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The GPUVerify Method: a Tutorial Overview

Alastair F. Donaldson∗

Imperial College London

Abstract: I present a tutorial overview demonstrating the key technique used by
GPUVerify, a static verification tool for graphics processing unit (GPU) kernels.
The technique is a method for translating a massively parallel GPU kernel into a
sequential program such that correctness of the sequential program implies data
race-freedom of the parallel kernel.

Keywords: Formal verification, graphics processing units, predicated execution,
concurrency

1 Introduction

GPUVerify is a formal verification technique and tool for the analysis of GPU kernels—programs
designed to be executed in parallel on graphics processing units—with respect to two types of
defects: data races and barrier divergence [BCD+12, BBC+14].1 In this invited paper I present
a tutorial overview of the key step undertaken by GPUVerify to allow scalable verification: the
translation of a parallel GPU kernel into a sequential program such that analysis of the sequential
program yields results about the original parallel kernel. The material presented here has been de-
veloped in the process of giving a number of seminars on GPUVerify, teaching about GPUVerify
on the Software Reliability course at Imperial College London, and recording videos presenting
the project.2 My hope is that this exposition provides a clearer overview of how the method
works compared with the technical presentation in the original GPUVerify paper [BCD+12].

After providing some background on GPU programming (Section 2), the bulk of the tutorial
focuses on the key steps involved in the GPUVerify verification method (Section 3). This is
followed by a brief overview of the GPUVerify tool chain (Section 4). The paper concludes with
a survey of some related work in GPU kernel analysis and verification (Section 5).

2 Background on GPU programming

Originally designed to accelerate graphics processing, a graphics processing unit (GPU) has
many parallel processing elements: graphics operations are inherently parallel. Early GPUs had
limited functionality, tailored specifically towards graphics computations. Recently GPU designs
have become more powerful and general purpose, and are now widely used in parallel program-
ming to accelerate tasks including (among many others, and citing only a small subset of works):

∗ This work was supported by the EU FP7 STREP project CARP (project number 287767), and EPSRC project
EP/K011499/1.
1 GPUVerify can be accessed at http://multicore.doc.ic.ac.uk/tools/gpuverify.
2 Introductory video on GPUVerify: https://www.youtube.com/watch?v=l8ysBPV8OvA
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Figure 1: Overview of the structure of a typical GPU architecture.

medical imaging [CLW04], computer vision [SNS+13], computational fluid dynamics [Har04]
and DNA sequence alignment [LD09].

Figure 1 shows the structure of a typical GPU architecture (akin in essence to state-of-the-art
architectures from NVIDIA and AMD). The chip consists of a number of processing elements
(PEs) each equipped with a small amount of private memory. PEs are organised into groups such
that PEs within a group share memory (called local memory in this paper). The set of groups of
PEs is sometimes referred to as a grid. The GPU is also equipped with global memory shared
among all PEs. In some implementations this global memory is physically separate from main
memory; in other implementations global memory is part of the same physical memory.

Data races A data race occurs in a GPU kernel if:

• Two distinct threads access the same memory location

• At least one access is a write

• The accesses are not separated by a barrier synchronisation operation

Races in GPU kernels can be classified as inter-group or intra-group. Inter-group races are
between threads executing on PEs in distinct groups. Necessarily, such races must occur with
respect to global memory since this is the only memory that threads on distinct PEs can share.
Intra-group races are between threads executing on PEs in the same group, and can be with
respect to either global memory or the group’s local memory.

Data races in GPU kernels are usually indicative of programmer errors, and lead to nondeter-
ministic bugs that can be hard to reproduce and fix. A problem which is specific to data races
in GPU kernels is that individual GPU architectures may be relatively deterministic: as there
is no operating system running on the GPU, GPU threads are not preempted at unpredictable
moments as is the case in concurrent CPU applications. This means that a data race may resolve
deterministically and in an apparently bug-free manner on a particular GPU architecture, thus
evading detection through testing, and then resolve differently, causing a crash or erroneous re-
sults, when an application is deployed on another platform, perhaps in a customer device. Unlike
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kernel void add_neighbour(local int * A, int offset) {
A[tid] = A[tid] + A[tid + offset];

}

Figure 2: A simple GPU kernel that exhibits a data race.

with data races in system-level CPU applications, which are often deliberate or regarded as be-
nign, races in GPU kernels are almost always accidental and unwanted, thus there is a clear need
for techniques and tools to help detect and eliminate them.

Example GPU kernel GPUs are typically programmed by writing a kernel—a function to
be executed simultaneously by many threads running across the processing elements of the
chip—using a low-level programming model such as the industry standard Open Computing
Language (OpenCL) [Khr12], or the NVIDIA-specific Compute Unified Device Architecture
(CUDA) [NVI11]. Figure 2 shows a simple GPU kernel written in OpenCL C (a superset of a
subset of the C99 language). The kernel keyword indicates that the add_neighbour func-
tion is a kernel entry point. The kernel takes two arguments: A, which is a pointer to an array
of integers residing in local memory (indicated by the local keyword), and offset, an inte-
ger. Every thread executing the kernel runs the add_neighbour function, receiving identical
values for the A and offset parameters.

In order to access distinct data values, a thread can use a built-in variable, tid, providing access
to the thread’s unique identifier.3 A thread executing this kernel reads from A at offsets tid and
tid + offset, sums these values and writes the result to A at offset tid. This example
illustrates a read-write data race. For example, if offset is 1 then thread 0 will read from A
at offset 1, thread 1 will write to A at offset 1, and there is no barrier synchronisation operation
separating these accesses.

Barrier synchronisation and barrier divergence A barrier statement is used to synchro-
nise threads in the same group: when a thread reaches a barrier it waits until all threads reach the
barrier. When all threads have reached the barrier, the threads can proceed past the barrier, with
the guarantee that reads and writes issued before the barrier have completed.

Barriers only allow synchronisation between threads in the same group; inter-group synchro-
nisation within a kernel invocation is not possible.

The OpenCL 1.2 specification [Khr12] requires that threads should synchronise at syntacti-
cally identical barriers, making the following illegal:

if(tid == 0) barrier();

3 In OpenCL, the get_local_id and get_global_id functions are in fact used to retrieve a thread’s id within
its work group and across all work groups, respectively. Because groups and grids of groups can be multi-dimensional
these functions take arguments specifying in which dimension the id is required. For ease of presentation, in this paper
multi-dimensional kernels are not considered, and we restrict attention to the case where there is a single group of
threads, using tid to denote the id of a thread within this group. The GPUVerify tool supports reasoning about multi-
dimensional kernels executed by multiple groups of threads.
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kernel void add_neighbour(local int * A, int offset) {
int temp = A[tid + offset];
barrier();
A[tid] = A[tid] + temp;

}

Figure 3: Using a barrier to avoid the data race exhibited by the example of Figure 2.

else barrier();

Furthermore, if a barrier is inside a loop then threads should hit the barrier with the same loop
trip count. See [BCD+12] for discussion of an example which violates this requirement.

3 The GPUVerify kernel transformation method

The verification method employed by GPUVerify exploits the OpenCL programming model to
transform a massively parallel kernel K into a sequential program P such that:

P is correct (i.e. free from assertion failures)⇒ K is free from data races and barrier
divergence.

At the conceptual level, the approach has four main ingredients:

1. Race analysis focuses on barrier intervals

2. Analysis is restricted to consider a single, canonical thread schedule, avoiding the need to
reason about a large number of schedules

3. Analysis is further restricted to consider an arbitrary pair of threads executing the kernel,
using abstraction to model the effects of further threads; this avoids the need to reason
simultaneously about a large number of thread schedules

4. Predicated execution is applied to handle loops and conditionals, and to precisely capture
the conditions for barrier divergence

Ingredients similar to 1–3 have been employed in other work on GPU kernel analysis [LG10,
CCK14, LLS+12], while ingredient 4 is a novel contribution of the GPUVerify project [BCD+12].
Collectively, they allow kernel verification to be explicitly reduced to the analysis of a sequential
program, allowing existing technology for sequential verification to be re-used. Careful re-use
of sequential verification technology is a distinguishing characteristic of the GPUVerify method
in comparison to related work (see Section 5).

Sections 3.1–3.3 elaborate on ingredients 1–3, respectively. Section 3.4 shows how these ideas
can be used to perform transformation into a sequential program for kernels that do not exhibit
conditional or looping code. Section 3.5 explains how conditionals and loops are handled using
predicated execution.
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pairs of instructions that lie within a common barrier interval.

Throughout, for ease of presentation, attention is restricted to the detection of intra-group data
races; the implementation in GPUVerify (Section 4) implements inter-group race checking in
full.

3.1 Focusing race detection to barrier intervals

Observe that at any point during execution of a GPU kernel, two threads in the same group must
be executing instructions that lie in the same barrier interval: a sequence of instructions starting
and ending with a barrier, but otherwise barrier-free.

The notion of a barrier interval is illustrated in Figure 4. In practice, a barrier interval may be
more complex; for example, a barrier occurring inside a loop may form a barrier interval with
itself. Arbitrary barrier intervals can be handled by:

• Logging and checking all accesses made by threads to the shared state, aborting if a data
race is detected

• Resetting the access logs each time a barrier is reached

3.2 Restricting to a canonical thread schedule

Restricting analysis to barrier intervals has the potential to increase scalability, as it allows a
kernel with multiple barriers to be analysed interval-by-interval. However, if there are n threads
and a barrier interval contains k instructions then, assuming arbitrary thread interleavings can
occur, there are O(nk) threads schedules. Exploring all such thread schedules to detect data races
would not be feasible.

The next observation is that if checking for data races occurring during the barrier interval
is performed for some fixed schedule then either a data race will be detected (in which case
verification can abort with an error), or the schedule will be shown to exhibit no data races, in
which case it can be concluded that no schedule between these barriers can exhibit a data race.
This observation has been exploited in several works [LG10, CCK14, LLS+12, BCD+12] and
a proof that the reasoning is sound is presented in [LLS+12]. Informally, the argument is that
for a barrier interval there exist a set of earliest races: a race is an earliest race if there exists
some thread schedule such that the race is the first race to be observed during the schedule. If
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a schedule exhibits a data race then it must exhibit an earliest race, and a little reasoning shows
that, for a thread schedule σ associated with barrier interval I:

σ exhibits an earliest race
⇔

every schedule for barrier interval I exhibits an earliest race

Considering an arbitrary canonical schedule thus suffices for race analysis.
Restricting race analysis to a single schedule has two related and significant advantages. For

a barrier interval of length k executed by n threads:

• The number of schedules that need to be considered is reduced from O(nk) to 1.

• The chosen schedule can be used to rewrite the barrier interval as a sequential program
consisting of n · k instructions, one for each thread, plus instructions to perform race log-
ging and checking. The instructions appear in the order dictated by the schedule.

3.3 The two thread abstraction

Restriction to a canonical schedule has the benefit of bringing the analysis task into the realm
of sequential program verification, on which steady progress has been made now for several
decades. However, verifying a barrier interval via a sequential program of length n ·k, where n is
the number of threads and k the length of the barrier interval, is problematic if n is large. Because
GPU kernels are often executed by thousands of threads, this is an issue in practice.

This sensitivity to the number of threads can be avoided by exploiting the fact that data races
and barrier divergence are both defects that occur between pairs of threads: a data races oc-
curs due to a conflict between precisely two threads; similarly barrier divergence occurs when
two threads reach distinct barriers (or hit the same barrier having executed different numbers of
iterations of loops enclosing the barrier).

Thus, when checking correctness of a barrier interval, it is sufficient to check the interval for
every pair of threads separately. This can be achieved by checking that the barrier interval is free
from races and divergence for an arbitrary pair of distinct threads.

If a data race exists then, as argued above, there must exist an earliest race between some pair
of threads, s and t say. Attempting to check race-freedom for an arbitrary pair of threads i and
j must include reasoning about the pair s and t, which will lead to discovery of the earliest race
between s and t.

Care must be taken to extend this trick to the analysis of multiple barrier regions. After threads
synchronise at a barrier, it is legitimate for a thread’s execution to depend on a value computed
by a different thread before the barrier. If just a pair of threads, i, j say, are modelled, then the
effects across barriers of a thread k different from i and j will not be accurately represented.

This can be accounted for by abstracting the shared state, i.e. local and global memory. The
simplest approach, termed adversarial abstraction [BCD+12], is to treat the shared state as being
completely abstract, so that each time a thread reads from the shared state an arbitrary value is
retrieved; in this case writes to the shared state need not be modelled at all. A slightly richer
abstraction, the equality abstraction, is discussed and compared with the adversarial abstraction
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in [BCD+12], and barrier invariants, a tunable shared state abstraction technique for establishing
richer properties, are proposed in [CDK+13]. Adversarial abstraction is considered throughout
this paper.

3.4 Transformation for straight-line kernels

The program transformation performed by GPUVerify is now explained for the case of single
procedure straight-line kernels. Handling of conditionals and loops is described in Section 3.5.

Assume that a kernel has the following form:

kernel void foo(<parameters, including local arrays>) {
<private variable declarations>
S1; S2; . . . Sk;

}

where each statement Si has one of the following forms, where x denotes a private variable, e an
expression over private variables, and A a local array:

• x = e (private assignment)

• x = A[e] (read from local array)

• A[e] = x (write to local array)

• barrier() (barrier statement)

These assumptions ensure that a statement includes at most one read from local memory and
at most one store to local memory. Pre-processing can be used to trivially transform statements
that perform multiple loads and stores into this form. Furthermore, this is typical of the way a
kernel is represented after compilation into a compiler intermediate representation such as LLVM
bytecode.

Assume also that all local array parameters to the kernel refer to disjoint arrays.
The aim is to transform a kernel K into a sequential program P that:

• Captures execution of two arbitrary threads using some fixed schedule

• Detects data races

• Treats the shared state abstractly to model the effects of other threads

Introduction of distinct thread ids Two symbolic constants are introduced in P, tid$1 and
tid$2, to represent the ids of two distinct but otherwise arbitrary threads. These conditions are
encoded by the following preconditions on P, there n denotes the number of threads executing
the kernel:

0 <= tid$1 && tid$1 < n
0 <= tid$2 && tid$2 < n
tid$1 != tid$2

The first and second conditions require that the ids of the threads under consideration are
within the valid range of thread ids. The third condition requires that the ids are distinct.
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In what follows, “thread 1” or “the first thread” refers to the thread whose id is recorded by
tid$1, and “thread 2” or “the second thread” refers to the thread whose id is recorded by tid$2.
It is important to note that this does not refer specifically to the threads whose ids are 1 and 2.

Removal of array parameters If K has a local array parameter then this parameter does not
appear in P. This is because the shared stated of K will be represented abstractly in P by eliding
writes, and replacing a reads into a private variable x with a non-deterministic assignment to x.
After this abstraction, local arrays have no role.

Dualisation of non-array parameters If K has a non-array parameter, a of type T say, then P
has two non-array parameters, a$1 and a$2, both with type T. Parameter a$1 represents the first
thread’s copy of the original parameter a, and likewise a$2 represents the second thread’s copy.
These parameters initially have identical values, enforced by the precondition a$1 == a$2.

Dualisation of private variables If K has a private, function-scope variable x of type T then P
has two private, function-scope variables, x$1 and x$2, each of type T. Because private variables
initially have arbitrary values which may be distinct between threads there is no precondition
relating x$1 and x$2.

Race logging and checking routines For each local array A in K, P is equipped with two sets
of integers, RA and WA, which record reads from A and writes to A respectively. A precondition
ensures that initially both RA and WA are empty.

The program P is also equipped with four procedures:

• LOG READ A: takes an integer parameter and adds the parameter’s value to RA

• LOG WRITE A: takes an integer parameter and adds the parameter’s value to WA

• CHECK READ A: takes an integer parameter and aborts if the parameter’s value belongs to
WA

• CHECK WRITE A: takes an integer parameter and aborts if the parameter’s value belongs
to either RA or WA

In addition, P is equipped with a barrier procedure, which has the effect of setting RA and
WA to the empty set for every local array A.

In this paper a discussion of how the sets RA and WA, the associated LOG and CHECK pro-
cedures, and the barrier procedure are efficiently implemented is omitted. Two alterna-
tive implementations, both of which avoid the use of quantifiers, have been presented in prior
work [BCD+12, BBC+14].

Translation of statements For an expression e over private variables and i ∈ {1,2}, we use
e$i to denote the expression e with every occurrence of a private variable x replaced with x$i.
One can read e$i as “e in the context of thread i”. For instance, if e is a+ tid− x then e$2 is
a$2+ tid$2− x$2.
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Statement in K Corresponding statement in P Notes
x = e; x$1 = e$1; Each thread executes the assignment

x$2 = e$2;
x = A[e]; LOG READ A(e$1); Thread 1 logs the read

CHECK READ A(e$2); Thread 2 checks the read
havoc(x$1); Each thread sets its copy of x to an
havoc(x$2); arbitrary value

A[e] = x; LOG WRITE A(e$1); Thread 1 logs the write
CHECK WRITE A(e$2); Thread 2 checks the write

Because A has been removed, the write itself is not
modelled in P.

barrier(); barrier(); Barrier clears every RA and WA

Table 1: Translation of kernel statements into sequential program statements, in the absence of
conditionals and loops.

Table 1 shows how the forms of statement for a straight line kernel K are translated into two-
threaded form in the program P. Assignments and barriers are straightforward.

A read is translated as a call to the appropriate LOG READ procedure with thread 1’s offset,
and a call to the appropriate CHECK READ procedure with thread 2’s offset. Thus thread 1 takes
responsibility for logging where it read from, and thread 2 makes sure that its read does not
conflict with any write previously issued by thread 1. If x is the receiving variable for the read
then both copies of this variable, x$1 and x$2, need to be updated in P. Because the shared state
is abstracted, the values these variables should take after the read has occurred is unknown. Thus
havoc is used to set each variable to an arbitrary value.

A write is similarly translated as a call to the appropriate LOG WRITE procedure with thread
1’s offset, and a call to the appropriate CHECK WRITE procedure with thread 2’s offset. Analo-
gous to the case for reads, thread 1 takes responsibility for logging where it wrote to, and thread
2 makes sure that its write does not conflict with any write or read previously issued by thread 1.
Due to shared state abstraction, there is no need to reflect the actual array write in P, because the
array in question is not present.

A complete example of the translation process is shown in Figure 5.

3.5 Handling conditionals and loops using predicated execution

Loops and conditionals are handled using predicated execution. The essence of predicated exe-
cution is to flatten conditional code into straight line code. For example, the following fragment
of C code:

if(x < 100) {
x = x + 1;

} else {
y = y + 1;

}

can be flattened into straight line code through the introduction of two predicates, P and Q, where
P records the truth of x < 100 and Q the truth of !(x < 100), as follows:
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41 

__kernel void 

foo(__local int* A, 

            int idx ) { 
 

  int x; 
 

  int y; 
 

  x = A[tid + idx]; 

 

 
 

  y = A[tid]; 

 

 
 

  A[tid] = x + y; 

 

} 

\requires 0 <= tid$1 && tid$1 < n; 

\requires 0 <= tid$2 && tid$2 < n; 

\requires tid$1 != tid$2; 

\requires idx$1 == idx$2; 

\requires RA == WA == ; 

void foo( 

                       ) { 
 

  int x$1; int x$2; 
 

  int y$1; int y$2; 
 

  LOG_READ_A(tid$1 + idx$1); 

  CHECK_READ_A(tid$2 + idx$2); 

  havoc(x$1); havoc(x$2); 
 

  LOG_READ_A(tid$1); 

  CHECK_READ_A(tid$2); 

  havoc(y$1); havoc(y$2); 
 

  LOG_WRITE_A(tid$1); 

  CHECK_WRITE_A(tid$2); 

} 

int idx$1; int idx$2 

Figure 5: Illustration of the transformation process for a simple kernel. The parallel OpenCL
kernel on the left is transformed into the sequential program on the right.

P = (x < 100);
Q = !(x < 100);
x = P ? x + 1 : x;
y = Q ? y + 1 : y;

One can easily verify that, in this form, the code fragment computes the same result as the
original. In effect, both sides of the conditional statement are executed, but the then side has
no effect if x < 100 does not hold (in which case P is false) and the else side has no effect if
x < 100 does hold (in which case Q is false).

Predication is used in the two-thread sequential encoding of a GPU kernel by flattening condi-
tionals so that both threads execute both sides of every conditional, and modifying loops so that
both threads execute the same number of iterations of each loop, but maintaining at all times a
predicate for each thread determining whether the thread is enabled. If a thread is not enabled, it
executes statements but these statements have no effect.

First, the the LOG and CHECK procedures introduced in Section 3.4 are adapted so that each
is equipped with a Boolean predicate parameter.

• LOG READ A: takes a Boolean predicate and an integer parameter; adds the parameter’s
value to RA if and only if the predicate holds

• LOG WRITE A: takes a Boolean predicate and an integer parameter; adds the parameter’s
value to WA if and only if the predicate holds

• CHECK READ A: takes a Boolean predicate and an integer parameter; aborts if and only if
the predicate holds and the parameter’s value belongs to WA

• CHECK WRITE A: takes a Boolean predicate and an integer parameter; aborts if and only
if the predicate holds and the parameter’s value belongs to either RA or WA
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Statement in K, Corresponding statement in Notes
Stmt P, translate(Stmt,E)
x = e; x$1 = E$1 ? e$1 : x$1; Each thread executes the assignment

x$2 = E$2 ? e$2 : x$2; if its predicate holds, otherwise the thread performs a no-op.
x = A[e]; LOG READ A(E$1,e$1); Thread 1 logs the read if its predicate holds

CHECK READ A(E$2,e$2); Thread 2 checks the read if its predicate holds
havoc(tmp$1); Each thread chooses an arbitrary value,
havoc(tmp$2); then sets its copy of x to the arbitrary
x$1 = E$1 ? tmp$1 : x$1; value if its predicate holds and
x$2 = E$2 ? tmp$2 : x$2; performs a no-op otherwise.

A[e] = x; LOG WRITE A(E$1,e$1); Thread 1 logs the write if its predicate holds
CHECK WRITE A(E$2,e$2); Thread 2 checks the write if its predicate holds

Because A has been removed, the write itself is not modelled
in P

barrier(); barrier(E$1,E$2); If both predicates hold then barrier clears every RA and WA.
Stmt1; translate(Stmt1,E); Statements in a sequence are translated
Stmt2; translate(Stmt2,E); one by one.
if(e) { F$1 = E$1 && e$1; Each thread sets fresh predicates F and G to

Stmt1 F$2 = E$2 && e$2; the values of e and !e respectively if enclosing
} else { G$1 = E$1 && !e$1; predicate E holds, and to false otherwise.

Stmt2 G$2 = E$2 && !e$2;
} translate(Stmt1,F); The then branch, Stmt1, is translated w.r.t. F ,

translate(Stmts,G); and the else branch, Stmt2, w.r.t. G.
while(e) { F$1 = E$1 && e$1; Each thread sets fresh predicate F to the value

Stmt1 F$2 = E$2 && e$2; of loop condition e if enclosing predicate E
holds, and to false otherwise.

} while(F$1 || F$2) { Threads loop until both are disabled, but a
translate(Stmt1,F); thread performs no-ops if its predicate F is
F$1 = F$1 && e$1; false. The predicate is re-evaluated on
F$2 = F$2 && e$2; taking the loop back-edge.

}

Table 2: Complete rules for translation of kernel statements into sequential program statements,
using predication to handle loops and conditionals. The top-level program statement sequence is
translated with respect to the predicate true.

The barrier procedure of P is also adapted so that it additionally takes two predicate param-
eters, one for each thread. Execution of barrier aborts if and only if the predicate parameters
differ. Otherwise the procedure sets RA and WA to the empty set if and only if both predicate
parameters are true, leaving RA and WA untouched otherwise.

The rules of Table 2 show how a statement Stmt of K is translated with respect to predicate E
to a statement translate(Stmt,E) in P. The predicate E determines whether each of the threads
is enabled during execution of the statement. The top-level statement sequence of the kernel is
translated with respect to the predicate true because initially both threads are enabled. The rules
for conditionals and loops introduce stronger predicates on enabledness.

The rules for assignment, read and write mirror the straight-line rules of Table 1. The differ-
ence is that all components of the translated statement are guarded by the predicate E, so that
if E does not hold for one of the threads then the thread performs no-ops. In the translation of
reads, this difference requires the introduction of a special tmp variable in each thread which is
used to temporarily store the nondeterministic result of a read. The value stored in tmp is then
conditionally copied into receiving variable x depending on whether predicate E holds.
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Figure 6: Architecture of the GPUVerify tool.

A barrier is transformed into a call to the version of barrier that accepts predicate
arguments. If both predicates are true then barrier does its usual job of clearing all read and
write sets; if both predicates are false then barrier has no effect. If the predicates E$1 and
E$2 disagree then execution aborts because barrier divergence has been detected.

Sequences of statements are translated in the obvious way. Conditionals are handled by in-
troducing fresh predicates to record enabledness for each side of the conditional: if enclosing
predicate E is false then both new predicates are also false, otherwise predicate F is set to the
truth of the condition e, and G to its negation. Each side of the conditional is translated according
to the appropriate predicate, and the conditional itself is eliminated.

Arguably the most interesting translation rule is the rule for loops. Unlike in the case for
conditionals, predication does not eliminate loops, but rather transforms a loop into a form where
each thread is guaranteed to execute the same number of iterations, so that in the generated
sequential program the threads being modelled can enter and leave the loop uniformly. This
is achieved by using a fresh predicate F to record whether each thread is still enabled during
loop execution. This predicate is set to false if the enclosing predicate E does not hold, and
otherwise is set to the value of the loop condition. The loop iterates until F becomes false for
both threads. While F remains true for one of the threads, both threads execute the loop body,
but their execution is predicated with respect to F . This means that if one of the threads has
become disabled, execution of the body by this thread has no effect. On iterating the loop, F is
recomputed: it is strengthened by the current value of the loop guard. Notice that once F has
been set to false it cannot become true, thus once a thread has become disabled the thread cannot
become enabled until loop exit.

4 Implementation in GPUVerify tool

The transformation described in this tutorial is at the heart of the GPUVerify tool. The archi-
tecture of GPUVerify is illustrated in Figure 6. As input, GPUVerify accepts a kernel written in
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CUDA or OpenCL. A custom-built front-end based on the Clang/LLVM framework4 parses the
kernel into an intermediate form which is fed to the kernel transformation engine. The transfor-
mation engine implements the transformation of Section 3 and applies race instrumentation as
described in [BCD+12, BBC+14], generating a sequential program expressed in the Boogie in-
termediate verification language [Lei08]. The tool also generates candidate loop invariants using
heuristics described in [BCD+12]. Verification of the sequential program is then delegated to the
Boogie verification engine [BCD+05], an open source verifier developed primarily by Microsoft
Research.5 Boogie uses the Houdini algorithm [FL01] to perform invariant inference over the
candidate loop invariants and discharges verification conditions to an SMT solver. GPUVerify
supports the Z3 [MB08] and CVC4 solvers [BCD+11].

The architecture of Figure 6 shows that GPUVerify exhibits significant re-use: advantage
is taken of Clang/LLVM, Boogie and Z3, which are widely used, robust components actively
developed by expert research teams. This has significantly reduced the implementation effort
required to make GPUVerify work, as well as increasing the reliability of the tool by virtue of
other researchers and users continually improving the 3rd party components.

Two large experimental evaluations have demonstrated the scalability of GPUVerify, espe-
cially in terms of the number of threads that can be considered when verifying a kernel [BCD+12,
BBC+14]. Notable aspects of the engineering effort associated with getting GPUVerify to work
on realistic examples are also discussed in [BBC+14].

5 Related work

Extensions to and applications of GPUVerify The core GPUVerify method was presented
in [BCD+12], with details on how to support unstructured control flow graphs, key to re-use of
the Clang/LLVM infrastructure (see Figure 6), presented in [CDKQ13]. A richer shared state ab-
straction based on barrier invariants has been proposed and implemented in the tool [CDK+13].
GPUVerify has also been extended to support for warp-based execution and specific use cases for
atomic operations [BD14]. Engineering details associated with the project have appeared [BBC+14],
and the tool forms a key component in an automated verification method for parallel prefix
sums [CDK14].

Other verification methods The closest work to the GPUVerify method is the PUG analyser
for CUDA kernels [LG10]. Although GPUVerify and PUG have a similar goal, scalable veri-
fication of race-freedom for GPU kernels, the internal architecture of the two systems is very
different. GPUVerify first translates a kernel into a sequential Boogie program that models the
lock-step execution of two threads; the correctness of this program implies race- and divergence-
freedom of the original kernel. Next, it infers and uses invariants to prove the correctness of this
sequential program. Therefore it is only necessary to argue soundness for the translation into a
sequential program; the soundness of the verification of the sequential program follows directly
from the soundness of contract-based verification. On the other hand, PUG performs invariant in-
ference simultaneously with translation of the GPU kernel into a logical formula. PUG provides

4 http://llvm.org/
5 http://boogie.codeplex.com/
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a set of built-in loop summarisation rules which replace loops exhibiting certain shared array ac-
cess patterns with corresponding invariants. Unlike GPUVerify, which must prove or discard all
invariants that it generates, the loop invariants inserted by PUG are assumed to be correct. While
this approach works for simple loop patterns, it has difficulty scaling to general nested loops
in a sound way resulting in various restrictions on the input program required by PUG [LG10].
In contrast, GPUVerify inherits flexible and sound invariant inference from the Houdini invari-
ant inference algorithm [FL01] regardless of the complexity of the control structure of the GPU
kernel.

A verification approach for CUDA kernels [LGA+12] uses dynamic analysis to find data races
at runtime. Then, if no data races are found, static analysis is used to determine whether con-
trol flow decisions at runtime were input-dependent. If not, the kernel is guaranteed to be data
race-free. This method is in principle highly automatic for verifying race-freedom of input-
independent kernels (though the implementation of the associated tool is not publicly available).
However, it cannot be used to verify more complex examples where control flow can be input-
dependent.

A permission-based separation logic has been developed for verifying GPU kernels, with a
proof of race-freedom for a kernel being established through a consistent set of permission an-
notations for the kernel [HM13]. This approach provides a method for establishing richer func-
tional properties than data race-freedom. However, the problem of automating the generation of
permission annotations has not yet been studied in this line of work.

Symbolic execution and bounded-depth verification The GKLEE [LLS+12] and KLEE-
CL [CCK14] tools perform dynamic symbolic execution of CUDA and OpenCL kernels, respec-
tively, and are both built on top of the KLEE symbolic execution engine [CDE08]. A method for
bounded verification of barrier-free GPU kernels via depth-limited unrolling to an SMT formula
is presented in [TSL10]; lack of support for barriers, present in most non-trivial GPU kernels,
limits the scope of this method. Symbolic execution and bounded unrolling techniques can be
useful for bug-finding—both GKLEE and KLEE-CL have uncovered data race bugs in real-
world examples—and these techniques have the advantage of generating concrete bug-inducing
tests. A further advantage of GKLEE and KLEE-CL is that because they are based on KLEE,
which works on LLVM bytecode, they can be applied to GPU kernels after optimisation and thus
have the potential to detect bugs that result from incorrect compiler optimizations. The major
drawback to these methods is that they cannot verify freedom of defects for non-trivial kernels.

Both GKLEE and KLEE-CL explicitly represent the number of threads executing a GPU ker-
nel. This allows for precise defect checking, but limits scalability. A recent extension to GKLEE
uses the notion of parametric flows to soundly restrict defect checking to consider only certain
pairs of threads [LLG12]. This is similar to the two-thread abstraction employed by GPUVerify
and PUG, and leads to scalability improvements over standard GKLEE, at the expense of a loss
in precision for kernels that exhibit inter-thread communication.

Formal semantics for GPU kernels The relationship between the lock-step execution model
of NVIDIA GPUs and the standard interleaved semantics for threaded programs presents a for-
mal semantics for predicated execution has been studied [HK12]. This semantics shares simi-
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larities with a “synchronous delayed visibility” semantics used to present GPUVerify [BCD+12]
but the focus of [HK12] is not on verification of GPU kernels. A recent paper studying Hoare
logic for GPU kernels is in a similar vein [KI13].
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