
Strengthening Induction-Based Race Checking with
Lightweight Static Analysis ?

Alastair F. Donaldson, Leopold Haller, and Daniel Kroening

Oxford University Computing Laboratory, Oxford, UK

Abstract. Direct Memory Access (DMA) is key to achieving high performance
in system-level software for multicore processors such as the Cell Broadband En-
gine. Incorrectly orchestrated DMAs cause DMA races, leading to subtle bugs
that are hard to reproduce and fix. In previous work, we have shown that k-
induction yields an effective method for proving absence of a restricted class
of DMA races. We extend this work to handle a larger class of DMA races. We
show that the applicability of k-induction can be significantly improved when
combined with three inexpensive static analyses: 1) abstract-interpretation-based
static analysis; 2) chunking, a domain-specific invariant generation technique; and
3) code transformations based on statement independence. Our techniques are im-
plemented in the SCRATCH tool. We evaluate our work on industrial benchmarks.

1 Introduction

Many modern multicore architectures such as the Cell Broadband Engine (BE) [14] in-
clude cores equipped with small, local “scratch-pad” memories, whose management is
under software control. It is the programmer’s responsibility to orchestrate data move-
ment between main memory and scratch-pad memory using Direct Memory Access
(DMA) operations. The use of scratch-pad memory alleviates the memory wall prob-
lem, where multiple cores contend for access to a single shared memory. Through use
of double- and triple-buffering techniques, the latency associated with DMA operations
can be hidden, leading to high performance. The increase in performance comes at the
expense of programmability: the asynchronous nature of DMA operations makes them
difficult to schedule correctly. DMA races, where data associated with a pending DMA
operation is accessed simultaneously, either by another DMA or a regular memory ac-
cess, lead to nondeterministic bugs that are hard to diagnose and fix.

In previous work [7] we have shown that SAT-based bounded model checking [2, 4]
combined with k-induction [18] shows promise for DMA race analysis. The approach
of [7] is restricted to inter-DMA races on scratch-pad memory: races between distinct
DMA operations. This restriction allows loops that do not involve DMA operations to
be removed from an input program via static slicing [19], often leaving just a single
DMA processing loop to which k-induction can be applied. For increasing values of
k, starting, e.g., with k = 1, base case and step case programs are constructed. A
successful check of the base case ensures that no DMA races occur during the first k
? This research is supported by the the Toyota Motor Corporation, by the EU FP7 STREP MO-

GENTES (project ID ICT-216679), and by EPSRC grant EP/G051100.

loop iterations. By checking the step case, it is ensured that, from an arbitrary state, if k
loop iterations can be executed without a DMA race occurring, then executing a further
iteration will not lead to a DMA race. The base and step case programs are loop-free,
and can be checked using bounded model checking. If both succeed, for some k, the
input program has been shown to be race-free. If the base case fails, a counterexample
leading to a DMA race is reported. Otherwise, a larger value of k must be tried.

In this paper, we remove the restriction to inter-DMA races, extending our analysis
to detect races between DMA operations and regular memory accesses. In this setting,
it is not possible to slice away loops that access buffers with which DMA operations
are associated. As a result, k-induction alone is usually too weak to enable verification.

We show that this problem can be solved when k-induction is combined with static
analysis. Lightweight static analysis is used to compute an inductive invariant of the
input program. Then, k-induction is applied, but the step case is restricted to consider
only states which satisfy the inductive invariant. By tailoring the static analysis to the
domain of DMA race analysis, we are able to compute sufficiently strong inductive
invariants to allow verification of DMA race freedom, on practical examples, for small
values of k. We use three distinct static analyses: 1) abstract interpretation, to generate
simple strengthening invariants; 2) chunking, a domain-specific invariant generation
technique; and 3) code motion, a code transformation based on statement independence,
to compute DMA-related invariants for inner loops.

Our techniques have been implemented in the SCRATCH tool for DMA race anal-
ysis [7], and we present an experimental evaluation using a set of benchmarks from the
IBM Cell SDK.

2 Guiding k-induction with invariants: an overview

We begin with a high-level overview of our method for strengthening k-induction using
static analysis, at the level of transition systems.

Consider a transition systemM = (S, T, I, E) where S is a set of states, T ⊆ S×S
a transition relation, I ⊆ S a set of initial states, and E ⊆ S a set of error states. The
successor function post : 2S → 2S is defined by: post(Q) = { q′ | ∃q ∈ Q.T (q, q′)}.
We define reachability in the usual way. A set of states Q ⊆ S is safe, written safe(Q),
if no state ofE is reachable from any state inQ. The systemM is safe if its initial states
I are safe.

To prove that M is safe, it suffices to find a set Q which (i) contains the initial
states (I ⊆ Q), (ii) is inductive (post(Q) ⊆ Q), and (iii) does not contain error states
(Q ∩ E = ∅). This can be stated as a proof rule as follows:

(i) I ⊆ Q (ii) post(Q) ⊆ Q (iii) Q ∩ E = ∅

safe(I)

To implement this proof-rule as a procedure, a means for generating candidates for
Q is required. One possibility is the use of some sound static analysis. Such a technique
produces an invariant Q that fulfills (i) and (ii), but the results might be too weak to
guarantee (iii).

The k-induction technique [18] provides another way to inductively prove correct-
ness of transition systems by splitting the proof obligation into (a) a base case, showing
that the transition system will not reach an error in k steps, and (b) a step case, showing
that when no error can be reached in k steps from some arbitrary state s, no error can be
reached from s in k + 1 steps. Writing safek(Q) to denote that no error state is reach-
able from a set Q in at most k steps, the k-induction proof rule for transition systems is
as follows:

k ≥ 0 (a) safek(I) (b) ∀Q. safek(Q)⇒ safek+1(Q)

safe(I)

For finite-state transition systems, the premises can be checked using a SAT solver,
and the method can be made complete by adding additional restrictions, detailed in [18].
In order to succeed, k-induction can require large values of k, or in the case of infinite
state transition systems, may fail for every value of k. When k-induction fails to succeed
for feasible values of k, the problem is often that the induction hypothesis, i.e., the
antecedent of premise (b), is too weak.

In order to amend this, the above proof rules can be combined into the approach we
use in this paper:

k ≥ 0 (i) I ⊆ Q (ii) post(Q) ⊆ Q (a) safek(I) (b) safek(Q)⇒ safek+1(Q)

safe(I)

To implement this rule as a procedure, we first use static analysis to obtain an in-
ductive invariant Q fulfilling premises (i) and (ii). We do not require this invariant to be
strong enough to prove the target property. We then perform a k-induction check. Base
case (a) is as before, but in step case (b), we strengthen the induction hypothesis by our
generated invariant.

3 DMA race analysis

We consider DMA primitives get, put and wait. Operation get(l,h,s,t), where l is a
pointer to local memory, h a pointer to host memory, and s and t unsigned integers,
issues a request for s bytes to be copied from host memory region [h, h + s) to local
memory region [l, l+s). The operation is identified by a tag, t. The put primitive is dual
to get. Execution of a get/put operation is asynchronous: the thread issuing the opera-
tion may continue to execute while the memory transfer takes place. However, access to
the regions [l, l+s) and [h, h+s) before completion of the operation leads to undefined
behaviour.1 Before accessing these regions, the operation must be synchronized via a
wait operation of the form wait(t), where t is the tag used to identify the DMA. This
causes execution to block until all DMAs identified by tag t have completed.

In the example C program of Figure 1, adapted from an example provided with the
IBM Cell SDK [14], function double buffer will be executed by a Synergistic Processor

1 Actually, read access to [h, h+s) or [l, l+s) is allowed in the case of get or put respectively.

1 #define SZ 4096
2 float bufs[2][SZ];
3
4 void process(float∗ b) {
5 for(unsigned int j = 0; j < SZ; j++) { b[j] = b[j] + 1.0f; }
6 }
7
8 void double buffer(float∗ in buf, float∗ out buf, unsigned int num chunks) {
9 unsigned int cur buf = 0, next buf, tags[2] = { 0, 1 };

10 get(bufs[cur buf], in buf, SZ∗sizeof(float), tags[cur buf]); in buf += SZ;
11 for (unsigned int i = 1; i < num chunks; i++) {
12 next buf = cur bufˆ1;
13 wait(tags[next buf]);
14 get(bufs[next buf], in buf, SZ∗sizeof(float), tags[next buf]); in buf += SZ;
15 wait(tags[cur buf]);
16 process(bufs[cur buf]);
17 put(bufs[cur buf], out buf, SZ∗sizeof(float), tags[cur buf]); out buf += SZ;
18 cur buf = next buf;
19 }
20 wait(tags[cur buf]);
21 process(bufs[cur buf], SZ);
22 put(bufs[cur buf], out buf, SZ∗sizeof(float), tags[cur buf]);
23 wait(tags[cur buf]);
24 }

Fig. 1. Using asynchronous DMA to achieve double-buffered data movement

Element core of the Cell processor, which is equipped with scratch-pad memory. Array
in buf is processed by adding 1 to each element, storing the result in out buf. The arrays
in buf and out buf reside in host memory. Chunks of data are copied via DMA from
in buf to local store, processed, then copied back to out buf. Double buffering is used
to hide the latency associated with DMAs: bufs consists of two local buffers which
are used simultaneously for processing and fetching of data. In the main program loop
(lines 11–19 of Figure 1), the get operation at line 14 requests data which will be
processed in the next loop iteration. While this request is in progress, processing of the
currently available data buffer can be performed. At the start of each loop iteration, the
roles of the current and next buffer are exchanged.

A DMA race occurs when an attempt is made to access a region of memory that is
associated with a pending DMA. Suppose we remove the wait at line 15 of Figure 1.
Then the put at line 17 potentially causes a DMA race: in the first iteration of the loop,
this operation accesses memory region [bufs[0] , bufs[0] + SZ∗sizeof(float)), which
is also accessed by the get operation at line 10. Without the intervening wait, there is
no guarantee that the get will have completed. This is an example of an inter-DMA
race. For similar reasons, the array access at line 5, in function process, may cause a
DMA race, since it accesses elements of b, which is an alias for bufs[0] when process is

Statement Instrumented version
start of program tracker.l = 0; tracker.s = 0; tracker.t = ∗;
put/get(l, h, s, t); assert(l != 0 && s < 16K && t < 32 &&

disjoint(l, s, tracker.l, tracker.s));
if(∗) { tracker.l = l; tracker.s = s; tracker.t = t }

wait(t); assume(tracker.t != t);
A[e] = ... / ... = ...A[e]... assert(disjoint(&A[e], sizeof(T), tracker.l, tracker.s));

A[e] = ... / ... = ...A[e]... (where T is the element type of A)

Fig. 2. Translating DMA operations into statements over instrumentation variables

invoked from line 16 during the first loop iteration. This is a race between a DMA and
a regular memory access.

Encoding DMA operations. To detect, or prove absence of, local memory DMA races,
we instrument a C program with additional assertions and assignments to auxiliary
variables. We use the encoding of [6], which improves on that of [7], facilitating analysis
of races between DMA operations and local memory accesses.

Our encoding uses an instrumentation record, tracker, which tracks a single DMA.
The tracker variable has three fields: l, s and t, recording the local memory address,
size and tag of the tracked DMA respectively. Figure 2 shows how program statements
relevant to DMA races are translated. At the start of the program, tracker does not track
any DMA.

Operation get/put(l, h, s, t) is translated into an assertion, and a nondeterministically
executed assignment. The assertion checks that the pointer parameter l is non-null. The
assertion also checks that the memory region accessed by the new DMA is disjoint from
the region accessed by the currently tracked DMA. In Figure 2, we use the predicate
disjoint(l1, s1, l2, s2) as shorthand for (l1 + s1 ≤ l2 || l2 + s2 ≤ l2). The nondeterministi-
cally executed assignment either updates tracker to track the new DMA operation or
leaves it unchanged. Any statement involving an array access is prepended by an as-
sertion checking that the accessed element is not part of the memory region associated
with the tracked DMA. Operation wait(t) is translated into an assumption that the cur-
rently tracked DMA is not identified by tag t. This rules out the possibility that the
last DMA nondeterministically chosen to be tracked also had tag t. The combination of
non-deterministic assignments and assumptions ensures that tracker contains details of
an arbitrary pending DMA. As a result, the assertions associated with DMA operations
and array accesses implicitly check for races with all pending DMAs.

In the rules of Figure 2, and in our experiments (§6), we do not model the effect of a
get operation on the associated region of local memory. This is sound for programs,
including our benchmarks, where data fetched by DMA cannot affect control-flow.
Otherwise, analysis may be unsound. To ensure soundness, an implementation could
over-approximate the effect of a get operation by assigning nondeterministic values to
the associated local memory region, which can lead to spurious reports of DMA races
during analysis.

1 for (i = 1; i < num chunks; i++) {
2 next buf = cur bufˆ1;
3 assume(tracker.t != tags[next buf]);
4 assert(dma cond(bufs[next buf], SZ∗sizeof(float), tags[next buf]));
5 if(∗) { tracker = (bufs[next buf], SZ∗sizeof(float), tags[next buf]); }
6 assume(tracker.t != tags[cur buf]);
7 for(j = 0; j < SZ; j++) {
8 ! assume(0 <= cur buf && cur buf <= 1 && 0 <= next buf && next buf <= 1 &&
9 ! cur buf != next buf && tags[0] == 0 && tags[1] == 1);

10 ! assert(disjoint(&bufs[cur buf][0], SZ∗sizeof}(float}), tracker.l, tracker.s));
11 assert(disjoint(&bufs[cur buf][j], sizeof(float), tracker.l, tracker.s));
12 bufs[cur buf][j] = bufs[cur buf][j] + 1.0f;
13 }
14 assert(dma cond(bufs[cur buf], SZ∗sizeof(float), tags[cur buf]));
15 if(∗) { tracker = (bufs[cur buf], SZ∗sizeof(float), tags[cur buf]); }
16 cur buf = next buf;
17 }

Fig. 3. Instrumented version of main loop of Figure 1 after inlining. We write dma cond(l, s, t)
for the condition of the assertion associated with put/get operations (cf. column 2 of Figure 2),
and tracker=(l, s, t) as shorthand for tracker.l=l; tracker.s=s;tracker.t=t. Statements marked ‘!’
are not part of the instrumentation, and will be explained in sections §5.1 and §5.2

Figure 3 shows the main loop of the double buffering example of Figure 1 after
instrumentation. The call to process has been inlined, and redundant assignments to
in buf and out buf removed. The lines marked ‘!’ are not generated by instrumentation,
and will be explained in §5.1 and §5.2.

4 k-induction for loops: promise, and problems

In [7], we proposed a formulation of k-induction for non-recursive programs with loops,
based on the following rule, where correctness denotes partial correctness, characterised
by assertions appearing in the program:

sα;
k timesz }| {

if(φ) { sβ } . . . if(φ) { sβ }
if(¬φ) { sγ } is correct

k timesz }| {
assume(φ); sassume

β ; . . .; assume(φ); sassume
β ;

if(φ) { sβ } else { sγ } is correct

sα; while(φ) { sβ }; sγ is correct

Base case Step case

where sassume
β is identical to sβ , except that every statement of the form assert(ψ)

appearing in sβ is replaced with assume(ψ) in sassume
β .

Let P be the program in the conclusion of the rule. The base case checks that there
are no erroneous traces from the start of P that execute up to k loop iterations. The step

case checks that any trace beginning in an arbitrary state and executing k loop iterations
successfully can be extended to either safely execute a further loop iteration (if φ holds),
or safely execute the tail of P (if ¬φ holds). Combining these two facts ensures that P
admits no erroneous traces. Soundness of the rule is proved formally in [7]. The base
case and step case correspond to the antecedents (a) and (b) of the rules for transition
systems presented in section §2.

If the statements sα, sβ and sγ of P are loop-free, the base and step cases generated
by the k-induction rule do not contain any loops. As a result, they can be checked ex-
haustively using bounded model checking. Starting with a small value of k, we attempt
to verify P by checking a base and step case, increasing k until either a base case fails,
revealing a bug in P , both base and step case succeed, indicating that P is correct, or a
“give up” value for k is reached, in which case the verification attempt is abandoned.

If sα, sβ or sγ are not loop free, i.e. the program contains sequences and/or nests of
loops, P can be transformed (using standard techniques) into an equivalent program P ′

containing a single, “monolithic” while loop, to which k-induction can be applied.
If we restrict our attention to inter-DMA race checking, as in [7], it is often possible

to significantly simplify input programs before verification, through program slicing.
For example, the process function of Figure 1 does not involve any DMA operations,
and does not influence control-flow in double buffer. Thus, for the purposes of inter-
DMA race checking, we can slice away both calls to process in double buffer. Applying
the translation of §3 to the sliced program yields an instrumented program which can be
verified successfully using k-induction: verification succeeds with k = 2. Experimental
results show that, combined with program slicing, k-induction is effective for analysis
of inter-DMA races [7].

Suppose we do not wish to restrict our attention to inter-DMA races when verify-
ing the program of Figure 1, and want to check in addition that the array accesses in
process do not race with pending DMAs. In this more complex scenario, k-inductive
reasoning is more likely to fail. To illustrate this on our example, consider the inner
loop of Figure 3 (excluding the lines marked ‘!’, which should be ignored until §5). For
any k < SZ, attempts at proving the example program using k-induction will fail. To
see this, consider the following partial state σ, which illustrates three problems that we
encounter when attempting to prove our example program correct using k-induction:
σ = [. . . , tracker.l 7→ bufs[0], tracker.s 7→ 1, cur buf 7→ 0, j 7→ x, tags 7→ {40, 41}]
where 1 ≤ x ≤ SZ.
Problem 1. The step case fails to establish information about the contents of the tags
array. For any k < SZ, the assertion at line 14 immediately following the loop (and
corresponding to the put operation at line 17 of Figure 1) will fail because tags[cur buf]
is not less than 32 at state σ. By assuming successful execution of k iterations of the
loop, for k < SZ, we do not establish that tags[cur buf] is within the permitted range.
Problem 2. The step case fails to establish information about pending DMAs (I). Let
k = SZ−x. The step case for k-induction will fail: it is possible to successfully execute
k iterations of the inner loop from any state of the form σ: the values assigned to tracker
ensure that the assertion at line 11 cannot fail for j> 0. However, the assertion at line 14
is guaranteed to fail, since tracker.l=bufs[0]=bufs[cur buf].

To illustrate a further problem, we consider another partial state, σ′:

σ′ = [. . . , tracker.l 7→ bufs[1], tracker.s 7→ 1, tracker.t 7→ 2, cur buf 7→ 0,
next buf 7→ 1, j 7→ x, tags 7→ {0, 1}, i 7→ 1, num chunks 7→ 1000]

where 0 ≤ x ≤ SZ.
Problem 3. The step case fails to establish information about pending DMAs (II).
Let k = SZ − x + 1. The k-inductive step case assumes k successful loop iterations.
From state σ′ it is possible to successfully execute SZ − x iterations of the inner loop:
the assertion at line 11 repeatedly succeeds because tracker.l targets bufs[1] which is
disjoint from bufs[cur buf] = bufs[0]. Statements 14–16 and 2–6 of the outer loop can
also be executed successfully; with the monolithic approach to k-induction for multiple
loops, this counts as one further loop iteration. Control is now at the start of the inner
loop, and we have tracker.l = bufs[1], size.s = 1, and cur buf = 1. As a result, the
assertion at line 11 is guaranteed to fail.

The crucial point common to Problems 1–3 is that the inner loop has too many
iterations to be fully unwound, and does not contain sufficiently useful assertions to
prove the assertion that follows (in the case of Problems 1 and 2), or assertions in
the next outer loop iteration (in the case of Problem 3). In the remainder of the paper
we show that we can overcome this problem, and achieve full DMA race analysis, by
strengthening k-induction using static analysis techniques, as outlined in §2.

5 Strengthening k-induction for DMA race analysis

To overcome the problems discussed in §4, we use a combination of three lightweight
static analysis techniques: a simple abstract interpreter, which allows us to infer generic
program invariants, and two techniques for inferring program properties specifically
related towards DMA races. While none of these techniques can be used in isolation
to prove DMA race freedom, their combination allows us to strengthen the inductive
hypothesis sufficiently for successful verification using k-induction.

5.1 Abstract interpretation-based static analysis

In our experience, straightforward analysis with general-purpose abstract domains fails
to establish program invariants strong enough to establish DMA race freedom of re-
alistic examples. The properties we are interested in depend on precise interrelations
between variable values over multiple, possibly nested loop iterations. General-purpose
numeric abstract domains can typically not accurately handle such situations.

Instead of designing an abstract domain specifically for DMA race analysis, with
potentially little reuse value, we use lightweight, general-purpose abstract domains to-
gether with k-induction. From the analysis result of an abstract interpreter, we extract a
mapping inv from statements to local program invariants. We then construct a program
P ′ which is identical to P , except that every statement s appearing in P is prepended
with assume(inv(s)). If the computed invariants are strong enough, it may now be pos-
sible to prove P ′ correct using k-induction.

Consider the code of Figure 3. As discussed in §4, this program fragment, without
the lines marked ‘!’, cannot be verified using k-induction due to the lack of useful invari-
ants for the inner loop. The condition of the assume statement marked ‘!’ (lines 8–9) is

the relevant part of the invariant computed by our abstract interpreter. Merely assuming
this invariant does not allow k-induction to succeed, but does rule out many of the con-
ditions under which the step case for k-induction fails. For example, the inferred loop
invariant establishes that tags[cur buf] is in the range {0, 1}, which eliminates Problem 1
discussed in §4.

We now discuss details of our abstract interpreter.
Analysis with interval and (dis)equality domains. We have found invariants gener-
ated by the classical interval domain to be useful for our purposes. In addition, we have
implemented a simple domain that keeps track of equalities and disequalities between
variables. We use a reduced product [5] of these two domains, which yields an analysis
that is more precise than applying the components in isolation.
Trace partitioning. We have found that, for some practical examples, it is necessary to
increase the precision of generated invariants. In each of these cases, we are able to suf-
ficiently increase the precision of the invariant by manually applying trace partitioning
[16], a refinement technique for abstract domains that enables inference of disjunctive
invariants using non-disjunctive domains. We performed value-based trace partition-
ing. This involves identifying a critical section of code α, a variable var and a set of
distinct values {v1, v2, . . . , vk}, and applying the following code transformation:

α −→ if(var == v1) { α } else if(var == v2) { α } . . . else if(var == vk) { α } else { α }

Given a partitioning heuristic, trace partitioning can be automated. For our purposes, a
simple heuristic that splits on the value of a variable, whenever this variable is in a very
small range, would suffice.

5.2 Chunking

The invariants inferred by our abstract interpreter do not solve Problem 2 of §4: unless
we choose k ≥ SZ, assuming k successful iterations of the inner loop does not rule out
the possibility that a pending DMA is accessing bufs[cur buf].

Iteration j of the inner loop accesses array element bufs[cur buf][j] (line 12 of Fig-
ure 3), and DMA race checking instrumentation generates an assertion that no DMA
is targeting this location (line 11). We describe how, from the assertion assert(φ) at
line 11 of Figure 3, where:

φ = disjoint(&bufs[cur buf][j], sizeof(float), tracker.l, tracker.s)

we can derive the assertion assert(ψ) marked ‘!’ at line 10, where:
ψ = disjoint(&bufs[cur buf][0], SZ∗sizeof(float), tracker.l, tracker.s)

A standard loop analysis (cf. [1]) establishes that j is an induction variable (a variable
whose value increases linearly with the number of loop iterations) for the inner loop, j is
used to access contiguous elements of bufs[cur buf], and j ranges between 0 and constant
value SZ, which are both loop-invariant expressions. It is clear that if a pending DMA
operation can write to some portion of array bufs[cur buf] starting at index a, where
0 ≤ a < SZ, then the assertion at line 11 will fail when j = a. Because j is an induction
variable and the loop has SZ iterations, we can deduce that either ψ is a loop invariant,
or φ must be false in some loop iteration. Thus condition ψ is a required invariant for

the loop, and can be added as an assertion: a program trace violating ψ on entry to the
loop can be extended by at most SZ iterations to a trace violating φ.

We term this process of deriving assertions stating required loop invariants as chunk-
ing, since it involves gluing together many assertions about small, contiguous regions
of memory to form a single summarizing assertion about a larger chunk of memory. We
have implemented a chunking analysis for regularly structured loops such as the loop
in our example. Such regularly structured loops are a common feature in streaming
applications for architectures such as the Cell BE.

5.3 Code motion to ease analysis of inner loops

1 ...; assert(dma cond(bufs[next buf], SZ∗sizeof(float), tags[next buf]));
2 assume(tracker.t != tags[cur buf]);
3 for(j = 0; j < SZ; j++) {
4 ! assume(dma cond(bufs[next buf], SZ∗sizeof(float), tags[next buf]));
5 assume(0 <= cur buf && cur buf <= 1 && 0 <= next buf && next buf <= 1 &&
6 cur buf != next buf && tags[0] == 0 && tags[1] == 1);
7 assert(disjoint(&bufs[cur buf][0], SZ∗sizeof(float), tracker.l, tracker.s));
8 assert(disjoint(&bufs[cur buf][j], sizeof(float), tracker.l, tracker.s));
9 bufs[cur buf][j] = bufs[cur buf][j] + 1.0f;

10 }
11 ! if(∗) { tracker = bufs[next buf], SZ∗sizeof(float), tags[next buf]); }
12 assert(dma cond(bufs[cur buf], SZ∗sizeof(float), tags[cur buf])); ...

Fig. 4. Part of the fragment of Figure 3 after application of code motion, indicated by ‘!’

Recall Problem 3 of §4. We illustrated the issue that, for certain potential states
such as σ′ on page 7, assuming successful iterations of the inner loop in Figure 3 does
not eliminate failing assertions then the inner loop is entered on the next iteration of
the outer loop. Unfortunately, neither abstract interpretation nor chunking alleviate this
problem.

We overcome this issue through a sound program transformation which we term
code motion (from loop-invariant code motion in compilers [1]). We first illustrate how
code motion works using the running example.

Recall from Figure 2 that the instrumentation corresponding to a DMA operation
consists of two parts: an assertion assert(φ) over the tracker record, and a nondetermin-
istic conditional statement if(∗) { s }, where s is an assignment to tracker. For the get
operation at line 14 of Figure 1, these appear at lines 4 and 5 of Figure 3, respectively.

For each instrumented DMA, code motion aims to push if(∗) { s } as late in the
execution schedule as possible, within the confines of the lexical scope in which the
statement appears. After this transformation, statements of the form assume(φ) are
inserted into the headers of all loops lying between the assert(φ) and if(∗) { s }.

Returning to our running example, suppose abstract interpretation and chunking
have already been applied to obtain the highlighted statements of Figure 3. Let sassign

denote the nondeterministically guarded assignment statement of line 5. Observe that
sassign is independent from the assume statement at line 8. Observe further that, if the
assignment of sassign is executed, then the guards of the assume and assert statements
of lines 6, 10 and 11 are guaranteed to evaluate to true . This follows because, from the
analysis result of the abstract interpreter, we know that cur buf 6= next buf. Finally, note
that sassign refers to disjoint variables from the loop control statements j = 0 and j++,
and modifies no variable appearing in the loop guard j < SZ.

As a result of these observations, we can move sassign after the inner loop without
affecting correctness of the program. In Figure 4, this transformation has been applied:
sassign now appears at line 11. To complete code motion for this example, observe that
the assertion assert(dma cond(...)) at line 1 of Figure 4 is guaranteed to be executed be-
fore the inner loop is entered, and we can statically deduce that no statement following
this assertion until the end of the inner loop can affect the truth value of dma cond(...).
Hence, we can insert at line 4 of Figure 4 the statement assume(dma cond(...)) without
changing correctness of the program.

Code motion eliminates Problem 3 of §4: the assume at line 4 of Figure 4 ensures
that the assertions at lines 7 and 8 will not fail when the inner loop is executed in the
subsequent outer loop iteration. Code motion is frequently applicable to DMA pro-
grams: to overlap communication with computation, a DMA operation is often issued
long before its results are needed; there is often an intervening processing loop, as in
Figure 3. Code motion reverses this optimization, for the purposes of verification.

Formal details of code motion. To make precise the conditions under which code
motion can be applied, we regard a program as a sequence of statements defined by the
following grammar:

Stmt ::= x = Expr | assert(Expr) | assume(Expr) |
if(Expr) { Stmt } else { Stmt } | while(Expr) { Stmt } | Stmt ; Stmt

where Expr denotes a side-effect free expression over a set of variables, which may in-
volve the nondeterministic expression ∗, and the else branch of a conditional statement
may be omitted. We assume standard trace semantics for programs.

Definition 1. Statements s1 and s2 are independent if one of the following holds:

1. No variable assigned to by s1 is referenced (in an assignment or expression) in s2,
and vice-versa

2. s1 is ‘if(∗) { x = φ1 }’, s2 is ‘assert/assume(φ2)’, and φ2[x/φ1] ≡ true
3. s2 is ‘s; s′’ or ‘if(φ) { s } else { s′ }’ or ‘while(φ) { s }’, s1 and s are independent,
s1 and s′ are independent, and s1 does not assign to any variable referenced in φ

Essentially, independent statements can be re-ordered without affecting program
correctness. In this context, the purpose of condition 1 in Definition 1 is obvious. Con-
dition 2 is domain specific, allowing the nondeterministically executed assignment as-
sociated with a DMA operation to be moved. Condition 3 allows independence of com-
pound statements to be established via independence of their components.

A statement s of P is simple if s is not a loop, assertion or assumption, and contains
no loops, assertions or assumptions as sub-statements.

Benchmark Lines of code Time of which AI k Max base case Max step case
single buffer 152 1.70 9.86% 2 5873 178305
single buffer IO 160 4.25 5.21% 3 6781 334915
double buffer 270 8.52 9.06% 2 67418 386705
double buffer IO 284 24.74 3.49% 3 132266 726512
triple buffer 379 44.32 6.46% 3 9208 650404
triple buffer IO 420 54.80 3.96% 3 9224 707592
double buffer TP 359 9.13 15.65% 2 109783 206434
double buffer IO TP 390 42.47 7.18% 3 215385 854164
triple buffer TP 611 138.10 7.13% 3 8813 958183
triple buffer IO TP 1813 422.45 3.39% 3 8824 3377134

Fig. 5. Experimental results for verification of benchmarks from the IBM Cell SDK.

Lemma 1. Let ‘s1; s2’ be a statement sequence appearing in program P . Suppose
s1, s2 are independent, and s1 is simple. Let P ′ be identical to P , except that ‘s1; s2’
in P is replaced with ‘s2; s1’ in P ′. Then P is correct if and only if P ′ is correct.

Lemma 2. Let s = ‘s1; s2; . . . ; sn’ be a statement of programP , where s1 = ‘assert(φ)’
and s1, si are independent (2 ≤ i ≤ n). Let s′ = ‘s1, s′

2; . . . ; s
′
n’, where for 2 ≤ i ≤ n,

s′
i is identical to si, except that any statement t appearing in si may be replaced with

‘assume(φ); t’ in s′
i. Let P ′ be identical to P , except that statement s is replaced with

s′. Then P is correct if and only if P ′ is correct.

Lemma 1 (suitably extended to support record variables) allows the nondetermin-
istically executed assignment associated with a DMA to be scheduled later in program
execution. Lemma 2 establishes correctness of the strategy described above for placing
assume statements of the form assume(φ) at program points dominated by assert(φ),
where φ is the race checking condition associated with a DMA.

We omit the straightforward proofs of Lemmas 1 and 2, noting only that the loop-,
assertion- and assumption-free conditions of Lemma 1 are necessary to ensure that code
motion does not lose error traces, or introduce spurious error traces.

6 Experimental evaluation

We have incorporated analyses based on abstract interpretation, chunking and code mo-
tion, into SCRATCH, a tool for DMA race analysis in Cell BE programs, first presented
in [7]. SCRATCH performs instrumentation of DMA operations using the encoding of
§3. Abstract interpretation and chunking are then applied, after which code motion is
attempted for each DMA operation in an input program. In the context of C, inde-
pendence of statements is determined using a SAT solver, incorporating information
obtained via abstract interpretation and pointer alias analysis. SCRATCH attempts to
verify the resulting program via k-induction, using the CBMC tool [4] for bounded
model checking, equipped with MiniSat 2.0 as a back-end SAT solver.

Our focus is on using k-induction and static analysis to prove DMA race freedom
of programs that are suspected to be correct. Bounded model checking, or runtime race
analysis (e.g. with the IBM Race Check library [13]) are more effective for detecting
DMA races in buggy programs. A comparison of SCRATCH with the IBM Race Check
library is presented in [7].

Figure 5 shows experimental results applying SCRATCH to a set of benchmark pro-
grams provided with the IBM Cell SDK [14], on a 3.2GHz Intel Xeon machine with
48GB RAM, running Ubuntu. The benchmarks consist of six distinct data programs,
using single, double or triple buffering for data-movement. For each buffering strategy
there are two program variants, one where processing is performed in-place on a local
buffer, and one where processing copies results from an input buffer to an output buffer.
The latter variant are marked IO in Figure 5. In addition, for the double and triple buffer-
ing examples, we present semantically equivalent variants where trace partitioning has
been manually applied as discussed in section §5.1. These benchmarks are marked TP
in Figure 5. For the double and triple buffering examples without trace partitioning, a
simple strengthening invariant was added manually.

Simplified versions of these benchmarks, where inner loops are manually sliced
away, were studied in [7]. The techniques of [7], where k-induction is applied with-
out strengthening, are unable to handle the full versions of the benchmarks which we
consider here. Thus an experimental comparison with [7] is not meaningful.

For each benchmark, Figure 5 shows the number of lines of code, after DMA instru-
mentation and inlining, the total time (in seconds, averaged over multiple runs) taken
for k-inductive verification with SCRATCH, the percentage of this time dedicated to ab-
stract interpretation, and the value of k required for verification to succeed. The cost of
the chunking and code motion analyses was negligible in all cases. In all cases, verifica-
tion is performed with an initial k of 1, and increasing k by 1 until both the k-induction
base and step case succeed. Our abstract domain is a prototype, and could be made sig-
nificantly more efficient with a dedicated implementation. Verification of triple buffer
IO TP takes significantly longer than for triple buffer in out. This is due to code blow-
up: value-based trace-partitioning leads to nine variations of a function call, repeated at
three distinct points in the program.

We also show the number of variables for the largest SAT problems which had to be
solved when checking base and step cases. The step case SAT problems are significantly
larger than their associated base cases. The reason for this is that all benchmarks have
a similar form to Figure 1, consisting of a main outer loop, and a series of calls to a
process function containing a loop with SZ iterations, where SZ = 4096. Because of
the loop in process, the base case never reaches the end of the first iteration of the main
loop. As a result, the vast majority of verification work is undertaken in the step case.

The single buffer benchmarks do not require use of code motion. Verification of the
double and triple buffering benchmarks requires all three of our static analysis tech-
niques, and even then requires a non-trivial value of k to succeed. This shows that the
mixture of techniques discussed in the paper really are working in tandem.

For the single buffer and single buffer IO benchmarks, verification by straightfor-
ward k-induction is possible if inner loops with SZ iterations are unrolled. This is in-
feasible when SZ is set to 4096. Therefore, we compare our strengthened k-induction

SZ

time (s)

4 12 20 28 36 44 52 60

2

8

32

128

512

5
8
2
3

7
12
2
3

9
16
2
3

11
20
2
3

13
24
2
3

15
28
2
3

17
32
2
3

k =

SB naı̈ve
SB-IO naı̈ve
SB strength.
SB-IO strength.

Fig. 6. Verification times for single buffer examples, with and without strengthening

procedure with the naı̈ve approach by replacing SZ with small values. Results are shown
in Figure 6, which also indicates the value of k required for verification in each case.
The figure illustrates the benefits of strengthened induction: for the largest value of
SZ considered, 64, the single buffer IO benchmark is verified 170 times faster when
strengthening is employed.

7 Related work

Inductive reasoning has played a key role in proofs of program correctness for many
years [11]. The k-induction method was introduced in [18]. Variations and applications
of k-induction have been extensively studied (see e.g. [7, 8, 12]).

The problem of strengthening induction is considered in [3]. A counterexample-
driven technique is used to iteratively strengthen the property under consideration in an
attempt to make it inductive. The work is primarily concerned with standard induction
(1-induction), though experimental results for k-induction are also presented. In con-
trast, our approach to induction strengthening uses separate static analysis techniques—
abstract interpretation, chunking and code motion—to process a program before induc-
tive reasoning is applied. We believe our method is complementary to that of [3], and it
may be beneficial to combine the approaches.

Techniques for detecting data races in shared memory multithreaded applications
have been extensively studied, see e.g. [10, 9, 15, 17]. However, none of these methods
are applicable to DMA race detection for multicore architectures such as the Cell BE.

8 Summary

The k-induction method is a promising technique for SAT-based verification of pro-
grams with loops, and has shown merit in this area in the context of DMA race analysis.
The main weakness of k-induction is its sensitivity to inner loops, which may contain

insufficiently strong assertions to build up an inductive invariant that implies program
correctness. We have addressed this weakness by using three kinds of static analysis: ab-
stract interpretation, chunking, and code motion. We have incorporated these techniques
into SCRATCH, a DMA race analysis tool for the Cell BE architecture, and shown ex-
perimentally that the combination of static analysis and k-induction takes a large step
towards the goal of fully automated verification of programs in this application domain.

We believe there is potential for generalizing our chunking and code motion anal-
yses to aid inductive verification of programs in other application domains. We also
intend to achieve 100% automation through an implementation of trace partitioning. A
key challenge will be to design heuristics to automatically decide where trace partition-
ing can be usefully applied.

References

1. Aho, A., Lam, M., Sethi, R., Ullman, J.: Compilers: Principles, Techniques and Tools.
Addison-Wesley (2006)

2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Ad-
vances in Computers 58, 118–149 (2003)

3. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. Formal Asp.
Comput. 20(4-5), 379–405 (2008)

4. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: TACAS.
LNCS, vol. 2988, pp. 168–176. Springer (2004)

5. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL. pp.
269–282 (1979)

6. Donaldson, A.F., Kroening, D., Rümmer, P.: Scratch: a tool for automatic analysis of DMA
races. In: PPoPP (to appear) (2011)

7. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of scratch-pad memory code
for heterogeneous multicore processors. In: TACAS. pp. 280–295. Springer (2010)

8. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor.
Comput. Sci. 89(4) (2003)

9. Engler, D., Ashcraft, K.: RacerX: Effective, static detection of race conditions and deadlocks.
In: SOSP. pp. 237–252. ACM (2003)

10. Flanagan, C., Freund, S.N.: Type-based race detection for Java. In: PLDI. pp. 219–232. ACM
(2000)

11. Floyd, R.W.: Assigning meanings to programs. Mathematical aspects of computer science,
Proceedings of Symposia in Applied Mathematics pp. 19–32 (1967)

12. Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with SMT-based
techniques. In: FMCAD. pp. 109–117. IEEE (2008)

13. IBM: Example Library API Reference, version 3.1 (July 2008)
14. IBM: Cell BE resource center (2009), http://www.ibm.com/developerworks/power/cell/
15. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: PLDI. pp. 308–

319. ACM (2006)
16. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans. Program.

Lang. Syst. 29(5) (2007)
17. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A dynamic data

race detector for multithreaded programs. ACM Trans. Comput. Syst. 15(4), 391–411 (1997)
18. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a

SAT-solver. In: FMCAD. LNCS, vol. 1954, pp. 108–125. Springer (2000)
19. Tip, F.: A survey of program slicing techniques. J. Prog. Lang. 3(3) (1995)

