
Static Analysis of Device Drivers: We Can Do Better!

Sidney Amani‡§ Leonid Ryzhyk‡§ Alastair F. Donaldson¶

Gernot Heiser‡§ Alexander Legg‡‖ Yanjin Zhu‡§

‡NICTA∗ §University of New South Wales ¶University of Oxford† ‖University of Sydney
sidney.amani@nicta.com.au

ABSTRACT
We argue that the device driver architecture enforced by
current operating systems complicates both manual and au-
tomatic reasoning about driver behaviour. In particular,
it makes it hard and in some cases impossible to statically
verify that the driver correctly interacts with the rest of the
kernel. This limitation cannot be addressed solely via better
verification tools. We maintain that qualitative improve-
ment in the effectiveness of static driver verification must
rely on an improved driver architecture, leading to drivers
that are easier to write, understand, and verify.
To support our claims, we present a device driver architec-

ture, called active drivers, that satisfies these requirements.
We outline our methodology for specifying and verifying ac-
tive driver protocols using existing model checking tools and
describe initial experimental results.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Input/Output; B.4.2
[Input/Output and Data Communications]: In-
put/Output Devices

General Terms
Reliability, Verification

Keywords
Device Drivers, Software Protocols, Model Checking

1. INTRODUCTION
Faulty device drivers are a major source of operating sys-

tem (OS) failures. In this paper we focus on a specific class

∗
NICTA is funded by the Australian Government as represented

by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT Cen-
tre of Excellence program.
†
Alastair F. Donaldson is supported by EPSRC grant EP/G051100.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

of driver bugs—violations of protocols between the driver
and the rest of the OS. These bugs are becoming increas-
ingly common due to the growing complexity of internal OS
interfaces [1]. Our earlier study [9] showed that OS protocol
violations account for 20% of all driver bugs.

Automatic verification tools have proved useful in detect-
ing driver protocol violations. In fact, some of the most
advanced verification tools for C, including SLAM [1], Sa-
tAbs [3], and Blast [7] were either designed with the pur-
pose of verifying driver protocols or used driver verification
as their primary case study.

Despite significant effort invested in improving these tools,
they remain limited in the size and complexity of drivers that
they can handle and properties that they can verify for these
drivers without generating a large number of false positives.

We argue that to a large extent these limitations are due
to the device driver architecture enforced by current oper-
ating systems. In this architecture the driver does not have
its own thread of control and instead its functions are called
directly by OS threads. If the driver makes incorrect as-
sumptions about the order in which the OS can invoke its
entry points, it will be unable to handle these invocations
correctly. As these assumptions are implicit in the source
code of the driver, such bugs can only be detected via their
indirect consequences, which can be difficult or impossible
to identify automatically.

The following code fragment, showing two driver entry
points, illustrates the problem:

int suspend () {... free (p); ...}
void remove () {... p->data =0; ...}

This code assumes that the remove() entry point cannot be
called after suspend() and therefore it is safe to deallocate
pointer p inside suspend(). While uncommon, this sequence
of driver invocations can occur in practice if the user unplugs
the device while it is in the suspended state, leading to an
invalid pointer dereference.

The problem in this example is that the root cause of
the bug—the fact that the driver is not prepared to handle
remove() after suspend()—is implicit in the driver code
and cannot be discovered using control flow analysis. The
model checker can still find the bug by employing a hand-
written C model of the OS kernel that randomly generates
all possible sequences of driver invocations by the OS [1] and
detecting that one of these sequences leads to a use-after-
free error; however such analysis quickly gets intractable for
code involving complex pointer manipulation. For instance,
if the remove() function accessed the content of p via an
alias pointer, this could lead to very long verification time.

Furthermore, if the problematic sequence of invocations
caused the driver to issue invalid commands to the device
instead of performing an invalid pointer dereference, such a
bug would even in principle be impossible to detect auto-
matically without providing a formal model of the device to
the model checker.
We believe that qualitative improvement in the effective-

ness of automatic driver verification must rely on an im-
proved driver architecture. In this architecture, interactions
with the OS must be explicit in the code of the driver, which
allows verifying the driver’s compliance with OS protocols
using control flow analysis.
In our earlier work [10], we proposed such an architecture,

called active drivers. It was originally introduced with the
goal of improving driver reliability by making drivers easier
to write and understand.
In the present paper we show that the active driver ar-

chitecture also facilitates automatic analysis of driver cor-
rectness. To this end, we specify interaction protocols be-
tween active drivers and the OS using finite state machines.
The driver implementation is then automatically checked
for compliance with the protocol state machine using an
existing model checker, namely SatAbs. Our initial ex-
periments show that this methodology allows verification of
driver properties that are hard or impossible to check for
conventional drivers.
In the rest of the paper we give an outline of the active

driver architecture (Section 2), present our methodology for
writing formal specifications of active driver protocols (Sec-
tion 3), and describe how these protocols can be verified us-
ing an existing C model checker (Section 4). We summarise
our experimental results in Section 5 and discuss related
work in Section 6.

2. ACTIVE DRIVERS
Active device drivers [10] were introduced to address two

issues with the conventional driver architecture, where a
driver is a passive object that is only activated when an
external thread invokes one of its entry points. First, since
multiple threads can invoke the driver concurrently, it must
take care to synchronise the invocations to avoid race con-
ditions. Second, since the driver does not have its own
thread of control, it cannot rely on programming-language
constructs to maintain its control flow and instead records
its execution state using state variables. Both issues make
the logic of the driver difficult to implement and even harder
to understand and modify.
In the active driver architecture, every driver runs in the

context of its own thread. Communication between the
driver thread and other OS threads occurs via message pass-
ing. The driver-OS interface consists of a set of mailboxes

where each mailbox is used for a particular type of message.
The OS sends I/O requests and interrupt notifications to
the driver by placing them in appropriate mailboxes. The
driver receives a message by performing a blocking wait on
one or more mailboxes. The driver notifies the OS about a
completed request via a reply mailbox. A message can carry
a payload consisting of one or more arguments. The number
and types of arguments is determined by the message type.
An active driver is structured as a sequential program,

with the order in which the driver handles OS requests ex-
plicitly defined in the structure of the program. In addition,
since the driver handles all requests in the context of its own

thread, it does not have to worry about thread synchronisa-
tion.

An active driver can register several interfaces with the
OS. For each interface, the OS creates a set of mailboxes for
communication with the driver.

Support for active drivers can be added to an existing OS
kernel. To this end, the OS must be extended with interface
adapters that perform the conversion between native driver
interfaces supported by the OS and message-based interfaces
implemented by the driver.

The driver exchanges messages with the OS via EMIT and
AWAIT primitives. The EMIT function places a message in
a mailbox. The sending thread continues without block-
ing. The AWAIT function takes references to one or more
mailboxes. If there is a message queued at one of these
mailboxes, AWAIT returns immediately. Otherwise, it blocks
until a message arrives to one of the mailboxes. In either
case, it returns a reference to the mailbox containing the
message. A mailbox can queue multiple messages. AWAIT
always dequeues exactly one message, which is accessible
via a pointer in the returned mailbox.

We illustrate how the active driver architecture facilitates
static analysis of device drivers using a fragment of active
driver code that matches the example from Section 1:

1 mb = AWAIT(suspend , remove , ...);
2 if (mb == suspend) {
3 ...
4 free(p);
5 mb = AWAIT(resume);
6 ...
7 } else if (mb == remove) {
8 p->data = 0; ...
9 }

Here, suspend, resume, and remove are pointers to driver
mailboxes. In line 1 the driver waits for both suspend and
remove requests. After receiving a suspend request in line 2,
the driver deallocates pointer p and waits for a resume re-
quest in line 5.

This implementation has an equivalent bug to the one
found in the original, passive, version of the driver: the
driver does not handle remove requests in the suspended
state. A correct implementation must wait on both resume
and remove mailboxes in line 5. Otherwise the driver dead-
locks if remove rather that resume arrives while it is blocked
at line 5.

The key difference between the passive and the active ver-
sions of the driver is that the active version better captures
the programmer’s intention and achieves cleaner separation
of control and data flows. In this version, the bug is evident
in the control flow of the driver and can be discovered with-
out resorting to pointer analysis. Upon discovering the bug,
the driver developer adds the remove message to the AWAIT
call in line 5 and implements code to handle this message.
It is clear from the control flow of the driver that this code
is invoked in the suspended state and therefore it is likely
to differ from the remove handler for the full-power state in
line 8.

As can be seen from the above example, active driver code
is more verbose compared to passive drivers. This results in
a small increase in the code size for a complete driver (see
Section 5). We believe that this overhead is justified by the
improved clarity of active drivers.

Figure 1: PCI protocol fragment.

3. SPECIFYING DRIVER PROTOCOLS
In order to enable formal analysis of the driver-OS inter-

action, we associate a behavioural protocol with each active
driver interface. The protocol specifies messages from the
OS that the driver must be prepared to handle in every
state as well as messages that the driver is allowed to send
to the OS. Driver protocols are defined by the I/O frame-
work designer and are generic in the sense that every driver
that implements the given interface must comply with the
associated protocol.
We specify driver protocols in the form of finite state ma-

chines (FSMs) where every state transition corresponds to
a message sent or received by the driver. The protocol state
machine conceptually runs in parallel with the driver: when-
ever the driver sends or receives a message that belongs to
the given protocol, this triggers a matching state transition
in the protocol state machine.
The use of FSMs to formalise driver behaviour was pro-

posed in the Dingo [9] driver framework. While Dingo aims
to make driver protocols easier to understand and to check
at runtime, our focus is on static verification. Therefore we
use a subset of the Dingo specification language that lends
itself naturally to static analysis.
Figure 1 shows a simplified version of the protocol that

must be implemented by any driver for a PCI-based device.
This protocol describes the handling of initialisation, shut-
down, and power management requests by the driver. Each
protocol state transition is labelled by the name of the mail-
box through which the driver sends or receives a message,
with exclamation marks (“!”) denoting send transitions and
question marks (“?”) denoting receive transitions. The la-
bel can also contain an optional guard condition in square
brackets, which constrains values of message arguments.
According to Figure 1, in the initial state the driver must

wait for a probe message from the OS. In response to this
message, the driver initialises the device and notifies the OS
about the completion of this operation via a probe_mpl
message. If initialisation is successful (the status argument
of probe_mpl message is 0), the protocol state machine
moves to the PROBED state; otherwise it reaches its final state.
The remaining protocol state transitions in Figure 1 can be
interpreted analogously.
In some states of the protocol the OS is waiting for the

driver to complete a request. The driver cannot remain in
such a state indefinitely, but must eventually leave the state

by sending a response message to the OS. Such states are
called timed states and are labelled with the clock symbol
in Figure 1.

We use the Statecharts [6] syntax to achieve compact
representation of complex protocol state machines. State-
charts organise states into a hierarchy, where several primi-
tive states can be clustered into a super-state. Super-states
can be composed sequentially or in parallel. The latter is
useful for specifying several independent activities within a
protocol, e.g. sending and receiving of network packets.

In order to enable automatic verification of drivers’ proto-
col compliance, we define a set of rules that must be followed
by any driver that implements a protocol:

1. EMIT: The driver is allowed to emit a message to a
mailbox if and only if this message triggers a valid state
transition in the protocol state machine.

2. AWAIT: Whenever the driver performs an AWAIT oper-
ation, it must wait on all incoming mailboxes enabled
in the current state of the protocol.

3. Timed: The driver must not remain in a timed state
forever.

4. Termination: When the main driver function returns,
the protocol state machine must be in a final state.

The first rule forbids the driver to send a message that
the OS does not expect in the current state. The second
rule prevents the driver from waiting for only a subset of
enabled incoming messages. Violation of this rule can lead
to a deadlock, as shown in Section 2. The third rule forces
the driver to respond to all OS requests by eventually exiting
each timed state of the protocol. Finally, the fourth rule
makes sure that the driver does not terminate leaving some
of its protocols in intermediate states.

Rule 2 is too restrictive in practice. It requires the driver
to wait for all enabled messages of all its protocols. As a
result, the driver is unable to deliberately delay handling
of some of the messages, which is useful for instance if the
driver wants to complete the current request before checking
for more requests from the OS. In order to enable delayed
message handling without sacrificing correctness, we use a
relaxed version of rule 2 that allows the driver to wait for a
subset of enabled protocol messages as long as one of these
messages is guaranteed to be received eventually in the cur-
rent state. The protocol designer must mark such safe sets
of messages in the protocol state machine.

4. VERIFYING DRIVER PROTOCOLS
In order to automatically verify driver protocols, we must

first convert them into a format understood by verification
tools. Most verification tools for C handle properties ex-
pressed as source code assertions. Therefore we encode
rules 1 and 2 into assertions embedded in modified versions
of EMIT and AWAIT used for verification. These modified
functions keep track of the state of the protocol and check
that each EMIT and AWAIT call issued by the driver com-
plies with rules 1 and 2. At the moment, these checks must
be written manually based on protocol specifications. Au-
tomating this task is part of ongoing work.

In order to verify rule 4, we implement a wrapper function
around the driver’s main function, which checks that upon
return from main the protocol state machine is in one of its
final states.

The above approach to driver verification does not require
modifications to driver source code. Furthermore, it verifies
drivers compositionally, one protocol at a time.
The main limitation of assertion-based verification is that

it does not handle liveness properties, i.e. properties whose
violation cannot be demonstrated using a finite trace of the
program. Rule 3 falls into this category. It requires the
driver to eventually respond to any OS request. This rule
cannot be violated in any finite sequence of steps; however
an infinite run of the driver can violate it.
Liveness properties can be formalised using temporal

logic and verified with the help of a temporal logic model
checker [5]. Results presented in this paper were ob-
tained using the SatAbs model checker, which only sup-
ports assertion-based verification. Therefore we did not ver-
ify rule 3 in our experiments. Further work on the project
will address this limitation.

Speeding up verification We have experimented
with active driver protocol verification using SatAbs [3],
a counterexample-guided abstraction refinement (CEGAR)
model checker for C.
Although manual analysis of driver code confirms that

the control structure of active drivers is largely independent
of the data path and therefore can in principle be verified
efficiently, our initial experiments showed poor verification
performance, with most verification runs not finishing within
reasonable time. Analysis of performance issues led to an
improved encoding of protocol state machines and tuning of
internal SatAbs heuristics.
First, we discovered that verifying a complete protocol in

one go leads to overly complex abstractions. As the model
checker tries to verify various assertions that encode the pro-
tocol, it adds new predicates to the abstract model of the
driver. While the number of predicates involved in verifying
an individual protocol state transition is typically small, the
overall number of predicates generated with this approach
overwhelms the model checker.
We address the problem by decomposing each driver pro-

tocol state machine into a set of much simpler protocols.
The decomposition is equivalent to the original protocol,
i.e. the driver satisfies the original protocol if and only if it
satisfies each protocol in the decomposition. In our expe-
rience, even complex driver protocols allow decomposition
into simple protocols with no more than 4 states and only a
few transitions.
At the moment, we perform the decomposition manually

using the following heuristic rule: every protocol in the de-
composition must capture a single constraint on the driver
behaviour. One example of such a rule that can be extracted
from the PCI protocol (Figure 1) is that after sending a
probe_omplete message the driver must be prepared to
handle remove and suspend messages from the OS. Protocol
decomposition only needs to be performed once for a class of
device drivers. Nevertheless it is a tedious and error-prone
task; therefore we plan to automate it in the future.
Verifying each protocol in the decomposition requires only

a small subset of predicates involved in checking the mono-
lithic protocol, leading to exponentially faster verification.
By checking each individual protocol in parallel, the mono-
lithic protocol can be verified in the time required by the
slowest protocol in the decomposition.
Second, we found that in analysing a spurious counterex-

ample, predicates extracted from program points close to

the failed assertion tended to be useful in allowing verifi-
cation to progress, while predicates less close to the error
were often irrelevant to the property being checked. Thus,
we added to SatAbs a feature to introduce no more than a
user-specified number of new predicates (usually between 1
and 4) during each CEGAR iteration, favouring predicates
derived from program points close to the failed assertion.

Third, we noticed that by default SatAbs introduced a
large number of pointer-related predicates. Most of these
predicates do not affect driver’s control flow and are there-
fore irrelevant to verifying driver protocols. Thus we added
to SatAbs a heuristic to favour non-pointer predicates, that
is predicates which are not equality tests between pointer
expressions, when adding new predicates.

5. EVALUATION
In order to evaluate the active driver architecture and its

impact on driver verification, we specified and implemented
protocols for several classes of device drivers, including Eth-
ernet, SCSI, and ATA driver protocols. We based our pro-
tocol specifications on equivalent Linux driver interfaces, to
simplify porting of existing Linux drivers to the active archi-
tecture. The drivers we ported are the RTL8169 Ethernet
controller driver, the generic SCSI-to-ATA converter driver
(libata), and the AHCI SATA controller driver.

Our initial verification results are based on the AHCI con-
troller driver. We chose this driver due to the extreme com-
plexity of its protocol. The Linux ATA protocol that this
driver implements emerged as a result of splitting a mono-
lithic ATA controller driver into a device-independent layer
(libata) and device-specific drivers for various ATA con-
trollers. The two layers interact via numerous nested call-
backs most of which can only be invoked in a specific context.
Our specification of the ATA protocol state machine consists
of 39 states and 61 transitions. We decomposed this proto-
col into an equivalent set of 22 protocols, each consisting of
2 to 4 states. The native Linux AHCI driver contains 2268
lines of C code; the equivalent active driver is 2427 loc.

Using the modified version of SatAbs described in the
previous section, we were able to verify all safety properties
of ATA and PCI protocols. The longest checker took 12
hours.

In all cases, analysis of SatAbs output revealed that most
predicates required to verify driver protocols were control-
flow related, with only a small number of data-related pred-
icates. This shows that the active driver architecture ef-
fectively separates the control logic of the driver responsible
for interaction with the OS from its data flow, which enables
efficient verification of driver protocols.

We evaluate the performance overhead of active drivers by
comparing the performance of the native Linux driver and
the active driver for the AHCI controller using the iozone
benchmark suite running on a system with a 2.33GHz Intel
Core 2 Duo CPU with one enabled core, Marvell 88SE9123
PCIe 2.0 SATA controller, and WD Caviar SATA-II 7200
RPM hard disk. While both drivers achieved the same I/O
throughput on all tests, the active driver’s CPU utilisation
(measured with oprofile) was slightly higher (Figure 2). This
overhead is due to the higher cost of message-based commu-
nication compared to direct function calls used by the native
driver. It can be reduced using an optimised implementation
of the message passing mechanism and improved protocol
design. Our ATA driver protocol, based on the equivalent

write
/re

-write

read/re
-re

ad

random r/w

reverse
 re

ad

str
ided re

ad
mixed

pwrite
pread

0

5

10

15

20

25

30

35

40

C
P
U

 u
ti

li
s
a
ti

o
n
 (

%
)

Native Linux driver

Active driver

Figure 2: Native vs. active driver performance on
the iozone benchmark.

Linux interface, requires 10 messages for each I/O operation.
A clean-slate redesign of this protocol would involve much
fewer messages.

6. RELATED WORK
Several previous systems, including Singularity [4],

RMoX [2], and Dingo [9], implement variations of the ac-
tive device driver architecture. Singularity and RMoX also
support static verification of driver protocols. To this end,
they rely on specialised language features and radically dif-
ferent OS architectures.
Active drivers were introduced as an OS and language-

independent concept in [10], with the goal of simplifying
driver development and avoiding common types of driver
bugs. In the present work we demonstrate that active drivers
also facilitate static verification of driver-OS protocols for
drivers written in C and for conventional OSes.
Tools like SLAM [1], SatAbs [11], and Coccinelle [8] have

been used for static analysis of Windows and Linux device
drivers. As discussed in Section 1, the power of these tools is
limited by the conventional driver architecture. In this work
we demonstrate that the same tools can be used to verify
complete driver-OS protocols for active drivers.

7. CONCLUSION
We argued that the effectiveness of automatic verification

tools in finding driver bugs can be increased with the help
of an improved device driver architecture where interactions
with the OS are explicit in the source code of the driver. We
presented such an architecture and showed that it enables
the use of existing model checking tools to verify properties
that are hard or impossible to check on conventional drivers.

Acknowledgement
We are grateful to Michael Tautschnig for assistance with
the use of SatAbs.

8. REFERENCES
[1] T. Ball, E. Bounimova, B. Cook, V. Levin,

J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K.
Rajamani, and A. Ustuner. Thorough static analysis
of device drivers. In 1st EuroSys Conf., pages 73–85,
Leuven, Belgium, Apr 2006.

[2] F. Barnes and C. Ritson. Checking process-oriented
operating system behaviour using CSP and
refinement. Operat. Syst. Rev., 43(4):45–49, Oct 2009.

[3] E. M. Clarke, D. Kroening, N. Sharygina, and
K. Yorav. Predicate abstraction of ANSI-C programs
using SAT. Formal Methods in System Design,
25(2-3):105–127, 2004.

[4] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson,
G. C. Hunt, J. R. Larus, and S. Levi. Language
support for fast and reliable message-based
communication in Singularity OS. In 1st EuroSys

Conf., pages 177–190, Leuven, Belgium, Apr 2006.

[5] A. Fehnker, R. Huuck, P. Jayet, M. Lussenburg, and
F. Rauch. Goanna — A Static Model Checker. In 11th

FMICS, pages 297–300, Bonn, Germany, Aug 2006.

[6] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming,
8(3):231–274, Jun 1987.

[7] T. A. Henzinger, R. Jhala, R. Majumdar, G. C.
Necula, G. Sutre, and W. Weimer. Temporal-safety
proofs for systems code. In 14th Int. Conf. Comp.

Aided Verification, pages 526–538, Copenhagen,
Denmark, 2002.

[8] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall,
and G. Muller. Faults in linux: ten years later. In 16th

ASPLOS, pages 305–318, Newport Beach, CA, USA,
2011.

[9] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo:
Taming device drivers. In 4th EuroSys Conf.,
Nuremberg, Germany, Apr 2009.

[10] L. Ryzhyk, Y. Zhu, and G. Heiser. The case for active
device drivers. In 1st APSys, pages 25–30, New Delhi,
India, Aug 2010.

[11] T. Witkowski, N. Blanc, D. Kroening, and
G. Weissenbacher. Model checking concurrent Linux
device drivers. In 22nd ASE, pages 501–504, Atlanta,
Georgia, USA, 2007.

