
Type Inference and Strong Static Type Checking for Promela

Alastair F. Donaldson

Oxford University Computing Laboratory, Oxford OX1 3QD, UK

Simon J. Gay

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

The SPIN model checker and its specification language Promela have been used extensively in industry and academia
to check logical properties of distributed algorithms and protocols. Model checking with SPIN involves reasoning
about a system via an abstract Promela specification, thus the technique depends critically on the soundness of this
specification. Promela includes a rich set of data types including first-class channels, but the language syntax restricts
the declaration of channel types so that it is not generally possible to deduce the complete type of a channel directly
from its declaration. We present the design and implementation of ETCH, an enhanced type checker for Promela,
which uses constraint-based type inference to perform strong type checking of Promela specifications, allowing static
detection of errors that SPIN would not detect until simulation/verification time, or that SPIN may miss completely. We
discuss theoretical and practical problems associated with designing a type system and type checker for an existing
language, and formalise our approach using a Promela-like calculus. To handle subtyping between base types, we
present an extension to a standard unification algorithm to solve a system of equality and subtyping constraints, based
on bounded substitutions.

Key words: Promela, SPIN, type checking, type inference, model checking.
ACM Subject Classification: D.2.4 [Software/Program Verification]: Model checking, Formal methods, Validation;
D.3.3 [Language Constructs and Features]: Constraints, Data types and structures, Recursion; F.3.3 [Studies of
Program Constructs]: Type structure

1. Introduction

The SPIN model checker [16] and its specification language Promela have been used extensively in industry and
academia to check logical properties of distributed algorithms and protocols (see e.g. [4, 12, 17, 32]). Model check-
ing with SPIN involves reasoning about a system via an abstract Promela specification, thus the technique depends
critically on the soundness of this specification. Promela includes a rich set of data types, including first-class com-
munication channels which can be transmitted along other channels in the style of the pi calculus [31]. However,
although type information for program variables is declared and checked, the language allows information about the
types of channels (i.e. the allowed types of messages) to be only partially specified, and there are situations in which
a complete specification is not even permitted.

Channel declarations in Promela fall into the following three categories.

1. Declarations that specify complete type information, for example:

chan a = [0] of {int,int}

which declares a channel whose buffer has size 0 (a rendezvous channel) and which can carry messages con-
sisting of pairs of integers.

Email addresses: alastair.donaldson@comlab.ox.ac.uk (Alastair F. Donaldson), simon@dcs.gla.ac.uk (Simon J. Gay)
Preprint submitted to Elsevier May 27, 2010

chan a = [0] of {chan};

proctype P() {
chan b = [0] of int;
int i;
... a!b; b!i; ...

}

proctype Q() {
chan c;
byte j;
... a?c; c?j; ...

}

Figure 1: An erroneous Promela specification.

2. Declarations that specify no message type information, for example:

chan b

3. Declarations of channels that carry channels, for example:

chan c = [0] of {chan}

In this case the programmer does not have the option of replacing the innermost chan with a more precise type,
e.g. the following declaration is not allowed:

chan d = [0] of {chan{int,int}}

Declarations in category (1) are unproblematic and allow the SPIN type checker to check the types of messages sent
and received.1 But declarations in categories (2) and (3) limit the scope of the type checker. For example, consider
the Promela specification in Figure 1. Here a is a global channel, b is a channel sent from P to Q, and c is the channel
reference into which Q receives b. At runtime, c becomes instantiated to b, and the send command b!i synchronizes
with the receive command c?j. The result is that the value of i, which is an int, is put into the variable j, which is a
byte. We regard this as a type error, since the range of values belonging to the byte type is smaller than those for the
int type. However, the type checker built into SPIN is not able to detect this error, because the type of channel a is not
fully specified and therefore both P and Q seem to be using it correctly.

Situations such as the example above frequently, although not always, signify errors in the Promela specification;
to put it another way, they indicate errors in the modelling of the system which is to be analyzed. This can lead
to errors during model checking, perhaps after a long period of checking; alternatively, it can lead to unexpected
behaviour of the model and therefore to misleading results from model checking. In the example above, assigning an
integer value into a byte variable might be allowed by SPIN, but the user might not know what the runtime behaviour
(e.g. truncation or saturation) will be.

The essential problem is that Promela allows mobile channels, but does not use an appropriate type system for
mobile channels. We have addressed this problem by designing ETCH (Enhanced Type CHecker), an enhanced type
checking tool for Promela. ETCH facilitates the analysis of Promela specifications with mobile channels using an
appropriate type system, but does not require changes to the syntax of the Promela language. ETCH is based on the
following type-theoretic technology:
Fully-specified channel types, as found in type systems for the pi calculus [31]. For example, the type:

chan{int, chan{bool, chan{int}}}
could be associated with a channel which can only be declared in Promela as:

1Even so, the type checking carried out by the SPIN tool remains minimal: the tool follows a weak type system where channels and integers are
partially interchangeable.

2

chan a = [0] of {int,chan}

Constraint-based type inference, as found in functional languages such as ML [22] and Haskell [25]. This allows
fully-specified channel types to be used internally without requiring the programmer to declare them explicitly. In
particular, this means that we do not need to modify the syntax of Promela.
Recursive types, again as found in functional languages and in several type systems for the pi calculus. Recursive
types naturally arise while solving constraints among channel types. For example, the declaration chan a together
with the send command a!a requires channel a to have a recursive type defined by the equation X = chan{X}. The
programmer never needs to write a recursive type, but they can appear in error messages, and are presented in as
palatable a form as possible.
Subtyping, which accounts for the relationships between the various numeric types supported by Promela. The
subtyping relation is defined by:

bit <: byte <: short <: int bit <: bool.
The constraint-based type inference system generates constraints involving subtyping relationships as well as equali-
ties. In general this complicates constraint solving, but it turns out that in Promela there is always just enough explicit
type information to enable us to obtain a straightforward algorithm.

ETCH is able to detect many situations which can reasonably be regarded as type errors but which are not detected
by SPIN. However, because ETCH is implemented as a standalone tool, SPIN users are free to view its error messages
as warnings and ignore them if they choose.

1.1. Contribution and structure of the paper
The main contribution of this paper is the design and implementation of an enhanced type checker for Promela,

which can statically detect errors that SPIN would not detect until simulation/verification time, or that SPIN may miss
completely. The tool, ETCH, is publicly available2 to the Promela/SPIN community, to aid the construction of robust
specifications for formal verification. The paper also provides a case study in applying, and adapting in a non-trivial
way, well-understood techniques from type theory to an existing language whose syntax we did not want to change.
We believe that by providing a concrete exposition of type-theoretic techniques for a practical, imperative language,
our case study will be a useful reference for practitioners who are not experts in type theory.

We further motivate the need for enhanced type checking of Promela via a discussion of example Promela specifi-
cations, which also provides an overview of the language (Section 2). After this, we make the following contributions:

• We introduce Promela-calculus, a simple language based on Promela but with complete type information. We
present a type system for Promela-calculus, and establish that well-typed Promela-calculus specifications are
free of communication errors (Section 3).

• We consider a variant of Promela-calculus in which type information is incompletely specified, as is the case for
Promela. We present a constraint-based type checking method that guarantees that specifications with soluble
sets of constraints are free from communication errors. The approach is based on standard techniques for type
reconstruction, extended to handle subtyping between base types via bounded substitutions (Section 4).

• Although our results are presented in terms of Promela-calculus, our implementation ETCH is for the full Prom-
ela language. We present notes of some interesting practical issues, including the use of most a general unifier
for inferring further properties of channel usage, and the way our implementation deals with recursive types
(Section 5).

We conclude (Section 7) after a discussion of related work (Section 6). An operational semantics for Promela-
calculus, as well as proofs of novel results, appear in the appendix.

2. Examples of Errors Detected by ETCH

To motivate the need for applying type inference to Promela, and to illustrate the kind of type errors which ETCH

detects, we present two example Promela specifications from the literature, into each of which we inject two errors.

2ETCH can be downloaded from: http://www.allydonaldson.co.uk/etch, or from the SPIN website: http://spinroot.com
3

Error Detected Detected during Detected during Leads to erroneous verification result
statically simulation verification

1 No No No Yes, 190 states without error vs. 182
states with error

2 No Indirectly Yes No, error detected dynamically
3 No No No No, but depends on SPIN representing

mtype and chan identically
4 No Yes No Yes, 116607 states without error vs.

119061 states with error

Figure 2: Summary of the ability of SPIN to detect Errors 1– 4 statically, during simulation, or during verification. In some cases, the error goes
undetected and leads to an erroneous verification result in the sense that the number of reachable states explored by SPIN is affected by the presence
of the error. Our enhanced type checker, ETCH, is able to detect all these errors statically.

In each case, SPIN does not detect the error before simulation or verification, and in some cases does not catch the
error at all. This is summarised in Figure 2. ETCH, on the other hand, uses the techniques described later in the paper
to detect these errors statically, before simulation or verification of the model, making it easier to eliminate them. We
also discuss a scenario where static type checking can be restrictive. Results in this section were obtained using SPIN

version 5.2.4.

2.1. Client-Server specification

We first consider a generic client-server specification adapted from [16, Chapter 15], where a detailed description
of the protocol is provided. The Promela code for this specification is given in Figure 3.

The specification introduces an enumerated type, mtype, to represent messages in the protocol, and declares two
global channel variables: server and null. Both channels are rendezvous (having length zero), and accept pairs of
messages consisting of an mtype and a channel. Three process types are then declared, via the proctype construct.
The Client proctype is prefixed with active [2] to indicate that two instances of this proctype should be live when
simulation or verification of the specification begins; the Server proctype is prefixed simply with active, indicating
that one instance of this proctype should be live. The Agent proctype has no such prefix: this indicates that no instances
of this proctype are live initially, instead instances are spawned via the run statement at line 37. This non-blocking
statement instantiates an asynchronous Agent with the given parameters. Statements in Promela are separated either
by ; or ->, which can be used interchangeably. However, it is common practice for -> to follow a boolean guard,
e.g. timeout at line 18 (timeout is a built-in boolean variable which has value true if and only if every other process
is blocked). Looping behaviour is specified using the do..od construct; this construct selects between a series of
options, each prefixed ::, non-deterministically choosing between options for which the first statement is executable.
The break keyword causes a jump to the end of the innermost do..od construct. The specification makes frequent use
of channels, using the send (!) and receive (?) operators, as well as built-in functions to test whether or not a channel
is empty.

The specification is interesting to study as it exhibits dynamic channel passing – the Server process holds a pool of
channels which are used to connect Agent and Client processes, and Agent processes use the server channel to return
their input channels to the pool. Also, the specification involves implicit recursive types.

Figure 4(a) shows the output generated by ETCH for this example. ETCH reports that the specification is well-
typed, and displays the complete type for each variable. All channels with the exception of pool are found to have
the recursive type satisfying the equation X = chan{X,mtype}. We write this type as recX . chan{X,mtype}. The
pool channel accepts messages which are channels of the above type, thus the type of pool is chan{recX . chan{
X,mtype}}.

We consider two changes to the client-server specification which could conceivably arise due to programmer
errors.

Error 1 Statement talk!hold,listen at line 6 of Figure 3 is replaced with talk!listen,hold.

4

1 mtype = {request,deny,hold,grant,return};
2 chan server = [0] of {mtype,chan};
3 chan null = [0] of {mtype,chan}
4

5 proctype Agent(chan listen, talk) {
6 do :: talk!hold,listen
7 :: talk!deny,listen -> break
8 :: talk!grant,listen ->
9 wait: listen?return,null; break

10 od;
11 server!return,listen
12 }
13

14 active[2] proctype Client() {
15 chan me = [0] of {mtype,chan};
16 chan agent;
17 end:
18 do :: timeout -> server!request,me;
19 do :: me?hold,agent
20 :: me?deny,agent -> break
21 :: me?grant,agent -> agent!return,null; break
22 od
23 od
24 }
25

26 active proctype Server() {
27 chan agents[2] = [0] of {mtype,chan};
28 chan pool = [2] of {chan};
29 chan client, agent; byte i;
30 do :: i < 2 -> pool!agents[i]; i++
31 :: else -> break
32 od;
33 end:
34 do :: server?request,client ->
35 if :: empty(pool) -> client!deny,null
36 :: nempty(pool) -> pool?agent;
37 run Agent(agent,client)
38 fi
39 :: server?return,agent -> pool!agent
40 od
41 }

Figure 3: Client-server specification.

From the specification, we can see that Agent processes are instantiated only by the Server process at line 37.
The talk parameter of an Agent corresponds to the client variable of the Server process, which is defined at line 34
by a receive on the server channel. The corresponding sender for this statement is a Client process, which sends the
channel me at line 18. Channel me accepts messages of the form {mtype, chan}. Thus the talk parameter of an Agent
accepts messages of the form {mtype, chan}. The modification introduces an error since an attempt is made to send
a message of the form {chan,mtype} on the channel talk.

As indicated in Figure 2, this error is not detected by SPIN at all. The reachable state-space associated with the
specification differs depending on whether or not the error is present, thus Error 1 leads to an erroneous verification
result.

In contrast, ETCH detects this error statically, producing the following error message:
Error at line 6: "mtype" is not compatible with type "rec X.chan{X,mtype}".

Error 2 Statement talk!grant,listen at line 8 of Figure 3 is replaced with talk!grant.

By an argument similar to that for Error 1, this modification causes an error since only a single field has been sent
on the channel talk. This error is not detected statically by SPIN. During simulation, SPIN does not report an error when
this statement is executed. The message is received by a Client process via the statement me?grant(agent) at line 21.
However, the received channel agent is uninitialised because no channel was actually sent by the Agent process. The
Client process then attempts to execute agent!return(null). This causes an error during simulation as agent is not
initialised. Thus SPIN indirectly catches the error during simulation. During verification, SPIN immediately halts with

5

Client

agent : rec X.chan{mtype,X}
me : rec X.chan{mtype,X}

Server

i : byte
agent : rec X.chan{mtype,X}
agents : array(size 2) of

rec X.chan{mtype,X}
client : rec X.chan{mtype,X}
pool : chan{rec X.chan

{mtype,X}}

Agent

talk : rec X.chan{mtype,X}
listen : rec X.chan{mtype,X}

Globals

null : rec X.chan{mtype,X}
server : rec X.chan{mtype,X}

(a) Reconstructed channel types for client-server specification.

User

messchan : rec X.chan{X,bit}
partnerid : byte
messbit : bit
dev : mtype
self : rec X.chan{X,bit}
state : mtype
selfid : byte

Globals

one : rec X.chan{X,bit}
null : rec X.chan{X,bit}
partner : array(size 3) of

rec X.chan{X,bit}
two : rec X.chan{X,bit}
zero : rec X.chan{X,bit}

(b) Reconstructed channel types for telephone specification.

Figure 4: Examples of reconstructed types output by ETCH for well-typed specifications.

an error when the statement of Error 2 is executed, thus this error does not lead to an erroneous verification result.
The behaviour for SPIN with respect to Error 2 is summarised in Figure 2.

ETCH detects this error statically, producing the following message:
Error at line 8: arguments of lengths 1 and 2 have been used with the same channel.

2.2. Telephone specification

The second specification we consider is shown, in part, in Figure 5. This specification models a telephone network,
and is adapted from a specification presented in full in [4], in which the telephone system is augmented with a
selection of features, and SPIN is used for feature interaction analysis. The specification illustrates a more explicit use
of recursive channel types than for the client-server example of Section 2.1, shows the capability of ETCH to detect
subtyping errors via type reconstruction, and shows how ETCH can be used to trap specification errors which alter the
state-space of the associated model, but which are not detected by SPIN at all, even during verification.

This specification uses several Promela features which were not illustrated by Figure 3. Buffered channels are
specified via a non-zero length – the channels null, zero, one and two all have capacity 1. At line 4, an array of three
channels is declared. The specification uses the if..fi construct for conditional selection (this is similar to the do..od
construct discussed in Section 2.1, except that it does not cause looping behaviour), and includes labelled statements
which may be the targets for goto instructions, in the style of the C language. At line 16, arguments to the receive
operator are enclosed in angle brackets: this indicates that the receive should be non-destructive, copying values
from the channel into the supplied arguments but not removing a message from the channel. Rather than specifying
initial processes via the active keyword, this specification declares an init process, which is live by default when
verification or simulation begins. The init process initialises the partner array, and instantiates three User processes.
These statements are enclosed in an atomic block, to specify that they should be executed indivisibly.

Each User process in the specification takes a channel parameter, self, which accepts data in pairs consisting of
a channel reference (the channel of a User process to whom the given User is connected), and a bit representing the
connection status of the call. Statement self!self,0 at line 14 of Figure 5 shows that it permissible for the channel
self to hold a reference to itself. This indicates that the corresponding User process is engaged, but not connected

6

1 mtype = { on, off, st_idle };
2 chan null = [1] of {chan, bit}; chan zero = [1] of {chan, bit};
3 chan one = [1] of {chan, bit}; chan two = [1] of {chan, bit};
4 chan partner[3]
5

6 proctype User (byte selfid; chan self) {
7 chan messchan = null; bit messbit = 0;
8 mtype state = on, dev = on;
9 byte partnerid = 6;

10

11 O_T_Null:
12 if :: empty(self) -> state = on;
13 dev = off;
14 self!self,0;
15 goto Auth_Orig_Att
16 :: full(self) -> self?<partner[selfid],messbit>;
17 if :: empty(partner[selfid]) -> self?messchan,messbit;

. . .
84 fi;
85

86 if :: empty(partner[selfid]) ->
87 partner[selfid]!self,0;
88 self?messchan,messbit;
89 self!partner[selfid],0;

. . .
286 fi
287 }
288

289 init {
290 atomic {
291 partner[0]=null; partner[1]=null; partner[2]=null;
292 run User(0,zero); run User(1,one); run User(2,two);
293 } }

Figure 5: Part of a telephone specification, adapted from [4].

[4]. Figure 4(b) shows the complete type information for this specification as reconstructed by ETCH. Notice the
appearance of recursive types of a similar form to those detected by ETCH in Figure 4(a).

Again, we consider the introduction of potential programmer errors to the specification.

Error 3 Declaration chan two = [1] of {chan, bit} at line 3 is replaced with chan two = [1] of {mtype, bit}.

This modification intuitively introduces a type error: the channel two is passed as parameter self to a User process
at line 292, and at line 14 the statement self!self,0 indicates that the first field of a message on self should be a
channel, not an mtype expression (which is the type of the first field of two in Error 3).

In practice, as indicated in Figure 2, SPIN does not flag this up as an error, statically or dynamically. SPIN uses a
byte to represent the value of both chan and mtype variables, so assigning between chan and mtype variables does not
cause any loss in precision. For this reason and because the channel self is consistently used as if its first field were a
channel, the model associated with the specification of Figure 5 is the same whether or not Error 3 is introduced.

We view Error 3 as a genuine error for three reasons. Firstly, using the type name mtype where chan would be
more sensible makes the specification harder to understand. Secondly, relying on the fact that SPIN treats mtype and
chan variables identically provides little guarantee that a specification will behave as expected with future version of
SPIN (or with other tools that use Promela as an input language (e.g. p2b [3]). Lastly, the XSPIN user interface provides
a feature which allows the values of variables to be displayed during simulation. This feature replaces the numeric
values associated (internally) with mtype variables by the symbolic names provided by the user via the mtype = {. . . }
declarator. This means that in the presence of Error 3 messages on channel two will be displayed using mtype names
rather than channel names for their first field, making simulation confusing.

ETCH detects this error statically and displays the following message:
Error at line 17: "chan{mtype,bit}" is not compatible with type "mtype".

Error 4 Statement self!partner[selfid],0 at line 89 is replaced with self!partner[selfid],9.

7

mtype = { ho_cmd, ... };

proctype CC(chan f, ...) { /* communication controller */
chan m_new;
do :: l?m_new -> f!ho_cmd; f!m_new;

...
}

proctype BS(chan f, ...) { /* base station */
chan v; ...
do :: f?ho_cmd -> f?v; /* handover command */

...
}

Figure 6: A snippet of the mobile1 specification, provided with the SPIN distribution, which illustrates a limitation of static type checking
with ETCH. Proctypes CC and BS communicate both mtype and chan messages on their channel parameter, f, thus ETCH reports a type error.
Nevertheless, the full specification is free of communication errors.

In this final erroneous modification to the telephone specification, we assume that the user has mistyped the value
0 as 9. The SPIN tool includes the bit data type for convenience, but does not complain if a value outside {0, 1} is
used in a bit context. SPIN uses an approach similar to that of C with respect to boolean expressions, and treats the
value 0 as usual, and any other value as 1. This means that the statement self!partner[selfid],9 means the same
thing as self!partner[selfid],1, which is clearly different to the intended statement.

As with Error 1, this error leads to an erroneous verification result: SPIN does not detect the error statically
or during verification, and the size of the reachable state-space associated with the telephone specification differs
depending on whether or not Error 4 is present. During simulation, SPIN does report a truncation error when the
statement of Error 4 is executed.

ETCH detects the error statically, with the following message:
Error at line 89: type "byte" occurs in a context where it is required to be a subtype of "bit".

Errors 1 and 4 are arguably the most serious of the errors we have discussed, since they go undetected by SPIN but
lead to a semantic difference in the associated models, illustrated by the change in state-space size shown in Figure 2.
In the presence of such errors, the user might try to verify properties of the erroneous specification, accepting that
certain properties are true, when in fact the properties hold vacuously: they have not been verified over the specification
intended by the user.

2.3. The price of static type checking
Before we present the techniques on which our enhanced type checker is based, it is fair to point out that while

static type checking can quickly identify genuine errors, a static type system always leads to the rejection of some
correct programs. In our context, “correct” means Promela specifications that, when executed, do not exhibit commu-
nication errors.

An important example of this is the mobile1 specification provided with the SPIN distribution. This specification
models a cell-phone hand-off strategy in a mobile network, and is translated from a pi calculus description [24]. A
small fragment of the specification is shown in Figure 6. Instances of proctypes CC (communication controller) and BS

(base station) are spawned, with the same channel passed as parameter f. The CC process receives a channel into local
variable m_new, then sends two messages on channel f: a hand-off command (represented by mtype value ho_cmd),
followed by the channel stored in m_new. Correspondingly, the BS process uses f to receive the hand-off command,
followed by the channel.

ETCH rejects this specification, since channel f in both proctypes is used as if it had both type chan{mtype} and
chan{chan{. . . }}. However, the specification executes without communication errors since, as discussed for Error 3
in Section 2.2, SPIN uses the same internal representation for mtype and chan values. Furthermore, the mobile1

specification is designed such that whenever a chan value is sent on a channel, the corresponding receive is into a
chan variable, and similarly for mtype values.

The specification can be re-written to be accepted by ETCH, by representing messages on f as (mtype, chan) pairs.
Then each communication using an mtype is replaced with a communication using the same mtype and a null channel,

8

Values v ::= true | false | numeric literal

Types T ::= bool | bit | byte | short | int
| chan{T, . . . ,T} channel (with product type for message fields)
| X type variable
| µX.T recursive type

Expressions e ::= v literal
| x variable
| x = e assignment
| e→ e : e conditional
| e==e equality
| x ! e, . . . , e send
| x ?x, . . . , x receive
| e; e sequence
| T x; e declaration
| run P (e, . . . , e) process instantiation

Definitions D ::= proctype P (T x; . . . ; T x) { e }

Specification S ::= D . . . D e

Figure 7: Top-level syntax for Promela-calculus with complete type information (PC full).

and each communication using a chan replaced with a communication using a null mtype and the same chan. The
advantage of the representation is that the distinction between mtype and chan messages is made explicit, and the
specification is deemed well typed. The price is that this representation requires a slightly larger state-vector, since
the width of channel variables is increased. We note that this is the only example provided with the SPIN distribution
that is beyond the scope of ETCH.

The scenario where the type of message to be communicated via a channel depends on the status of a commu-
nications protocol can often be captured using session types [18], which have been successfully applied to practical
concurrent programming [7, 10]. An interesting area for future work is a formulation of session types suitable for
Promela, to allow static checking of efficient protocols where channel fields are used with multiple message types in
a structured way.

3. A Type System with Complete Type Information

Since no standard formal semantics for Promela is available, we present our type checking algorithm, and prove
its correctness, with respect to Promela-calculus (PC), a small language based on the pi calculus. PC captures the
features of Promela in which we are primarily interested: channel-based communication with support for first-class
channels, recursive channel types, and subtyping between base types, and omits orthogonal language features which
would add to the complexity of our proofs without providing further insight into the problems we are interested in
solving. Note that our implementation, ETCH, supports the Promela language in full.

In this section we present a version of PC in which channel types are fully specified. We introduce a standard
type system for this language, and state properties of interest: a type preservation theorem, and a result showing that
execution of a well-typed specification cannot result in communication errors.

3.1. Syntax
The top-level syntax for PC is given in Figure 7, and an example specification presented in Figure 8.

9

proctype P(chan{chan{int}} link, int request)
{

chan{int} response;
int expected;

expected = 10000;
link?response;
expected==request ->

response!20000 : response!0
}

chan{chan{int}} a;
chan{int} b;
int result;
run P(a, 10000);
a!b;
b?result;
result

Figure 8: Example Promela calculus specification.

A PC specification consists of a series of proctype declarations, followed by an expression, which can be
thought of as a main process. A simple expression is a literal value (v), variable reference (x), or receive opera-
tion (x ?x, . . . , x). Forms of compound expression are assignment (x = e), conditional (e → e : e)3, comparison
(e==e), send (x ! e, . . . , e), process instantiation (run P (e, . . . , e)) and sequence (e; e). A proctype is a named,
parameterised process definition. Many instances of a proctype can be created to run in parallel via run expressions.

We use A to denote the set of PC base types: A = {bit, byte, short, int, bool}. The values of type bool are true

and false as usual, and the values of bit are 0 and 1. We do not specify values for the other types, we merely require
that the literals inhabiting the numeric types satisfy the following containment relation: bit ⊆ byte ⊆ short ⊆ int.
Channel types are constructed by specifying an ordered list of field types. We follow the Promela convention of using
curly braces to specify the list of field types. The language also provides recursive types, to cater for the sort of
channel-based communication discussed in Section 2. We require that recursive types are contractive and types in
declarations are closed.

A simple example PC specification is shown in Figure 8. The main process launches an instance of proctype
P with a channel and an integer request. The instantiated proctype uses the provided channel to receive a channel
through which to send a response. If the integer request is the expected value of 10000 then a value of 20000 is sent
back via the response channel, otherwise the value 0 is sent. The main process waits for a response from the instance
of P , and terminates with the value received.

3.2. Semantics and internal syntax
An operational semantics for Promela-calculus is provided as Appendix A. Figure 9 presents necessary syntax

additional to that of Figure 7 used to describe the progress of a Promela calculus specification as it is evaluated using
the operational semantics. The semantics track variables via store, σ which maps locations to values; store locations
l are another form of expression. We use an undefined literal value ⊥ for variables which have been defined but
not assigned, and a set of channel literals c to represent channel identifiers to which channel variables may refer. A
configuration K is a parallel composition of threads, where each thread has the form 〈e〉. The expression e defines the
behaviour of a given thread, and the parallel composition of threads e1 and e2 is denoted 〈e1〉 ‖ 〈e2〉. Combining a
configuration K with a store σ yields a global configuration (σ,K), which corresponds to the notion of parallel threads
sharing memory. Syntax for evaluation contexts [36] allow a concise presentation of the operational semantics.

Figure 9 also presents syntax used by the type systems of Sections 3.3 and 4. The Unit type, with domain {()}
caters for expressions which do not yield numeric or boolean values. In Section 4, types Bot and Top are used to place
bounds on type variables, and stand-alone product types are used to represent message field types in isolation. Syntax
is also provided for environments, which bind variable names, store locations and channel literals to types, and for
bounds, which associated upper and lower bound types with type variables and are used extensively in Section 4.

3In C-like programming languages, the notation e ? e : e is used for conditional expressions. Promela uses→ in place of ? to avoid parsing
conflicts, due to the use of ? as the receive operator.

10

Values
v ::= . . .
| c channel literal
| () unit literal
| ⊥ undefined value

Types
T ::= . . .
| {T, . . . ,T} product
| Unit unit type
| Bot bottom type
| Top top type

Expressions
e ::= . . .
| l store location

Store
σ map from locations l to values v

Configurations
K ::= 〈e〉 thread
| K ‖ K parallel

Global configurations
G ::= (σ,K)

Evaluation contexts
E ::= []

| l = E
| E→ e : e
| E==e
| v==E
| E ! e, . . . , e
| E ?x, . . . , x
| v ! v, . . . , v,E, e, . . . , e
| E; e
| run P (v, . . . , v,E, e, . . . , e)

Environment
Γ ::= ∅

| Γ, x : T
| Γ, l : T
| Γ, c : T

Bounds
B map from type variables X to

lower/upper bound type pairs (L,U)

Figure 9: Internal syntax for Promela-calculus.

3.3. Type system

A type system for PC is presented in Figure 10. Typing judgements are with respect to both an environment
Γ (as standard) and a bounds function B, which assigns free type variables to lower and upper type bounds. This
bounds function will be used extensively in Section 4 when we consider constraint-based typing, and until then can
be ignored.

The T-BOOL-LIT, T-NUM-LIT and T-UNIT-LIT rules give types to literal values in the obvious way. The undefined
literal value ⊥ may be assigned to any store location, so we need to be able to give this literal value any type: this
requirement is satisfied by rule T-UNDEFINED. Rules T-VAR, T-LOCATION, T-CHANNEL allow us to look up the type of
a variable, store location or channel literal based on the type recorded for the entity in the environment.

The typing rules T-ASSIGN, T-COND, T-EQ, T-SEND and T-RECEIVE formally specify requirements of PC opera-
tions, e.g. that the number of argument expressions sent on a channel must match the arity of the channel, and that the
type of argument i must match the type of the i-th element in the product type associated with the channel. Our type
system assumes that recursive channel types are unfolded sufficiently so that their outermost type constructor is chan.
Sequences of expressions are handled by the rule T-SEQ, which states that the type of a typable sequence is the type of
the last expression in the sequence. Declarations are checked by rule T-DECL, which requires that the the name of the
declared variable is not already in use and the remainder of the expression is typable under the environment extended
with the new variable. Type Checking of proctype instantiations via run statements is achieved via the T-RUN. This
rule works by using the OK-PROCTYPE rule to type check the associated proctype in the current environment, thus a
single proctype declaration is type checked separately each time it is instantiated by a run statement.

The subtyping relation is presented by rules with conclusions of the form T <: U. Rules S-LOWER and S-UPPER

allow subtyping information to be obtained for type variables based on the bounds function B. Rules S-BOT and
S-TOP mean that Bot and Top can be used as default lower and upper bounds for type variables.

11

B; Γ ` e : T
b is a boolean literal

B; Γ ` b : bool
(T-BOOL-LIT)

n is a numeric literal
Tn is its type

B; Γ ` n : Tn
(T-NUM-LIT)

B; Γ ` () : Unit
(T-UNIT-LIT)

B; Γ ` ⊥ : T
(T-UNDEFINED)

x : T ∈ Γ

B; Γ ` x : T
(T-VAR)

l : T ∈ Γ

B; Γ ` l : T
(T-LOCATION)

c : T ∈ Γ

B; Γ ` c : T
(T-CHANNEL)

e : T ∈ Γ B; Γ ` e′ : T

B; Γ ` e = e′ : T
(T-ASSIGN)

x : chan{T1, . . . ,Tn} ∈ Γ
B; Γ ` e1 : T1 . . . B; Γ ` en : Tn

B; Γ ` x ! e1, . . . , en : Unit
(T-SEND)

x : chan{T1, . . . ,Tn} ∈ Γ
x1 : U1 ∈ Γ . . . xn : Un ∈ Γ
B; T1 <: U1 . . . B; Tn <: Un

B; Γ ` x ?x1, . . . , xn : Unit
(T-RECEIVE)

B; Γ ` e1 : T B; Γ ` e2 : T

B; Γ ` e1==e2 : bool
(T-EQ)

B; Γ ` e1 : T B; Γ ` e2 : U

B; Γ ` e1; e2 : U
(T-SEQ)

B; Γ ` e1 : bool
B; Γ ` e2 : T B; Γ ` e3 : T

B; Γ ` e1 → e2 : e3 : T
(T-COND)

x /∈ dom(Γ)
B; Γ, x : T ` e : U

B; Γ ` T x ; e : U
(T-DECL)

proctype P (T1 x1, . . . ,Tn xn) { e } is defined
B; Γ ` proctype P (T1 x1, . . . ,Tn xn) { e } OK

B; Γ ` e1 : T1 . . . B; Γ ` en : Tn

B; Γ ` run P (e1, . . . , en) : Unit
(T-RUN)

B; Γ ` e : T
B ` T <: U

B; Γ ` e : U
(T-SUB)

B; Γ ` D OK
B; Γ ` T1 x1; . . . ; Tn xn; e : T

B; Γ ` proctype P (T1 x1, . . . ,Tn xn) { e } OK
(OK-PROCTYPE)

B ` T <: U
B ` bit <: bool

(T-BIT-BOOL)
B ` bit <: byte

(T-BIT-BYTE)

B ` byte <: short
(S-BYTE-SHORT)

B ` short <: int
(S-SHORT-INT)

B ` T <: T
(S-REFL)

B ` T <: U B ` U <: V

B ` T <: V
(S-TRANS)

B ` Bot <: T
(S-BOT)

B ` T <: Top
(S-TOP)

B(X) = (L,U)

B ` L <: X
(S-LOWER)

B(X) = (L,U)

B ` X <: U
(S-UPPER)

B; Γ ` K OK
B; Γ ` e : T

B; Γ ` 〈e〉 OK
(OK-THREAD)

B; Γ ` K OK B; Γ ` K′ OK

B; Γ ` K ‖ K′ OK
(OK-PARALLEL)

B; Γ ` σ OK
∀ l ∈ dom(σ) . B; Γ ` σ(l) : Γ(l)

B; Γ ` σ OK
(OK-STORE)

B; Γ ` G OK
B; Γ ` σ OK B; Γ ` K OK

B; Γ ` (σ,K) OK
(OK-GLOBAL)

B; Γ ` S : T
B; Γ ` D1 OK . . . B; Γ ` Dn OK B; Γ ` e : T

B; Γ ` D1 . . . Dn e : T
(T-SPEC)

Figure 10: Type System for Promela-calculus.

12

T ::= Tinner | chan{Tinner , . . . ,Tinner}

Tinner ::= bool | bit | byte | short | int
| chan X

Figure 11: Syntax for types in PC partial . The rest of the top-level syntax is as for PC full , presented in Figure 7.

The remainder of the typing rules are used to check that threads and parallel compositions of threads are well-
typed, and that the store associated with a thread is well-formed. Rule T-SPEC allows us to assign a type to a specifi-
cation based on the type of the main expression for the specification, if this expression is typable.

By standard techniques [26] we can prove that typability is preserved by reductions in the operational semantics:

Theorem 3.1 If ∅; Γ ` (σ,K) OK and (σ,K)→ (σ′,K′) then there exists Γ′ ⊇ Γ such that ∅; Γ′ ` (σ′,K′) OK.

The syntax of types in Figure 7 and the restrictions on well-formed types discussed in Section 3.1 mean that
channel types are fully specified in a PC specification. As a result, the typing rules of Figure 10 are sufficient to
enable checking of the correctness of channel operations directly. In particular, the rules ensure that the correct
number of arguments are supplied to send and receive operations, and that these arguments have appropriate types.
This leads to the following theorem, also proved using standard methods:

Theorem 3.2 If ∅; Γ ` (σ, 〈E[c ? l1, . . . , lm]〉 ‖ 〈E′[c ! v1, . . . , vn]〉 ‖ K) OK then m = n and ∅; Γ ` vi : Γ(li) for all
i ∈ {1, . . . , n}.

Theorems 3.1 and 3.2 together show that execution of a well-typed PC specification cannot lead to a communi-
cation error.

4. Checking Under-specified Channel Types using Constraint-based Type Inference

We now introduce a variant of Promela-calculus where, as in Promela, channel types are only partially specified.
We show that full type checking is still possible, despite the lack of channel type information, using type reconstruction
techniques. We adapt a standard constraint-based type inference methods, following the presentation given in [26,
Chapter 22]. Our approach consists of two parts:

• A constraint typing relation, defined by a set of syntax-directed typing rules. These rules give rise to a type
checking algorithm that never fails: given a Promela-calculus specification, the algorithm generates a set of
equality and subtyping constraints over type variables.

• A unification algorithm, which processes the set of constraints generated by the constraint typing relation and
attempts to find a solution—a substitution of type variables for concrete types which essentially “fills in” the
missing types from the Promela-calculus specification such that it is typable in the standard type system of
Section 3. If the constraints are unsatisfiable, the unification algorithm fails, meaning that the Promela-calculus
specification is not typable in the system of Section 3, no matter how the missing type information is filled in.

The standard approach of [26, Chapter 22] applies to the simply-typed lambda calculus with integers and booleans,
without subtyping. In general, combining subtyping with type reconstruction is complicated. However, in the scenario
where we only have subtyping between base types we show that type reconstruction is possible.

We shall henceforth refer to Promela-calculus with complete type information (see Section 3) as PC full , and
Promela-calculus with partial type information (defined below) as PC partial , unless the variant of the calculus referred
to is clear from the context.

The grammar for PC partial is the same as for PC full (see Figure 7) except for the syntax of types, which is
presented for PC partial in Figure 11. The PC partial type syntax does not allow explicit specification of recursive
types, and does not allow field types for channels to be specified beyond one level of nesting. A free type variable is

13

provided for the fields of each channel declaration when left unspecified. This syntax reflects the situation in Promela,
where channel types cannot be specified beyond one level of nesting.

A PC full specification can be turned into a PC partial specification by unfolding all recursive types until any
recursive type constructors appear deeper than one level of nesting, then replacing every channel field specifier deeper
than one level of nesting with a distinct type variable. For example, unfolding the PC full type µX.chan{int, X} gives
chan{int, chan{int, µX.chan{int, X}}}. Replacing the inner field specifier with a fresh type variable, Y say, yields
the PC partial type chan{int, chan Y }.

When analysing and reasoning about PC partial specifications we use the full language of types presented in
Figure 7, augmented with the internal type syntax of Figure 9.

For ease of comparison, throughout this section we annotate a definition or result with (cf. [26, n]) to indicate that
it is analogous to definition or result n in [26, Chapter 22].

4.1. Bounded substitutions

Recall from Section 3.1 that A denotes the set of Promela-calculus base types. We use A∗ to denote A ∪
{Bot,Top}. Let T denote the set of all Promela-calculus types and T V the set of all type variable names.

Definition 4.1 (cf. [26, 22.1.1]) A bounded type substitution (or just bounded substitution) is a pair (B, σ) where B
is a partial function from T V to A∗ ×A∗ and σ is a partial function from T V to T , satisfying:

1. If B(X) = (LX , UX) then ∅ ` LX <: UX , LX 6= Top and UX 6= Bot

2. dom(B) ∩ dom(σ) = ∅

3. FV (range(σ)) ⊆ dom(B).

For a type variable X and a bounded substitution (B, σ) there are four possible cases:

1. σ(X) is defined, say σ(X) = T, and T contains no type variables. In this case X is substituted for a concrete
type.

2. σ(X) is defined, say σ(X) = T, and T contains type variables X1, . . . , Xn such that B(Xi) is defined for each
Xi. In this case, X is substituted for an abstract type, parameterised by pairs of allowable bounds.

3. σ(X) is undefined, butB(X) is defined as (LX , UX). In this case,X can be any type T ∈ A lying between LX
and UX . (Condition 1 of Definition 4.1 ensures that we do not have LX = UX = Bot or LX = UX = Top.)

4. σ(X) and B(X) are both undefined. In this case X can be any type.

We can obtain a concrete substitution for every type variable by composing σ with a new substitution γ which
assigns each type variable X satisfying case 3 above to a type T ∈ A between LX and UX , and assigns each type
variable satisfying case 4 above to any concrete type. In practice, we consider bounded substitutions whereB supplies
bounds for every type variable of interest, so that case 4 does not apply.

4.2. Constraint-based typing

Definition 4.2 (cf. [26, 22.3.1]) A constraint set C is a set of equations {Ti ./i Ui i∈1..n}, where ./i ∈ {=, <:}
(1 ≤ i ≤ n). A bounded substitution (B, σ) is said to unify (or satisfy) equation T = U if the substitution instances
σ(T) and σ(U) are identical (up to equivalence of recursive types). The substitution (B, σ) is said to unify (or satisfy)
equation T <: U if B ` σ(T) <: σ(U). We say that (B, σ) is a unifier for C if it unifies every equation in C, in which
case we also say that (B, σ) satisfies C.

14

Γ ` e : T |χ C C is a set of equality and subtyping constraints, χ is a set of type variables

b is a boolean literal

Γ ` b : bool |∅ { }
(CT-BOOL-LIT)

n is a numeric literal
Tn is its type

B; Γ ` n : Tn |∅ { }
(CT-NUM-LIT)

x /∈ dom(Γ) type variables in T all different
χ1 = type variables in T Γ, x : T ` e : U |χ2 C

Γ ` T x; e : U |χ1∪χ2 C
(CT-DECL)

x : T ∈ Γ

Γ ` x : T |∅ { }
(CT-VAR)

x : T ∈ Γ Γ ` e : U |χ C C′ = C ∪ {U <: T}
Γ ` x = e : T |χ C′

(CT-ASSIGN)

Γ ` e1 : T1 |χ1 C1 Γ ` e2 : T2 |χ2 C2 Γ ` e3 : T3 |χ3 C3
T2,T3 ∈ A∗ C′ = C1 ∪ C2 ∪ C3 ∪ {T1 <: bool}

Γ ` e1 → e2 : e3 : T2 ∨ T3 |χ1∪χ2∪χ3 C
′ (CT-COND-BASE)

Γ ` e1 : T1 |χ1 C1 Γ ` e2 : T2 |χ2 C2 Γ ` e3 : T3 |χ3 C3
T2 /∈ A∗ or T3 /∈ A∗ C′ = C1 ∪ C2 ∪ C3 ∪ {T1 <: bool,T2 = T3}

Γ ` e1 → e2 : e3 : T2 |χ1∪χ2∪χ3 C
′ (CT-COND-COMPOUND)

Γ ` e1 : T1 |χ1 C1 Γ ` e2 : T2 |χ2 C2
X /∈ χ1, χ2,T1,T2, C1, C2,Γ, e1, e2 C′ = C1 ∪ C2 ∪ {T1 <: X,T2 <: X}

Γ ` e1==e2 : bool |χ1∪χ2∪{X} C
′ (CT-EQ)

x : T ∈ Γ Γ ` e1 : T1 |χ1 C1 . . . Γ ` en : Tn |χn Cn
Xj 6= Xi /∈ χ1, . . . , χn,T1, . . . ,Tn, C1, . . . , Cn,Γ, e1, . . . , en (1 ≤ i 6= j ≤ n)
C′ = C1 ∪ · · · ∪ Cn ∪ {T = chan{X1, . . . , Xn},T1 <: X1, . . . ,Tn <: Xn}

Γ ` x ! e1, . . . , en : Unit |χ1∪···∪χn∪{X1,...,Xn} C
′ (CT-SEND)

x : T ∈ Γ x1 : T1 ∈ Γ . . . xn : Tn ∈ Γ
Xj 6= Xi /∈ Γ (1 ≤ i 6= j ≤ n)

C = {T = chan{X1, . . . , Xn}, X1 <: T1, . . . , Xn <: Tn}
Γ ` x ?x1, . . . , xn : Unit |{X1,...,Xn} C

(CT-RECEIVE)

Γ ` e1 : T1 |χ1 C1 Γ ` e2 : T2 |χ2 C2 C′ = C1 ∪ C2
Γ ` e1 ; e2 : T2 |χ1∪χ2 C

′ (CT-SEQ)

proctype P (T1 x1, . . . ,Tn xn) { e } is defined
Γ ` proctype P (T1 x1, . . . ,Tn xn) { e } OK |χ C

Γ ` e1 : U1 |χ1 C1 . . . Γ ` en : Un |χn Cn C′ = C ∪ C1 ∪ · · · ∪ Cn ∪ {U1 <: T1, . . . ,Un <: Tn}
Γ ` run P (e1, . . . , en) : Unit |χ∪χ1∪···∪χn C

′ (CT-RUN)

Γ ` D OK |χ C
Γ ` T1 x1; . . . ; Tn xn; e : T |χ C

Γ ` proctype P (T1 x1, . . . ,Tn xn) { e } OK |χ C
(C-OK-PROCTYPE)

Γ ` S : T |χ C

∀i ∈ {1, . . . , n}.(Γ ` Di OK |χi Ci)
χ1, . . . , χn pairwise disjoint Γ ` e : T |χ C

Γ ` D1 . . .Dn e : T |χ∪χ1∪···∪χn C ∪ C1 ∪ · · · ∪ Cn
(CT-SPEC)

Figure 12: Constraint typing relation for PC partial .

15

4.2.1. Constraint typing relation
The constraint typing relation is defined by the rules of Figure 12. The notation for presenting constraints is

adapted from [26], with the addition of subtyping constraints. We read Γ ` e : T |χ C as “expression e has type T
under assumptions Γ whenever constraints C are satisfied” [26]. The other forms of rule are interpreted similarly. The
subscripts χ are used to track type variables appearing in sub-derivations, to ensure that distinct sub-derivations do
not share type variable names.

The rules of Figure 12 are syntax-directed. Our type checker employs these rules as an algorithm that computes a
type T, constraint set C and set of type variables χ given an environment Γ and PC partial specification D1 . . .Dn e.
We say that the constraint set C is generated by the constraint typing relation. In Section 4.3, we present a unification
algorithm which computes the most general unifier for a constraint set, if any unifier exists.

The constraint typing relation has two important properties on which our unification algorithm relies:

1. In any subtyping constraint of the form T1 <: T2 generated by the constraint typing relation, at least one of
T1,T2 is not a type variable

2. The rules never add to Γ an assumption of the form x : X , where X is a type variable

We state property 1 formally as Lemma 4.1 below; property 2 is established as part of the proof of Lemma 4.1.
Since subtyping is always defined between base types, Bot and Top, it is clear that (A∗, <:) forms a complete

lattice. Thus the join (∨) and meet (∧) operators are well-defined onA∗. Rule CT-COND-BASE uses the join operator;
and both operators are used when we present our unification algorithm in Section 4.3.

We discuss some of the more interesting rules in Figure 12.

Declaration of variables. Rule CT-DECL ensures that all type variables appearing in type T associated with a dec-
laration are distinct. The expression following the declaration is checked in an extended environment, and the type
variables appearing in T form part of the set of used type variables in the conclusion of the rule.

Conditional expressions. In a conditional expression of the form e1 → e2 : e3 we know that e1 must have type bool,
thus in both rules we post the constraint T1 <: bool, where T1 is the type computed for e1 by the constraint typing
relation. Intuitively, it makes sense to give the result type for the conditional expression the smallest type of which
both types T2 and T3 are subtypes, where T2 and T3 are computed for e2 and e3 respectively. This is the join of T2

and T3, denoted T2 ∨ T3. In general, we cannot compute the join while type checking, since T2 and T3 may involve
free type variables. To overcome this, we use two rules to handle conditionals.

Rule CT-COND-BASE assumes that T2 and T3 are both base types, in which case T2∨T3 can be computed directly
(allowing the case where T2 ∨ T3 = Top, e.g. when T2 = bool and T3 = int).

Rule CT-COND-COMPOUND assumes that at least one of T2 and T3 is not a base type. In this case we will show
that the non base types must in fact be channel types, in which case it is sufficient to post the constraint T2 = T3 and
give the conditional expression type T2.

Send, receive and run operations. Rule CT-SEND in Figure 12 is analogous to the standard typing rule for send
operations, rule T-SEND in Figure 10. The difference is that while T-SEND applies only if the arguments supplied for a
send operation are subtypes of the field types for the associated channels, rule CT-SEND always applies, using distinct,
fresh type variables to post constraints specifying this subtyping property.

Rules CT-RECEIVE and CT-RUN handle receive and run operations in a similar manner.

4.2.2. Relationship between constraint typing relation and standard type system
Given a PC partial specification S and a PC full type T, if we can find a bounded substitution which, when applied

to S, turns S into a PC full specification with type T, then since the substitution does not affect the semantics of S,
Theorem 3.2 tells us that S will be free of communication errors.

This is the declarative characterization of possible solutions for a specification and a type:

16

Definition 4.3 (cf. [26, 22.2.1])

1. Let Γ be a context and e an expression. A solution for (Γ, e) is a tuple (B, σ, T) such that (B, σ) is a bounded
substitution and B;σ(Γ) ` σ(e) : T .

2. Let Γ be a context and D a declaration. A solution for (Γ, D) is a pair (B, σ) such that (B, σ) is a bounded
substitution and B;σ(Γ) ` σ(D) OK.

3. Let Γ be a context and S a specification. A solution for (Γ, S) is a tuple (B, σ, T) such that (B, σ) is a bounded
substitution and B;σ(Γ) ` σ(S) : T .

The declarative characterization does not give a way of finding solutions. However, given a PC partial specification
S, the constraint typing relation provides a type U and a set of constraints C, where in general U and C may share
type variables. If a unifier can be computed for C, i.e. a bounded substitution (B, σ) satisfying the conditions of
Definition 4.2, then the unifier can be applied to U to provide a concrete type T for the specification.

Definition 4.4 (cf. [26, 22.3.4])

1. Let Γ be a context and e an expression. Suppose that Γ ` e : U |χ C. A solution for (Γ, e,U, C) is a tuple
(B, σ,T) such that (B, σ) is a bounded substitution and (B, σ) satisfies C and σ(U) = T.

2. Let Γ be a context and D a declaration. Suppose that Γ ` D OK |χ C. A solution for (Γ, D, C) is a pair (B, σ)
such that (B, σ) is a bounded substitution and (B, σ) satisfies C.

3. Let Γ be a context and S a specification. Suppose that Γ ` S : U |χ C. A solution for (Γ, S,U, C) is a tuple
(B, σ,T) such that (B, σ) is a bounded substitution and (B, σ) satisfies C and σ(U) = T.

This algorithmic characterization does allow us to find solutions, since we can apply the constraint typing relation
algorithmically, and solve constraints using a unification algorithm presented in Section 4.3.

We show that the declarative and algorithmic characterizations are equivalent by showing that every solution for
(Γ, S,U, C) is also a solution for (Γ, S), and that every solution for (Γ, S) can be extended to a solution for (Γ, S,U, C).

Theorem 4.1 (Soundness) (cf. [26, 22.3.5])

1. Let Γ be a context and e an expression, and suppose Γ ` e : U |χ C. If (B, σ,T) is a solution for (Γ, e,U, C)
then it is also a solution for (Γ, e).

2. Let Γ be a context and D a declaration, and suppose Γ ` D OK |χ C. If (B, σ) is a solution for (Γ, D, C) then
it is also a solution for (Γ, D).

3. Let Γ be a context and S a specification, and suppose Γ ` S : U |χ C. If (B, σ,T) is a solution for (Γ, S,U, C)
then it is also a solution for (Γ, S).

Definition 4.5 (cf. [26, 22.3.6]) σ \ χ is the substitution that is undefined for all the variables in χ and otherwise
behaves like σ.

Theorem 4.2 (Completeness) (cf. [26, 22.3.7])

1. Let Γ be a context and e an expression, and suppose Γ ` e : U |χ C. If (B, σ,T) is a solution for (Γ, e) and
dom(σ) ∩ χ = ∅ then there is some solution (B, σ′,T′) for (Γ, e,U, C) such that σ′ \ χ = σ and ∅ ` T′ <: T.

2. Let Γ be a context and D a declaration, and suppose Γ ` D OK |χ C. If (B, σ) is a solution for (Γ, D) and
dom(σ) ∩ χ = ∅ then there is some solution (B, σ′) for (Γ, D, C) such that σ′ \ χ = σ.

3. Let Γ be a context and S a specification, and suppose Γ ` S : U |χ C. If (B, σ,T) is a solution for (Γ, S) and
dom(σ) ∩ χ = ∅ then there is some solution (B, σ′,T′) for (Γ, S,U, C) such that σ′ \ χ = σ and ∅ ` T′ <: T.

The previous two theorems establish the following:
17

Corollary 4.1 (cf. [26, 22.3.8]) Suppose Γ ` S : U |χ C. There is a solution for (Γ, S) if and only if there is a
solution for (Γ, S,U, C).

Thus if we can find solutions to the constraints generated by the constraint typing relation for a specification S
then we have established that execution of S will not lead to communication errors.

4.3. Unifying constraints

We now turn to the problem of solving a set of subtyping and equality constraints. The basic idea is the Hindley-
Milner [15, 21] approach of using unification [30] to find the most general solution. In general this is complicated by
the presence of subtyping, but our constraint-based typing system for Promela has the property that every subtyping
constraint contains at most one type variable. We can exploit this property to define an extension of the standard
unification algorithm as presented by Pierce [26, Chapter 22]. The algorithm is given a set of constraints, generated
by the constraint typing relation, and either fails or returns the most general bounded substitution which unifies
the constraints. In Section 6 we discuss alternative approaches suggested by the literature on type inference with
subtyping.

While it would be sufficient, for type safety, merely to show that the set of constraints is satisfiable, obtaining
a concrete substitution allows us to present reconstructed types to the user, which aids understanding of Promela
specifications. While computing the most general unifier is not strictly necessary (since Promela does not support
polymorphic processes), we argue in Section 5.1 that type checking of a sensibly constructed Promela specification
should yield a most general unifier where each type variable is assigned to a concrete type; a most general unifier
without this property signals a potential flaw in the specification, to which the programmer can be alerted.

4.3.1. The unification algorithm
Our algorithm is presented in Figure 13. The top-level function unify is mutually recursive with the functions

unify subtype and unify equality .
The parameters of unify are a set C of constraints and a bounds function B, such that FV (C) ⊆ dom(B). For a

bounds function B and a set X ⊆ dom(B) of type variables we use B \X to denote the bounds function B′ identical
to B except that B′(X) is undefined for each X ∈ X . For X /∈ dom(B) we use B + [X 7→ T] to denote the bounds
function B′ identical to B except that X ∈ dom(B′) and B′(X) = T.

If C is empty then unify returns the bounded substitution (B, []), consisting of the given bounds function and
an empty substitution. Otherwise, constraints from C are processed one at a time, by calling unify subtype or
unify equality as appropriate. The order of processing constraints does not matter.

Within unify subtype there are several cases. If the subtyping constraint involves two base types, we simply
check that the constraint is satisfied. The next case is for a constraint X <: T, where T is a base type. In this case we
adjust the bounds of X by lowering the upper bound so that it is at most T, first checking that the desired new upper
bound is not Bot, and solve the remaining constraint under this tighter bounds function. The next case is symmetrical
and deals with a constraint T <: X by increasing the lower bound of X . Finally, a subtyping constraint involving a
non-base type is converted into an equality constraint.

Note that the unify subtype function does not consider constraints between type variables (such as X <: Y):
these are never generated by the constraint typing system:

Lemma 4.1 Suppose Γ ` S : U |χ C. If T1 <: T2 ∈ C then at least one of T1,T2 is not a type variable.

The function unify equality is similar to the standard unification algorithm, except that bounds must be checked
and recomputed when solving constraints involving type variables.

For an equality constraint T1 = T2, if T1 and T2 are equal then the constraint is satisfied and can be discarded.
The equality check must take into account the possibility that the types are recursive; we discuss how this is handled
by our practical implementation in Section 5.2.1.

If T1 and T2 are both type variables, X and Y say, we check that the bounds for X and Y are compatible. If so,
Y is substituted for X , and the bounds of X are contracted with respect to the bounds for Y .

If T1 is a type variable X and T2 is not a type variable then there are two cases, according to whether or not T2

contains X as a free type variable. If so, then a recursive type is constructed and substituted for X; if not, then T2 is
18

function unify(C, B) is
if C = ∅ then

(B, [])
else

let T1 ./ T2 ·∪ C′ = C in
if ./ is <: then

unify subtype(T1,T2, C′, B)
else

unify equality(T1,T2, C′, B)

function unify subtype(T1,T2, C, B) is
if T1,T2 ∈ A then

if T1 <: T2 then
unify(C, B)

else
fail

else if T1 = X and T2 ∈ A then
let (LX , UX) = B(X) in

if LX <: (UX ∧ T2) 6= Bot then
unify(C, (B \ {X})+

[X 7→ (LX , UX ∧ T2)])
else

fail
else if T2 = X and T1 ∈ A then

let (LX , UX) = B(X) in
if Top 6= (LX ∨ T1) <: UX then

unify(C, (B \ {X})+
[X 7→ (LX ∨ T1, UX)])

else
fail

else
unify equality(T1,T2, C, B)

function unify equality(T1,T2, C, B) is
if T1 = T2 then

unify(C, B)
else if T1 = X and T2 = Y then

let (LX , UX) = B(X) and (LY , UY) = B(Y) in
if Top 6= (LX ∨ LY) <: (UX ∧ UY) 6= Bot then

unify([Y 7→ X]C, (B \ {X,Y })+
[X 7→ (LX ∨ LY , UX ∧ UY)])
◦[Y 7→ X]

else
fail

else if T1 = X then
let (LX , UX) = B(X) in

if LX <: T2 <: UX then
if T2 = F (X) then

unify([X 7→ µY.F (Y)]C, B \ {X})
◦[X 7→ µY.F (Y)] (where Y is fresh)

else
unify([X 7→ T2]C, B \ {X})◦

[X 7→ T2]
else

fail
else if T2 = X then

(* Symmetrical *)
else if T1 = chan U1 and T2 = chan U2 then

unify(C ∪ {U1 = U2}, B)
else if T1 = {U1, . . . ,Um} and

T2 = {U′1, . . . ,U′n}and m = n then
unify(C ∪ {U1 = U′1, . . . ,Um = U′m}, B)

else
fail

Figure 13: The unification function.

substituted for X . In both cases we check that T is within the bounds for X . The case where T2 is a type variable and
T1 is not is handled symmetrically.

Two cases remain: a constraint of the form chan U1 = chan U2 is replaced with the constraint U1 = U2; a
constraint of the form {U1, . . . ,Um} = {U′1, . . . ,U′n}, when m = n, is replaced with m constraints, Ui = U′i
(1 ≤ i ≤ m).

If the equality constraint does not correspond to one of these forms then unification fails.
If the top-level call unify(C, B0) function succeeds in processing all subtyping and equality constraints without

failing, then it returns a bounded substitution (B, σ) such that dom(B) = dom(B0) \ dom(σ). It is possible for B to
be empty, if solving the constraints requires substituting for all of the type variables.

4.3.2. Properties of the unification algorithm
We will show that our unification algorithm can be applied in a way which ensures computation of the most general

unifier for a set of constraints, if any unifier exists. To formalise the notion of “most general unifier”, we define an
order on bounded substitutions.

Definition 4.6 Let (B, σ) be a bounded substitution. An instance of (B, σ) is a mapping θ from dom(B) ∪ dom(σ)
to closed type expressions such that

1. for every X ∈ dom(B) with B(X) = (LX , UX), LX <: θ(X) <: UX

19

2. there exists a substitution γ such that θ = γ ◦ σ (viewing θ as a substitution).

Definition 4.7 (cf. [26, 22.4.1]) A bounded substitution (B1, σ1) is less specific (or more general) than a bounded
substitution (B2, σ2), written (B1, σ1) v (B2, σ2), if and only if dom(B1) ∪ dom(σ1) = dom(B2) ∪ dom(σ2) and
every instance of (B2, σ2) is also an instance of (B1, σ1).

We now show that the unification procedure of Figure 13 computes the most general unifier for a set of constraints,
if any unifier exists.

Lemma 4.2 Let C be a set of constraints and let B0 be a bounds function such that FV (C) ⊆ dom(B0). Then
unify(C, B0) terminates, either by failing or by returning a result of the form (B, σ).

Theorem 4.3 (cf. [26, 22.4.5]) Let C be a set of constraints and letB0 be the bounds function defined by dom(B0) =
FV (C) and ∀X ∈ dom(B0).B0(X) = (Bot,Top). If there exists a unifier for C then unify(C, B0) is a unifier for C,
and for every unifier (B, σ) for C, unify(C, B0) v (B, σ). That is, unify(C, B0) is the most general unifier for C.

We have proved that, for a PC partial specification S, if the constraints generated by the constraint typing relation
of Figure 12 have a solution then unify can be used to compute the most general solution. Combining this with
Corollary 4.1, this solution can be applied to S to provide a typing under the standard type system of Section 3. This
means that, by Theorem 3.2, execution of S does not lead to communication errors.

5. Practical Issues

We have proved the correctness of our type checking methods for Promela-calculus, which captures enough of the
interesting and relevant features of Promela to provide a rigorous theoretical basis for our practical implementation,
ETCH. We now address some practical issues: we show that computing a most general unifier allows us to infer some
interesting properties related to channel usage in a specification (Section 5.1), describe the way in which we deal with
recursive types (Section 5.2), sketch our approach to handling conditional receive statements, which are not part of
Promela-calculus (Section 5.3), and address the problem of providing reasonable error messages with type inference
(Section 5.4).

5.1. Using most general unifiers for channel usage analysis

Consider the following simple Promela example:
chan A = [3] of {int}
chan B = [1] of {byte}
chan C = [1] of {byte}
chan D = [1] of {byte}

proctype P()
{

A!4;
B!5;

}

proctype Q()
{

byte x;
A?x;
C?x;

}

Messages on channel A have type byte, but we can observe that this message type is wider than necessary: the
literal value 4 is regarded as a byte in Promela, and variable x has type byte, thus it would be sufficient for channel A
to be declared as: chan A = [3] of {byte}. Since int and byte fields require 4 and 1 bytes of storage respectively,
and the channel has capacity 3, this modification reduces the space requirements for this channel, per state, from 12
to 3 bytes. For a realistic model with tens of millions of states this space reduction would clearly be significant. Note

20

also that in the above specification no message is ever received on channel B, no message is ever sent on C, and no
communication whatsoever is performed on D. Such a situation is likely to be unusual, and may signal a mistake in
the specification. Nevertheless, the specification is well typed.

Applying ETCH to the above example, invoking an option to look for channel redundancy, automatically discovers
these specification flaws. When invoked in this mode, ETCH ignores channel initialisers in the input specification,
treating the channels in the above example as if they were declared as follows:

chan A
chan B
chan C
chan D

ETCH then performs type reconstruction, and reports the following most general types for the channels:
A : chan{byte}
B : chan{byte<:X}
C : chan{Y<:byte}
D : chan Z

The output for A indicates that A could be safely declared with field type byte rather than int. The output for
B shows that B’s field type can be any supertype of byte, but has no upper bound: this indicates that no messages
are sent on B; similarly the output indicates that no messages are received on C. Finally, D is given type chan Z,
indicating that D is never used for communication (the arity of D’s message tuples is even left unspecified). While this
additional information could also be obtained via dataflow analysis [1], it is an interesting by-product of computing a
most general unifier.

5.2. Recursive types

Unlike Promela-calculus, Promela does not allow explicit declaration of recursive types, but recursive channel
types can be implicitly introduced by channel usage as illustrated by the client-server and telephone examples of
Section 2. Our constraint-based type checking algorithm may generate recursive types during unification (see Sec-
tion 4.3).

Although the user never writes recursive type expressions, they may encounter them in error messages, or in the
reconstructed type information which ETCH generates. We describe the techniques ETCH uses to compare recursive
type expressions, and to minimise recursive types so that they are presented to the user in as palatable a form as
possible.

5.2.1. Comparing recursive types
The unify equality procedure (Figure 13) in our unification algorithm (Section 4.3) takes types T1 and T2, and

checks whether T1 = T2. This check for structural equivalence of types needs to handle the case where T1 and/or T2

are recursive.
To handle recursive types in a straightforward manner our uses techniques from a unification algorithm given in

[1]. Types are represented as directed graphs with a cyclic graph corresponding to a recursive type. Each graph node
n has a representative rep(n), a pointer to another graph node. Initially each node n represents itself, i.e. rep(n) = n.
During unification, representatives are re-assigned. If unification succeeds then the substitution part of the bounded
substitution (B, σ) is the mapping defined by, for each type variable X , X 7→ rep∗(X), where, for a node n, rep∗(n)
is computed by following rep pointers and returning the node m eventually reached for which rep(m) = m.

Representatives are computed as follows. When two chan nodes are unified via a constraint chan U1 = chan U2,
the representative for the node associated with the left hand side of the constraint is set to the representative for the
right hand node. Product type nodes are handled similarly when solving constraints of the form {U1, . . .Um} =
{U′1, . . . ,U′m}. When two type variables are unified via a constraint X = Y , rep(X) is set to rep(Y). When a type
variable is unified with a non type variable, the representative for the type variable node is set to the representative for
the non type variable node. The substitution of a type variable for a recursive type, specified as X 7→ µY.F (Y) in
Figure 13, is handled implicitly by introducing a cycle in the type graph: we do not use an explicit µ constructor.

To check equality of types T1 and T2, it suffices for our algorithm to check whether rep∗(n1) = rep∗(n2), where
n1 and n2 are the type graph nodes associated with T1 and T2 respectively. The types may not be identified as equal
straight away: when we first compare T1 with T2 we may just set rep(n1) to rep(n2). The next time the types are

21

1 chan A = [1] of {chan};
2 chan B = [1] of {chan};
3 chan C = [1] of {chan};
4 chan D = [1] of {chan,chan,chan};
5 chan E = [1] of {chan,chan,chan};
6 chan F = [1] of {byte}
7

8 init {
9 A!B;

10 B!C;
11 C!A;
12 D!E,E,A;
13 E!D,E,B;
14 F!E
15 }

Figure 14: A contrived Promela specification which generates a large recursive type expression if minimisation is not applied.

compared (when the unification processes has explored the cyclic type structures sufficiently) we are guaranteed to
have rep∗(n1) = rep∗(n2).

5.2.2. Recursive type minimisation
A recursive type can have infinitely many forms. Consider the type expression recX.chan{X,mtype} associated

with the client-server specification of Section 2.1. Alternative ways to write this type include:

• chan{recX.chan{X,mtype},mtype}

• chan recX.{chan X,mtype}

• chan{chan{chan{chan{chan{recX.chan{X,mtype},mtype},mtype},mtype},mtype},mtype}

One issue which motivates techniques for recursive type minimisation is that of storage: in a production compiler
it is desirable to store type expressions as compactly as possible to avoid excessive memory overhead during compi-
lation. Sophisticated minimisation techniques for recursive types have been developed for this purpose [5, 20]. Our
motivation is to improve the readability of messages generated by ETCH. The aim of an enhanced type checker is to
assist with compile-time debugging, for which good quality error messages are essential.

To illustrate the improvement in output quality which type minimisation affords, consider the variables pool and
partner from the client-server and telephone specifications respectively (see Sections 2.1 and 2.2). Figure 4 shows
the complete types which ETCH reconstructs for these variables.

If we run ETCH without type minimisation then the reconstructed type information for these variables is presented
as follows:
pool : chan { chan rec X . { mtype, chan X } }
partner : array(size 3) of chan rec X . { chan X, bit }

In each case, the displayed type expression is larger than need be. For a more extreme case where type minimisa-
tion can drastically improve readability, consider the contrived Promela example of Figure 14.

The code fragment is not well typed: the channel F accepts single field byte messages, but the channel E is supplied
as an argument to F at line 14. ETCH reports this via a reasonable error message:
Error at line 14: "rec X.chan{X,X,rec Y.chan {Y}}" is not compatible with type "byte".

When minimisation is turned off the error message becomes much more difficult to understand:
Error at line 14: "rec Z.chan rec X.{chan {chan X,chan X,chan rec Y.{chan{chan{chan Y}}}},
Z,chan rec A.{chan{chan{chan A}}}}" is not compatible with type "byte".

The ETCH recursive type minimisation algorithm is based on an algorithm for minimisation of deterministic finite
automata (DFA) given in [19]. There are many algorithms for DFA minimisation in the literature (see [35] for a
taxonomy). We settled on the algorithm of [19] for its simplicity and ease of correct implementation.

22

x : T ∈ Γ xi : Ti ∈ Γ Γ ` ej : Tj |χ C Xj 6= Xi /∈ χ,Ti,Tj , C,Γ, ej
C′ = {T = chan{. . . , Xi, . . . , Xj , . . . }, Xi <: Ti, . . . ,Tj <: Xj} ∪ C

Γ `: x ? . . . , xi, . . . ,eval(ej), . . . : Unit |{Xi,Xj}∪χ C
′ (CT-COND-RECEIVE)

Figure 15: Typing rule illustrating the way conditional receive operations are handled by ETCH. The rule shows an example of a variable argument
and an eval argument. For ease of presentation, details of constraints and type variables for the other arguments are omitted.

5.3. Type Checking full Promela
Promela-calculus is deliberately much simpler than Promela, but from the perspective of implementing a type

checker, most of the additional features of Promela can be handled easily. We briefly discuss one feature of full Prom-
ela which required some consideration when designing ETCH: constraint typing for conditional receive statements.

A useful feature of Promela is the ability to conditionally receive messages on a channel. In the following example:
chan c = [0] of {int};
...
byte x = ...;
c?eval(x)

the statement c?eval(x) blocks unless an integer message is offered on channel c such that the value of the message
equals the runtime value of x. The conditional receive does not modify variables of the recipient; the only side-effect
is that a message is removed from the channel, if buffered. Note that an arbitrary expression, not just a variable, can
appear as an argument to eval.

Without the eval construct, we would deem the above example ill-typed, as it attempts to receive an int argument
into a byte variable. However, with the eval construct it does not make sense to reject this example: the receive
statement requires a value of type byte, and since the channel communicates int values, which contain all byte values,
the statement will be executable if the correct int value is transmitted.

On the other hand, we could regard the following example as ill-typed:
chan c = [0] of {byte};
...
int x = ...;
c?eval(x)

The receive statement requires that some value of type int be available on a channel which transmits values of the
smaller type byte. Suppose that x has value -1 at runtime, which is an int but not a byte. Then the receive statement
will never succeed, which could be viewed as a programming error.

Based on this discussion, we reverse the way in which subtyping constraints are posted for eval receive arguments.
Recall that when the i-th argument to a receive operation is a variable with type Ti, we choose a fresh type-variableXi

for the argument type, and post the constraint Xi <: Ti (see rule CT-RECEIVE in Figure 12). When the i-th argument
has the form eval(e), where e has type Ti, we again choose a fresh type variable Xi, but instead post the constraint
Ti <: Xi. This captures the idea that a conditional receive construct should expect values belonging to a subset of
the values which it is possible to send on a channel. Type rule CT-COND-RECEIVE in Figure 15 describes the way
constraints are posted when both variable and eval arguments are used in a receive statement.

5.4. Providing reasonable error messages
Provision of informative error messages is an important feature of any practical type checker. Error reporting for

standard type checking is relatively easy: a type error typically corresponds to a direct misuse of types, which can be
isolated to a single line of source code. In theoretical terms, this corresponds to an expression for which no type rule
applies. Error reporting with type inference is harder. The constraint typing relation does not fail: every expression
in a program is successfully assigned a type, and type errors are reported if unification fails. It is difficult to relate
a unification error to a specific line of source code, since the error may result from unification of several constraints,
arising from distinct areas of the program. In the design of ETCH, we use two simple techniques to provide reasonable
error messages.

First, we do not implement the constraint typing relation strictly: when checking a compound expression, if
concrete types are available for all sub-expressions then we apply standard type checking, logging a type error im-
mediately if type checking fails. For example, if x : bit and y : int, on encountering the assignment x = y, rather

23

than posting constraint bit <: int we immediately report a subtyping error, with a message tailored to the fact that
the subtyping error occurs in the context of an assignment. Simply posting the constraint bit <: int would lead to a
subtyping error during unification, but without passing significant additional information to the unifier, we would not
know the context in which the subtyping error had occurred, so could not give such a good error message.

Secondly, we associate with each constraint the source code line at which the constraint was generated. When a
constraint causes unification to fail, this line number is used for error reporting. This is better than nothing: often a
constraint corresponds to a direct type error at the point of constraint generation. However, if several incompatible
constraints are generated, e.g. according to the way in which a channel is used, the specific constraint which causes
unification to fail may result from correct channel usage, if constraints arising from incorrect channel usage have been
processed first. In this case, a type error will be generated referring to a seemingly correct line of source code, leaving
the user to investigate the real cause of the error.

6. Related Work

The ETCH type checker, together with an informal description of our approach to type checking, are described in a
tool demonstration paper [8]. To our knowledge, there is no other work which concentrates directly on type checking
for Promela. A paper introducing Promela+, an extension of Promela for timed interactive simulation [6], describes a
software tool which claims to provide better type checking than standard SPIN, though no further details on the nature
of this type checking are provided.

The problem of type inference in the presence of subtyping has been studied by several authors, including [33, 27,
2, 9, 28, 23, 34, 14]. We can observe that our approach, of finding the most general unifier as a bounded substitution,
gives more than we really need for the specific problem of type checking Promela. It would be sufficient to solve
the equality constraints in the standard way, apply the resulting substitution to the subtyping constraints, and then
check satisfiability of the resulting subtyping constraints. Tiuryn [33] has shown that satisfiability can be decided in
polynomial time, although his decision procedure does not construct an explicit solution of the constraints and does
not reveal the bounds of each type variable in the way that our algorithm does. In practice, an explicit substitution
allows us to present the modeller with reconstructed types for channels in a Promela specification, which aids program
understanding. Furthermore, computing a most general substitution may reveal additional properties of interest related
to channel usage, as discussed in Section 5.1.

The theory HM(X) [23] allows the Hindley-Milner system can be parameterised by a constraint system. The
theory gives conditions for principal typings to exist, but does not automatically provide an algorithm for solving
constraints. We believe that our system can be expressed as an instance of HM(X), although we have not checked this
in detail, but in any case we would still need to define an algorithm for solving subtyping constraints. Pottier [27]
has also studied type inference with subtyping, focusing on efficient algorithms, although the algorithms themselves
are not defined very explicitly. We have not made a detailed comparison with his work, as we found it easier to
develop our own algorithm based on the specific properties of our constraint sets. However, in relation to efficiency,
we can make two observations. First, our implementation uses the technique, crucial for making unification efficient,
of representing type expressions by directed graphs. Second, Promela does not include let-polymorphism, which is
the cause of potential inefficiency in ML-style type inference. In practice we have found our implementation to be
acceptably efficient.

We note that the most general solutions produced by our algorithm could be used as the basis for a system of
ML-style polymorphic typing for Promela, either to allow polymorphic process definitions or to support separate
type checking of Promela code in multiple files. Our algorithm might be of interest for other languages with similar
properties to Promela.

Sophisticated techniques have been developed for generating good error messages with type inference for func-
tional languages: see [13] and references therein, as well as a recent tool for type error slicing in standard ML [29, 11].
Although we have found the simple methods for error reporting discussed in Section 5.4 to work reasonably well in
practice, the usability of ETCH could potentially be improved by implementing a more advanced system of error
tracking.

24

7. Conclusions and Future Work

We have presented details of the design and implementation of ETCH, an enhanced type checker for Promela.
ETCH is able to statically detect errors which are beyond the limited scope of type checking performed by the SPIN

model checker, thus ETCH can aid the development of robust Promela specifications for formal verification. ETCH is
publicly available for use by the Promela/SPIN community.

As discussed in Section 2.3, an avenue for future work is to extend ETCH with session types, to widen the class
of specifications that can be successfully type checked. The main challenge here would be inferring session types
from the way in which channels are used, so that ETCH can continue to be applied to Promela specifications without
requiring additional type annotations.

Acknowledgements

Alastair F. Donaldson was supported by a PhD studentship from the Carnegie Trust for the Universites of Scot-
land, and subsequently by the grant “Advanced Formal Verification Techniques for Heterogeneous Multi-core Pro-
gramming” (EP/G051100/1) from the UK Engineering and Physical Sciences Research Council (EPSRC). Simon
Gay was partially supported by the grant “Engineering Foundations of Web Service: Theories and Tool Support”
(EP/E065708/1) from the UK Engineering and Physical Sciences Research Council (EPSRC).

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers—Principles, Techniques and Tools. Addison-Wesley, 1986.
[2] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and type inference. In Conference on Functional Programming

Languages and Computer Architecture (FPCA’93), Copenhagen, Denmark, Proceedings, pages 31–41. ACM Press, 1993.
[3] Michael Baldamus and Jochen Schröder-Babo. p2b: A translation utility for linking Promela and symbolic model checking (tool paper).

In Matthew B. Dwyer, editor, Model Checking Software, 8th International SPIN Workshop, Toronto, Canada, Proceedings, volume 2057 of
Lecture Notes in Computer Science, pages 183–191. Springer, 2001.

[4] Muffy Calder and Alice Miller. Feature interaction detection by pairwise analysis of LTL properties - a case study. Formal Methods in System
Design, 28(3):213–261, 2006.

[5] Jeffrey Considine. Efficient hash-consing of recursive types. Technical Report 2000-006, Boston University, Computer Science, 2000.
[6] Marco Daniele, Paola Renditore, and Roberto Manione. Timed simulation of distributed systems — from PROMELA to PROMELA+. In

Proceedings of the First International SPIN Workshop (SPIN’95): Complementary Material, 1995. Published online:
http://spinroot.com/spin/Workshops/ws95/.

[7] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia Drossopolou. Session types for object-oriented languages.
In Dave Thomas, editor, ECOOP 2006 - Object-Oriented Programming, 20th European Conference, Nantes, France, Proceedings, volume
4067 of LNCS, pages 328–352. Springer, 2006.

[8] Alastair F. Donaldson and Simon J. Gay. Etch: An enhanced type checking tool for Promela. In Patrice Godefroid, editor, Model Checking
Software, 12th International SPIN Workshop, San Francisco, CA, USA, Proceedings, volume 3639 of Lecture Notes in Computer Science,
pages 266–271. Springer, 2005.

[9] Jonathan Eifrig, Scott F. Smith, and Valery Trifonov. Type inference for recursively constrained types and its application to oop. Electr. Notes
Theor. Comput. Sci., 1, 1995.

[10] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt, James R. Larus, and Steven Levi. Language support for fast
and reliable message-based communication in Singularity OS. In Yolande Berbers and Willy Zwaenepoel, editors, Proceedings of the 2006
EuroSys Conference, Leuven, Belgium, pages 177–190. ACM Press, 2006.

[11] Christian Haack and Joe B. Wells. Type error slicing in implicitly typed higher-order languages. Sci. Comput. Program., 50(1-3):189–224,
2004.

[12] Klaus Havelund, Michael R. Lowry, and John Penix. Formal analysis of a space-craft controller using SPIN. IEEE Trans. Software Eng.,
27(8):749–765, 2001.

[13] Bastiaan J. Heeren. Top Quality Type Error Messages. PhD thesis, Universiteit Utrecht, The Netherlands, September 2005.
[14] Fritz Henglein and Jakob Rehof. The complexity of subtype entailment for simple types. In 12th Annual IEEE Symposium on Logic in

Computer Science, Warsaw, Poland, Proceedings, pages 352–361. IEEE Computer Society Press LICS, 1997.
[15] J. Roger Hindley. The principal type-scheme of an object in combinatory logic. Transactions of the American Mathematical Society, 146:29–

60, 1969.
[16] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley, 2003.
[17] Gerard J. Holzmann and Margaret H. Smith. Automating software feature verification. Bell Labs Technical Journal, 5(2):72–87, 2000.
[18] Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, 4th International Conference on Concurrency Theory,

Hildesheim, Germany, Proceedings, volume 715 of Lecture Notes in Computer Science, pages 509–523. Springer, 1993.
[19] Peter Linz. An Introduction to Formal Languages and Automata. Jones and Bartlett, 2006.

25

[20] Laurent Mauborgne. Improving the representation of infinite trees to deal with sets of trees. In Gert Smolka, editor, Programming Languages
and Systems, 9th European Symposium on Programming, ESOP 2000, Berlin, Germany, Proceedings, volume 1782 of Lecture Notes in
Computer Science, pages 275–289. Springer, 2000.

[21] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System Sciences, 17:348–375, 1978.
[22] Robin Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised). MIT Press, 1997.
[23] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with constrained types. TAPOS, 5(1):35–55, 1999.
[24] Fredrik Orava and Joachim Parrow. An algebraic verification of a mobile network. Formal aspects of computing, 4(6):497–543, 1992.
[25] Simon L. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report. Cambridge University Press, 2003.
[26] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
[27] François Pottier. A framework for type inference with subtyping. In Proceedings of the International Conference on Functional Programming,

pages 228–238. ACM Press, 1998.
[28] François Pottier. Simplifying subtyping constraints: A theory. Inf. Comput., 170(2):153–183, 2001.
[29] Vincent Rahli, J. B. Wells, and Fairouz Kamareddine. Challenges of a type error slicer for the sml language. Technical Report HW-MACS-

TR-0071, Heriot-Watt university, 2009.
[30] J. Alan Robinson. Computational logic: the unification computation. Machine Intelligence, 6:63–72, 1971.
[31] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cambridge University Press, 2001.
[32] Francis Schneider, Steve M. Easterbrook, John R. Callahan, and Gerard J. Holzmann. Validating requirements for fault tolerant systems using

model checking. In 3rd International Conference on Requirements Engineering (ICRE ’98), Colorado Springs, CO, USA, Proceedings, pages
4–13. IEEE Computer Society, 1998.

[33] Jerzy Tiuryn. Subtype inequalities. In Proceedings of the IEEE Symposium on Logic in Computer Science, pages 308–315. IEEE Press, 1992.
[34] Valery Trifonov and Scott F. Smith. Subtyping constrained types. In Radhia Cousot and David A. Schmidt, editors, Static Analysis, Third

International Symposium, SAS’96, Aachen, Germany, Proceedings, volume 1145 of Lecture Notes in Computer Science, pages 349–365.
Springer, 1996.

[35] Bruce W. Watson. A taxonomy of finite automata minimization algorithms. Computing Science Report 93/44, Department of Computing
Science, Eindhoven University of Technology, 1993.

[36] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information and Computation, 115(1):38–94, 1994.

26

A. Operational semantics for Promela-calculus

Operational semantics for PC are presented in Figure 16.
Rules of the form (σ, e) →v (σ′, e′) show how expressions are evaluated with respect to a store. The E-LOOKUP

and E-ASSIGN rules show respectively how the store σ is referenced to look up the value of a store location, and
updated when a store location is written to. Evaluation of conditional expressions are handled naturally by rules E-
TRUE-COND and E-FALSE-COND, while analogous rules E-1-COND and E-0-COND show how the bit literals 1 and 0
can be used in place of true and false. Rules E-TRUE-EQ and E-FALSE-EQ allow numeric values to be compared to
yield a boolean result, and rule E-SEQ shows how sequences of statements are evaluated. Declaration of variables with
base types is handled by the E-BASE-TYPE-DECL rule, which picks a fresh store location for each such declaration.
When a variable is declared with a type T /∈ A, rule E-CHAN-DECL introduces a new channel value. We introduce
type rules in Section 3.3 such that for any type T used in a variable declaration in a well-typed specification, either
T ∈ A or T is a (possibly recursive) channel type.

The evaluation context syntax of Figure 9, together with the E-CONTEXT rule, allow more complex forms of
expressions to be evaluated in terms of rules of the form (σ, e)→v (σ′, e′). For example, the pair of evaluation context
E ! e, . . . , e and v ! v, . . . , v,E, e, . . . , e specify that the expression to the left of a ! operator should be evaluated to a
value before the expressions on the right are evaluated, and that these expressions should be evaluated in left-to-right
order. The other forms of evaluation context are similar.

Semantics for communication are provided by rule E-COMMS. The rule states that if a thread is ready to send n
values on channel c and another thread is ready to receive into n store locations, also via c, then the store should be
updated so that each location li is set to the corresponding value vi (1 ≤ i ≤ n). The send and receive operations
reduce to the () literal value of type Unit. Rule E-RUN provides call-by-value semantics for proctype instantiation.

The remaining rules provide algebraic identities which allow parallel compositions of threads to be maneuvered
in order for an evaluation rule to apply.

B. Proofs omitted from the text

For convenience, we re-state each result.

B.1. Proofs of results in Section 4.2

Theorem 4.1 (soundness), page 17

1. Let Γ be a context and e an expression, and suppose Γ ` e : U |χ C. If (B, σ,T) is a solution for (Γ, e,U, C)
then it is also a solution for (Γ, e).

2. Let Γ be a context and D a declaration, and suppose Γ ` D OK |χ C. If (B, σ) is a solution for (Γ, D, C) then
it is also a solution for (Γ, D).

3. Let Γ be a context and S a specification, and suppose Γ ` S : U |χ C. If (B, σ,T) is a solution for (Γ, S,U, C)
then it is also a solution for (Γ, S).

Proof In each case, a straightforward induction on the typing derivation, with a case analysis on the last rule. We
give details for the rules CT-COND-BASE and CT-SEND in case 1.

(CT-COND-BASE): In this case e is e1 → e2 : e3 and from the hypotheses of the instance of CT-COND-BASE

we have Γ ` e1 : T1 | C1, Γ ` e2 : T2 | C2, Γ ` e3 : T3 | C3, and T2,T3 ∈ A∗, with U = T2 ∨ T3 and
C = C1 ∪ C2 ∪ C3 ∪ {T1 <: bool}. We omit the χ annotations as they are not used in this proof.

Because (B, σ,T) is a solution for (Γ, e1 → e2 : e3,U, C), we have that (B, σ) satisfies C and σ(U) = T.
Therefore (B, σ) satisfies C1, C2 and C3, as well as T1 <: bool, meaning that B;σ(T1) <: bool.

From the algorithmic definition of a solution (Definition 4.4), (B, σ, σ(T1)) is a solution for (Γ, e1,T1, C1), and
similarly for e2 and e3. Applying the induction hypothesis, (B, σ, σ(T1)) is a solution for (Γ, e1) in the declarative
sense (Definition 4.3), i.e. B;σ(Γ) ` σ(e1) : σ(T1) is derivable in the standard type system. The same reasoning
applies to e2 and e3.

27

(σ, e)→v (σ′, e′)

(σ, l)→v (σ, σ(l)) (E-LOOKUP) (σ, l = v)→v (σ[l := v], v) (E-ASSIGN)

(σ,true→ e : e′)→v (σ, e) (E-TRUE-COND) (σ,false→ e : e′)→v (σ, e′) (E-FALSE-COND)

(σ, 1→ e : e′)→v (σ, e) (E-1-COND) (σ, 0→ e : e′)→v (σ, e′) (E-0-COND)

v1, v2 are equal integers

(σ, v1==v2)→v (σ,true)
(E-TRUE-EQ)

v1, v2 are unequal integers

(σ, v1==v2)→v (σ,false)
(E-FALSE-EQ)

T ∈ A l /∈ σ
(σ,T x ; e)→v (σ + [l 7→ ⊥], e[l/x])

(E-BASE-TYPE-DECL) (σ, v ; e)→v (σ, e) (E-SEQ)

T /∈ A l /∈ σ c /∈ σ
(σ,T x ; e)→v (σ + [l 7→ c], e[l/x])

(E-CHAN-DECL)

(σ, e)→ (σ′, e′)

(σ, e)→v (σ′, e′)

(σ,E[e])→ (σ′,E[e′])
(E-CONTEXT)

G→ G′

(σ, 〈E[c ? l1, . . . , ln]〉 ‖ 〈E′[c ! v1, . . . , vn]〉)→
(σ[l1 := v1, . . . , ln := vn], 〈E[()]〉 ‖ 〈E′[()]〉) (E-COMMS)

proctype P (T1 x1, . . . ,Tn xn) { e } is defined l1, . . . , ln /∈ σ
(σ, 〈E[run P (v1, . . . , vn)]〉)→ (σ + [l1 7→ v1, . . . , ln 7→ vn], 〈E[()]〉 ‖

〈e[l1/x1, . . . , ln/xn]〉)

(E-RUN)

(σ,K)→ (σ′,K′)

(σ,K ‖ K1)→ (σ′,K′ ‖ K1)
(E-PARALLEL)

K ∼= K′ K′′ ∼= K′′′

(σ,K′)→ (σ′,K′′)

(σ,K)→ (σ′,K′′′)
(E-TRANS)

K ∼= K′

‖ is commutative and associative

Figure 16: Operational semantics for Promela-calculus.

28

Because T2 and T3 are base types we have σ(T2) = T2 and σ(T3) = T3. It follows that, U = T2 ∨T3 is either a
base type or Top and so σ(U) = U; hence U = T = T2 ∨ T3.

From B;σ(Γ) ` σ(e1) : σ(T1) and B;σ(T1) <: bool we can derive B;σ(Γ) ` σ(e1) : bool by using rule T-SUB.
Similarly, since B;σ(Γ) ` σ(e2) : σ(T2), σ(T2) = T2 and T2 <: T2 ∨ T3, we have B;σ(Γ) ` σ(e2) : T2 ∨ T3. By
a symmetric argument, B;σ(Γ) ` σ(e3) : T2 ∨ T3. Finally, rule T-COND gives B;σ(Γ) ` σ(e1) → σ(e2) : σ(e3) :
T2∨T3. Because σ(e1)→ σ(e2) : σ(e3) = σ(e1 → e2 : e3) and T2∨T3 = T, this means that (B, σ,T) is a solution
for (Γ, e), as required.

(CT-SEND): In this case e is x!e1, . . . , en. From the hypothesis of the instance of CT-SEND we have x : T′ ∈ Γ,
Γ ` ei : Ti | Ci (1 ≤ i ≤ n), U = Unit and C = C1∪· · ·∪Cn∪{T′ = chan{X1, . . . , Xn},T1 <: X1, . . . ,Tn <: Xn}.
Again, we omit the χ annotations.

Because (B, σ,T) is a solution for (Γ, x!e1, . . . , en,U, C) we have (B, σ) satisfies C and σ(U) = T. Therefore
(B, σ) satisfies C1, . . . , Cn as well as T′ = chan{X1, . . . , Xn} and Ti <: Xi (1 ≤ i ≤ n). Since U = Unit,
T = σ(U) = Unit.

For 1 ≤ i ≤ n, combining the fact that (B, σ, σ(Ti)) is a solution for (Γ, ei,Ti, Ci) with the induction hypothesis,
we have (B, σ, σ(Ti)) is a solution for (Γ, ei), i.e. B;σ(Γ) ` σ(ei) : σ(Ti) is derivable in the original type system.
Since (B, σ) satisfies Ti <: Xi we have B ` σ(Ti) <: σ(Xi). Using rule T-SUB gives B;σ(Γ) ` σ(ei) : σ(Xi).

We have x : T′ ∈ Γ, so x : σ(T′) ∈ σ(Γ). Now (B, σ) satisfies T ′ = chan{X1, . . . , Xn}, so σ(T′) =
σ(chan{X1, . . . , Xn}) = chan{σ(X1), . . . , σ(Xn)}. It follows that x : chan{σ(X1), . . . , σ(Xn)} ∈ σ(Γ).

Rule T-SEND now applies, to yield B;σ(Γ) ` x!σ(e1), . . . , σ(en) : Unit. Because x!σ(e1), . . . , σ(en) =
σ(x!e1, . . . , en) and Unit = T, this means (B, σ,T) is a solution for (Γ, e) as required. �

Theorem 4.2 (completeness), page 17

1. Let Γ be a context and e an expression, and suppose Γ ` e : U |χ C. If (B, σ,T) is a solution for (Γ, e) and
dom(σ) ∩ χ = ∅ then there is some solution (B, σ′,T′) for (Γ, e,U, C) such that σ′ \ χ = σ and ∅ ` T′ <: T.

2. Let Γ be a context and D a declaration, and suppose Γ ` D OK |χ C. If (B, σ) is a solution for (Γ, D) and
dom(σ) ∩ χ = ∅ then there is some solution (B, σ′) for (Γ, D, C) such that σ′ \ χ = σ.

3. Let Γ be a context and S a specification, and suppose Γ ` S : U |χ C. If (B, σ,T) is a solution for (Γ, S) and
dom(σ) ∩ χ = ∅ then there is some solution (B, σ′,T′) for (Γ, S,U, C) such that σ′ \ χ = σ and ∅ ` T′ <: T.

Proof
Again, the proof is by straightforward induction on typing derivations. We give details for the rules CT-COND-

COMPOUND, CT-SEND and CT-RECEIVE in case 1.
(CT-COND-COMPOUND): In this case e = e1 → e2 : e3, U = T2, C = C1 ∪ C2 ∪ C3 ∪ {T1 <: bool,T2 = T3}.

From the premises of the rule we have Γ ` e1 : T1 |χ1 C1, Γ ` e2 : T2 |χ2 C2, Γ ` e3 : T3 |χ3 C3. We also have
T2 /∈ A∗ or T3 /∈ A∗.

Since (B, σ,T) is a solution for (Γ, e1 → e2 : e3) we have B;σ(Γ) ` σ(e1 → e2 : e3) : T, i.e. B;σ(Γ) `
σ(e1)→ σ(e2) : σ(e3) : T. Inverting rule T-COND tells us:

• B;σ(Γ) ` σ(e1) : bool

• B;σ(Γ) ` σ(e2) : T

• B;σ(Γ) ` σ(e3) : T

This means that (B, σ, bool) is a solution for (Γ, e1), and (B, σ,T) is a solution for both (Γ, e2) and (Γ, e3). By the
induction hypothesis there are solutions (B, σ1,K1) for (Γ, e1,T1, C1), (B, σ2,K2) for (Γ, e2,T2, C2) and (B, σ3,K3)
for (Γ, e3,T3, C3) such that σ1 \ χ1 = σ, σ2 \ χ2 = σ, σ3 \ χ3 = σ, ∅ ` K1 <: bool, ∅ ` K2 <: T and ∅ ` K3 <: T.

Because for 1 ≤ i 6= j ≤ 3 we have σi \ χi = σ \ χj and χi ∩ χj = ∅ we can extend σ1, σ2, σ3 to σ′ such that
σ′ \χ1 ∪χ2 ∪χ3 = σ. To complete the proof for case CT-COND-COMPOUND we show that (B, σ′,T) is a solution for
(Γ, e1 → e2 : e3,T2, C1 ∪ C2 ∪ C3 ∪ {T1 <: bool,T2 = T3}).

We need to show that σ′ satisfies C1 ∪C2 ∪C3 ∪{T1 <: bool,T2 = T3}. We have σ′ satisfies Ci from the fact that
σi satisfies Ci (1 ≤ i ≤ 3). Since T1 does not include any type variables contained in χ1, σ′(T1) = σ1(T1) = K1 <:

29

bool = σ′(bool), so σ′ satisfies T1 <: bool. For i ∈ {2, 3}, no variable in χi appears in Ti, so σ′(Ti) = σi(Ti). So
we have σ′(T2) = K2 and σ′(T3) = K3. We know that at least one of T2,T3 is not a base type. It follows that at
least one of σ′(T2), σ′(T3), i.e. one of K2,K3, is not a base type. Since subtyping can only occur between base types,
∅ ` K2 <: T and ∅ ` K3 <: T implies that K2 = K3 = T. Thus σ′ satisfies T2 = T3.

(CT-SEND): In this case e = x!e1, . . . , en, U = Unit, C = C1 ∪ · · · ∪ Cn ∪ {V = chan{X1, . . . , Xn},T1 <:
X1, . . . ,T1 <: Xn}. From the premises of the rule we have: x : V ∈ Γ, Γ ` ei : Ti |χi Ci (1 ≤ i ≤ n).

Since (B, σ,T) is a solution for (Γ, (x!e1, . . . , en)) we have B;σ(Γ) ` σ(x!e1, . . . , en) : T, i.e. B;σ(Γ) `
x!σ(e1), . . . , σ(en) : T. Inverting rule T-SEND we have:

• T = Unit

• B;σ(Γ) ` σ(ei) : Wi (1 ≤ i ≤ n)

• x : chan{W1, . . . ,Wn} ∈ σ(Γ), i.e. x : chan{V1, . . . ,Vn} ∈ Γ, where σ(Vi) = Wi (1 ≤ i ≤ n).

This tells us that V = chan{V1, . . . ,Vn} and (B, σ,Wi) is a solution for (Γ, ei) (1 ≤ i ≤ n).
For each i (1 ≤ i ≤ n) by the induction hypothesis there is a solution (B, σi,Ki) for (Γ, ei,Ti, Ci) such that

σi \ χi = σ and ∅ ` Ki <: Wi. Therefore (B, σi) satisfies Ci and σi(Ti) = Ki.
Because for any 1 ≤ i 6= j ≤ n, σi \ χi = σj \ χj and χi ∩ χj = ∅, we can extend σ1, . . . , σn to σ′ such that

σ′ \ χ1 ∪ · · · ∪ χn ∪ {X1, . . . , Xn} = σ and σ′(Xi) = Wi (1 ≤ i ≤ n). To complete the proof for CT-SEND we must
show that (B, σ′,Unit) is a solution for (Γ, (x!e1, . . . , en),Unit, C1 ∪ · · · ∪ Cn ∪ {V = chan{X1, . . . , Xn},T1 <:
X1, . . . ,Tn <: Xn}). This requires σ′ to satisfy C1∪· · ·∪Cn∪{V = chan{X1, . . . , Xn},T1 <: X1, . . . ,Tn <: Xn}.
For 1 ≤ i ≤ n, σ′ satisfies Ci due to the fact that σi satisfies Ci. Since neitherX nor any type variable in χi is contained
in Ti, σ′(Ti) = σi(Ti) = Ki <: Wi = σ′(Xi), so σ′ satisfies Ti <: Xi. Finally, σ′(V) = σ′(chan{V1, . . . ,Vn}) =
chan{(σ′(V1), . . . , σ′(Vn)} = chan{(σ(V1), . . . , σ(Vn)} (since neither X nor any type variable in χ1 ∪ · · · ∪ χn is
contained in any Vi (1 ≤ i ≤ n)) = chan{σ′(X1), . . . , σ′(Xn)} = σ(chan{X1, . . . , Xn}).

(CT-RECEIVE): In this case e = x?x1, . . . , xn, U = Unit, C = {V = chan{X1, . . . , Xn}, X1 <: T1, . . . , Xn <:
Tn}. From the premises of the rule we have x : V ∈ Γ and xi : Ti ∈ Γ (1 ≤ i ≤ n).

Since (B, σ,T) is a solution for (Γ, (x?x1, . . . , xn)) we have B;σ(Γ) ` σ(x?x1, . . . , xn) : T, i.e. B;σ(Γ) `
x?x1, . . . , xn : T. Inverting the T-RECEIVE rule tells us:

• T = Unit

• x : chan{W1, . . . ,Wn} ∈ σ(Γ), i.e. x : chan{V1, . . . ,Vn} ∈ Γ, where σ(Vi) = Wi (≤ i ≤ n)

• xi : Ui ∈ σ(Γ) (1 ≤ i ≤ n)

• B; Wi <: Ui (1 ≤ i ≤ n)

Therefore we have V = chan{V1, . . . ,Vn, σ(Ti) = Ui and B;σ(Vi) <: σ(Ti) (1 ≤ i ≤ n).
Define σ′ as follows: σ′(Y) = σ(K) if Y /∈ {X1, . . . , Xn} and Y ∈ dom(σ); σ(Xi) = σ(V) (1 ≤ i ≤ n).

It is clear that σ′ \ {X1, . . . , Xn} = σ. To complete the proof for CT-RECEIVE we must show that (B, σ′,Unit)
is a solution for (Γ, (x?x1, . . . , xn),Unit, {V = chan{X1, . . . , Xn}, X1 <: T1, . . . , Xn <: Tn}), which requires
σ′ to satisfy {V = chan{X1, . . . , Xn}, X1 <: T1, . . . , Xn <: Tn}. We have σ′(V) = σ′(chan{V1, . . . ,Vn}) =
chan{σ′(V1), . . . , σ′(Vn)} = chan{σ(V1), . . . , σ(Vn)} (since none of X1, . . . , Xn appear in any of V1, . . . ,Vn)
= chan{σ′(X1), . . . , σ′(Xn)} (by definition of σ′) = σ′(chan{X1, . . . , Xn}. Finally, for 1 ≤ i ≤ n, since none of
X1, . . . , Xn appear in Ti, σ′(Ti) = σ(Ti. We have σ′(Xi) = σ(Vi), and B ` σ(Vi) <: σ(Ti) = σ′(Ti).

�

B.2. Proofs of results in Section 4.3

Lemma 4.1, page 18 Suppose Γ ` S : U |χ C. If T1 <: T2 ∈ C then at least one of T1,T2 is not a type variable.
Proof The result follows from the fact that for any PC partial expression e, if Γ ` e : U′ |χ′ C′ then U′ is not a type
variable. To see this, observe that all typing rules for expressions in Figure 12 either assign a type from A∗ (bool,

30

Unit, or T1∨T2, where T1,T2 ∈ A∗), or pass through a type computed by other rules. Exceptions to this are “source”
rules CT-BOOL-LIT, CT-NUM-LIT and CT-VAR. The first two of these rules generate base types. Rule CT-VAR deduces
the type for a variable reference x from the environment Γ. An entry in Γ comes from the rule CT-DECL, which adds
x : T to Γ based on the type specified for x at declaration. This type is restricted to the syntax of Figure 11, and thus
cannot be a type variable.

Every rule in Figure 12 which generates subtyping constraints produces constraints with one of three forms:
T1 <: T2, T1 <: X , or X <: T2. In each case T1,T2 are types generated by the constraint typing relation for
expressions, and thus are not type variables by the above argument. �
Lemma 4.2, page 20 Let C be a set of constraints and let B0 be a bounds function such that FV (C) ⊆ dom(B0).
Then unify(C, B0) terminates, either by failing or by returning a result of the form (B, σ).
Proof The argument is the same as in Pierce [26, Theorem 22.4.5]. Given a set of constraints C, letm be the number
of distinct free type variables in C and let n be the total size of the types in C. Then each recursive call of unify moves
strictly downwards in the lexicographic order on (m,n). �

We prove Theorem 4.3, 20, via a series of technical lemmas.

Lemma B.1 If (B, σ) unifies {X = T} ·∪ C then (B, σ) unifies [X 7→ T′]C, where T′ is either µY.F (Y) if T is of
the form F (X) (for some fresh type variable Y) or T otherwise.
Proof By induction on the size of C. The base case, C = ∅, is trivial because [X 7→ T′]∅ = ∅.

If C = {U <: U′} ·∪ C′ then [X 7→ T′]C = {[X 7→ T′]U <: [X 7→ T′]U′} ·∪ [X 7→ T′]C′. Since (B, σ)
unifies {X = T} ·∪ C and C′ ⊂ C we have that (B, σ) unifies {X = T} ·∪ C′ and so, by the induction hypothesis,
(B, σ) unifies [X 7→ T′]C′. It remains to show that (B, σ) unifies [X 7→ T′]U <: [X 7→ T′]U′, i.e. B ` σ([X 7→
T′]U) <: σ([X 7→ T′]U′). Because (B, σ) unifies X = T, we have σ(X) = σ(T′) (if T is of the form F (X)
then this requires equivalence of a recursive type and its unfolding) and therefore σ([X 7→ T′]U) = σ(U), similarly
σ([X 7→ T′]U′) = σ(U′). Since (B, σ) unifies U <: U′ we have B ` σ(U) <: σ(U′). This completes the argument.

If C = {U = U′} ·∪ C′ then [X 7→ T′]C = {[X 7→ T′]U = [X 7→ T′]U′} ·∪ [X 7→ T′]C′ and we require
σ([X 7→ T′]U) = σ([X 7→ T′]U′). This follows from σ(X) = σ(T′) as before. �

Lemma B.2 If (B, σ) v (B′, σ′) and σ′(X) = Y and B(X) = (LX , UX) and B′(Y) = (LY , UY) then LX <:
LY <: UY <: UX .
Proof Let θ be an instance of (B′, σ′) such that θ(Y) = UY . There exists γ such that θ = γ ◦ σ′, so θ(X) =
γ(σ′(X)) = γ(Y) by hypothesis. Because (B′, σ′) is a bounded substitution and σ′(X) = Y , Y 6∈ dom(σ′), and
so θ(Y) = γ(Y). Therefore θ(X) = θ(Y). We have that θ is also an instance of (B, σ) and so θ(X) <: UX , i.e.
θ(Y) <: UX , i.e. UY <: UX by choice of θ. Similarly by taking θ(Y) = LY we obtain LX <: LY . We also have
LY <: UY by definition. The result follows. �

Lemma B.3 If (B, σ) v (B′, σ′) and B(X) = (LX , UX) and B′(X) = (L′X , U
′
X) then LX <: L′X <: U ′X <: UX .

Proof Similar to the proof of Lemma B.2: consider an instance θ of (B′, σ′) such that θ(X) is either L′X or U ′X ,
and use the fact that θ is also an instance of (B, σ). �

Lemma B.4 Let L,U ∈ A∗, T a type which is not a type variable, and σ a substitution. Suppose L <: T <: U .
Then L <: σ(T) <: U .
Proof If T ∈ A∗ then σ(T) = T and the result follows. Otherwise, T is either a channel type or a product type.
The only types inA∗ to which T is comparable via the subtyping relation are therefore Bot and Top, so L <: T <: U
forces L = Bot and U = Top, from which we have L <: σ(T) <: U as required. �

Lemma B.5 Let C be a set of constraints and let B0 be a bounds function such that FV (C) ⊆ dom(B0). Suppose
that unify(C, B0) = (B, σ). Then:

1. dom(σ) ⊆ FV (C).

2. dom(B) ∪ dom(σ) = dom(B0).

3. (B, σ) is a bounded substitution.
31

4. For every X ∈ dom(B0), B ` LX <: σ(X) <: UX where B0(X) = (LX , UX).

5. (B, σ) is a unifier for C.

Proof Each part is proved by induction on the number of recursive calls resulting from the initial call unify(C, B0).
The assumption that unify(C, B0) = (B, σ) implies that unify(C, B0) does not fail, enabling us to assume various
conditions checked by the algorithm. Parts (1) and (2) are straightforward. The proof of part (3) uses (1) to show that
when unifying [Y 7→ X]C, Y is not in the domain of the resulting substitution.

For part (4) some cases require more reasoning. If C = {X <: T2} ·∪ C′ then let (LX , UX) = B0(X) and so
(B, σ) = unify(C′, B0 \ {X} + [X 7→ (LX , UX ∧ T2)]). Consider a type variable Z. If Z 6= X then the induction
hypothesis gives B ` LZ <: σ(Z) <: UZ where B0(Z) = (LZ , UZ), as required for the conclusion. If Z = X then
the induction hypothesis gives B ` LX <: σ(X) <: UX ∧ T2, and the conclusion follows because UX ∧ T2 <: UX .
The case where C = {T1 <: X} ·∪ C′ is symmetric. If C = {X = Y } ·∪ C′ then let (LX , UX) = B0(X) and
(LY , UY) = B0(Y), and so (B, σ) = (B′, σ′ ◦ [Y 7→ X]) where (B′, σ′) = unify([Y 7→ X]C′, B0 \{X,Y }+[X 7→
(LX ∨ LY , UX ∧ UY)]). Consider a type variable Z. If Z 6= X and Z 6= Y then the induction hypothesis gives
B ` LZ <: σ′(Z) <: UZ where B0(Z) = (LZ , UZ), as required for the conclusion because σ(Z) = σ′(Z). If
Z = X then the induction hypothesis gives B ` LX ∨ LY <: σ′(X) <: UX ∧ UY , and the conclusion follows
because σ(X) = σ′(X) and LX <: LX ∨ LY and UX ∧ UY <: UX . If Z = Y then similar reasoning concludes the
argument, noting that σ(Y) = σ′(X). If C = {X = T2} ·∪ C′ then the proof is straightforward induction.

For part (5) we again show the more interesting cases. If C = {X <: T2} ·∪ C′ then let (LX , UX) = B0(X)
and so (B, σ) = unify(C′, B0 \ {X} + [X 7→ (LX , UX ∧ T2)]). By the induction hypothesis, (B, σ) unifies C′.
By (4), B ` LX <: σ(X) <: UX ∧ T2. Hence B ` σ(X) <: T2, and so (B, σ) unifies C. The case where
C = {T1 <: X} ·∪ C′ is symmetric. If C = {X = Y } ·∪ C′ then let (LX , UX) = B0(X) and (LY , UY) = B0(Y), and
so (B, σ) = (B′, σ′ ◦ [Y 7→ X]) where (B′, σ′) = unify([Y 7→ X]C′, B0 \ {X,Y }+ [X 7→ (LX ∨LY , UX ∧UY)]).
By the induction hypothesis (B′, σ′) unifies [X 7→ Y]C′ and therefore it is easy to see that (B, σ) unifies C′; also it
clearly unifies X = Y . If C = {X = T2} ·∪ C′ or C = {T1 = X} ·∪ C′ then similar reasoning applies. �

Lemma B.6 Let C be a set of constraints and let B0 be a bounds function such that FV (C) ⊆ dom(B0). Suppose
that (B, σ) is a unifier for C and (B0, []) v (B, σ). Then unify(C, B0) does not fail.

Proof By induction on the number of recursive calls in unify(C, B0). The base case is trivial.
If C = {T1 <: T2} ·∪ C′ and T1,T2 ∈ A then because (B, σ) unifies C we have B ` σ(T1) <: σ(T2). Because

T1 ∈ A, σ(T1) = T1, and similarly for T2. So T1 <: T2, and unify(C, B0) does not fail.
If C = {X <: T2} ·∪ C′ and T2 ∈ A then let (LX , UX) = B0(X). Because (B, σ) unifies C we have B `

σ(X) <: T2. Now we consider whether or not X ∈ dom(σ). If X 6∈ dom(σ) then B ` X <: T2. Let (L′X , U
′
X) =

B(X), and then U ′X <: T2. Because (B0, []) v (B, σ), Lemma B.3 gives LX <: L′X <: U ′X <: UX . Therefore
LX <: UX ∧ T2 6= Bot and so unify(C, B0) does not fail. If X ∈ dom(σ) then there are two further sub-cases. If
σ(X) = Y then let (LY , UY) = B(Y) (because (B, σ) is a bounded substitution, Y 6∈ dom(σ) and so Y ∈ dom(B)
by Lemma B.5). We have B ` Y <: T2, so UY <: T2. By Lemma B.2, LX <: LY <: UY <: UX and so
LX <: UX ∧ T2 6= Bot as before. Finally, if σ(X) is not a type variable then for a suitable γ, define θ = γ ◦ σ
so that θ is an instance of (B, σ). Because (B0, []) v (B, σ), θ is also an instance of (B0, []). Therefore LX <:
θ(X) <: UX . If σ(X) ∈ A then θ(X) = σ(X). If σ(X) 6∈ A then σ(X) has the same subtyping relationships as
θ(X) because its top-level type constructor is invariant for subtyping. In either case, we have LX <: σ(X) <: UX
and so LX <: σ(X) <: UX ∧ T2 6= Bot as required.

If C = {T1 <: X} ·∪ C′ and T1 ∈ A then the reasoning is symmetrical to the previous case.
If C = {X <: T2} ·∪ C′ and T2 /∈ A then unify replaces the subtyping constraint with X = T2, which is handled

by the argument below; a similar argument applies when C = {T1 = X} ·∪ C′.
If C = {X = Y } ·∪ C′ then let (LX , UX) = B0(X) and (LY , UY) = B0(Y). Because (B, σ) unifies X = Y ,

we have σ(X) = σ(Y). We now consider three cases. If σ(X) = Y (and so Y 6∈ dom(σ)) then let (L′Y , U
′
Y) =

B(Y). By Lemma B.2, LX <: L′Y <: U ′Y <: UX . By Lemma B.3, LY <: L′Y <: U ′Y <: UY . Therefore
Top 6= LX ∨ LY <: L′Y <: U ′Y <: UX ∧ UY 6= Bot and unify(C, B0) does not fail. If σ(Y) = X then symmetrical
reasoning applies. Finally, suppose that X,Y ∈ dom(σ) and σ(X) = σ(Y). There are two further sub-cases. If
σ(X) = σ(Y) = Z, a type variable, then let (LZ , UZ) = B(Z). Lemma B.2 gives LX <: LZ <: UZ <: UX and
LY <: LZ <: UZ <: UY , which is sufficient by similar reasoning to the previous case. If σ(X) = σ(Y) = T, not a

32

type variable, then for a suitable γ define θ = γ ◦ σ so that θ is an instance of (B, σ). Because (B0, []) v (B, σ), θ is
also an instance of (B0, []), so we have LX <: θ(X) = θ(Y) <: UX and LY <: θ(X) = θ(Y) <: UY which again
is sufficient.

If C = {X = T2} ·∪ C′, where T2 is not a type variable, then let (LX , UX) = B0(X). Since (B, σ) unifies
X = T2 we have σ(X) = σ(T2). Since T2 is not a type variable this implies that X ∈ dom(σ). For a suitable γ
define θ = γ ◦σ so that θ is an instance of (B, σ). Because (B0, []) v (B, σ), θ is also an instance of (B0, []), so we
have LX <: θ(X) <: UX , i.e. LX <: γ(σ(X)) <: UX , i.e. LX <: γ(σ(T2)) <: UX , i.e. LX <: (γ◦σ)(T2) <: UX .
Applying Lemma B.4 we have LX <: T2 <: UX , which is what is needed for unify to succeed.

If C = {T1 = X} ·∪ C′, where T1 is not a type variable, then the reasoning is symmetrical to the previous case.
�

Lemma B.7 Let C be a set of constraints and let B0 be a bounds function such that FV (C) ⊆ dom(B0). Suppose
that (B, σ) is a unifier for C and (B0, []) v (B, σ). Then unify(C, B0) v (B, σ).

Proof Again the proof is by induction on the number of recursive calls in unify(C, B0). We show the non-trivial
cases.

If C = {X <: T2} ·∪ C′ and T2 ∈ A then let (LX , UX) = B0(X). We have unify(C, B0) = unify(C′, B0 \
{X} + [X 7→ (LX , UX ∧ T2)]) = (B′, σ′) say. By hypothesis, (B, σ) unifies C′. To use the induction hypothesis,
which will complete the argument, we need (B0 \ {X}+ [X 7→ (LX , UX ∧ T2)], []) v (B, σ). Let θ be an instance
of (B, σ). So θ = γ ◦ σ for some γ. To show that θ is an instance of (B0 \ {X} + [X 7→ (LX , UX ∧ T2)], []) we
need LX <: θ(X) <: UX ∧ T2. We already have LX <: θ(X) <: UX . Also, because (B, σ) unifies X <: T2,
B ` σ(X) <: T2. If σ(X) is not a type variable then it must be a base type with σ(X) <: T2, and then θ(X) = σ(X)
and we are done. If σ(X) = Y then Y 6∈ dom(σ) and B ` Y <: T2. Let (LY , UY) = B(Y). Then UY <: T2. Now
θ(X) = θ(Y) = γ(Y), and LY <: θ(Y) <: UY because θ is an instance of (B, σ). Therefore θ(X) <: UY <: T2.
As we already have LX <: θ(X) <: UX , we conclude that LX <: θ(X) <: UX ∧ T2.

If C = {T1 <: X} ·∪ C′ and T1 ∈ A the result follows similarly.
If C = {X = Y } ·∪ C′ then let (LX , UX) = B0(X) and (LY , UY) = B0(Y). We have unify(C, B0) =

(B′, σ′ ◦ [Y 7→ X]) where (B′, σ′) = unify([Y 7→ X]C′, B0 \ {X,Y } + [X 7→ (LX ∨ LY , UX ∧ UY)]). We
need to show that (B′, σ′ ◦ [Y 7→ X]) v (B, σ). By Lemma B.1, (B, σ) unifies [Y 7→ X]C′. To use the induction
hypothesis we need (B0 \ {X,Y } + [X 7→ (LX ∨ LY , UX ∧ UY)], []) v (B, σ). Let θ be an instance of (B, σ).
Then θ = γ ◦ σ for some γ. We need LX ∨ LY <: θ(X) <: UX ∧ UY . θ is also an instance of (B0, []), so
LX <: θ(X) <: UX and LY <: θ(Y) <: UY . But σ unifies X = Y , so σ(X) = σ(Y) and so θ(X) = θ(Y).
Therefore LX ∨ LY <: θ(X) = θ(Y) <: UX ∧ UY . Now, the induction hypothesis gives (B′, σ′) v (B, σ). Let
φ be an instance of (B, σ); it is therefore also an instance of (B′, σ′). We need to show that it is an instance of
(B′, σ′ ◦ [Y 7→ X]). The condition on bounds follows directly from the fact that φ is an instance of (B′, σ′). We also
need the existence of γ such that φ = γ ◦ σ′ ◦ [Y 7→ X]. Because φ is an instance of (B′, σ′), there exists δ such that
φ = δ◦σ′. We will show that φ◦ [X 7→ Y] = φ and then take γ = δ. Because φ is an instance of (B, σ), there exists η
such that φ = η ◦ σ and so, because σ(X) = σ(Y), we have φ(X) = φ(Y). Now consider the action of φ ◦ [X 7→ Y]
on any type variable Z. If Z 6= X then (φ ◦ [X 7→ Y])(Z) = φ(Z). And (φ ◦ [X 7→ Y])(X) = φ(Y) = φ(X).
Therefore φ ◦ [X 7→ Y] = φ, as required.

If C = {X = T2} ·∪ C′ and T2 is not a type variable, then the reasoning is similar, and this reasoning also applies
if C = {X <: T2} ·∪ C′ and T2 /∈ A, since unify replaces the subtyping constraint with X = T2; a similar argument
applies when C = {T1 = X} ·∪ C′. �

Lemmas B.5, B.6 and B.7 prove that the unify function computes the most general unifier for a set of constraints,
when instantiated with a bounds function which assigns trivial bounds (Bot,Top) to every free type variable occurring
in the constraints.
Theorem 4.3, page 20 Let C be a set of constraints and letB0 be the bounds function defined by dom(B0) = FV (C)
and ∀X ∈ dom(B0).B0(X) = (Bot,Top). If there exists a unifier for C then unify(C, B0) is a unifier for C, and for
every unifier (B, σ) for C, unify(C, B0) v (B, σ). That is, unify(C, B0) is the most general unifier for C.
Proof Directly from Lemmas B.5, B.6 and B.7. �

33

	Introduction
	Contribution and structure of the paper

	Examples of Errors Detected by ETCH
	Client-Server specification
	Telephone specification
	The price of static type checking

	A Type System with Complete Type Information
	Syntax
	Semantics and internal syntax
	Type system

	Checking Under-specified Channel Types using Constraint-based Type Inference
	Bounded substitutions
	Constraint-based typing
	Constraint typing relation
	Relationship between constraint typing relation and standard type system

	Unifying constraints
	The unification algorithm
	Properties of the unification algorithm

	Practical Issues
	Using most general unifiers for channel usage analysis
	Recursive types
	Comparing recursive types
	Recursive type minimisation

	Type Checking full Promela
	Providing reasonable error messages

	Related Work
	Conclusions and Future Work
	Operational semantics for Promela-calculus
	Proofs omitted from the text
	Proofs of results in Section 4.2
	Proofs of results in Section 4.3

