
Preprint

The Lazy Happens-Before Relation: Better Partial-Order
Reduction for Systematic Concurrency Testing ∗

Paul Thomson and Alastair F. Donaldson
Imperial College London, UK

{paul.thomson11,afd}@imperial.ac.uk

Abstract
We present the lazy happens-before relation (lazy HBR), which
ignores mutex-induced edges to provide a more precise notion
of state equivalence compared with the traditional happens-before
relation. We demonstrate experimentally that the lazy HBR has the
potential to provide greater schedule reduction during systematic
concurrency testing with respect to a set of 79 Java benchmarks.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.2.4 [Software Engineering]: Soft-
ware/Program Verification

Keywords Partial-order reduction; systematic concurrency testing

1. Introduction
Partial-order reduction (POR) [2] can be used to reduce the num-
ber of schedules explored during systematic concurrency testing
(SCT) [3], a technique for dynamic analysis of concurrent pro-
grams implemented in tools such as Verisoft [3] and CHESS [5],
with the guarantee that the reduction cannot lead to error states be-
ing missed. A potential issue with POR is that all interleavings of
operations on the same mutex must be explored; in general, such
interleavings may lead to different states. However, it is often un-
necessary to explore interleavings of critical sections that access
disjoint data, or access common data in a read-only fashion; this is
common in the presence of coarse-grained locking.

We present the lazy happens-before relation (lazy HBR) that
enables schedule reduction even in the presence of coarse-grained
locking, allowing well-engineered concurrent software that has
been deliberately designed to use a simple locking discipline to
also reap the benefits of SCT-based analysis.

2. Example
We illustrate partial-order reduction and our key contribution via
an example. Figure 1 shows an execution trace of a program—that
is, a list of operations executed by the two threads, T1 and T2; T1

∗This work was supported by an EPSRC-funded PhD studentship.

[Copyright notice will appear here once ’preprint’ option is removed.]

T1
lock(m)
read(x)
unlock(m)
write(y)

T2

write(z)
lock(m)
read(x)
unlock(m)

Figure 1: Schedule of a program and the inter-thread edges of the
happens-before relation (edges implied by transitivity are omitted).

first locks a mutex m, reads a variable x, unlocks the mutex m
and writes to a variable y. T2 then executes a similar sequence of
operations. We refer to the operations as events and the list (a total-
order of the events) as a schedule. Most POR techniques use the
happens-before relation, which is a partial-order of the events in
the schedule. The happens-before relation is a subset of the total-
order of the schedule and a common definition is as follows: e1
happens-before e2 iff e1 is before e2 in the schedule and one of the
following holds: (a) e1 and e2 are from the same thread; (b) e1 and
e2 both access the same variable/mutex and at least one access is a
modification; (c) there exists an event e such that e1 happens-before
e and e happens-before e2 (the relation is transitively closed).
Figure 1 depicts an example HBR; inter-thread edges are shown
as arrows and we omit intra-thread edges and edges that can be
obtained via transitivity. The theorem for the HBR is well-known:

Theorem 2.1. All linearizations of an HBR correspond to feasible
schedules (they can be executed) and all will reach the same state.

Thus, it is only necessary to explore one schedule from each
equivalence class (partial-order) in order to detect safety property
violations, such as data races, deadlocks and assertion failures. For
example, note that the writes to y and z are unordered; swapping
these events gives a schedule that can be executed and will reach
the same state. The write to z can be swapped with the event above
it several more times without violating the partial-order; all these
schedules reach the same state. In contrast, the lock and unlock
events cannot be swapped without changing the partial-order. Thus,
a POR technique would only need to consider two schedules for
this example: a schedule for the HBR shown, and a schedule in
which T2 locks m before T1 (which has a different partial-order).
Theorem 2.1 can be proven by showing that swapping two adjacent
unordered events does not change the state reached.

In the lazy happens-before relation (lazy HBR), we modify con-
dition (b) of the definition to become: (b) e1 and e2 both access
the same non-mutex variable and at least one access is a modifi-
cation. Thus, lock and unlock events do not introduce inter-thread
edges. As such, the arrow in Figure 1 is removed and so the partial-
order captures all possible schedules. Thus, a partial-order algo-
rithm would only need to explore a single schedule. Unfortunately,

Preprint 1 2015/6/26



1 100 1000 10000 100000
#HBRs

1

100

1000

10000

100000

#l
az

y
H

B
R

s

1

2 3

4

5
6

7

8

9

10

11

12

13

14

1516

17

18

19

20 21

22

23

24

25

26

27

2829

30

31

32

33

34

35

36

37

38

39

40

41

42

434445

46

47

48

49

50

51

52

53

54

55

56

57

58

596061

62

63

64

65

66

67

68

69
70

71

72

73

74

75

76

77

78

79

Figure 2: The number of regular vs. lazy happens-before relations
explored within 100,000 schedules of DPOR.

not all linearizations of a lazy HBR are feasible schedules; that
is, some schedules cannot be executed. For example, with respect
to Figure 1, a schedule in which T2’s lock event occurs between
T1’s lock and unlock events cannot be executed, as T2’s lock event
would be disabled (blocked) until T1 unlocks the mutex. This pre-
vents straightforward use the of lazy HBR in certain POR tech-
niques. Despite this, we contribute the following theorem:

Theorem 2.2. Given two feasible schedules, S1 and S2, with the
same lazy HBRs, S1 and S2 are guaranteed to reach the same state.

The two schedules will not necessarily have the same HBR
and so, in prior work, these schedules would be assumed to reach
different states. The proof for this, which we now sketch, is not as
straightforward as that of Theorem 2.1, as swapping adjacent events
in a schedule that are unordered by lazy HBR does not always
yield a feasible schedule. Instead, call our original program P ; we
consider an abstracted version P ′ in which lock and unlock are no-
ops. An analogue of Theorem 2.1, using lazy HBR instead of HBR,
now applies to schedules of P ′. We complete the proof by showing
that the states explored by each event of a schedule of P are the
same as those explored when executing the schedule on P ′, modulo
the state of mutexes. The final state of the mutexes when executing
S1 and S2 on P are shown to be the same by a counting argument
(both schedules contain the same lock and unlock events). Thus,
the schedules reach the same state.

Lazy HBR caching Re-exploration of redundant states during
SCT can be avoided using happens-before relation caching (HBR
caching), a simple form of partial-order reduction: each HBR is
stored after each executed event and if the same HBR is reached
during a later execution, then the schedule is redundant and is not
explored further [4]. An immediate benefit of the lazy HBR is that
it yields lazy HBR caching, where the lazy HBR is used in place of
the HBR to identify equivalent states more effectively.

3. Evaluation
We have implemented an SCT tool for Java programs called LAZY-
LOCKS and collected 79 open source multithreaded Java bench-
marks, which we use to evaluate the lazy HBR. The tool and bench-
marks are available at:

http://sites.google.com/site/lazyhbr/

Redundant HBRs We evaluate the potential reduction possible
from the lazy HBR and its use in more precisely identifying unique
states by testing each benchmark with a schedule limit of 100,000
using dynamic partial-order reduction (DPOR) [1], a POR tech-
nique that uses the regular HBR. We record the number of sched-
ules, terminal HBRs and terminal lazy HBRs explored. We show
that many unique HBRs explored actually lead to equivalent states

1 100 1000 10000 100000
HBR caching (#lazy HBRs)

1

100

1000

10000

100000

La
zy

H
B

R
ca

ch
in

g
(#

la
zy

H
B

R
s)

1

2
3

4

56

7

8

9

10

11

12

13

14

1516

17

18

19

2021

22

23

24

25

26

27

2829

30

31

32

333435

36
37

38

39

40

41

42

434445

46

47

48

49

50

51

52
53

54

55

56

57

58

5960

62

63

64

65

66

67

68

69
70

71

72

73

74

75

76

77

78

79

Figure 3: The number of lazy happens-before relations explored
within 100,000 schedules of regular vs. lazy HBR caching.

(and so are redundant), which we know because they have the same
lazy HBR. For a given benchmark we have the following inequality
for the number of states, HBRs, etc. explored:

#states ≤ #lazy HBRs ≤ #HBRs ≤ #schedules ≤ 100,000
Figure 2 plots our results using a log scale. Each point is a

benchmark id; an id at (x, y) indicates that DPOR explored x HBRs
and y lazy HBRs. A benchmark is underlined if DPOR hit the
schedule limit, in which case unexplored terminal states are likely
to remain; otherwise all terminal states were explored.

There are 33 benchmarks below the diagonal; thus, for these
benchmarks, redundant HBRs were explored according to the lazy
HBR. Across the 33 benchmarks below the diagonal, 910,007
(80%) of the unique HBRs explored were found to be redundant.

Lazy HBR caching We evaluated lazy vs. regular HBR caching
by comparing the number of lazy HBRs explored by both tech-
niques within 100,000 schedules. Figure 3 plots our results using
a log scale. Each point is a benchmark id; an id at (x, y) indicates
the number of lazy HBRs explored by HBR caching and lazy HBR
caching, respectively. As expected, regular HBR caching never ex-
plored more lazy HBRs. There are 18 benchmarks below the diago-
nal; across these benchmarks, lazy HBR caching explored a total of
8,969 (84%) more terminal lazy HBRs than regular HBR caching.

4. Future Work: Lazy DPOR
Because not every linearization of a lazy HBR is a feasible sched-
ule, the lazy HBR cannot be immediately used in place of the regu-
lar HBR during DPOR. In future work we plan to investigate a new
lazy DPOR algorithm that exploits the lazy HBR to provide a more
significant reduction than regular DPOR and lazy HBR caching.

Acknowledgements
We are grateful to Jeroen Ketema for discussions and to Pavel
Parizek for feedback related to this work.

References
[1] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for

model checking software. In POPL, pages 110–121, 2005.
[2] P. Godefroid. Partial-Order Methods for the Verification of Concurrent

Systems. Springer, 1996.
[3] P. Godefroid. Model checking for programming languages using

VeriSoft. In POPL, pages 174–186, 1997.
[4] M. Musuvathi and S. Qadeer. Partial-order reduction for context-

bounded state exploration. Technical Report MSR-TR-2007-12, Mi-
crosoft Research, 2007.

[5] M. Musuvathi et al. Finding and reproducing Heisenbugs in concurrent
programs. In OSDI, pages 267–280, 2008.

Preprint 2 2015/6/26

http://sites.google.com/site/lazyhbr/

	Introduction
	Example
	Evaluation
	Future Work: Lazy DPOR

