
Automatic Verification of Active Device Drivers

Sidney Amani‡§ Peter Chubb‡§ Alastair F. Donaldson¶

Alexander Legg‡§ Keng Chai Ong‡ Leonid Ryzhyk‡§ Yanjin Zhu‡§

‡NICTA §University of New South Wales ¶Imperial College London

sidney.amani@nicta.com.au

Abstract

We develop a practical solution to the problem of auto-

matic verification of the interface between device drivers

and the operating system. Our solution relies on a com-

bination of improved driver architecture and verification

tools. Unlike previous proposals for verification-friendly

drivers, our methodology supports drivers written in C

and can be implemented in any existing OS. Our Linux-

based evaluation shows that this methodology amplifies

the power of existing model checking tools in detecting

driver bugs, making it possible to verify properties that

are beyond the reach of traditional techniques.

1 Introduction

Faulty device drivers are a major source of operating sys-

tem (OS) failures [15, 9]. Studies of Windows and Linux

drivers show that over a third of driver bugs result from

the complex interface between driver and OS [23, 2].

Automatic verification tools like SLAM [2], Termina-

tor [11], SATABS [10], Blast [17], and Coccinelle [22]

have been successfully used to find numerous OS inter-

face violations in Windows and Linux drivers. However,

despite significant effort invested in improving these

tools, they remain limited in the complexity of proper-

ties that can be efficiently verified without generating a

large number of false positives.

Previous research has shown that dramatic improve-

ments in automatic driver verification can be achieved

with the help of an improved device driver architec-

ture. The conventional driver architecture supported by

all mainstream OSs suffers from two problems that im-

pede verification: concurrency and stack ripping. Con-

currency leads to state explosion, while stack ripping [1]

complicates analysis of the driver control flow.

Both problems can be eliminated in a device driver ar-

chitecture where each driver has its own thread and com-

municates with the OS using message passing. We refer

to such drivers as active drivers, in contrast to conven-

tional, passive, drivers that are structured as collections

of entry points invoked by OS threads. The active driver

architecture reduces the amount of concurrency that the

driver must handle and makes the control flow of the

driver and its interactions with the OS easier to under-

stand and analyse. In particular, many properties that are

hard or impossible to verify in conventional drivers can

be easily checked on active drivers.

Previous implementations of the active driver architec-

ture have been undertaken in research OSs such as Singu-

larity [13] and RMoX [4]. These systems, designed for

verifiability from the ground up, rely in essential ways on

OS and language support to facilitate active driver verifi-

cation. As a result, mainstream OSs have not been able to

take advantage of innovations proposed in these systems.

In this paper we make two contributions. First, we

demonstrate that the benefits of active drivers can be

achieved while writing drivers in familiar C for a con-

ventional OS. To this end, we present an implementation

of an active driver framework for the Linux kernel. The

framework does not require any modifications to exist-

ing kernel code and allows active drivers to co-exist with

conventional drivers.

Second, we develop a new verification method that en-

ables efficient, automatic checking of active driver proto-

cols. Our method leverages existing verification tools for

C, extended with several optimisations geared towards

making active driver verification tractable.

Through experiments involving verification of sev-

eral complex drivers for Linux, we demonstrate that our

driver design and verification methodology amplifies the

power of verification tools in finding driver bugs.

2 Passive vs active drivers

In this section we discuss the shortcomings of the con-

ventional driver architecture and show how active drivers

address these shortcomings.

106

2.1 Passive drivers

Passive drivers A passive device driver comprises a

collection of entry points invoked by the OS. When writ-

ing the driver, the programmer makes assumptions about

possible orders in which its entry points are going to be

activated; however these assumptions remain implicit in

the implementation. As a result, the control flow of the

driver is scattered across multiple entry points and can-

not be reconstructed from its source code. This phe-

nomenon is known as stack ripping [1]. The following

code fragment, showing two driver entry points, illus-

trates the problem:

int suspend (){ dev_suspend (); free(p);..}

void unplug (){..p->data =0;..}

This code incorrectly assumes that the unplug() entry

point cannot be called after suspend() and therefore it

is safe to deallocate pointer p inside suspend(). The

bug can be discovered by augmenting driver code with

an OS model that simulates all possible legal sequences

of driver invocations and by using pointer analysis to de-

tect the use-after-free pattern on pointer p. This approach

does not scale well, because pointer analysis quickly be-

comes intractable for code involving complex pointer

manipulation.

To complicate things further, the OS can invoke driver

entry points from multiple concurrent threads, forcing

driver developers to implement intricate synchronisation

logic to avoid races and deadlocks. Multithreading fur-

ther complicates automatic verification of device drivers,

as thread interleaving leads to dramatic state explosion.

Previous research [24] has shown that the vast major-

ity of device drivers do not get any performance benefits

from multithreading. The performance of most drivers is

bound by I/O bandwidth rather than CPU speed, there-

fore they do not require true multiprocessor parallelism.

Device drivers are multithreaded simply by virtue of ex-

ecuting within the multithreaded kernel environment and

not because they require multithreading for performance

or functionality.

Case study We demonstrate the adverse effects of stack

ripping and concurrency on driver verification through a

real-world case study involving the Linux driver for the

RTL8169 Ethernet controller. We analyse the history of

bug fixes made to this driver, over 9 years, since it was

added to the Linux kernel tree, and identify those fixes

that address OS interface violation bugs, where the driver

incorrectly responds to certain sequences of OS requests.

A typical example bug involves the driver attempting to

use an OS resource such as timer after it has been de-

stroyed by a racing thread. We found 12 documented OS

interface violation bugs. We apply SATABS [5, 10], a

state-of-the-art model checker for C, to detect these bugs.

SATABS has been successfully applied to Linux drivers

in the past [25].

Detecting driver bugs with SATABS requires a model

of the OS. We built a series of such models of increas-

ing complexity so that each new model reveals additional

errors but introduces additional execution traces and is

therefore harder to verify. This way we explore the best-

case scenario for the passive driver verification method-

ology: using our knowledge of the error we tune the

model for this exact error. In practice more general and

hence less efficient models are used in driver verification.

In addition, to make sure that our study is not biased,

we optimised our OS models for the best SATABS perfor-

mance. To this end we analysed spurious counterexam-

ples generated by SATABS and restructured the models

to avoid such counterexamples or added static predicates

to eliminate the counterexamples whenever possible (see

Section 4 for more details on SATABS).

By gradually improving the OS model, we were able

to find 8 out of 12 bugs. However, when being provided

a model accurate enough to trigger the remaining 4 er-

rors, SATABS was not able to find the bugs before being

interrupted after 12 hours. Our final model consisted of

333 lines of code and took several days to construct and

refine. As stated above, this model is far from being com-

plete and is just good enough to detect the target set of

bugs.

This analysis illustrates that (1) building an accurate

OS model suitable for driver verification is a difficult

task, and (2) an accurate OS model can be prohibitively

expensive to verify.

In this paper, we use SATABS for analysis of ac-

tive drivers and, as reported in Section 6, this enables

efficient, automatic verification of RTL8169 and other

drivers. Using SATABS as a model checker for both ac-

tive and traditional drivers provides a fair comparison.

2.2 Active drivers

In contrast to passive drivers, an active driver [13, 4, 23]

runs in its own thread or threads. Communication be-

tween driver threads and other OS threads occurs via

message passing. The OS sends I/O requests and inter-

rupt notifications to the driver using messages. A mes-

sage can carry a payload consisting of a number of typed

arguments, determined by the message type. The driver

notifies the OS about a completed request via a reply

message. In an active device driver, the order in which

the driver handles and responds to OS requests is defined

explicitly in its source code and can be readily analysed

automatically. Since the driver handles I/O requests se-

quentially, such analysis can be performed without run-

ning into state explosion due to thread interleaving.

Active driver framework We present our instantia-

107

tion of the active driver architecture. Our design is based

on the design of the Dingo active driver framework for

Linux [23]. In contrast to Dingo, which relies on C

language extensions to implement message passing, our

framework supports drivers in pure C.

In our framework, the driver-OS interface consists of

a set of mailboxes, where each mailbox is used for a

particular type of message. The driver exchanges mes-

sages with the OS via EMIT and AWAIT primitives, that

operate on messages and mailboxes. The EMIT function

takes a pointer to a mailbox, a message structure, and a

list of message arguments. It places the message in the

mailbox and returns control to the caller without block-

ing. The AWAIT function takes references to one or more

mailboxes and blocks until a message arrives in one of

them. It returns a reference to the mailbox containing

the message. A mailbox can queue multiple messages.

AWAIT always dequeues the first message in the mailbox.

This message is accessible via a pointer in the returned

mailbox.

An active driver can consist of several threads that han-

dle different activities. For example, our active driver

for a SATA controller (see Section 5) creates a thread

per SATA port. Each driver thread registers one or more

message-based interfaces, along with associated proto-

cols, with the OS.

Previous research [23] has shown that active drivers

can benefit from cooperative thread scheduling. The per-

formance of most drivers is bound by I/O bandwidth

rather than CPU speed, therefore they do not require true

multiprocessor parallelism. Cooperative scheduling lim-

its the number of possible thread interleavings, making

sure that a driver thread executes atomically with respect

to other threads of the same driver, until it blocks waiting

for a message. This scheduling discipline makes drivers

easier to write and simplifies verification of properties

involving multiple threads. Our framework supports co-

operative scheduling of threads within a driver (however,

driver threads are scheduled preemptively with respect to

other drivers and the rest of the kernel). In the future the

framework can be easily extended to enable preemptive

scheduling for those drivers that can take advantage of

true parallelism.

Example Figure 1(a) shows a fragment of driver

code that matches the example of a driver bug in Sec-

tion 2.1. Here, suspend, unplug, suspend complete,

and resume are pointers to driver mailboxes. In line 1 the

driver waits for both suspend and unplug requests. After

receiving a suspend request (checked by the condition at

line 2) the driver puts the device in a low-power mode

(line 3), deallocates pointer p (line 4) and notifies the OS

about completion of the request by sending a message to

the suspend complete mailbox (line 5). It then waits

for a resume request at line 7.

1 mb=AWAIT(suspend ,unplug ,..);

2 if (mb== suspend) {

3 dev_suspend ();

4 free(p);

5 EMIT(suspend_complete ,msg);

6 //Bug! Uncomment to fix

7 mb=AWAIT(resume /*,unplug */);

8 ...

9 } else if (mb== unplug) {

10 p->data = 0;

11 ...

12 }
(a) Faulty code

(b) Protocol

Figure 1: Active driver code with a bug similar to the one

in the example in Section 2 and the matching protocol

specification.

This implementation has an equivalent bug to the one

found in the passive version of the driver: it does not

handle hot-unplug notifications after receiving a suspend

request. A correct implementation must wait on both

resume and unplug mailboxes at line 7. Otherwise the

driver can deadlock waiting for a resume message that

never arrives.

Note however that this time all event handling occurs

in the context of a single thread. As a result the bug can

be discovered simply by exploring the control skeleton

of the driver and considering messages that the driver

sends and waits for in each state, without resorting to

pointer analysis. This example illustrates that eliminat-

ing stack ripping greatly simplifies analysis of the driver

behaviour.

The code in Figure 1(a) is longer than the original pas-

sive implementation, because all OS interactions are ini-

tiated by the driver explicitly. In our experience, this ver-

bosity makes the logic of the driver easier to follow while

having only modest effect on the overall driver size.

3 Specifying driver protocols

This section presents our visual formalism for specifying

active driver protocols. The formalism is similar to pro-

108

tocol state machines of Dingo [24] and Singularity [13],

extended with additional means to capture liveness and

fairness constraints, which enable the detection of addi-

tional types of driver bugs.

The active driver framework associates a protocol with

each driver interface. The protocol specifies legal se-

quences of messages exchanged by the driver and the OS.

It is often useful to include constraints not only on the

ordering of messages but also on their arguments in the

protocol specification; however, in this work we focus on

specifying and verifying ordering constraints only.

Protocols are defined by the driver framework designer

and are generic in the sense that every driver that im-

plements the given interface must comply with the as-

sociated protocol. In the case when the active driver

framework is implemented within an existing OS, the

framework includes wrapper components that perform

the translation between the native function-based inter-

face and message-based active driver protocols.

We specify driver protocols using deterministic finite

state machines (FSMs). The protocol state machine con-

ceptually runs in parallel with the driver: whenever the

driver sends or receives a message that belongs to the

given protocol, this triggers a matching state transition

in the protocol state machine. Figure 1(b) shows a state

machine for the protocol used by the example driver, de-

scribing the handling of power management and hot un-

plug requests. Each protocol state transition is labelled

with the name of the mailbox through which the driver

sends (‘!’) or receives (‘?’) a message. We represent

complex protocol state machines compactly using Stat-

echarts [16], which organise states into a hierarchy so

that several primitive states can be clustered into a super-

state.

In some protocol states the OS is waiting for the driver

to complete a request. The driver cannot remain in such

a state indefinitely, but must eventually leave the state by

sending a response message to the OS. Such states are

called timed states and are labelled with the clock symbol

in Figure 1(b).

In order to ensure that the driver does not deadlock in

an AWAIT statement, the developer must rely on an addi-

tional assumption that if the driver waits for all incoming

OS messages enabled in the current state, then one of

them will eventually arrive. This is a form of weak fair-

ness constraint [19] on the OS behaviour, which means

that if some event (in this case, arrival of a message) is

continuously enabled, it will finally occur. Not all proto-

col states have the weak fairness property. In the proto-

col state machine, we show fair states with dashed bor-

der. For example, the SUSPENDED state in Figure 1b is

fair, which guarantees that at least one of resume and

unplug messages will eventually arrive in this state.

A protocol-compliant device driver must obey the fol-

lowing 5 rules.

Rule 1. (EMIT) The driver is allowed to emit a message

to a mailbox iff this message triggers a valid state tran-

sition in the protocol state machine.

Rule 2. (AWAIT1) The driver must not ignore an incom-

ing message forever: when in a state where there is an

enabled incoming message, the driver must eventually

either issue an AWAIT on the corresponding mailbox or

transition into a state where this message is not enabled.

Rule 3. (AWAIT2) All AWAIT operations eventually ter-

minate. Equivalently, whenever the driver performs an

AWAIT operation, at least one of its protocols must be

in a fair state and the AWAIT must wait for all enabled

messages of this protocol.

Rule 4. (Timed) The driver must not remain in a timed

state forever.

Rule 5. (Termination) When the main driver function re-

turns, the protocol state machine must be in a final state.

Note that this rule does not require that every driver run

terminates, merely that if it does terminate then all pro-

tocols must be in their final states.

Rules 1, 3 and 5 describe safety properties, whose vi-

olation can be demonstrated by a finite execution trace.

Rules 2 and 4 are liveness rules, for which counterexam-

ples are infinite runs.

Going back to the example in Figure 1, we can see

that the AWAIT statement in line 6 violates Rule 3. This

line corresponds to the SUSPENDED state of the protocol,

where the driver can receive unplug and resume mes-

sages. By waiting for only one of these messages, the

driver can potentially deadlock.

4 Verifying driver protocols

The goal of driver protocol verification is to check

whether the driver meets all safety and liveness require-

ments assuming fair OS behaviour. We use two tools to

this end: SATABS [5, 10], geared towards safety anal-

ysis, and GOANNA [14], geared towards liveness anal-

ysis. Given an active device driver and the set of pro-

tocols it implements, we use SATABS to check safety

rules 1, 3, and 5 and GOANNA to check liveness rules 2

and 4. This combination works well in practice, yield-

ing a low overall false positive rate. Our methodology

is compatible with other similar tools. We use SATABS

and GOANNA because our team is familiar with their in-

ternals and has the expertise required to implement novel

optimisations to improve performance on active driver

verification tasks. In the rest of this section we focus

on our methodology for checking safety properties with

SATABS, which is were our main contributions lie.

109

SATABS is an abstraction-refinement based model

checker for C and C++ for checking safety properties.

It is designed to perform best when checking control-

flow dominated properties with a small number of data

dependencies. Active driver protocol-compliance safety

checks fall into this category.

The main principles of operation of SATABS are sim-

ilar to other abstraction-refinement model checkers [2,

17]. Given a program to verify, SATABS iteratively com-

putes and verifies its finite-state abstraction with respect

to a set of predicates over program variables. At each it-

eration it either terminates (by discovering a bug or prov-

ing that the program is correct) or generates a spurious

counterexample. In the latter case, the counterexample is

analysed by the tool to refine the program abstraction, ei-

ther by computing a finer abstraction using the current set

of predicates [3] or by adding new predicates suggested

by the counterexample. Abstraction and refinement are

both fully automatic.

We use a simple driver protocol shown in Figure 2a

and a fragment of driver code that implements this pro-

tocol in Figure 2b as a running example to illustrate the

use of SATABS.

SATABS verifies program properties expressed as

source code assertions. We encode rules 1 and 3 as asser-

tions embedded in modified versions of AWAIT and EMIT.

Figure 2c shows the driver code with AWAIT and EMIT

functions encoding Rule 1 inlined. These functions keep

track of the protocol state using the global state vari-

able. The AWAIT function simulates the receiving of a

message by randomly selecting one of incoming mail-

boxes enabled in the current state (line 5) and updating

the state variable based on the current state and the mes-

sage selected. The assume(0) statement in line 11 tells

SATABS that this branch can never be reached; hence no

other messages are allowed by the protocol.

Similarly, the EMIT function updates the state variable

based on the current state and the message being sent.

It contains an assertion that triggers an error when the

driver is trying to send a message that is not allowed

in the current state. Note that the m3==m3 tautology in

line 16 is a result of inlining the body of EMIT, which

compares its first argument against m3.

To verify rule 5, we append to the driver’s main func-

tion a check to ensure that, if the driver does terminate,

the protocol state machine is in a final state.

In our running example, the abstraction refine-

ment loop terminates after discovering predicates p1 ≡
(state == 1) and p2 ≡ (m == m1). The abstraction of

the program in Figure 2c with respect to these two predi-

cates is shown in Figure 2d. The abstract program has the

same structure as the concrete one; however it only keeps

track of the predicate variables, abstracting away the rest

of the driver state. Using this pair of predicates (but not

1 mbox_t *m;

2 m = AWAIT(m1 ,m2);

3 if(m==m1) {

4 EMIT(m3 ,msg);

5 }

(a) Driver protocol (b) Driver source code

1 /* initial state */

2 int state =1;

3 mbox_t *m;

4 // AWAIT{

5 m=random_mb(m1 ,m2);

6 if(state ==1&&m==m1)

7 state =1;

8 else

9 if(state ==1&&m==m2)

10 state =2;

11 else assume (0);

12 //}

13 if(m==m1) {

14 //EMIT{

15 /*m3 in state 1*/

16 if(m3==m3&& state ==1)

17 state =2;

18 else

19 assert (0);

20 //}

21 }

1

2 p1=1;

3

4

5 p2=*;

6 if(p1&&p2)

7 p1=1;

8 else

9 if(p1&&!p2)

10 p1=0;

11 else assume (0);

12

13 if(p1) {

14

15

16 if(true&&p1)

17 p1=0

18 else

19 assert (0);

20

21 }

(c) Driver with AWAIT and EMIT

functions inlined.

(d) Abstraction w. r. t.

predicates p1 and p2

Figure 2: Safety verification example

any one them separately), SATABS is able to verify that

this abstract program can not trigger the assertion; hence

the original concrete program is correct with respect to

the safety property being checked.

Our preliminary experiments show that straightfor-

ward application of SATABS to active drivers results in

very long verification times. This is in part due to the

complexity of driver protocols being verified and in part

because predicate selection heuristics implemented in

SATABS introduce large numbers of unnecessary pred-

icates, leading to overly complex abstractions. The

problem is not unique to SATABS. Our preliminary

experiments with SLAM [2], another state-of-the-art

abstraction-refinement tool, produced similar results. We

describe several strategies that exploit the properties of

active drivers to make their safety verification feasible.

We believe that these techniques will also be useful in

other software protocol verification tasks.

110

4.1 Protocol decomposition

The abstraction-refinement technique is highly sensitive

to the size of the property being checked. Checking com-

plex properties requires many predicates. Since verifica-

tion time grows exponentially with the number of pred-

icates, it is beneficial to decompose complex properties

into simple ones that can be verified independently, as

simpler properties can often be verified with fewer pred-

icates.

We automatically decompose each driver protocol

state machine into a set of much simpler subprotocols as

a preprocessing step. The decomposition is constructed

in such a way that the driver satisfies safety constraints

of the original protocol if and only if it does so for each

protocol in the decomposition. Note that the driver it-

self remains unmodified; only the protocols it is checked

against are replaced with collections of simpler proto-

cols.

The following proposition (stated informally) gives a

sufficient condition for correctness of decomposition.

Proposition 1. Consider a protocol state machine M and

its decomposition into state machines M1, . . . , Mn. If the

following conditions hold then a driver satisfies M if and

only if it satisfies each of M1, . . . , Mn:

1. The regular language generated by the protocol

state machine of M is equivalent to the intersection

of languages generated by M1, . . . , Mn.
2. There exists a bijection between fair states of M and

the union of fair states of M1, . . . , Mn, such that for

each fair state s of M and the corresponding fair

state s′ of Mi, the set of incoming messages enabled

in s is equal to the set of incoming messages in s′.

Protocol decomposition is performed automatically

using Algorithm 1. Although it does not guarantee de-

composition into smallest possible subprotocols1, this

heuristic algorithm works very well in practice, produc-

ing decompositions with no more than 4 states in each

subprotocol for all driver protocols considered in our

case studies.

The algorithm assumes a pre-processing step during

which the protocol state machine is flattened by expand-

ing all of its super-states. A flat protocol state machine

M = 〈Q,Σ,δ ,q0,F,ϕ〉 consists of a set of states Q, a set

of messages Σ, a transition relation δ ⊆Q×Σ×Q, initial

state q0, a set of final states F , and a set of fair states ϕ .

We write s
c
−→ t for 〈s,c, t〉 ∈ δ . We denote M|R, where

R⊆ Q, the restriction of M to states in R.

The algorithm exploits the fact that most messages in

realistic driver protocols are enabled in only a small num-

ber of states within the protocol. We call a message of a

1We have not been able to find an efficient precise algorithm in the

literature.

Algorithm 1 Protocol state machine decomposition.

Input: Protocol state machine M =
〈Q,Σ,δ ,q0,F,ϕ〉 and a subset of its states R⊆ Q

Output: A set D of protocol state machines that

form a decomposition of M

1: function DECOMPOSE(M,R)

2: D←∅

3: S← R

4: while S
=∅ do

5: choose arbitrary s ∈ S

6: // compute partition containing state s

7: P← PARTITION(M|R,∅,s)

8: // R could not be partitioned

9: if P = R then

10: return {M}

11: // merge states outside the partition

12: M′ ← MERGE(M,R\P)

13: // recursively decompose M’

14: D← D ∪ DECOMPOSE(M′,P)

15: S← S\P

16: end while

17: return D

18: end function

// Merge states in A into a single state

19: function MERGE(M = 〈Q,Σ,δ ,q0,F,ϕ〉,A⊆ Q)

20: Q′ ← (Q\A)∪{x} // x is a fresh state

21: q′0 ←

{
x if q0 ∈ A

q0 otherwise

22: F ′ ←

{
F if A∩F =∅

(F \A)∪{x} otherwise

23: δ ′ ←∅

24: for all s
c
−→ t ∈ δ do

25: s′ ←

{
x if s ∈ A

s otherwise

26: t ′ ←

{
x if t ∈ A

t otherwise

27: δ ′ ← δ ′ ∪{s′ c
−→ t ′}

28: end for

29: return 〈Q′,Σ,δ ′,q′0,F ′,ϕ \A〉
30: end function

// Compute a partition of Q containing all states

// in P and state p

31: function PARTITION(M = 〈Q,Σ,δ ,q0,F,ϕ〉,P, p)

32: if p ∈ P∨ p /∈ R then return P

33: P′ ← P∪{p}

34: for all (s,c) such that s
c
−→ p ∈ δ ∨ p

c
−→ s ∈ δ do

35: if c ∈ key(M) then

36: P′ ← PARTITION(M,P’,s)

37: end for

38: return P′

39: end function

111

�

�

�

�

�

�

�

�

Figure 3: Merging states outside partition {1,2,3}.

protocol state machine a key message if all transitions

labelled with this message end in the same state. For

example all messages in the protocol in Figure 1(b) are

key messages. Intuitively, after observing transmission

of a key message, the observer knows the exact state of

the protocol, even if they did not track previous protocol

states. We denote key(M)⊆ Σ the set of key messages of

M.

The algorithm breaks down the protocol state machine

into non-overlapping partitions (line 7) such that all tran-

sitions connecting different partitions are labelled with

key messages. Intuitively, this property guarantees that

transitions within each partition can be checked by a

separate observer who ignores all transitions outside the

partition. The observer tracks entries to the partition by

watching for relevant key messages. The algorithm con-

verts each partition into a separate protocol state machine

using the MERGE function, which merges states external

to the partition into a single state that overapproximates

protocol transitions outside the given partition (line 12).

Figure 3 illustrates the merging step. As a result of the

overapproximation, each protocol in the decomposition

is weaker (i.e., more permissive) than the original mono-

lithic protocol; however the way we construct the decom-

position guarantees that the combination of protocols is

equivalent to the original protocol.

The decomposition is repeated recursively for each

partition (line 14). The algorithm returns a set of pro-

tocols that cannot be further partitioned using this proce-

dure.

Figure 4 shows the decomposition of the protocol in

Figure 1(b) produced by our algorithm. All partitions

in this decomposition are of size one, with an additional

state added to each partition to represent external states.

In the figure, loop transitions labelled with “+” are short-

cuts representing sets of loop transitions, one for each

transition between external states.

Proposition 2. Let M = 〈Q,Σ,δ ,q0,F,ϕ〉 be a

protocol state machine and let {M1, . . . ,Mn} =
DECOMPOSE(M,Q). Then the decomposition of M into

protocols M1, . . . ,Mn satisfies conditions 1 and 2 of

Proposition 1.

In order to validate our implementation of the decom-

position algorithm , we have implemented a tool to auto-

matically verify protocol decompositions. The tool com-

putes the intersection of subprotocols in the decomposi-

tion and checks its equivalence to the original protocol

state machine.

4.2 Automatically provide key predicates

Another way to speed-up the abstraction-refinement al-

gorithm is to seed it with a small set of key predicates that

allow refuting large families of counterexamples. Guess-

ing such key predicates in general is extremely difficult.

In case of active driver verification, an important class of

key predicates can be provided to SATABS automatically.

As mentioned above, when checking a driver pro-

tocol, we introduce a global variable that keeps track

of protocol state. During verification, SATABS eventu-

ally discovers predicates over this variable of the form

(state==1), (state==2), . . . , one for each state of the

protocol. These predicates are important to establishing

the correspondence between the driver control flow and

the protocol state machine. We therefore provide these

predicates to SATABS on startup, which accelerates ver-

ification significantly.

4.3 Control-flow transformations

We found that it often takes SATABS many iterations

to correlate dependent program branches. This prob-

lem frequently occurs in active drivers when the driver

AWAITs on multiple mailboxes and then checks the re-

turned value (e.g., line 2 in Figure 1(a)). If the driver

performs the same check later in the execution, then both

checks must produce the same outcome. SATABS does

not know about this correlation initially, potentially lead-

ing to multiple spurious counterexample traces that take

inconsistent branches. These counterexamples can be re-

futed using predicate p ↔ (mb == suspend). In prac-

tice, however, SATABS may introduce many predicates

that only refute a subset of these counterexamples before

discovering p, which allows refuting all of them.

To remedy the problem, we have implemented a

control-flow graph transformation that uses static anal-

ysis to identify correlated branches, and merges them.

The analysis identifies, through inspecting the use of the

AWAIT function, where to apply the transformation. Then

infeasible paths through each candidate region are iden-

tified by generating Boolean satisfiability queries which

are discharged to a SAT solver. The CFG region is then

rewritten to eliminate infeasible paths. The effect of the

rewriting on the CFG is shown in Figure 5. Although we

are not aware of this transformation being used in prior

work, the idea of rewriting control-flow to reduce join

points is a well-known method for improving the preci-

sion of static analysers.

112

+

SUSPENDING

?suspend ?remove !suspend comple te

+

REMOVING

?remove ! remove comple te

+

SUSPENDED

!suspend comple te ?remove ? r e s u m e

+

RESUMING

? r e s u m e ?remove ! re sume comple t e

ON

?suspend ?remove ! re sume comple t e

+

Figure 4: Decomposition of the protocol in Figure 1(b).

Figure 5: CFG transformation example.

This technique effectively avoids the expensive search

for additional predicates using much cheaper static pro-

gram analysis. In our experiments, SATABS performs or-

ders of magnitude more effectively over the new program

structure, being able to quickly infer key predicates that

could previously only be inferred after many abstraction

refinement iterations and the inference of many redun-

dant predicates.

5 Implementation

We implemented the active driver framework along with

several active device drivers in Linux 2.6.38. The frame-

work consists of loadable kernel modules and does not

require any changes to other kernel components.

The generic part of the framework shared by all ac-

tive drivers provides support for scheduling and mes-

sage passing. It implements the cooperative domain

abstraction, which constitutes a collection of coopera-

tively scheduled kernel threads hosting an active driver.

Threads inside the domain communicate with the kernel

via a shared message queue. The framework guarantees

that at most one thread in the domain is runnable at any

time. The thread keeps executing until it blocks in the

AWAIT function. AWAIT checks whether there is a mes-

sage available in one of the mailboxes specified by the

caller and, if so, returns without blocking. Otherwise it

calls the thread dispatcher function, which finds a thread

for which a message has arrived. The dispatcher uses the

kernel scheduler interface to suspend the current thread

and make the new thread runnable. In the future this de-

sign can be optimised by implementing native support

for light-weight threads in the kernel.

EMIT and AWAIT functions do not perform memory al-

location and therefore never fail. This simplifies driver

development, as the driver does not need to implement

error handling logic for each invocation of these ubiqui-

tous operations. On the other hand this means that the

driver is responsible for allocating messages sent to the

OS and deallocating messages received from the OS. By

design of driver protocols, most mailboxes can contain

at most one message, since the sender can only emit a

new message to the mailbox after receiving a completion

notification for the previous request. Such messages can

be pre-allocated statically.

Interrupt handling in active drivers is separated into

top and bottom halves. The driver registers with the

framework a top-half function that is invoked by the ker-

nel in the primary interrupt context (outside the cooper-

ative domain). A typical top-half handler reads the in-

terrupt status register, acknowledges the interrupt in the

device, and sends an IRQ message to the driver. The

actual interrupt handling happens inside the cooperative

domain in the context of the driver thread that receives

the IRQ message. IRQ delivery latency can be min-

imised by queueing interrupt messages at the head of the

message queue; alternatively interrupts can be queued as

normal messages, which avoids interrupt livelock an en-

sures fair scheduling of interrupts with respect to other

driver tasks.

In addition to the generic functionality described

above, the active driver framework defines protocols for

supported classes of drivers and provides wrappers to

perform the translation between the Linux driver inter-

face and message-based active driver protocols. Wrap-

pers enable conventional and active drivers to co-exist

within the kernel.

Active driver protocols are derived from the corre-

sponding Linux interfaces by replacing every interface

function with a message or a pair of request/response

messages. While multiple function calls can occur con-

currently, messages are serialised by the wrapper.

Since Linux lacks a formal or informal specification

of driver interfaces, deriving protocol state machines of-

ten required tedious inspection of the kernel source. This

one-off effort leads to the creation of reusable specifica-

tions that not only enable automatic driver verification,

but are also useful as documentation for driver develop-

ers.

113

protocol #states #transitions #subprotocols

PCI 13 41 11

Ethernet 17 36 6

SCSI 42 67 -

SATA 39 70 22

DAI 8 20 6

Table 1: Implemented active driver protocols.

driver
supported

protocols

LOC

(native)

LOC

(active)

RTL8169 1Gb Eth PCI, Ethernet 4,220 4,317

ATA framework SCSI, SATA(client) 9,287 9,718

AHCI SATA PCI, SATA 2,268 2,487

OMAP DAI audio DAI 583 705

Table 2: Active device driver case studies, protocols that

each driver implements, and the size of the native Linux

and active versions of the driver in lines of code (LOC)

measured using sloccount.

Table 1 lists protocols we have specified and imple-

mented wrappers for. For each protocol, it gives the num-

ber of protocol states and transitions, and the number of

subprotocols in its decomposition (see Section 4). The

PCI protocol provides access to OS services used to man-

age a device on a PCI bus, including configuration, hot

plugging, and power management. Ethernet, SATA, and

SCSI protocols describe services that network and stor-

age drivers provide to the OS. Finally, the Digital Audio

Interface (DAI) protocol is part of the Linux ALSA au-

dio framework and must be implemented by drivers for

audio controller devices. We do not give the size of de-

composition of the SCSI protocol as we did not verify

this protocol in our experiments.

Table 2 lists active device drivers we have imple-

mented along with protocols that each driver supports.

All four drivers control common types of devices found

in virtually every computer system. These drivers were

obtained by porting native Linux drivers to the active ar-

chitecture, which allows direct comparison of their per-

formance and verifiability against conventional drivers.

Our first active driver case study is based on the

RTL8169 Gigabit Ethernet controller driver, which is in-

teresting due to its stringent performance requirements.

The second case study is based on two drivers layered

on top of each other in the Linux storage stack: the

ATA framework driver and the AHCI Serial ATA con-

troller driver. This case study demonstrates that active

drivers support the stacked driver architecture found in

most OSs. Our final case study demonstrates that the ac-

tive driver architecture is suitable for the embedded space

using an audio controller driver for the OMAP SoC.

driver avg(max)

time(minutes)

avg(max)

refinements

avg(max)

predicates

RTL8169 29 (103) 3 (7) 3 (8)

AHCI 123 (335) 2 (6) 2 (19)

OMAP DAI 5 (13) 2 (5) 2 (9)

Table 3: Statistics for checking safety properties using

SATABS.

6 Evaluation

6.1 Verification

We applied the verification methodology described in

Section 4 to RTL8169, AHCI, and OMAP DAI drivers.

We did not verify the ATA framework driver due to time

constraints. Verification was performed on machines

with 2GHz quad-core Intel Xeon CPUs.

Verification using SATABS and GOANNA For each of

the three drivers we were able to verify all safety proper-

ties defined by their protocols using SATABS with zero

false positives. Table 3 shows statistics for verifying

safety properties using SATABS. For each driver, it gives

average and maximum time, the number of abstraction

refinement loop iterations and the number of predicates

required for verification to succeed, across all subproto-

cols for each driver. The number of predicates reflects

predicates discovered dynamically by the abstraction re-

finement loop and does not include candidate predicates

with which SATABS is initialised (see Section 4).

The small number of predicates involved in checking

these properties indicates that the control skeleton of an

active driver responsible for interaction with the OS has

few data dependencies. This confirms that the active

driver architecture achieves its goal of making the driver-

OS interface amenable to efficient automatic verification.

At the same time, the fact that several refinements are re-

quired in most cases indicates that the power of the ab-

straction refinement method is necessary to avoid false

positives when checking safety.

Despite the small number of predicates required, ver-

ification times are relatively high for our benchmarks.

This is due to the large size of our drivers, and the

fact that SMV, the model checker used by SATABS,

was not designed primarily for model checking boolean

programs. We experimented with the BOOM model

checker [6], which is geared towards boolean program

verification. While in many cases verification using

BOOM was several times faster than with SMV, we did

not use it in our final experiments due to stability issues.

All optimisations described in Section 4 proved essen-

tial to making verification tractable. Disabling any one

of them led to overly large abstractions that could not be

analysed within reasonable time.

114

We used GOANNA to verify liveness properties of

drivers. GOANNA performs a less precise analysis than

SATABS and is therefore much faster. It verified all

drivers in less than 1 minute while generating 8 false pos-

itives.

These results demonstrate that active drivers’ proto-

col compliance can be verified using existing tools. At

the same time they suggest that an optimal combination

of accuracy and verification time requires a trade-off be-

tween full-blown predicate abstraction of SATABS and

purely syntactic analysis of GOANNA.

Comparison with conventional driver verifica-

tion An important remaining question is: how does

our verification methodology compare against the

conventional approach to driver verification in terms of

its ability to detect real driver bugs? In Section 2 we

showed, using the Linux RTL8169 driver case study,

that the scalability of the traditional verification method-

ology for passive drivers is limited by the complexity of

building an accurate OS model and the state explosion

resulting from concurrency.

We carried out an equivalent case study on the active

version of the RTL8169 driver. To this end, we simulated

the 12 OS protocol violations found in the native Linux

driver in the active driver. To reproduce concurrency-

related errors in the active driver we considered message

sequences that simulate thread interleavings of the con-

ventional driver. We were able to detect each of the 12

protocol violation bugs within 3 minutes per bug.

This result confirms that the active driver architecture

along with the verification methodology presented above

lead to device drivers that are more amenable to auto-

matic verification than passive drivers.

Comparison with SLAM SLAM [2] is a state-of-the-

art driver verification tool used in industry to find bugs

in Windows device drivers. It defines hundreds of safety

rules that capture common driver safety errors. A typi-

cal SLAM rule is of the form “event A must happen after

event B and before event C”. Combined with the Termi-

nator [11] liveness checker, SLAM can also detect live-

ness errors.

Analysis of the SLAM rule database shows that, with

the exception of rules that are not applicable to active

drivers, such as spinlock usage rules, all of SLAM rules

can be defined as part of active driver protocols. On the

other hand, not every active driver protocol rule can be

defined for conventional drivers. Rules that require the

driver to wait for certain protocol messages in a state do

not have analogues in the SLAM rule database.

Consider again the driver protocol in Figure 1b. The

protocol specifies that the unplug message can arrive

in any state other than REMOVING. A failure to wait for

this message when it is enabled will be automatically de-

tected by the verifier. In contrast, the same rule cannot

be specified for passive drivers, which do not explicitly

wait for incoming requests. This is not a limitation of

SLAM, but rather a conceptual limitation of the passive

driver architecture, as discussed in Section 2. Out of the

45 subprotocols in Table 1, 26 subprotocols encode such

rules and thus would not be amenable to SLAM-based

verification.

The developers of SLAM report [2] that it took them

several years to come up with a satisfactory set of rules

formalising Windows driver interfaces. This is consis-

tent with our experience. For example, it took us over

a month to formalise just the SCSI and SATA protocols.

The complexity of formalising existing driver protocols

means that these protocols are equally hard to understand

and implement correctly for the driver developer. We be-

lieve that the situation can be improved by designing new

driver frameworks around the active driver architecture

and formal driver protocol specifications from the ground

up.

6.2 Performance

Microbenchmarks The performance of active drivers

depends on the overhead introduced by thread switching

and message passing. We measure this overhead on a

machine with 2 quad-core 1.5GHz Xeon CPUs.

In the first set of experiments, we measure the com-

munication throughput by sending a stream of messages

from a normal kernel thread to a thread inside a coop-

erative domain. Messages are buffered in the message

queue and delivered in batches when the cooperative do-

main is activated by the scheduler. This setup simu-

lates streaming of network packets through an Ethernet

driver. The achieved throughput is 2 · 106 messages/s

(500 ns/message) with both threads running on the same

core and 1.2 · 106 messages/s (800 ns/message) with the

two threads assigned to different cores on the same chip.

Second, we run the same experiment with varying

number of kernel threads distributed across available

CPU cores (without enforcing CPU affinity), with each

Linux thread communicating with the cooperative thread

through a separate mailbox. As shown in Figure 6, we do

not observe any noticeable degradation of the throughput

or CPU utilisation as the number of clients contending to

communicate with the single server thread increases (the

drop between one and two client threads is due to the

higher cost of inter-CPU communication). This shows

that our implementation of message queueing scales well

with the number of clients.

Third, we measure the communication latency be-

tween a Linux thread and an active driver thread running

on the same CPU by bouncing a message between them

in a ping-pong fashion. The average measured roundtrip

115

� � �� �� �� ��

����	
�

�

���

���

��

���

���

���

�
��
�
�
�
�

�
��
�
�
�
��
�
�
��
�

��

��

��

���

�
�

��

�
��
�
!

�
�
	
��
"
�

��������

�� ��
����!
��	

Figure 6: Message throughput and aggregate CPU utili-

sation over 8 CPUs for varying number of clients.

latency is 1.8 μs. For comparison, the roundtrip latency

of a Gigabit network link is at least 55μs.

Macrobenchmarks We compare the performance of

the active RTL8169 Ethernet controller driver against

equivalent native Linux driver using the Netperf bench-

mark suite on a 2.9GHz quad-core Intel Core i7 machine.

Results of the comparison are shown in Figure 7. In the

first set of experiments we send a stream of UDP packets

from the client to the host machine, measuring achieved

throughput (using Netperf) and CPU utilisation (using

oprofile) for different payload sizes. The client ma-

chine is equipped with a 2GHz AMD Opteron CPU and a

Broadcom NetXtreme BCM5704 NIC. The active driver

achieved the same throughput as the native Linux driver

on all packet sizes, while using 20% more CPU in the

worst case (Figure 7(a)).

In the second set of experiments, we fix payload size to

64 bytes and vary the number of clients generating UDP

traffic to the host between 1 and 8. The clients are dis-

tributed across four 2GHz Intel Celeron machines with

an Intel PRO/1000 MT NIC. The results (Figure 7(b))

show that the active driver sustains up to 10% higher

throughput while using proportionally more CPU. Fur-

ther analysis revealed that the throughput improvement

is due to slightly higher IRQ latency, which allows the

driver to handle more packets per interrupt, leading to

lower packet loss rate.

The third set of experiments measures the round

trip communication latency between the host and a re-

mote client with 2GHz AMD Opteron and NetXtreme

BCM5704 NIC. Figure 7(c) shows that the latency intro-

duced by message passing is completely masked by the

network latency in these experiments.

We evaluate the performance of the AHCI SATA con-

troller driver and the ATA framework driver using the

iozone benchmark suite running on a system with a

2.33GHz Intel Core 2 Duo CPU, Marvell 88SE9123

PCIe 2.0 SATA controller, and WD Caviar SATA-II 7200

RPM hard disk. We run the benchmark with working set

of 500MB on top of the raw disk.

We benchmark both drivers, stacked on top of each

other, against equivalent Linux drivers. Both setups

achieved the same I/O throughput on all tests, while the

active drivers’ CPU utilisation was slightly higher (Fig-

ure 8). This overhead can be reduced through improved

protocol design. Our SATA driver protocol, based on the

equivalent Linux interface requires 10 messages for each

I/O operation. A clean-slate redesign of this protocol

would involve much fewer messages.

We did not benchmark the DAI driver, as it has trivial

performance requirements and uses less than 5% of CPU.

7 Related work

Active drivers Singularity [13] is a research OS writ-

ten in the Sing# programming language. It comprises

a collection of processes communicating over message

channels. Sing# supports a state-machine-based notation

for specifying communication protocols between various

OS components, including device drivers. The Sing#

compiler checks protocol compliance at compile time.

Sing# extends its memory safety guarantees to message-

based communication. For example, the compiler is able

to verify that the program never dereferences a pointer

whose ownership was passed to another process in a mes-

sage. In contrast, our C-based implementation of active

drivers does not assign any special meaning to pointers

passed between the driver and the OS.

RMoX [4] is a process-based OS written in occam-pi.

RMoX processes communicate using synchronous ren-

dezvous. Communication protocols are formalised using

the CSP process algebra and verified using the FDR tool.

The Dingo [23] active driver framework for Linux

aims to simplify driver programming in order to help

driver developers avoid errors. It relies on a C language

extension to provide language-level support for messages

and threads. Dingo uses a Statechart-based language to

specify driver protocols; however it only supports run-

time protocol checking and does not implement any form

of static verification.

The CLARITY [8] programming language is de-

signed to make passive drivers more amenable to au-

tomatic verification. To this end it provides constructs

that allow writing event-based code in a sequential style,

which reduces stack ripping. It simplifies reasoning

about concurrency by encapsulating thread synchronisa-

tions inside coord objects that expose well-defined se-

quential protocols to the user.

Event-based programming with state machines In

active drivers we use the thread abstraction to structure

event-based driver logic. Alternatively, event-based pro-

grams can often be natually expressed in terms of state

machines. This approach requires language support for

state-machine based programming, which can be pro-

vided by a visual language, e.g., Statecharts [16], or a

116

� � � � �� �� �� ��
�

��
�

���
�	�

�

��
��
�

��	
��������������

	

�		

�		

�		

�		

�			
��
��
�
�
�
�
�
��
��

�
��
��
�

	����������

	������
� ������

� � � # � � ! "

	�	
��$�����	��

�

#�

"�

���

���

���

�#�

��
�$
�
�
�
�
�
�
��

��
��
�

������������

	�������	�#������

� � � � �� �� �� ��
�

��
�

���
�	�

�

��
��
�

��	
�������

	

�	

�		

��	

�		

��	

�		

��	

�		

��	

	
�
�
��
	
��
�
�
�
��
	

�

�����������

��������	�������

� � � � �� �� �� ��
�

��� ���
�	�

�

��
��
�

����
����
���������
�

	

�

�	

��

�	

��

�	

��

�
�
�
��
��
��

�
��
�
�
��
�
� �������������

����������� �������

� � � # � � ! "

	�	
��$�����	��

�

��

��

��

#�

��

��

�
�
�
�

�
�
�
��
��
�
�
��
$
	
�
�

�

������������

	�������	�#������

� � � � �� �� �� ��
�

��� ���
�	�

�
��
��
�

����
����
���������
�

	

�

�

�

�

�	

��

��

�
�
�
��
��
��

�
��
�
�
��
�
� �������������

����������� �������

(a) UDP throughput for varying packet sizes

for a single client. The top graph shows

achieved throughput; the bottom graph

shows CPU utilisation.

(b) UDP throughput for multiple clients

(packet size=64 bytes). The top graph

shows aggregate throughput; the bottom

graph shows average CPU utilisation across

8 cores.

(c) UDP latency for varying packet sizes for

a single client. The top graph shows average

round-trip latency; the bottom graph show

CPU utilisation.

Figure 7: Performance of the RTL8169 Ethernet driver measured with Netperf.

text-based language like Esterel [7].

Recently, the P [12] programming language demon-

strated the benefits of state-machine based programming

for Windows device drivers. In P both driver protocols

and implementation are described using collections of

communicating state machines. In contrast, we only use

state machines for specifying driver protocols, while the

driver implementation is written in C.

P comes with a model checker that currently only

checks safety properties. Interestingly, it uses explicit

model checking to validate driver protocols. In contrast,

in this work we use symbolic model checking for the

same purpose. Directly comparing the two techniques

and measuring the resulting tradeoffs between run time,

completeness, and precision is an interesting future re-

search direction.

User-level drivers User-level driver frameworks for

microkernel-based [20] OSs encapsulate each device

driver in a separate process that communicates with other

OS processes using some form of message passing. The

driver thread executes an event loop that handles incom-

ing messages by invoking appropriate driver entry points.

Thus, even though the driver has its own thread of con-

trol and uses messages for external communication, in-

ternally it is based on the passive programming model

and suffers from stack ripping.

Verification tools Automatic verification tools for C [2,

11, 10, 17, 21] is an active area of research, which is

complementary to our work on making drivers amenable

to formal analysis using such tools. Any improvements

to these tools are likely to further improve the speed and

accuracy of active driver verification.

Several verification tools, including SPIN [19], focus

on checking message-based protocols in distributed sys-

$�
��
���
���
���

��	

��
���
�	

�	�

�
�
���

���
���
��
�	

���
�
�

�
�	

��
��

��
����

���
	

�

�

��

��

��

��

��

��

��

�
�
�
�
��
��
�
	
��
�
�
�
�
�

 	����!����
������

"%����
������

Figure 8: Native vs. active AHCI and ATA framework

driver performance on the iozone benchmark.

tems. These tools work on an abstract model of the sys-

tem that is either written by the user or extracted from

the program source code [18]. Such a model constitutes

a fixed abstraction of the system that cannot be automati-

cally refined if it proves too coarse to verify the property

in question. Our experiments show that abstraction re-

finement is essential to avoiding false positives in active

driver verification; therefore we do not expect these tools

to perform well on active driver verification tasks.

8 Conclusion

We argue that improvements in automatic device driver

verification cannot rely solely on smarter verification

tools and require an improved driver architecture. Previ-

ous proposals for verification-friendly drivers were based

on specialised language and OS support and therefore

were not compatible with existing systems. Based on

ideas from this earlier research, we developed a driver

architecture and verification methodology that support

drivers written in C and can be implemented in any ex-

isting OS. The main findings from this experiment are as

117

follows:

The active driver architecture mitigates problems re-

lated to stack ripping and cocurrency. It simplifies driver

development (and hence reduces the number of bugs) and

makes an important subset of correctness properties, re-

lated to the interaction between the driver and the OS,

amenable to automatic verification.

The use of finite state machines to specify driver pro-

tocols allows capturing the entire protocol in a single for-

mal model, which is passed as input to automatic verifi-

cation tools, but also serves as a valuable design artifact

that guides protocol design and implementation on both

the OS and the driver side.

With several improvements existing verification tools

can be applied to active drivers. Our experiments con-

firm that this approach enables more thorough verifica-

tion of the driver-OS interface than what is possible for

conventional drivers using the same tools.

9 Acknowledgements

We would like to thank Michael Tautschnig for his

help in troubleshooting SATABS issues. We thank the

GOANNA team, in particular Mark Bradley and Ansgar

Fehnker, for explaining GOANNA internals and provid-

ing us with numerous ideas and examples of verifying

active driver properties using GOANNA. We thank Toby

Murray for his feedback on a draft of the paper.

NICTA is funded by the Australian Government as

represented by the Department of Broadband, Commu-

nications and the Digital Economy and the Australian

Research Council through the ICT Centre of Excellence

program.

References

[1] ADYA, A., HOWELL, J., THEIMER, M., BOLOSKY, W., AND

DOUCEUR, J. Cooperative task management without manual

stack management. In 2002 USENIX (Monterey, CA, USA, Jun

2002), pp. 289–302.

[2] BALL, T., BOUNIMOVA, E., COOK, B., LEVIN, V., LICHTEN-

BERG, J., MCGARVEY, C., ONDRUSEK, B., RAJAMANI, S. K.,

AND USTUNER, A. Thorough static analysis of device drivers.

In 1st EuroSys Conf. (Leuven, Belgium, Apr 2006), pp. 73–85.

[3] BALL, T., COOK, B., DAS, S., AND RAJAMANI, S. K. Refining

approximations in software predicate abstraction. In TACAS (Mar

2004), pp. 388–403.

[4] BARNES, F., AND RITSON, C. Checking process-oriented oper-

ating system behaviour using CSP and refinement. Operat. Syst.

Rev. 43, 4 (Oct 2009), 45–49.

[5] BASLER, G., DONALDSON, A. F., KAISER, A., KROENING,

D., TAUTSCHNIG, M., AND WAHL, T. SatAbs: A bit-precise

verifier for C programs - (competition contribution). In TACAS

(Mar 2012), pp. 552–555.

[6] BASLER, G., HAGUE, M., KROENING, D., ONG, C.-H. L.,

WAHL, T., AND ZHAO, H. Boom: Taking boolean program

model checking one step further. In TACAS (2010), vol. 6015

of Lecture Notes in Computer Science, Springer, pp. 145–149.

[7] BERRY, G., GONTHIER, G., GONTHIER, A. B. G., AND

LALTTE, P. S. The esterel synchronous programming language:

Design, semantics, implementation, 1992.

[8] CHANDRASEKARAN, P., CONWAY, C. L., JOY, J. M., AND RA-

JAMANI, S. K. Programming asynchronous layers with CLAR-

ITY. In 6th ESEC (Dubrovnik, Croatia, 2007), pp. 65–74.

[9] CHOU, A., YANG, J.-F., CHELF, B., HALLEM, S., AND EN-

GLER, D. An empirical study of operating systems errors. In

18th SOSP (Lake Louise, Alta, Canada, Oct 2001), pp. 73–88.

[10] CLARKE, E. M., KROENING, D., SHARYGINA, N., AND

YORAV, K. Predicate abstraction of ANSI-C programs using

SAT. Formal Methods in System Design 25, 2-3 (2004), 105–

127.

[11] COOK, B., PODELSKI, A., AND RYBALCHENKO, A. Termina-

tion proofs for systems code. In 2006 PLDI (Ottawa, Ontario,

Canada, 2006), pp. 415–426.

[12] DESAI, A., GUPTA, V., JACKSON, E., QADEER, S., RAJA-

MANI, S., AND ZUFFEREY, D. P: safe asynchronous event-

driven programming. In PLDI (Seattle, Washington, USA, 2013),

pp. 321–332.

[13] FÄHNDRICH, M., AIKEN, M., HAWBLITZEL, C., HODSON,

O., HUNT, G. C., LARUS, J. R., AND LEVI, S. Language sup-

port for fast and reliable message-based communication in Sin-

gularity OS. In 1st EuroSys Conf. (Apr 2006), pp. 177–190.

[14] FEHNKER, A., HUUCK, R., JAYET, P., LUSSENBURG, M., AND

RAUCH, F. Goanna — A Static Model Checker. In 11th FMICS

(Bonn, Germany, Aug 2006), pp. 297–300.

[15] GANAPATHI, A., GANAPATHI, V., AND PATTERSON, D. Win-

dows XP kernel crash analysis. In 20th LISA (Washington, DC,

USA, 2006), pp. 101–111.

[16] HAREL, D. Statecharts: A visual formalism for complex sys-

tems. Science of Computer Programming 8, 3 (Jun 1987), 231–

274.

[17] HENZINGER, T. A., JHALA, R., MAJUMDAR, R., NECULA,

G. C., SUTRE, G., AND WEIMER, W. Temporal-safety proofs

for systems code. In 14th CAV (2002), pp. 526–538.

[18] HOLZMANN, G. J. Logic verification of ANSI-C code with

SPIN. In 7th SPIN (2000), pp. 131–147.

[19] HOLZMANN, G. J. The SPIN Model Checker: Primer and Ref-

erence Manual, 1st ed. Addison-Wesley Professional, 2003.

[20] LIEDTKE, J., BARTLING, U., BEYER, U., HEINRICHS, D., RU-

LAND, R., AND SZALAY, G. Two years of experience with a

μ-kernel based OS. Operat. Syst. Rev. 25, 2 (Apr 1991), 51–62.

[21] PADIOLEAU, Y., LAWALL, J., HANSEN, R. R., AND MULLER,

G. Documenting and automating collateral evolutions in Linux

device drivers. In 3rd EuroSys Conf. (Glasgow, UK, Apr 2008),

pp. 247–260.

[22] PALIX, N., THOMAS, G., SAHA, S., CALVÈS, C., LAWALL, J.,

AND MULLER, G. Faults in Linux: ten years later. In ASPLOS

(Newport Beach, CA, USA, Mar 2011), pp. 305–318.

[23] RYZHYK, L., CHUBB, P., KUZ, I., AND HEISER, G. Dingo:

Taming device drivers. In 4th EuroSys Conf. (Apr 2009).

[24] RYZHYK, L., CHUBB, P., KUZ, I., AND HEISER, G. Dingo:

Taming device drivers. In 4th EuroSys Conf. (Nuremberg, Ger-

many, Apr 2009).

[25] WITKOWSKI, T., BLANC, N., KROENING, D., AND WEIS-

SENBACHER, G. Model checking concurrent Linux device

drivers. In 22nd ASE (Atlanta, Georgia, USA, 2007), pp. 501–

504.

118

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 0
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

