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Abstract—The massive parallelism offered by Graphics Pro-
cessing Units (GPUs) is now routinely exploited to accelerate
computationally intensive tasks in a wide variety of applica-
tion domains. Efficient GPU programming in languages such
as CUDA and OpenCL requires careful application of hand
optimisations to exploit parallelism and locality while minimising
synchronisation. The effectiveness of such optimisationscan be
highly dependent on workload and the structure of input data,
making it difficult to assess performance in general by testing
alone. To address this, we study the problem of estimating
the Worst-Case Execution Time (WCET) of GPU-accelerated
applications. We propose the use ofhybrid WCET analysis
whereby execution times of small program segments are deduced
from traces of execution and a calculation backend derived from
the Control Flow Graph (CFG) produces a WCET estimate.
Standard techniques which construct a CFG from a binary
cannot be applied directly to GPU code because they miss implicit
execution paths that arise due the way branches are implemented
in hardware — we present a solution using standard compiler
analysis. We further describe how to extend the basic hybrid
WCET analysis of sequential code so that concurrent timing
effects in the GPU execution model are incorporated. We have
implemented our analysis as a tool built on top of the GPGPU-
sim open source simulator. We evaluate our tool using a set
of benchmarks drawn from the CUDA SDK: results show that
effective modelling of concurrency is key to reducing pessimism
in the WCET calculation.

I. I NTRODUCTION

Graphics Processing Units (GPUs) are highlyparallel
architectures, using features of Single-Instruction, Multiple-
Data (SIMD) execution, Multiple-Instruction, Multiple-Data
(MIMD) execution, and Instruction-Level Parallelism (ILP) to
deliver high performance [1]. Due to their raw compute power
— and with the advent of CUDA [2] and OpenCL [3] helping
to ease the programming burden — GPUs are now routinely
used as accelerators in fields such as bioinformatics, computer
vision, weather forecasting, and medical imaging.

As in the case of CPU programming, ensuring that a GPU
application efficiently utilises computational resourcesis a
cardinal goal. Most often this involves analysingaverage-case
performance and optimising accordingly, but outlier execution
times, such as theWorst-Case Execution Time (WCET),
also prove fruitful. For instance, the emerging practice is
to write parallel applications at higher levels of abstraction
using Domain-Specific Languages (DSLs) and to generate the
GPU implementation with a DSL compiler [4]. These DSL
compilers aim for performance portability across a diverse
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range of GPUs, typically achieved throughauto-tuning; that
is, by generating several code variants and, through analyt-
ical models or empirical evidence, selecting the “best” for
a specific GPU implementation. The auto-tuning stage can
be greatly aided by WCET estimation because it helps to
diagnose potential performance bottlenecks and serves to break
ties when average execution times among several alternatives
are (almost) equivalent. Computing WCET estimates is also
crucial to the construction ofreal-time systemssince they are
assumed as input to the vast majority of scheduling algo-
rithms [5]. Indeed, subsequent verification that the schedule
completes within a specific period is only valid when the
WCET estimates bound theactual (non-computable) WCETs.
Thus, integration of GPUs into real-time systems requires
suitable support from WCET techniques and tools.

This paper presents the first work on applying WCET anal-
ysis to the analysis of GPU-accelerated software, a previously
uninvestigated area [6]. We focus on applications running on
the NVIDIA [7] family of GPUs, though our novel techniques
are applicable to any GPU utilising a similar execution model.
Despite the fact that research in WCET analysis for single-
core, uniprocessor architectures has reached a certain level
of maturity [8], these methods cannot be directly applied to
GPU software due to three principal problems: the limitations
of static analysis, the complexity of thelock-stepexecution
model employed by mainstream GPUs, and the requirement to
accurately reason about bulk-synchronous parallel execution.
We present novel solutions to each of these problems, resulting
in a hybrid WCET analysis which we have implemented as a
practical tool and evaluate across a range of benchmarks.

We begin by discussing the above problems in a little more
detail and summarising the results of our evaluation.

Problem One: Static Analysis

WCET analysis is presently dominated bystatic analyses
that require anaccurate model of the hardware to obtain
execution times of program segments; recently, Lisper [6]
has argued that this sort of analysis is pliable to GPUs.
Yet GPU manufacturers rarely reveal specific implementation
details, which are vital to any model, in order to maintain
their competitive edge. For instance, the associativity and
replacement policies of the cache, the pipeline depth, and how
exactly threads are scheduled on NVIDIA GPUs all remain
undisclosed. For these reasons, our belief is that soundly
modelling the hardware and its associated run-time support
is infeasible. Consequently, we argue that GPUs are only



applicable to firm, soft, or probabilistic [9] real-time systems
where occasional deadline misses can be tolerated.

Our solution is to usehybrid techniques [10], [11] that can,
in principle, avoid hardware modelling. In hybrid analysis,
the execution times of small program segments are obtained
from thedynamicprofile of the program whilestatic analysis
techniques serve to stitch these execution times together.In
particular, this paper builds upon theInstrumentation Point
Graph (IPG) [10], [12] approach, pertinent details of which
are reviewed in Section II.

Problem Two: Branch Divergence

The majority of WCET analyses adopt theControl Flow
Graph (CFG), e.g. to obtain flow analysis data [13], to com-
pute a WCET estimate [14], or to construct the IPG [10]. The
salient feature of the CFG is that it is an over-approximation of
the set of possible paths through the program, and any subse-
quent analysis on the CFG therefore yields an overestimation
of the actual behaviour.

However, standard techniques [15]–[17] to obtain the CFG
do not capture all possible execution paths through applica-
tions running on NVIDIA GPUs because of the way threads
are executed on NVIDIA hardware (see Section III). Threads
are grouped together into units of 32, termedwarps, such that
all threads within a warp share a program counter and hence
follow the same execution path. When a conditional branch is
encountered, it is possible that different threads within awarp
want to explore different paths (so-calledbranch divergence).
The hardware handles this situation by executing one side of
the branch with a subset of threads until reaching a point where
control flow re-converges, then backtracking to the other side
of the branch with the remaining threads enabled. Control can
effectively jump from a basic block that appears textually to
have no branch instructions, to another basic block that appears
at compile time not to be a branch target.

We show how the post-dominator relation [17] and data-
flow analysis [15] can be used to insert additional edges into
the CFG to correctly model branch divergence. In particular,
we demonstrate that these edges can only be addedafter
loops have been identified in the CFG, otherwise problems
associated with irreducibility [18] will curtail the WCET
analysis. Full details of the solution appear in Section IV.

Problem Three: Parallelism and Concurrency

Existing WCET analyses (including the approach based on
the IPG) assume that tasks run with asinglethread of control.
However, this assumption does not hold for massively paral-
lel GPU applications. Thus, any WCET analysis, or indeed
timing analysis in general, must account for concurrency and
synchronization to output reasonable estimates.

Specifically within the context of IPG-based analysis, the
GPU execution model adds two particular complications. First,
instrumentation events generated by distinct warps appearin
an interleaved fashion in a trace, and we cannot deduce at
compile time how these interleavings will manifest because
the scheduling policy is unknown. Our solution is toslice the

set of time-stamped traces into sets ofwarp-specific traces
and then feed these into the standard IPG analysis framework.
However, this is generally not sufficient to derive an upper
bound on the end-to-end execution time because it does not
account forconcurrenttiming effects, in particular the delay
experienced by warps before they commence execution. We
propose two solutions: one computes the worst-case release
jitter experienced before a warp is dispatched to computational
resources by analysing the time-stamped traces, whereas the
other constructs an analytical model of how warps arrive in so-
calledwavesand obtains values for this model from the time-
stamped traces. How we slice traces and handle concurrent
timing effects are presented in Section V.

Evaluation

We have implemented our techniques on top of GPGPU-
sim [19], an open-source cycle-accurate GPU simulator that
supports recent generations of NVIDIA hardware. Using our
tool, we evaluate multiple CUDA applications shipped with
the CUDA SDK [2]: Section VI presents results of our
experiments, and the paper concludes in Section VII.

II. BACKGROUND TO HYBRID WCET ANALYSIS

We begin with an overview of how hybrid WCET analysis
works for sequentialprograms.

A. Instrumentation

Hybrid analysis insertsInstrumentation Points (Ipoints)
into a program, the purpose of which is to time stamp
execution at particular program points. We assume that there
are always Ipoints at the start and end of the program, which
we denote bys and t, respectively.

Instrumentation can take one of several forms: either soft-
ware probes [20], hardware probes [21], or virtual probes with
the support of a cycle-accurate simulator. Merits and downfalls
of these options are discussed extensively elsewhere [22].Our
extension of hybrid WCET analysis to GPU code uses a cycle-
accurate simulator, namely GPGPU-sim [19], because it offers
great flexibility as to where Ipoints are placed and allows traces
to be buffered and stored easily (see Section VI).

B. Trace Parsing and the IPG

The instrumented program then undergoes rigorous testing
(see [23]) in order to stress the execution times of Ipoint
transitions. The output of the testing phase is a set oftraces.
A trace is a sequence(i1, t1), (i2, t2), . . . , (in, tn) of tuples
generated by a single execution of a program, where for each
1 ≤ j ≤ n, ij is an Ipoint identifier andtj its time of
execution, and wherei1 = s and in = t.

Hybrid analysis processes these traces to extract, at a
minimum, the observed WCET of Ipoint transitions. In ad-
dition, it may also procure upper bounds on the number of
loop iterations as required in the WCET calculation, though
gathering any piece of data from the traces potentially renders
the WCET calculation unsafe; an alternative is to utilise static
high-level analyses [13] for path-related information.



Traces are parsed using an automaton, the IPG, which is
simply a graph where vertices are Ipoints and transitions are
a contraction of Ipoint-free paths between all Ipoint pairsin
the instrumented program. Formally, an Ipoint-free path isa
sequenceu → b1 → . . . → bn → v such that everybi is a
basic block andnot an Ipoint.

Although it is possible to build the IPG on the fly during
trace parsing, generally it must be constructedstatically from
the structure of the CFG and the Ipoint locations within
the CFG. The reason is that the WCET calculation phase
requires loops and their nesting hierarchy to be identified in
the IPG, but standard algorithms [18] fail when the IPG is
irreducible [15], [24], i.e. when loops have multiple entries.
Irreducibility is much more prevalent in the IPG because
Ipoints are not always placed inside CFG loop headers. The
solution [12] assumes that the CFG is reducible, and then
infers from each CFG loop which Ipoint transitions create
cycles in the IPG. A reducible CFG is therefore pivotal to
IPG-based analyses — Section IV expands on complications
with this assumption because of the way the GPU implements
branch divergence.

Example: Consider Fig. 1, which shows a CFG with basic
blocks as square vertices and Ipoints as circular vertices.
Because there is an Ipoint-free pathi2 → b2 → b3 → i2
in the CFG, and Ipointi2 is both the source and sink of this
path, there is an IPG edgei2 → i2. Moreover, this edge is
identified as an IPG loop because Ipointi2 is a loop header
in the CFG. The other edges in the IPG are derived similarly.

The figure additionally includes two traces: each trace starts
at i1, i.e. i1 = s, and ends ati4, i.e. i4 = t. Parsing of these
traces with the IPG uncovers the following:WCET (i1 →
i2) = 10, WCET (i2 → i2) = 7, WCET (i2 → i4) = 7,
WCET (i1 → i3) = 3, WCET (i3 → i4) = 5, and that
i2 → i2 iterates at most twice. All of this information is
subsequently fed into the WCET calculation.

Fig. 1. Example of hybrid WCET analysis.

C. WCET Calculations on the IPG

Two approaches exist to compute a WCET estimate from
an IPG: a tree-based approach [25] or through implicit path
enumeration [10], [14]. Our toolset described in Section VI

uses the latter because it is generally more accurate, but here
we demonstrate the tree-based approach as it is more intuitive.

The IPG is first transformed into a tree representation that is
similar to an abstract syntax tree: its internal vertices represent
sequential, alternative, and iterative constructs, whileleaves
represent Ipoint transitions as these are the atomic units of
computation. The tree is then traversed bottom up, combining
the WCET values of every internal vertex’s children using a
specific rule: for a loop, multiply the body’s WCET by the loop
bound; for a sequence, sum the values; and for an alternative,
take the maximum.

Example: Reconsider Fig. 1, which shows the tree represen-
tation of the IPG. Leaves in the tree have been annotated with
their observed WCETs, as obtained from parsing the traces.
The WCET of the loop vertex is7 · 2 = 14 because the
maximum execution count ofi2 → i2 is two. Finally, the
WCET of the alternative (root) vertex ismax(31, 8) = 31,
which is the WCET estimate.

III. B ACKGROUND TO CUDA AND NVIDIA GPUS

This section gives a brief overview of the CUDA program-
ming model (Section III-A) as well as the architecture and
execution model of NVIDIA GPUs (Section III-B).

A. Programming Model

The CUDA programming model slices a code base into two
disjoint parts: code intended for execution on the CPU (the
host) is written in vanilla C/C++, whereas code intended for
execution on the GPU (thedevice) is implemented in CUDA
C/C++, which is a superset of a subset of C/C++. Its language
extensions allow a programmer to label and launch a number
of data-parallel functions calledkernels which are intended
for GPU execution. Every kernel is executed by hundreds or
thousands of threads which, for reasons that become clear
shortly, are partitioned by the programmer into a set ofthread-
blocks such that there is an equal number of threads per
thread-block.

B. Architecture and Execution Model

The architecture of NVIDIA GPUs is evolving rapidly and
giving sufficient coverage to each variation is beyond the scope
of the paper. Thus the remainder of the paper concentrates on
the Fermi generation of GPUs, although the principles of our
techniques are applicable to all NVIDIA hardware.

A GPU consists of a number of(streaming) multiproces-
sors, each of which is composed of several lightweightcores.
How many multiprocessors and cores actually reside on a GPU
is implementation specific; for instance, the Fermi GF100 has
16 multiprocessors and 32 cores per multiprocessor, for a total
of 512 cores overall.

During program execution, thread-blocks are assigned to
specific multiprocessors. The number of thread-blocks that
a multiprocessor can actively process depends on the upper
bound imposed by the GPU implementation and on the
resources (e.g. number of registers) consumed by a thread-
block. The CUDA run time dynamically adjusts the number of



thread-blocks assigned to a multiprocessor as its resources are
occupied or relinquished. Moreover, since a kernel is typically
launched with more thread-blocks than the multiprocessorscan
handle, the run time maintains a list of unserviced thread-
blocks and dispatches them when multiprocessors become
available. Thread-blocks therefore arrives inwaves on each
multiprocessor, which is an important property for our WCET
analysis as explained in Section V.

Individual threads within a thread-block execute on a spe-
cific core. However, on an NVIDIA GPU, threads are not
the atomic unit of scheduling — rather, it is a sub-group
of the thread-block called awarp. The number of threads
in a warp, i.e. the warp size, has remained 32 across all
NVIDIA GPUs. The maximum number of warps available
is a function of a multiprocessor’s thread-block threshold
(which potentially changes dynamically as explained above)
and the warp size. The scheduling unit of every multiprocessor
maintains a scoreboard that tracks which warps are ready to
execute. Among this pool of warps, it dispatches warps in a
fine-grained multi-threaded fashion [1]; the exact mechanics of
how the choice is made is undisclosed and hence we assume
nothing in this regard (see Section V).

Once issued, warps execute in SIMD fashion, meaning
that all threads in a warp are issued the same instruction.
When different threads in a warp want to follow different
sides of anif-then-else construct (or any conditional
construct),branch divergenceoccurs. Branch divergence is
handled in hardware by executing every branch pathserially,
one after another, until theimmediate post-dominatorof the
branch is reached. Since all threads in a warp see the same
instruction stream, inactive threads are masked off temporarily.
As soon as all divergent paths have been explored, warp
execution continues from the immediate post-dominator; all
threads enabled at the branch are re-enabled so that nested
branches can be handled. The hardware optimises the case
where branch divergence doesnot occur, skipping over the
appropriate sequence of instructions as in regular controlflow.

The GPU has a separate RAM to the CPU calleddevice
memory. Data in device memory is accessible to every
multiprocessor, and therefore every thread-block can readand
write its contents. Access times are extremely slow, in the
order of hundreds of cycles, as device memory resides off
chip. Since requesting data from global memory is costly,
every multiprocessor is equipped with two on-chip caches: a
software-managedshared memoryand a hardware-managed
L1 cache. Access times of these memories approach those of
registers, but only thread-blocks executing on that particular
multiprocessor can access them. These caches compete for the
same silicon area in that increasing the size of one decreases
the size of the other. On a Fermi architecture, 64 KiB of
total cache capacity can be configured either as 48 KiB of
shared memory with 16 KiB of L1 cache, or 16 KiB of shared
memory with 48 KiB of L1 cache. The backing store for all
L1 caches is a shared off-chipL2 cachewhose capacity is a
mere 768 KiB on a Fermi GPU.

IV. I MPACT OF BRANCH DIVERGENCE ONCFG
CONSTRUCTION

Section II described how WCET analyses employing the
IPG generally require the CFG as input. In addition there
are assumptions that all potential paths through the program
are represented in the CFG and that all loops in the CFG
are reducible. In this section we show that, for GPU code,
conventional algorithms [15]–[17] to construct CFGs violate
the first assumption because of the way GPUs implement
branch divergence. We present a solution to update the CFG
with so-called branch-divergent edges, but demonstrate that
this causes the CFG to become irreducible, hence violating
the second assumption. We thus describe how the analysis
stages must proceed in a specific order. We start by reviewing
relevant terminology and notation.

A. Terminology and Notation

A CFG C = 〈VC , EC〉 is a directed graph whereVC are
its basic blocks (vertices) andEC its edges. For anyv ∈ VC :
pred(v) = {u : (u, v) ∈ EC} denotes its set of predecessors
andsucc(v) = {u : (v, u) ∈ EC} denotes its set of successors.
A natural loop inC has a unique header vertexu, the single
entry point to the loop, and one or more loop-back edges from
a loop vertex to the header — see [15] for further details. Let
C′ = 〈VC , E

′

C〉 be the CFG obtained fromC by removing all
of its loop-back edges. Then we say a vertexv is a forward
branch inC′ if, and only if, one of the following holds:v is not
a header vertex and|succ(v)| > 1; or v is a header vertex,
|succ(v)| > 1, and everyu ∈ succ(v) belongs to the loop
body. A vertexv is a merge vertex provided|pred(v)| > 1.

B. Branch-Divergent Edges

Complications arising through branch divergence are best
illustrated through an example: Fig. 2 shows a CFG (top left)
together with three possible warp executions through this CFG
(bottom) on an NVIDIA GPU. We assume for simplicity that a
warp only consists of eight threads and have labelled vertices
in the warp execution figure according to which threads are
active: 1 signals enabled and 0 signals disabled.

Consider the first execution. Initially, all threads branch
to b12, but then half of the threads branch tob10, followed
immediately by b11 (because that is the sole successor of
b10). When the last instruction ofb11 is finished, execution
must continue fromb13, and notb14, in order to explore the
other divergent path fromb12. When b13 finishes, execution
then passes tob14 since all sides of the conditional have been
explored andb14 is the immediate post-dominator ofb12. At
this point, all threads become active again since all threads
were active atb12, and the end of the program is eventually
reached atb15.

The other two executions demonstrate similar behaviour,
although two properties are particularly noteworthy. First,
b14 is executedtwice in both executions: once as the re-
convergence vertex for forward branchb12 and the other
because execution forks that way fromb7. Second, the order
in which sides of the branch are executed is implementation



Fig. 2. Example to demonstrate the effect of branch diver-
gence on CFG construction.

defined: in the second execution the edgeb6 → b7 is followed
first, while in the third execution it is the edgeb6 → b12.

As this example establishes, branch divergence alters con-
ventional flow of control: it becomes possible to transfer
from a predecessorp of a merge vertexm to a successor
s 6= m of a forward branch vertex, even thoughp only
has a single successorm in the CFG. In principle we could
solve this problem conservatively by adding extra edges from
every predecessor of a merge vertex to every successor of a
forward branch vertex. Yet this would yield infeasible paths
and could lead to inaccuracies in the execution time estimate.
For instance, this solution adds an edgeb11 → b7 to the CFG
of our running example, although the reader can verify it is
impossible for this transfer of control to arise along any branch
divergent path.

We instead offer a precise solution grounded on two key
observations with respect to a forward branchb, its immediate

post-dominatorm, and a predecessorp of m.
On the one hand, if only one successors of b can reach

p then s, p must execute on thesamedivergent path; control
can then transfer fromp to any successor ofb excepts. For
example, in the original CFG of Fig. 2, when execution forks
alongb12 → b10, b11 must execute andb13 is theonly vertex
where control can transfer afterb11 if divergence occurred.

One the other hand, if more than one successor ofb can
reachp then we cannot statically determine which of these
successors will lead to execution ofp. In principle, control can
transfer toany successor ofb. An example of this property in
the original CFG of Fig. 2 isb14 with respect to branchb6:
on the one hand, if the pathb6 → b7 → b10 → b11 → b14 is
followed thenb12 is executed next; on the other hand, if the
path b6 → b12 → b10 → b11 → b14 is followed thenb7 is
executed next.

ADD-BRANCH-DIVERGENT-EDGES(C)

1 foreach v ∈ VC do
2 reachable(v)← ∅
3 foreach v ∈ VC in reverse post-orderdo

4 reachable(v)← {v} ∪





⋃

p∈pred(v)

reachable(p)





5 foreach forward branchb ∈ VC do
6 m← immediate post-dominator ofb
7 foreach p ∈ pred(m) do
8 newsucc(p)← succ(b) \ reachable(p)
9 if newsucc(p) 6= ∅ then

10 EC ← EC ∪ {(p, s) : s ∈ newsucc(p)}
11 else
12 EC ← EC ∪ {(p, s) : s ∈ succ(b)}

Fig. 3. Algorithm to insert branch-divergent edges.

Fig. 3 presents an algorithm to update the edges of a CFGC
based on these observations. It uses data-flow analysis [15]to
propagate through the CFG which vertices can reach a vertex
v, the result of which is stored inreachable(v) (Lines 1–
4). Note that a reverse post-order of the CFG is utilised in
the second sweep through the vertices so that execution order
among vertices is preserved.

The next stage analyses the region in the CFG between
a forward branchb and its immediate post-dominatorm
(Lines 5–6). It deduces, for each predecessorp of m (Line 7),
which successors ofb currentlycannotreachp (Line 8), and
performs one of two actions. Either a proper subset ofb’s
successors cannot reachp (Line 9), and we add edges to model
how control flow potentially branches to one of these locations
after the branch-divergent path atp finishes (Line 10). Or, all
b’s successors can reachp, in which case we cannot infer at
compile time which successor led to execution ofp, hence we
add edges to all of them (Line 12).

Example: The original CFG of Fig. 2 contains three forward
branches:b6, b7, b12. We will concentrate exclusively on the
region (b6, b15), noting that the successors ofb6 = {b7, b12}
and the predecessors ofb15 = {b9, b14}. In this region we
compute:newsucc(b9) = {b7, b12} \ {b6, b7, b8, b9} = {b12}



and hence add the edgeb9 → b12; newsucc(b14) = {b7, b12}\
{b6, b7, b10, b11, b12, b13, b14} = ∅ and hence add edgesb14 →
b7 andb14 → b12. Performing the same analysis on the regions
(b7, b15) and (b12, b14) leads to the updated CFG pictured in
Fig. 2, through which all warp executions can now be traced.

C. Irreducible CFGs

After applying the algorithm of Fig. 3 to a CFGC, a
CFG C′ enhanced with branch-divergent edges is produced.
However, these new edges create irreducible loops inC′ even
if C were acyclic; for example, in Fig. 2, the original CFG
is acyclic whereas the modified CFG has an irreducible loop
betweenb11 andb13.

Since the construction of an IPG assumes that the CFG
is reducible, the consequence is that the analysis stages and
alterations to the CFG must adhere to the following order.
Initially the IPG is built using the CFGC that is free from
branch-divergent edges; as a consequence, the cycle-inducing
edges of the IPG can be detected (see [12]). Next, branch-
divergent edges are inserted into the CFG, creatingC′. Finally,
the edges of the IPG are updated according to whether there
are new Ipoint-free paths between Ipoints inC′.

Observe that adding branch-divergent edges after structural
analysis of the CFG is applicable toall CFG-based WCET
analyses. For example, WCET calculations using integer linear
programming [14], [26] and loop-bound analysers [13] assume
the CFG is reducible.

V. HYBRID WCET ANALYSIS OF GPU CODE

Our overarching aim is to estimate the WCET of GPU code
using traces and the IPG, but two additional hurdles remain.
First, parallel and concurrent execution on the GPU spawns
traces where Ipoints from different warps areinterleaved,
hence blocking trace parsing with the IPG (Section V-A).
Second, the WCET calculation performed on the IPG in effect
assumessequentialexecution and ignores how parallelism or
concurrency affect timing (Section V-B).

A. Trace Slicing

The motivation for launching multiple thread-blocks is to
boost performance by executing the GPU kernel in parallel
across multiple multiprocessors. Likewise, maintaining many
warps in flight concurrently on a single multiprocessor is
motivated by latency hiding since ready warps can be serviced
while other warps wait on memory accesses. This parallel and
concurrent execution model implies, however, that successive
Ipoints written to a trace are not necessarily generated by the
same warp on the same multiprocessor. In fact, the interleav-
ing of Ipoints in this fashion must be assumed to be non-
deterministic because the exact scheduling policies of thread-
blocks to multiprocessors and warps to cores are unknown. In
this form the IPG cannot parse these traces because its edges
only represent transitions across sequential code constructs.

Our solution is toslice traces into a set ofWarp-Specific
Traces (WSTs) whereby only Ipoints generated by a specific
warp on a particular multiprocessor are retained in its WST.

Since the execution path followed by a warp only flows
through the sequential part of code, every WST can then be
parsed by the IPG.

Example: Suppose that the program of Fig. 1 has been
executed twice (that is, with two different test vectors) on
an NVIDIA GPU. Assume for simplicity that there is only a
single multiprocessor with three warps scheduled in a round-
robin fashion, and no warps execute divergent branches. Traces
generated from the example program under these assumptions
appear in Fig. 4a: this figure shows which Ipoints each warp
triggers, the cycle at which each Ipoint executes, and how
execution on the multiprocessor switches between warps.

(a) Traces generated from program in Fig. 1. (b) Warp-specific traces
after trace slicing.

Fig. 4. Example of how traces are processed.

Slicing the traces produces the WSTs of Fig. 4b. Observe
how the edges depicting warp interleavings have effectively
been stripped away and substituted by transitions between
Ipoints in each warp. Conceptually it now appears that warps
executein parallel and can all start running at the first clock
cycle; to underline this side effect, execution times of Ipoints
have been normalised to this baseline. Parsing these WSTs
uncovers the following observed WCET of IPG edges:

• WCET (i1 → i2) = 12 (test #2, warp #2);
• WCET (i1 → i3) = 13 (test #2, warp #3);
• WCET (i2 → i4) = 18 (test #1, warp #3);
• WCET (i3 → i4) = 14 (test #1, warp #2).

Finally we carry out a WCET calculation on the IPG. There
are only two alternative paths in the IPG:i1 → i2

∗

→ i2 → i4
whose WCET is12 + 0 + 18 = 30; or i1 → i3 → i4 whose
WCET is 13 + 14 = 27. The WCET estimate is thus30.

B. Accounting for Parallel and Concurrent Execution

Comparing the WCET estimate with theHigh Water-Mark
Time (HWMT) of 34 (c.f. Fig. 4a), we observe there is an
underestimation. The reason is that this value encapsulates the
worst case of anindividual warp — termed thewarp-specific
WCET in the remainder of the paper — but it ignores two
fundamental properties of the execution model. First, when
a kernel commences, the scheduler must choose which warp
among a pool of warps it will issue to cores; hence, there
is always a delay before a final warp within this pool starts
executing. Second, there is a tacit assumption that the kernel
completes as soon as the warps within this initial pool do so,



although generally warps arrive in a series ofwaves, i.e. when
the number of thread-blocks launched saturate resources onthe
multiprocessors (see Section III).

We propose two solutions, both of which are contingent on
further analysis of the traces. The first is akin to a dynamic
technique in that we simply consider end-to-end behaviour,
whereas the second is akin to a hybrid technique in that we
create a static analytical model whose actual parameters are
obtained from the dynamic profile of the program.

The dynamic technique (c.f. Fig. 5). This approach is
grounded on the observation that, on every multiprocessor,
there is always a final warp to execute. The idea, therefore, is
to analyse the traces generated by a multiprocessor and infer
the worst-case release jitterof its final warp, defined to be
the longest time until the Ipoints of the final warp executes.
Then we conservatively presume that the final warp on every
multiprocessor is only released after this delay and that itthen
goes on to consume the warp-specific WCET. That is:

Zdynamic = Zwarp +max(δm1
, . . . , δmn

) (1)

where Zwarp is the warp-specific WCET estimate and,
for multiprocessorsm1 through mn, δm1

, . . . , δmn
are the

observed worst-case release jitters of their final warps.
Let us apply this equation to our running example, noting

from Fig. 4a that the worst-case release jitter of warp #3
(the last scheduled warp in both test cases) is7 cycles.
Once it starts executing, the warp consumes30 cycles, that
is Zdynamic = 30 + 7 = 37, which now bounds the HWMT
of 34.

It may appear that (1) only accounts for the timing effects of
a singlemultiprocessor. However, multiprocessors are parallel
processing units, operating largely independently unlessthey
compete for bandwidth to global memory or L2 cache. We
argue that the time consumed by these interactions is implicitly
included in the warp-specific WCET estimate, because execu-
tion times of IPG edges include time spent waiting on these
transactions. Furthermore, an accurate worst-case staticmodel
of this behaviour is impossible without intricate knowledge of
the memory and scheduling policies.

Fig. 5. Incorporating concurrency into the timing analysis.

The hybrid technique (c.f. Fig. 5). The downside of the
dynamic approach is that there may always be another test
vector or schedule which stalls the final warp even further, and

hence the WCET estimate computed by (1) is optimistic. The
hybrid approach attempts to resolve this issue by constructing
a model of how warps arrive. The crucial observation is
that thread-blocks always arrive in waves — as soon as
warps within one wave complete, warps spawned by other
thread-blocks arrive, until completion. The heart of the model
therefore comprises a maximum number of waves,Ω, each
wave itself consisting of a maximum number of warps,ϕ.

This approach also takes a different approach to computing
the worst-case release jitter of the final warp. Let the sequence
w1, w2, . . . , wϕ denote the warps in a wave ordered so thatwi

appears beforewj if wi is scheduled for the first time before
wj is scheduled for the first time. Then we assume that, for
every warpwi with i > 1, the start Ipoint ofwi is only written
to a trace after a constant-time delay,∆, with respect to the
start Ipoint of its preceding warpwi−1. In effect, every pair of
neighbouring warps stall each other by∆ cycles — the delay
therefore accumulates and ripples downwards to the final warp.

To combine these values, we assume that, after the worst-
case release jitter, the final warp in a wave consumes the warp-
specific WCET, and that this pattern repeats for the maximum
number of waves. That is:

Zhybrid = Ω · (Zwarp + (ϕ− 1) ·∆) (2)

The valuesΩ, ϕ, and∆ are derived by analysing the traces
generated on every multiprocessor. The basic idea is that, for a
traceT , we maintain a set of warp sets,ST , where each warp
set contains warps observed in a particular wave. InitiallyST

contains a single setW . Whenever the parser sees a stream of
start Ipointswithout interleaving exit Ipoints, this indicates that
the multiprocessor is starting a new wave of warps, and hence
we add the warp identifier toW . However, when an exit Ipoint
breaks this sequence, it signifies that the warps in a particular
wave are on the verge of completion; at that point, we insert
a new empty setW ′ into ST in readiness for the next wave of
warps. This process is repeated for every trace, and likewise
for every multiprocessor. At the end, the maximum number
of wavesΩ is the maximum size ofST , while the maximum
number of warpsϕ is the maximum size ofW . The value∆ is
simply the maximum observed difference between execution
times of consecutive start Ipoints in thesamewave.

We demonstrate this process through Fig. 6, which plots
the sequence of start and exit Ipoints observed on a particular
multiprocessor horizontally from left to right. Moreover,every
Ipoint is subscripted by its warp identifier and, in the case of
start Ipoints, time stamps are included. On encountering the se-
quence of Ipointss1, s2, s3, warpsw1, w2, w3 are added to set-
1 because there are no exit Ipoints in between. However, Ipoint
t2 signals the end of the first wave and we create the empty set-
2; eventually warpsw4 andw5 become members of this set. In
this example, thereforeΩ = 2 andϕ = max(3, 2) = 3. Also
note that we compute the difference between the time stamps
of (s1, s2), (s2, s3), (s4, s5) but not (s3, s4) becausew3, w4 are
not in the same wave; hence∆ = max(3, 8, 5) = 8.



Fig. 6. How the multiprocessor portion of a trace is pro-
cessed to derive values of parameters in (2).

Returning to the running example of Fig. 4a, we observe
thatΩ = 1, ϕ = 3, and∆ = max(5−1, 8−5, 3−1, 5−3) =
4. Hence:Zhybrid = 1 · (30 + 4 · 2) = 38. Note that this
value bounds the HWMT of34 and that it is more pessimistic
than the37 cycles computed through the dynamic approach;
the next section evaluates the differences in more detail using
actual GPU kernels.

VI. EVALUATION

We have developed a complete WCET toolchain for GPU
code based on GPGPU-sim [19] with the aim of obtaining
WCET estimates of several kernels in the CUDA SDK [2].

A. GPGPU-sim

GPGPU-sim is a cycle-accurate simulator of NVIDIA hard-
ware, which has been engineered by inspecting NVIDIA
patents; it is highly accurate, having been validated against
real hardware.

We used a default GPU configuration shipped with the
source code that conforms to a Tesla C2050 GPU. This
is a Fermi-based architecture which includes the following
features: 14 multiprocessors, 32 cores per multiprocessor,
48KiB of shared memory (per multiprocessor), 16KiB of
L1 cache (per multiprocessor), 786KiB of L2 cache (shared
among multiprocessors) and a clock speed of 1.15 GHz.

GPGPU-sim operates by simulating the PTX (Parallel
Thread eXecution) instructions of a kernel. PTX is an as-
sembly language devised by NVIDIA, which is either output
as a by-product of compilation from source code, or by an
object code disassembler. The latter is hence more accurate
as it represents more faithfully what executes on the bare
metal, in particular because the CUDA compiler can optimise
PTX further; in our experiments, all results are based on
disassembled object code.

Some modifications to GPGPU-sim were necessary in order
to extract time-stamped traces of execution.1 We added code
to intercept when the first instruction of a basic block is issued
to the cores of a multiprocessor, which writes the following

1Our analysis tools and modifications to GPGPU-sim are publicly available
at http://wcet.doc.ic.ac.uk/.

Application Description

BitonicSort Parallel algorithm to sortn elements
BlackScholes Computes European pricing options using the

Black-Scholes formula
EigenValues Computes all eigenvalues for a square matrix
Histogram Computes a 64-bin histogram
MatrixMultiply Multiples twon×m matrices
MatrixTranspose Transposes ann×m matrix
VectorAdd Adds twon-element vectors
Reduction Parallel summation ofn elements using a

tree-based implementation
Scan Given an arrayA of n elements, computes

an arrayA′ where elementA′[i] =
∑i

j=0 A[j]
ScalarProduct Calculates the scalar product of twon-element

vectors

TABLE I. Summary of analysed CUDA SDK benchmarks.

to a trace: the address (i.e. the Ipoint ID), the multiprocessor
ID, the warp ID, and the cycle time (number of cycles since
execution commenced). Hence in our tool, every basic block
corresponds to an Ipoint. However, it is important to stressthat
the analysis works with coarser instrumentation. In addition,
because a simulator was deployed to monitor Ipoint execution,
Ipoints did not add timing overhead to the application. A full
discussion of advantages and disadvantages of these choices
is beyond the scope of the paper (see [27]).

B. Benchmarks

We analysed CUDA applications shipped with the CUDA
SDK [2]. We selected those for which the application performs
meaningful computation (some benchmarks merely illustrate
a CUDA feature) and for which it was straightforward to
generate a test vector. The specific benchmarks analysed are
given in Table I. Note that many applications in the CUDA
SDK include several variants of a GPU kernel, moving from
a naive implementation to a progressively optimised version,
e.g.MatrixTranspose. Also, some kernels are called in a
sequence to compute a desired output, e.g.Histogram. We
analysed all kernels in these applications.

C. Experimental Set-Up

Some work was required to sanitise the benchmarks into a
form amenable to WCET analysis. First, we stripped the code
down to a minimal form that included data transfers and kernel
launches, but without compromising the desired functionality.
Second, we added a simple random test-vector generator to
each benchmark because our hybrid analysis requires a test
harness; as all of the benchmarks expect an array of a basic
type (e.g. integer or floating point), this was straightforward.

Every program was then compiled usingnvcc v4.0
(NVIDIA’s CUDA compiler) using the default values for
thread-block size and number of threads per thread-block as
included in the benchmark. After compilation the binary can
be executed natively, as GPGPU-sim operates by intercepting
calls made by the binary into the CUDA run time. In our
experiments, multiple executions (up to eight) of the binary
were launched in parallel on a compute cluster that uses nodes
with dual 2.66GHz Intel Xeon 5150 cores, 4GiB of RAM, and



running under RedHat Linux 6.3. We decided to use 1000
test vectors per benchmark, producing 1000 traces that were
concatenated together into a single, monolithic trace.

Traces were then split and parsed as detailed in Sections II
and V to determine the observed WCET of IPG edges, the
maximum execution counts of IPG edges, and to extract the
values of parameters in Equation (1) and Equation (2). The
warp-specific WCET estimate was computed using an integer
linear program derived from the IPG and the data [10].

D. Results

Table II displays the following: the HWMT obtained during
testing (ZHWMT ); the warp-specific WCET estimate (Zwarp);
the WCET estimate computed through (1) (Zdynamic); the dif-
ference between (1) and the HWMT; the WCET estimate com-
puted through (2) (Zhybrid ); and the difference between (2)
and the HWMT. The units of time in the table are cycles and
differences are percentages rounded up to the nearest decimal
place. Each row of the table gives the results for a CUDA
application — where the application contains multiple kernels,
these results have been separated out accordingly.

The most striking observation from these results is the
difference between the HWMT and the WCET estimates.
Under the assumption that the HWMTis the actual WCET,
and interpreting the difference asoverestimation, the dynamic
approach is generally much more accurate than the hybrid
counterpart: the average overestimation of the former is102%
whereas for the latter it is796%.

We therefore inspected those kernels whereZhybrid ≫
Zdynamic and found that these kernels are always launched
with many more thread-blocks than the multiprocessors could
service in one chunk. That is, thread-blocks always arrive in
multiple waves, and the values obtained from our trace analysis
for (2) are sometimes pessimistic.

For example, consider theMatrixTranspose-1 kernel,
which has a small CFG (four basic blocks) and simple control
flow properties (one loop but no branches). Through manual
inspection of the kernel, we found that it is launched with1024
thread-blocks and256 threads per thread-block. On the GPU
configuration used in these experiments, each multiprocessor
has a maximum capacity of8 thread-blocks. Therefore, at
any one time, there is a maximum of8 · 14 = 112 thread-
blocks in flight. Assuming a fair scheduling policy where
thread-blocks are distributed evenly among multiprocessors,
and assuming each multiprocessor pauses until all thread-
blocks of a particular wave have completed, the thread-blocks
will arrive in ⌈1024/112⌉ = 10 waves; however, our trace
analysis instead computedΩ = 26. This is because we assume
that an exit Ipoint followed by a sequence of start Ipoints
signals a new wave: if new thread-blocksb1, b2, . . . , bn of a
wave arrive piece by piece and not together in a single batch,
it is possible that all warps of thread-blockbi finish before
warps ofbi+1 begin, and we conservatively assume thatbi+1

is a new wave. The GPU is likely to schedule thread-blocks
in this manner because it eagerly allocates unserviced thread-
blocks to multiprocessors as soon as other thread-blocks finish.

Hence, in future work we will investigate how to better
compute the valueΩ.

The deduction of the value∆ from traces is similarly hin-
dered by multiple waves. Recall that this value is the maximum
difference between the time of start Ipoints of neighbouring
warps in thesamewave. The problem is that some warps
from a previous wave,waveold , usually remain in flight when
a new wave,wavenew , begins. Hence, warps fromwaveold are
scheduledin betweenwarps ofwavenew and the delay between
consecutive warps inwavenew can therefore be considerable.
In the case ofMatrixTranspose-1, ∆ = 1681, and
combined with its maximum number of waves, this already
accounts for26 · 1681 = 43, 706 cycles.

On the other hand, the thread-blocks ofBlackScholes
and EigenValues arrive in a single wave, and∆ = 1
because warps are issued to cores immediately in round-robin
fashion. In this case,max(δm1

, . . . δmn
) = Ω · (∆ · (ϕ− 1)),

and henceZdynamic = Zhyrbid (c.f. (1) and (2)).

With respect to the warp-specific WCET estimate, we arrive
at two conclusions. First, the results confirm that computing
Zwarp alone is generally not sufficient to boundZHWMT .
Second, whenZwarp > ZHWMT holds, the dynamic approach
overestimates much more (almost always over100%) than
when the inverse holds: reducing the pessimism in the warp-
specific WCET estimate thus remains a key research challenge.

We inspected the source code of kernels in conjunc-
tion with the code parts contributing to the warp-specific
WCET estimate, e.g.ScalarProduct, Histogram and
Reduction, to investigate where execution time is spent.
Unsurprisingly, the majority ofZwarp is consumed in loops;
however, it is noteworthy that each such loop contains a
barrier synchronization statement, the semantics of whichis
to forces all threads in a thread-block to wait at that program
point until all threads arrive. Clearly barrier synchronizations
are costly because they block warp progress. Our analysis
of loops with barriers is pessimistic because it extracts the
maximum observed waiting time from the traces and then
factors this value by the maximum loop bound. For instance, in
theReduction-2 kernel, the IPG edge containing execution
of the barrier synchronization had a best-case execution time
of 33 cycles, an average-case execution time of58 cycles, and
a WCET of293 cycles. In future work we aim to reduce the
pessimism by incorporating theexecution time profilesof IPG
edges into the warp-specific WCET calculation.

The results also show that optimising a kernel can also
reduce its HWMT and WCET estimate. For example, the
suffix of each Reduction kernel indicates an increas-
ingly optimised implementation:Reduction-4 through
Reduction-6 clearly perform better thanReduction-1
throughReduction-3. Note, however, that both the HWMT
and WCET estimates ofReduction-2 are higher than those
of Reduction-1, even though the former claims to maintain
better warp progress and hence increase parallelism.



Kernel ZHWMT Zwarp Zdynamic Difference Zhybrid Difference

BitonicSort-1 1,045,259 173,548 1,186,941 14% 6,929,575 563%

BitonicSort-2 101,582 7,769 107,222 6% 1,438,780 1, 316%
BitonicSort-3 264,934 39,091 296,152 12% 2,448,819 824%

BlackScholes 793,333 408,700 1,080,880 36% 2,138,670 170%

EigenValues-1 1,143,429 2,801,330 2,801,337 145% 2,801,337 145%

EigenValues-2 1,811,709 4,190,040 4,190,047 131% 4,190,047 131%

EigenValues-3 2,576,497 10,292,800 10,292,807 299% 10,292,807 299%

Histogram-1 181,164 1,274,430 1,274,469 603% 1,274,469 603%

Histogram-2 1,220,518 69,455 1,266,381 4% 2,884,400 136%

MatrixMultiply 3,642 4,678 4,680 29% 4,680 29%

MatrixTranspose-1 97,303 23,364 117,330 21% 2,661,646 2, 635%
MatrixTranspose-2 40,621 6,734 44,747 10% 1,314,576 3, 136%

MatrixTranspose-3 39,671 6,406 43,268 9% 898,864 2, 166%
MatrixTranspose-4 27,807 6,276 32,282 16% 371,462 1, 236%
Reduction-1 2,158 4,548 4,555 111% 4,555 111%

Reduction-2 2,407 6,442 6,449 168% 6,449 168%

Reduction-3 2,625 4,583 4,590 75% 4,590 75%

Reduction-4 1,947 3,906 3,913 101% 3,913 101%

Reduction-5 1,880 2,580 2,587 38% 2,587 38%

Reduction-6 1,645 2,196 2,203 34% 2,203 34%

ScalarProduct 107,625 684,002 744,425 591% 1,378,438 1, 181%
Scan-1 98,838 52,350 146,603 48% 4,097,887 4, 064%

Scan-2 34,116 50,886 50,893 49% 50,893 49%

Scan-3 46,328 2,417 47,940 3% 373,170 705%

VectorAdd 656 652 659 < 1% 659 < 1%

TABLE II. Analysis results for benchmarks. All execution times are in cycles.

VII. C ONCLUSIONS

This paper extended a previous hybrid technique to estimate
the WCET of sequential code so that it now targets GPU
applications running on NVIDIA hardware. We proposed two
ways in which to incorporate the effect of concurrency into
the timing model: one is a pure dynamic technique using
measurements alone, while the other is a hybrid technique
in that it computes a value through a static analytical model
whose parameter values are derived from measurements. By
analysing several GPU kernels from the CUDA SDK, our
results show that the former method is much more accurate:
indeed, our principal conclusion is that how concurrency is
integrated into the timing model largely determines the degree
of accuracy. Future work will investigate how to automatically
diagnose performance bottlenecks in GPU applications using
our performance model, and the applicability of our framework
to GPUs manufactured by other companies.
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