
Safe Asynchronous Multicore Memory Operations
Matko Botinčan, Mike Dodds

University of Cambridge
{matko.botincan, mike.dodds}@cl.cam.ac.uk

Alastair F. Donaldson
Imperial College London

afd@doc.ic.ac.uk

Matthew J. Parkinson
Microsoft Research Cambridge

mattpark@microsoft.com

Abstract—Asynchronous memory operations provide a means
for coping with the memory wall problem in multicore proces-
sors, and are available in many platforms and languages, e.g.,
the Cell Broadband Engine, CUDA and OpenCL. Reasoning
about the correct usage of such operations involves complex
analysis of memory accesses to check for races. We present a
method and tool for proving memory-safety and race-freedom of
multicore programs that use asynchronous memory operations.
Our approach uses separation logic with permissions, and our
tool automates this method, targeting a C-like core language.
We describe our solutions to several challenges that arose in
the course of this research. These include: syntactic reasoning
about permissions and arrays, integration of numerical abstract
domains, and utilization of an SMT solver. We demonstrate the
feasibility of our approach experimentally by checking absence
of DMA races on a set of programs drawn from the IBM Cell
SDK.

Index Terms—Software verification; Concurrent programs;
Abstract interpretation; Automated theorem proving

I. INTRODUCTION

Asynchronous memory operations are an important feature
of modern multicore systems. They provide a means for
coping with the high cost of shared-memory access (the so-
called memory wall problem). Using asynchronous operations,
cores can delegate data-movement to dedicated hardware,
and continue processing on private memory, to which they
have fast, contention-free access. These operations are widely
available, e.g. direct memory access (DMA) operations in the
Cell Broadband Engine, asynchronous copying in OpenCL,
and one-sided operations in MPI-2.

The high performance permitted by asynchronous memory
operations comes at a price: increased programming complex-
ity. Erroneous synchronisation within a thread can lead to data
races, for example when copying a section of memory by an
asynchronous operation and then writing to or deallocating
it before the operation completes. The deallocation of the
memory can happen implicitly when a function returns, or
when a thread is joined. These problems are compounded
in a multithreaded setting: incorrectly managed asynchronous
operations can lead to inter-core data races, where a thread
running on core i issues an operation to copy data to the
local memory of core j, while a thread running on core j
simultaneously accesses this memory.

Asynchronous operations run concurrently with other
threads, and have undefined behaviour over written memory
until synchronised. Consequently, incorrectly-managed asyn-
chronous copying can lead to highly nondeterministic bugs
that are extremely difficult to diagnose through simulation

and testing. While data races in shared-variable concurrent
programs are often benign, or intentional, this is virtually
never the case for races involving asynchronous operations,
and we regard such races as bugs. Since buggy programs
may behave entirely correctly on some implementations, while
failing drastically on others, there is an urgent need for formal
verification techniques in this area.

In this paper, we present a method and a tool for proving
safety of multicore programs with fork/join thread-spawning
and asynchronous memory operations. Our deductive, proof-
based method uses the following intuition: (1) to successfully
perform an asynchronous memory operation to move data
from A to B, a thread must have permission to read from
A, and permission to write to B; and (2) upon issuing such
an operation, the thread loses these permissions until it issues
a corresponding synchronisation operation that waits until the
transfer has completed, at which point permissions for A and
B are restored. We present program logic rules for asyn-
chronous memory operations that formalise these intuitions.
If it is possible to derive a proof for a multicore program
using our proof system, then the program is guaranteed to be
memory-safe and race-free.

We have developed techniques for automating our verifica-
tion method, which involves complex flow-, path- and context-
sensitive analysis. Our approach hinges on symbolic execution
over an abstract domain of separation logic assertions [3]
with permissions [4] and array predicates. Using the rules
of our proof system for entailment checking and abstraction,
symbolic execution is guided towards a fix-point, yielding a
safety proof if the program is correct. If the program is buggy,
the proof attempt will fail, providing feedback which can be
used to locate the source of the bug.

We have implemented our method for a C-like language in
a prototype tool, asyncStar, built on coreStar [5], a modular
back-end for separation logic analysis and verification. Stan-
dard separation logic abstraction techniques [10] are used to
automatically infer loop invariants describing heap resources.
To handle numeric constraints relevant to array manipulation,
we extend coreStar with a novel technique allowing integra-
tion of arbitrary numerical domains [9] with separation logic
abstraction.

We present an experimental evaluation demonstrating the
feasibility of the abstraction approach on a number of hand-
crafted examples, and of the whole method using a set of
benchmark programs drawn from the IBM Cell Broadband
Engine SDK [21].

In summary, the contributions of the paper are:
• A program logic for multicore programs with threads and

asynchronous memory operations.
• Solutions to a number of challenges arising when au-

tomating the reasoning with such a logic, including: syn-
tactic reasoning about permissions and arrays, integration
of numerical abstract domains, and utilization of an SMT
solver.

• asyncStar, a prototype implementation of our method,
evaluated on a set of industrial benchmarks.

Asynchronous memory operations are increasingly widely
used, for example in languages such as CUDA and OpenCL.
While we have focussed in this paper on the Cell BE archi-
tecture, the techniques we propose could form the basis of a
correctness analysis for any similar domain.

II. BACKGROUND

We now introduce asynchronous memory operations via a
running example, and recap the definition of a data race in a
concurrent program. We then motivate the need for techniques
capable of analysing data races caused by asynchronous mem-
ory operations. We use our running example to demonstrate
the subtle nature of bugs that can arise due to this type of race,
and argue that data races caused by asynchronous operations
are almost never benign.

Asynchronous memory operations. Our target memory
architecture closely resembles the IBM Cell BE. We assume
a single central CPU core responsible for coordinating and
distributing tasks (the master, or host), and a number of
subsidiary cores that can be used to perform asynchronous
computations (slave or accelerator cores). Each core has its
own local memory, disjoint from other cores. The host core
has regular access to the system’s main memory, which we
call host memory, while each accelerator core has its own
scratchpad memory, also referred to as local memory.

An accelerator core can access its local memory in a fast,
contention-free manner using standard load and store instruc-
tions. The local memory of one core is not directly visible to
any other cores, including the host. Accelerator cores cannot
access host memory using standard load and store instructions.
Instead, the accelerator cores access host memory using special
get and put operations, which copy a segment of memory
from and to from the core’s local memory, respectively. get
and put are asynchronous operations; they each initiate a
memory transfer, but they do not wait for the transfer to
complete. In order to be sure that a transfer has finished, a
thread must call wait. Each get and put is associated with
a tag. A wait call takes a tag as an argument and blocks
until all operations associated with that tag have completed.1

In the Cell architecture, asynchronous memory operations are
implemented using direct memory access (DMA).

1In the case of Cell BE, a wait operation only blocks until all operations
associated with the tag and issued by the core that calls wait have completed.
This can be realised in our setting by equipping each accelerator core with a
distinct set of tags.

To see how this works in practice, consider the double-
buffering algorithm dub buf shown in Fig. 1, which is to be
executed by an accelerator core and is spawned by a host
thread master. The algorithm reads an array of L·M values
from host memory, processes the values locally, and copies
the result to an output array in host memory. The algorithm
reads chunks from the input array using get, processes them
in local memory (we do not show the actual processing code,
assuming that it does not issue any asynchronous memory
operations), then copies the result to the output array using
put. The arguments to get and put are a local address x, a
host address y, the number of bytes s of data to be copied,
and a tag t.

Two internal buffers of size L are used to store copied
chunks of the shared array. At any point during execution of
the while loop, one buffer is being filled with data via a get
operation, while the other buffer is being processed in-place,
or its contents are being transferred back to shared memory
via a put operation. Because local computations and asyn-
chronous operations execute in parallel, the algorithm achieves
efficiency by overlapping computation with communication.

Data races. We follow the definition of a data race given
in [18]. A program has a data race if the program can be
executed on a multiprocessor such that two memory accesses
are performed simultaneously, and:
• the accessed regions of memory overlap
• at least one the accesses is a write
• the accesses are not both for synchronisation purposes
In general concurrent programs, data races often lead to

subtle bugs which occur nondeterministically, depending on
particular thread or process interleavings. Data races can often
be benign. For instance, it is common for threads to race when
updating shared variables used for logging [18]. Distinguishing
between dangerous and benign races is a difficult problem.
However, we will argue that in an asynchronous setting data-
races are almost never benign.

Asynchronous memory operations and data races. In the
context of asynchronous memory operations, a get operation
issued by core i can race with:
• a regular read or write by core i to the associated region

of local memory
• a get or put issued by core i, accessing an overlapping

region of local memory
• a regular write access by the host core to the associated

region of host memory
• a put issued by a core j (possibly equal to i), accessing

an overlapping region of host memory
The race scenarios for a put operation are analogous.

High latency asynchronous operations are typically used to
transfer large chunks of data between memory spaces. Thus, in
contrast to data races in shared-variable concurrent programs,
races caused by asynchronous memory operations are almost
never benign. Furthermore, the asynchronous nature of get
and put can lead to particularly subtle bugs. For example, if

#define N ... // Num threads.
#define M ... // Num chunks of data to

// be processed per thread.
#define L ... // Size of chunk, in bytes.

master(char src[len], char dst[len]) {
// ‘master’ runs on host.
tid∗ t [N]; int i ;
for (i=0; i<N; i++) {

t [i] = fork(
dub buf,
2∗i ,
src+i∗M∗L,
dst+i∗M∗L);

}
for (i=0; i<N; i++) {

join(t [i]);
}

}

dub buf(int t , char ∗ihead, char ∗ohead) {
char buf [2][L]; // Two buffers, each of size ‘L’ bytes.
int cur = 0; // Indices recording which buffers
int nxt = 1; // are being used for input / output.
int i = 1;
char ∗in = ihead; // Pointers to data in host memory.
char ∗out = ohead;
get(buf[cur], in , L, t); in += L;
while (i < M) {

wait(t ˆnxt); // Wait for previous ‘put’ to complete.
get(buf[nxt], in , L, t ˆnxt); // Get data to process next iteration.
in += L;
wait(t ˆcur); // Wait for requested data to arrive.
// 〈process data〉
put(buf[cur], out, L, t ˆcur);// Put results back to host memory.
out += L;
cur = curˆ1; nxt = nxtˆ1; // Switch buffers and
i += 1; // increase chunk count.

}
wait(t ˆcur); wait(t ˆnxt)
// 〈process data〉
put(buf[cur], out, L, t ˆcur); // Put results back to host memory.
wait(cur);

}

Fig. 1. Double-buffering algorithm, adapted from the Cell SDK [21].

a get operation targeting a region of the stack allocated by
a function f is not properly synchronised, the operation may
still be pending after f returns. This can lead to corruption
of the stack during subsequent calls. Asynchronous operations
may complete quickly enough that stack corruption is unlikely,
occurring only rarely, e.g. if bus traffic is sufficiently high.
This means that bugs can be extremely difficult to reliably
reproduce.

Patterns of copying can be complex even for simple ex-
amples, making mistakes hard to avoid. Consider again the
double-buffering algorithm. The algorithm uses binary vari-
ables cur and nxt to record which buffer is incoming and
which is outgoing. At each loop iteration the variables swap
values. Furthermore, at the start of each loop iteration, data
from one local buffer is being copied back to the input buffer,
while data in adjacent cells in the input buffer is being copied
into the other local buffer. At the end of the loop, one local
buffer is the target of a copy from the input buffer, while
the other is the source of a copy to the output buffer. The
potential for confusion is enormous (the authors of this paper
found avoiding bugs rather tricky when adapting the algorithm
for presentation here).

To avoid undefined behaviour caused by races with asyn-
chronous memory operations, we must be able to ensure that
the source of an asynchronous operation is not written to, and
the target neither written to nor read from, until the operation
is explicitly synchronised via a wait call. For instance, if
there was no call to wait at the first line in the while-loop

of dub buf then the example would exhibit a race which we
can observe by logging first five asynchronous operations:

(1) get(buf[cur], in, L, t) // cur=0
(2) get(buf[nxt], in, L, t̂ nxt) // i=0, nxt=1
(3) wait(t̂ cur) // i=0
(4) put(buf[cur], out, L, t̂ cur) // i=0, cur=0
(5) get(buf[nxt], in, L, t̂ nxt) // i=1, cur=0

The operation put at (4) is in race with the operation get at
(5) because both of them are accessing the same portion of
the internal buffer.

Existing techniques for dynamic race detection could be
readily adapted to apply in the context of asynchronous
memory operations, and runtime monitoring [20] and system
simulation [23] have been used to find races in Cell BE
programs. However, such techniques can only detect data
races. In the remainder of the paper, we describe a method
which can be used to prove absence of data races due to
asynchronous memory operations in concurrent programs.

III. REASONING ABOUT ASYNCHRONOUS OPERATIONS

We now use the double buffering example of Fig. 1 to
provide an overview of our technique for reasoning about race
freedom of asynchronous memory operations in concurrent
programs. For reasons of space, we do not present full formal
details of our approach, and justify its soundness in an
informal manner.

By careful analysis of the dub buf function of Fig. 1, we
can determine precisely the pattern of copying between the

while (i < M) {
wait(t ˆnxt);

buf[cur] buf[nxt]

(i-1)L

L L

in-(i.L) in-L in
(M-i)L

M.L

out-((i-1)L)

cur

get(buf[nxt], in , L, t ˆnxt); in += L;
buf[cur] buf[nxt]

(i-1)L

L L

in-((i+1)L) in-2L in-L in
(M-(i+1))L

M.L

out-((i-1)L)

cur nxt

wait(t ˆcur);
buf[cur] buf[nxt]

i.L

L L

in-((i+1)L) in-L in
(M-(i+1))L

M.L

out-((i-1)L)

nxt

put(buf[cur], out, L, t ˆcur);
out += L;
cur = curˆ1; nxt = nxtˆ1;
i += 1;

buf[nxt]

buf[cur]

(i-1)L

L

L

in-(i.L) in-L in
(M-i)L

(i-1)L
out-((i-1)L)

cur

outout-L

nxt
(M-(i-1))L

}

Fig. 2. Sequence of memory reads and writes in the main loop of the
double-buffering algorithm.

input and output arrays, and the two buffers local to each
thread. This pattern of behaviour is illustrated in Fig. 2. In
this diagram, boxes denote contiguous chunks of memory.
Labelled arrows inside boxes are used to indicate the size
of each chunk, while external labels indicate addresses. Grey-
filled boxes denote chunks that are subject to pending memory-
transfer operations, while arrows between grey boxes indicate

the direction of copying. Labels on these arrows denote the
tag of the operation.

Reasoning using separation logic. Diagrams such as Fig. 2
would be laborious and difficult to annotate correctly by
hand. However, precisely capturing information about shifting
patterns of reading and writing is essential in establishing
correctness of an algorithm involving asynchronous memory
operations.

We use a program logic, based on separation logic [26],
to capture precisely the information presented intuitively in
Fig. 2. Separation logic is a Hoare-style logic for verifying
programs. Reasoning in it depends on a new logical connective
– the separating conjunction, ‘∗’. Formula P1 ∗P2 asserts that
memory can be split into two disjoint parts, one satisfying
P1 and the other P2. Reasoning in separation logic is local,
meaning that a specification must express all the resources a
program needs to execute without faulting. For example, the
specification

{P}C {Q}

says that, if the program C executes to termination starting
with a resource satisfying P , the result will be a resource
satisfying Q, and that all resources used by C are either
specified by P or acquired through explicit resource transfer.

Locality means that a program can be verified within a
small resource, and then substituted into a larger context. This
property is expressed by the frame and parallel rules2:

FRAME
{P} C {Q}

{P ∗ F} C {Q ∗ F}

PARALLEL
{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 ‖C2 {Q1 ∗Q2}

The frame rule allows any specification {P}C {Q} to be
extended by an arbitrary frame F that is unchanged by the
C. The parallel rule allows the specifications for two threads
to be combined, provided they access disjoint resources.

Reasoning in separation logic is performed in terms of a
single thread at once – the local thread. Reasoning is therefore
said to be thread-local. We can think of the pre- and post-
condition as denoting the portion of the state of which the
local thread has ownership. Other running threads may own
other portions of the state, but the parallel rule ensures that the
global pattern of ownership is consistent. Note that ownership
does not preclude sharing; two threads can share a resource
as long as both only read from it.

Separation logic is an appropriate approach to verifying
asynchronous memory copying operations because it deals
gracefully with ownership and with resource-transfer between
threads. Separation logic also has a proven history in verifying
complex algorithms with dynamic patterns of ownership, and
good tool-support for symbolic execution.

Representing arrays and pending operations. To reason
about examples such as the double-buffering algorithm, we

2Below, we also give rules for thread manipulation using fork and join.

must be able to precisely capture patterns of resource owner-
ship and transfer. To do this, we extend separation logic with
two new assertions, arr and pend.
• arrc(x, s, p, vs) denotes an array of s bytes, starting at

address x. Parameter p is a permission giving the level
of access the local thread holds over the array. The
final parameter records that the array holds values vs.
Subscript c records where the array is stored: either h for
host memory, or ` for local scratchpad memory.

• pend(t,O) denotes a set O of pending asynchronous
memory operations with associated tag t. Each element
of O is a tuple recording a particular operation. As well
as recording the existence of a set of pending operations,
a thread owning this predicate can access the associated
resources after the operations complete.

Using these predicates and the ∗ operator, we can represent
complex states in resource-transferring algorithms.

Permissions. Permissions are used in separation logic to
support race-free sharing between threads [4]. They can be
represented by fractions3 in the interval (0, 1]. A permission 1
denotes that the thread has exclusive write access to the array,
while a permission p ∈ (0, 1) records that it has non-exclusive
read access. Soundness is ensured by the guarantee that the
sum of all permissions is never more than 1. The permission 1
can be split into read permissions, which may themselves be
split further, and split permissions may be joined back together.
Permissions in array predicates are split and joined according
to the following rule:

p ≤ q ≤ 1 ⇒ (arrc(x, s, q, vs)⇔
arrc(x, s, p, vs) ∗ arrc(x, s, q − p, vs))

In addition to splitting and joining of permissions, we can also
split and join array predicates with respect to length:

x ≤ y < (x + s) =⇒arrc(x, s, p, vs) ⇐⇒(
∃vs1, vs2. vs = vs1 @ vs2 ∧
arrc(x, y − x, p, vs1) ∗ arrc(y, x + s− y, p, vs2)

)
(We use @ to denote concatenation of array values.)

Reasoning about get, put and wait. We reason about get
and put by giving them specifications based on the arr and
pend predicates. The specification for get is as follows.{

arr`(x, s, 1, xs) ∗ arrh(y, s, p, ys) ∗ pend(t,O)
}

get(x, y, s, t){
pend (t, {〈yh, x`, s, p, ys〉} ∪ O)

}
Before calling get, the thread must have read access to the host
array and write access to the local array. After get completes,
the thread loses the permissions it held for both arrays – it
cannot safely write to x, as it may be in an inconsistent state.
It can continue to safely read from y, as long as it holds an
additional read permission.

3In order to avoid reasoning about fractional arithmetic, in our tool we
represent permissions by trees. See §IV-B for details.

{
arr`(x, s, 1, xs) ∗ arr`(z, s, 1, zs) ∗ arrh(y, s, 1

2 , ys) ∗ pend(t, ∅)
}

get(x, y, s, t);{
arr`(z, s, 1, zs) ∗ arrh(y, s, 1

4 , ys) ∗ pend
(
t, {〈yh, x`, s,

1
4 , ys〉}

)}
get(z, y, s, t);{
pend

(
t, {〈yh, x`, s,

1
4 , ys〉, 〈yh, z`, s,

1
4 , ys〉}

)}
Fig. 3. An example proof outline illustrating splitting of permissions and
framing.

Intuitively, the arrays are held by the memory controller
until the operation completes. The pend predicate is updated
with a tuple recording the new operation (the source address,
the target address, length, the permission on the source and the
value of the source; the subscripts ` and h indicate in which
memory spaces the arrays are stored).

The specification for put is analogous to that for get:{
arr`(x, s, p, xs) ∗ arrh(y, s, 1, ys) ∗ pend(t,O)

}
put(x, y, s, t){
pend (t, {〈x`, yh, s, p, xs〉} ∪ O)

}
In Fig. 3 we illustrate how splitting of permissions and framing
works when used with specifications of get and put. Suppose
that we want to transfer s bytes from the host array y to local
arrays x and z. To do this we need a write permission for
arrays x and z and a read permission for array y (which can be
any fraction greater than 0 and less than or equal to 1). Assume
that we start with the permission 1

2 given to the array y. To
issue the first get transferring from y to x we can split the
fraction 1

2 into quarters and then frame with arr`(z, s, 1, zs)
and arrh(y, s, 1

4 , ys) in order to apply the specification. To
apply the specification for the second get we frame with the
predicate pend

(
t, {〈yh, x`, s,

1
4 , ys〉}

)
.

The wait function ensures that all memory operations as-
sociated with a particular tag t have completed. All the arrays
that were sources or targets of these pending operations can be
safely accessed once the memory operations have completed.
Consequently, the specification of wait returns the arrays held
by the memory controller to the thread.

{pend(t,O)}
wait(t){
pend(t, ∅) ∗
�〈xc,yc′ ,s,p,vs〉∈O. arrc(x, s, p, vs) ∗ arrc′(y, s, 1, vs)

}
In the post-condition of wait, the set of pending operations for
the tag t is empty, and for each pending operation recorded
in the precondition, a pair of arrays has been returned to
the thread. Note that for each pair of host and scratchpad
arrays, the values in the arrays are identical, as the copying
operation has completed. We use �, the iterated separating
conjunction,4 to say that the thread holds a pair of arrays for
each pending operation represented in the precondition.

4That is, ~i∈{x,y,z..}. P , P [x/i] ∗ P [y/i] ∗ P [z/i] . . .

Verifying the double-buffering algorithm. The dub buf
function can be specified as follows, using predicates from
our assertion language:{

arrh(ihead,M · L, p, is) ∗ arrh(ohead,M · L, 1,)

∗ pend(tag, ∅) ∗ pend(tag + 1, ∅)

}
dub buf(tag, ihead, ohead){
arrh(ihead,M · L, p, is) ∗ arrh(ohead,M · L, 1,)

∗ pend(tag, ∅) ∗ pend(tag + 1, ∅)

}
(Here, and elsewhere, we use underscore, ‘ ’, to denote a fresh
existentially-quantified variable that is used only once.)

The pre- and post-conditions both assert that a pair of arrays
exist at addresses ihead and ohead, each of length M·L. The
sets of pending operations on tags tag and tag+ 1 are empty.
The ohead array must have a permission argument 1, meaning
the algorithm must be able to write to this array. However, the
ihead array can have an arbitrary permission p ∈ (0, 1] as its
argument, meaning that the thread only requires the ability to
read. The separating conjunction ‘∗’ is essential in assigning
the right meaning to this specification. Conjoining the array
predicates with ∗ ensures that they occupy disjoint portions
of memory (meaning that the ohead array can be modified
without affecting the ihead array).

The assertions arr and pend can now be used to represent
invariants of the double-buffering algorithm. Fig. 4 shows the
invariants for the main loop of the double-buffering algorithm.
These invariants correspond directly to the intuitive reading of
the algorithm given by the diagrams in Fig. 2. Furthermore,
these invariants can be generated automatically by our tool.

The following assertion (the first invariant in Fig. 4) corre-
sponds to the first diagram in Fig. 2:

buf[cur] 7→ bc ∗ buf[nxt] 7→ bn 1
∗ arr`(bn, L, 1,) 2
∗ arrh(in−(i·L), (i−1)·L, p, is1) 3
∗ arrh(in, (M−i)·L, p, is2) 4
∗ pend(tˆcur, {〈inh−L, bc`, L, p, isp〉}) ∗ pend(tˆnxt, ∅) 5
∗ arrh(out−((i−1)·L),M·L, 1,) 6
∧ (is1 @ isp @ is2) = is 7

Line 1 asserts that buf[cur] and buf[nxt] point to addresses
bc and bn. Variables cur and nxt are used to choose between
elements of an array of two buffers, where each buffer has size
L. Line 2 denotes the unused buffer array at bn. Lines 3, 4
and 6 denote the in and out arrays. The in array has a chunk
of size L missing – this is held by the asynchronous copying
operation and will be returned when the operation completes.
Line 5 asserts that the t ˆcur tag is being used to copy from the
host in array to the local array at bc, but that the t ˆnxt tag is
unused (it is associated with an empty set of operations). Line
7 asserts that the concatenation of the two input arrays and
the values in the pending copy results in the original contents
of the input array.

while (i < M) {
wait(t ˆnxt);

buf[cur] 7→ bc ∗ buf[nxt] 7→ bn ∗ arr`(bn, L, 1,)
∗ arrh(in−(i·L), (i−1)·L, p, is1)

∗ arrh(in, (M−i)·L, p, is2)
∗ pend(t̂ cur, {〈inh−L, bc`, L, p, isp〉}) ∗ pend(t̂ nxt, ∅)

∗ arrh(out−((i−1)·L),M·L, 1,)
∧ (is1 @ isp @ is2) = is

get(buf[nxt], in , L, t ˆnxt);
in += L;

buf[cur] 7→ bc ∗ buf[nxt] 7→ bn

∗ arrh(in−((i+1)·L), (i−1)·L, p, is1)
∗ arrh(in, (M−(i+1))·L, p, is2)

∗ pend(t̂ cur, {〈inh−2L, bc`, L, p, isp〉})
∗ pend(t̂ nxt, {〈inh−L, bn` , L, p, is′p〉})
∗ arrh(out−((i−1)·L),M·L, 1,)
∧ (is1 @ isp @ is′p @ is2) = is

wait(t ˆcur);

buf[cur] 7→ bc ∗ buf[nxt] 7→ bn ∗ arr`(bc, L, 1,)
∗ arrh(in−((i+1)·L), i·L, p, is1)
∗ arrh(in, (M−(i+1))·L, p, is2)

∗ pend(t̂ cur, ∅) ∗ pend(t̂ nxt, {〈inh−L, bn` , L, p, isp〉})
∗ arrh(out−((i−1)·L),M·L, 1,)

∧ (is1 @ isp @ is2) = is

put(buf[cur], out, L, t ˆcur);
out += L;
cur = curˆ1; nxt = nxtˆ1;
i += 1;

buf[cur] 7→ bc ∗ buf[nxt] 7→ bn

∗ arrh(in−(i·L), (i−1)·L, p, is1)
∗ arrh(in, (M−i)·L, p, is2)

∗ pend(t̂ nxt, {〈bn` , outh−L, L, 1, 〉})
∗ pend(t̂ cur, {〈inh−L, bc`, L, p, isp〉})
∗ arrh((out−((i−1)·L), (i−2)·L, 1, os)

∗ arrh(out, (M−(i−1))·L, 1, os)
∧ (is1 @ isp @ is2) = is

}

Fig. 4. Invariants in the main loop of the double-buffering algorithm.

Reasoning about fork and join. Verifying master (Fig. 1)
requires rules for fork and join.

f(x̄) : {P} {Q} ∈ Γ

Γ ` {P [ē/x̄]} t = fork(f, ē) {thr(t, f, ē)}

f(x̄) : {P} {Q} ∈ Γ

Γ ` {thr(t, f, ē)} v = join(t) {Q[ē; v/x̄; ret]}

The rules for fork and join essentially extend the PARALLEL
rule to handle threads dynamically. Γ is an environment
associating functions with their specifications. Upon forking
a new thread, the parent thread obtains the assertion thr
that stores information about passed arguments for program
variables and gives up ownership of the precondition of the

function. Joining requires that the executing thread owns the
thread handle which it then exchanges for the function’s post-
condition.

Soundness. We have defined a formal semantics for multicore
programs with asynchronous memory operations and used this
to establish the soundness of our method. In particular, if it
is possible to derive a proof for a multicore program using
our system then the program is guaranteed to be free of data
races and memory faults. For reasons of space, we defer a full
formal presentation of this result to future work.

IV. AUTOMATION

We have built a prototype tool, asyncStar, automating our
approach. asyncStar can check proofs written in our logic,
and, if supplied with pre- and post-conditions, it can synthesise
proofs automatically for many examples, including the double-
buffering algorithm of Fig. 1.
Approach. The asyncStar tool uses symbolic execution com-
bined with shape analysis for separation logic [2], [10]. States
in a program are represented symbolically by disjunctions
of separation logic assertions. Statements are then executed
symbolically over these assertions – that is, assertions are
updated to reflect the abstract effect of the statement. The
analysis executes until it reaches a fix-point where no new
symbolic states can be reached.

Symbolic execution alone does not converge in many cases.
To ensure termination, symbolic states are abstracted at the
heads of loops. In asyncStar, abstraction of separation logic
assertions is based on syntactic summarisation of predicates.
For example, a linked list of five nodes might be abstracted
by a predicate representing a list of unknown length. This
approach, however, is not flexible enough to abstract away
numeric constraints arising from loop iterations and array
manipulation. To deal with such properties we have developed
a novel technique that allows integration of standard abstract
interpretation tools.

A. Tool architecture

asyncStar is built on top of coreStar [5], a language-
independent verification tool for separation logic, consisting
of a symbolic execution engine and a separation logic the-
orem prover. As input, asyncStar takes a program written
in VMC (Verified Multicore C), a fragment of C enriched
with user-supplied pre- and post-conditions for functions, and
(optionally) loop invariants. The input program is translated
into the coreStar intermediate language coreStarIL. asyncStar
invokes coreStar’s core engine, which symbolically executes
the generated coreStarIL program, indicates whether verifica-
tion succeeded, and returns any inferred invariants. The overall
architecture of asyncStar is illustrated in Fig. 5.

coreStar has a language-agnostic internal representation.
Support for new languages and abstract domains can be added
by providing logic rules and abstraction rules through text
input files. Unlike most tools for shape analysis, coreStar does
not just deal with heap data. Rather, its analysis allows auto-
matic reasoning about abstract objects such as threads, pending

Abstraction

Theorem prover

Symbolic execution

coreStar

Logic rules

Abstraction rules

VMC frontend VMC program

Pre-/post-conditions
Loop invariants

coreStarIL program

SMT solver

APRON

Fig. 5. Architecture of the asyncStar tool

memory operations and so on. By building on coreStar, we
were able to develop and test asyncStar rapidly, avoiding re-
development of existing features.

To implement our approach using coreStar, we developed a
front-end which accommodates VMC programs and our logic
for reasoning about asynchronous memory operations, and
extended coreStar’s abstraction engine. Developing the front-
end involved three major efforts: translating VMC programs
into coreStar’s intermediate representation (time consuming
but straightforward), developing a syntactic encoding of per-
missions (see §IV-B) and writing logic rules for reasoning
about arrays with permissions and pending asynchronous
memory operations (technically involved and thus omitted in
this paper). Extending coreStar’s core engine required two
major pieces of work: extending coreStar’s symbolic execution
with abstraction for first-order domains such as arithmetic (see
§IV-C), and adding support for external SMT solvers (see
§IV-D).

B. Reasoning syntactically about permissions

Permissions are fundamental to our approach, allowing
control over reading and writing for memory shared between
threads and pending operations. In §III, we represented permis-
sions by fractions from the interval (0, 1] and permission join-
ing by addition. However, arithmetic reasoning is expensive in
coreStar, requiring calls to an SMT solver (see §IV-D). Hence,
in our implementation we actually use the binary tree share
model [12]. Permission splitting and joining can be reasoned
about syntactically using coreStar’s rewrite engine, without
recourse to arithmetic.

In [12], permissions are represented by binary trees with
boolean-valued leaves and unlabelled internal nodes. Maxi-
mum permission (1 in the numerical model, corresponding to
write permission) is represented by a single true-valued leaf.
Splitting maximum permission results in a pair of two-leaf
trees, representing read permissions. One tree has a true left
and false right leaf, while the other is the other way round,

and further splits result in larger trees. Minimum permission
is represented by a single false-valued leaf.

We have encoded these binary trees using coreStar’s ex-
pression language. For example, we might have the following
expression representing a tree with three leaves:

branch(leafT, branch(leafT, leafF))

Note that branch, leafT and leafF have no semantics in
coreStar; they are treated syntactically, as uninterpreted func-
tions.

C. Abstraction in pure domains

In asyncStar, we extend coreStar’s syntactic abstraction
with support for abstraction over numerical properties. Our
approach uses external tools to implement standard abstract
interpretation [9], in which consecutive abstract assertions are
joined (and if necessary, widened).
Approach to abstraction in coreStar. In coreStar, the sym-
bolic execution is performed on the control-flow graph of the
input program. Each node in a program’s control-flow graph
is associated with a set of separation logic assertions. Each
set represents an abstract state consisting of the disjunction of
its elements. By symbolically executing an iteration of a loop,
starting from the current abstract state, coreStar constructs a
new set of candidate assertions. coreStar checks whether each
candidate is contained within any of the existing assertions and
if not, adds the candidate assertion to the set. Containment
is defined via separation logic entailment: an assertion ∆c is
contained within an assertion ∆a if ∆c ` ∆a.5

Abstraction is applied to candidate assertions before check-
ing for containment. Prior to asyncStar, the abstraction in
coreStar was entirely based on syntactic rewriting of predi-
cates. For example, suppose we had a predicate node(x, y)
representing a node at address x with next pointer y, and a
predicate lseg(x, y) representing a linked list starting at y and
ending with a pointer to y. We might write the following rules
for abstraction:

node(x, x′) ∗ node(x′, nil) lseg(x, nil)

lseg(x, x′) ∗ node(x′, nil) lseg(x, nil)

lseg(x, x′) ∗ lseg(x′, nil) lseg(x, nil)

By applying these rules, the infinite family of assertions
representing lists of finite length will be collapsed into a single
assertion. This approach works well for reasoning about heap
resources, but often fails for concrete values in the first-order,
or pure, part of the assertion.

For example, consider the following code fragment which
sets all the elements of an array a of size n to 0.

int i = 0;
while (i < n) {
∗(a+i) = 0;
i++;

}

5Such queries are decided by the separation logic theorem prover.

After the k-th iteration of the loop, symbolic execution will
generate the candidate assertion

∆k
def
= ∃vs . i = k ∧ arr(a, n, 1, vs).

The prior abstract state will consist of the set of assertions
{∆1, . . . ,∆k−1}. The analysis will not terminate, because
there exists no j < k such that ∆k ` ∆j . Achieving
convergence requires abstraction of numerical properties.
Pure abstraction. In asyncStar, we handle such numerical
abstraction by using abstract interpretation. As in abstract
fix-point calculation, the pure parts of the existing and the
candidate assertion are joined and (optionally) employed to
widen the existing pure assertion. The obtained abstraction is
then used to replace the original pure parts of the assertions. In
our example, joining the pure parts of ∆j and ∆k (for j < k)
in the polygonal domain yields j ≤ i ≤ k. After widening and
intersecting with the upper bound we obtain j ≤ i ≤ n. After
replacing the original pure parts of ∆j and ∆k the following
entailment holds and thus the analysis converges:

k ≤ i ≤ n ∧ arr(a, n, 1, vs) ` j ≤ i ≤ n ∧ arr(a, n, 1, vs)

Our approach applies to abstracting the pure part of sepa-
ration logic assertions in any abstract domain. The join and
widening operators are assumed to be provided by an exter-
nal tool for abstract interpretation. asyncStar has a modular
interface allowing the calling of such tools during the fixed
point calculation. In our experiments, we used the APRON
tool [22].

D. SMT utilisation

coreStar’s theorem prover was not designed to reason about
pure domains such as arithmetic. It reasons purely syntac-
tically, knowing nothing about the semantics of interpreted
symbols such as +, and thus cannot establish even simple
facts like (a + b) = (b + a). For arithmetic reasoning, and to
reason about arrays, we call an external SMT solver following
the approach proposed in [7]. Calling the SMT solver is
expensive, as we transfer the entire proof-state to the solver
using the SMT-LIB2 format [1]. We only call the solver in
three scenarios: (1) when only pure assertions remain to be
proved, in which case they are sent to the solver; (2) when
proof search is stuck, in which case the solver is invoked to
establish new equalities between terms; (3) when we wish to
check whether proof rules with pure guards apply. Queries are
memoised to further reduce the expense of solver calls.

V. EXPERIMENTS

We evaluated asyncStar using a set of benchmarks drawn
from the Cell Broadband Engine SDK, which represent pro-
totypical patterns used in Cell programs. We also considered
a selection of hand-crafted programs. The Cell benchmarks
comprise Euler integration-based particle simulation (particle-
sim), array processing algorithms using single, double and
triple buffering with shared buffers for input and output as in
the example of §II (1-/2-/3-buffer) and with separate buffers
(1-/2-/3-buffer-IO). All benchmarks consist of a master thread

running on the host that divides array processing among slave
threads running on accelerator cores.

The hand-crafted benchmarks do not exhibit asynchronous
memory operations and are instead designed to assess the
effectiveness of our abstraction framework in isolation. Bench-
marks with prefix ‘array’ perform an operation on elements of
an input array. We consider left-to-right (‘countup’) and right-
to-left (‘countdown’) processing of the array, and where ele-
ments to be processed are contiguous (suffix ‘1’), or separated
by n bytes (suffix ‘n’). Benchmarks with prefix ‘control-flow’
exhibit the same control-flow as the buffering benchmarks but
do not contain transfers or processing.

Figure 6 shows experimental results obtained on a per-
sonal laptop with 2.8GHz Intel Core2 Duo CPU and 4GB
RAM under the Windows 7 operating system. We used the
SMT solver Z3 and the polygonal abstract domain from the
APRON numerical abstract library. For each benchmark, we
give the number of symbolic states, the total execution time
(in seconds), and the percentage of execution time spent on
computations by the abstract domain library (%AI) and the
SMT solver (%SMT). For Cell benchmarks we also apply
asyncStar to buggy versions obtained by removing a wait
operation. asyncStar fails to find a proof for these examples
and prints details of the failed proof attempt, from which the
bug can be recovered.

For all benchmarks the user is only required to specify
function pre- and post-conditions; loop invariants and interme-
diate assertions are synthesised automatically. If the analysis
succeeds, it proves memory-safety and race-freedom. In the
failing case, the user can examine the proof state and look for
information exposing the source of the problem.

The results demonstrate that our technique can prove or
refute our benchmark set within reasonable time bounds. We
observe that spatial reasoning is not a bottleneck per se
(nor is numerical abstraction), but the arithmetical constraints
(arising from proof rules guards and arithmetic in the code)
discharged to the SMT solver are. We anticipate that in future
the expense of SMT utilisation can be significantly reduced by
optimisations in our implementation, such as better caching of
queries.

VI. RELATED WORK

In prior work, we presented a preliminary outline of our
verification technique [6].

asyncStar is built on coreStar [5], which inherits its ap-
proach from jStar [11] and a series of prior tools: syntactic
reasoning in separation logic was pioneered in SmallFoot [2];
coreStar’s generation of loop invariants uses on shape anal-
ysis based on separation logic [10]. Our approach to pure
abstraction is similar to that of [25]. These prior tools achieved
performance by hard-coding their domain into the tool. In
contrast, coreStar’s core is designed as a modular back-
end, intended for use in experiments with verification. This
approach is validated by our success in quickly building a
prototype on top of coreStar.

An approach to checking DMA races for Cell BE using
bounded model checking (BMC) and k-induction has been
proposed in [14], [15] and implemented as the SCRATCH
tool [16]. The technique has been extended with abstract in-
terpretation to automatically infer loop invariants [13]. Unlike
our method, this technique can only be applied to sequential
software: safety of DMA races is checked with respect to one
thread. Extending BMC to concurrent programs would not
scale well as it would involve thread interleaving at a global
scope. In contrast, our technique verifies threads in a modular
fashion and can be used to prove safety in the presence of
dynamic thread creation.

General-purpose techniques for race detection (e.g. [17],
[24], [27]) could be adapted to handle asynchronous memory
operations, and runtime monitoring [20] and system simula-
tion [23] have been applied directly in this setting. However,
none of these techniques can prove absence of races, which is
the contribution of our work.

In [19], session types are used for synthesis of low-level
data-movement code, allowing the generation asynchronous
memory operations that are race-free by construction. We view
this approach as complimentary to our approach.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a novel method and tool for verifying the
memory safety of multicore programs that use asynchronous
memory operations. Our approach allows full verification
of industrial benchmarks from the IBM Cell SDK, which
is beyond the reach of current techniques based on model
checking.

We plan to extend asyncStar to take into account alignment
restrictions associated with data transfers. In the Cell BE
architecture, DMA operations must operate on 16-byte aligned
pointers, otherwise behaviour is undefined. Misalignment can
lead to subtle errors, which are an ideal candidate for verifi-
cation. We also plan to evaluate our technique on benchmarks
from other domains where asynchronous memory operations
are important.

We are exploring the use of abduction [8] to reduce the
need to annotate functions with specifications. Our analysis
uses frame inference to divide resources into operation pre-
conditions and frames unaffected by the operation. Abduction
generates antiframes, consisting of the minimal extra resource
needed for the operation to execute without error. Antiframes
can be pushed to the start of a function, automatically gen-
erating function preconditions. Our preliminary experiments
using this technique can discover a full specification for the
single-buffer benchmark.

Acknowledgements. This work was supported by the EPSRC,
RAEng and the Gates trust. We are grateful to George Rus-
sell, John Wickerson and the anonymous reviewers for their
insightful comments on an earlier draft of this work.

Benchmark
Correct Buggy

Symbolic Total %AI %SMT Symbolic Total %AI %SMTstates time states time

particle-sim 564 331 < 1 98 58 27 2 97
1-buffer 67 13 < 1 89 32 7 < 1 92
1-buffer-IO 80 31 < 1 94 36 16 < 1 96
2-buffer 259 1268 < 1 > 99 82 318 < 1 > 99
2-buffer-IO 286 1871 < 1 > 99 88 389 < 1 > 99
3-buffer 412 7681 < 1 > 99 113 618 < 1 > 99
3-buffer-IO 443 8416 < 1 > 99 121 663 < 1 > 99

Benchmark
Correct

Symbolic Total %AI %SMTstates time

array-countup-1 23 0.42 3 28
array-countup-n 27 0.49 1 34
array-countdown-1 31 1.08 3 53
array-countdown-n 34 1.17 2 56
control-flow-sb 21 0.44 3 11
control-flow-db 58 1.56 4 14
control-flow-tb 138 6.85 18 21

Fig. 6. Experimental results obtained using asyncStar to analyse correct and buggy benchmarks

REFERENCES

[1] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard: Version
2.0. Technical report, 2010.

[2] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In FMCO, 2005.

[3] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with
separation logic. In APLAS, 2005.

[4] R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson. Permission
accounting in separation logic. In POPL, 2005.

[5] M. Botinčan, D. Distefano, M. Dodds, R. Griore, Naudžiūnienė, and
M. Parkinson. coreStar: The core of jstar. In Boogie: First Interna-
tional Workshop on Intermediate Verification Languages, 2011.

[6] M. Botinčan, M. Dodds, A. F. Donaldson, and M. J. Parkinson. Auto-
matic safety proofs for asynchronous memory operations. In PPOPP,
pages 313–314. ACM, 2011.

[7] M. Botinčan, M. J. Parkinson, and W. Schulte. Separation logic
verification of C programs with an SMT solver. ENTCS, 254, 2009.

[8] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional
shape analysis by means of bi-abduction. In POPL, 2009.

[9] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In POPL, 1977.

[10] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based
on separation logic. In TACAS, 2006.

[11] D. Distefano and M. J. Parkinson. jStar: Towards practical verification
for Java. In OOPSLA, 2008.

[12] R. Dockins, A. Hobor, and A. W. Appel. A fresh look at separation
algebras and share accounting. In APLAS, 2009.

[13] A. F. Donaldson, L. Haller, and D. Kroening. Strengthening induction-
based race checking with lightweight static analysis. In VMCAI, 2011.

[14] A. F. Donaldson, D. Kroening, and P. Rümmer. Automatic analysis of
scratch-pad memory code for heterogeneous multicore processors. In
TACAS, 2010.

[15] A. F. Donaldson, D. Kroening, and P. Rümmer. Automatic analysis of
DMA races using model checking and -induction. Formal Methods in
System Design, 39(1):83–113, 2011.

[16] A. F. Donaldson, D. Kroening, and P. Rümmer. Scratch: a tool for
automatic analysis of dma races. In PPOPP, pages 311–312. ACM,
2011.

[17] D. Engler and K. Ashcraft. RacerX: Effective, static detection of race
conditions and deadlocks. In SOSP, 2003.

[18] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective
data-race detection for the kernel. In OSDI, 2010.

[19] K. Honda, V. T. Vasconcelos, and N. Yoshida. Type-directed compilation
for multicore programming. ENTCS, 241, 2009.

[20] IBM. Example Library API Reference, version 3.1, July 2008.
[21] IBM. Cell BE resource center, 2009.

http://ibm.com/developerworks/power/cell.
[22] B. Jeannet and A. Miné. Apron: A library of numerical abstract domains

for static analysis. In CAV, 2009.
[23] M. Kistler and D. Brokenshire. Detecting race conditions in asyn-

chronous DMA operations with full system simulation. In ISPASS. IEEE,
2011.

[24] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for
Java. In PLDI. ACM, 2006.

[25] S. Qin, G. He, C. Luo, and W.-N. Chin. Loop invariant synthesis in a
combined domain. In ICFEM, 2010.

[26] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, 2002.

[27] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACMTOCS, 15(4), 1997.

