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Abstract
Prefix sums are key building blocks in the implementation of many
concurrent software applications, and recently much work has gone
into efficiently implementing prefix sums to run on massively par-
allel graphics processing units (GPUs). Because they lie at the heart
of many GPU-accelerated applications, the correctness of prefix
sum implementations is of prime importance.

We introduce a novel abstraction, the interval of summations,
that allows scalable reasoning about implementations of prefix
sums. We present this abstraction as a monoid, and prove a sound-
ness and completeness result showing that a generic sequential pre-
fix sum implementation is correct for an array of length n if and
only if it computes the correct result for a specific test case when
instantiated with the interval of summations monoid. This allows
correctness to be established by running a single test where the in-
put and result requireO(n lg(n)) space. This improves upon an ex-
isting result by Sheeran where the input requires O(n lg(n)) space
and the result O(n2 lg(n)) space, and is more feasible for large n
than a method by Voigtländer that usesO(n) space for the input and
result but requires runningO(n2) tests. We then extend our abstrac-
tion and results to the context of data-parallel programs, developing
an automated verification method for GPU implementations of pre-
fix sums. Our method uses static verification to prove that a generic
prefix sum implementation is data race-free, after which functional
correctness of the implementation can be determined by running a
single test case under the interval of summations abstraction.

We present an experimental evaluation using four different
prefix sum algorithms, showing that our method is highly auto-
matic, scales to large thread counts, and significantly outperforms
Voigtländer’s method when applied to large arrays.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying, Verifying & Reasoning about Programs

Keywords Parallel prefix sum computation; GPUs; abstraction;
formal verification.
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1. Introduction
The prefix sum operation, which given an array A computes an
array B consisting of all sums of prefixes of A, is an important
building block in many high performance computing applications.
A key example is stream compaction: suppose a group of n threads
has calculated a number of data items in parallel, each thread t
(1 ≤ t ≤ n) having computed dt items; now the threads must
write the resulting items to a shared array out in a compact manner,
i.e. thread t should write its items to a series of dt indices of
out starting from position d1 + · · · + dt−1. Compacting the data
stream by serialising the threads, so that thread 1 writes its results,
followed by thread 2, etc., would be slow. Instead, compaction can
be performed in parallel via a prefix sum. Each thread t writes its
count dt to an array count at position t, then the threads perform
an exclusive parallel prefix sum (defined formally in Section 2) on
count to yield an array index. The prefix sum sets the elements of
index to [0, d1, d1+d2, . . . , d1+· · ·+dn−1], so that a thread t can
write its results to out compactly starting from position index[t].

Stream compaction is just one example; the prefix sum opera-
tion is defined for any binary associative operator, and prefix sums
using various operators have found wide application in computa-
tionally intensive tasks. A selection of examples are summarised in
Table 1. For several decades the design of efficient parallel pre-
fix sums has been an active research area. Parallel prefix sums
were first implemented in hardware circuits as logic for propagat-
ing carry bits in adders [34]. The design space for these circuits has
been explored and important circuits known in the literature are due
to Kogge and Stone [21], Ladner and Fischer [22], and Brent and
Kung [5]. More recent work by Sheeran [33] has further explored
the design space. In software, prefix sum algorithms have been used
in the context of evaluating polynomials in parallel [36] and Blel-
loch [3] has proposed the use of prefix sums as a primitive parallel
operation, giving numerous examples of their application [4]. Pre-
fix sums are now primitives in parallel programming models such
as MPI [29] and OpenMP [35].

Recently there has been a great deal of interest in implementing
efficient prefix sums for acceleration on massively parallel graphics
processing units (GPUs) [2, 7, 12, 16, 26, 31], implemented using
GPU programming models such as OpenCL [19] and CUDA [27].
The major benchmark suites for general-purpose GPU program-
ming, SHOC [12], Rodinia [7] and Parboil [37] all include a variety
of prefix sum implementations. The thrust1 and CUDA Data Par-
allel Primitives (cudpp)2 libraries implement efficient prefix sum
primitives for NVIDIA GPUs.

We present a method for formally verifying that a generic par-
allel prefix sum implementation—designed to work for any data

1 http://code.google.com/p/thrust/
2 http://code.google.com/p/cudpp/



Prefix sum application Data-type Operator

Stream compaction [2, 16] Int +
Sorting algorithms [16, 30] Int +
Polynomial interpolation [13] Float ∗a

Line-of-sight calculation [4] Int max
Binary addition [22] pairs-of-bits carry operator

Finite state machine simulation [22] transition function
functions composition

a Floating point multiplication is not actually associative, but is often treated
as such in applications where some error can be tolerated.

Table 1. Some applications of parallel prefix sums. Stream com-
paction requires an exclusive prefix sum; the other applications em-
ploy regular prefix sums. The carry operator and functional compo-
sition are examples of non-commutative operators.

type with an associative operator—is functionally correct. Because
prefix sum implementations are at the heart of many parallel ap-
plications, the correctness of these implementations is vital. The
challenges of concurrent programming make it especially hard to
correctly implement prefix sums for modern architectures such as
GPUs. This motivates a dedicated verification method.

By observing that a generic prefix sum algorithm may only
exploit the property of associativity, we have devised a novel ab-
straction which we call the interval of summations abstraction. For
i ≤ j, the interval of summations abstraction represents a contigu-
ous summation interval of input elements in[i]⊕ · · · ⊕ in[j] (with
respect to any data type and associative operator ⊕) abstractly as a
pair (i, j). Abstract summation intervals can be added together if
they ‘kiss’: the abstract sum of (i, j) and (k, l) is (i, l) if j+1 = k;
otherwise, the addition results in a special value>which represents
all sums of input elements that are not necessarily contiguous. Sum-
ming any monoid element to > yields >, modelling the fact that,
using only the property of associativity, a non-contiguous summa-
tion of inputs cannot be made contiguous by adding more inputs.
We present the interval of summations abstraction as a monoid,
with an identity element representing an empty summation. This
makes it possible to run a generic prefix sum implementation with
respect to the data type and operator defined by the interval of sum-
mations monoid.

Our first main contribution is a theorem showing that a se-
quential generic prefix sum on n elements is correct for all data
types and operators if and only if, when instantiated using the in-
terval of summations monoid and applied to the input sequence
[(0, 0), (1, 1), . . . , (n− 1, n− 1)], it computes the correct result
sequence: [(0, 0), (0, 1), . . . , (0, n− 1)]. This theorem shows that
the interval of summations abstraction is sound and complete: by
running a single test we can establish either that the generic pre-
fix sum is correct (if the test passes), or that it is incorrect for one
specific data-type/operator pair, namely that of the interval of sum-
mations monoid itself (if the test fails). Our result provides a highly
scalable method for verifying sequential prefix sums: elements of
the interval of summations monoid capable of representing inter-
vals of up to length n can be encoded using O(lg(n)) bits, allow-
ing a generic prefix sum to be verified by running a single test case
requiring O(n lg(n)) space for both the input and result. This is an
improvement on a previous result by Sheeran [33, 38] which allows
a sequential program implementing a prefix sum to be verified by
running one test case requiring O(n lg(n)) space for the input and
O(n2 lg(n)) space for the result. For large values of n, this space
requirement becomes infeasible. Our method is also more practi-
cally feasible than an alternative approach of Voigtländer [38] that
uses only O(n) space for the input and result but requires running
O(n2) tests.

void prefixSum(const T *in, T *out) {
out[0] = in[0];
for(unsigned i = 1; i < n; i++)
out[i] = out[i−1] ⊕ in[i];

}

Figure 1. A sequential prefix sum for inputs of length n

Our second main contribution is an extension of our method and
theoretical results to the case of barrier-synchronising data-parallel
programs, the programming model of GPU kernels. This is a con-
tribution over previous work on the correctness of parallel prefix
sums [33, 38] which applies to synchronous parallel hardware de-
scribed as sequential HASKELL programs, but not to asynchronous
concurrent programs. We show that if a data-parallel program im-
plementing a generic prefix sum can be proved free from data races
then correctness of the prefix sum can be established by running
a single test case using the interval of summations monoid, as in
the sequential case. We use this result to design and implement a
highly automatic method for verifying parallel prefix sum imple-
mentations at the level of GPU kernel source code, using the GPU-
Verify tool [1] to prove data race-freedom.

We present a large experimental evaluation using four different
prefix sum algorithms implemented as OpenCL kernels. We show
that race-freedom of these kernels can be proven efficiently for all
power-of-two element sizes up to 231, and that verifying the kernels
by running a single test is very fast: using two NVIDIA GPUs, two
Intel CPUs (for which OpenCL is also supported), and an ARM
GPU, prefix sums on vectors of up to length 106 can be checked in
a matter of seconds. We argue that, once race-freedom has been
established, the method of Voigtländer [38] can also be used to
prove correctness of prefix sum implementations using testing,
but show that our method dramatically outperforms Voigtländer’s
approach, which requires running O(n2) tests.

Because we can efficiently prove data race-freedom of GPU
kernels implementing prefix sums for all conceivably useful sizes,
and because verification using our method involves running a single
test case, taking no longer than using the prefix sum in practice, we
claim that we have made a major step towards solving the problem
of verifying GPU implementations of generic prefix sums.

2. Background on Prefix Sums
We briefly review the definitions of a prefix sum and an exclusive
prefix sum, and give examples of sequential and parallel prefix sum
implementations.

Given a set S with an associative binary operation ⊕ (i.e., a
semigroup), the prefix sum of a list [s1, s2, . . . , sn] of elements of
S is the list:

[s1, s1 ⊕ s2, . . . , s1 ⊕ s2 ⊕ · · · ⊕ sn]

consisting of all sums of prefixes, in increasing order of length. For
example, if we consider the set of integers under addition, the prefix
sum of [1, 3, 5, 7] is [1, 4, 9, 16].

If (S,⊕) has an identity element 1, so that (S,⊕) is a monoid,
then the exclusive prefix sum of [s1, s2, . . . , sn] is defined as:

[1, s1, s1 ⊕ s2, . . . , s1 ⊕ s2 ⊕ · · · ⊕ sn−1] .

For example, if S is the set of all four-bit binary numbers and ⊕ is
the bitwise-or operator with identity 0000 then the exclusive prefix
sum of [0001, 0010, 0100, 1000] is [0000, 0001, 0011, 0111].

It is trivial to implement a sequential prefix sum: the C-like
program of Figure 1 computes the prefix sum of in into out,



kernel void koggeStone(const local T *in, local T *out) {
out[tid] = in[tid];
barrier();
for (unsigned offset = 1; offset < n; offset *= 2) {
T temp;
if (tid ≥ offset) temp = out[tid−offset];
barrier();
if (tid ≥ offset) out[tid] = temp ⊕ out[tid];
barrier();
}
}

Figure 2. Kogge-Stone prefix sum implemented in OpenCL
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Figure 3. Evolution of the output array for the Kogge-Stone
kernel of Figure 2 with n = 8 for an example input

where T is some data type with associative binary operator ⊕. An
exclusive prefix sum can be implemented similarly.3

Figure 2 shows the Kogge-Stone parallel prefix sum imple-
mented in OpenCL and designed to be executed by a single work-
group of n threads.4 The koggeStone function is marked kernel
to indicate that it is the entry point for a GPU kernel, and arrays in
and out have the local qualifier to indicate that they are allocated
in GPU memory local to the work-group. Threads execute asyn-
chronously, and a thread can use tid to access its unique thread
identifier, in the range {0, . . . , n−1}. Threads synchronise by call-
ing barrier(), which causes all threads to wait until every thread
reaches the barrier statement. On each iteration of the loop, ev-
ery thread whose tid is greater than or equal to offset sums the
value it has already computed with the value previously computed
by the thread offset places to the left. Figure 3 illustrates how the
output array evolves when the kernel is instantiated using integer
addition and applied to the input [1, 1, 1, 1, 1, 1, 1, 1], with n = 8.

3. Sequential Computational Model
We present a sequential imperative programming language, and
define what it means to implement a correct prefix sum in this
language. This provides a simple foundation on which to clearly
introduce our interval of summations abstraction, which we do
in Section 4. We extend our language, abstraction and theoretical
results to apply to data-parallel programs (and in particular GPU
kernels) in Section 5.

Syntax and typing The syntax for our language is shown in Fig-
ure 4, where c ranges over literal values, v andA over scalar and ar-
ray variable names, respectively, and op over an unspecified set of
binary operators. Our presentation can be easily extended to cater
for operators of other arities.

3 For ease of presentation, we assume throughout that the input length n is
hard-coded into the program under consideration. In practice, n would be
supplied as a parameter.
4 For readability, we deviate a little from the precise syntax of OpenCL.

expr e ::= c literal
| v variable
| A[e] array element
| e1 op e2 operator

stmt s ::= v := e variable assignment
| A[e1] := e2 array element assignment
| if (e) {ss1} else {ss2} conditional
| while (e) {ss} loop

stmts ss ::= ε empty sequence
| s; ss sequence

Figure 4. Syntax

All variables, arrays and literals are typed (assuming some stan-
dard syntax for variable and type declarations, which we omit).
Types for scalar variables and literals are drawn from a set of base
types T , ranged over by T , which includes at least integers and
Booleans (denoted Int and Bool respectively)—equipped with the
usual literals and operators—and the single-element type Unit. Ar-
ray variables have type Array(T ) which denotes all maps of type
Int → T . For ease of presentation we assume no out-of-bounds
errors occur and we do not allow arrays of arrays. The language
also omits features such as pointers, procedures and unstructured
control flow. In Section 6 we argue that our technique extends to
languages with these features.

The typing rules of the language are straightforward and are
depicted in Figure 5. As usual there is a context Γ which specifies
the types of variables.

Operational semantics Let Var be a set of variables and Arr a set
of arrays all of which are assumed to be typed. A variable store σv

is a mapping

Var→
⊎
T∈T

T

such that if v ∈ Var is of type T , then σv(v) is of type T . An array
store σA is a mapping

Arr→
⊎
T∈T

Array(T )

such that ifA is of type Array(T ), then σA(A) is of type Array(T ).
Expressions are evaluated under a variable store and an array

store. Denoting the evaluation of an expression e by JeKσvσA , we
define:

JcKσvσA = c JA[e]KσvσA = σA(A)(JeKσvσA)

JvKσvσA = σv(v) Je1 op e2KσvσA = Je1KσvσA op Je2KσvσA
Figure 6 gives the operational semantics for our language. The

semantics is defined over program states S = (σv, σA, ss) with σv

a variable store, σA an array store and ss a sequence of statements.
In the figure, ss1 · ss2 denotes the concatenation of sequences of
statements ss1 and ss2. The rules are standard for an imperative
language like ours, except that we have both a variable and an
array store instead of just a single store. Although this split is not
strictly needed here, it eases the extension to data-parallel programs
in Section 5 where we shall regard variables as thread-local and
arrays as shared among all threads.

Let a program P be a sequence of statements. An initial state of
P is any program state with P as the sequence of statements. Given
an initial state S0 of P , an execution of a program P is a finite or
infinite sequence:

S0 →s S1 · · · →s Si →s Si+1 →s · · ·
with each Si (i ≥ 0) a program state. An execution is maximal
if it (a) cannot be extended by applying one of the rules from the



c of type T
Γ ` c : T

(T-LITERAL)
v : T ∈ Γ

Γ ` v : T
(T-VARIABLE)

A : Array(T ) ∈ Γ Γ ` e : Int

Γ ` A[e] : T
(T-ARRAY)

op of type T1 × T2 → T3 Γ ` e1 : T1 Γ ` e2 : T2

Γ ` e1 op e2 : T3
(T-OP)

(a) Typing rules for expressions

v : T ∈ Γ Γ ` e : T

Γ ` v := e : Unit
(T-ASSIGN)

A : Array(T ) ∈ Γ Γ ` e1 : Int Γ ` e2 : T

A[e1] := e2 : Unit
(T-ARRAY-ASSIGN)

Γ ` e : Bool Γ ` ss1 : Unit Γ ` ss2 : Unit

Γ ` if (e) {ss1} else {ss2} : Unit
(T-ITE)

Γ ` e : Bool Γ ` ss : Unit

Γ ` while (e) {ss} : Unit
(T-LOOP)

Γ ` ε : Unit
(T-EMPTY)

Γ ` s : Unit Γ ` ss : Unit

Γ ` s; ss : Unit
(T-SEQ)

(b) Typing rules for statements

Figure 5. Typing rules of our sequential programming language

σ′v = σv[v 7→ JeKσvσA ]

(σv, σA, v := e; ss′)→s (σ′v, σA, ss
′)

(S-ASSIGN)
Je1KσvσA = n A′ = σA(A)[n 7→ Je2KσvσA ] σ′A = σA[A 7→ A′]

(σv, σA, A[e1] := e2; ss′)→s (σv, σ
′
A, ss

′)
(S-ARRAY)

JeKσvσA
(σv, σA, if (e) {ss1} else {ss2}; ss′)→s (σv, σA, ss1 · ss′)

(S-ITE-T)
¬JeKσvσA

(σv, σA, if (e) {ss1} else {ss2}; ss′)→s (σv, σA, ss2 · ss′)
(S-ITE-F)

JeKσvσA
(σv, σA,while (e) {ss}; ss′)→s (σv, σA, ss · while (e) {ss}; ss′)

(S-LOOP-T)
¬JeKσvσA

(σv, σA,while (e) {ss}; ss′)→s (σv, σA, ss
′)

(S-LOOP-F)

Figure 6. Operational semantics of our sequential programming language

operational semantics or (b) is infinite. We say P terminates for
an initial state S, if all maximal executions starting from S are
finite. Note that the maximal execution is unique in the current
case as execution is deterministic; this will no longer be so in the
data-parallel case of Section 5. The proof that our type system and
operational semantics satisfy the usual safety property—that types
are preserved under execution and progress can always be made
unless termination has occurred [28, Section 8.3]—is standard.

Prefix sum algorithms We now define what it means for a pro-
gram in our language to implement a prefix sum algorithm.

Recall from Section 2 that a prefix sum can be defined with
respect to a semigroup, and an exclusive prefix sum with respect to
a monoid. Because most prefix sums of interest in practice are over
monoids we shall henceforth consider prefix sums over monoids.
All the results we present restrict easily to the case of semigroups.

We shall write M to refer to a monoid with elements SM ∈ T ,
binary operator⊕M (which we assume is a programming language
operator) and identity 1M ∈ SM . Moreover, we say that a variable
v, respectively an arrayA, is read-only in P if no assignment of the
form v := . . . , respectively A[e] := . . . , occurs in P .

Definition 3.1. Let M be a monoid, P be a program, n a natural
number, and in, out arrays of type Array(SM ) such that in is
read-only in P . The program P computes an M -prefix sum of
length n from in to out for an initial state S if P terminates for
S and for each final array store σA it holds that σA(out)(k) =⊕

M, 0≤i≤k σA(in)(i) (0 ≤ k < n).
The program P implements an M -prefix sum of length n from

in to out if P computes an M -prefix sum of length n from in to
out for every initial state.

Whether a program computes a prefix sum for a given input can
be established by running the program; determining whether a pro-
gram implements a prefix sum amounts to functional verification.
Implementation of an exclusive prefix sum is defined analogously.

Designating the array in as read-only is for ease of presentation,
making it sufficient to consider only the final array store in the
above definition and avoiding the need to relate final and initial
array stores.

We observe that Definition 3.1 quantifies over all possible final
array stores to be able to cover the data-parallel case of Section 5.
In the current sequential case the final array store is unique as
execution is deterministic.

Henceforth we shall assume that a prefix sum is always from in
to out, and shall simply talk about a program implementing anM -
prefix sum of length n, or computing an M -prefix sum of length n
from an initial state.

4. The Interval of Summations Abstraction
We now turn our attention to proving the correctness of generic
prefix sums: prefix sums that are designed to be polymorphic, so
that they work for any type and operator that together have the
properties of a monoid. We present our main theoretical result, that
correctness of a generic prefix sum of length n can be established
by showing that the prefix sum is correct for one particular monoid,
the interval of summations monoid, for one particular input.

Generic prefix sums Let us extend our programming language
with a fresh generic type SX , a new operator⊕X : SX×SX → SX ,
and a distinguished literal value 1X of type SX . We intend this
generic type to represent an arbitrary monoid X = (SX ,⊕X) with
identity 1X .



We call a program that makes use of SX a generic program.
Akin to a generic method in JAVA, a template method in C++, or a
function with a type class context in HASKELL, a generic program
cannot be directly executed: it must first be instantiated with respect
to a specific type.

Definition 4.1. Let P be a generic program and M a monoid. We
write P [M ] to denote the program that is identical to P except that
every occurrence of SX , ⊕X , 1X is replaced by SM , ⊕M , 1M ,
respectively. We refer to the process of obtaining P [M ] from P as
a monoid substitution.

If M already occurs in P then we cannot tell, from P [M ]
alone, which uses of M were already present in P or originated
from uses of X . We handle this issue as follows, to simplify our
formal treatment: if M occurs in P then we choose a monoid M ′

isomorphic to M such that M ′ does not occur in P , and we define
P [M ] to be P [M ′]. For ease of presentation we still refer to the
monoid M ′ as M .

It is easy to see that monoid substitution is well-defined, and
that if the abstract program P is well-typed according to the rules
of Figure 5 then applying a monoid substitution to P leads to a
well-typed program.

Definition 4.2 (Generic prefix sums). Let P be a generic program.
Then P implements a generic prefix sum of length n if in and out
are of type Array(SX) and, for every monoid M , P [M ] imple-
ments an M -prefix sum of length n.

The interval of summations monoid The key insight behind our
result is the observation that a generic prefix sum can only rely
on the properties of a monoid: associativity and the existence of
an identity element. Relying on any additional properties specific
to a particular operator, such as commutativity, idempotence or
distributivity with respect to some other operator, would render the
prefix sum inapplicable in general.

Suppose we wish to compute a prefix sum of length n from
array in into array out, with respect to an arbitrary monoid M .
Thus in and out have type Array(SM ), and the prefix sum operator
is ⊕M . If the prefix sum is correctly implemented then at the end
of the computation each element of out must be the sum of a
contiguous sequence of elements of in. For example, out[0] should
be equal to in[0] and out[3] to in[0] ⊕M in[1] ⊕M in[2] ⊕M
in[3]. As computation progresses, these contiguous summations
are built up using the⊕M operator, initially starting with individual
elements of in.

Consider, for any 0 ≤ k < n, how out[k] could be computed
(to give the main intuition in a simple manner we ignore possible
uses of the identity element): either (a) the existing value of a
variable or array element could be copied into out[k] or (b) out[k]
could be derived by summing two values of SM , c and d, say, using
⊕M . In the latter case

• c and d are summations of contiguous elements of in: c =⊕
M, 0≤j≤i1 in[j] and d =

⊕
M, i2≤j≤k in[j], for some i1

and i2 (where an empty summation is defined to be 1M ), and
• the summations c and d must ‘kiss’: we must have i1 + 1 = i2.

If c and d did not have these forms then, using only the laws of
associativity and identity, it would not be possible to rewrite c⊕Md
into the form

⊕
M,0≤j≤k in[j], the required value for out[k]. By

a similar argument, if c (similarly d) is in turn constructed by
summing two values e and f then e and f must both be contiguous
summations of elements of in that kiss, otherwise it would not
be possible, using just the monoid laws, to rearrange e ⊕M f
into the form of c. Continuing this argument we can see that a
correct generic prefix sum must compute its result by successively

summing partial sums of contiguous input elements that kiss; if
a non-contiguous sum is ever constructed then this sum cannot
contribute to the final prefix sum result.

We introduce a monoid, the interval of summations monoid,
which captures abstractly the notion of contiguous summation in-
tervals, and the operation of summing pairs of kissing intervals.

Definition 4.3. The interval of summations monoid I (henceforth
referred to as the interval monoid) has the elements

SI = {(i1, i2) ∈ Int× Int | i1 ≤ i2} ∪ {1I ,>}
and a binary operator ⊕I defined by:

1I ⊕I x = x⊕I 1I = x for all x ∈ SI
>⊕I x = x⊕I > = > for all x ∈ SI

(i1, i2) ⊕I(i3, i4) =

{
(i1, i4) if i2 + 1 = i3
> otherwise

It is easily checked that I defines a monoid with identity 1I .
The interval monoid abstractly describes summations of ele-

ments of in with respect to an arbitrary monoid, say, M . A pair
(i1, i2) abstractly describes the summation

⊕
M, i1≤i≤i2 in[i].

The identity 1I represents an empty interval of summations, thus
is an abstraction of 1M . Finally, the element > represents all non-
empty summations of elements in with respect to ⊕M that are not
known to correspond to contiguous summations.

The ⊕I operator precisely captures the effect of summing two
contiguous summations. For i1 ≤ i2 < i3,⊕

M, i1≤i≤i2 in[i] ⊕M
⊕

M, i2+1≤i≤i3 in[i]

=
⊕

M, i1≤i≤i3 in[i]

and, correspondingly, (i1, i2) ⊕I (i2 + 1, i3) = (i1, i3). The way
⊕I treats 1I expresses the fact that adding an empty summation to
either side of a summation interval has no effect. Finally, the treat-
ment of> by the operator captures the argument above: using only
the properties of a monoid, it is not possible to transform a non-
contiguous summation into a contiguous one by applying the ⊕M
operator. Notice that> is an absorbing element, or annihilating el-
ement, of I: once a summation has become non-contiguous there
can be no return.

Superficially, it may appear that the interval monoid is similar to
the abstract domain of intervals that is commonly used in abstract
interpretation [11]. The domains are in fact very different: an ele-
ment (i, j) of our interval of summations domain represents a sin-
gle concrete value that can be expressed as a summation, whereas
an element [i, j] of the traditional domain of intervals represents
the set of values {i, i+ 1, . . . , j}.

We now define a condition on initial program stores which, for
a given natural number n, ensures that the first n elements of in
are abstracted in the interval monoid by appropriate singleton sum-
mation intervals, and that all other array elements and variables of
type SI have values that are not known to be summation intervals.

Definition 4.4 (Singleton condition for sequential programs). Let
P be a generic program with in of type Array(SX). An initial
state of P [I] with variable store σv and array store σA satisfies
the singleton condition for n if

1. for all v of type SX in P , σv(v) = >;
2. for all A of type Array(SX) in P and k ∈ Int,

σA(A)(k) =

{
(k, k) if A = in and k ∈ {0, . . . , n− 1}
> otherwise

We can now state our main theorem which shows that, with
respect to generic prefix sums, the interval monoid is a sound and
complete abstraction: a program implements a generic prefix sum



if and only if it implements a prefix sum when instantiated with
the interval monoid. In fact, our result is stronger than this: it
shows that correctness of a generic prefix sum can be established by
considering the interval monoid instantiation only for those initial
stores that satisfy the singleton condition.

Theorem 4.5 (Soundness and completeness). Let P be a generic
program and n a natural number. Then:

P [I] computes an I-prefix sum of length n for every initial
state satisfying the singleton condition for n

⇐⇒
P implements a generic prefix sum of length n.

Given a generic program P , the main proof idea is to simulate
the execution of P [M ] for any monoid M by P [I], and vice versa,
whilst relating the states encountered in the executions. To this end,
we first define a reification function.

Reification Let M be a monoid and let ArrayStore denote the
type of array stores. Define ReifyM : SI×ArrayStore→ P(SM ):

ReifyM ((i1, i2), σA) = {
⊕

M, i1≤i≤i2 σA(in)(i)}
ReifyM (1I , σA) = {1M}
ReifyM (>, σA) = SM

Thus ReifyM maps a contiguous summation represented ab-
stractly in the interval monoid to the set containing the correspond-
ing concrete summation in the monoid M , and maps an unknown
summation, represented by > in the interval monoid, to the full set
of elements of M .

Let P be a generic program and for a monoid M let StateP [M ]

denote the set of all program states of P [M ]. We lift ReifyM to
map states of P [I] to sets of states of P [M ]. Formally,

ReifyM : StateP [I] → P(StateP [M ])

is defined by (σ′v, σ
′
A, ss

′) ∈ ReifyM (σv, σA, ss) if and only if

• for all v of type T in P

σ′v(v) = σv(v) if T 6= SX
σ′v(v) ∈ ReifyM (σv(v), σA) if T = SX

• for all A of type Array(T ) in P and k ∈ Int

σ′A(A)(k) = σA(A)(k) if T 6= SX
σ′A(A)(k) ∈ ReifyM (σA(A)(k), σA) if T = SX

• there exists a generic program Q such that ss = Q[I] and
ss′ = Q[M ].

Observe that the generic program Q in the final condition is unique
even if I or M is used in P , due to the discussion following
Definition 4.1.

Simulation We can now prove our simulation result.

Lemma 4.6. Let P be a generic program and M a monoid. If SI
is a program state of P [I] and SM ∈ ReifyM (SI) is a program
state of P [M ], then

• if SI →s S ′I , there exists a program state S ′M ∈ ReifyM (S ′I)
of P [M ] such that SM →s S ′M , and

• if SM →s S ′M , there exists a program state S ′I of P [I] such
that SI →s S ′I and S ′M ∈ ReifyM (S ′I).

Proof. Let SI be a program state of P [I] and SM ∈ ReifyM (SI)
be a program state of P [M ]. Moreover, let Q be the generic pro-
gram such that Q[I] and Q[M ] are the program components of SI
and SM , respectively.

Observe that monoid substitution (Definition 4.1) satisfies the
following algebraic laws for any monoid M :

(v := e)[M ] ≡ v := (e[M ])

(A[e1] := e2)[M ] ≡ A[e1] := (e2[M ])

(if (e) {ss1} else {ss2})[M ] ≡ if (e) {ss1[M ]} else {ss2[M ]}
(while (e) {ss})[M ] ≡ while (e) {ss[M ]}

ε[M ] ≡ ε
(s; ss)[M ] ≡ s[M ]; ss[M ]

where it is immediate by the typing rules and the definition of
generic programs that neither ⊕X nor 1X can occur in either the
expression e1 ofA[e1] := e2 or the expression e of a conditional or
loop. For the same reason, it follows that if the first statement in Q
is a loop or conditional with guard e, then ewill evaluate identically
in both SI and SM . Thus, whatever the form of Q, the same rule
from the operational semantics applies in both SI and SM . Let the
resulting program states after application of the rule be S ′I and S ′M .
By the algebraic laws it is now immediate that there exists a unique
generic program Q′ such that Q′[I] is the sequence of statements
of S ′I and Q′[M ] is the sequence of statements of S ′M .

It remains to show that the conditions on the stores of S ′I and
S ′M are satisfied. If the applied rule was one of S-ITE-T, S-ITE-
F, S-LOOP-T, S-LOOP-F, this is immediate, as the stores are
identical before and after the steps.

For S-ASSIGN there are two cases to consider. If v is not of type
SX in Q, it is immediate by the typing rules and the genericity of
Q that e evaluates identically in both SI and SM . If v is of type SX
in Q, it follows by the typing rules and associativity of ⊕X that e
is an expression of the form x0⊕X · · ·⊕X xk where for all xi with
0 ≤ i ≤ k either (a) the identity element 1X , (b) a variable or (c)
an array element. For each xi = A[e′], the expression e′ evaluates
identically in both SI and SM by the typing rules and genericity
of Q. The result is now immediate by the definition of ⊕I and the
fact that (a) for each xi = 1X we have 1M ∈ ReifyM (1I , σA),
(b) for each variable v among xi we have by assumption that
σ′v(v) ∈ ReifyM (σv(v), σA(in)), and (c) for each A[e′] among
xi we have σ′A(A)(Je′Kσ

′
v

σ′
A

) ∈ ReifyM (σA(A)(Je′KσvσA), σA(in)),
where (σv, σA) are the stores of SI and (σ′v, σ

′
A) those of S ′M .

For S-ARRAY observe that e1 evaluates identically in both SI
and SM by the typing rules and genericity of Q. Hence, the same
array element is updated in each application of the rule. There are
now two cases to consider, i.e., A is or is not of type Array(SX)
in Q. These cases are identical to those of S-ASSIGN.

Lemma 4.7. Let P be a generic program, M a monoid, and n a
natural number. If SM is an initial state of P [M ], then there exists
an initial state SI of P [I] satisfying the singleton condition for n
such that SM ∈ ReifyM (SI) and

• if SI →∗s S ′I , there exists a program state S ′M ∈ ReifyM (S ′I)
of P [M ] such that SM →∗s S ′M , and

• if SM →∗s S ′M , there exists a program state S ′I of P [I] such
that SI →∗s S ′I and S ′M ∈ ReifyM (S ′I).

Proof. Let SM be an initial state of P [M ]. The lemma is immediate
by induction on the number of steps applying Lemma 4.6 once we
show that an initial state SI ofP [I] exists that satisfies the singleton
condition for n such that SM ∈ ReifyM (SI). To this end, write
SM as (σ′v, σ

′
A, P [M ]) and define SI as (σv, σA, P [I]) with

• for all v of type T in P

σv(v) =

{
σ′v(v) if T 6= SX
> if T = SX



• for all A of type Array(T ) in P and k ∈ Int

σA(A)(k) =


(k, k) if A = in and k ∈ {0, ..., n− 1}
> if A = in and k /∈ {0, ..., n− 1}
> if A 6= in and T = SX
σ′A(A)(k) otherwise

That SI satisfies the singleton condition for n and that we have
SM ∈ ReifyM (SI) is now immediate.

Proof (Theorem 4.5). The⇐-direction is trivial, as I is a monoid.
For the ⇒-direction, let M be a monoid and SM an initial state
of P [M ]. By Lemma 4.7 there exists an initial state SI of P [I]
such that SI satisfies the singleton condition and SM ∈ Reify(SI).
All executions starting from SI are terminating because P [I] im-
plements an I-prefix sum. By Lemma 4.7, for every terminat-
ing execution (and thus every execution) SI →∗s S ′I there ex-
ists a corresponding terminating execution SM →∗s S ′M such
that S ′M ∈ ReifyM (S ′I). Moreover, these are the only executions
of SM : if there would exist a non-terminating or another termi-
nating execution starting from SM , then the induction argument
from Lemma 4.7 would yield an additional execution starting from
SI . Because P [I] computes an I-prefix sum, we have for the ar-
ray store σA of S ′I that σA(out)(k) =

⊕
I, 0≤i≤k σA(in)(i) =

(0, k) for all k ∈ {0, . . . , n − 1}. Hence, by definition of reifi-
cation for the array store σ′A of S ′M we have that σ′A(out)(k) =⊕

M, 0≤i≤k σ
′
A(in)(i) for all k ∈ {0, . . . , n− 1}.

5. Extension to Data-Parallel Programs
We next consider data-parallel programs, or kernels, in which
threads synchronise by means of barriers.

Syntax, typing and semantics We extend the language of Fig-
ure 4 with a barrier synchronisation statement as follows:

stmt s ::= · · · | barrier

The typing rule for barrier is straightforward:

Γ ` barrier : Unit
(T-BARRIER)

The typing rules for expressions and all other statements are as
before (see Figure 5).

Given a finite set of thread identifiers D ⊂ Int, a kernel (pro-
gram) state is a tuple (σA,K) with σA an array store and K a map
from D to (variable store, sequence of statements)-pairs such that
for each t ∈ D and variable store σv ofK(t) we have σv(tid) = t.
The array store σA represents arrays that are shared among all
threads, and K represents the local variables and instruction se-
quence for each thread. The variable tid represents the identity of
a thread, and must occur read-only in every program P . Our theo-
retical presentation does not depend on the existence of tid , but the
prefix sum implementations we evaluate in Section 7 rely on each
thread having a unique identifier.

Figure 7 gives the operational semantics of our kernel program-
ming language, where→s is as defined in Figure 6. The semantics
is a standard interleaving semantics (see rule K-STEP) with an ad-
ditional rule for barrier synchronisation (rule K-BARRIER). Rule
K-BARRIER checks whether all threads are either at a barrier or
have terminated; the additional condition that at least one thread
must be at a barrier ensures that rule K-BARRIER and termination
are mutually exclusive.

The semantics assumes that statements are executed atomically,
so that for example a thread can execute a shared state update such
as A[i] := A[j] + 1 in a single step. This assumption is not valid
in practice: such a statement would involve issuing separate (and

possibly multiple) load and store instructions between which other
threads could interleave. Even if we refined the semantics to reflect
this, we would still need to account for the weak memory models
of modern architectures. However, if a program is free from data
races, which we define formally below, the effects of this assump-
tion are not visible. The verification technique for GPU implemen-
tations of parallel prefix sums, which we present in Section 6, de-
pends on proving that a GPU kernel is free from data races.

Our rules for barrier synchronisation follow the MPI program-
ming model [14] in which it is valid for parallel processes to syn-
chronise at syntactically distinct barriers. In GPU programming
models, such as OpenCL and CUDA the rules for barrier synchro-
nisation are stricter, requiring that all threads synchronise at the
same barrier, and that if a barrier is inside a loop all threads must
have executed the same number of loop iterations on reaching the
barrier [19, 27]; precise semantics for barrier synchronisation in
GPU kernels have been formally specified [1, 10]. Our results for
the looser barrier synchronisation model of MPI makes our tech-
nique more widely applicable. Adding stricter conditions for bar-
rier synchronisation does not affect our theoretical results, and the
GPUVerify tool used as part of our verification method checks the
stricter conditions required in the GPU setting.

Given a kernel program P , an initial state of P is any kernel
state (σA,K) where, for every thread t, the sequence of statements
of K(t) is P . An execution of a program P starts from an initial
state. Maximal executions and termination for an initial state are
defined as for sequential programs. Note that the interleaving na-
ture of the semantics means that there may be multiple maximal
executions, contrary to the sequential case.

Prefix sums and generic prefix sums Computation and imple-
mentation of a prefix sum is defined as in the sequential case (see
Definition 3.1) with P interpreted as a kernel program. A generic
kernel program and generic prefix sum are also defined as in the
sequential case (Definition 4.1).

Interval monoid Employing the interval monoid as is (Defini-
tion 4.3), we extend the definition of the singleton condition to
kernel programs, taking into account that there is now a variable
store per thread.

Definition 5.1 (Singleton condition for kernel programs). Let P
be a generic program with in of type Array(X). An initial state
(σA,K) of P [I] satisfies the singleton condition for n if

1. for all t ∈ D and v of type SX in P , σv(v) = > with σv the
variable store of K(t);

2. condition 2 of Definition 4.4 is satisfied

Soundness and completeness Our soundness and completeness
theorem for sequential programs, Theorem 4.5, can now be stated
identically for kernel programs. The proof strategy is the same,
using reification of abstract states to concrete states to set up a
simulation, using lemmas analogous to Lemma 4.6 and Lemma 4.7.
We explain the notable differences in how the proof is set up.

The ReifyM function is adapted to map states of kernel pro-
grams P [I] to sets of states of kernel programs P [M ]. The function
treats the array store as before, but must take into account the fact
that each thread now has its own variable store and program. Thus,
while reification of array stores still operates at the level of the
whole program state, reification of the variable store and program
component now operates at the level of each individual thread. The
definition is left unchanged otherwise.

The proof of Lemma 4.6 translates to the case of kernel pro-
grams by observing that

barrier[M ] ≡ barrier



K(t) = (σv, ss) (σv, σA, ss)→s (σ′v, σ
′
A, ss

′) K′ = K[t 7→ (σ′v, ss
′)]

(σA,K)→k (σ′A,K
′)

(K-STEP)

(
∀t : ∃σv :

∨ (∃ss :K(t) = (σv, barrier; ss)∧K′(t) = (σv, ss))
(K(t) = (σv, ε) ∧K′(t) = (σv, ε))

)
∃t, σv, ss : K(t) = (σv, barrier; ss)

(σA,K)→k (σA,K
′)

(K-BARRIER)

Figure 7. Operational semantics of our kernel programming language, extending the sequential rules of Figure 6

and that by this algebraic law and the algebraic laws from the proof
of Lemma 4.6 we have that the same rule will be applied in both
the case of SI and SM , where the proof of Lemma 4.6 is embedded
in the treatment of the K-STEP case.

In proving Lemma 4.7 for kernel programs, we must relate an
initial state SM = (σ′A,K

′) of P [M ] to an initial state SI of
P [I] that satisfies the singleton condition. Otherwise, the proof is
identical to that of Lemma 4.7. The definition of the initial state SI
is easily adapted from the definition in the proof of Lemma 4.7 by
applying the definition for the variable store to the variable store of
each individual thread; the definition is left unchanged otherwise.

Data race freedom We now define what it means for a kernel
program to exhibit a data race. We show that if a kernel program
is data race-free then, due to the properties of barrier synchronisa-
tion, the program computes a deterministic result. The verification
technique we present in Section 6 depends on this guarantee of de-
terminism and, as discussed above, establishing race-freedom of a
kernel avoids the need to reason about weak memory semantics or
the granularity of memory accesses.

Say that we read from an array element A[i] in an execution
step if σA(A)(i) is referenced during the evaluation of any of the
expressions occurring in the step. Likewise, say that we write to an
array element A[i] in an execution step if σA(A)(i) is updated in
the step. An array element A[i] is accessed if it is either read from
or written to in the execution step. Observe that an array element
can be accessed multiple times in a single execution step, e.g., when
evaluating A[tid ] := A[tid ]⊕M 1M .

Definition 5.2. Let S0 →∗k Sn be an execution of a kernel program
P . The execution is said to have a data race if there are steps
Si →k Si+1 and Sj →k Sj+1 along the execution such that:

• distinct threads are responsible for these steps,
• a common array element is accessed in both execution steps,
• at least one of the accesses writes to the array element,
• no application of K-BARRIER occurs in between the accesses.

A program P is data race-free if for every initial state S0 of P
and execution starting from S0 it holds that the execution does not
have a data race.

Theorem 5.3. Let P be a generic kernel program and let M be a
monoid. Then: P [M ] is data race-free ⇐⇒ P [M ′] is data race-
free for all monoids M ′.

Proof. The ⇐-direction is trivial, as M is a monoid. For the ⇒-
direction, observe that neither the control-flow nor the array ac-
cesses can be influenced by the choice of M ′ by the typing rules
and genericity of P .

We now argue that data race-free kernel programs behave de-
terministically. Say that a barrier synchronisation occurs during
execution of a program whenever the K-BARRIER rule of Figure 7
applies. Suppose that a kernel program is race-free, and consider
executing the program from an initial state S. Race-freedom means
that the execution of one thread cannot depend upon the actions

of another until all threads participate in a barrier synchronisation.
Thus while the threads may interleave nondeterminstically, their
individual execution is deterministic and when the first barrier syn-
chronisation occurs (assuming all threads reach a barrier without
diverging), the program state S1 is deterministic. By a similar ar-
gument, individual thread execution until the next barrier synchro-
nisation is deterministic, leading to a deterministic program state
S2 when the second barrier synchronisation occurs. Applying this
argument and using induction on program executions, we can prove
the following:

Lemma 5.4. Let P be a data race-free kernel program and let S
be an initial state of P . If there exists a finite, maximal execution
starting from S with final array store σA, then all executions
starting from S are finite and for all maximal executions the final
array store is σA.

6. An Automated Verification Technique
Our theoretical results show that to verify functional correctness of
a generic parallel prefix sum of length n, implemented as a barrier-
synchronising program, it suffices to prove that the program is free
from data races and then test that the program behaves correctly
with respect to the interval monoid for every initial state with
in = [(0, 0), (1, 1), . . . , (n − 1, n − 1)]. In practice, a library
routine for computing a prefix sum takes no input except for in
so that there is just a single input to test.

GPU kernels are barrier synchronising programs that are re-
quired to be data race-free: the semantics of an OpenCL or CUDA
kernel is undefined if the kernel exhibits data races [19, 27]. Thus
our results suggest the following method for verifying functional
correctness of GPU kernels that claim to implement generic prefix
sums with respect to a single input array:

1. Prove that the GPU kernel is data race-free.

2. Run the interval monoid test to check functional correctness.

Steps 1 and 2 can be conducted independently, but the func-
tional correctness guarantee provided by step 2 is conditional on
the result of step 1. We now discuss how we have implemented
a practical verification method for generic prefix sums written in
OpenCL, based on this approach.

Representing a generic prefix sum The OpenCL programming
model does not support generic functions directly. However, it is
easy to describe a generic prefix sum by writing a kernel that
uses a symbol TYPE and a macro OPERATOR as placeholders for
the concrete type and operator with respect to which the prefix
sum should be executed. A concrete choice of type and operator
can be chosen by including a header file that specifies TYPE and
OPERATOR.

Race analysis Step 1 above can be discharged to any sound ver-
ifier for GPU kernels capable of proving race-freedom. For GPU
kernels this includes the PUG [24] and GPUVerify [1] tools, which
rely on SMT solvers, and the tool described in [23] which performs
verification using a combination of dynamic and static analysis. In



our experiments (Section 7) we use the GPUVerify tool because it
is actively maintained and publicly available, and is the only tool
supporting the multi-platform OpenCL programming model, which
allows us to evaluate step 2 above on a number of platforms.

By Theorem 5.3, we can prove race-freedom of a generic prefix
sum using any choice of TYPE and OPERATOR. In our experiments
we use the interval monoid.

Running the interval monoid test case Step 2 above requires an
encoding of the interval monoid. Observe that to check a prefix
sum of length n we need only encode elements (i, j) of the interval
monoid for 0 ≤ i ≤ j < n, as well as the 1I and > elements.
An element can thus be encoded usingO(lg(n)) bits, meaning that
O(n lg(n)) space is required for the test input and result. With this
encoding, the interval monoid test case can be executed as a regular
OpenCL kernel.

Soundness, completeness and automation Our verification strat-
egy is sound due to the guarantees provided by the version of
Theorem 4.5 for kernel programs, together with Theorem 5.3 and
Lemma 5.4, and the requirement that a sound method for verifying
race-freedom is used. As with any dynamic technique, soundness
of the testing phase of our approach depends on the probity of the
compiler, driver and hardware implementation of the architecture
on which the test is executed. In our experiments we guard against
this source of unsoundness by testing with respect to multiple, di-
verse platforms.

Our verification strategy is only complete if the technique used
to prove race freedom is complete. The GPUVerify method which
we employ is not complete: the technique uses both thread abstrac-
tion and loop invariant abstraction, which can lead to false positive
data race reports.

A small amount of manual effort is required in order to prove
race-freedom of prefix sum kernels: GPUVerify tries to perform
automatic inference of invariants required to prove race-freedom,
but often this inference is not strong enough and manual invariants
must be supplied by the programmer. However, these invariants are
checked by GPUVerify—they are not taken on trust by the tool.
In the examples we consider in Section 7 we disabled automatic
invariant inference and supplied a small number of relatively sim-
ple, non-quantified loop invariants by hand. The dynamic analysis
phase of our verification method is fully automatic.

Handling extended programming language features Our se-
quential language and its data-parallel extension omit real-world
language features such as procedures, unstructured control flow,
and pointers (with associated aliasing issues). We are confident that
our results apply directly in this extended setting under the condi-
tion that data of generic type SX are never accessed via pointers
with different element types. This is important for the testing part
of our approach; without this restriction it would be possible to pass
our test case by casting the out array to a char pointer and writing
the desired final result for the interval monoid byte-by-byte. Prov-
ing race-freedom in the presence of intricate pointer manipulation
can be challenging, but is possible with the right invariants and is
supported by GPUVerify. Because GPUVerify operates at the level
of control flow graphs using the techniques of [10], unstructured
control flow is also supported.

Nevertheless, the prefix sum implementations we have seen in
practice do not manipulate pointers in complex ways, call auxiliary
procedures or exhibit unstructured control flow.

As discussed in Section 3, the requirement that the input array
in be read-only is for ease of presentation only and can be dropped
in practice, allowing our technique to be used in verifying prefix
sums that operate in place.

Algorithm Depth Size Fanout

Sequential n n 2
Kogge-Stone lgn n lgn− (n− 1) 2
Sklansky lgn (n/2) lgn n
Brent-Kung (2 lgn)− 1 2n− lgn− 2 2
Blelloch 2 lgn 2(n− 1) 2

Table 2. Characteristics of the prefix sum algorithms considered in
this paper where n is the number of elements

7. Experimental Evaluation
We demonstrate the effectiveness of our method for prefix sum
verification in practice by applying it to four different algorithms
implemented as OpenCL kernels.

All materials required to reproduce our experimental results,
including implementations all kernels, are available online.5

Details of prefix sum kernels We evaluate our technique us-
ing four different, well-known prefix sum algorithms: Kogge-
Stone [21], Sklansky [34], Brent-Kung [5] and Blelloch [4]. The
Blelloch algorithm is an exclusive prefix sum.

Figure 8 provides a circuit diagram description for each algo-
rithm. There is a wire for each input and data flows top-down
through the circuit. Each node • performs the binary associative
operator on its two inputs and produces an output that passes down-
ward and also optionally across the circuit (through a diagonal
wire). Table 2 gives a comparison of these algorithms, as well as the
straightforward sequential implementation, in terms of circuit char-
acteristics: depth, the number of levels; size, the number of nodes;
and fanout, the maximum number of outbound wires per node, as
the size of the input (or width) n of the circuit varies. The depth
of a circuit indicates how long it takes for the result to propagate
through the circuit, and thus dictates the time taken for prefix sum
computation. Size indicates how many gates would be required to
build the circuit in hardware, while fanout indicates the required
driving capacitance of the output gate. A software implementation
of a prefix sum is work efficient if the number of operations required
is within the same order of magnitude as the sequential version. The
size column of Figure 2 indicates that Blelloch and Brent-Kung are
work-efficient, while Kogge-Stone and Sklansky are not. A more
detailed discussion of these characteristics can be found in [16].

Through a survey of several GPU code repositories (the AMD
APP SDK,6 the NVIDIA CUDA SDK,7 and the SHOC [12], Ro-
dinia [7] and Parboil [37] benchmarks) we found Kogge-Stone to
be the most widely used GPU implementation of a prefix sum in
practice, Blelloch to be used where an exclusive prefix sum is re-
quired, and Brent-Kung employed several times in one large CUDA
kernel that computes eigenvalues of a matrix. Sklansky is the oldest
prefix sum algorithm we consider; we did not see it used in practi-
cal GPU kernels.

Experimental setup As discussed in Section 6, we use the GPU-
Verify tool [1] to prove that each kernel is free from data races.
These experiments were performed on a Linux machine with a
1.15 GHz AMD Phenom 9600B 4 core processor, using a version of
GPUVerify downloaded from the tool web page8 on 26 June 2013.

We then verify functional correctness for each kernel by running
the interval of summations test case. We give results for five differ-
ent platforms: two NVIDIA GPUs – a 1.16 GHz GeForce GTX 570

5 http://multicore.doc.ic.ac.uk/tools/GPUVerify/POPL14
6 http://developer.amd.com/tools/heterogeneous-computing/
amd-accelerated-parallel-processing-app-sdk/
7 https://developer.nvidia.com/gpu-computing-sdk
8 http://multicore.doc.ic.ac.uk/tools/GPUVerify/



(a) Kogge-Stone (b) Sklansky

(c) Brent-Kung
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(d) Blelloch

Figure 8. Circuit representations of the prefix sum algorithms for
n = 8 elements

and a 1.15 GHz Tesla M2050; two Intel CPUs – a 2.13 GHz 4 core
Xeon E5606 and a 2.67 GHz 6 core Xeon X5650; and one ARM
GPU – a 533 MHz 4 core Mali T604. These devices exhibit a range
of power and performance characteristics. The NVIDIA GPUs of-
fer a large number of parallel processing elements running at a rel-
atively low clock-rate; the Intel CPUs run at a higher clock-rate but
exhibit less parallelism; and the ARM GPU is designed for high
power-efficiency. We chose to run on multiple platforms to guard
against possible unsound results as a result of a particular compiler,
driver or hardware configuration. Each experiment was run with a
timeout of 1 hour. All the timing results we present are averages
over three runs.

In [38], Voigtländer shows for sequential programs that a
generic prefix sum is correct for all input lengths if it can be shown
to behave correctly for all input lengths with respect to two binary
operators over a set of three elements. He shows further that it is
sufficient to consider O(n2) test inputs: n(n+ 1)/2 tests using the
first operator and n − 1 tests using the second operator. The result
of [38] considers all possible n, but also restricts so that a prefix
sum of a specific length n can be shown correct by testing the
corresponding set of inputs. Our Lemma 5.4 allows us to lift this
method to race-free barrier-synchronising programs. Thus, by way
of comparison, we also tried dynamically verifying the prefix sum
kernels by running, for each element size, the set of Voigtländer
tests. We discuss Voigtländer’s paper further in the related work
(Section 8).

Verification using the interval of summations test case and the
Voigtländer tests both require race-freedom to be established, thus
the overhead of race checking applies to both approaches.

Results for proving race-freedom Table 3 presents verification
times, in seconds, for proving race-freedom of each of our prefix
sum kernels using GPUVerify, for a selection of power-of-two
element counts up to 231. Times for the power-of-two thread counts
not shown are in the same order of magnitude.

The results show that verification time is more-or-less indepen-
dent of the number of threads executing the kernel. This is because
GPUVerify checks race-freedom for a kernel with respect to an ar-
bitrary pair of threads, and reasons about loops using invariants
rather than by unrolling. This excellent scalability demonstrates

that the data race analysis aspect of our verification method is prac-
tical for very large arrays.

As noted in Section 6, we disabled automatic invariant inference
in GPUVerify as it did not allow fully automatic verification of our
examples. Instead we provided relatively simple, non-quantified
loop invariants for each of our kernels in order for verification
to succeed. For example, for the loop of the Kogge-Stone kernel
shown in Figure 2 we provided the following invariant (no further
invariants were necessary):

no read(out) ∧ no write(out)

which specifies that no access to the out array is in-flight at the
head of the loop. The most intricate invariant we had to specify, for
the Blelloch kernel, was:

(d & (d− 1)) = 0 ∧ ((offset = 0 ∧ d = N) ∨ d ∗ offset = N) .

Here, d and offset are loop counters, with d increasing in powers-
of-two from 1 to N , and offset decreasing in powers-of-two from
N to 1, and finally reaching zero. The conjunct (d & (d− 1)) = 0
uses the bitwise-and operator, &, to compactly express that d must
be a power-of-two or zero.

Counting each top-level conjunct of a loop invariant as a sep-
arate invariant, the number of invariants required for verification
of each kernel was as follows: (Kogge-Stone, 2); (Sklansky, 1);
(Brent-Kung, 4); (Blelloch, 6). The invariants did not have to be
tailored for individual thread counts.

Results for dynamic analysis The I rows of Table 4 present, for
each prefix sum and platform, the time in seconds taken to run
the single interval of summations test for power-of-two array sizes
from 29 to 214 and 218 to 220 (results in between follow a similar
trend). For each array size we also show in the #Voigtländer
tests row the total number of tests that would need to be run
to verify the kernel using Voigtländer’s method and the V rows
show how long these tests took to run. The times are end-to-
end, taking into account device initialisation, creation of memory
buffers, compilation of the OpenCL kernel,9 copying data into
memory buffers, running the test and validating the result. For the
Voigtländer tests we used a wrapper so that device initialisation,
creation of memory buffers and kernel compilation is performed
only once for each array size. We note that while in theory an
array of length n can be processed by n/2 concurrent threads (or n
threads in the case of Kogge-Stone), it is up to the OpenCL runtime
to decide how to schedule threads across hardware resources, and
that in practice a large number of threads will be launched in a
series of waves.

From the I rows it can be seen that running the interval of
summations test case is very fast on all platforms, even for arrays
of length 220. It may seem surprising that the runtime does not
increase significantly as the array size increases. This is because
(a) computing with the interval monoid is very cheap, requiring
only integer equality testing and addition by a constant and (b)
the expense of online compilation of the OpenCL kernel, which
dominates the runtime of these simple tests.

The V rows show that, unsurprisingly, running a quadratic num-
ber of tests per array size does not scale well. On all platforms, we
found that sizes of n ≥ 214 exhausted our time limit of 1 hour,
showing that the Voigtländer method will not scale to large arrays.

8. Related Work
Relationship to results by Voigtländer and Sheeran The closest
work to this paper is work by Voigtländer [38] which proves two
interesting results for sequential generic prefix sums.

9 In the OpenCL model, a kernel is compiled at runtime using an online
compiler, so that it need not be pre-compiled for any given device [19].



n 21 22 23 . . . 28 29 210 211 212 213 214 . . . 229 230 231

Kogge-Stone 5.7 5.8 5.9 5.8 5.8 6.0 5.6 5.8 5.7 5.6 6.4 6.4 6.6
Sklansky 5.6 6.1 6.5 6.8 6.6 6.7 6.8 6.7 6.5 6.4 7.3 8.1 7.9

Brent-Kung 5.9 6.7 7.4 12.3 11.4 12.9 10.2 10.3 10.7 12.6 14.9 11.1 16.4
Blelloch 6.0 7.4 9.0 12.4 12.6 13.8 12.0 14.1 11.6 12.3 15.5 13.0 14.8

Table 3. Time (in seconds) taken to prove race freedom for prefix sum kernels, for increasing array lengths. An array of length n is processed
by n/2 threads, except in the case of Kogge-Stone where n threads are used.

n 29 210 211 212 213 214 . . . 218 219 220

#Voigtländer tests 131,839 525,823 2.1× 106 8.4× 106 3.4× 107 1.3× 108 3.4× 1010 1.4× 1011 5.5× 1011

NVIDIA GeForce GTX 570
Kogge-Stone V 19.2 76.2 337.6 1463.9 - - - - -

I 0.4 0.5 0.3 0.4 0.3 0.4 0.4 0.4 0.4
Sklansky V 18.5 71.8 320.2 1438.3 - - - - -

I 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Brent-Kung V 19.0 69.3 317.3 1454.3 - - - - -

I 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Blelloch V 19.2 75.4 324.2 1595.3 - - - - -

I 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

NVIDIA Tesla M2050
Kogge-Stone V 14.6 36.1 160.9 653.0 2796.8 - - - -

I 0.3 0.3 0.6 0.5 0.5 0.5 0.6 0.5 0.6
Sklansky V 12.2 32.5 149.6 609.3 2601.5 - - - -

I 0.3 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.6
Brent-Kung V 10.9 35.9 165.7 678.1 2889.2 - - - -

I 0.3 0.3 0.6 0.5 0.6 0.5 0.6 0.6 0.6
Blelloch V 10.9 36.7 166.0 679.9 2931.8 - - - -

I 0.3 0.3 0.5 0.6 0.6 0.6 0.6 0.6 0.6

Intel Xeon X5650
Kogge-Stone V 21.1 109.8 660.8 3467.1 - - - - -

I 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
Sklansky V 12.2 78.4 404.8 2003.9 - - - - -

I 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
Brent-Kung V 12.6 80.4 469.9 2272.5 - - - - -

I 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
Blelloch V 12.9 80.7 472.1 2332.5 - - - - -

I 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.3

Intel Xeon E5606
Kogge-Stone V 107.0 909.2 - - - - - - -

I 1.9 1.9 2.1 2.1 2.0 2.1 2.4 2.7 3.2
Sklansky V 38.7 266.0 1221.5 - - - - - -

I 1.9 1.9 2.0 2.1 2.0 2.0 2.2 2.3 2.4
Brent-Kung V 51.5 409.1 1793.8 - - - - - -

I 2.0 2.0 2.1 2.1 2.1 2.1 2.3 2.3 2.5
Blelloch V 54.3 429.9 1900.3 - - - - - -

I 1.9 2.0 2.1 2.1 2.1 2.1 2.4 2.4 2.6

ARM Mali T604
Kogge-Stone V 287.0 1166.1 - - - - - - -

I 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5
Sklansky V 287.2 1147.6 - - - - - - -

I 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5
Brent-Kung V 287.4 1108.1 - - - - - - -

I 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.6
Blelloch V 277.0 1105.3 - - - - - - -

I 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.6

Table 4. Time (in seconds) taken to establish correctness of prefix sum implementations, for increasing array lengths, on NVIDIA GPU,
Intel CPU and ARM GPU architectures. The number of test cases associated with Voigtländer’s method for each array length is also shown.

First Voigtländer shows, using relational parametricity, that a
generic prefix sum is correct if and only if it behaves correctly for
each length n with respect to integer lists and list concatenation
when applied to the input [[0], [1], . . . , [n − 1]], that is, it yields
the output [[0], [0, 1], . . . , [0, . . . , n − 1]]. Voigtländer states that

this result was inspired by earlier unpublished work by Sheeran;
Sheeran confirms this claim when exploiting the result in later work
on the design of prefix sum algorithms [33]. We refer to this as
the Sheeran result. The result also holds for fixed lengths n, which
means the result is similar to our result for sequential prefix sums



with respect to the interval monoid. However, the Sheeran result
cannot be used for practical verification of prefix sums for large n,
becauseO(n2 lg(n)) space is required to represent the result.10 Our
interval of summations monoid avoids this problem by exploiting
the fact that, as argued in Section 4, a correct generic prefix sum
should never compute a non-contiguous summation. The interval
of summations abstraction thus allows a contiguous summation to
be represented precisely and compactly as an interval (i, j) (or as
1I in the case of an empty summation), and collapses all other
summations into the absorbing element >.

Letting L denote the monoid of integer lists under list concate-
nation employed by the Sheeran method, there is an obvious homo-
morphism θ : L→ I defined by:

θ([x1, . . . , xm]) =


1I if m = 0

(x1, xm) if m > 0 and
xi+1 = xi + 1 (1 ≤ i < m)

> otherwise

This homomorphism discards exactly those summations that
cannot contribute to a correct generic prefix sum.

Secondly, Voigtländer presents an elegant proof of the “0-1-2-
Principle” for parallel prefix computation. In the spirit of the 0-1-
Principle of Knuth [20],11 the 0-1-2-Principle states that a prefix
sum algorithm is correct on all ternary sequences with every as-
sociative operator (defined over the ternary set) if and only if it is
correct on any input sequence with an associative operator. In fact,
carefully tracing his proof, Voigtländer observes that it suffices to
consider just two operators and for every length n a particular input
set of ternary sequences of size O(n2) and O(n) for his first and
second operator, respectively. As with the Sheeran result, this re-
sult also holds for fixed lengths n. Voigtländer does not present an
experimental evaluation of his method in [38]; we believe that our
work is the first to do so. As we demonstrated in the experiments
of Section 7, verifying a prefix sum by running Voigtländer’s set of
tests does not scale to large array sizes.

The focus of [33, 38] is on sequential HASKELL programs de-
scribing parallel synchronous hardware. In contrast, we have pre-
sented a method for verifying prefix sums implemented as asyn-
chronous barrier-synchronising programs, leading to a practical
method for verifying GPU kernel implementations. Due to our im-
perative, data-parallel setting, we present proofs using a direct sim-
ulation argument; we are not aware of any work on using relational
parametricity to reason about data-parallel programs and believe
this would be challenging.

Correct-by-derivation prefix sums An alternative approach by
Hinze [17] is to construct prefix sums that are correct by derivation.
In Hinze’s work, rather than verifying candidate implementations
for functional correctness, new prefix sum circuits are built from a
set of basic primitives and combinators. The correctness of these
circuits is ensured by a set of algebraic laws derived for these
combinators. Similar to the work of Sheeran, prefix sums are given
as HASKELL programs describing circuit layouts. We are not aware
of any work that translates this approach to a data-parallel setting.

Formal verification of GPU kernels Recently a number of tech-
niques for formal or semi-formal analysis of GPU kernels have
been proposed [1, 9, 18, 23–25], and formal semantics for GPU ker-
nels have been studied in-depth [10, 15]. The PUG [24] and GPU-
Verify [1] methods aim to statically prove race-freedom, while the

10 The space complexity isO(n2 lg(n)) for correct algorithms; an incorrect
algorithm could apply the concatenation operator arbitrarily many times,
requiring unbounded space.
11 If an oblivious sorting algorithm is correct on all Boolean valued input
sequences then it is correct on input sequences over any totally ordered set.

method described in [23] uses a combination of dynamic and static
analysis for race-freedom verification. We employed GPUVerify to
prove race-freedom of prefix sum kernels in our experimental eval-
uation (Section 7). The GKLEE [25] and KLEE-CL [9] methods
employ dynamic symbolic execution, based on the KLEE tool [6],
to find data races and array bounds errors in CUDA and OpenCL
kernels, respectively.

A recent technique for functional verification of OpenCL ker-
nels using permission-based separation logic [18] could, in princi-
ple, be applied to generic prefix sum kernels. However, tool support
for automation of this method is not yet available.

In prior work we introduced barrier invariants [8] to enable
reasoning about data-dependent GPU kernels, and used barrier in-
variants to statically prove functional properties of Blelloch, Brent-
Kung and Kogge-Stone prefix sum kernels. The challenges in mak-
ing this approach scale provided insights which ultimately led to
the interval of summations abstraction, and we used an early for-
mulation of the abstraction to verify the Kogge-Stone kernel in [8].
The method for prefix sum verification presented here significantly
outperforms the technique of [8], but the concept of barrier invari-
ants has wider applicability.

9. Conclusions
We have introduced the interval of summations abstraction, investi-
gated theoretical guarantees provided by this abstraction for verify-
ing prefix sum algorithms, and shown that it can be used to design
a practical and scalable verification method for GPU kernel imple-
mentations of prefix sums. Our experimental results demonstrate
that we can prove race-freedom of prefix sum implementations for
all conceivably useful array sizes, after which checking functional
correctness of a prefix sum boils down to running a single test case,
taking no longer than the time required to run the prefix sum in
practice. We believe this substantiates our claim that we have made
a major step towards solving the problem of functional verification
for GPU implementations of generic prefix sums.

Our approach depends on the ability to prove that a data-parallel
program behaves deterministically. For models of computation
where barriers provide the only means of synchronisation this
boils down to proving race-freedom (Lemma 5.4). Our approach
thus extends to prefix sums written in programming models such
as OpenMP, MPI and pthreads as long as these implementations
use barriers exclusively for synchronisation, in favour of locks or
atomic operations. Correspondingly, our method cannot be applied
to GPU kernel implementations where threads communicate using
atomics; in practice we have not seen the use of atomics in prefix
sum kernels.

We have considered verification of prefix sums with respect
to fixed array sizes. To prove that a prefix sum is correct for
all array sizes it would be necessary to prove race-freedom for
arbitrary array sizes, and also to prove that the prefix sum would
compute the correct result for our interval of summations test case
for every array size. While the former is beyond the scope of
current tools such as GPUVerify, and the latter obviously cannot
be achieved through testing, one could attempt to establish both
through (manual or partially automated) mathematical proof.

We deliberately designed the interval of summations abstraction
to capture the specific case of prefix sums, due to the importance
of this class of algorithms. The abstraction can be used to analyse
any algorithm that operates over an abstract monoid as long as the
results computed by the algorithm are required to be contiguous
summations. We are aware of one further class of such algorithms:
reduction operations. The reduction of an array [s1, s2, . . . , sn] is
the sum s1 ⊕ s2 ⊕ · · · ⊕ sn. Indeed, a reduction is performed
during the first phase of the Blelloch and Brent-Kung prefix sum
algorithms.



A natural question is to ask if there are prefix sum algorithms
that gain efficiency by exploiting other properties of operators, such
as commutativity or idempotence. We are aware of recent work by
Sergeev [32] which investigates prefix sum circuits for the XOR
operator, exploiting the fact that this operator satisfies the iden-
tity x ⊕ y ⊕ y = x. Beyond prefix sums, there is scope for de-
vising abstractions to allow representation-independent reasoning
via a canonical test case in less restricted settings. For example,
potentially discontiguous summations of monoid elements can be
represented using lists [33, 38], and commutativity can be accom-
modated by switching to a bag representation. However, these rep-
resentations lose the space-efficiency afforded by the interval of
summations abstraction which allows our approach to scale.
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