// Declaration of inputs

signal_type in0 , in1 , ...;

// Declaration of internal signals

signal_type sig0 , sig1 , ..., sig0_m , sig1_m , ...;

// Declaration of outputs

signal_type out0 , out1 , ... out0_m , out1_m , ...;

int main () {

// The main simulation loop

for (sim_time=START; sim_time <END; sim_time += sim_step) {

// Reading inputs

in0 = readInput0 (); in1 = readInput1 (); ...

// Execution of the original model S

sig0 = ...; sig1 = ...; ...

out0 = ...; out1 = ...; ...

// Execution of the mutant S’

sig0_m = ...; sig1_m = ...; ...

out0_m = ...; out1_m = ...; ...

// (*)

}

}

Fig. 2. Skeleton of C code generated from Simulink models

the Cbmc [6] bounded model checker. For the compilation from Simulink to C,
we use two different tools: our own Simulink front-end [5], which is tightly inte-
grated with Cbmc and optimised for static analysis (applied to the generated C
programs); and Gene-Auto [27], an industrial-grade open-source code generator
for Simulink.

In our experiments, mutations are always applied at the level of Simulink
models (rather than, as would also be possible, at the level of the C code gener-
ated from a Simulink model):

1. a given Simulink model S is first duplicated (cloned) by creating a copy S′

of S connected to the same input ports as S.
2. the clone S′ is mutated by inserting a further computation block into one

of the signals of S′. The mutation operators considered in this paper are
described in Sect. 5; the work presented here directly generalises to further
mutation operators.

Examples of the resulting models are given in Fig. 5.
Compiling Simulink models to C results in programs of the structure shown

in Fig. 2. The type signal_type will practically be either int or float (in our

experiments, the former). Note that the program can contain multiple, nested
loops in addition to the main simulation loop, since the code generated for the
models S and S′ might itself contain loops. Loops other than the main simulation
loop are, however, usually bounded.

assert(out0 == out0_m && out1 == out1_m && ...); // (*)

Fig. 3. Assertion relating the outputs of the original and mutated Simulink models.
Counterexamples that violate this assertion provide test vectors that kill the mutant

In order to generate test cases, an assertion relating the different outputs is
added at (*) in Fig. 2; the added assertion is shown in Fig. 3. Counterexamples
demonstrating that the assertion (*) can be violated represent test cases killing
the considered mutant. Such counterexamples can effectively be constructed us-
ing bounded model checkers such as Cbmc [6]. The tool Cover [5] automates
this process and produces test cases in an XML-based format.

2.4 The Phenomenon of Equivalent Mutants

Not all mutations give rise to observably different behaviour of a model. In
fact, one of the main obstacles in traditional mutation testing is the difficulty of
identifying mutations that do not have an observable effect on system outputs.
Suppose formula (1) from §2.2 is valid for some d, which means that the applied
mutation does not result in an error that propagates to an observable output
within d steps. There are two possible reasons for this:

1. The bound d is not sufficiently large to reveal the error.
2. The model contains redundancy and the mutation does not result in an

observable change of its behaviour. In other words, (1) is valid for any d.
The mutant is in this case called an equivalent mutant.

The first case could be addressed by simply increasing the bound d. However,
bounded model checking alone is not sufficient to distinguish between the two
cases, since there is no upper bound (or only prohibitively large bounds, taking
the usually finite state space of a Simulink program into account) on the values
of d that have to be considered. In order to detect case 2, it is therefore necessary
to apply techniques beyond bounded model checking; the approach evaluated in
this paper is based on strong versions of induction and inductive invariants.

3 Detection of Equivalent Mutants using k-Induction

The k-induction method was proposed as a technique for SAT-based verification
of finite-state transition systems [26], and has been used successfully to verify

complex hardware designs, in particular pipelined architectures. Recently, k-
induction has also been applied in the verification of imperative software [12,
13]. In this paper, we consider applying the software formulation of k-induction
proposed in [12, 13] to detect mutant equivalence in the C programs generated
via the technique described in Sect. 2.3.

3.1 k-Induction for Transition Systems

Let I(x) and T(x, y) be formulae encoding the initial states and transition rela-
tion for a system over sets of state variables x and y, P(x) a formula representing
states satisfying a safety property, and k a non-negative integer. To prove P by
k-induction one must first show that P holds in all states reachable from an
initial state within k steps, i.e., that the following formula (the base case) is
unsatisfiable:

I(s1) ∧T(s1, s2) ∧ · · · ∧T(sk−1, sk) ∧ (P(s1) ∨ · · · ∨P(sk)) (2)

Secondly, one must show that whenever P holds in k consecutive states
s1, . . . , sk, P also holds in the next state sk+1 of the system. This is estab-
lished by checking that the following formula (the step case) is unsatisfiable:

P(s1) ∧T(s1, s2) ∧ · · · ∧P(sk) ∧T(sk, sk+1) ∧P(sk+1) (3)

Having proved both the base and step case, we can conclude that P holds
in every reachable state of the transition system. The method can be made
complete for finite-state systems by restricting the step case to consider only
loop-free paths [26].

3.2 k-Induction in Mutation-Based Testing

In the context of mutation-based testing, we can use k-induction in order to
show that (1) holds for any value of d. In this case, (1) forms the base case for
k-induction: for some d ≥ 0 we show that the original and mutated systems are
equivalent up to depth d.

To obtain a complete result, we must also prove a step case as follows:

d∧
i=0

T (si, si+1)︸ ︷︷ ︸
first model

∧
d∧

i=0

T ′(s′i, s
′
i+1)︸ ︷︷ ︸

second model

∧
d∧

i=0

si.o = s′i.o︸ ︷︷ ︸
equality of first d outputs

⇒ sd+1.o = s′d+1.o︸ ︷︷ ︸
equality of output d + 1

(4)

The step case ascertains that, given that the original and mutated systems
have exhibited equal outputs for d steps, they are guaranteed to show equivalent
outputs for a further step.

i:=0;

a:=1;

b:=2;

c:=3;

assume i < n;

assert a 6= b;

a,b,c:=b,c,a;

i++;

assume i ≥ n;

(a) Original CFG

i:=0;

a:=1;

b:=2;

c:=3;

assume i < n;

assert a 6= b;

a,b,c:=b,c,a;

i++;

assume i < n;

assert a 6= b;

a,b,c:=b,c,a;

i++;

...

assume i < n;

assert a 6= b;

a,b,c:=b,c,a;

i++;

k

assume i ≥ n;

(b) Base case

i,a,b,c:=*;

assume i < n;

assume a 6= b;

a,b,c:=b,c,a;

i++;

assume i < n;

assume a 6= b;

a,b,c:=b,c,a;

i++;

...

assume i < n;

assume a 6= b;

a,b,c:=b,c,a;

i++;

assume i < n;

assert a 6= b;

a,b,c:=b,c,a;

i++;

assume i ≥ n;

k

(c) Step case

Fig. 4. A simple program, and the corresponding base and step cases for k-induction

3.3 k-Induction for Software Programs

In prior work [12, 13] we investigated a direct lifting of k-induction from transi-
tion systems to the level of program loops, in order to prove partial correctness
of software programs with respect to assertions appearing in the program text.

Because we translate Simulink designs into C, it is this formulation of k-
induction, rather than the transition system-level formulation outlined in §3.1
and §3.2, that we use to implement k-induction for detection of equivalent mu-
tants. Our software k-induction method can directly be applied to programs such
as the one shown in Fig. 2.

The formal definition of our k-induction rule for programs is quite complex,
but the intuition is simple. We shall explain the idea using an example, referring
the reader to [12, 13] for formal details.

We apply k-induction to a single loop in a program. Consider the example
program of Fig. 4(a), depicted as a control flow graph (CFG), where flow of
control is modelled using assume statements. (In particular, note that the loop
condition i < n is modelled by assuming that this expression holds on entry to
the loop, and assuming that its negation holds on loop exit.)

We wish to prove that the assertion in the body of the loop can never be
violated. This could be achieved using standard techniques by showing that
a 6= b ∧ a 6= c ∧ b 6= c is an inductive invariant for the loop, and that it im-
plies the assertion a 6= b of interest. However, with k-induction, we can prove
this example correct without providing an external loop invariant. Instead, the
assertion appearing in the loop body takes the role of an invariant.

From the CFG of Fig. 4(a), we derive two programs. The step case program
(Fig. 4(c)) is analogous to (3). It checks whether, after executing the loop body
successfully k times from an arbitrary state, a further loop iteration can be
successfully executed. In this further loop iteration, back edges to the loop header
are removed, while edges that exit the loop are preserved. Thus the step case
verifies that on loop exit, the rest of the program can be safely executed.

Because the program of Fig. 4(a) is indeed correct, the base case of Fig. 4(b)
is correct for any k ≥ 0. However, the step case of Fig. 4(c) is correct only for
k ≥ 3. To see that the step case does not hold for k = 2, consider the case where
n > 2 and statement i,a,b,c:=* yields i = 0, a = 1, b = 2, c = 1. From this
state, two loop iterations can be successfully executed, leading to a state where
a = 1 , b = 1 and c = 2, at which point the assertion a 6= b does not hold.

It is this program-level approach to k-induction which we employ in order to
detect equivalence of mutants in Simulink designs, applying induction to the C
programs generated from our compilation flow.

4 Automatic Invariant Strengthening

We shall see in §5 that näıve application of k-induction is not strong enough
to show equivalence of mutants in some typical cases. The intuitive reason why
k-induction might fail is that the asserted property—that the outputs generated
by the original model S and the mutant S′ are equal—is not k-inductive for
any k, since the resulting induction hypothesis gives too little information about
the internal state of the Simulink programs. In general, it can be necessary to
strengthen the invariant by adding conditions about the range of signals, or by
equations asserting that signals of the original model and of the mutants carry
the same value.

We examine two techniques to strengthen invariants automatically: abstract
interpretation, using numeric abstract domains, and van Eijk’s method to infer
equalities between signals. We evaluate both techniques experimentally in §5.

4.1 Abstract Interpretation

In prior work [10] we have investigated ways to strengthen k-induction through
static analyses, including abstract interpretation [7]. Given a control-flow graph
to be analysed, suppose we use abstract interpretation (with some suitable do-
main) to determine that an invariant φ holds on entry to node n. Then, be-
cause abstract interpretation is a sound method, we can prepend the state-
ment assume(φ) to n. In practice, we choose to prepend the statement assert(φ)

rather than assume(φ). This forces k-induction to re-check the inferred invari-
ants, guarding against the possibility of vacuous results arising from bugs in the
abstract interpreter.

By exploiting information about invariants in this way, we increase the pos-
sibility for k-induction to succeed in proving the property of interest: while the
property may not be k-inductive in general, it may be k-inductive when restricted
to the invariant obtained using abstract interpretation.

In §5 we discuss mutants that cannot be proven equivalent using k-induction
alone, but for which equivalence can be proven if abstract interpretation, over
the domain of intervals, is first used to compute a strengthening invariant.

4.2 Adaptation of van Eijk’s Method

The application of non-relational abstract domains (as in §4.1), for instance the
interval domain, can significantly increase the proof strength of k-induction when
detecting equivalent mutants. In this section, we propose a particular relational
domain that further supports k-induction through eager computation of groups
of signals that carry the same values in all executions of a Simulink model.
The technique is inspired by van Eijk’s method [15], a method for sequential
equivalence checking of hardware designs. In the original version, the method
works by computing classes of signals that have the same (or opposite) values in
all reachable states of a circuit; the computation is done using BDDs (to describe
equivalence classes of signals and the transition relation of the circuit) and fixed-
point iteration. Van Eijk’s method was combined with SAT-based verification,
St̊almarck’s method, and k-induction in [4].

The need for relational information is illustrated in Fig. 6(a), in which the
equivalence of the considered mutant can only be shown when adding the addi-
tional assertion that the output of the unit-delay block UD_m is not affected by
the applied mutation. This is done by asserting that the outputs of the blocks
UD and UD_m are equal. In this example, the use of a non-relational abstract
domain alone is not sufficient for the equivalence proof. This situation is typical
for Simulink programs with internal state that cannot completely be observed
at the program outputs.

In general, we assume that a relation

R ⊆ {sig0, sig1, . . .}︸ ︷︷ ︸
Sig

×{sig0_m, sig1_m, . . .}︸ ︷︷ ︸
Sigm

between original and mutated internal signals has been identified (where vari-
ables are named as in Fig. 2). The assertion inserted at (*) in Fig. 2 is then
strengthened to:

assert(out0 == out0_m && out1 == out1_m && ...); // (*)

{ assert(a == b); }(a,b)∈R

Let us call this stronger set of assertions A(R). If it is possible to verify A(R)
using k-induction, then also the original assertion, and thus the equivalence of
the mutant has been proven.

Algorithm 1: Iterative mutant equivalence checking

Input: C program as in Fig. 2, initial relation Rc, parameter k ≥ 0
Output: One of {Equivalent,NonEquivalent,DontKnow}
R← Rc;
/* Eliminate signal pair candidates using random simulation */

repeat
Execute Fig. 2 with assertions A(R) and random inputs;
if assertion corresponding to pair (a, b) ∈ R failed then

R← R \ {(a, b)};
else if difference in outputs observed then

return NonEquivalent;
end

until timeout ;

/* Check k-induction base case */

repeat
Check k-induction base case with assertions A(R);
if assertion corresponding to pair (a, b) ∈ R failed then

R← R \ {(a, b)};
else if difference in outputs observed then

return NonEquivalent;
end

until base case succeeded ;

/* Check k-induction step case */

repeat
Check k-induction step case with assertions A(R);
if assertion corresponding to pair (a, b) ∈ R failed then

R← R \ {(a, b)};
else if difference in outputs observed then

return DontKnow;
end

until step case succeeded ;

return Equivalent;

In order to automatically compute relationsR for which k-induction succeeds,
we propose to first identify a set Rc ⊆ Sig × Sigm of candidate pairs of signals.
Natural candidates are pairs of corresponding signals in the original Simulink
model and the mutant; such pairs are easy to compute and likely to carry the
same values. Furthermore, the number of corresponding signal pairs is only linear
in the size of the Simulink models. In some cases, it might, however, be beneficial
to start from a larger set of signal pair candidates.

As second step, Rc is refined to a set Ri ⊆ Rc by removing signal pairs that
can be shown to have different values in some executions. This is done using two
methods:

– by trying to verify the k-induction base case for the set A(Rc) of assertions.
Most likely, such a verification attempt will initially fail and report that some
of the assertions in A(Rc) could not be verified; the corresponding pairs have
to be removed from Ri.

– by random simulation of the program in Fig. 2, using the set A(Rc) of
assertions. In practice, random testing can be expected to efficiently and
quickly remove large numbers of candidate pairs from Ri.

The set Ri of remaining candidate pairs has to be refined by removing further
signal pairs until the k-induction step case succeeds. This is done by trying to
verify the k-induction step case with the set A(Ri) of assertions; if some assertion
of the step case cannot be verified, the corresponding pair (a, b) ∈ Ri is removed,
leading to the new relation Ri := Ri \ {(a, b)}. Iterating this procedure will
eventually produce the greatest relation R = Ri for which k-induction succeeds,
or will terminate with the result that the equivalence of the considered mutant
could not be proven.

Alg. 1 defines this technique more formally. The algorithm proceeds in three
phases: 1. random simulation is used to remove as many signal pair candidates
from R as possible; 2. the k-induction base case is verified, potentially ruling out
further signal pairs in R; and 3. the k-induction step case is verified, again reduc-
ing the set R as needed. For a given timeout bound for random simulation, the
algorithm is guaranteed to terminate, and outputs as result either that the con-
sidered mutant was proven to be equivalent, that the mutant is non-equivalent
(in which case it is also possible to extract a test case killing the mutant from
the algorithm), or that the equivalence check was inconclusive.

Lemma 1 (Soundness of Alg. 1). If Alg. 1 returns the result Equivalent
(NonEquivalent), the examined mutant is equivalent (not equivalent).

Lemma 2 (Completeness of Alg. 1). If Rc contains a sub-relation Rs ⊆ Rc

such that k-induction is able to verify the assertions A(Rs) for the C program in
Fig. 2, then Alg. 1 returns the result Equivalent when started with the initial
relation Rc and the parameter k.

Proof. By showing the following two properties: 1. for all relations R computed
during the execution of the algorithm, it is the case that Rs ⊆ R; and 2. as long

Out1

2

Out1_m

1

Sel_m

Sel

RO_m

>

RO

>

C3_m

0

C3

0

C2_m

3

C2

3

C1_m

1.05

C1

1.05

Abs

|u|

In1

1

(a) Stateless (combinational) model

Out1

2

Out1_m

1

UD_m
z

1

UD
z

1

Sel_m

Sel

RO_m

>

RO

>

C_m

1.05

C3_m

0

C3

0

C

1.05

Abs

|u|

In1

1

(b) Model with feedback loop

Out1

2

Out1_m

1s_m

0..5

s

0..5

UD_m

1/z

UD

1/z

RO_m

>

RO

>

C3_m

0

C3

0

Abs

|u|

In1

1

(c) Stateful model without feedback loop

Out1

2

Out1_m

1

UD_m

z

1

UD

z

1

Sel_m

Sel

C_m

1.05

C

1.05

Abs

|u|

In1

1

(d) Equivalence at the mutated location

Fig. 5. Basic mutation scenarios occurring in our Simulink benchmarks

as Rs ⊆ R during the execution of the algorithm, the result DontKnow is not
returned. ut

It can be observed that Alg. 1 can be adapted also to other classes of asser-
tions than just equations over signals; also the combination with the numeric
abstract domains in Sect. 4.1 is straightforward.

5 Experiments

In this section, we first discuss four basic equivalent mutants extracted from
larger, real-world benchmarks; we then report experimental results, and analyse
two full-size examples in detail. To translate Simulink to C we use the tool
presented in [5], as well as Gene-Auto [27]. For equivalence checking, we use
K-Inductor [11], a prototypical version of Cbmc extended with k-induction.
For our adaptation of van Eijk’s method (§4.2), we have written a script which
repeatedly invokes K-Inductor to check base and step cases.

All experiments are performed on a computer with a 3 GHz Intel Xeon CPU
and 48 GB of memory, running Linux.

5.1 Simple Examples

In Fig. 5, each model consists of a mutant (the upper part) and the original
model (the lower part). The mutant contains duplicates of all blocks in the
original model; these blocks are distinguished by the suffix m. The mutant
and the original model share the same inports. The outports Out1 m and Out1
are numbered 1 and 2 respectively, as they are distinct outports in the overall
Simulink model. The red blocks (named Abs) are the applied mutations, and
thus appear in the upper part of each model. These are inserted absolute-value
blocks. Blue blocks (whose name starts with C) are constants, labelled with
their respective values. All blocks labelled with ‘1/z’ are Unit Delays (memory
blocks) and initialised with the value 1.

It can be observed that the outputs generated by the mutants and the orig-
inal models coincide, no matter what the inputs to the models are, so that the
mutants are indeed equivalent.

In case (a), the model does not include any state-related blocks or feedback
loops, and is thus purely combinational. Using K-Inductor, we could prove the
equivalence of this mutant with k = 1.

Case (b) is more complex, since a Unit Delay block UD occurs after the
mutated location. The input of this block is connected with the output of a Switch
block Sel, carrying through either the upper or the lower input signal, depending
on whether the value of the middle input is 0 or not. The output of UD is fed back
to the switch Sel. This is a typical scenario observed in the benchmarks. Using
k-induction alone, it was not possible to prove the equivalence of the mutant,
since the step case could not be verified (for reasonable k). Verification is possible,
however, when adding an assertion like assert(Sel_m > 0 && Sel > 0) into the
generated C code, which makes the assertions in the simulation loop k-inductive
for k = 2. Abstract interpretation over intervals, as discussed in §4.1, allows this
assertion to be automatically derived.

Case (c) also includes a Unit Delay block, but is simpler because the output
of the block UD is not fed back to its input. In this case, equivalence can directly
be proven using k-induction with k = 2.

Case (d) is a special case where the mutation directly affects the output
of the model. Also in this example, equivalence can directly be proven using
k-induction with k = 2.

Two more interesting variants of this case are given in Fig. 6. We observe
that k-Induction can directly prove Fig. 6(b), but not (a). In order to verify
equivalence in (a), it is necessary to add two further assertions to the simulation
loop:

assert(UD_M == UD); assert(UD_M >= 0);

To obtain the first invariant, the adaptation of van Eijk’s method presented
in §4.2 is used: the relation Rc is initialised with all pairs of signal variables
occurring between the mutation point and outports. Algorithm 1 is then applied
to remove invalid pairs. We did not employ random simulation, the first phase of

Out

2

Out_m

1

UD_m

z

1

UD

z

1

Sel_m

Sel2_m

Sel2

Sel

C_m

1

C2_m

10

C2

10

C

1

Abs

|u|

In2

2

In1

1

(a) Nested switches

Out

2

Out_m

1

sel_m

sel

UD_m

z

1

UD

z

1

C_m

1.05

C3

2
C

1.05

Abs

|u|

In1

1

(b) Sum after switch

Fig. 6. Two cases of equivalences at mutated location

Algorithm 1, to eliminate invalid pairs; we leave this to future work. Currently,
elimination is performed solely by checking the k-induction base and step cases.

The second invariant can be derived automatically using abstract interpre-
tation over intervals as discussed in §4.1.

5.2 Larger Simulink Case Studies

In this case study, we make use of k-induction to check whether mutants in-
jected into Simulink models are equivalent. We consider four Simulink bench-
marks extracted from an industrial embedded software system used in the Euro-
pean MOGENTES project.3 This software system contains control functions to
implement steering anti catch-up in an automobile. We applied three different
mutation operators to the Simulink models:

– ABS: Insert absolute value.

3 https://www.mogentes.eu/

Table 1. Summary of experimental results

Benchmark #Blocks #Muts #S-blocks #Muts-RandT #K-ind #K-ind-IS #Ineq

CalcOffset 80 69 2 10 3 3 7
Decision 92 87 2 15 0 7 8
RecogLoc 66 40 1 11 0 5 6
Spoiler 44 36 0 5 5 5 0

– UOI: Insert negation (−, ¬) operator.
– RR: Swap relational operators <,≤, >,≥,=.

The results of proving equivalence of mutants directly using k-induction, or
after strengthening with added invariant assertions are summarised in Table 1.
For every benchmark, #Blocks reports the total number of Simulink blocks (of
the original model), while #Muts shows the number of generated mutants, each
including exactly one mutation. #S-blocks gives the number of state-related
blocks in the model (for example Unit-Delay blocks).

The #Muts-RandT column shows the number of mutants left after applying a
simple random testing approach to kill mutants. #K-Ind and #K-Ind-IS give the
number of mutants that are proved equivalent using our k-induction-based tech-
nique without and with invariant strengthening respectively (where strengthen-
ing uses abstract interpretation and our adaptation of van Eijk’s method). Note
that the number for #K-Ind-IS is always larger than that for #K-Ind, because
invariant strengthening can only increase the proof strength of our method.

The last column #Ineq reports the number of mutants which were not proved
inequivalent using random simulation, but which were shown inequivalent by
the base case of our k-induction approach. (Essentially, this means that these
mutants can be shown to be inequivalent using shallow bounded model checking.)

In all cases, we find that (#K-ind-IS + #Ineq) = (#Muts-RandT), thus our
technique is able to fully categorise mutants as equivalent or inequivalent for
this set of benchmarks.

The CalcOffset benchmark includes two Unit Delay blocks. The outputs of
these blocks are not fed back to their inputs, similar to Fig. 5(c). The experiments
show that k-induction alone is capable of proving equivalent mutants, and the
runtime of each proof is within 1 second. For the benchmarks Decision and
RecogLoc, invariant strengthening indeed increases the number of mutants that
k-induction can prove equivalent. The Spoiler benchmark model has no state-
related blocks (similar to Fig. 5(a)); all potentially equivalent mutants are indeed
proven equivalent by k-induction alone within 1 second.

Table 2 gives detailed information about mutants injected into the Deci-
sion and RecogLoc models. As shown in Table 1, none of these mutants could
be shown equivalent by k-induction alone—all required invariant strengthening.
The column #T(s) gives the runtime needed for verification, in seconds. It in-
cludes the total time for running our abstract interpreter, followed by the van
Eijk-based method of Algorithm 1 if needed (which may call K-Inductor mul-
tiple times). The column k gives the parameter k required to prove equivalence

Table 2. Experimental results of proved mutants

ID Benchmark Mutation-Type #T(s) k #Assert. v.E.

M-1 Decision ABS 1.21 2 N/A
M-2 Decision ABS 3.23 2 3/3
M-3 Decision ABS 4.15 2 5/5
M-4 Decision ABS 4.34 4 6/1
M-5 Decision ABS 1.23 3 N/A
M-6 Decision ABS 3.24 3 6/4
M-7 Decision RR 3.72 3 5/1
M-8 RecogLoc ABS 3.81 4 5/2
M-9 RecogLoc ABS 3.78 4 4/2
M-10 RecogLoc ABS 4.74 4 6/4
M-11 RecogLoc ABS 3.31 2 6/4
M-12 RecogLoc RR 3.51 2 6/4

of a mutant. The last column shows the number of signal-equivalence invariant
assertions which were added by the van Eijk-based method of Algorithm 1, if
this strengthening is necessary. For example, for the mutant M-1, “N/A” means
that k-induction strengthened with abstract interpretation is sufficient to prove
the equivalence, without invoking our adaptation of van Eijk’s method. In con-
trast, for mutant M-6, “6/4” reports that six potential assertions are identified
by the van Eijk technique, and four of them are proved to be invariants and
used in strengthening k-induction. Overall, the experiments show that most of
these equivalent mutants (10 out of 12) require strengthening with both abstract
interpretation and our adaptation of van Eijk’s method in order for k-induction
to succeed. We did not find any cases among the Decision or RecogLoc mutants
where the van Eijk technique allowed equivalence to be proven without abstract
interpretation also being applied.

6 Related Work

Mutation-based test case generation. The concept of mutation testing was first
introduced in 1971 in Richard Lipton’s class term paper “Fault diagnosis of com-
puter programs.” Since then, it has become a standard method for evaluating
the quality of test suites and been applied to software systems of considerable
size, see [20] for a broad survey. In this paper, we only consider mutant mod-
els with single mutations, whereas other authors also consider combinations of
faults [22]. In [25], Ruthermel et al. propose to use mutations to prioritise test
cases to increase a test suite’s rate of fault detection.

This work is partly based on our framework [5] for test case generation for
Simulink. An optimisation of the framework, applying formal concept analysis
to cluster mutants, has been described in [19].

k-Induction. The concept of k-induction was first published in [26, 4], targeting
the verification of hardware designs represented by transition relations (although

the basic idea had already been used in earlier implementations [23] and a version
of one-induction used for BDD-based model checking [8]). A major emphasis of
these two papers is on the restriction to loop-free or shortest paths, which is so
far not considered in our k-induction rule due to the size of state vectors and
the high degree of determinism in software programs. Several optimisations and
extensions to the technique have been proposed, including property strengthen-
ing to reduce induction depth [28], improving performance via incremental SAT
solving [14], and verification of temporal properties [1].

Besides hardware verification, k-induction has been used to analyse syn-
chronous programs [18, 16], SystemC designs [17] and imperative software [12,
13]. A combination of the k-induction rule of [12, 13], abstract interpretation,
and domain-specific invariant strengthening techniques for race analysis is the
topic of [10].

7 Conclusions and Future Work

We have presented a case study in the application of k-induction to the prob-
lem of detecting equivalent mutants in mutation-based test case generation for
Matlab Simulink. Our experiments show that k-induction shows promise in this
area, proving successful in equivalence detection for a range of examples, some-
times as a stand-alone technique, but often requiring assistance from other static
analyses: abstract interpretation over intervals, and an adaptation of van Eijk’s
method for sequential equivalence checking. The experiments also show that
strong versions of induction, such as k-induction with k > 1, are beneficial for
equivalence proofs: several of our example proofs could only be conducted with
k ≥ 2.

Future work will involve completing the implementation of the van Eijk-
based method by using random simulation to eliminate invalid pairs of signal
variables, and analysing the effectiveness of our method over a larger class of
Simulink designs.

References

1. Armoni, R., Fix, L., Fraer, R., Huddleston, S., Piterman, N., Vardi, M.Y.: SAT-
based induction for temporal safety properties. Electr. Notes Theor. Comput. Sci.
119(2), 3–16 (2005)

2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58, 118–149 (2003)

3. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). LNCS, vol. 1579, pp. 193–207. Springer (1999)

4. Bjesse, P., Claessen, K.: SAT-based verification without state space traversal. In:
Formal Methods in Computer-Aided Design (FMCAD). pp. 372–389. Springer
(2000)

5. Brillout, A., He, N., Mazzucchi, M., Kroening, D., Purandare, M., Rümmer, P.,
Weissenbacher, G.: Mutation-based test case generation for Simulink models. In:
Formal Methods for Components and Objects (FMCO). LNCS, vol. 6286, pp. 208–
227. Springer (2009)

6. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
LNCS, vol. 2988, pp. 168–176. Springer (2004)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages (POPL). pp. 238–252. ACM (1977)

8. Déharbe, D., Moreira, A.M.: Using induction and BDDs to model check invariants.
In: CHARME. IFIP Conference Proceedings, vol. 105, pp. 203–213. Chapman &
Hall (1997)

9. DeMillo, R., Lipton, R., Sayward, F.: Hints on test data selection: Help for the
practicing programmer. Computer 11(4), 34 –41 (April 1978)

10. Donaldson, A.F., Haller, L., Kroening, D.: Strengthening induction-based race
checking with lightweight static analysis. In: Verification, Model Checking, and
Abstract Interpretation (VMCAI). LNCS, Springer (2011)

11. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using
k-induction. In: Proceedings of the 18th International Static Analysis Symposium
(SAS’11). Lecture Notes in Computer Science, Springer (2011), to appear

12. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of scratch-pad
memory code for heterogeneous multicore processors. In: Esparza, J., Majumdar,
R. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
LNCS, vol. 6015, pp. 280–295. Springer (2010)

13. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of DMA races
using model checking and k-induction. Formal Methods in System Design (2011)

14. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr.
Notes Theor. Comput. Sci. 89(4) (2003)

15. van Eijk, C.A.J.: Sequential equivalence checking without state space traversal. In:
Proceedings of the conference on Design, automation and test in Europe (DATE).
pp. 618–623. IEEE (1998)

16. Franzén, A.: Using satisfiability modulo theories for inductive verification of Lustre
programs. Electr. Notes Theor. Comput. Sci. 144(1), 19–33 (2006)

17. Große, D., Le, H.M., Drechsler, R.: Proving transaction and system-level prop-
erties of untimed SystemC TLM designs. In: MEMOCODE. pp. 113–122. IEEE
Computer Society (2010)

18. Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with
SMT-based techniques. In: FMCAD. pp. 109–117. IEEE (2008)

19. He, N., Rümmer, P., Kroening, D.: Test-case generation for embedded Simulink
via formal concept analysis. In: Proceedings of DAC (2011)

20. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering (TSE) (2010)

21. Kuehlmann, A., van Eijk, C.A.J.: Combinational and sequential equivalence check-
ing. In: Logic Synthesis and Verification, pp. 343–372. Kluwer International Series
in Engineering and Computer Science Series, Kluwer (2002)

22. Kupferman, O., Li, W., Seshia, S.A.: A theory of mutations with applications to
vacuity, coverage, and fault tolerance. In: Formal Methods in Computer-Aided
Design (FMCAD). pp. 1–9. IEEE (2008)

23. Lillieroth, C.J., Singh, S.: Formal verification of FPGA cores. Nord. J. Comput.
6(3), 299–319 (1999)

24. Offutt, J., Voas, J.M.: Subsumption of condition coverage techniques by mutation
testing. Tech. Rep. ISSE-TR-96-01, George Mason University (1996)

25. Ruthruff, J.R., Burnett, M.M., Rothermel, G.: Interactive fault localization tech-
niques in a spreadsheet environment. IEEE Transactions on Software Engineering
(TSE) 32(4), 213–239 (2006)

26. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induc-
tion and a SAT-solver. In: Formal Methods in Computer-Aided Design (FMCAD).
LNCS, vol. 1954, pp. 108–125. Springer (2000)

27. Toom, A., Izerrouken, N., Naks, T., Pantel, M., Kai, O.S.Y.: Towards reliable code
generation with an open tool: Evolutions of the Gene-Auto toolset. In: Proceedings,
Embedded Real Time Software and Systems (ERTS) (2010)

28. Vimjam, V.C., Hsiao, M.S.: Explicit safety property strengthening in SAT-based
induction. In: VLSID. pp. 63–68. IEEE (2007)

