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Abstract. Intel’s Threading Building Blocks (TBB) provide a high-level abstrac-
tion for expressing parallelism in applications without writing explicitly multi-
threaded code. However, TBB is only available for shared-memory, homoge-
neous multicore processors. Codeplay’s Offload C++ provides a single-source,
POSIX threads-like approach to programming heterogeneous multicore devices
where cores are equipped with private, local memories—code to move data be-
tween memory spaces is generated automatically. In this paper, we show that the
strengths of TBB and Offload C++ can be combined, by implementing part of the
TBB headers in Offload C++. This allows applications parallelised using TBB
to run, without source-level modifications, across all the cores of the Cell BE
processor. We present experimental results applying our method to a set of TBB
programs. To our knowledge, this work marks the first demonstration of programs
parallelised using TBB executing on a heterogeneous multicore architecture.

1 Introduction

Concurrent programming of multicore systems is widely acknowledged to be challeng-
ing. Our analysis is that a significant proportion of the challenge is due to the following:

Thread management: It is difficult to explicitly manage thread start-up and clear-
down, inter-thread synchronization, mutual exclusion, work distribution and load bal-
ancing over a suitable number of threads to achieve scalability and performance.

Heterogeneity: Modern multicore systems, such as the Cell [1], or multicore PCs
equipped with graphics processing units (GPUs) consist of cores with differing instruc-
tion sets, and contain multiple, non-coherent memory spaces. These heterogeneous fea-
tures can facilitate high-performance, but require writing duplicate code for different
types of cores, and orchestration of data-movement between memory spaces.

Threading Building Blocks (TBB) [2] is a multi-platform C++ library for program-
ming homogeneous, shared-memory multicore processors using parallel loop and re-
duction operations, pipelines, and tasks. These constructs allow the user to specify what
can be safely executed in parallel, with parallelisation coordinated behind-the-scenes in
the library implementation, thus addressing the above thread management issues.
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void SerialUpdateVelocity() {
for(int i=1; i<Height-1; ++i)
for(int j=1; j<Width-1; ++j)

V[i][j] = D[i][j]*(V[i][j]+L[i][j]*
(S[i][j]-S[i][j-1]+T[i][j]-T[i-1][j]));

}

Fig. 1: A serial simulation loop

Offload C++ [3] extends C++ to address heterogeneity. Essentially, Offload C++
provides single source, thread based programming of heterogeneous architectures con-
sisting of a host plus accelerators. Thread management must be handled explicitly, but
code duplication and movement of data between memory spaces is handled automati-
cally. Offload C++ for the Cell processor under Linux is freely available [4].

In this paper, we combine the strengths of TBB and Offload C++ by implementing
the crucial TBB parallel for construct. This allows applications that use these constructs
to run, without source-level modifications, across all cores of the Cell BE architecture.

We also discuss data-movement optimisations for Offload C++, and describe the
design of a portable template-library for bulk data-transfers. We show that this template-
library can be integrated with TBB applications, providing optimised performance when
Offload C++ is used on Cell. We evaluate our approach experimentally using a range of
benchmark applications. In summary, we make the following contributions:

– We describe how an important fragment of TBB implemented using Offload C++
allows a large class of programs to run across all the cores of the Cell architecture

– We show how performance of TBB programs on Cell can be boosted using a
portable template-library to optimise data-movement

– We demonstrate the effectiveness of our techniques experimentally

2 Background

The TBB parallel_for construct. We illustrate the parallel_for construct us-
ing an example distributed with TBB that simulates seismic effects. Figure 1 shows
a serial loop. In Figure 2 the loop body is expressed as a C++ function object whose
operator() method can process elements in a given range. The parallel_for func-
tion template takes a function object and an iteration space parameter. When invoked,
the function object is applied to each element in the iteration space, typically in parallel.
The programmer specifies neither the number of threads nor tasks.
Offload C++. The central construct of Offload C++ is the offload block, a lexical scope
prefixed with the __offload keyword. In the Cell BE implementation of Offload C++,
code outside an offload block is executed by the host processor (PPE). When an of-
fload block is reached, the host creates an accelerator (SPE) thread that executes the
code inside the block. This thread runs asynchronously, in parallel with the host thread.
Multiple SPE threads can be launched concurrently via multiple offload blocks. Each
offload block returns a handle, which can be used to wait for completion of the associ-
ated SPE thread. For full details, see [3].



struct UpdateVelocityBody {
void operator()( const blocked_range<int>& r ) {

for(int i=r.begin(); i!=r.end(); ++i)
for(int j=1; j<Width-1; ++j)
V[i][j] = D[i][j]*(V[i][j]+L[i][j]*
(S[i][j]-S[i][j-1]+T[i][j]-T[i-1][j]));

} };
void ParallelUpdateVelocity() {
parallel_for(blocked_range<int>(1, Height-1), UpdateVelocityBody());

}

Fig. 2: Simulation loop body as a C++ function object, executable using parallel_for

3 Offloading TBB parallel loops on the Cell BE architecture

The example of Figure 2 demonstrates the ease with which TBB can parallelise regu-
larly structured loops. TBB does not however support heterogeneous architectures such
as the Cell BE. We now show that, by implementing the parallel_for construct in
Offload C++ we can allow the code of Figure 2 to execute across all cores of the Cell.
The key observation is that TBB tasks are an abstraction over a thread-based model of
concurrency; of the kind provided by Offload C++ for heterogeneous architectures.

We implement the parallel loop templates of TBB to distribute loop iterations across
both the SPE and PPE cores of the Cell. These template classes are included in a small
set of header files compatible with the Offload C++ compiler. Figure 3 shows a simple
version of parallel_for, while parallel_reduce can be implemented similarly.

The implementation in Figure 3 performs static work division. Multiple distinct im-
plementations with different static and dynamic work division strategies across subsets
of the available cores can be achieved via additional overloads of the run function. Dy-
namic work division is achieved by partitioning the iteration space dynamically to form
a work queue, guarded by a mutex, from which the worker threads obtain work units.
This provides dynamic load balancing, as workers with less challenging work units are
able to perform more units of work. Overloaded versions of parallel_for allow the
user to select a specific work partitioner, e.g. to select static or dynamic work division.

Work division between the SPE cores and the PPE core is performed in the run

method of the internal::start_for template. Offload’s automatic call graph du-
plication makes this straightforward, despite the differences between these cores: in
Figure 3, local_function is called on both the SPE (inside the offload block) and
PPE (outside the offload block) without modification to the client code.

In Figure 3, NUM_SPES holds the number of SPEs available to user programs. To use
all the cores, we divide work between NUM_SPES+1 threads. One thread executes on the
PPE, the others on distinct SPEs. The body of run spawns offload threads parameterised
with a sub-range and the function object to apply; it then also applies the function object
to a sub-range on the PPE, before finally awaiting the completion of each offload thread.

When passing function objects into class and function templates, the methods to in-
voke are known statically. Therefore, the Offload C++ compiler is able to automatically
compile the function object operator() routine for both SPE and PPE, and generate
the data transfer code needed to move data between global and SPE memory [3].



template<typename Range, typename Body>
void parallel_for( const Range& range, const Body& body ) {
internal::start_for<Range,Body>::run(range,body);

}

template<typename Range, typename Body>
struct start_for<Range, Body> {
static void run( const Range& range, const Body& body ) {

typedef Range::const_iterator iter;

unsigned NUM_SPES = num_available_spes();
iter start = range.begin(); // Simple 1D range work division
iter end = range.end();
iter chunksize = (end - start)/(NUM_SPES+1);
offloadThread_t handles[NUM_SPES];
const Body local_body = body;

for (int i = 0; i < NUM_SPES; ++i) {
iter local_begin = start + chunksize*i;
iter local_end = local_begin + chunksize;

if (local_end > end) local_end = end;
Range local_range(local_begin,local_end);
handles[i] = __offload(local_body, local_range) { // Sub-range offloaded
local_body(local_range); // to SPE for

}; // asynchronous execution
}
{ // PPE also executes a sub-range

iter local_begin = start + chunksize*NUM_SPES;
Range local_range(local_begin,end);
local_body(local_range);

}
for (int i = 0; i < NUM_SPES; i++)

offloadThreadJoin(handles[i]); // Await completion of SPE threads
} };

Fig. 3: An Offload C++ implementation of parallel_for for the PPE and SPE cores

4 Portable tuning for performance

Offload C++ enables code written for a homogeneous shared-memory multicore archi-
tecture to run on heterogeneous multicore architectures with fast local memories. A
consequence of this is that the relative cost of data access operations differs, depending
on the memory spaces involved. We discuss both the default data-movement strategy
employed by Offload; and the portable, manual optimisations we develop to tackle this.
Default data-movement: software cache. The compiler ensures that access to data
declared in host memory results in the generation of appropriate data-movement code.
The primary mechanism for data-movement on Cell is DMA. However, issuing a DMA
operation each time data is read or written tends to result in many small DMA opera-
tions. This can lead to inefficient code, since providing standard semantics for memory
accesses requires synchronous DMA transfers, introducing latency into data access.

A software cache is used to avoid this worst-case scenario. When access to host
memory is required, the compiler generates a cache access operation. At runtime, a
synchronous DMA operation is only issued if the required data is not in the software
cache. Otherwise, a fast local store access is issued. When contiguous data is accessed,
or the same data is accessed repeatedly, the overhead associated with cache-lookups is



ameliorated by eliminating the far greater overhead associated with DMA. Writes to
global memory can be buffered in the cache and delayed until the cache is flushed or
the cache-entry is evicted to make room for subsequent accesses.

The software cache is small: 512 bytes by default. The cache is a convenience, and
can significantly improve performance over naı̈ve use of DMA. However, accessing
the cache is significantly more expensive than performing a local memory access, even
when a cache hit occurs. For bulk transfers, where each cache-line is evicted without
being reused, the cache leads to overhead without benefit.
Local shadowing. A common feature of code offloaded for Cell without modification
is repeated access to the same region of host memory by offloaded code. In this case,
rather than relying on the software cache, a better strategy can be to declare a local
variable or array, copy the host memory into this local data structure once, and replace
accesses to the host memory with local accesses throughout the offloaded code. If the
offloaded code modifies the memory then it is necessary to copy the local region back
to host memory before offload execution completes. We call this manual optimisation
local shadowing, as illustrated below with a fragment of the raytracer discussed in §5.1:

Sphere spheres[sphereCount]; // Allocated in host memory
__offload {
RadiancePathTracing(&spheres[0], sphereCount, ... );

};

The scene data in the spheres array, allocated in host memory, is passed into the
RadiancePathTracing function, which repeatedly accesses its elements using the
software cache. We can instead apply local shadowing by copying scene data from
spheres into a locally-allocated array, local, declared within the offload block:

Sphere spheres[sphereCount]; // Allocated in host memory
__offload {
Sphere local[sphereCount]; // Allocated in local memory
for (int i = 0; i < sphereCount; ++i)

local[i] = spheres[i];
RadiancePathTracing(&local[0], sphereCount, ... );

};

A pointer to local is now passed to RadiancePathTracing, redirecting accesses
to scene data to fast, local memory. This optimisation reduces access to scene data via
the software cache to the “copy-in” loop; after this, accesses are purely local.

Local shadowing does not compromise portability: in a system with uniform mem-
ory the copy-in and copy-out are unnecessary, but yield equivalent semantics. Assuming
that the code using the locally shadowed data is substantial, the performance hit associ-
ated with local shadowing when offloading is not applied is likely to be negligible.
Bulk data transfers. Offload C++ provides a header-file library of portable, type-safe
template classes and functions to wrap DMA intrinsics and provide support for various
data access use cases. Templates are provided for read-only (ReadArray), write-only
(Write-Array) and read/write (ReadWriteArray) access to arrays in host memory.

The array templates follow the Resource Acquisition is Initialisation (RAII) pattern
[5], where construction and automatic destruction at end of scope can be exploited
to perform processing. Transfers into local memory are performed on construction of
ReadArray/ReadWriteArray instances, and transfers to host memory are performed
on destruction of ReadWriteArray/WriteArray instances.



struct UpdateVelocityBody {
void operator()( const blocked_range<int>& range ) const {

for( int i=range.begin(); i!=range.end(); ++i ) {
ReadArray <float, Width> lD(&D[i][0]), lL(&L[i][0]), lpT(&T[i-1][0]),

lS(&S[i][0]), lT(&T[i][0]);
ReadWriteArray<float, Width> lV(&V[i][0]);
for( int j=1; j < Width-1; ++j )
lV[j] = lD[j]*(lV[j]+lL[j]*(lS[j]-lS[j-1]+lT[j]-lpT[j]));

} } };

Fig. 4: Using DMA template wrappers for efficient data transfer

Figure 4 illustrates optimising the example of Figure 2 with bulk transfers. The
declaration ReadArray<float, Width> lD(&D[i][0]) declares lD a local float
array, of size Width, and issues a synchronous DMA to fill ld with data from host array
D (hence lD stands for “local D”). The ReadWriteArray instance lV is similar, except
that when destroyed (on scope exit), a synchronous DMA restores the contents of lV to
V. Velocity update is now performed with respect to local arrays only.

Bulk transfer templates share similarities with local shadowing. However, they hide
details of copy-in and copy-out operations, and bypass the software cache completely,
which is often significantly more efficient than an element-by-element copy would be.

At compile time, when targetting the PPE, a zero-copy template instantiation is
invoked instead. This implementation is also usable on systems with single memory
spaces, maintaining portability of code using the templates. Additional data-movement
use cases can be implemented by users using the same template functions abstracting
transfer operations used to implement the array templates.
Automation. The Offload C++ compiler provides feedback on memory access patterns
which can guide the manual application of local shadowing and bulk data transfers. In
principle, the compiler could conservatively perform these optimisations automatically,
given good general-purpose heuristics for when such transformations are beneficial.

5 Experimental Evaluation

We demonstrate the effectiveness of our approach using a set of parallel TBB programs.
Experiments are performed on a Sony PlayStation 3 (with six SPEs accessible), running
Fedora Core 10 Linux and IBM Cell SDK v3.0. Parallel benchmarks are compiled using
Offload C++ v1.0.4. Serial versions of the benchmarks are compiled using both GCC
v4.1.1, and Offload C++ v1.0.4. The faster of the two serial versions is taken as the
baseline for measuring the speedup obtained via parallelisation. Optimisation level -O3
is used in all cases.

– Seismic simulation Simulation discussed in §2 for a 1120×640 pixel display
– SmallPT-GPU Raytracer Global illumination renderer generating 256×256 pixel

images from scenes of 3 to 783 spheres, computing sphere-ray intersections with
specular, diffuse, and glass reflectance with soft shadows and anti-aliasing [6]

– Image processing kernels A set of 8 kernels operating on a 512×512 pixel im-
age, performing black-and-white median, colour median and colour mean filtering;
embossing; sharpening; greyscale conversion; Sobel and Laplacian edge detection



– PARSEC Black-Scholes Partial differential equations modelling the pricing of
financial options, from the PARSEC benchmark suite [7] using the large data set

– PARSEC Swaptions Simulates pricing a portfolio of swaptions using the Heath-
Jarrow-Morton and Monte Carlo methods; from PARSEC using the large data set

5.1 Results

We present results showing the performance increases obtained by parallelising each
benchmark across all available cores of the Cell (6 SPEs + PPE), compared with PPE-
only execution. In some cases, the speedup using all cores is more than 7×. The SPE
cores are significantly different to the PPE, so we would not expect them to be directly
comparable; a specific program may run faster across the SPEs due to higher floating
point performance, or efficient use of scratch-pad memory.

Seismic Simulation: After an initial offload of the original code, we found that the
data transfer intensive nature of this code results in non-optimal performance on the
SPE as the data being processed is still held in the global memory, and not in fast SPE
local store. To address this, we used the ReadArray and ReadWriteArray templates,
as shown in Figure 4, to obtain a 5.9× speedup over the PPE alone.

Image Processing Kernels: Figure 5 shows performance results. We used local
shadowing to hold input pixel rows in stack allocated arrays, implementing a sliding
window over the input image. Fetching a new pixel row would over-write the local
buffer storing the oldest, and here we utilised our bulk data transfer template operations.
Writes of individual output pixels were also buffered, and written out via bulk transfer.

SmallPT-GPU Raytracer: Figure 6 shows performance results for three versions of
the SmallPT raytracer in raytracing six scenes compared to the serial baseline. The first
version uses parallel_for to execute on the SPEs and PPE. The second version uses
local shadowing of the scene data, as discussed in §4. The last version uses a dynamic
scheduling implementation of parallel_for where the SPE and PPE threads dequeue
work from a shared queue, and thereby load balance amongst themselves.

PARSEC Black-Scholes: Conversion of the Black-Scholes benchmark was straight-
forward. A single parallel_for template function call represents the kernel of the
application. We obtained a speedup of 4.0× relative to the serial version on PPE.

PARSEC Swaptions: The code was refactored in two stages. First, dynamic mem-
ory allocations were annotated to distinguish between memory spaces. Secondly, unre-

Kernel B&W Median Col. Mean Col. Median Emboss Laplacian Sharpen Sobel Greyscale
Speedup 7.7× 7.4× 4.5× 3.6× 3.1× 5.3× 5.7× 3×

Fig. 5: Speedup for Image Kernels.

Scene caustic caustic3 complex cornell large cornell simple
Global scene data 2.5× 2.6× 1.4× 4.5× 4.4× 2.7×
Local scene data 2.8× 3.0× 7.1× 7.2× 7.1× 3.1×
Dynamic parallel for 4.9× 5.2× 10.1× 8.9× 8.5× 5.1×

Fig. 6: Speedup for SmallPT Raytracer using parallel_for.



stricted pointer usage was replaced with static arrays. Local shadowing optimisations
were also applied. After these modifications, a 3.0× speedup was obtained.

6 Conclusions

We have shown how, using Offload C++, the TBB parallel_for construct can be
readily used to distribute work across the SPE and PPE cores of the Cell processor.
Our proof of concept implementation provides both static and dynamic work division
and supports a subset of the TBB library; parallel_for and parallel_reduce; the
associated blocked_range templates, and the spin_mutex class. object

We have also demonstrated that data transfer operations can be portably imple-
mented, exploiting target-specific DMA transfer capabilities when instantiated in the
context of code to be compiled for the SPE processors.

While related work is available for Cell, the approach of Offload C++ remains dis-
tinct. OpenMP targets homogeneous shared-memory architectures; although distributed
and heterogeneous implementations do exist [8, 9]. In contrast to OpenMP on Cell [9],
the Offload compiler can use C++ templates to reflect information obtained statically
from the call graph, allowing users to optimise code using “specialised” template strate-
gies selected for a specific target architecture e.g. the SPE. OpenCL [10] also permits
programming in heterogeneous parallel environments. Unlike Offload, OpenCL intro-
duces “boilerplate” code to transfer data between distinct memory spaces via an API,
and requires accelerator code to be written in the OpenCL language.

Extending Offload C++ to massively parallel systems, such as GPUs, is likely to
follow. However, GPU-like architectures are not an ideal fit for the current Offload C++
programming model, which anticipates random access to a shared global store. Adapt-
ing existing application code and Offload C++ to work with the restricted programming
models associated with GPUs will be a significant research challenge.
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