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Abstract

While software developers can review their programs to fix bugs, they might
not be able to patch a compiler bug due to which their perfectly valid
programs misbehave. Moreover, even a formal verification of source code
provides no guarantees if the code is miscompiled. For these reasons great
effort is spent to increase the reliability of compilers. One recent approach is
compiler fuzzing in combination with random differential testing to detect
miscompilations. Because the correct behaviour of randomly generated
programs is not known they are compiled with multiple compilers or with
different optimisation levels and the behaviour of the resulting binaries is
compared to detect miscompilations.

Randomly generated programs are often large, sometimes by necessity,
because this increases the chances that they cause a bug. On the other hand,
for large programs it is more difficult to locate and extract the root cause
of the triggered bug. Therefore automatic test case reduction was recently
proposed in the context of testing C compilers. The key problem with the
idea to automatically remove parts from test cases is to avoid undefined
behaviour because it leads to useless reduction results if it interferes with
the actual misbehaviour or is present in the final test cases.

In the scope of this project the existing implementation of the C-Reduce
framework has been lifted to the domain of OpenCL kernels. In doing so
the principal challenge has been to find appropriate analysis tools for the
design of interestingness tests to prevent undefined behaviour, because the
previously used tools are not compatible with OpenCL. It turned out that
a reliable detection of undefined behaviour is only possible if the dynamic
analysis of Oclgrind is used as oracle. To make this practical, the most
significant achievement has been the design of a new plugin to reliably detect
the usage of undefined values which have been identified as one of the largest
sources of undefined behaviour which is overlooked by static tools.

Additionally, the contributions of this project include bug reports and
patches for general issues with Oclgrind, a patch to fix a case of wrong
code generation in the Clang compiler which has been discovered during
the project and improvements of the transformations in C-Reduce. Further,
parts of the C-Reduce algorithm for Windows have been reimplemented to
improve the performance of the automatic reductions.

Finally, the robustness and performance of automatic reductions in the
domain of many-core compilers have been evaluated. The reduced test cases
are free from undefined behaviour and with less than one kilobyte small
enough to be reported without the need for manual postprocessing. Moreover,
the average reduction time of 100 minutes per test case is short enough to
integrate the process into the everyday development.
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1
Introduction

Compiler bugs are a great challenge in the area of software development
because they can introduce wrong behaviour in previously verified code. This
is especially worrisome for safety-critical systems such as health monitors or
encryption software. Additionally, compiler bugs are hard to debug and it
can take a long time before the compiler has been identified as the failing
instance. To mitigate the risk of compiler bugs, projects have been started
to develop verified compilers for which the optimisations are proven to be
correct. However, their implementation of the C standard is limited and the
number of available optimisations is small compared to GCC or Clang.

To increase the reliability of the non-verified compilers, the technique
of compiler fuzzing has recently received significant attention. Specifically,
the use of random differential testing, whereby the randomly1 generated
programs are compiled with multiple compilers, or a single compiler at
different optimisation levels, to circumvent the oracle problem. Since for
the automatically generated programs the correct behaviour is unknown it
cannot be used as reference. Instead, any program that behaves differently
than the majority of the compiled programs is considered as miscompilation.
This approach makes it possible to evaluate the compiler on an unlimited
number of programs to find potential bugs without significant manual effort.
Previous work of Yang et al. [Yan+11] explains the principles behind this
technique in more detail and provides a fuzzer implementation for the C
language.

Most compiler bugs are caused by unsound optimisations which fail to
handle edge cases correctly or depend on wrong assumptions. Since OpenCL
compilers have to apply aggressive optimisations to translate the fairly general

1 Throughout the report the word “random” is used in its informal sense and implies the
technical meaning of “pseudo-random”.
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1 Introduction

OpenCL C language into highly efficient and device-specific code they are
in particular at risk of invalid code generation. For this reason Lidbury
et al. [Lid+15b] have lifted the compiler fuzzing strategy to the domain
of many-core compilers and in particular added functionality to generate
OpenCL kernels to the existing fuzzer for C programs.

One of the issues with compiler fuzzing is that the generated kernels
have to be quite large – on average a few hundred kilobytes – to achieve a
high success rate in triggering bugs. Locating and extracting bugs from test
cases by hand is a time consuming task and hence cannot be afforded by
the majority of developers. The alternative is the approach of automatic
test case reduction, whereby a large bug triggering program is automatically
converted it into a smaller program – a few hundred bytes are acceptable
– which can be directly presented to developers and is just large enough to
trigger the bug. So called delta debugging tools simply try to remove parts
from source files without making the bug disappear until no further changes
are possible. Regehr et al. [Reg+12] have implemented C-Reduce, a more
sophisticated test case reducer for C programs which features specialised
source-to-source transformations in addition to general delta removal.

However, just shrinking the size of test cases through automatic reducers
will not yield the desired result of presentable bug reports. If no extra care is
taken the test cases themselves can become syntactically invalid or undefined
behaviour can be introduced during the reduction which makes them useless.
Examples of undefined behaviour in C-like languages include the usage of
uninitialised variables or dereferencing a null pointer. A crucial part of the
reduction process are therefore interestingness tests which are executed after
each alteration of a test case. The tests have to check whether the program
can still be compiled and executed, is free from undefined behaviour and
finally still triggers the “desired” misbehaviour. Additionally, with an average
number of 30 000 invocations of the interestingness test per reduction they
have to be fast to obtains acceptable runtimes. While static analysis tools
fulfil the requirement of having a short execution time, they cannot be as
precise as dynamic analysers.

The principal aim of this project has been to lift the C-Reduce framework
for reduction of C programs to the context of OpenCL, to enable automatic
test case reduction for parallel OpenCL kernels. Combined with the test
case generation method of Lidbury et al. [Lid+15b], this has the potential
to provide a fully automatic method for discovering small OpenCL kernels
that trigger compiler bugs. While the C-Reduce framework in general
is not specific to a particular language and thus could be used without
larger modifications, the main challenge has been to construct suitable
interestingness tests. The previously used tools to detect indications for
undefined behaviour in test cases are not compatible with the OpenCL C
language and had to be substituted.

Imperial College London, Department of Computing 11
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For this reason Oclgrind has been included in the interestingness tests
as a dynamic analysis tool. But since its provided detection of undefined
values caused several problems, a more precise plugin has been developed
in the scope of this project. The new plugin increased the accuracy and
robustness of the interestingness significantly and finally allowed to apply
the automatic reduction to OpenCL kernels. Though the plugin has been
developed with its usage in the interestingness tests in mind, it improves the
quality of Oclgrind in general and will be useful in various other situations
too.

In addition to the new plugin the contributions of this project include the
discovery of bugs in Oclgrind as well as a patch for a bug in the Clang compiler
to correct a wrong code generation for vector expressions. Furthermore,
some transformations of the C-Reduce framework have been improved and
performance of the framework itself on Windows has been increased.

Finally, an evaluation of the robustness and performance of automatic
reductions of OpenCL kernels has been conducted. It confirmed the hy-
pothesis that automatic reductions can be successfully applied to OpenCL
kernels resulting in small test cases and being fast enough to be integrated
into the everyday development process. Moreover, as result of the automatic
reductions several bugs in OpenCL compilers have been detected and were
confirmed by the developers after they have been reported.

The rest of this report is organised as follows: Chapter 2 presents related
work in the field of compiler fuzzing and automatic test case reduction as well
as concepts of the detection of undefined values during a dynamic analysis.
In Chapter 3 discovered problems and proposed solutions are explained.
This includes small patches to the C-Reduce project, the Clang compiler
and Oclgrind but also the redesign of the parallel interestingness tests of
C-Reduce on Windows and a new plugin of Oclgrind to detect uninitialised
values. The results of the automatic test case reduction of OpenCL kernels
are shown in Chapter 4. In the course of this project the performance in terms
of the size of the reduced test cases as well as the runtime of the automatic
reductions were the primary targets of the experiments. Chapter 5 evaluates
the results and compares them to the existing tools. Finally, Chapter 6
summarises the project and provides a short outline of open questions and
possible continuations.
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2
Related work

This chapter summarises the techniques on which this project is based
on. First an introduction in the field of compiler validation with focus on
automated compiler testing is given. Further, a detailed description of two
implementations of tools for a detection of undefined values, e.g. uninitialised
variables, is presented.

2.1 Compiler validation

According to Regehr et al. [Reg+12] the validity of an optimising compiler
can either be ensured by verifying that the compiler works correctly or by
testing the compiler and its output. A formal proof of validity provides a
stronger guarantee than testing but is often not practical or not complete.
Standards like the C++0x language comprise large, complex and also im-
precise specifications which makes it hard to imagine a verified compiler
over the complete set of features. The verification therefore concentrates
on small subsets of the language and only specific parts of the compiler
such as the middle-end. Testing on the other hand is able to provide an
end-to-end evidence for the correct functionality of the tested inputs. It
thus complements the aims of a verified compiler. Moreover, it is much
easier to create valid inputs which can be used for testing than to proof the
correctness of an optimising compiler. There are mainly two different types
of errors a compiler can be tested against. First, crash errors which occur
whenever the compiler aborts during the compilation or does not produce
an executable program. Second, (silent) wrong-code errors due to which the
produced output computes a wrong result (without any warning during the
compilation).
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2.1.1 Random Differential Testing

The general idea of testing a compiler includes the generation of valid source
code of a program for which the output after the execution is already known
or can be gathered from the source code itself. The code can then be compiled
with the compiler and if it does not lead to a crash error the compiled program
can be executed. The result of this execution can be compared to the correct
result and if they differ the compiler has produced a wrong-code error.

In contrast, as Regehr et al. point out, Differential testing does not need
an oracle for the correct output. Instead the same source code is compiled
with different compilers. The results of the runs of all produced programs
are compared against each other. If they are not all the same at least one
compiler must have produced a wrong-code error. The wrong compilers can
be determined according to a majority vote. The largest group of compilers
for which the executable programs produced the same result are considered
as correct and all others as wrong. In their paper Regehr et al. [Reg+12]
state that in their experiments they have not come across a case in which the
vote was misleading or in which two compilers produced the same wrong code.
Therefore differential testing is a reasonable approach to find wrong-code
errors without the need of an external oracle. The only requirement on the
programs is that they have to be deterministic.

For the purpose of Random differential testing Regehr et al. have de-
veloped the random program generator Csmith. Testing with random pro-
grams (fuzzing) is a black-box approach in which the output of an execution
of the generated programs is not known. But since differential testing is ap-
plied this is also not necessary as long all implementations have deterministic
behaviour. The standard of the C99 language lists 191 kinds of undefined
behaviour and 52 kinds of unspecified behaviour. Both have to be avoided as
they would allow for non-deterministic behaviour of the programs. A third
group of implementation defined behaviour is not avoided by Csmith. The
authors claim this would limit the expressiveness of the generated programs
significantly resulting in programs with only a small set of features. Further-
more, as there are only a few different implementations among the compilers
it is no problem to test only within a group of the same implementation
details.

In Csmith a large effort has been spent to prevent non-deterministic
situations. The grammar-based code generation is combined with a static
analysis of the code but nevertheless some properties have to be enforced
through hard-coded dynamic checks, e.g. checks for null pointers before
dereferencing. The first step consists of creating declarations of random
struct types which can be used in the program. Subsequently a top-down
approach is used and the program is generated originating in a single main
function. In order to add a new part to the program Csmith first uses the
grammar to determine the kind of expression that is need and then consults
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a probability table to choose from one of the possible options. After each
change the validity of the new program is tested and only if all safety checks
pass the new part is finally added. Most of the changes only affect the local
safety and can be checked efficiently or can be avoided at all. Changes that
involve function calls and loops also affect the global safety. Since a complete
dataflow analysis after each change would come with high performance costs
Csmith creates locally safe code in a greedy manner and only validates
the global safety at certain defined points. If then an invalid situation is
determined the program is rolled back in a controlled way until a safe point
is reached. For instance, in the case of generating loops the global safety
is only evaluated when the closing bracket of the loop body is added. An
invalid situation is solved by removing lines from this point up the loop until
no further violation exists.

2.1.2 Validation via Equivalence Modulo Inputs
Instead of generating new programs as inputs for differential compiler testing
Le et al. [LAS14] present the strategy of Equivalence Modulo Inputs (EMI)
which focuses on the generation of variants from existing programs. Two
programs are equivalent with respect to their inputs2 if they have the same
side effects during their execution, e.g. produce the same output. Although
two such programs are only semantically invariant under the given inputs
the optimisations and transformations of the compiler have to be valid for all
possible inputs. Despite being semantically equivalent the programs are likely
to vary in their data- and control-flow which will trigger different compiler
optimisations. The idea of creating EMI programs helps the authors to
(completely) avoid the test case validity problem since as long as the original
program has been free from undefined behaviour their modifications will
not affect the validity. The authors mention a few more advantages of their
approach. By using existing real world programs as basis the chances increase
to detect compiler errors that “more directly impact software vendors and
users” [LAS14]. Furthermore, this method of differential testing does not
require a second instance to verify the correctness of a compiled program.
The output of the original variant can be captured by simply executing it.
All the generated variants have to produce the same outputs since they are
equivalent to the original version by construction. If one of the variants
produces different output the compiler must by erroneous. And lastly, the
complexity of their EMI generator is much lower than the complexity of test
case producers like Csmith which makes it more easily extendible to other
languages.

2 Throughout this section equivalent always means equivalent w.r.t. the inputs if not
stated otherwise.
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In practise the search space for variants can be gigantic especially if the
base program is large. The authors solve the problem of how to efficiently
produce variants by following a profile and mutate strategy. As a first step
they run a static code coverage analysis on the original program to find
regions of dynamically dead code under the given inputs. Since these regions
are not executed they can be freely changed as long as the program as a
whole remains syntactically correct. In their paper the authors only present
a basic pruning approach. A probabilistic algorithm decides which regions of
unexecuted code should be removed. All modification are performed in the
abstract syntax tree (AST) which guarantees that the program stays valid.

2.1.3 Many-Core Compiler Fuzzing

While the authors in the previous sections mainly focused on testing of
optimising C- and C++-compilers Lidbury et al. [Lid+15b] adapt and extend
the random differential testing and EMI techniques to many-core OpenCL
compilers. One feature of OpenCL is the online compilation of kernels during
the execution of the host program. This makes it more difficult to circumvent
bugs than with the general offline compilation of C-like programs and thus
compiler reliability becomes even more important.

The ability to apply random differential testing was one of the key aspects
of the prior work on fuzzing C-compilers since it allows to avoid the oracle
problem. The authors compared the output among various compilers against
each other or used just one compiler with different optimisation options.
When targeting OpenCL the compilers are specific for each device and there
is only the option to either enable or disable optimisations. This restricts
the applicability of random differential testing of OpenCL compilers to some
extend but nevertheless Lidbury et al. found a significant number of bugs by
using just the comparison between the two optimisation stages.

Also the EMI approach faces two problems when lifted to OpenCL kernels.
First, there are currently no code coverage tools available for OpenCL. But
this information is needed to find regions of dynamically dead code which
are used to create the variants. Second, even if such a tool existed their is
still the problem that most of the OpenCL kernels do not contain regions of
dynamically dead code. To bypass these difficulties the authors propose the
concept of injecting dead-by-construction code into existing kernels. Instead
of finding regions of dynamically dead code a new block is generated for
which the contained statements are dynamically unreachable. The latter
property can easily be enforced during the initialisation of the inputs in the
host program. This generated block is then inserted into an existing kernel
and variants are created by applying the pruning strategies suggested by
Le et al. [LAS14] to the interior of the block. In addition to deleting a leaf
node or a branch node from the abstract syntax tree of the block a third

Imperial College London, Department of Computing 16



2 Related work

transformation is introduced. It allows to move the children of a branch
node to the parent node before the branch node is finally removed.

In terms of the test case validity for OpenCL programs basically the
them rules as for the C programs that the other authors analysed apply.
OpenCL is an extension to the C99 standard and thus inherits most of
its undefined behaviour. Additionally, in OpenCL the risks of data races
and barrier divergence are introduced due to the concurrent execution of
kernels. Barrier divergence describes the situation in which two threads reach
different barrier and thus fail to synchronise. It can occur if the threads
dynamically execute different control flow paths. To shield against these
kinds of undefined behaviour Lidbury et al. [Lid+15b] use only dedicated
data structures and explicit memory barriers for the communication between
the threads. The access to these data structures follows strict rules which
are enforced during the construction and which make it impossible for data
races to occur. Moreover, local expressions must not depend on the local or
global thread id and global variables are initialised uniformly.

All the mentioned techniques are implemented in the tool CLsmith which
extends the existing Csmith random program generator. It comprises six
modes for the program generation. The simplest Basic mode does not use
any OpenCL related features despite from a global memory resource to collect
the final results of the computations. Since global variables are not permitted
in OpenCL the Csmith algorithm had to be adapted. Instead the kernel
function creates a struct which is then passed as pointer into all functions
to simulate global variables. As a side effect this primes the CLsmith tool
to find a lot of struct related bugs in the kernel compilers. In the Vector
mode setting special instructions and data types for data parallel vector
arithmetic are used in the kernel. Since OpenCL does not allow arbitrary
conversions between vector types the generation has to be performed context
sensitive. The threads in these modes do not communicate at all among each
other but this is added through the next two modes. The Barrier mode
maintains at each point during the execution a permutation of the kernel
ids and assigns each kernel a unique number from the range of the ids. It is
used as an offset into a globally shared resource through which the kernels
are able to exchange data. At barrier points inside the kernel the parallel
executions synchronise and the ids are reassigned. This procedure guarantees
race free execution and deterministic results. Another form of interaction
between the kernels is targeted in the Atomic section mode. By using an
atomic increment operation on a shared variable only one thread is allowed
to enter a special conditional section. Inside this section special care has
to be taken that only variables within the current scope are changed and
the section is not left in an uncontrolled way to ensure that the kernel has
well-defined behaviour. Furthermore, the Atomic reduction mode uses
atomic operations to compute a shared result. After the atomic operation
the threads synchronise a first time to allow the result to be added to the
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final output and a second time that ensures that all threads have a consistent
version of this result.

2.1.4 Test case Reduction
The authors of Csmith [Reg+12] empirically determined the highest bug
finding rate in test cases with a size of 81 kB. This conflicts with the
requirement of bug reports to be small and optimally also easy to understand.3
Even for small files reducing a test case while preserving the wrong behaviour
is a time consuming task and for large test cases it becomes infeasible.

Delta debugging

In their paper Yang et al. [Yan+11] mention Delta debugging as an alternative
to manual test case reduction. Nevertheless the task of test case reduction is
hard since there exists no method to predict whether a variant will reproduce
the error. Therefore most of the time naive approaches simply make use
of greedy elimination strategies. By removing contiguous parts from the
current test case they create variants and evaluate whether these new files
still create the determined misbehaviour. If no successful variants can be
produced the chunk size is decreased and the search is started again.

The authors found two main problems with these tools. Due to the
greedy search these tools often get stuck in local minima which means that
the reduced files are still too large to be submitted as a bug report. However,
the major problem is that the tools fail to address the test case validity issue.
They potentially will produce variants which contain undefined behaviour
which is not detected by the compiler. Once such an invalid variant has been
accepted it is no longer possible to distinguish between the misbehaviour
which is caused by the actual bug and effects that are introduced by the
undefined behaviour.

Generalised delta debugging

To prevent these problems Yang et al. propose the concept of Generalised
delta debugging. This extends the general delta debugging approach in three
points. The first two extensions aim at the prevention of local minima which
would lead to smaller reduced files.

First, in addition to the removal of contiguous substrings transformations
based on the semantic of the test case are added to allow changes at multiple
positions spread across the file in one step. Second, the greedy search is
partially lifted to allow intermediate results to increase in size. As a third

3 The guide for reporting bugs in LLVM for instance directly asks “to narrow down
the bug so that the person who fixes it will be able to find the problem more easily”
(http://llvm.org/docs/HowToSubmitABug.html, visited on 27/05/2015).
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“Simple” transformations clang_delta clex Interestingness tests

C-Reduce

contigous

non-contigous

Figure 2.1 – Visualisation of C-Reduce’s modular components. Only the top level
C-Reduce module is exposed to the user. It is connected to the different modules that
C-Reduce comprises and invokes them as necessary. The “Simple” transformations are
implemented in Perl and can be categories whether they perform contiguous changes in
the test case or not. The clang_delta and the clex module are helper tools to perform
more complex changes based on the AST or a lexical analysis of the test case. The
interestingness tests are rather an external dependency as a real module. But they are
also required by the C-Reduce implementation.

point the test case validity is addressed by using external tools in addition
to the tested compiler.

C-Reduce

In particular the authors developed the tool C-Reduce which is an implement-
ation of their proposed generalised delta debugging approach. It consists
of three different modules which comprise various kinds of transformations.
The modules are automatically managed by a single main interface and are
thus transparent to the user. Figure 2.1 visualises the different modules.

The most basic transformations just perform contiguous changes such as
changing the value of integers or removing parts of arithmetic expressions or
text segments within surrounding brackets. Transformations of the next level
make non-contiguous changes like removing just pairs of brackets without
deleting the contents. Further, traditional delta debugging routines are
applied which remove parts on a per line basis and change the format and
indenting style of the file.

The second category comprises a set of semantic aware source-to-source
transformations based on the abstract syntax tree of the program. They
cover a wide range of language specific changes from the removal of unused
or statically dead expressions and functions over the alteration of types up
to complex code refactorings. Additionally they are carefully designed such
that they do not introduce undefined or unspecified behaviour. All these
transformations are bundled in the clang_delta helper tool which is written
in C++ to make use of the Clang AST parser.

Finally, in addition to the context-free AST parser a custom lexer for the C
language (clex) is used as the basis for the third kind of source transformations.
The generated tokens are either changed or deleted independent of each other
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or alternatively modified according to specific patterns. These types of
transformations make explicit use of the flat representation of the tokens as
opposed to the parsing tree and furthermore the lexer is more efficient due
to its smaller capabilities.

Transformation cycle

The reduction process of C-Reduce consists of three nested loops as shown
in Figure 2.2. The outermost loop (red area) determines when the reduction
ultimately finishes by comparing the size of the best test case with the size
of the best test case from the previous iteration. As long as the test case
gets smaller the reduction is continued.

The middle loop (blue area) iterates over all available transformations and
creates a clean transformation state in each cycle. During the initialisation
all necessary resources including counters and the input and output files are
prepared. In the innermost loop (green area) the current transformation
is repeatedly applied to the respective current source code until the trans-
formation space is exhausted or an error occurred during the transformation.

After each alteration of the source file a check is performed whether the
transformed code is still interesting, e.g. is free from undefined behaviour
and exhibits the wrong behaviour. On success the modified code is used as
basis for further transformations whereas otherwise the produced variant is
discarded and the state is advanced, e.g. the next token is considered for
deletion.

In either case the transformation loop is continued because success-
fully applying a transformation has the same effect as advancing the state
explicitly (Listing 2.1). In the first case one item is removed from the trans-
formation space. Therefore the next item that was going to be transformed
becomes the new current item and applying the same instance of the trans-
formation again will produce a new result. In contrast, if the source code
is not changed applying the same transformation would not be of any use.
Hence the transformation state is explicitly advanced also making the next
item the new current one. Thus in both cases the progress is guaranteed and
at some point the exit criterion has to be met.

Parallelizing Delta Debugging

The key feature in this design is the existence of exactly one best, i.e.
interesting, test case at any time. This greatly simplifies the delta debugging
process since every step consists of applying a transformation to the currently
best result, checking the transformed source for its interestingness and either
using it as new best result or discarding it. There is no need to determine
which test case would be the best to apply the transformation to.
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Start

End

Is result
interesting?

Can apply
transformation?

Perform
transformation

Yes

No

No

No
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Advance
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Is test case
reduced?
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Figure 2.2 – Schematic representation of the transformation cycle in C-Reduce.
At the beginning all available transformations are loaded. Then an unused transformation
is selected and initialised. It is repeatedly applied as long as it produces interesting
results (green area). After an invalid result the transformation state has to be advanced
to skip the uninteresting change. Once the transformation space of this transformation
is exhausted the next unused transformation is chosen (blue area). Finally, if all
transformations have been applied the size of the current best test case is compared
to the size of the best test case from the previous round of transformations or the
initial test case. If the test case has been reduced another round of transformations is
performed (red area) otherwise the reduction ends.
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struct S {
int f; // member 1
char g; // member 2
int h; // member 3

};

(a) Initial test case

struct S {
// removed

char g; // member 1
int h; // member 2

};

(b) remove-unused-member 1

struct S {
// removed

char g; // member 1; reduction failed
int h; // member 2

};

(c) remove-unused-member 1

struct S {
// removed

char g; // member 1
// removed

};

(d) remove-unused-member 2

Listing 2.1 – Progress in transformations of C-Reduce. The transformation in this
examples tries to remove unused members from the given struct (a). It is assumed
that the member named “g” cannot be removed. The first time the transformation is
applied (b) the first member is successfully removed and the counter is not increased
since member g has automatically become the new first member. The second time (c)
the transformation fails and “g” remains the first member. Therefore the counter has
to be increased to remove the member after “g” the next time the transformation is
applied (d).

Unfortunately, this invariant causes the reduction process to be inherently
sequential. As soon as two transformations are executed in parallel and both
produce interesting results the invariant would be violated and it would not
be clear how to restore it.

The nearest solution is to relax the invariant and to introduce a merging
step as described by Regehr [Reg12]. The described solution involves to
start multiple instances of the delta reduction loop in parallel to increase the
performance. The invariant would still hold locally for each of the instances
but nevertheless the different reduction paths have to be interleaved at some
points to combine the positive effects of all globally performed transform-
ations. Hence, in each step instead of applying another transformation it
could be chosen to merge changes from a different instance into the locally
transformed file. One possible execution is illustrated in Figure 2.3.

The main problem is to define an appropriate merge operation. The
traditional merge tools are far to conservative and warn eagerly about
conflicts [Reg12]. While this is important if the exact behaviour of the
merged files has to be preserved it is not suited for the purpose of delta
debugging. There it is not important to obtain the same behaviour after
the merge but only that the result is still interesting independent of the
actual computation. Further, it remains unclear how often a merge would
be necessary to get the maximal benefit from the parallel reductions without
wasting time on uninteresting merges.
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Instance 0

Instance 1
A

B

Figure 2.3 – Merging parallel reductions. Both instances run independent of each
other most of the time. The individual transformations are represented through the
edges and are executed sequentially from left to right and bottom to top. Arrows
symbolise successful transformations and squares uninteresting ones. At point A the
second instance merges its locally best test case with a test case from the first instance
instead of applying another transformation. The merge operation produces a new valid
test case. On the other hand, the merge operation in point B does not result in an
interesting test case and has to be discarded.

Since these problems seem to be hard to solve for arbitrary test cases
Regehr proposes an alternative solution in his article [Reg12]. The idea is
to keep the invariant of one best file at any time but to execute multiple
successive transformations on this file in parallel. Each transformation is
followed by an interestingness test and when it finishes the result is stored
and the transformation which would also be the next in a sequential execution
is started (Figure 2.4).

The list of results is then searched in the order in which the transforma-
tions have been started – which is not necessarily the order in which they
finish. Unsuccessful transformations are simply discarded and the search is
continued until either a transformation produced an interesting test case or
the next transformation in the list is still running. In the latter case the
evaluation of the list of results has to be paused until the result is available
but in the mean time it is still possible to start new transformations and
interestingness tests. More interesting is the case when a transformation has
been successful. Then all later transformation have to be aborted and their
results have to be discarded since the best file has changed and retroactively
they have been run on the wrong test case. The reduction is then continued
with the next transformation after the one which produced the new best test
case.

The improvement over a serial reduction is based on the assumption that
in general most of the transformations will fail to produce interesting results.
The failing transformation can be executed in parallel without inferring with
each other. Only in the situation when a transformation has been successful
all later transformation have to be restarted with the new test case as basis.
Moreover, as long as the parallel transformations do not affect each others
performance this parallel approach cannot be slower than the serial reduction.
In the worst case, i.e. all transformations are successful, the transformations
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A B C D E

Figure 2.4 – Parallel transformations in C-Reduce. At every stage four transform-
ations are executed in parallel represented through the edges. Arrows are successful
transformation and squares indicate uninteresting results. The transformations are
started in left to right and bottom to top order. At stage A the second transformation
already succeeds. Therefore the other two transformations which run in parallel but
have been started later must be repeated in stage B . There they still produce the
same results and again two transformations have to be carried over to stage C . The
orange one still fails but the purple transformation succeeds now in C . This is possible
because the test case has changed between the first run in B and the repetition. In
stage D all repeated transformations fail and only the last transformation is interesting.
Thus no transformations have to be repeated in the next stage. Stage E comprises
five transformations since one finished early (dashed line) and the next transformation
has been started. Nevertheless, there were only four transformation running in parallel
at any point in time.

would be restarted after every transformation. But since it is only ever waited
for the first transformation in the result list running more transformations
in the background does not affect the runtime which would be equal to the
one of a serial reduction.

Finally, the new parallel approach does not change the behaviour of the
reduction since the transformations are executed in a sequentially consistent
order. The parallel transformations are started in the order in which they
would have been executed during the sequential reduction and the list
containing the test results is searched according to the first-in-first-out (FIFO)
principle. On detection of a successful transformation state is reset to the
transformation directly after the successful one such that no transformations
are skipped during the reduction.

Interestingness tests

The validity, i.e. interestingness, of the transformations is checked by first
compiling the variations with different compilers and compiler options to
allow for a fast fail if the program is syntactically invalid or if the compilers
warned about misbehaviour. Afterwards the static analysis tools Clang Static
Analyzer4 and Frama-C 5 are used. Variants which exhibit dynamically

4 http://clang-analyzer.llvm.org, visited on 27/05/2015.
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invalid behaviour are discarded through the analysis with the semantic-
based interpreter KCC 6 and the instrumentation framework Valgrind.7 The
authors point out that without the dynamic checks still 29% of the programs
comprised undefined behaviour which would have made bug reports based
on these files useless. Besides the attribution of the importance of test case
validity the C-Reduce tool is able to produce reduced test cases which are
free from undefined behaviour and small enough to be directly included into
a bug report.

2.1.5 Taming compiler fuzzers
In the field of automated bug detection random program generators or
compiler fuzzers have proven themselves of great value. They triggered
thousands of previously unknown bugs and thus helped to improve the
quality of software. As useful as it seems at a first glance the enormous
amount of failure generating test cases can become a problem for the user of
the fuzzer. The test cases often contain a large number of duplicates and
they might trigger bugs of little importance for the time being.

To mitigate these problems Chen et al. [Che+13] address in their paper
the Fuzzer taming problem. The problem describes the situation that given
a collection of test cases it has to be sorted by relevance and diversity such
that tests triggering distinct bugs appear first. This would help the user to
concentrate on only a few test cases out of the many generated while covering
most of the triggered bugs and thus increasing greatly the effectiveness of
random program generators.

Previous ranking algorithms relied on user provided metadata about the
different test cases as basis for the ranking. But, due to the large size of
automatically generated programs and their complexity even just collecting
information can become a time-consuming and hence costly task. Chen et al.
instead couple the fuzzer taming problem with the application of test case
reduction to automatically retrieve information about the test cases. The
authors conclude that reducing a test case as far as possible is essentially the
same as extracting its characteristic features since nothing else will be left
over. Moreover, the reduction can be seen as a variant of fault-localisation
because (ideally) nothing else than the fault triggering instructions will
remain in the test case.

An ideal ranking would require to compute the distance between the
various faults that are triggered through test cases. In practise this is not
possible as the faults can not be observed directly [Che+13]. Instead the
distances have to be estimated based on the similarity of the visible side

5 http://frama-c.com, visited on 27/05/2015.
6 https://github.com/kframework/c-semantics, visited on 27/05/2015.
7 http://valgrind.org, visited on 27/05/2015.
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effects. These are for instance the compiler output during the compilation,
potential crash messages, the output of the compiled program and lastly
the test case itself. In their paper the authors mainly differentiate between
the Levenshtein distance which is applied to any textual output and the
test cases themselves, and the Euclidean distance. The later is used to
compare domain-specific feature vectors which are derived from the test
cases and again compiler outputs. The authors describe the reason why they
use multiple distance functions over various inputs is that a priori it is not
known in which way a fault will manifest. Therefore they try to cover as
much static as well as dynamic information as possible to reduce the risk of
missing the characteristic of a bug.

The authors evaluated two different methods to perform the ranking based
on the defined distance functions. The first method is based on X-means
clustering. Although creating a ranking is not directly a clustering problem
it can be seen as such. After all clusters have been determined theoretically
all distinct bugs in the set of test cases can be retrieved by picking one
representative member out of each cluster and ranking them by the quality
of the cluster. Nonetheless, the second method based on the Furthest point
first (FPF) method performed better and was less complex. Despite the fact
that it also tries to approximate clusters it directly generates an ordering in
which the most distant points are selected first. For the purpose of test case
ranking the clustering information has simply been discarded.

The authors present results which show that with their ranking scheme
less test cases have to be considered to find all distinct bugs compared to
a random order. Further, they noticed that the distances based on the
test cases themselves are an important factor but also remark that their
approach to vectorise the test cases into domain-specific feature vectors failed
to improve the accuracy of the ranking. Furthermore, for compiler crash bugs
the distances based on the compiler output helped to improve the quality of
the ranking and for wrong-code errors the function coverage as reported by
the compiler was of great use.

In addition to the goal of ordering the test cases produced by a compiler
fuzzer Chen et al. analysed the potential to exclude previously marked
test cases or to give them a low rank respectively. This could be useful
if some bugs have been identified in earlier runs but have not been fixed.
Then clearly these bugs should not be reported again as they are already
known. To achieve this secondary goal the authors seeded the FPF algorithms
with examples of the already known bugs to implicitly lower the ranking
of duplicates in the real set of test cases. They claim that the obtained
results are “reasonably good” but also suggest that classification instead of
clustering might be a better approach.
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2.2 Undefined value detection
A common error in programs involves the usage of undefined values such
as uninitialised variables. Furthermore, the origin of the error cannot be
observed directly but only the consequences once the observed behaviour
does not match the expected one. This makes these errors particullary hard
to track down. To support developers, various tools have been proposed and
implemented over time; all of them more or less precise and sophisticated.
This section introduces the concepts of the two most prominent tools.

2.2.1 Valgrind’s Memcheck
Valgrind8 is a dynamic binary instrumentation (DBI) framework which can
be used to analyse the behaviour of programs during their runtime without
the need to recompile them manually. Valgrind follows the disassemble-and-
resynthesise (D&R) paradigm9 [NS07b] and translates the original instruc-
tions of the loaded binary into its custom “UCode” intermediate represent-
ation (IR). This RISC-like IR can be accessed from the plugins based on
Valgrind to implement the desired analyses.

The check for undefined values is part of the Memcheck plugin of Val-
grind [SN05]. It is able to detect “invalid” usages of undefined values such
as uninitialised variables at bit-level precision. Thus also partially initialised
bytes can be handled accurately and a low false positive rate can be achieved.
Examples for partially defined values are struct members which have been
declared as bit fields or the more general bit arrays.

In their paper Nethercote et al. [NS07b] identify nine requirements parted
into three categories which have to be met in order to fully support shadow
values. The three categories are described as the current state of a program,
instructions which read or write memory and instructions which allocate or
deallocate memory.

Shadow values

In the context of evaluating undefined values the state of a program is defined
as the content temporarily held in registers and the values stored in memory.
To support a detection with bit-level precision every bit of data has to be
shadowed with an additional definedness bit. Valgrind’s Memcheck plugin
calls these shadow values V bits (validity bits). If such a V bit is set to zero
the corresponding data bit is considered as defined whereas a value of one
for the V bit specifies an undefined data value.

8 See http://valgrind.org, visited on 15/08/2015.
9 The alternative is the copy-and-annotate (C&A) paradigm which uses the original
instructions and maps a description to each one.
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The data registers are shadowed through a simple one-to-one mapping
to shadow registers. Both data registers and shadow registers are treated
as first class entities [NS07b] and can be modified through the instructions
provided by the intermediate representation. This makes it easy to keep the
data and their shadow values synchronised.

Compared to the data held in registers a much larger amount of shadow
memory has to be maintained. Thus the Memcheck plugin uses a more
sophisticated algorithm to increase the efficiency of the implementation. The
details of the organisation of the shadow values are described by Nethercote
et al. [NS07a]. Not all data structures which are described in the paper are
exclusively used to store undefined values. However, the purpose of this
section is to provide a basic idea about the mechanism behind the part of
the plugin which deals with undefined values rather than to explain every
detail of the design. Thus – to keep this section focused – some information
is omitted or simplified as long as the changes do not affect the fundamental
principles. Places that have been changed are indicated through footnotes
which provide some more information but for details about the concrete
implementation it is referred to the paper.

In its basic implementation a two-level mapping scheme is used instead of
the one-to-one mapping (Figure 2.5). The first level table (PM) divides the
32 bit address space10 into 65 536 blocks. Every entry in the table points to a
secondary table (SM) containing 65 536 entries to shadow 64 kB of memory.
Space in the second level table is allocated on demand (copy-on-write) and
deallocated together with the data values. Thus not all entries in the first
level table are set.11 The design of the shadow tables is thus similar to the
layout of real page tables.

Every time a data access requires an update of the corresponding shadow
values the address of the actual data is used to index the shadow tables (Fig-
ure 2.5). The upper half of the address (16 bit) is used as key in the primary
map whereas the lower half (16 bit) selects a single byte in the secondary
map. The precise handling of individual bits is left to the functions which
requested the shadow values.

To reduce the memory footprint of the shadow values the Memcheck
plugin “compresses” them where possible. Therefore a slightly different table
layout has been implemented. The primary map is not changed but the
secondary map encodes three different states by using only two bits per entry
instead of the previous eight bits per byte of shadow memory (Figure 2.6).12

The states “DEFINED” and “UNDEFINED” indicate that all bits of the

10 The Memcheck plugin has been designed with a 32 bit address space in mind. An
extension for 64 bit address spaces exists but is excluded from this report as it is not
essential to demonstrate the general principle.

11 In the actual implementation those “unset” pointer point to a special distinguished SM
which defines all entries as “valid”.
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0x0000

0x0001

0xFFFF

0xFFFE
...

0x0000
0x0001

0xFFFF

1 1 1 1 1 1 1 1
1 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0
...

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
...

0xFFFE0001

Secondary map

Primary map

Figure 2.5 – Design of the two-level tables layout of shadow memory. The first
level table (PM) consists of 216 entries which can point to a block in the second level
table. Each block shadows 64 kB of memory. Thus the complete 32 bit address space
can be shadowed. To access the shadow values the address of the actual data request is
used. The upper half indexes the primary map whereas the lower half of the address
selects the corresponding byte of shadow values from the secondary map. Access to
individual bits is not managed through the tables.

corresponding byte have the same status. In this case no further lookup is
required. In contrast, the third state “PARTDEFINED” denotes that the
V bits have to be loaded from an additional sparse table.

Although lookups of partially defined shadow bytes are less efficient in this
design they are rare and do not contribute much to the overall performance.
Moreover, the changes make most of the other lookup operations more
efficient and the cache locality is improved which results not only in a smaller
memory footprint for this design but also in shorter runtimes [NS07a].

The initial state of the shadow registers and the shadow memory is
straightforward: In general everything is considered as undefined at program
startup registers the corresponding shadows are thus set to all one. Th
exceptions are literals, read only and mapped memory which are directly
defined as valid.

Shadow operations

According to Nethercote et al. [NS07b] the shadowing of the state of a
program, i.e. the values stored in registers and memory, has to be backed by
shadow operations for memory accesses and memory management. Only if

12 A fourth state is used as indicator for the addressability of a memory location. Therefore
the encoding with two bits is optimal. Previously an additional ninth bit was used to
store this information.
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0x0000

0x0001

0xFFFF

0xFFFE
...

0x0000
0x0001

0xFFFF

UNDEFINED
PARTD.

DEFINED
...

DEFINED
DEFINED

DEFINED
...

0xFFFE0001

Secondary map
Primary map

0xFFFE0001 1 1 0 1 0 1 0 0
... ...

Sparse V bit map

Figure 2.6 – Design of the compressed two-level tables layout of shadow memory.
The first level table (PM) is unchanged when compared to the earlier design. The second
level table has been changed and stores one of the states “DEFINED”, “UNDEFINED”
and “PARTDEFINED” for each byte of shadow memory. Accesses to partially defined
shadow bytes require an additional lookup in the new sparse V bit table to load the
corresponding V bits.

all three categories are covered a reliable13 detection of undefined values is
possible.

While the effects of a less precise handling of shadow registers and
memory could be estimated the consequences of only a partial coverage of
all operations are hard to confine. For instance, if shadow values were only
accurate up to the scale of bytes it would be clear that every operation
involving bit operations could lead to wrong detection results. If the shadow
values were computed with a conservative approach the risk could even be
limited to reporting false positives instead of missing false negatives. In
contrast, any instruction, system call or external function has the potential
to perform memory operations. As long as the operation is not covered with
a corresponding operation on the shadow memory both states will diverge
and the result would be false positive warnings as well as false negatives.

The Memcheck plugin is able to achieve a total coverage not only of the
program under test itself but also of dynamically linked libraries [SN05].
This is made possible by Valgrind’s dynamic instrumentation of machine
executable instructions which also includes the dynamic linker. Further,
the RISC-like UCode IR of Valgrind makes the shadowing of the complete
instruction set easier compared to the more complex x86 instruction set.

For each instruction a trade-off between accuracy of the shadow value
and the performance of the shadow operation has to be found. For most

13 “Reliable” has to be set in contrast to “perfect”. A perfect definedness check would
be equivalent to solving the Halting problem [NS07b]. Therefore the goal has to be
to build a reliable method which emits as less false positives and false negatives as
possible.

Imperial College London, Department of Computing 30



2 Related work

of the operations the Memcheck plugin puts emphasis on the accuracy and
sacrifices efficiency. For example, arithmetic operations shadow the effects of
carry chains, though a faster approach would be to invalidate the complete
results as soon as one operand is (partially) undefined.

Another design decision is when to emit warning messages about invalid
usages of undefined values. The Memcheck plugin lazily propagates undefined
values through the shadow operations and warnings are only produced at
a few critical check points [SN05]. An operation is considered as critical if
it alters the observable behaviour of the program. Seward et al. define four
distinct groups of such operations. The first two groups include operations
that change the control flow like branch instructions and conditional moves.
The third groups comprises memory operations where the address operand
might be undefined. Finally, system calls form the fourth group. After a
warning has been generated the undefined values are explicitly set as defined
to prevent chains of warnings resulting from the same problem.

The Memcheck plugin also defines an eager reporting strategy where
all operands are checked and as soon as either is (partially) undefined a
warning is generated. While this makes the origin tracking for undefined
values easier it is slower thane the lazy propagation and can lead to more
false positives. The latter is due to the fact that many programs legally copy
undefined values around without accessing them directly. For instance the
compiler can add undefined padding values to structs to enforce alignment
rules. Therefore the lazy strategy is favoured most of the time over the eager
approach [SN05].

Origin tracking

So far the Memcheck plugin is able to warn about the usage of undefined
values. However, since undefined values are propagated through functions
the place were the warning is emitted is likely not the root of the undefined
value. As propagation chains can be long, undefined values do not contain
useful information themselves [Bon+07] and also the stack trace does not
provide any helpful information about the origin in half of the cases [Lib+05]
it can be hard to track down the root cause of an undefined value.

The Memcheck plugin already keeps origin information for both heap and
stack allocations as part of its functionality to signalise incorrect memory
accesses. This information can as well be used as root locations for undefined
values. To reduce the additional overhead of storing origin information along
the propagation chain externally like the V bits Bond et al. [Bon+07] apply
a form of piggy backing. Since undefined values per definition do not contain
valuable information they can be overwritten with information about the ori-
gin of the value without affecting the semantics of the program.14 Therefore
the plugin instruments all allocations with methods to initialise the otherwise
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%a = alloca [3 x i32], align 4
%1 = getelementptr inbounds [3 x i32],
       [3 x i32]* %a, i32 0, i32 1
%2 = load i32, i32* %1, align 4
%3 = call i32 (i8*, ...) @printf(“%d”, i32 %2)

%a 0xffff0b10

0xffff0b10 0x5f310008
0x5f310008
0x5f310008

%1 0xffff0b14
%2 0x5f310008

0xffff0b14
0xffff0b18

Stack

Heap

... ...
0x5f310008

%3 %a %1 %2

Origin stack trace

Figure 2.7 – Tracking origins via piggy backing. The allocation is instrumented
such that the memory is initialised with the origin key specific for this allocation. The
key is the address of a data structure which is used by Valgrind to keep track of the
allocation. Later the uninitialised array %a is operand in the load instruction and the
origin key automatically gets propagated into the temporary variable %2. Assuming the
printf function triggers a system call the undefined value would be detected and the
origin could now be tracked back to the initial allocation. The figure is intended to
visualise the underlying principles and thus some things are simplified compared to the
actual implementation.

uninitialised memory with repeated copies of the origin key (Figure 2.7).
The actual definedness state, i.e. the V bits, is of course not affected by this
pseudo-initialisations.

In addition to the saved memory space the origin information is propag-
ated for free via the original instructions. But these benefits are not com-
pletely without disadvantages. The first issue is that the origin key is the
32 bit pointing to the data structure which keeps track of the origin trace.
Therefore it cannot be “piggy backed” in values smaller than four bytes. For
those values the origin information is simply not tracked. Second, the origin
information is also lost if the actually undefined values are modified through
instructions. For instance, if two values are added and at least one of them
is undefined the result will not yield any useful information about the origin.
The same holds for unaligned loads from allocated memory where only parts
of the origin key might be loaded. Lastly, retrieving origin information for
conditional branches requires a special treatment since the condition of the
branch has been narrowed down to a one bit value. The instructions have to
be searched backwards until an origin for a value is found from which the
condition has been derived.

14 It has to be noted that the behaviour of the program might well change. Often undefined
values consist to a large portion of zeros which are now replaced with meaningful values.
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Performance impact

Analysing tools has a high price in terms the runtime. When the Memcheck
tool is selected the average slowdown factor is 22. About half of the loss
in performance can be attributed to the actual detection of shadow val-
ues [NS07a]. The additional overhead of the origin tracking varies widely
between different applications but is still negligible compared to the rest of
Valgrind. For some programs activating the origin tracking even improved
the performance [Bon+07].

In terms of memory efficiency a naive implementation would at least
double the required amount of memory since all values have to be shadowed.
Some additional space might be necessary to store intermediate results of
the shadow operations. The actual implementation of the Memcheck plugin
reduces the memory overhead on average to 125% of the normal memory
consumption of the analysed program [NS07a]. For instance the introduced
compression of shadow values makes a large portion of the improvements.
Because of the piggy backing strategy the origin tracking does not increase
the memory consumption.

Besides the extra instructions which have to be executed and a poorer
cache locality multi-threaded programs suffer from a serialisation during the
analysis. This is necessary to handle loads and stores of the actual data and
of the shadow data as atomic operations. Otherwise the memory operations
could interleave and the synchronisation of actual data and corresponding
shadow values could not be guaranteed [NS07b].

2.2.2 Clang’s MemorySanitizer
Like Valgrind’s Memcheck plugin the MemorySanitizer15 for the Clang
compiler is a dynamic tool to detect invalid usages of undefined values during
the runtime of the program. The main difference is that the MemorySanitizer
uses static compile time instrumentation (Listing 2.2) instead of the D&R
paradigm of the Memcheck plugin. Once the program is compiled with
MemorySanitizer support the resulting executable contains all necessary
instructions to detect undefined values and does not depend on external
tools. On the other hand, it is strictly required to recompile the program
under test manually.

Shadow values

The MemorySanitizer uses the same approach of shadowing the data memory
with bit-level accuracy like Valgrind’s Memcheck plugin but applies a simpler
one-to-one mapping between application data and shadow bits [SS15]. This

15 See http://clang.llvm.org/docs/MemorySanitizer.html and https://code.
google.com/p/memory-sanitizer/, visited on 17/08/2015.
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%r = alloca i32, align 4
%5 = ptrtoint i32* %r to i64
%6 = and i64 %5, -70368744177665
%7 = inttoptr i64 %6 to i8**
%8 = bitcast i8** %7 to i8*
call void @llvm.memset.p0i8.i64(i8* %8, i8 -1, i64 4, i32 4, i1 false)

Listing 2.2 – Code instrumentation through Clang’s MemorySanitizer. The first
line represents the actual allocation of a 32 bit local variable. All other instructions
belong to the code instrumentation. First the address of the shadow value is computed
by masking the original address with a fixed constant. Afterwards the four bytes of
shadow memory are set to “undefined”. Passing “−1” as intialiser value to memset has
the effect of setting every byte to 0xFF since the “−1” is converted to an unsigned
value.

comes at the cost of a higher memory consumption compared to the compacter
mapping scheme of Valgrind’s Memcheck plugin but simplifies the address
computation at the same time. In fact the shadow address is derived by
flipping one bit in the original address such that all shadow addresses are
projected into a commonly unused address space depending on the actual
platform. For instance, on a Linux 64 bit architecture the mask is chosen
such that all shadow values are stored beyond the initial 32TB of the address
space.

In contrast to tools operating on a binary representation MemorySanitizer
does not have to shadow registers explicitly. The instructions that are
injected into the LLVM IR by the MemorySanitizer to propagate shadow
values represent the temporary values themselves and are automatically
assigned with a unique identifier.

Shadow operations

Most of the shadow propagation operations of the MemorySanitizer are less
precise than the corresponding functions in the Memcheck plugin of Valgrind.
Moreover, some of the operations even allow false negatives to occur if
this has the potential to greatly improve the performance. For instance
an addition is approximated through a simple bitwise OR instruction of
both operands. This only guarantees that (a) the result is defined if both
operands are defined and (b) that the result cannot be valid if either operand
is (partially) undefined. However, the actual bits that are undefined after
the addition might not be correctly shadowed since the carry propagation is
not modelled (Figure 2.8).

Function arguments that are passed by value require that a copy of the
shadow data is made. Therefore a separate array of shadow memory is
maintained and the callee is told about the address from which the shadow
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Stored value A
Shadow value A’

Resulting value A*

0b00100000
0b00100110
0b00*00**0

(a) Operand A

Stored value B
Shadow value B’

Resulting value B*

0b00110001
0b00000000
0b00110001

(b) Operand B

0b00*00**0
0b00110001+
0b0**10**1
0b01100110

A* + B*
0b00100110
0b00000000|

0b00100110

A’ | B’

Actual shadow Approx. shadow
(c) Shadow computation

Figure 2.8 – Imprecise shadow propagation for arithmetic expressions in Clang’s
MemorySanitizer. This examples demonstrates that the shadow propagation used in
MemorySantizer might produce a different shadow value than a precise computation.
The shadow value of operand A is at three positions marked as “undefined”. Since these
bits can have any value – either zero or one – these positions are masked with asterisks
in the resulting number. Operand B on the other hand is fully defined and thus does
not contain asterisks. When an addition is performed with these two operands ((c), left)
certainly all places where either of the operands is masked have to be masked in the
result. But further, if a one is added to a masked value it remains unclear if the next
position is affected by a carry value or not. Therefore the next position must be masked
too. This effect is neglected if the bitwise OR is used to propagate the shadow ((c),
right).
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values can be retrieved. The same is true for the return value of a function.
Another problem is the handling of variadic functions since the caller side
and the callee side are handled differently in the LLVM IR. This is again
solved through a special memory location for those function arguments but
also relies on platform dependent behaviour [SS15].

Further, the MemorySanitizer can hardly achieve a full coverage of all
functions if external libraries are involved. This would require that all
libraries have been instrumented with the MemorySanitizer instructions. To
mitigate the consequences the MemorySanitizer provides wrapper functions
for some widely used and hard to compile libraries like “libc” which define
the side effects of each function and change the shadow values accordingly in
addition to invoking the original function.

Origin tracking

The origin tracking is not implemented with the same piggy backing idea
which has been proposed by Bond et al. [Bon+07]. While it helps to save
storage capacity and requires nearly no instructions to propagate origin keys
the disadvantages are that origin information is lost if the undefined values
are altered or unaligned loads are performed and that origin information is
only available to values of at least 32 bit.

To avoid these limitations which are coupled to storing the origin in-
formation in the undefined values themselves MemorySanitizer maintains a
separate memory region to store origins. Every new allocation is assigned a
unique 32 bit origin ID which is stored together with the current stack trace.
The maximum resolution is one origin ID per four bytes of allocated space.

While this helps to find the location in the program where the undefined
value has been allocated it might not always be sufficient to see where
the value got undefined. Thus MemorySanitizer provides also an advanced
tracking mode where every memory store between allocation and use of the
undefined value is stored.

Performance impact

Due to its nature as static compile time instrumentation tool the MemorySan-
itizer does not suffer from long startup penalties and high performance over-
heads during the execution [SS15]. Both affect tools like Valgrind which have
to dynamically instrument and recompile the binary each time it is executed.
Additionally, since the code instrumentation is implemented as LLVM Pass
it is optimised by later passes during the compilation which improves the
efficiency of the injected instructions by approximately 13% [SS13].

The main advantage over Valgrind’s Memcheck plugin is that multi-
threaded programs do not need to be serialised when instrumented with
MemorySanitizer [SS15]. Furthermore, no explicit locking is required to
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T1 store’ D
T2 store’ U
T2 store X

T1 store 5

T1 load 5
T1 load’ U

(a) False positive

T1 store’ D
T2 store’ D
T2 store X

T1 store 5

T1 load 5
T1 load’ D

(b) Store def. shadow

T1 store’ D
T2 store’ D
T2 store 5

T1 store X

T1 load X
T1 load’ D

(c) False negative

Listing 2.3 – Handling of atomic memory operations in MemorySanitizer. The
names T1 and T2 define two concurrent threads. The store instruction stores the
actual data whereas the store’ instruction stores the corresponding shadow value. The
load and load’ instructions are defined analogous. It is assumed that all operations
access the same (shadow) location. The value X represents any undefined value, U and
D are symbols for undefined and defined shadow values. The execution in (a) shows
a possible interleaving of instructions that leads to a false positive report. To prevent
this MemorySanitizer always stores defined shadow values for atomic operations (b). As
example (c) shows this does not prevent false negatives tough.

handle shadow memory operations since no shared data structure is used
to store the shadow values. As long as the original program has been race
free – which is required by the C memory model [C11, § 5.1.2.4.25] – the
instrumented code is valid as well.

Atomic memory operations on the other hand can only be implemented
in a precise way if the original and the shadow operations are protected
through a lock. Otherwise it cannot be guaranteed that an operation on the
original data is followed by the shadow operation before any other operation
accesses the memory location again. To save the overhead of additional locks
MemorySanitizer only implements an approximate solution. It prevents the
generation of false positives by loading the shadow value after the original
value and storing always a defined value to the shadow memory before the
original store is executed [SS15]. This way the shadow of an atomically
accessed location can only change from (partially) undefined to defined but
not the other way round. The downside of this approach is that it leads
to false negatives as a defined shadow value can be assigned to potentially
undefined values. The different scenarios are illustrated in Figure 2.3.

All in all, the memory consumption of a program compiled with the
MemorySanitizer roughly doubles since every bit of memory is shadowed with
a bit representing its definedness. When additionally the origin tracking is
activated the memory consumption can increase up to three times compared
to the uninstrumented program. In the worst case a 32 bit origin ID is
assigned to every four bytes of memory which also results in a one-to-
one mapping [SS15]. The runtime of the instrumented program increases
about three times without origin tracking and on average five times if
origin tracking is activated [SS13]. Nevertheless, compared to the expected

Imperial College London, Department of Computing 37



2 Related work

slowdown of running the programs under control of Valgrind this is a negligible
performance setback.
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3
Contributions and design

This chapter provides an overview over all contributions that have been made
in the scope of the project. The first section describes an extension of the
Csmith tool. This has not been used directly during this project but the
change also affects its variant CLsmith which generates the random test cases
for the automatic reductions. In Section 3.2 a bug in the Clang compiler is
described and the developed solution is explained. The compiler is used as
static analyser in the interestingness tests and generates the LLVM IR for the
Oclgrind simulator which is utilised as dynamic analysis tool. Besides several
bugs which have been identified and reported or patched the diagnostics
system of the simulator has been made customisable and an entirely new
plugin to detect undefined values during the execution of kernels has been
implemented (Section 3.3 and 3.4). The C-Reduce framework (Section 3.5)
performs the actual automatic reductions. To increase the compatibility
with Windows systems a new CMake build system has been developed and
the performance of the framework on Windows has also been improved.
Moreover, OpenCL support has been added and some of the transformations
have been improved. Finally, a modular test system has been developed in
Python to support the workflow from the generation of the random kernels
up to the automatic reduction. The details of the concepts and the design
are explained in Section 3.6.

3.1 Csmith – timer function for the ARM architecture
The CLsmith tool – and thus also parts of the Csmith tool – has been used as
utility to generate the OpenCL test cases for the automatic reduction. During
the experiments on the Chromebook 2 (see Section A.2.6) it has been noticed
that the function to generate timestamps as seed for the random number
generator of Csmith was not compatible with the ARM architecture. To
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%5 = shufflevector <2 x i32> %3, <2 x i32> undef, <2 x i64> <i64 0, i64 undef>
LLVM ERROR: Broken function found, compilation aborted!

(a) Oclgrind crash report

Assertion failed: (V[i]->getType() == T->getElementType() && "Initializer for vector
↪→ element doesn’t match vector element type!"), function ConstantVector, file
↪→ llvm/lib/IR/Constants.cpp, line 1031.
Stack dump:
1. <eof> parser at end of file
2. Bug_12_1.cl:3:6: LLVM IR generation of declaration ’test1’
3. Bug_12_1.cl:3:6: Generating code for declaration ’test1’
clang-3.7: error: unable to execute command: Illegal instruction: 4
clang-3.7: error: clang frontend command failed due to signal (use -v to see
↪→ invocation)

(b) LLVM assertion violation

Listing 3.2 – Crash outputs triggered by an invalid shufflevector operand. The
shufflevector instruction does accept undef input values but the shuffle mask (third
operand) has to be of 32 bit integral type. The assertion is violated since the shuffle
mask is wrongly created with elements of different types.

prevent multiple runs from having the same seed the timer value is required
to have a high accuracy and hence the Time Stamp Counter register is read
with the rdtsc assembler instruction. As the instruction is not supported
on ARM architectures it had to be replaced (Listing 3.1).

The alternative has been taken from the codebase of the gperftools.16

On modern ARM architectures the user mode performance counter can be
used as replacement. Therefore it has to be configured as readable and
activated to actually count the CPU cycles. As a fallback for older systems
or if one of the conditions is not satisfied a timestamp is obtained from the
gettimeofday function.

3.2 Clang – invalid shufflevector operands

This bug17 triggered a crash of Oclgrind while it was used for testing as an
OpenCL implementation in its own right. However, the emitted warning
“Invalid shufflevector operands!” and the additional output shown in List-
ing 3.2a indicated that it is actually a bug in the code generation of the
Clang compiler.

The test case in Listing 3.3 is the result of reducing the original program
first with C-Reduce and applying some final tweaks manually afterwards.
The wrong code generation can be reproduced when Clang 3.6 is invoked

16 See https://code.google.com/p/gperftools/, visited on 10/08/2015.
17 See https://llvm.org/bugs/show_bug.cgi?id=23800 and http://reviews.llvm.

org/D10838, visited on 03/08/2015.
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diff --git a/src/platform.cpp b/src/platform.cpp
index be456f7..aecaa3d 100644
--- a/src/platform.cpp
+++ b/src/platform.cpp
@@ -70,6 +70,28 @@ static unsigned __int64 read_time(void) {

}
return (h << 32) + l ;

}
+#elif __ARM_ARCH_ISA_ARM == 1
+// From: https://gperftools.googlecode.com/git-history/100
↪→ c38c1a225446c1bbeeaac117902d0fbebfefe/src/base/cycleclock.h
+static unsigned long long read_time(void) {
+#if __ARM_ARCH >= 6 // V6 is the earliest arch that has a standard cyclecount
+ unsigned int pmccntr;
+ unsigned int pmuseren;
+ unsigned int pmcntenset;
+ // Read the user mode perf monitor counter access permissions.
+ asm("mrc p15, 0, %0, c9, c14, 0" : "=r" (pmuseren));
+ if (pmuseren & 1) { // Allows reading perfmon counters for user mode code.
+ asm("mrc p15, 0, %0, c9, c12, 1" : "=r" (pmcntenset));
+ if (pmcntenset & 0x80000000ul) { // Is it counting?
+ asm("mrc p15, 0, %0, c9, c13, 0" : "=r" (pmccntr));
+ // The counter is set up to count every 64th cycle
+ return static_cast<unsigned long long>(pmccntr) * 64; // Should optimize
↪→ to << 6
+ }
+ }
+#endif
+ struct timeval tv;
+ gettimeofday(&tv, 0);
+ return static_cast<unsigned long long>(tv.tv_sec) * 1000000 + tv.tv_usec;
+}
#else
static long long read_time(void) {

long long l;

Listing 3.1 – Alternative to rdtsc on ARM. The rdtsc instruction which Csmith
uses to generate a seed for the random number generator based on a timestamp is
not supported on ARM architectures. Instead the user mode performance counter is
accessed or gettimeofday is invoked.
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typedef unsigned int uint2 __attribute((ext_vector_type(2)));

void test1(void) {
(uint2)(((uint2)0).s0, 0);

}

(a) Reduced test case

store <2 x i32> zeroinitializer, <2 x i32>* %2
%3 = load <2 x i32>* %2
%4 = extractelement <2 x i32> %3, i64 0
%5 = shufflevector <2 x i32> %3, <2 x i32> undef, <2 x i64> <i64 0, i64 undef>
%6 = insertelement <2 x i32> %5, i32 0, i32 1

(b) Generated LLVM IR instructions

store <2 x i32> zeroinitializer, <2 x i32>* %2
%3 = load <2 x i32>* %2
%4 = extractelement <2 x i32> %3, i64 0
%5 = insertelement <2 x i32> undef, i32 %4, i32 0
%6 = insertelement <2 x i32> %5, i32 0, i32 1

(c) Alternative (unoptimised) LLVM IR instructions

Listing 3.3 – Reduced test case which triggers the invalid shuffle operands bug.
The typedef in (a) is only necessary since Clang does not know about the OpenCL vector
types by default. The LLVM IR instructions in (b) are generated by Clang 3.6 and com-
prise the invalid shuffle mask. The alternative to the generation of the shufflevector
instruction is demonstrated in (c).

without optimisations on a 64 bit system. If Clang has been compiled with
enabled assertions an assertion failure is raised during the compilation of the
test case and Clang crashes due to an “Illegal instruction” (Listing 3.2b).

Before the actual bug can be described it has to be explained where
the shufflevector instructions that finally “reports” the bug originates.
The trigger is the element access inside the vector initialiser which causes
an optimised control flow in the code generation of Clang. Or, to be more
precise, the specific pattern when a vector is initialised with elements from
another vector of the same size allows to reuse and shuffle the inner vector
instead of constructing a new outer vector, extracting the desired elements
from the inner vector and inserting them into the new outer vector.

Both scenarios have in common that initially the inner vector is created
and loaded into a temporary variable. Moreover, in both situations the
initialisation of the second element in the outer vector is the same. The only
possibility is to insert the constant which has been specified in the initialiser
expression into the outer vector. The difference between the versions is how
the outer vector is created.

In the unoptimised case the desired element from the inner vector is
first extracted and subsequently inserted into a new outer vector. In con-
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1llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
2
3if (EI->getVectorOperandType()->getNumElements() == ResElts) {
4llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
5Value *LHS = nullptr, *RHS = nullptr;
6if (CurIdx == 0) {
7// insert into undef -> shuffle (src, undef)
8Args.push_back(C);
9Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));

Listing 3.4 – Part of the Clang code which introduces the invalid shuffle operands.
On 64 bit systems the index operand of the extractelement instruction is of 64 bit
integral type. The type is preserved when it is converted to llvm::ConstantInt and
subsequently added to the argument vector but all arguments have to be of 32 bit type.

trast, in the optimised version the outer vector results from applying the
shufflevector instruction to the inner vector. The shuffle mask is chosen
carefully such that the desired element from the inner vector is placed cor-
rectly to match its position in the outer vector. All other elements in the
inner vector are hidden by the undef values in the mask and thus do not
appear in the outer vector. The extractelement instruction which is gener-
ated in the optimised case is actually unused in the LLVM IR and is only a
side effect of generating the shufflevector instruction. It would simply be
removed if the compiler optimisations were enabled.

Nevertheless, exactly this extractelement instruction is the true cause
of the bug. Before the shufflevector instruction can be generated the
index of the selected element from the inner vector has to be determ-
ined. For this purpose the expression ((uint2)0).s0 is converted into
an extractelement instruction which provides access to the index (List-
ing 3.4, lines 1 and 4). According to the LLVM Language Reference Manual
[LLVM15, ‘extractelement’ Instruction] the index operand is allowed to
be of any integer type and the size of the operand seems to be platform
depended. On 32 bit architectures it is a four byte integer and on 64 bit an
eight byte integer respectively.

The value of the index operand is then directly added to the vector mask
(line 8) which preserves the original size of the type. All other values of the
mask are filled with the special value undef of 32 bit integral type (line 9) to
ignore all elements from the inner vector except the selected one. The four
byte integral type can be hard-coded for the mask as its element type must
be i32 [LLVM15, ‘shufflevector’ Instruction].

The bug does not manifest on 32 bit architectures as the index operand is
created of four byte integral type anyway. In contrast, on 64 bit architectures
the mismatch between eight byte index operand and four byte undefined
values triggers either an assertion violation – if LLVM has been compiled with
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assertions enabled – or silently produces wrong code with a mask comprising
elements of type i64 since the overall type for the mask is derived from the
first element – in this test case the index operand.

Since no one of the Clang developers responded to the submitted bug
report the bug has been fixed in the scope of this project and the patch has
been submitted. The proposed solution (Listing 3.5) asserts that the index
operand can be converted safely into a four byte integral type and performs
the conversion before the shuffle mask is created. The patch has been merged
into the development branch18 of Clang 3.8 such that the bug does not
appear in fresh builds of Clang. Further, the patch has been backported into
the release branch of Clang 3.7.19 Thus the current stable release20 is no
longer affected by the bug.

3.3 Oclgrind
Over most of the time of this project there has been a good collaboration
with James Price the maintainer of Oclgrind. He managed to fix most
of the reported issues quickly such that the focus of the development for
Oclgrind has been on the new plugin to detect uninitialised values which is
described separately in the next section. This section describes two smaller
contributions, namely the implementation of a reliably index out-of-bounds
detection and the extension of the diagnostics system to allow to select which
messages should be emitted.

3.3.1 More precise index out-of-bounds check
During the project a situation was identified in which Oclgrind did not report
an out-of-bounds array access. After the issue had been reported a new check
for the static array size was added. While this solved the concrete problem,
later on it has been noticed that the check could lead to false positives
warnings under certain circumstances. Finally, the check for out-of-bounds
accesses has been refined in the scope of this project. The pull request21

has already been accepted and the changes have been merged into the main
project. The following sections describe the details of the two involved bugs.

18 The patch has been pushed as SVN commit rL243851 and Git commit 2a3c904 re-
spectively.

19 The revision number in the release branch for version 3.7 is r243851. For the Git
repository this is commit 94f152a respectively.

20 Clang 3.7 has been released on the 01/09/2015.
21 See https://github.com/jrprice/Oclgrind/pull/75, visited on 01/09/2015.
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--- cfe/trunk/lib/CodeGen/CGExprScalar.cpp
+++ cfe/trunk/lib/CodeGen/CGExprScalar.cpp
@@ -1162,6 +1162,16 @@

return llvm::ConstantInt::get(I32Ty, Off+MV);
}

+static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
+ if (C->getBitWidth() != 32) {
+ assert(llvm::ConstantInt::isValueValidForType(I32Ty,
+ C->getZExtValue()) &&
+ "Index operand too large for shufflevector mask!");
+ return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
+ }
+ return C;
+}
+
Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
bool Ignore = TestAndClearIgnoreResultAssign();
(void)Ignore;

@@ -1212,7 +1222,8 @@
Value *LHS = nullptr, *RHS = nullptr;
if (CurIdx == 0) {
// insert into undef -> shuffle (src, undef)

- Args.push_back(C);
+ // shufflemask must use an i32
+ Args.push_back(getAsInt32(C, CGF.Int32Ty));

Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));

LHS = EI->getVectorOperand();

Listing 3.5 – Proposed patch that solves the invalid code generation. An assertion
has been added to make sure that the index operand can safely be converted to a 32 bit
integral type. Then the four byte representation is used to as argument to generate the
vector mask.
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Invalid read masked by padding values

The test case in Listing 3.6 models a situation in which Oclgrind fails to
generate a warning for undefined behaviour. While the first access to the
array member of the struct is within the valid bounds accessing the second
position of the array exceeds the static size of the array. Therefore Oclgrind
should emit an “invalid read” warning as it does for the third access to the
array.

Here Oclgrind was tricked by padding values that are append to the end
of the struct. The member “f” of the struct is of type ulong and hence
enforces 8 byte alignment for the struct. The only other member occupies
four bytes such that four bytes padding values are appended to the end of the
struct [C99, § 6.7.2.1.15]. Before this issue has been reported Oclgrind only
checked whether the load from a given address with a given size was inside
of some allocated space. Although the padding values are not initialised they
are nevertheless allocated. The second access to the array hits exactly the
additional space that has been allocated for the padding values and therefore
Oclgrind does not detect an invalid read. In contrast, the third access to
the array exceeds also the size of the struct and hence tries to load from
an address that has not been allocated. In this case the correct warning
message is generated.

A solution to the problem had been added with commit b7e7a89. Still
Oclgrind could not differentiate between actual data values and padding
values but a check for the static size of array members has been implemented
and appropriate warning messages are emitted (Listing 3.6c).

Refined out-of-bounds check

While the newly added check solved the initial problem the test case in
Listing 3.7 demonstrates a special use case of the getelementptr instruction
which now results in a false positive warning about an allegedly invalid array
access.

Through the Scalar Replacement of Aggregates transformation the first
struct “s” is replaced by a scalar typed array. Further, the first member
of the struct has been optimised out as it is not used in the kernel. Hence
the array covers only the remaining 39 bytes (7 bytes padding plus 32 bytes
for the second member) of the original struct and the first member is never
initialised. The entire array is set to zero as the second member of the struct
would have been.

The copy assignment following the initialisation in the test case is trans-
lated into an explicit store of a “1” at the address of the first member of the
struct “t” – this store has to be done explicitly since the first member of
struct s does not exist in the optimised code. The remaining part of the new
struct is initialised by copying the values of the replacement array. However,
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// -g 1 -l 1

struct S0 {
ulong f;
uint a[1];

};

__kernel void entry(__global ulong *result) {
struct S0 c = {1, {2}};
ulong d;

d = c.a[0];
d = c.a[1];
d = c.a[2];

result[0] = d;
}

(a) Test case

Invalid read of size 4 at private memory address 0x3000000000010
Kernel: entry
Entity: Global(0,0,0) Local(0,0,0) Group(0,0,0)
%13 = load i32* %12, align 4, !dbg !26

At line 14 of input.cl:
d = c.a[2];

(b) Emitted warning message

Index (1) exceeds static array size (1)
Kernel: entry
Entity: Global(0,0,0) Local(0,0,0) Group(0,0,0)
%8 = getelementptr inbounds [1 x i32]* %7, i32 0, i64 1, !dbg !25

At line 13 of input.cl:
d = c.a[1];

(c) New warning message

Listing 3.6 – Invalid array access is masked by padding values. (a) The member
“f” of the struct enforces 8 byte alignment. The array “a” only occupies four bytes and
hence the struct is padded with additional four bytes. The first access to the array is
valid and thus generates no warning. Accessing the second position of the array does
exceed the static bounds of the array but wrongly generates no warning because the
access falls into the padding area of the struct. Finally, accessing the third position of
the array emits the correct warning message (b) as the access also exceeds the space of
the struct. To solve the issue a check for the static size of the array has been added
and an appropriate warning (c) is generated.
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struct S0 {
uchar f[1];
ulong g[4];

};

__kernel void entry(__global ulong *result) {
struct S0 s = {{1}};
struct S0 t = s;

volatile int i = 0;
*result = t.g[i];

}

(a) Valid test case

%struct.S0 = type { [1 x i8], [4 x i64] }

define void @entry(i64* nocapture %result) #0 {
%s.sroa.5 = alloca [39 x i8], align 1
%t = alloca %struct.S0, align 8
%i = alloca i64, align 8
%1 = getelementptr inbounds [39 x i8], [39 x i8]* %s.sroa.5, i64 0, i64 0
call void @llvm.memset.p0i8.i64(i8* %1, i8 0, i64 39, i32 1, i1 false)
%2 = getelementptr inbounds %struct.S0, %struct.S0* %t, i64 0, i32 0, i64 0
store i8 1, i8* %2, align 8
%3 = getelementptr inbounds %struct.S0, %struct.S0* %t, i64 0, i32 0, i64 1
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %3, i8* %1, i64 39, i32 1, i1 false)
store volatile i64 0, i64* %i, align 8
%5 = load volatile i64, i64* %i, align 8
%6 = getelementptr inbounds %struct.S0, %struct.S0* %t, i64 0, i32 1, i64 %5
%7 = load i64, i64* %6, align 8, !tbaa !8
store i64 %7, i64* %result, align 8, !tbaa !8
ret void

}

(b) Generated LLVM IR instructions

Listing 3.7 – Test case producing false positive out-of-bounds warning. The test
case in (a) is a valid OpenCL kernel, though Oclgrind emits an index out-of-bounds
warning. The warning is caused by the instruction highlighted in red (b). The instruction
calculates the pointer to the second member of the struct by moving the pointer to
the first member one past its allocated size. The behaviour is well defined by both the
LLVM Language Reference Manual [LLVM15] and the C99 standard [C99].
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uchar
[1] Padding uint[4]

struct S0

f[
0] g[0] g[1]

i64 0

i32 0
i64 1

%struct.S0* %t

7 byte

Figure 3.1 – Accessing padding values via the getelementptr instruction. Pad-
ding values cannot be accessed directly since they are no explicit member of the struct.
Instead the first array member is accessed but indexed one past its last element. The
constructed address points to the first byte of padding values.

the array cannot be copied to the address pointing to the second member
of the struct because the first seven elements of the array belong to the
padding values between the two struct members. Moreover, there is no direct
way to address padding values and thus the highlighted getelementptr
instruction indexes the first struct member but accesses it one past its last
element (Figure 3.1).

The LLVM Language Reference Manual [LLVM15, ‘getelementptr’ In-
struction] in general does not make any guarantees for the pointer computed
with the getelementptr instruction. It can even “be outside the object poin-
ted to by the base pointer”. If the inbounds keyword is specified the result
is indeed undefined if the computed “address is outside the actual underlying
allocated object and not the address one-past-the-end”. Yet this does not
mean that the static size of an array restricts the address computation since
the underlying object is in this case the struct and not the array.

Also the C99 standard does not forbid to construct an address in this
way. It explicitly states that even if the resulting address points “one past
the last element of the array object, the evaluation shall not produce an
overflow” [C99, § 6.5.6.8]. The only restriction is that such an address must
not be dereferenced to access the value pointed to. But this is not the case for
the generated LLVM IR instructions where the address is used as destination
of a memcpy instruction.

The consequences from the test case itself and the generated LLVM IR
instructions being valid, i.e. being free from undefined behaviour, is that the
getelementptr instruction cannot be used ultimately to check the validity
of array accesses and is also discouraged by the LLVM Language Reference
Manual [LLVM15, ‘getelelemtptr’ Instruction]. While it might work for
most of the cases the getelementptr instruction operates on a low-level
pointer arithmetic concepts which does not always coincides with the concept
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of static array bounds. Nevertheless, it can be guaranteed that no invalid
access will be missed as long as the generated LLVM IR is valid.

Yet, to improve on the false positive warnings a more precise solution has
been implemented in the scope of this project. The key to allow arbitrary
address computations but to warn on real out-of-bounds conditions at the
same time is to perform the validity check only in those situations in which
a computed address is used as operand to a load or store instruction. This
becomes obvious if the subscript operator is replaced by its definition. Ac-
cording to the C99 standard “E1[E2] is identical to (*((E1)+(E2)))” [C99,
§ 6.5.2.1.2]. The addition of the pointer expression E1 and the offset E2
can result in undefined behaviour if the resulting pointer is not within the
allocated object and also not one past the last element. But the restrictions
for the dereference operation are stronger since they require the pointer to be
inside the bounds of the allocated object. Since in the LLVM IR it is possible
to trace the pointer argument of the load or store instruction back to its
origin it is possible to evaluate retroactively whether an already computed
pointer violates static array bounds.

The changes to find the origin of the pointer operand of a load or store
instruction are shown in Listing 3.8. The body of the checkAccess function
consists of the validity check which James Price added previously and is
shown in Listing C.1.

3.3.2 Customisable diagnostic messages

Depending on the behaviour which is considered “interesting” it can be useful
to ignore specific warning or error messages. Especially, if some warnings are
known to be false positives for the given test case it is important to disable
them to preform the automatic reduction.

Filtering diagnostic messages

Instead of extending Oclgrind it would have been possible to just ignore
certain messages in the interestingness tests. But this approach has two
major disadvantages. First, all messages would have to be logged regardless
whether they are meaningful or would be ignored anyway. This increases the
runtime of Oclgrind as well as the time to parse the log file for important
information. Second, Oclgrind has a hard limit for the number of messages
that get reported. If this limit is exceeded Oclgrind keeps running but no
further output is generated. This bears the risk that important messages are
hidden by (probably known) false positives if these flood the limit.

After these considerations it seemed best to make the existing diagnosis
system of Oclgrind customisable similar to the mechanism compilers offer.
The flag -Wall enables all diagnostic output and individual message types
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void MemCheck::instructionExecuted(const WorkItem *workItem,
const llvm::Instruction *instruction,
const TypedValue& result)

{
// Check static array bounds if load or store is executed
const llvm::Value *PtrOp = nullptr;

if(const llvm::LoadInst *LI = llvm::dyn_cast<llvm::LoadInst>(instruction))
{

PtrOp = LI->getPointerOperand();
}
else if(const llvm::StoreInst *SI = llvm::dyn_cast<llvm::StoreInst>(instruction))
{

PtrOp = SI->getPointerOperand();
}
else
{

return;
}

if(auto GEPI = llvm::dyn_cast<llvm::GetElementPtrInst>(PtrOp))
{

checkArrayAccess(workItem, GEPI);
}

}

Listing 3.8 – Changes to validate array accesses for load and store instructions.
For load and store instruction the pointer operand is extracted from the instruction.
If the pointer has been constructed through a getelementptr instruction it must be
evaluated if the construction of the pointer violated static array bounds.
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enum MessageType
{
DEBUG,
INFO,
WARNING,
ERROR,

};

(a) Original categories

enum MessageType
{

// Base types
OCLGRIND_DEBUG = 0,
OCLGRIND_INFO = 1,
OCLGRIND_WARNING = 2,
OCLGRIND_ERROR = 3,
// Special warning types
OCLGRIND_WARNING_UNINITIALIZED = OCLGRIND_WARNING + 4,
// Special error types
OCLGRIND_ERROR_DIVERGENCE = OCLGRIND_ERROR + 4,
OCLGRIND_ERROR_INVALID_ACCESS = OCLGRIND_ERROR + 8,
OCLGRIND_ERROR_DATA_RACE = OCLGRIND_ERROR + 12,
OCLGRIND_ERROR_UNALIGNED = OCLGRIND_ERROR + 16,
OCLGRIND_ERROR_ARRAY_BOUNDS = OCLGRIND_ERROR + 20,
OCLGRIND_ERROR_FATAL = OCLGRIND_ERROR + 24,

};

(b) Extended categories

Listing 3.9 – Message categories in Oclgrind. Originally Oclgrind featured only a
rough categorisation into different kinds of messages (a). This has been extended by
more specific types (b) to allow filtering of individual messages.

or at least a single kind of diagnosis can be enabled (-W...) or disabled
(-Wno-...) separately.

Oclgrind featured already a rough categorisation into different kinds of
messages based on their estimated severity (Listing 3.9a). This has been split
up into a more fine grained system for individual types of messages (List-
ing 3.9b) which can than be filtered according to the rules given by the
user or the default settings. The codes to represent each of the individual
messages are chosen carefully such that the kind of a given message can be
derived from the two least significant bits. This makes it easier to filter for
complete groups or to determine the severity of a given message without
having to store it explicitly for every message.

There are two ways to configure which diagnostic messages should be
emitted. The fist one is to call oclgrind or oclgrind-kernel with the
respective -W... parameters (Table 3.1). The parameters are parsed in a
sequential order from left to right and hence later options overwrite earlier
ones. The second method is to export an environment variable named
OCLGRIND_DIAGNOSTIC_OPTIONS. The options have to be specified in the
same way as if they had been passed through the command line and also have
to be separated with a whitespace character. Again later options dominate
earlier ones.

Aborting on errors

As mentioned above, Oclgrind already featured a mechanism to suppress
further diagnostic messages once the specified limit has been reached. While
this helps to reduce the generated output during the execution of a kernel
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Flag Description

-Wall All diagnostic options
-Wgeneric All error and warning messages
-Wdebug All debug messages
-Winfo All info messages
-Wuninitialized Messages about reads of uninitialised values
-Wdivergence Messages about work-group divergence (barrier, async-

copy)
-Winvalid-access Messages about invalid memory accesses
-Wdata-race Messages about data races (read-write, write-write)

between work items
-Wunaligned Messages about unaligned memory accesses
-Warray-bounds Messages about array accesses outside the static

bounds

Table 3.1 – Diagnostic options for Oclgrind. Except for the “-Wall” option all flags
have a second form “-Wno-SPECIFIER” to selectively disable specific messages. The
options are parsed from left to right in the order in which they have been specified such
that later options override earlier ones.

it was not possible to stop the execution entirely after an error has been
detected. Yet the later one being essential to reduce the runtime of an
interestingness test which rejects a kernel on any reported problem.

This feature has been enabled through the definition of the new command
line parameter --stop-errors. It takes the number of errors after which the
execution should be aborted as argument. The default is not to abort the
execution on any number of errors to remain compatible to the old behaviour.
The number overall number of errors is then increased with every newly
detected one and once the limit has been reached Oclgrind print a warning
message and terminates with a non-zero exit status.

3.4 Uninitialised value plugin for Oclgrind

Although the plugin is also part of Oclgrind this section has been separated
from the other contributions. Since this new plugin is one of the central
aspects of the project the design decisions and the implementation details
are explained in more detail.

In the beginning of this project Oclgrind featured already a lightweight
plugin to detect undefined behaviour due to uninitialised values. The plugin
monitored all interactions with the memory system and warned as soon as
undefined values have been involved in memory operations. This caused
false positives in cases where uninitialised values were just copied around but
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// -g 1 -l 1

struct S0 {
ulong f;
uint g;

};

__kernel void entry(__global ulong *result)
{

struct S0 s;
s.f = 1;
s.g = 2;

struct S0 t;
t = s;

}

(a) Test case

Uninitialized value read from private memory address 0x200000000000c
Kernel: entry
Entity: Global(0,0,0) Local(0,0,0) Group(0,0,0)
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %4, i8* %5, i64 16, i32 8, i1 false)

At line 17 of input.cl:
t = s;

(b) Emitted warning message

Listing 3.10 – Test case triggering a false positive warning due to copy of padding
values. The member “f” causes the struct to be 8 byte aligned and hence four bytes
of padding values are appended after the member “g” which occupies only four bytes
itself. In the beginning of the kernel (a) both members of the struct are initialised and
yet Oclgrind emits a warning (b) that uninitialised values have been read. The problem
are the padding values which are not initialised but have been copied by the generated
memcpy instruction.

not actually used. For instance, the C99 standard defines padding values to
have indeterminate values and specifies that they do not have to be copied
together with the struct [C99, § 6.2.6.2.6]. In return this does not mean that
they must not be copied on a struct assignment.

The test case in Listing 3.10 creates a valid instance of a struct and
initialises both members. The only undefined values are the four bytes of
padding which are appended to the end of the struct to fulfil alignment
requirements. The copy assignment of the struct is translated into a memcpy
instruction which also copies the padding values. At this point the plugin
detects the uninitialised padding values and wrongly emits a warning for
an uninitialised read. While using the uninitialised padding values directly
would be undefined behaviour just copying them around is not.

The issue with this concrete test case has been fixed by James Price
in commit 0ba22b1 by explicitly handling the padding values in structs
allocated on the stack. However, just a slight modification in which the
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copy assignment spans across different address spaces brings the issue back.
It has been confirmed that the design of the plugin is to simple to handle
these cases properly. However, since structs play an essential role in the
randomly generated kernels the false positive reports were too frequent to
simply ignore them. Thus this new plugin had to be developed. Following,
instead of talking about “the plugin” it will be referenced by its working title
“ShadowKeeper”.

3.4.1 Concepts

With Valgrind’s Memcheck plugin and Clang’s MemorySanitizer (see Sec-
tion 2.2) there are already two widely used and appreciated implementations
of tools to check for undefined values. The ShadowKeeper plugin for Oclgrind
is based on a combination of the strategies of these tools but still had to
be adapted to the existing infrastructure of Oclgrind and were adapted to
match the needs of this project.

Conceptually the ShadowKeeper plugin sits somewhere in the middle
between the other two implementations. MemorySanitizer on the one hand
is entirely trimmed for efficiency and takes even loss in accuracy for a better
performance. Valgrind’s Memcheck on the other hand tries to be as precise
as possible and optimises only for efficiency as long as it does not have a
major impact on the accuracy. The goal for ShadowKeeper is to make the
detection of undefined values as complete as possible but not necessarily
at a high level of precision. This allows to approximate the propagation of
undefined values to improve the performance though the approximations
always have to be conservative such they do not decrease the “undefinedness”
of any value.

Moreover, the plugin follows the spirit of Oclgrind which is designed
with maintainability and modularity in mind although this introduces some
overhead in the performance. The object-oriented design as well as the
existing plugin system provide an excellent staring point to integrate the
new ShadowKeeper plugin into the existing framework. Figure 3.2 provides
a rough overview over the different components.

The main class of the plugin acts as a controller which intercepts the
action callbacks before and during the kernel execution and creates a context
for all shadow data. The design mirrors most the features of the overall
architecture of Oclgrind since basically every value has to be doubled with a
corresponding shadow value to store its validity. The “ShadowContext” is
the collection of all shadow values and the complete shadow memory.

Direct members of the shadow context are the data structures which keep
track of the global shadow values and memory which have to be accessible
from everywhere in the plugin. Further, the shadow context comprises a
thread local workspace that encapsulates all non-global data structures.
These includes mappings from real work groups and real work items to
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ShadowKeeper

Plugin APIShadowContext

ShadowMemory
(global)

ShadowValues
(global)

Shadow
WorkItems

Shadow
WorkGroups

MemoryPool
(global)

WorkSpace
(thread_local)

ShadowMemory
(private)

ShadowValues
(private)

ShadowMemory
(local)

MemoryPool

Figure 3.2 – Hierarchical design of the ShadowKeeper plugin. The main class
acts as a controller that intercepts the API calls of the plugin system and triggers state
changes in the “ShadowContext”. The context itself bundles all shadow information.
The non-global data structures are encapsulated in a thread_local workspace (grey)
to prevent data races. Each work group maintains its local shadow memory. Work items
store in addition to their private memory also shadow values for the intermediate results
during the kernel execution.

shadow work groups and shadow work items respectively as well as the
shadow data structures. Making this workspace thread local is part of the
(almost) lock free implementation of ShadowKeeper which is explained in
the last part of this section.

Finally, every shadow work group maintains the state of the group local
shadow memory and each shadow work item stores the validity of intermediate
results during the kernel execution and the private shadow memory.

3.4.2 Shadow data

The ShadowKeeper plugin uses the same differentiation between clean and
poisoned shadow data as Valgrind’s Memcheck and MemorySanitizer. Clean
shadows are represented through zero bits and poisoned values through one
bits respectively. While in Valgrind’s Memcheck constant data values always
have a clean shadow the LLVM IR has the special value undef for “defined”
undefined data. MemorySanitizer provides a flag which changes whether
these special values are considered poisoned or not but the ShadowKeeper
plugin offers no choice and treats them solely as poisoned. This is also the
default for MemorySanitizer and no situation has been discovered where this
would have caused problems.

To handle the undef constants correctly the function which maps an
actual data value to its shadow data includes two explicit tests (Listing 3.11).
The function first tries to convert the provided data value into an undef value
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TypedValue ShadowFrame::getValue(const llvm::Value *V) const
{

/* Parts removed for the sake of presentation */
else if (llvm::isa<llvm::UndefValue>(V)) {

return ShadowContext::getPoisonedValue(V);
}
/* Parts removed for the sake of presentation */
else if(const llvm::ConstantVector *VC = llvm::dyn_cast<llvm::ConstantVector>(V))
{

TypedValue vecShadow = ShadowContext::getCleanValue(V);
TypedValue elemShadow;

for(unsigned i = 0; i < vecShadow.num; ++i)
{

elemShadow = getValue(VC->getAggregateElement(i));
size_t offset = i*vecShadow.size;
memcpy(vecShadow.data + offset, elemShadow.data, vecShadow.size);

}

return vecShadow;
}
/* Parts removed for the sake of presentation */

}

Listing 3.11 – Special treatment of undef data values. Since the LLVM IR has the
special undef representation of partially initialised data structures not all constants can
be mapped to a clean shadow. The plain undef value and constants vectors – which
can contain undef values – are handled separately. The complete function is displayed
in Listing C.2.

and return a poisoned shadow if the conversion is successful. Furthermore,
constants vectors can potentially contain undef values at single positions.
Hence, if the provided data value is a constant vector the lookup function
is applied recursively to each component of the vector. This way a precise
shadow representation is obtained.

The abstract concept of “shadow data” is divided into two categories.
First there is the usual shadow memory which mirrors the address space
of the original kernel. This category is also present in both Valgrind’s
Memcheck plugin and MemorySanitizer. The second category are actual
shadow values which represent the validity of global and private variables in
the kernel. These values are comparable to the shadows of register values
which Valgrind’s Memcheck plugin has to maintain. MemorySanitizer on the
other hand does explicitly need to store these intermediate values since they
are indirectly represented through the statically added shadow operations.

Shadow memory

Like MemorySanitizer, the ShadowKeeper plugin creates a simple one-to-one
mapping with bit-level accuracy between the address spaces of the kernel
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and the shadow address spaces. The only exception is the constant address
space which is currently not mapped. The reasonable behind this decision is
the fact that for OpenCL kernels all constants have to initialised statically
and hence cannot contain undefined values. Therefore it is faster to generate
a new clean shadow for each access to constant memory instead of looking
it up and it saves space. Each of the other three address spaces (global,
local, private) is represented through a separate map which uses the original
address of the memory access as key. Using separate maps has the advantage
that the lookup of a particular value is likely to be faster and it prevents
clashes between the addresses of the different address spaces.

To reduce the memory overhead the implementation uses sparse maps.
Nevertheless, memory buffer objects are inserted every time an allocation
is performed as the use of a copy-on-write mechanism similar to the one in
Valgrind’s Memcheck plugin turned out to be inefficient in combination with
the sparse map. The copy-on-write strategy works well if the address space
is represented through a continuous chunk of memory since on a write the
values can simply be written to the position which is indexed by the address
without the need to actually allocate a buffer object. The problem with a
sparse map containing multiple buffer objects is that copy-on-write can lead
to a higher fragmentation of the buffer objects as it would be necessary since
the store might not access the entire object (Figure 3.3c). The fragmentation
can in turn lead to problems with copying entire buffer objects which have
been split (Figure 3.3d). Moreover, every write would have to check whether
the currently allocated buffer at the target address is large enough to contain
the new value which is going to be stored. In favour of a better runtime
performance the slightly worse memory efficiency without copy-on-write had
to be accepted.

In contrast, deallocations are handled lazily and are only performed on
demand instead of together with the deallocation of the data memory. The
main reason is that tracking deallocations precisely would introduce a huge
amount of extra work since there is no explicitly instruction for deallocations.
An object is simply considered as deallocated if its lifetime ends for instance
if the scope of the allocation is left. The implemented strategy is to check
for every allocation whether there is still shadow memory allocated for the
given address and to deallocate it if necessary before the new allocation is
performed (Listing C.4). This method is fail-safe since Oclgrind itself ensures
the consistency of the data memory and the same addresses are used for the
shadow memory.

In general all allocated memory is assumed to be undefined and the shadow
memory in consequently filled with poisoned values. This assumption might
not hold for memory buffers which have been created from initialised memory
of the host program and for buffer which are mapped into the host address
space. Since ShadowKeeper cannot determine the validity of the data which
the host program writes to the memory the best guess – in favour of the
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struct S0
{

ulong f;
ulong g;

};

__kernel void entry()
{

struct S0 s;

s.f = 1;
s.g = 2;

struct S0 t = s;
}

(a) Kernel

define void @entry() #0 {
%s = alloca %struct.S0, align 8
%t = alloca %struct.S0, align 8
%1 = getelementptr inbounds %struct.S0,

%struct.S0* %s, i32 0, i32 0
store i64 1, i64* %1, align 8
%2 = getelementptr inbounds %struct.S0,

%struct.S0* %s, i32 0, i32 1
store i64 2, i64* %2, align 8
%3 = bitcast %struct.S0* %t to i8*
%4 = bitcast %struct.S0* %s to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %3, i8* %4,

i64 16, i32 8, i1 false)
ret void

}

(b) Generated LLVM IR

1

2

...

...

%1
%2

Shadow
map

Heap

(c) High fragmentation

1

2

...

...

%1
%2

Shadow
map

Heap

(d) Invalid memcpy operation

Figure 3.3 – Problems with copy-on-write in combination with sparse maps. The
kernel in (a) creates a struct, initialises both members separately and copies the initialised
struct over to a new variable. The corresponding LLVM IR instructions (b) are an
allocation of 16 bytes, two stores with each 8 bytes and a memcpy instruction with a
length of 16 bytes. Since every store has only a size of 8 bytes two buffer objects would
be created with a copy-on-write strategy (c). This leads to problems with the memcpy
operation (d) because the buffer objects need not to be contiguous in memory.
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host program – is that it might be defined. Therefore the shadow memory
for buffers that are not exclusively mapped for writing and the regions that
are written by the host program are filled with clean shadow values.

Shadow values

The intermediate results during the kernel execution are also shadowed with
bit-level precision and finally stored in a sparse map. Instead of the address
the signature of the original instruction is used as key. Variables in the global
scope, e.g. constants and pointers to the local address space, are stored before
the actual execution of the kernel is started, exist throughout the entire
execution of the kernel and can be accessed form every point in the plugin.

On the other hand, the management of the private shadow values requires
a bit more effort than a single map. Here the lifetime of the temporary
variables is important since otherwise shadow values from different scopes22

could interfere with each other if the signatures of the instructions were
identical (Listing 3.12). This is a problem which neither Valgrind’s Memcheck
nor MemorySanitizer experience. Memcheck only has to shadow a finite set
of registers independent of the actual instructions that write to them and
the shadow values in MemorySanitizer are implicitly scoped through the
memory management of the compiler.

The solution which has been implemented in the ShadowKeeper plugin
includes the explicit construction of a new “ShadowFrame” (Figure 3.4) each
time a function is called and the return to the old frame when the control
flow leaves the function. Before the first instruction of the new function is
executed the frame is initialised with the shadow values of all arguments of
the function. Additionally each frame has an extra slot to remember the
signature of its call instruction. This is necessary to link the shadow of the
return value of the function to the previous call instruction.

One problem that occurred during the implementation of the shadow
values was that the values are represented through dynamically allocated
buffers. As long as the values are finally stored in one of the shadow maps this
does not cause problems as all elements of the maps can be deallocated when
the execution of the kernel terminates. More complicated is the situation
when values are created just to compare a given value with a clean value
or if it is even unknown at the point of creation if the value will be stored
or discarded. To prevent memory leaks all values are therefore obtained
from a MemoryPool which keeps track of all allocations and performs the
deallocation once it is destroyed. This hides the actual memory management
from all other parts of the plugin, though it not always be optimal in terms of

22 To be precise, only different function scopes can cause problems. For different blocks
which limit the scope of variables inside the same function the compiler has to mangle
the variable names anyway to prevent clashes. Therefore within a function no two
instructions can have the same signature if they do not affect the same variable.
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void fn()
{

ulong u;
ulong i = u;

}

__kernel void entry()
{

ulong v = 0;
ulong i = v;

fn();
}

(a) Kernel

define void @fn() #0 {
%u = alloca i64, align 8
%i = alloca i64, align 8
%1 = load i64, i64* %u, align 8
store i64 %1, i64* %i, align 8
ret void

}

define void @entry() #0 {
%v = alloca i64, align 8
%i = alloca i64, align 8
store i64 0, i64* %v, align 8
%1 = load i64, i64* %v, align 8
store i64 %1, i64* %i, align 8
call void @fn() #1
ret void

}

(b) Generated LLVM IR

Listing 3.12 – Problems with the scope of private variables. The kernel in (a)
first initialises the variable “v” with zero and assigns v afterwards to the variable “i”.
Then the function “fn” is called and implicitly a new stack frame is generated. Inside
the function a different variable “i” is set to an undefined value. The variable in the
kernel is not affected by this assignment. The translation into the LLVM IR (b) is
straightforward. The problem is that both stores to the variables “i” result in identical
instructions (red). If there were only a single map for all private shadow values the store
in the function “fn” would overwrite the clean shadow of the kernel variable with the
poisoned shadow of the function variable.

ShadowValues
ShadowFrame

ShadowFrame

ShadowFrame

... Call instruction
Shadow map

Call instruction
Shadow map

Call instruction
Shadow map

Figure 3.4 – Detailed view on the structure of shadow values. To simulate the
different scopes of variables for the shadow values a stack with different frames is
maintained. Each function invocation pushes a new frame to the stack and each return
from a function pop the frame off. A frame consists of all shadow values in the current
scope and an extra slot for the signature of the call instruction of the current function.
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the memory which is allocated at any point in time. To reduce the overhead
there exists one permanent memory pool for global shadow values and in
addition each thread has a thread local memory pool for the shadow values of
its current work items. Despite the small overhead in memory consumption
this strategy is also used throughout the rest of Oclgrind.

3.4.3 Shadow operations
The ShadowKeeper plugin implements shadow operations in the same way
in which it is done for Valgrind’s Memcheck and MemorySanitizer. For each
instruction on the real data a corresponding function on the shadow data is
defined. Most of the function simply propagate shadow values by querying
the shadows of the arguments of the real function and combining them in an
appropriate way. Only a few functions actually check the definedness of the
arguments and emit a warning if necessary.

Oclgrind currently supports 48 LLVM IR instructions and additional 94
built-in functions, though the ShadowKeeper plugin generalises the shadow
propagation over a large number of these operations. Instead of computing
the result shadow with bit-level precision those generalised functions check
the shadow of all operands and if either is (partially) poisoned the entire
result is considered as poisoned (Listing 3.13).

First of all this has the great advantage of being faster than an exact
computation of the result shadow. Furthermore it cannot make any value
less poisoned and does not sacrifice too much of accuracy that it would lead
to enormous amounts of false positives.23 The OpenCL standard does not
allow bit fields so the only possibility to intentionally create values which
have only single bits undefined is to use bit operations where one operand is
undefined. Since the randomly generated kernels do not include this “feature”
any undefined bit is actually harmful to the test case such that a warning
cannot be a false positive. There is also a small chance that the compiler
performs optimisations after which partially initialised values are floating
around but this has not been observed during the project.

Warnings about undefined values are only emitted if the values would
change the observable behaviour of the program. This is if undefined values
are written to memory of a non-private address space and if the control flow
depends on undefined values. Further, warnings are generated if undefined
values are passed as arguments to external functions since ShadowKeeper
cannot check whether the values would exhibit undefined behaviour inside
the unknown function. Additionally, though not strictly necessary, undefined
values are reported if they are used as index operand in instructions. If
the normal propagation had been chosen in these situations the complete

23 Actually there has been not a single false positive warning since the old plugin has
been exchanged with ShadowKeeper.
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void MemCheckUninitialized::SimpleOr(const WorkItem *workItem,
const llvm::Instruction *I) {

ShadowValues *shadowValues =
shadowContext.getShadowWorkItem(workItem)->getValues();

for(auto OI = I->op_begin(); OI != I->op_end(); ++OI)
{

if(!ShadowContext::isCleanValue(shadowContext.getValue(workItem, OI->get())))
{
shadowValues->setValue(I, ShadowContext::getPoisonedValue(I));
return;

}
}

shadowValues->setValue(I, ShadowContext::getCleanValue(I));
}

Listing 3.13 – Generalised shadow propagation in ShadowKeeper. Instead of
computing the exact shadow value of the result the shadow values for argument of the
original instruction are checked. If any of the arguments is (partially) poisoned the
entire result value is poisoned.

data structure would have to be marked poisoned on a write access which
introduces unnecessary many undefined values. On the other hand, if all
values of the index data structure are defined a read access could return a
clean value even if the index is undefined. But then the undefined index
would remain unnoticed if no warning is generated. The alternative to
propagate an undefined value without a warning every time the index is
undefined would again introduce unnecessary many poisoned values. Lastly,
the addresses of all memory loads and stores a directly checked for their
definedness. Without these address checks undefined values would remain
unnoticed if for instance a load from a poisoned access luckily hits a valid
address and a clean value is loaded. Table 3.2 lists all operations which can
generate a warning if undefined values are detected and describes in which
situations there warnings are emitted.

The call instruction (Listing C.3) requires special treatment since the
behaviour of the shadow operations depends on kind of the call. First it is
checked if the invoked function is a LLVM intrinsic. Although these functions
are externally defined the effects are well known and can thus be handled
precisely in terms of the shadow operations. Among the supported intrinsics
the memcpy operations is special since it may legally copy undefined values
without causing undefined behaviour. Nevertheless the definedness of the
copied value has to be verified if the destination belongs to a non-private
address space.

For this reason a special check has been implemented which is specific
to the type of the source value and validates only those parts which must
not be undefined to prevent undefined behaviour. Currently the only known
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Operation Undefined Generated if. . .

async_*_copy Index operand the size or the stride are undefined
Write the source value is undefined

atomic_cmpxchg Control flow the condition is undefined
Write the new value is undefined and the

exchange is performed
atomic_* Write the old value or the argument are

undefined
br Control flow the condition is undefined
call Control flow the call is to an external function

and any operand is undefined
extractelement Index operand the index operand is undefined
fract Write the floored result is undefined
frexp Write the exponent is undefined
insertelement Index operand the index operand is undefined
lgamma_r Write the sign is undefined
load Address the address is undefined
memcpy Write the source is undefined
memset Address any address is undefined
modf Write the integral part is undefined
remquo Write the quotient is undefined
sincos Write the cosine is undefined
store Write the stored value is undefined
switch Control flow any operand is undefined
wait_group_events Control flow the number of events or any event

itself are undefined

Table 3.2 – Operations emitting warnings if undefined values are detec-
ted. The two different asynchronous copy functions async_work_group_copy and
async_work_group_strided_copy are combined into one entry in the table. All
atomic functions except for atomic_cmpxchg are handled in the same way and are not
listed separately. The same holds for all load and store instructions. Additionally to the
listed warnings every instruction in the list that takes at least on address as argument
can emit a “Address” warning if the address is undefined.
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situation in which copying undefined values is legal is copying a struct with its
the padding values. The check (Listing C.5) is therefore recursively applied
to all members of the struct while sparing potential padding areas. If any
of the members contains undefined values – other than padding values of
potentially nested structs – a warning is emitted.

After the test for intrinsic functions general external function declarations
are handled. If the function matches one of the built-in functions known to
Oclgrind the specific shadow operation is invoked whereas otherwise the usual
check of all arguments is performed. If the function has a non-void return
type the call is assigned a clean shadow value. This is not always safe since
the function might return an undefined value, though all of its arguments are
be defined. But a precise evaluation is not possible and making the return
value always poisoned introduces far to many false positives.

Finally, if none of the above criteria is fulfilled and the function is non-
variadic24 a new shadow frame is created to hold the shadow values local
to the called function. The frame is initialised with the shadows of the
function arguments. Special care has to be taken for pointer values with the
byval attribute. The shadow memory to which the arguments points has to
be duplicated since the original shadow must not be accessed from inside
the function. Further, if the function has a non-void return value the call
instruction is stored in the dedicated slot in the shadow frame such that the
return values can later be assigned to the call instruction. Afterwards the
new shadow frame is pushed onto the stack of shadow values.

Each call instruction which invokes an internally defined function is
accompanied by a ret instruction (Listing 3.14). At least the ret instruction
restores the shadow context of the calling function by popping the top most
shadow frame off the stack of shadow values. Moreover, for function with a
non-void return type the corresponding call instruction is previously looked
up in the shadow frame of the called function and the shadow of the return
values is assigned to the call instruction.

Regarding the generality of the ShadowKeeper plugin one limitation is
that currently the image manipulation functions defined in the OpenCL
standard are not explicitly supported. They will be treated like any other
unknown external function and thus only the arguments are checked for
undefined values. Since the kernels which have been generated in the course
of this project do not contain image based features the implementation of
these function has been postponed to a later version of the plugin.

24 Variadic functions are not supported at the moment. However, this is not a real
limitation of the plugin as also the OpenCL standard prohibits the definition of custom
variadic functions and the built-in printf function has no side effects that would have
to be handled.

Imperial College London, Department of Computing 65



3 Contributions and design

case llvm::Instruction::Ret:
{

const llvm::ReturnInst *retInst = ((const llvm::ReturnInst*)instruction);
const llvm::Value *RetVal = retInst->getReturnValue();

if(RetVal)
{
TypedValue retValShadow =
shadowContext.getMemoryPool()->clone(shadowContext.getValue(workItem, RetVal));

const llvm::CallInst *callInst = shadowValues->getCall();
shadowValues->popFrame();
shadowValues->setValue(callInst, retValShadow);

}
else
{

shadowValues->popFrame();
}

break;
}

Listing 3.14 – Handling of ret instructions in the ShadowKepper plugin. If the
called function has a non-void return type the shadow of the return value is mapped to
the call instruction. In the end the current shadow frame is popped from the stack of
shadow values to restore the context of the calling function.

3.4.4 Thread safety

Oclgrind in general is able to simulate multiple work items at the same time
by running them in different threads. Although the plugins are not required
to be thread safe the resulting serialised execution would have rendered the
ShadowKeeper plugin useless for large kernels. A major concern in terms of
the thread safety are the data structures which are used to store the shadow
data.

This is first of all the map which stores all global shadow values. For-
tunately, the only writing accesses to this map, for instance to initialise
constants, are before the actual execution is started. During the execution
only reading accesses can happen which do not introduce data races [C++11,
§ 23.2.2]. Moreover, for the shadow memory of non-local address spaces,
although they are accessible from concurrent threads, in general no locking
mechanism is needed. Any concurrent access to the same address would
correspond to a data race on the actual values since the shadow operations
are always synchronised to the real operations. Since data races are forbidden
by the OpenCL standard the plugin does not make any guarantees for kernels
that exhibit undefined behaviour. The concurrent access to different ad-
dresses in the same map is enabled by storing the shadow memory in a buffer
separate from the actual map (Listing 3.15) and inserting only a pointer to
the buffer into the map. Once again, allocations to the non-private address
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struct TypedValue
{

unsigned size;
unsigned num;
unsigned char *data;
/* Parts removed for the sake of the presentation */

};

typedef std::unordered_map<const llvm::Value*, TypedValue> UnorderedTypedValueMap;

UnorderedTypedValueMap m_globalValues;

Listing 3.15 – Storage implementation of global shadow memory. Since the map
itself must not be changed to prevent data races between concurrent threads only
pointers to external buffers are stored in the map. If values are stored into the global
memory only the content of the buffers changes but not the address of the buffer and
hence not the map. Allocation of buffers is only performed before the kernel is executed
and is thus not exposed to multiple threads.

space are performed before the actual execution starts and hence during the
runtime the maps are never changed and no data races can occur [C++11,
§ 23.2.2].

All maps that contain non-global shadow data have been declared as
thread_local (Listing 3.16) which makes the containers scoped to the ex-
ecuting thread and thus directly prevents any sort of data race without
the need for explicit locking. Since non-global shadow data need to be
visible to other threads this is introduces no further problems. The usage of
thread_local however is quite tricky. The Clang compiler does not support
thread_local variables with non-trivial destructors at all25 and GCC pun-
ishes every use of thread_local variables with non-trivial destructors with
performance overheads.26 The C++11 standard has no such restrictions but
the implementation of dynamic thread_local variables is difficult since the
initialisation has to be performed during the runtime before the first usage
and cannot be done statically during the compilation. Mainly to remain
compatible to the Clang compiler the use of thread_local in the plugin –
and throughout Oclgrind in general – is therefore restricted to static variables
with constant initialisers. This requires to wrap pointers to the non-global
data structures in a trivial struct which can be statically initialised with
null pointers (Listing 3.17). The actual initialisation as well as the dynamic
destruction is performed manually at the begin and respectively at the end
of each work item.

25 See http://clang.llvm.org/docs/AttributeReference.html#thread, visited on
23/08/2015.

26 See https://gcc.gnu.org/gcc-4.8/changes.html#cxx, visited on 23/08/2015.
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struct WorkSpace
{

ShadowItemMap *workItems;
ShadowGroupMap *workGroups;
MemoryPool *memoryPool;
unsigned poolUsers;

};

static THREAD_LOCAL WorkSpace m_workSpace;

Listing 3.16 – Declaration of thread_local workspaces. To prevent data races
among the non-global data structures they encapsulated in a thread_local workspace.
Hence every thread has its own instance of the variables and does not interfere with
other threads.

THREAD_LOCAL ShadowContext::WorkSpace ShadowContext::m_workSpace =
{NULL, NULL, NULL, 0};

Listing 3.17 – Static dummy initialisation of the thread_local workspace. Since
dynamic thread_local variables are not supported or impractical a trivial workspace
is created which can be statically initialised with null pointers (mostly). The real
initialisation is performed manually for each work item.

The only exception from the lock free implementation are atomic opera-
tions which affect the global data structures. Here it is not responsibility
of the kernel to prevent data races but the implementation of the atomic
operations must handled concurrent accesses without introducing undefined
behaviour. Every atomic shadow operations which writes to the global ad-
dress space acquires a lock prior to reading the old shadow value and releases
it after writing the new shadow value (Listing C.6). Additionally, to reduce
the contention multiple locks are provided such that each operations locks
only a part of the address space. Atomic operations in different parts do
not block each other. For this purpose the part of the address is masked
with the number of available mutexes which yields the index into the array
of mutexes (Listing 3.18).

3.5 C-Reduce

This section describes the modifications which have been made to the existing
C-Reduce implementation in the scope of this project. The contributions
include patches fixing bugs in the transformations of clang_delta as well
as extensions of the clang_delta tool to handle OpenCL kernels as input.
Furthermore, the C-Reduce algorithms on Windows systems has been re-
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// Multiple mutexes to mitigate risk of unnecessary synchronisation in atomics
#define NUM_ATOMIC_MUTEXES 64 // Must be power of two
static std::mutex atomicShadowMutex[NUM_ATOMIC_MUTEXES];
#define ATOMIC_MUTEX(offset) \
atomicShadowMutex[(((offset)>>2) & (NUM_ATOMIC_MUTEXES-1))]

Listing 3.18 – Implementation of multiple locks to reduce contention. Since
accesses to different addresses to not result in data races it is not necessary to make
them mutually exclusive. On the other hand providing a mutex for each address is also
impractical. As compromise the address space is parted into multiple regions. The
addresses inside the same region share a mutex lock but do not affect the addresses in
a different region.

int foo(ulong *p1);

(a) Test case (b) Correct transformation

;

(c) Actual transformation

Listing 3.19 – Example of the wrong handling of function declarations. The
transformation fails to remove the trailing semicolon whihc ompletes the function
declaration. While this is not a violation of the C99 standard the reduction results is
better if the semicolon is remove as well.

designed to increase the performance of the C-Reduce framework on this
platform.

3.5.1 Incorrect transformations

In the course of this project a strict compliance with the C99 standard has
been necessary to prevent undefined behaviour in OpenCL kernels. This
requirement revealed some edge cases in which the transformations produced
some non strictly conforming results. Further, some transformation have
been optimised to produce smaller test cases. The following sections briefly
describe the cause of the problems and outline the solutions which have been
worked out during the project.

Transformation: remove-unused-function

The remove-unused-function transformation scans the provided source
code file for unused functions and removes them subsequently. Originally
pure function declarations were not handled correctly (Listing 3.19). In
contrast to function definitions declarations are followed by a semicolon
which should be removed together with the function declaration. While the
failure to remove the semicolon does not introduces undefined behaviour the
reduction result is not as small as it could be.

The proposed patch (Listing 3.20) extends the transformation by an
additional check for functions with out a body and removes everything up
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diff --git a/clang_delta/RemoveUnusedFunction.cpp b/clang_delta/Rem[...]Function.cpp
index d264176..bfd83c2 100644
--- a/clang_delta/RemoveUnusedFunction.cpp
+++ b/clang_delta/RemoveUnusedFunction.cpp
@@ -423,8 +423,16 @@ SourceLocation RemoveUnusedFunction::getFunctionLocEnd(

SourceLocation LocEnd,
const FunctionDecl *FD)

{
- if (!FD->getDescribedFunctionTemplate())
- return LocEnd;
+ if (!FD->getDescribedFunctionTemplate()) {
+ // Remove trailing ; if function has no body
+ if (!FD->hasBody()) {
+ return RewriteHelper->getLocationUntil(LocEnd, ’;’);
+ }
+ else {
+ return LocEnd;
+ }
+ }
+

SourceLocation FDLoc = FD->getLocation();
const char * const FDBuf = SrcManager->getCharacterData(FDLoc);
const char * LocEndBuf = SrcManager->getCharacterData(LocEnd);

Listing 3.20 – Patch that adds handling of pure function declarations. Without
the patch the trailing semicolon for function declarations (without a function body) was
not removed.

to and including the next semicolon in the source code. As pure functions
declarations must be terminated by a semicolon to conform to the C standard
this cannot remove too much of the test case. The pull request has been
accepted and the patch has been merged into the main project.27

Transformation: empty-struct-to-int

The empty-struct-to-int transformation removes struct declarations and
replaces all usages of the struct type with type int. Despite its name
the transformation does not only remove structs without any member but
also structs with at most one unreferenced member. This is important as
the behaviour for structs without any named member is undefined [C99,
§ 6.7.2.1.7].28 Thus test cases with empty structs would be rejected by the
interestingness test and the struct declaration could only be removed by the
simple delta-reduction steps.

Completely empty structs cannot have an initialiser list when a variable
of the struct type is defined. In this case the transformation is easy as it is
possible to just replace every occurrence of the struct type with an integral

27 See https://github.com/csmith-project/creduce/pull/57, visited on 29/06/2015.
28 Empty structs are a GNU C extension of the C99 standard. See https://gcc.gnu.

org/onlinedocs/gcc/Empty-Structures.html, visited on 24/08/2015.
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struct S0 {
int a[5];

};

struct S0 s = {{1,2,3,4,5}};
struct S0 as[2] = {{1}, {6,7}};

(a) Test case

int s = 0;
int as[2] = {0, 0};

(b) Correct transform.

int s = {{1,2,3,4,5}};
int as[2] = {{1}, {6,7}};

(c) Actual transform.

Listing 3.21 – Example of the empty-struct-to-int transformation. Originally the
transformation did not modify the initialiser list if a struct type was converted into an
integral type. But providing initialisers for non-existent objects is undefined behaviour
according to the C99 standard.

type. However, structs with at least one named member can have an initialiser
list even if the member itself is unreferenced. Moreover, initialiser lists can be
nested for members and variables of array or struct type (Listing 3.21a). The
existing implementation of C-Reduce did not consider these cases and left the
initialiser list unmodified (Listing 3.21c). But again such a transformation
result would have to be rejected in the interestingness test since according
to the C99 standard “[n]o initializer shall attempt to provide a value for an
object not contained within the entity being initialized” [C99, § 6.7.8.2].

The solution is similar to the principle of the remove-unused-struct-field
transformation. This patch adds a new tree-like data structure which keeps
track of all usages of the struct that is going to be rewritten. During the
parsing of the AST the tree is filled such that in the end every occurrence
of the struct type under change is represented as a leaf node (Figure 3.5).
The inner nodes are structs that have itself a member of the struct type
under change. This information is essential as also the initialiser lists of
these “surrounding” structs have to be altered. Once all occurrences have
been determined the specific initialiser lists are simply replaced with a zero
value.

A pull request has been created29 to include the changes into the C-
Reduce mainstream project. It has been accepted and the commit with the
hash 49782e7 merges the changes.

During the development of the patch for the struct initialiser lists it
has been noticed that the transformation behaves differently if C++ input
is assumed during the parsing. Then, in contrast to the documentation,
only completely empty structs were replaced with an integral type. Structs
with one unreferenced member were not considered like they are in C input
mode. While there are special cases in the C++ language like inheritance
of structs (Listing 3.22) where the transformation cannot be applied a last
unreferenced member should not prevent the transformation.

29 See https://github.com/csmith-project/creduce/pull/55, visited on 30/06/2015.
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struct S0 {
int a[3];

};

struct S1 {
int b;
struct S0 s0;

}

struct S0 s0 = {1,2,3};
struct S1 s1 = {0, {1,2,3}}

(a) Source

S00

0 S1 S01

(b) Type usage chain

Figure 3.5 – Example of the collected type usage information. The struct S0
in (a) has only one unreferenced member and can thus be replaced with an integral
type. Prior to the actual transformation the complete usage information of the type
struct S0 has to be collected during the AST parsing (b). For the first occurrence
the complete initialiser list has to be replaced (“0”). For the second occurrence only
the initialiser list of the second member (“1”) has to be replaced.

struct S0 {
int a;

};

struct S1 : S0 {
int b;

};

(a) Struct inheritance

struct S1 : int {
int b;

};

(b) Invalid transformation

Listing 3.22 – Struct inheritance in C++ can prevent transformations on structs.
Although the struct S0 in (a) does only have a single unreferenced member it cannot be
replaced with an integral type. Otherwise as shown in (b) the struct S1 would inherit
from the type int which is invalid.
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diff --git a/clang_delta/EmptyStructToInt.cpp b/clang_delta/EmptyStructToInt.cpp
index fbc2efd..5631740 100644
--- a/clang_delta/EmptyStructToInt.cpp
+++ b/clang_delta/EmptyStructToInt.cpp
@@ -343,17 +437,121 @@ bool EmptyStructToInt::isValidRecordDecl(const RecordDecl *RD)

const DeclContext *Ctx = dyn_cast<DeclContext>(CXXDef);
TransAssert(Ctx && "Invalid DeclContext!");

+ int count = 0;
for (DeclContext::decl_iterator I = Ctx->decls_begin(),

E = Ctx->decls_end(); I != E; ++I) {
- if (!(*I)->isImplicit())
- return false;
+ if (!(*I)->isImplicit()) {
+ if ((*I)->isReferenced())
+ return false;
+ ++count;
+ }

}
+
+ if (count > 1)
+ return false;
+

return true;
}

Listing 3.23 – Patch that adds non-empty struct support for C++. Instead of
marking a record declaration as invalid as soon as any member is found the number of
members is counted and only if a referenced member is found or if the record has more
than one member it is marked as invalid.

The different behaviour has its root in the isValidRecordDecl function
of the EmptyStructToInt.cpp source file. In this function for record declara-
tions of the C langugage one unreferenced member is allowed explicitly while
for the C++ language the record declaration is marked as invalid as soon
as any member is found. The patch in Listing 3.23 checks for the concrete
number of members and marks the record only as invalid if a referenced
member is found or if more than one member is present.

Transformation: remove-unused-field

The remove-unused-field transformation scans struct declarations for un-
referenced members and removes them one at a time. Although a field might
be unreferenced it can still be contained in an initialiser list for the struct. To
prevent undefined behaviour due to excess elements in the initialiser list [C99,
§ 6.7.8.2] the initialisers for the removed field have to be removed from the
list as well.

In general the initialiser list can contain a trailing comma after the last
element. The exception is that a list without any element30 must not solely
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diff --git a/clang_delta/RemoveUnusedStructField.cpp b/clang_delta/Rem[...]Field.cpp
index 01700ad..456744b 100644
--- a/clang_delta/RemoveUnusedStructField.cpp
+++ b/clang_delta/RemoveUnusedStructField.cpp
@@ -291,15 +291,23 @@ void RemoveUnusedStructField::getInitExprs(const Type *Ty,
void RemoveUnusedStructField::removeOneInitExpr(const Expr *E)
{
TransAssert(NumFields && "NumFields cannot be zero!");

- if (NumFields == 1) {
- RewriteHelper->replaceExpr(E, "");
- return;
- }

SourceRange ExpRange = E->getSourceRange();
SourceLocation StartLoc = ExpRange.getBegin();
SourceLocation EndLoc = ExpRange.getEnd();

- if (IsFirstField) {
+
+ if (NumFields == 1) {
+ // The last field can optionally have a trailing comma
+ // If this is the only field also the comma has to be removed
+ SourceLocation NewEndLoc =
+ RewriteHelper->getEndLocationUntil(ExpRange, ’}’);
+ NewEndLoc = NewEndLoc.getLocWithOffset(-1);
+
+ TheRewriter.RemoveText(SourceRange(StartLoc, NewEndLoc));
+
+ return;
+ }
+ else if (IsFirstField) {

EndLoc = RewriteHelper->getEndLocationUntil(ExpRange, ’,’);
TheRewriter.RemoveText(SourceRange(StartLoc, EndLoc));
return;

Listing 3.24 – Patch that fixes the handling of a trailing comma in initialiser lists.
If only one initialiser is left in the list everything up to the end of the list is removed.
This way it is not necessary to differentiate between lists with a trailing comma and
lists without.

consist of a comma. The transformation originally failed to remove the
comma in this case and produced semantically incorrect reduction results.

To solve the problem the proposed patch in Listing 3.24 adds an explicit
test if only one initialiser is left in the list. If this is the case everything up
to the end of the initialiser list is removed instead solely the initialiser. This
way it is not necessary to distinguish between lists with a trailing comma
and lists without. The patch is included in the pull request which improves
the empty-struct-to-int transformation which has been merged into the main
C-Reduce repository.

30 The C99 standard forbids empty initialiser lists. They were added as a GNU C
extension. Thus they are not relevant for OpenCL but since C-Reduce is not specific
to any standard a solution for the problem has been developed.
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__kernel void entry()
{

uint4 i = (uint4)(0);
}

(a) Test case

__kernel void entry()
{

}

(b) Correct transformation

}

(c) Actual transformation

ocl.c:1:6: error: variable has incomplete type ’void’
__kernel void entry()

^
ocl.c:1:14: error: expected ’;’ after top level declarator
__kernel void entry()

^
;

TranslationUnitDecl 0x10302c2c0 <<invalid sloc>> <invalid sloc>
|- Some unrelated declarations removed
‘-VarDecl 0x10302cbd0 <ocl.c:1:1, col:6> col:6 invalid __kernel ’void’
2 errors generated.

(d) Generated AST

Listing 3.25 – Transforming OpenCL code with Clang in C mode. The selected
transformation is assumed to be remove-unused-var and applied to the shown test
case (a). After the transformation the variable “i” should have been removed from
the test case (b). The problem is that Clang does not recognise the OpenCL specific
keyword “__kernel” and parses it as variable name (d). This “variable” is subsequently
unused and therefore most of the test case gets removed (c).

3.5.2 OpenCL support

The C-Reduce framework in general is not tied to any specific programming
language. The generic reductions can be applied to OpenCL kernels without
the need to be adapted. Also the lexer clex designed for languages of the C
family works in combination with OpenCL since the latter is an extension
of the C99 standard. Tokens from the OpenCL standard which are not
part of the C99 language are simply identified as “unknown”. Solely the
specialised clang_delta transformation tool had some problems with the
slightly different OpenCL language specifications. Its original version only
recognises C and C++ files as input and initialises the used Clang instance
correctly. All other file types are simply rejected and the tool aborts.

The first idea was to trick clang_delta by presenting the OpenCL input
as plain C input. Since OpenCL is based on the C99 standard is there was
quite a chance that the internal Clang instance would be able to parse the
OpenCL code even in C mode. However, while clang_delta accepts the file
if the extension is altered to .c instead of .cl the AST generated by Clang
is useless. First, it ends after the first unknown token is discovered and
worse some unknown tokens are misinterpreted such that the syntax of the
program is changed (Listing 3.25d). Consequently the transformation result
is useless too (Listing 3.25c).
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A straightforward solution to the unrecognised tokens is to preprocess
the kernel together with files providing the necessary declarations for all
functions and types. Potential sources for such files are the libclc project31

and the SPIR headers32 provided by the Khronos Group.
Besides that this has the potential to solve the problem for clang_delta

without the need to actually modify the tool itself there is also one major
disadvantage. The declarations of OpenCL specific types and function in
the preprocessed files result in redeclaration errors when the test case is
compiled by any other “real” host program, e.g. cl_launcher. A workaround
would be to make the declarations conditional via #define directives but
this increases significantly the amount of work that has to be done and care
that has to be taken before the automatic reduction steps can be applied.

A better solution seems to be to make use of the OpenCL front-end of the
Clang compiler. It can be activated by setting the language options of the
compiler to IK_OpenCL during the initialisation phase of clang_delta. This
enables at least support for the parsing and the compilation of kernels. For
instance are the function qualifier __kernel and the address space qualifiers
__global, __local, __private and __private no longer unknown.

Further work has to be done to silence warnings about implicitly declared
built-in functions of OpenCL and to make the OpenCL specific types like
ulong known to the Clang compiler. The libclc project33 provides header files
which contain declarations for all types and functions which are supported by
the OpenCL standard. To make these files available to the compiler instance
in clang_delta the environment variable CREDUCE_LIBCLC_INCLUDE_PATH is
evaluated (Listing 3.26). If it contains a valid path it is assumed to point
to the include directory of the libclc sources. The actual header file is then
included through the command line option -include which is provided by
the Clang compiler. Additionally, all built-in functions of the compiler have
to be disabled as some of them clash with the new OpenCL declarations.

The changes to the TransformationManager to activate the OpenCL
front-end of the compiler and the include instructions for the libclc header
files have been merged into the main C-Reduce project.34

3.5.3 Handling of multiple source files
The drawback of including OpenCL header files directly into the instance
of the Clang compiler instead of using preprocessed files manifests in the
fact that the current version of clang_delta does not work well with files
that are not preprocessed and thus not self-contained, e.g. have #include

31 http://libclc.llvm.org, visited on 04/06/2015.
32 https://raw.githubusercontent.com/KhronosGroup/SPIR-Tools/master/headers/

opencl_spir.h, visited on 04/06/2015.
33 See http://libclc.llvm.org, visited on 24/08/2015.
34 See https://github.com/csmith-project/creduce/pull/64, visited on 01/09/2015.
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diff --git a/clang_delta/TransformationManager.cpp b/clang_delta/Trans[...]ager.cpp
index e677930..a279daf 100644
--- a/clang_delta/TransformationManager.cpp
+++ b/clang_delta/TransformationManager.cpp
@@ -88,6 +88,32 @@ bool TransformationManager::initializeCompilerInstance(std::
↪→ string &ErrorMsg)

// It results an empty AST for the caller.
Invocation.setLangDefaults(ClangInstance->getLangOpts(), IK_CXX);

}
+ else if(IK == IK_OpenCL) {
+ //Commandline parameters
+ std::vector<const char*> Args;
+ Args.push_back("-x");
+ Args.push_back("cl");
+ Args.push_back("-Dcl_clang_storage_class_specifiers");
+
+ const char *CLCPath = getenv("CREDUCE_LIBCLC_INCLUDE_PATH");
+
+ ClangInstance->createFileManager();
+
+ if(CLCPath != NULL && ClangInstance->hasFileManager() &&
+ ClangInstance->getFileManager().getDirectory(CLCPath, false) != NULL) {
+ Args.push_back("-I");
+ Args.push_back(CLCPath);
+ }
+
+ Args.push_back("-include");
+ Args.push_back("clc/clc.h");
+ Args.push_back("-fno-builtin");
+
+ CompilerInvocation::CreateFromArgs(Invocation,
+ &Args[0], &Args[0] + Args.size(),
+ ClangInstance->getDiagnostics());
+ Invocation.setLangDefaults(ClangInstance->getLangOpts(), IK_OpenCL);
+ }

else {
ErrorMsg = "Unsupported file type!";
return false;

Listing 3.26 – Including OpenCL related header files in clang_delta. If the
source file passed to clang_delta is recognised as OpenCL input the environment
variable CREDUCE_LIBCLC_INCLUDE_PATH searched to get the path to the libclc include
directory. The libclc projects provides files which define types and functions which
are specific to OpenCL and thus in general unknown to Clang. The header is then
included through the command line option -include. Further, the -fno-builtin
deactivates all built-in functions of Clang which would otherwise clash with the new
OpenCL function declarations.
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# 1 "/home/moritz/msc_project/clsmith/cl_safe_math_macros.h" 1
# 5 "/home/moritz/msc_project/clsmith/CLSmith.h" 2
# 1 "/home/moritz/msc_project/clsmith/safe_math_macros.h" 1
# 6 "/home/moritz/msc_project/clsmith/CLSmith.h" 2
# 19 "/home/moritz/msc_project/clsmith/CLSmith.h"
inline __attribute__((always_inline)) void
transparent_crc_no_string (ulong *crc64_context, ulong val)
{
*crc64_context += val;

}

Listing 3.28 – Origin information added by the preprocessor. The first four lines
have been created by the preprocessor and tell the compiler from which files the following
function has been included.

statements. Transformations that try to change files other than the primary
source file are not handled correctly and result in abortion of clang_delta
most of the time. To make the approach of including the header files directly
within clang_delta possible either the transformations have to check which
file would be changed or clang_delta has to be extended to handle multiple
source files correctly.

An extension of clang_delta would require to rewrite large parts of the
tool. Moreover, it seems not trivial to block the rewritings to “invalid” files
just before they are performed because this could potentially mess up the
transformation state.35 A comprehensive solution to the problem is beyond of
the scope of this project and therefore, to prevent at least the crashes a simpler
work around has been developed. It adds checks to each of the transformations
which skip possible applications of the transformation if they are not within
the main source file as defined by the Clang compiler (Listing 3.27). This is
not perfect as the tests have to be copied into most of the transformations and
often a single check is not sufficient such that is has to be repeated at different
locations in the transformation. Further, the Clang instance is tricked by
origin information for parts of the source code which are for instance added
by the preprocessor if include files have been inlined (Listing 3.28). The
compiler implementation treats each part as “file” separate from the main
file although in reality everything is contained in one file. A simple solution
is to remove this information (manually) from preprocessed files before they
are reduced.

3.5.4 Native Windows support
The C-Reduce implementation depends mainly on the availability of a Perl
interpreter for the simple delta reduction loop and on LLVM and Clang

35 See https://github.com/csmith-project/creduce/pull/65, visited on 24/08/2015.
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if(!SrcManager->isInMainFile(RD->getLocStart()))
{

return;
}

(a) Simple test

// This can be used to process only the main file and those files which are
// (recursively) included from the main file
// It then replaces !SrcManager->isInMainFile(...)
FileID rootFile;
SourceLocation usageLocation = RD->getLocStart();

do
{

rootFile = SrcManager->getFileID(usageLocation);
usageLocation = SrcManager->getIncludeLoc(rootFile);

} while(usageLocation.isValid());

if(rootFile != SrcManager->getMainFileID())
return;

(b) Advanced test

Listing 3.27 – Check to prevent changes outside of the main source file. If the
location to which the transformation would be applied is outside of the main source file
it is excluded from the list of possible instances of the transformation (a). This simple
test is not able to differentiate between files that are included from inside the main
source file via #include directives and files which are included through the command
line option -include. The test can be extended to the one shown in (b) which has
this feature and might be used in the future if the reduction of non-preprocessed files is
fully supported.
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for the clang_delta reducer. Both of these prerequisites are available for
Windows but in practise C-Reduce could only be used on top of environments
like Cygwin,36 MinGW 37 or MSYS2.38 The main problems have been the
lack of a Windows compatible build system, missing support for the fork
mechanism and minor incompatibilities with Visual C++. The following
sections address these issues and present the solutions which have been
developed during the project. All changes have been bundled and submitted
as a pull request which already has been merged into the main project.39

CMake configuration

Originally C-Reduce had to be configured, built and installed via the GNU
build system.40 Since Windows has no native support for the GNU tools
an (almost) equivalent CMake configuration has been created to simplify
the installation of C-Reduce on Windows. Like the existing build system it
generates necessary configuration files, prepares the Perl scripts, compiles
clang_delta and clex and installs everything into a user-defined location.
The current limitation compared to the GNU build system is only the lack
of an automated detection whether Flex interprets the variable yytext as
pointer or as array.

Replacing fork with CreateProcess on Windows

The C-Reduce implementation uses the Perl function fork to run multiple
interestingness tests in parallel (see Section 2.1.4). On systems which support
the Fork-Exec model this is directly translated into the fork system call
which creates a new process. However, Windows uses a different mechanism
to create new processes [Gov10]. Perl still provides the fork functionality
but emulates the behaviour at interpreter level [Sar95].

The emulation is based on threads in contrast to processes and has
therefore some limitations compared to the real Fork-Exec model. Especially
the facts that “[t]he outcome of kill on a pseudo-process is unpredictable” and
that “using kill[ . . . ] on a pseudo-process[ . . . ] may typically cause memory
leaks” [Sar95] are red flags for the usage of the fork emulation. C-Reduce
can create many processes during the reduction and also has to be able to
kill them reliably to prevent getting stuck in the reduction loop. With the
perlfork emulation a large number of processes has the potential for serious
memory leaks and the kill functionality cannot be guaranteed.

36 See https://cygwin.com, visited on 04/08/2015.
37 See http://www.mingw.org, visited on 04/08/2015.
38 See http://msys2.github.io, visited on 04/08/2015.
39 See https://github.com/csmith-project/creduce/pull/60, visited on 04/08/2015.
40 The GNU build system primarily consists of the tools autoconf and automake to prepare

the necessary Makefiles to build the project. See https://en.wikipedia.org/wiki/
GNU_build_system for further information, visited on 04/08/2015.
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if ($^O eq "MSWin32") {
my $cmd = which("cmd.exe");
my $cmdline = qq{/C "$test" $tmpfn};
$cmdline .= "␣>␣NUL␣2>&1" unless $VERBOSE;

my $proc;
Win32::Process::Create($proc,

$cmd,
$cmdline,
0,
Win32::Process::NORMAL_PRIORITY_CLASS() |
Win32::Process::CREATE_NEW_PROCESS_GROUP(),
".") || die;

push @procs, $proc;
return $proc->GetProcessID();

} else {

Listing 3.29 – Process creation for interestingness tests on Windows. The test
cannot be launched directly via CreateProcess since only binary executables can be
started as new processes. Instead a new comand line is launched which then invokes
the test. A new process group is created such that all the programs launched by the
test itself are terminated once the test gets killed. Like the proper fork function the
PID of the child process is returned..

Instead of calling fork on Windows the native CreateProcess function
is used to launch the interestingness test as a new process (Listing 3.29).
The test cannot be launched directly since only binary executables can be
started as new processes. Thus a new command line is launched which then
invokes the test. Further, the process is started in a new process group such
that all the programs launched by the test itself are terminated once the test
gets killed. Like the proper fork function the PID of the child process is
returned.

As a consequence of the changes to the fork mechanism also the wait
and kill functions had to be handled differently for Windows. The Win32
API does not provide the functionality to wait on any child process to finish
its execution. So instead when run in a Windows environment a list of active
child processes is maintained and the parent always waits for the first process
in this list (Listing 3.30). Moreover, the exit code has to be modified to
match the one of the actual wait function which C-Reduce invokes on non
Windows systems.

While the behaviour remains unchanged this adaptation can affect the
performance of the test case reduction. After the initial creation of the
maximum number of parallel interestingness tests no new test can be started
before the first child process in the list has finished. As long as the first test
succeeds this has no effect on the performance: all other tests have to be
repeated anyway since the transformation belonging to the first test changed
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if ($^O eq "MSWin32") {
return -1 if @procs == 0;

while(1) {
my $proc = shift @procs;
$proc->Wait(Win32::Process::INFINITE());

my $exit_code;
if ($proc->GetExitCode($exit_code) != Win32::Process::STILL_ACTIVE()) {

$? = ($exit_code == 0) ? 1 << 8 : 0;
return $proc->GetProcessID();

}
push @procs, $proc;

}
} else {

Listing 3.30 – Waiting for child processes on Windows. The Win32 API defines no
method to wait for the termination of any child process. Thus on Windows C-Reduce
maintains a list of all started interestingness tests and wait for the first one. Further,
the exit code is adapted to match the one that the actual wait function would return
when invoked on non Windows systems..

the source file. Only in the case where the first test fails later but already
executed tests would had a positive effect on the performance.

Finally, the kill function (Listing 3.31) must use the Windows specific
system call TASKKILL to ensure that the entire process tree of the inter-
estingness tests gets killed. For this reason a new process group has been
created by CreateProcess in the fork helper function. Invoking the kill
function with the negative PID to kill the process group instead of the process
alone does not work on Windows. After all processes have been killed their
temporary folders are removed. This is not specific to the Windows system
but had to be executed in a separate loop.

Increasing the portability of the C-Reduce Perl scripts

In addition to the changes of the Fork-Exec mechanism system calls to rename
or delete files had to be replaced with Perl functions. While the system
calls themselves are not portable across different operating systems the Perl
functions abstract for the concrete implementation and are available on “all”
systems. For instance, the expression system "rm␣$tmpfile"; has been
replaced with unlink $tmpfile;. Furthermore, in some situations require
a check on which platform the script is executed. These are references to the
special file /dev/null which is used to discard the output of a command
and the check whether certain executables are available. In the first case the
file is reachable under the symbolic name NUL and in the second case the
extension .exe has to be appended to the name of the executable.
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if($^O eq "MSWin32") {
while (scalar(@procs) > 0) {

my $proc = shift @procs;
# Kill process group
my $pid = $proc->GetProcessID();
system "TASKKILL␣/F␣/T␣/PID␣$pid␣>␣NUL␣2>&1";
$proc->Wait(Win32::Process::INFINITE());
$num_running--;

}
while (scalar(@variants) > 0) {
my $kidref = shift @variants;
die unless (scalar(@{$kidref})==5);
(my $pid, my $newsh, my $tmpdir, my $tmpfn, my $result) = @{$kidref};
File::Path::remove_tree ($tmpdir, {verbose => 0, safe => 0, error => \my $err});
}

} else {

Listing 3.31 – Killing the process tree of all launched interestingness tests on
Windows. The sytem call TASKKILL with the option T is used to kill the entire process
group of the interestingness tests including all programs that have been launched during
the test. Afterwards all temporary test directories are removed..

Adaptations to the clex helper tool

The clex tool is used by C-Reduce to remove chunks of the source file based
on a lexical analysis. Despite being rather simple it could not be built with
Visual C++ as this does not support C99 Variable Length Arrays.41 The
closest alternative would have been to use the _alloca function to allocate
memory on the stack as the C99 array would have done. However, this
function has been deprecated42 by Microsoft. The replacement function
_malloca does not guarantee to allocate stack memory and thus requires a
call to _freea.43 Without the guarantee to allocate memory on the stack
and not having to free the memory there is no real benefit in using one of the
Visual C++ specific functions. Therefore the C99 Variable Lengths Arrays
have been replaced with a call to the standardised calloc function.

The second change to the clex sources is rather a cosmetic one than
a definite must. Previously clex returned with a negative exit code if the
run was for some reason unsuccessful. On Windows though, Perl’s system
call interprets a negative exit code as failure to start the specified program
(Listing 3.32) and emits the warning “Can’t spawn "cmd.exe": No such file or
directory at [ . . . ]”.44 Although the warning had no influence on the reduction

41 See https://msdn.microsoft.com/en-us/library/zb1574zs.aspx, visited on
04/08/2015.

42 See https://msdn.microsoft.com/en-us/library/wb1s57t5.aspx, visited on
04/08/2015.

43 See https://msdn.microsoft.com/en-us/library/5471dc8s.aspx, visited on
04/08/2015.
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status = win32_spawnvp(flag,
(const char*)(really ? SvPV_nolen(really) : argv[0]),
(const char* const*)argv);

/* Some code removed for the sake of presentation */
if (status < 0) {

if (ckWARN(WARN_EXEC))
Perl_warner(aTHX_ packWARN(WARN_EXEC), "Can’t␣spawn␣\"%s\":␣%s",

argv[0], strerror(errno));
status = 255 * 256;

}

Listing 3.32 – Handling of a negative exit code in Perl on Windows. If the
program invoked with the Perl function system exits with a negative status code Perl
assumes that the program failed to start entirely and emits a warning. The code is an
excerpt from the win32.c file from the Perl distribution..

itself all negative exit values of the clex tool have been converted into positive
equivalents and the Perl scripts have been adapted accordingly to silence the
warning.

3.6 Interestingness tests

Structurally the interestingness tests are the same as Yang et al. [Yan+11]
use for the reduction of C programs. Lightweight tools are evaluated directly
in the beginning whereas slow tools and the actual execution of the test
cases are postponed to the end of the test. This strategy saves time if one of
the first tools already causes the test to fail. Yet most of the tools used in
the tests had to be replaced by alternatives since the original programs do
not offer support for OpenCL. After this general overview details about the
implementations of the new interestingness tests are presented.

3.6.1 Overview
The interestingness tests used during this project mainly address the issues of
undefined values in test cases and data races between concurrent work items
or work groups. For this reason each test first performs some hard-coded
checks and then invokes the Clang compiler to filter syntactically incorrect
kernels out. Further, the warning messages of the compiler and the Clang
Static Analyzer are checked for undefined behaviour. Afterwards Oclgrind is
used to perform a dynamic analysis and lastly the test cases themselves are
executed.

44 The warning always warns about a failure to spawn cmd.exe regardless of the actual
program. This indicates that the Perl system function first creates a new command
line and executes the specified program in this new environment.

Imperial College London, Department of Computing 84



3 Contributions and design

All tools are equipped with a fixed time-limit to prevent situations in
which the reduction process would get stuck if one of the programs freezes. For
the dynamic executions of the kernels the time-limit is moreover important to
exit from infinite loops that might have been created through transformations.
Since the behaviour of such loops is not defined in the standard anyway it
is actually a positive effect that the interestingness tests will fail in these
situations. Currently the time-limit is globally set to 300 seconds per tool
but might be changed to more fine-grained control on a per tool basis later
on.

This section describes the design of the interestingness tests which have
been developed during this project, outlines problems which have been
discovered and indicates which tools had to be replaced in comparison to
the tests used by Yang et al. [Yan+11]. The structure of this section follows
thereby the structure of the interestingness tests such that tools described
first are also executed first during the tests.

Hard-coded restrictions

Directly in the beginning of the each interestingness test a small number of
fix requirements on the test case are checked. The main reason for these
tests has been to provide hard-coded checks for problems which could not
be detected with the other tools but nevertheless had to be prevented. The
situation improved significantly after Oclgrind has been added to the tests
to dynamically evaluate the interestingness of a test case and hence most of
the hard-coded checks are now obsolete.

Information for cl_launcher The first line of the test case has to be a
comment that tells cl_launcher the parameters which were used to generate
the kernel as well as the global and local size of the kernel. To prevent that
this comment is removed during the reduction a static check matches the
first line of the test case with a generalised pattern of the comment.

Definition of get_linear_global_id To prevent data races on the final
result buffer every work item writes only to the position index by its linear
global id. To prevent any change to the definition of the function – which
is included in the test case itself after the preprocessing – an explicit had
been added to the interestingness test. Only if the definition matched the
original one the test case has been considered valid. In principle this check
could be removed from the interestingness tests because Oclgrind will warn
about data races anyway. But on the other hand this check provides a fast
fail option and has not been noticed to affect the reduction performance.

Accessing the result buffer In the same way as the function to compute
the linear global id must not be changed to prevent data races it must be
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ensured that each access to the result buffer is actually performed by using
the function as index operand. Again the check is strictly speaking no longer
necessary but might improve the runtime performance and seems not to have
any other negative effects on the reduction process.

Struct initialisation The randomly generated test cases follow all the same
pattern to initialise the structs in the main kernel function (Listing 3.33a).
During the reduction the chances are high that some part of the initialisation
are removed. Normally, the static analysers should warn about the usage of
uninitialised values but due to the complex nature of the test cases this was
not reliable and a lot of reductions ended with undefined behaviour. Before
Oclgrind has been added to the interestingness tests the hard coded sequence
of checks in Listing 3.33b has been used to ensure that the structs are always
properly initialised.

False positives of Oclgrind The old plugin to detect uninitialised values
of Oclgrind was a common source of false positive warnings. Especially the
copy assignment of the struct in the kernel function caused problems as
uninitialised padding values are legally copied. As a workaround the number
of generated warnings for uninitialised values was compared with the number
of work items (Listing 3.34). If either no warning was emitted or the number
of warnings was equal to the number of work items it had been assumed that
all warnings were due to the copy assignment and the kernel was considered
as valid.

Static analysis

Yang et al. [Yan+11] utilised the GCC compiler as lightweight static analyser.
Its compilation warnings and errors have been scanned for indicators of
undefined behaviour. Since GCC does not provide an OpenCL front-end
at the moment the Clang compiler it has been replaced with the Clang
compiler in the scope of this project. In general this should even be beneficial
since the Clang compiler aims to provide better warnings than GCC.45 But,
empirically it has become clear that especially the analyses related to the
use of undefined values stand behind the ones of GCC.

Moreover, even Yang et al. equipped with the higher detection rate of
GCC still report undefined behaviour in about 29% of the programs if
solely the compiler warnings and errors are checked. For this reason they
use additional static analysers like Frama-C.46 Like GCC this tools is not
compatible with OpenCL and thus cannot be used in the framework of this
project. The only alternative seems to be the Clang Static Analyzer.47 It

45 http://clang.llvm.org/diagnostics.html, visited on 04/06/2015.
46 http://frama-c.com, visited on 21/08/2015.
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struct S5 c_2049;
struct S5* p_2048 = &c_2049;
struct S5 c_2050 = {

/* Initialisers removed for the sake of the presentation */
};
c_2049 = c_2050;

(a) Preparation of structs

function struct_init()
{

# Get name of struct that gets assigned
# It is always the first struct in the entry kernel
if ! struct_number=$(perl -ne ’END {if($success) {exit 0} else {exit 1}} if(/

↪→ struct\s+S\d+\s+c_(\d+)\s*;/) {print $1; $success=1; exit}’ $1) 2> /dev/null
then

return 0
fi

# Check if the pointer to the struct is initialised
if ! perl -ne ’END {if($success) {exit 0} else {exit 1}} if(/struct\s+S\d+(:?\s*\*\

↪→ s+|\s+\*\s*)p_\d+\s*=\s*&\s*c_’${struct_number}’\s*;/) {$success=1; exit}’ $1 >
↪→ /dev/null 2>&1

then
return 1

fi

# Check if there is an assigment for that struct
if ! struct_number=$(perl -ne ’END {if($success) {exit 0} else {exit 1}} if(/c_’${

↪→ struct_number}’\s*=\s*c_(\d+)\s*;/) {print $1; $success=1; exit}’ $1) 2> /dev/
↪→ null

then
return 1

fi

# Check if assigned value has been initialised
if ! perl -ne ’END {if($success) {exit 0} else {exit 1}} if(/struct\s+S\d+\s+c_’${

↪→ struct_number}’\s*=\s*{/) {$success=1; exit}’ $1
then

return 1
fi

return 0
}

(b) Preparation of structs

Listing 3.33 – Static test for initialised structs. The pattern in (a) is common to
all automatically generated kernels in this project. Since the static analysers failed to
detected situations where the structs remained uninitialised a hard-coded static check
has been added to the interestingness tests (b). If no struct at all is left over in the
kernel the check is immediately successful. Otherwise the copy assignment of the struct,
the initialisation of the pointer and the initialisation of the second struct are controlled.
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function get_work_items()
{

if ! work_items=$(perl -ne ’if(/^\/\/.* -g ([0-9]+),([0-9]+),([0-9]+) -l ([0-9]+)
↪→ ,([0-9]+),([0-9]+)/) {print $1*$2*$3; exit 0} else {exit 1}’ $1) 2> /dev/null

then
return 1

fi

echo ${work_items}
return 0

}

function check_oclgrind_uninitialised()
{
count_uninitialised=$(grep -c ’Uninitialized value read from private memory

↪→ address’ $1)

if [[ ${count_uninitialised} != 0 && ${count_uninitialised} != ${WORK_ITEMS} ]]
then

return 1
fi

return 0
}

Listing 3.34 – Static check to ignore false positive warnings of Oclgrind. The
original plugin of Oclgrind to detect the usage of uninitialised values emitted false
positive warnings for the copy assignment in the kernel which is executed once for every
work item. As a workaround a kernel was only considered invalid if at least warning
about the usage of uninitialised values was generated but the number of warnings was
not equal to the number of work items. Otherwise the assumption had been that all
warnings were due to the false positives.
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is implemented as plugin of the Clang compiler and does a more precise
analysis of the source code than the Compiler itself. Yet, the Clang Static
Analyzer is less powerful than Frama-C.

The warnings of both tools are compared to a predefined blacklist of
warnings (Listing 3.35) which are treated as indicators to reject a particular
transformed variant. In addition to indicators of undefined behaviour the
warnings are also checked for situation which might lead to dynamic failures
like assigning an integer value other than zero to a pointer and situations
which introduce non-determinism, e.g. comparing a pointer to an integer
value other than zero. Especially the latter kind of expressions can hide
instances of undefined behaviour since the comparison is non-deterministic
and thus a dynamic test might not be able to detect the instance of undefined
behaviour directly when it is introduce through a transformation.

Due to the limitations of the static tools some of the reduced test cases
still contained undefined behaviour. The three most common causes have
been identified as the usage of undefined values and invalid pointers as well as
array out-of-bounds accesses. The following paragraphs provide definitions
and examples for the different kinds of undefined behaviour.

Usage of undefined values In Appendix J.2 the C99 standard states that
the behaviour of a program is undefined if “[t]he value of an object with
automatic storage duration is used while it is indeterminate” [C99, § J.2].
Further, the value of an object is indeterminate if it is never initialised or
when its lifetime has ended. Unfortunately the Clang compiler itself had
the worst detection rate for the usage of undefined values during the project.
More often the Clang Static Analyzer is able to find undefined values which
were not detected by the compiler itself. Nevertheless, both tools cannot
compete with GCC (Listing 3.36).48 As soon as the context is not trivial and
involves multiple levels of indirection undefined behaviour remains hidden.

Deference of null pointers Invalid pointers either point to memory loca-
tions that cannot be accessed (any more) or are null pointers. They are often
created in various reduction steps by changing or removing assignments, or
by explicitly assigning NULL to a pointer typed variable. As dereferencing an
invalid pointer introduces undefined behaviour [C99, § 6.5.3.2.4] it is vital to
have a precise analysis. However, none of the static analysis tools is able to
reliably detect uses of invalid pointers. Neither Clang nor GCC report any
of the two dereferences of the null pointer in Listing 3.37. The Clang Static
Analyzer at least finds the undefined behaviour at location A .

47 http://clang-analyzer.llvm.org, visited on 21/08/2015.
48 For the sake of the comparison the kernels have been transformed into equivalent C

programs.
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if (’warning:␣empty␣struct␣is␣a␣GNU␣extension’ not in oC and
’warning:␣use␣of␣GNU␣empty␣initializer␣extension’ not in oC and
’warning:␣incompatible␣pointer␣to␣integer␣conversion’ not in oC and
’warning:␣incompatible␣integer␣to␣pointer␣conversion’ not in oC and
’warning:␣incompatible␣pointer␣types␣initializing’ not in oC and
’warning:␣comparison␣between␣pointer␣and␣integer’ not in oC and
’warning:␣ordered␣comparison␣between␣pointer␣and␣integer’ not in oC and
’warning:␣ordered␣comparison␣between␣pointer␣and␣zero’ not in oC and
’is␣uninitialized␣when␣used␣within␣its␣own␣initialization␣[-Wuninitialized]’ not

↪→ in oC and
’is␣uninitialized␣when␣used␣here␣[-Wuninitialized]’ not in oC and
’may␣be␣uninitialized␣when␣used␣here␣[-Wconditional-uninitialized]’ not in oC and
’warning:␣use␣of␣GNU␣?:␣conditional␣expression␣extension,␣omitting␣middle␣operand’

↪→ not in oC and
’warning:␣control␣may␣reach␣end␣of␣non-void␣function␣[-Wreturn-type]’ not in oC

↪→ and
’warning:␣control␣reaches␣end␣of␣non-void␣function␣[-Wreturn-type]’ not in oC and
’warning:␣zero␣size␣arrays␣are␣an␣extension␣[-Wzero-length-array]’ not in oC and
’excess␣elements␣in␣’ not in oC and
’warning:␣address␣of␣stack␣memory␣associated␣with␣local␣variable’ not in oC and
’warning:␣type␣specifier␣missing’ not in oC and
"warning:␣expected␣’;’␣at␣end␣of␣declaration␣list" not in oC and
’␣declaration␣specifier␣[-Wduplicate-decl-specifier]’ not in oC):
return True

(a) Blacklist of warnings for the Clang compiler

if (’warning:␣Assigned␣value␣is␣garbage␣or␣undefined’ not in oCSA and
’warning:␣Undefined␣or␣garbage␣value␣returned␣to␣caller’ not in oCSA and
’is␣a␣garbage␣value’ not in oCSA and
’warning:␣Dereference␣of␣null␣pointer’ not in oCSA and
’warning:␣Array␣subscript␣is␣undefined’ not in oCSA and
’results␣in␣a␣dereference␣of␣a␣null␣pointer’ not in oCSA):
return True

(b) Blacklist of warnings for the Clang Static Analyzer

Listing 3.35 – Blacklist of warnings in the interestingness tests. The warnings in
the list are either indicators of undefined behaviour in the test case, check for extensions
that are not included in the OpenCL C standard or prevent situations which could lead
to non-deterministic behaviour. Hence the interestingness test will fail if any of these
warnings is found in the output of the emitting program.
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struct S0 {
uint f;

};

__kernel void entry(__global ulong *r)
{

struct S0 s;
struct S0 *sp = &s;
r[0] = sp->f;

}

(a) Clang 7, GCC -O1 3, CSA 3

void set(ulong *p1, ulong p2) {*p1 = p2;}

struct S0 {
int f;

};

__kernel void entry(__global ulong *r)
{

struct S0 a, b, c = {3};
a = c;
ulong d;
set(&d, b.f);
r[0] = d;

}

(b) Clang 7, GCC -O1 3, CSA 7

struct S0 {
long *f;
short g;

};

void fn(struct S0 *p1)
{

for(int i = 0; i < 9; i++)
;

short *t = &p1->g;
*t = *p1->f;

}

__kernel void entry(__global ulong *r)
{

struct S0 a;
struct S0 *b = &a;
long c;
struct S0 d = {&c};
a = d;
fn1(b);
r[0] = b->g;

}

(c) Clang 7, GCC -O2 3, CSA 7

Listing 3.36 – Detecting undefined values in test cases. In (a) the variable sp
points to the uninitialised struct s. Consequently an undefined value is written to the
result buffer r. In (b) the struct b is not initialised but its member “f” is passed as
argument to the function “set”. So the undefined value is assigned to the variable d
and later to the global result buffer r. Test case (c) is similar but contains one more
level of indirection. The structs are all initialised but the member f is a pointer to the
uninitialised variable “d”. Inside the function fn the pointer is dereferenced and the
undefined value is written to the second member of the struct. Later the value is also
assigned to the global result buffer r. Clang does not detect the undefined behaviour in
any of the cases and the Clang Static Analyzer only in (a). Further interesting is that
GCC needs at least the optimisations level -O2 to warn about the undefined behaviour
in (c) whereas in the other two test cases -O1 is sufficient.
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struct S0 {
long *f;
short g;

};

void fn(struct S0 *p1)
{
p1->g = *p1->f; // A

}

__kernel void entry(__global ulong *r)
{

struct S0 e = {0};
struct S0 *ep = &e;
fn(ep);
r[0] = *ep->f; // B

}

Listing 3.37 – Test case containing dereferences of a null pointer. The pointer
member of the struct is explicitly initialised to zero and hence is a null pointer. The
locations where the pointer is dereferenced are marked with A and B respectively.

Array out-of-bounds accesses To have a valid array access not only the
base pointer has to be valid but also the offset must lie inside the allocated
memory for this array [C99, § 6.5.6.8 and § J.2]. Some failed reductions
revealed that by simply removing lines from the kernel source code invalid
accesses can be created. For instance, Listing 3.38 demonstrates a case where
between to successive loops the body of the first loop and the header of the
second loop have been removed. As long as the loops use the same name for
the loop variable the variant is syntactically correct. All of the static tools
failed to reveal the invalid out-of-bounds access although in theory it would
be possible to check the static bounds of the array and to compare it to the
loop variable.

Dynamic analysis

Finally, to obtain a precise analysis dynamic validation techniques have to
be used in the interestingness tests. For this reason Yang et al. [Yan+11]
make use of KCC 49 and Valgrind.50 KCC instruments the test cases at
compile time while Valgrind uses runtime instrumentation. It injects custom
library function during the execution of the program under test to keep track
of memory allocations, usage and deallocation and can thus be used for a
dynamic memory analysis. In contrast to the previous tools Valgrind has an

49 https://github.com/kframework/c-semantics, visited on 21/08/2015.
50 http://valgrind.org, visited on 21/08/2015.
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struct S4 {
char g_521[10];
uint g_731[5];

};

__kernel void
entry(__global ulong *result) {

struct S4 c = {{0}, {0}};
ulong d = 0;

for(int i = 0; i < 10; i++)
d += c.g_521[i];

for(int i = 0; i < 5; i++)
d += c.g_731[i];

}

(a) Before transformation

struct S4 {
char g_521[10];
uint g_731[5];

};

__kernel void
entry(__global ulong *result) {

struct S4 c = {{0}, {0}};
ulong d = 0;

for(int i = 0; i < 10; i++)
d += c.g_731[i];

}

(b) After transformation

Listing 3.38 – Example for an array out-of-bounds access. By removing the grey
lines in the kernel (a) the transformed kernel (b) exhibits undefined behaviour due to an
array out-of-bounds access. Since both loops use the same name for the loop variable
the program remains syntactically correct after the transformation.

equivalent for OpenCL called Oclgrind which is used in the interestingness
tests in the scope of this project.51

The drawback of these dynamic tools is that they actually have to execute
the program and the injection of the custom memory management system
adds additional overhead. Especially for large and high-dimensional OpenCL
kernels this slows down the validation process significantly. Nevertheless
they seem to be necessary as the static analysers alone have not been able to
provide a reliable detection for undefined behaviour. For instance situations
in which the definedness of a value depends on dynamic properties cannot
be detected by static tools. Furthermore Oclgrind is used to detect data
races during the execution which would make the behaviour undefined. The
simulation is stopped after the first warning is reported to keep the runtime
of the tests as short as possible.

Finally the kernel is executed with and without optimisations on the
actual device – at least to find wrong-code bugs. If the execution results are
different between the runs the tests exists with the status code for success.
If the results are not different or previously any error occurred the test fails.

3.6.2 Versions
The requirements on the interestingness tests changed a few times during the
course of this project. First, only the evaluation on Linux systems was planned
and thus the tests had been implemented as shell scripts. Later reduction
had to be performed on Windows system too which required to rewrite the

51 https://github.com/jrprice/Oclgrind, visited on 04/06/2015.
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tests as batch files. Additionally the tests got more complex over time and
evolved into a complete testing framework to support the entire reduction
process rather than to provide solely support for the interestingness tests
themselves. Therefore the latest version has been implemented in Python
which has furthermore the advantage that no differentiation between Linux
and Windows is necessary.

The initial shell scripts are not further described as they were equivalent
to the examples provided along C-Reduce. The next section describes briefly
the implementation of the batch scripts for the Windows as it was not entirely
trivial to reproduce the behaviour of the original shell scripts. Finally, the
version of the interestingness tests is explained in more detail and usage
instructions are provided.

Native Windows interestingness tests

The semantic of the tests remained unchanged between the original shell
scripts and the variant on Window. In general porting the behaviour was
not an issues and the only difficulty was that batch scripts do not offer
support to create custom functions. To keep the modular structure of the
tests the function calls in the shell scripts have been simulated through calls
to different positions in the batch scripts. These calls exit immediately after
the part which was defined as “function body” is executed (Listing 3.39) and
return to the original invocation. As a consequence return values had to be
replaced with global variables.

Python test framework

The final version of the interestingness test is implemented in Python and
is therefore compatible with both Unix and Windows. In addition to the
plain interestingness scripts the implementation supports the entire workflow
of test case reduction starting at the generation of kernels up to the actual
reduction.

The different aspects are implemented as separate classes and methods
such that it is no problem to use individual components on their own.
Furthermore, platform specific parts of the tests have been abstracted which
makes the scripts easily extensible to support new architectures. For instance,
a general OpenCLEnv environment defines all functionality that is needed to
run OpenCL kernels. For new platforms a subclass can be created which
provides the concrete functionality.

When only an existing and ready-to-use kernel has to be tested regarding
its interestingness the openCLTest.py script should be used. In the frame-
work this file contains the actual test logic and has no external dependencies
to other parts of the framework. For instance, the following command tests
whether the specified kernel triggers a wrong-code bug:
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call:check_oclgrind_uninitialised out_oclgrind.txt > NUL 2>&1
if %return_oclgrind_uninitialised% neq 0 exit /B 1

:: More content removed for the sake of the presentation

:: Variant is interesting
exit /B 0

:: --------------------------------------------------------------------------------
:: Function section
:: --------------------------------------------------------------------------------
:check_oclgrind_uninitialised

FIND /C "Uninitialized␣value␣read␣from␣private␣memory␣address" < %1 >
↪→ count_uninitialised.txt 2> NUL

set /p count_uninitialised=<count_uninitialised.txt

:: Either there is no warning at all...
if %count_uninitialised% equ 0 (

set return_oclgrind_uninitialised=0
goto:eof

)

:: ... or one warning for each work item
if %count_uninitialised% equ %WORK_ITEMS% (

set return_oclgrind_uninitialised=0
goto:eof

)

set return_oclgrind_uninitialised=1
goto:eof

Listing 3.39 – Extract from the interestingness tests on Windows. Functions are
not supoorted in batch scripts and have therefore been replaced with calls to specific
positions in the test file. After the “function body” has been executed the jump to
eof ends the execution of the call and returns to the original invocation of the script.
Moreover, return values had to be replaced with global variables.
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Parameter Description

CLSMITH_PATH Path to the clsmith directory contain-
ing the CLsmith specific header files

CREDUCE_LIBCLC_INCLUDE_PATH Path to the directory containing
the OpenCL related header files for
clang_delta

CREDUCE_TEST_PLATFORM Id of the OpenCL platform which should
be used in the test

CREDUCE_TEST_DEVICE Id of the OpenCL device which should
be used in the test

CREDUCE_TEST_CLLAUNCHER Path to the cl_clauncher executable
which should be used to run the kernels

CREDUCE_TEST_CLANG Path to the clang executable which
should be used in the test

Table 3.3 – Configuration options of the Python test framework. These options
are used configure the test framework through environment variables. Some options
can also be specified as command line options to the findMiscompilations.py script.
The last two options are optional if the tools can be located without them. Further, the
path to the clsmith directory is not required if the kernels are already preprocessed.

$ openCLTest.py --test miscompilation CLProg.cl

Additional configuration parameters like the test device have to specified via
environment variables. All possible options are listed in Table 3.3.

To start with the generation of kernels or to perform the reduction the
findMiscompilaton.py script52 can be used. The following paragraphs
described common use cases which can be performed with the script. Al-
ternatively, all available options provided by the script can be display by
specifying the --help option.

Generating kernels To generate N kernels the option --generate N can
be specified. This option is mutually exclusive with the options to read
kernels either from specified files or out of a directory. Further, the --modes
parameter can be used to define which kind of behaviour should be included
in the kernels. The combination of multiple modes is supported. The script
then automatically invokes the CLsmith tool with the correct options. For
instance, to generate 1 000 random kernels containing vector operations the

52 For historical reasons the name of the script mentions only miscompilations and no other
kind of behaviour which could be interesting. Meanwhile the script can be configured
via a command line option and features various different tests.
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script can be invoked as follows. Thereby the kernels will be stored in the
directory vec_kernels.

$ findMiscompilations.py --generate 1000 \
--output ./vec_kernels \
--modes vectors

Preprocessing To create self-contained kernel files which do not depend on
the CLsmith specific header files the script provides a preprocessing operation.
In addition to the actual preprocessing the script also removes the origin
information in the new file which causes problems in clang_delta. Existing
kernels can be preprocessed with the command

$ findMiscompilations.py --preprocess --kernels CLProg.c

but it can be combined with generation of new kernels, too.

Dimension reduction Kernels which are executed with a large number of
work items slow down the reduction process significantly. Though, in most
cases running them only in a small number of work items does also expose the
wrong behaviour. The dimension of a kernel can automatically be reduced
when it is invoked with the --reduce-dimension argument. For instance
the command

$ findMiscompilations.py --preprocessed --reduce-dimension \
--kernels CLProg.cl

takes the existing kernel CLProg.cl and reduces its dimension. The para-
meter --preprocessed is optional and signalises that the kernel is already
preprocessed such that the additional headers are not needed. The algorithm
to reduce the dimension is at the moment quite simple. It first tries to detect
the wrong behaviour with just one work item. If this fails the number of
item is steadily increased until this bug reappears. For future use this should
be improved to a more sophisticated technique.

Reducing a kernel Finally, the reduction can be started with the --reduce
argument. Additionally the parameter --test has to be passed to specify
which tests should be performed, i.e. which kind of behaviour is considered
interesting. The following command is represents a typical call of the
findMiscompilations.py script when kernels have been generated and
prepared in advance and only the reduction should be performed.
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$ findMiscompilations.py --preprocessed --reduce \
--kernel-dir ./prep_kernels \
--output ./reduced_kernels \
--test miscompilation \
--log processed.log

The optional parameter --log defines a file to which the names of all kernels
that have been processed are written. The script does not distinguish between
successful reductions and failed reductions. This file can later be used as
argument to the --exclude-file parameter to resume an aborted reduction
from the last file that has already been processed.

3.7 Miscellaneous related issues

This section describes further problems which have been encountered but
not fixed in the scope of this project. Either the issues still exist or have
been fixed by other persons after they have been reported.

3.7.1 CLsmith

Although the CLsmith random program generator in combination with the
cl_launcher host program to execute kernels have not been a direct target of
testing during this project their application in test case reduction revealed
minor problems.

Result buffer in cl_launcher uninitialised

One of the arguments that the cl_launcher application passes to the invoked
kernels is a pointer to a global memory location. Each work item stores a
hash representing its state after the execution into one place of this result
array. The position is determined according to the linear global id of the
work item. Further, it is guaranteed and invariant over all automatically
generated kernels that each position in the buffer is written to exactly once
and never read.

These strong guarantees made it unnecessary to initialise the buffer in the
cl_launcher host program. However, the invariant properties no longer hold
when the kernel is subject to the automated reduction. The transformations
may remove the instructions which write to the result array or could even turn
them in to read accesses. In both situations the comparison of the computed
results becomes non-deterministic as the results depend on uninitialised
values. Thus, for the purpose of test case reduction, a patched version of
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struct S0 {
uint f0; volatile short f1; uchar f2; volatile uchar f3;
uint f4; volatile long f5; char f6; volatile ulong f7; short f8;

};

struct S0 tmp = {{0x65F44572L,0x0762L,0xEDL,0x49L,
4294967294UL,0x70E4EAF2CDD3E714L,-4L,3UL,-1L}};

Listing 3.40 – Excess elements in scalar initializer. The program generated by
CLsmith contains wrong code to initialise a struct. Through the additional pair of curly
brackets the compiler is told to initialise the first struct member with all given values.
Since a member of type uint must not have more than one initialiser the warning is
emitted.

cl_launcher is used which initialises the output buffer with zeros. It can be
obtained from the “init” branch of a forked version of the GitHub repotory.53

Generation of invalid initialiser lists

For some of the programs generated by CLsmith the Clang compiler emits
an “Excess elements in scalar initializer” warning. An example – referred to
as “Bug_3” – is shown in Listing 3.40. Due to the extra pair of curly braces
the compiler uses all given values as initialiser for the first member of the
struct [C99, § 6.7.8.18] and default initialises all other members as if they
had static storage duration [C99, § 6.7.8.21]. The first member is of type
unsigned int and hence can only have one initialiser value which is why
the warning is emitted. Moreover, providing more initialisers than expected
is forbidden by the C99 standard and introduces undefined behaviour [C99,
§ 6.7.8.2].

The issue is specific to CLsmith, i.e. it does not occur in Csmith, and has
been introduced through changes made in commit be2b1df (Listing 3.41).
For variables of aggregate type the initialiser list generated as output from
the init_value is already wrapped in curly brackets. Thus originally the
initialiser list has been directly append to the output stream after the assign-
ment expression. For some reason this has been changed in the mentioned
commit such that now an additional pair of curly brackets is added explicitly
in the Output function of the ArrayOp statement. The change seems to be
related to code that has been added to the MemoryBuffer class to handle
the output of vector expressions.

The problem has been reported but no simple solution could be found so
far. As only a few kernels seem to be affected by this issue they have just
been ignored in the course of this project.

53 See https://github.com/mpflanzer/CLSmith, visited on 01/09/2015.
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diff --git a/src/StatementArrayOp.cpp b/src/StatementArrayOp.cpp
index 25e2637..58eccc8 100644
--- a/src/StatementArrayOp.cpp
+++ b/src/StatementArrayOp.cpp
@@ -253,9 +253,9 @@ StatementArrayOp::Output(std::ostream &out, FactMgr* fm, int
↪→ indent) const

if(init_value->term_type == eConstant && array_var->is_aggregate()){
output_tab(out, indent+1);
array_var->type->Output(out);

- out << " tmp = ";
+ out << " tmp = {";

init_value->Output(out);
- out << ";";
+ out << "};";

outputln(out);
output_tab(out, indent+1);
array_var->output_with_indices(out, ctrl_vars);

(a) Brackets are added explicitly after the changes are applied

diff --git a/src/CLSmith/MemoryBuffer.cpp b/src/CLSmith/MemoryBuffer.cpp
index f911262..b7759d0 100644
--- a/src/CLSmith/MemoryBuffer.cpp
+++ b/src/CLSmith/MemoryBuffer.cpp
@@ -99,7 +102,13 @@ void MemoryBuffer::OutputDef(std::ostream& out, int indent)
↪→ const {

ExpressionID(ExpressionID::kLinearLocal).Output(out);
out << " == 0)" << std::endl;
std::vector<const Variable *>& ctrl_vars = Variable::get_new_ctrl_vars();

- output_init(out, init, ctrl_vars, indent + 1);
+ // TODO Vector params need to match the buffer indices, use init.
+ if (type->is_aggregate())
+ StatementArrayOp(NULL, this, ctrl_vars, std::vector<int>({0}),
+ std::vector<int>({1}), Constant::make_int(0))
+ .Output(out, NULL, indent + 1);
+ else
+ output_init(out, init, ctrl_vars, indent + 1);

return;
}
output_tab(out, indent);

(b) Related changes to the MemoryBuffer output

Listing 3.41 – Changes causing the excess elements code generation. The output
for the init_value consists already of a complete initialiser list including curly brack-
ets (a). Thus the explicitly added brackets cause the “excess elements” warning. These
changes seem to be related to the code which has been added to the MemoryBuffer (b)
to handle vector expressions.
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3.7.2 Clang – no target for triple spir-unknown-unknown
The Clang compiler is used during the installation of Oclgrind to gener-
ate pre-compiled header files to improve the simulation performance. The
compiler is invoked with the target triples spir-unknown-unknown and
spir64-unknown-unknown respectively. In version 3.6 of the compiler the
compilation succeeds without warnings whereas at some point in the devel-
opment branch for version 3.7 the support for the SPIR target breaks.54

The compilation then aborts with the error message: “fatal error: error in
backend: No available targets are compatible with this triple, see -version
for the available targets.”

The bug has been reported55 but remained uncommented. However,
commit 49f44ff seems to fix this problem since the header files can be
generated again with any version past this one. Since the bug cannot be
reproduced with the 3.7 and the development branches any longer the report
has been closed again.

3.7.3 Oclgrind
In addition to the problems with Oclgrind which have been mentioned before
three more issues have been found. James Price, the maintainer of Oclgrind,
fixed the issues shortly after they had been reported such that no patches
had to be developed in the scope of this project.

Incorrect alignment checks

The LLVM load and store instructions take an optional parameter which
specifies the alignment of the given memory address. According to the LLVM
Language Reference Manual [LLVM15, ‘load’ Instruction] overestimation of
the alignment leads to undefined behaviour which is why Oclgrind checks
whether the specified alignment is correct.

Until commit e040b05 Oclgrind emitted false positive warnings (List-
ing 3.42) for allegedly incorrectly aligned pointer operands. The wrong
behaviour could only be observed if optimisations had been disabled during
compilation of the kernels.

The problem seemed to be that Oclgrind did not handle the alignment
of load and store instruction correctly if the optional alignment parameter
had been omitted. In these situations the alignment was wrongly calculated
to be “−1” which then mismatched with basically any given address. Commit
da4b06e fixes the problem by computing the necessary alignment for the
given pointer type manually if it is not specified.

54 For instance the bug can be reproduced with LLVM at commit 371e006 and Clang at
commit 92ef7c4.

55 See https://llvm.org/bugs/show_bug.cgi?id=24153, visited on 03/08/2015.
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Invalid memory store - source pointer is not aligned to the pointed type
Kernel: entry
Entity: Global(0,0,0) Local(0,0,0) Group(0,0,0)
store i32* %321, i32** %316, !dbg !409

At line 1106 of CLProg_112.cl:
{ /* block id: 49 */

Listing 3.42 – Exemplary false positive warning for allegedly incorrectly aligned
pointer operands. The store instruction does not specify the optional alignment
parameter causing Oclgrind to operate on an alignment of −1.

// -g 1 -l 1

union U0 {
long f0;

};

void func_28(union U0 u) { u.f0 = 3; }

__kernel void entry(__global ulong *result) {
union U0 u = {7};
func_28(u);
result[0] = u.f0;

}

Listing 3.43 – Test case which produced wrong results for functions with byval
attributes. For this test case final result contained the value “3” altohugh it is only
written locally to a copy of the union. The correct result is “7”.

Incorrect handling of the byval attribute

Before Oclgrind was considered for inclusion in the interestingness tests, it
was used for testing as an OpenCL implementation in its own right. The
kernel in Listing 3.43 produced different results when executed with and
without optimisations. After reporting the bug it has been fixed with commit
3570fd7.

With disabled optimisations a wrong final result containing the value “3”
has been produced. The correct result must contain the number “7”. The
behaviour indicated that somehow the local assignment of the value “3” to
a copy of the union must have overwritten the correct result. The bug has
been confirmed and attributed to the missing handling of the byval attribute
of functions. If a pointer argument of a function is marked as “byval” an
implicit copy of the pointee has to be created such that the callee is not able
to modify the actual pointer destination [LLVM15, Parameter Attributes].

The mishandling is also present if the kernel is executed with optimisation
but has simply no visible effect. For the compiler the function scoped
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call void @func_28(%union.U0* byval %u) #3, !dbg !31
%1 = bitcast %union.U0* %u to i64*, !dbg !30
store i64 3, i64* %1, align 8, !dbg !30
ret void, !dbg !30

(a) Without optimisations

tail call void @func_28(%union.U0* byval @entry.u) #1, !dbg !30
ret void, !dbg !30

(b) With optimisations

Listing 3.44 – Executed LLVM IR instructions for the “byval” test case. The
indented parts represent the instructions which represent the body of the called function.
Without optimisations (a) the pointer to the union is converted into a primitive type
and the value “3” is stored to the pointer destination. Since the byval attribute had
been ignored by Oclgrind the original location of the union has been overwritten. In
contrast, the optimisation passes in (b) removed the store instruction as it should not
have any global side effects. Therefore the byval attribute had no visible effect at all
and ignoring it did not change the program behaviour.

OCLGRIND FATAL ERROR (../src/core/WorkItem.cpp:583)
Insufficient private memory (alloca)

Kernel: entry
Entity: Global(0,0,0) Local(0,0,0) Group(0,0,0)
%24 = alloca i32, align 4

Debugging information not available.

Listing 3.45 – Fatal error in Oclgrind as the address space is exceeded. The
number of allocations is the particular kernel exceeded the number of allocations that
could be handled by Oclgrind.

assignment has no global side effects and thus gets removed during the
optimisation passes. The difference in the behaviour can be observed when
the executed LLVM IR instructions are compared (Listing 3.44).

Private address space too small on 32 bit architectures

This problem describes less a failure of Oclgrind but rather a restriction
through the choice of configuration parameters at the point the fatal er-
ror (Listing 3.45) did occur.

Oclgrind’s virtual memory management splits each address into an alloca-
tion id part and an offset. The consequence of this scheme are limitations for
both number of possible allocations and the maximal size of each allocation.
Initially, on 32 bit architectures 8 bit of the address had been reserved for the
allocation id, resulting in a maximum of 256 allocations. Respectively, each
allocation had a maximal size of 16MB. While the limit of 256 allocations
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were enough for the global and local address space some of the generated
kernel tried to allocate more memory regions.

After reporting this issue, the behaviour has been changed56 such that
the private address space reserves now 16 bit for the allocation id. Thus the
maximal number of allocations increased to 65 536 with a maximal size of
16 kB per allocation. The partitioning for the local and global address space
has not changed.

The rationale behind these changes is that there are only a few allocations
but large in the local and global address space to share values between
different work items or work groups. For instance, each work item could
write to one position in a global buffer. In contrast allocations in the private
address space, i.e. stack allocations, are typically small but kernels might
create a lot of them to store temporary result or to initialise large structs
after a SRoA transformation has been applied – which has been the case in
which the issue has been detected.

56 The commits dc35974 and 53a2140 introduce a variable partitioning scheme such that
not all address spaces share the same configuration parameters.
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Experimental results

The primary goal of this project has been to evaluate the potential of
automatic test case reduction in the field of many-core compilers. For this
reason the results mainly cover the two key aspects, namely robustness and
efficiency, of the reduction process. A reduction framework is considered
robust if the final test cases still trigger the bug and are free from undefined
behaviour. An additional robustness criterion, but one that is hard to
evaluate in practice, is whether the final test cases still trigger the same
bug as the original kernels. Moreover, the rate of false positive warnings
about allegedly undefined behaviour should be low as otherwise many bugs
might be missed. The efficiency of the automatic reductions is evaluated
in terms of the runtime per reduction as ultimately the automation makes
only sense if results are produced in an acceptable amount of time. The
exact definition of “acceptable” depends on the particular situation: for
low priority bugs it can be sufficient to run the reduction in parallel to the
actual development work and therefore longer reduction times to do not
cause problems. On the other hand for high priority bugs which possibly
block the further development until they have been fixed a faster reduction
as in the manual case is desirable.

4.1 Reduction results

This section provides general statistics about the reduction process and the
reduced test cases without going into the details of the reductions themselves.
This high-level view is useful to demonstrate the general capabilities of
the test case reductions of OpenCL kernels independent of the exact fine-
tuning. To evaluate the potential of the automated test case reduction
out of 35 750 kernels 127 test cases for six modes of CLsmith resulted in
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Stack dump:
0. Running pass ’Function Pass Manager’ on module ’’.
1. Running pass ’Combine redundant instructions’ on function ’@entry’
[1] 25338 segmentation fault cl_launcher -p 0 -d 0 -f CLProg_1438.cl

Listing 4.1 – Compiler crash message for one of the reduced test cases. The test
case triggered initially a wrong-code bug. During the reduction it must have turned into
a compiler crash bug.

wrong-code generation and have been reduced on six different platforms.57

The total number of reductions however adds up to 272 since some kernels
exhibited result differences on more than one configuration, and thus have
been reduced on multiple configurations. A complete overview over all
performed reductions is shown in Table 4.1. Some of the reduced test
cases contain undefined behaviour in terms of uninitialised values or data
races which have not been detected and are therefore marked as “failure”
or “data race” respectively. These kernels have been excluded from the
further evaluations. Furthermore, one of the reduced test cases triggers
a compiler-crash bug (Listing 4.1) instead of a wrong-code bug for which
the reduction was intended. Nevertheless, initially this test case must have
exposed a wrong-code bug because the original kernel computed distinct
results depending on whether optimisations were enabled or not. The reasons
behind both of these problems are discussed in Section 5.1.1.

Although kernels with different features corresponding to the different
modes of CLsmith have been tested, the majority of the reduced test cases
does not contain the initial characteristic any more. None of the reduced
vector kernels comprised vector operations and in the same way there are no
atomic reductions left in the kernels. Only a few kernels still perform data
exchanges between the work items or diverge in the control flow. Moreover,
it seems not to be the case that the misbehaviour of any of these kernels is
related to the “special feature”.

Moreover, to increase the runtime performance of test case reduction
the number of work items for the kernels in the modes basic and vectors
has been reduced to one prior to the reduction. Since these kernels do not
comprise communication between the work items all work items produce the
same result. Therefore it is enough to execute the kernel for only one work
item to speed up the reduction process. All other kernels are executed with
the number of work items that was randomly generated during the creation
of the specific kernel.

57 The platform and device names are anonymised because, for some devices, issues related
to performance and correctness may not be disclosed.
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Configuration Success Crash Race Failure

dev-a_basic_n1 24 0 — 12
dev-a_basic_n4 20 0 — 9
dev-a_basic_n8 20 0 — 13
dev-b_vectors_n1 5 0 — 1
dev-b_ar_n1 15 1 0 4
dev-b_itc_n1 18 0 0 5
dev-b_atomics_n1 8 0 5 4
dev-b_divergence_n1 20 0 — 5
dev-c_basic_n8 6 0 — 0
dev-d_basic_n8 28 0 — 14
dev-e_basic_n1 3 0 — 2
dev-e_itc_n1 7 0 2 4
dev-a_basic_n1∗ 15 0 — 2

Table 4.1 – Overview over the reduction results. The configuration determines
on which platform the reduction has been executed, the mode of CLsmith when the
kernels were generated and the number of parallel interestingness tests. Details about
all used GPUs can be looked up in the respective section in Chapter A. Due to licensing
restrictions it is however not possible to provide more concrete information such as
a mapping between the bugs and the devices. The mode inter_thread_comm is
abbreviated with itc and ar means atomic_reductions. The configuration marked
with “∗” did not use the Clang Static Analyzer in the interestingness tests. The first
column “Success” contains the number of interesting test cases which do not contain
undefined behaviour after the reduction. In contrast, The column “Failure” contains the
number of test cases for which the reduction introduced undefined behaviour. Similar the
column “Race” represents the number of test cases which contain data races after the
reduction. The column “Crash” means that a test case initially triggered a wrong-code
bug but during the compilation a point was reached were the compiler crashes during
the execution.
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Size [B] < 400 < 700 < 900 < 1000 < 1500 < 2000
Test cases 1% 23% 58% 68% 89% 98%
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Figure 4.1 – Distribution of the sizes of the reduced test cases. The size of the
reduced test cases varies between roughly 300 bytes for the smallest test case and
3 000 bytes for the largest. The majority of the test cases is smaller than 900 bytes.

Another critical aspect of automated reductions is the rate of duplicates
among the reduced kernels and the effort required to detect these duplicates.
A manual inspection of the kernels reduced in the scope of this project
suggests that quite a few could be duplicates that trigger the same bug. But
no two kernels were literally identical except when the same kernel has been
reduced multiple times on different configurations. A possible explanation
for this finding is discussed in Section 5.1.1.

4.1.1 Size of the reduced test cases

One of the most important things to report a bug is to be able to present a
test case which is small enough for the developer to easily locate the root
cause of the bug. Therefore it is important for the automatic reduction to
remove as much as possible of unnecessary information from the original
bug-triggering programs.

On average the evaluated test cases have been reduced by 99.2% which
relates to an average absolute size of 844 bytes of the final test cases. The
best result was as small as 387 bytes whereas for some outliers the reduction
stopped already around 2 000 bytes. The distribution over the sizes of the
reduced test cases is visualised in Figure 4.1. Moreover, the results in
Figure 4.2 show that the final size of the test cases does not vary significantly
between the different modes of the kernels. The difference in the average size
per mode are all within the standard deviations.
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Figure 4.2 – Test case sizes grouped by the mode of the kernels. The final size
of the reductions is not significantly different between the modes of the kernels. The
variations in the results are all within the standard deviations.
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Figure 4.3 – Distribution of the runtimes of sequential reductions. The reduction
times vary greatly between 1.4 hours in the best case and over 40 hours in the worst
case. Nevertheless the majority of sequential reductions finishes within 6 hours.

4.1.2 Runtime of the reductions

Besides the final size of the reduced kernels, the reduction time is an import-
ant factor of the automated process. If it takes too long it might be more
reasonable to reduce the kernel by hand if for instance the bug stalls the fur-
ther development. The evaluated reductions with sequential interestingness
tests have an average runtime of 20 893 seconds (a little under six hours) but
there is a high fluctuation across all reductions. The fastest time which has
been measured for a sequential reduction is only about 1.5 hours whereas
some pathological cases took more than 20 hours to complete (Figure 4.3).

To reduce the time per reduction C-Reduce comprises a feature to run
multiple interestingness test in parallel (see Section 2.1.4). The gain in
performance has been evaluated by reducing the same test cases with different
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Figure 4.4 – Speedup through parallel interestingness tests. In the beginning the
reduction time is inversely proportional to the number of parallel interestingness tests.
After the level of parallelism reach four tests no further improvement is achieved. The
error bars indicate the variations within one standard deviation to both sides.

levels of parallelism. Up to the point of four parallel interestingness tests
the speedup is roughly proportional to the number of tests (Figure 4.4).
Afterwards no further increase in the performance is reflected in the results.

The second approach to reduce the overall runtime of a reduction is to
reduce the number of work items for which the kernel is executed. During
the project this has been done for kernels in the modes basic and vector
since these modes operate independent of the number of work items. When
the runtimes of the reductions of these kernels with only one work item are
compared to the reductions with a random number of work items a drop of
about 30% in the average runtime can be noticed (data not shown).

4.1.3 Reduction time compared to the test case size

In order to estimate whether some kernels are more worthwhile to be reduced
than others the reduction time is plotted against the original size of the
kernel (Figure 4.5). However, the results do not show a clear relationship
between the original size of the kernels and the reduction time. At least for
kernels with larger than average sizes the runtime tends to increase with the
size but in general the reduction time and the original size of the kernel seem
to be independent.

In addition to the relation of the reduction time to the original size the
relation to the final size of the test cases has been evaluated. A positive
correlation between the time and the final size can be useful to decide when
to abort reductions if they are taking a long time. But as with the original
size, the results do exhibit a clear rule (Figure 4.6). While the chances for a
small test case seem decrease for reduction that take much longer than the
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Figure 4.5 – Reduction time depending on the original kernel size. The results
do not indicate any strong correlation between the original size f the test cases and the
reduction time. For test cases much larger than the average the reduction time seems
to increase with the size but in general no pattern is visible.

average for all other test cases the time and the final size seem not to follow
any pattern.

4.1.4 Wrong-code bugs

The bugs described in this section are a small part of the outcome of the
automated test case reduction on the various platforms. All of them have
been reported to the respective vendors and moreover have been confirmed
to be reproducible. Due to licensing restrictions for of one of the platforms
it is not possible to provide information on which concrete platform the bug
has been detected.

Wrong union initialisation

The test case in Listing 4.2 results in a wrong-code error on platform “dev-c”.
If executed correctly the final buffer has to contain the value “11” which has
first been the initialiser of the union member of the struct. Later this member
is assigned to the result buffer. This is also the result which is produced if the
kernel is executed without optimisations. Yet, with optimisations the result
buffer contains instead a zero value which means that likely the initialisation
of the union is not handled correctly.

The test case had originally a size of 228 kB and was reduced to 1.9 kB
through the automatic reduction. The manual postprocessing time after
which the presented kernel has been obtained was about 30 minutes. Later
on duplicates of this bug have been found which directly resulted in smaller
test cases which could have been reported without any postprocessing.
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Figure 4.6 – Correlation between final test case size and reduction time. Despite
the fact that exceptionally long reductions tend to give worse results there is no clear
evidence of a relationship between the final test case size and the time of the reduction.
Instead generally most reductions seem to finish with sized below 1 000 bytes.

// -g 1 -l 1

union U0 {
char f0;
ulong f1;

};

struct S7 {
ulong g_107; ulong g_129; ulong g_347; ulong g_346;
int g_1154[6][6]; ulong g_1290; ulong *g_1289;
ulong g_1368; volatile uint g_1421; char g_1423;
union U0 g_1444[3];

};

__kernel void entry(__global ulong *p1)
{

ulong t;
struct S7 c_2241;
struct S7 c_2242 = {1,2,3,4,

{{5}},6,&t,
7,8,9,
{{10}, {11}, {12}}};

c_2241 = c_2242;
p1[0] = c_2242.g_1444[1].f0;

}

Listing 4.2 – Test case triggering a wrong union initialisation. If the union is
initialised correctly the value “11” has to be written to the result buffer. Instead, if
optimisations are enabled the initialisation seems to be ignored and “0” is written into
the buffer.
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// -g 1 -l 1

struct S0 {
long a[664];

};

__kernel void entry(__global ulong *p1) {
p1[0] = 1;
struct S0 a, b = {{2}};
a = b;
barrier(CLK_GLOBAL_MEM_FENCE);

}

Listing 4.3 – Test case triggering a stack corruption. When the kernel is executed
without optimisation the host program aborts with an error message about an exception
during the kernel execution. With optimisations the correct result “1” is printed.

Stack corruption

The test case in Listing 4.3 causes the host application to crash with the
error message:

Exception detected during test execution!
Exception occurred during kernel execution

The behaviour has been produced with disable optimisations on a device
which was not part of the other evaluations and thus no anonymised name
has been assigned.

The crash could be reproduced by the developers but they do not regard
it as actual bug, though they agree that the program should not have crashed.
The test case causes a stack corruption through an overuse of automatic
variables in the private memory. On the used device only 16 kB stack space is
reserved for automatic variables. The structs “a” and “b” and the initialiser
list {{2}} occupy around 15 936 bytes (3 · 664 · 8 B) in total. The allocations
for the entry wrapper and the spilled callee-save registers do then exceed the
limit and corrupt the stack.

The developers confirmed that stack overflows are not handled very well
in the current public release of the drivers but work is going on at the
internal version to improve the situation. Further, it is not possible at the
moment to query in advance where a given kernel is valid for a given platform
since the compiler does not report how much memory would be needed. An
enhancement request has been submitted to improve this situation in the
future.

The original test case had a size of 140 kB and was automatically reduced
to 448B. Nevertheless it was possible to bring the size down to 169 bytes
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// -g 1 -l 1

struct S0 {
ulong f;

};

struct S1 {
char g;

};

__kernel void entry(__global ulong *r) {
struct S0 a = {1};
struct S0 *b = &a;
struct S1 c = {2};
r[0] = a.f;

}

Listing 4.4 – Test case exhibiting a broken struct initialisation. When the kernel is
executed without optimisation a zero is written to the result buffer. With optimisations
the buffer correctly contains the value “1”.

during the manual postprocessing. Since mostly unnecessary elements had
to be removed the manual time was less than 5 minutes.

Wrong struct initialisation

The test case in Listing 4.4 is miscompiled on the device “dev-e” if optimisa-
tions are disabled. In the end the result buffer contains the value “0” whereas
it should be set to “1”. The problem seems to be an incorrect handling of
the struct initialisation.

Originally the test case had a size of 158 kB and was automatically
reduced to 767B. After approximately 30 minutes of manual postprocessing
the final size of 187B was reached. Again duplicates have been found for
which the postprocessing time would have been shorter.

Broken struct usage

The test case in Listing 4.5 triggers a wrong code generation in the optimisa-
tion passes of the OpenCL compiler of device “dev-e”. Without optimisations
the comparison correctly evaluates to false since 0x8000 is smaller than
0x8001. With optimisations enabled on the other hand, the comparison
evaluates to true.

The misbehaviour seems to be related to a wrong representation of the
ushort members of the struct as if they had short type and the resulting
overflow of the signed short range. While both constants easily fit into
the range of unsigned short (0x0 to 0xffff) they are just large enough
to overflow the signed short range. Through the overflow the less-than
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// -g 1 -l 1

struct S {
ushort a;
ushort *b;

};

__kernel void entry(__global ulong *r) {
struct S c;
struct S d = {0x8001, &c.a};
c = d;
r[0] = 0x8000 >= *c.b;

}

Listing 4.5 – Test case exhibiting a broken struct usage. When the kernel is
executed without optimisation a the correct value “0” written to the result buffer. With
optimisations the buffer contains the value “1” which indidates a wrong handling of the
comparison in combination with the struct.

relation between the numbers would be inverted which explains the wrong
behaviour. This explanation is supported by the fact that the misbehaviour
can no longer observed as the constants are further decreased.

The originally 120 kB large test case was automatically reduced to 1 000B.
After 20 minutes of manual postprocessing the final size of 175B has been
obtained.

4.2 C-Reduce

Except for the redesign of the implementation for Windows systems the
C-Reduce framework has not been evaluated in general because it has been
done before by Regehr et al. [Reg+12] and the usage has not changed. The
effects of the transformations on the test cases on the other hand might be
different due to the different structure of the OpenCL kernels in comparison
to the previous C programs. Therefore this section first describes the course
of the reductions regarding the transformations and second the performance
of the new Windows implementation.

4.2.1 Transformation statistics

The statistic over all transformations of the evaluated reductions can help
to identify unsuccessful transformations which unnecessarily slow down the
reduction process. Currently the C-Reduce framework tries to apply 109
different kinds transformations during the reduction process. Table 4.2 lists
statistics about the subset of transformations which are most relevant for
the OpenCL kernels.
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Figure 4.7 – Course of the evaluated reductions regarding the test case sizes.
Each step in the diagram corresponds to a successful application of a transformation.
Although alter steps belong to later phases in the reduction process they do not encode
information about the actual runtime. The red points mark the final test case sizes. It
has to be noted that the y-axis is scaled logarithmically.

The results of the “pass_lines” transformations which try to remove
complete lines from the source file are only interesting in 3% of all applications
but nevertheless account for nearly 60% of all successful transformations
and 70% of the total decrease in the test case size. On the other hand,
the specialised “pass_clang” transformations have a high success rate but
can only be applied in fewer situations and except for the “remove-unused-
function” transformation do not remove much of the test cases. Some of these
transformations even increase the test case size again. Further noteworthy
are the low success rate of the “pass_clex” transformations, and the complete
failure of the “pass_balanced” and “pass_ints” transformations.

These characteristics of the different kinds of transformations can also
be visualised by plotting the course of the test case sizes during the reduc-
tions (Figure 4.7). Each step corresponds to one interesting transformation
but abstracts from the actual time which the transformation plus the follow-
ing interestingness test take. The diagram shows long phases during which
the test case size decreases slowly and which are disrupted by a single rapid
drop in the size. The former likely correspond to the specialised transforma-
tions whereas the sharp stages a produced through the removal of a large
contiguous block. All over the course of the reduction small spikes indicate
that a for instance a reformatting of the source code has first increased the
size of the test case but the following transformation removed the additional
characters plus existing parts of the test case.

4.2.2 Performance on Windows

In the scope of the project the C-Reduce framework has been modified to
increase the compatibility with Windows systems (see Section 3.5.4). To
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Pass Subpass Succ.
[%]

Contrib.
[%]

Del.
[%]

pass_lines 1 3.97 18.93 37.79
pass_clang remove-unused-function 64.09 0.69 26.40
pass_lines 0 4.16 8.13 17.81
pass_lines 2 1.79 8.74 7.05
pass_lines 10 3.04 22.89 6.24
pass_clang remove-unused-field 87.33 10.72 2.64
pass_indent ∗ 96.60 1.28 1.67
pass_clex ∗ 0.27 12.71 1.12
pass_clang remove-unused-var 81.06 2.84 0.39
pass_clang empty-struct-to-int 88.93 0.20 0.05
pass_clang reduce-pointer-level 24.01 1.78 0.02
pass_clang replace-array-index-var 23.94 0.02 0.00
pass_clang reduce-array-dim 69.88 0.05 0.00
pass_clang simplify-struct 13.79 0.00 0.00
pass_clang reduce-array-size 41.22 0.05 0.00
pass_clang remove-array 53.97 0.03 0.00
pass_clang union-to-struct 79.23 0.15 0.00
pass_clang remove-pointer 93.32 1.31 0.00
pass_ints ∗ 0 0 0
pass_balanced ∗ 0 0 0
pass_clang simplify-if 52.36 0.10 −0.04
pass_clang simplify-comma-expr 91.67 0.35 −0.18
pass_clang aggregate-to-scalar 54.20 2.48 −0.24

Table 4.2 – Excerpt from the transformation statistic of C-Reduce. The table
provides an overview over the most interesting results from the statistic over all trans-
formations performed during the evaluation. The third column shows the fraction of
transformations per category after which the interestingness test has been successful.
The fourth column represents the ratio of the number of successful applications of the
given transformation and the overall number of successful transformations. The last
column displays how much the given transformation removes on average from a source
file during the reduction. An asterisk in the second column indicates that different
subpasses have been combined into one entry. The success rate is then averaged and
the contributions and the deletions are summed over all subpasses.
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Configuration Serial runtime [s] Parallel runtime [s]

Linux 522 166
Windows 2 051 948
MSYS 2 294 1 239
MSYS∗ 2 458 1 347
Cygwin 2 641 1 484

Table 4.3 – Runtimes for different configurations of C-Reduce on Windows. The
“Windows” configuration represents the new implementation of C-Reduce. The other
configurations are named after the environment which has been used to run the old
implementation. In contrast to all other configurations the “MSYS∗” configuration still
uses system calls for most of the file system operations. Those have been replaced
by faster Perl functions in the other configurations. During the parallel execution the
number of simultaneous interestingness test was limited to five.

measure the benefits in terms of the runtime performance the new implement-
ation has been compared against different configurations of the old version.
For this purpose the first test (“test0”) which is included in the C-Reduce
sources is used as a representative interestingness test to reduce the test
case file1.c on the different configurations. Since the new implementation
has no support for shell scripts it has been converted into a semantically
equivalent batch script. All other configurations use the original shell script.

In the first experiment the runtimes have been measured for a serial
execution of all interestingness tests. Afterwards the test has been repeated
with activated test case parallelisation since this is a potentially weak spot
in the native Windows implementation. The results of both runs are shown
in Table 4.3. The number of parallel tests has been limited to five as this
was the number virtual cores on the Windows machine. Additionally, both
measurements include the runtime on a Linux system as baseline to provide
an orientation of the performance on Windows in general.

Not surprisingly the Linux configuration achieves the best results. The
new implementation places second followed by the “MSYS” configurations
and lastly “Cygwin”. In terms of speedup through the parallelisation again
the Linux configuration is top ranked with a roughly three times shorter
runtime. The new, native solution is still able to reduce the runtime down
to slightly less than a half whereas the other configuration have only an
improvement of 1.8 compared to the serial execution.

Additionally, the time to run a single instance of the interestingness test
in combination with the test case has been measured with 1.4 seconds for the
batch script used for the native implementation. This is already 0.3 seconds
faster than running the original shell script with Cygwin, but in contrast,
the executing the shell script on a Linux machine takes only 0.8 seconds on
average.
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Figure 4.8 – Distribution of the runtimes for the undefined value plugins in
Oclgrind. Approximately 65% of the runs of Oclgrind without any plugin (Base) finish
within the time-limit of 120 seconds. If either of the plugins to detect uninitialised values
is loaded the rate of completed runs drops down to 35%. Kernels with a runtime up to
a few seconds are mostly unaffected by the overhead of the plugins. Up to a runtime
of 40 seconds the number of executions that finish within a given time increases more
slowly and constantly compared to the baseline without plugins such that the increase
of the influence of the plugins is disproportionally high. For kernels with even longer
runtimes the plugins add a constant overhead.

4.3 Uninitialised value detection in Oclgrind
As with C-Reduce, optimising the general performance of Oclgrind has not
been not part of this project. Therefore the evaluation concerns only the
efficiency of the new plugin to detect unintialised values which has been
implemented in the course of the project. Its runtime has been compared to
Oclgrind without any plugins as baseline and to the runtime of Oclgrind in
combination with the old plugin. For this reason the three configurations
have been used to simulate the same 1 000 randomly generated kernels. For
each kernel the execution time was restricted to 120 seconds after which the
particular kernel was marked as “timeout”.

This limit affected approximately 35% of the runs of Oclgrind without
any plugin (Figure 4.8). In comparison, on a GPU only 20% of the executions
took longer than 120 seconds. If either of the plugins to detect uninitialised
values has been used the relative number of timeouts increased to roughly
65% without any significant difference between the old and the new plugin.

Afterwards the runtimes of the remaining 320 kernels which had no
timeout on all of the platforms have been compared directly to measure the
relative slowdown of the plugins (Figure 4.9). The first diagram shows the
slowdown of the old plugin over Oclgrind without plugins. There are a few
cases in which the runtime performance increase but the median over all
results indicates an average slowdown of 2.7. The slowdown of the new plugin
over the baseline is around 4.6 and there are fewer situations in which the
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plugin improved the performance. Lastly the new plugin is directly compared
to the old plugin resulting in a 1.3 times worse runtime of the new plugin.

4.4 Interestingness tests
A major concern of the interestingness tests is their runtime. Since on average
30 000 tests are performed during a single reduction the overall runtime would
increase by nearly one hour even if every tests takes only a tenth of a second
longer. Currently the Clang Static Analyzer and Oclgrind are used in the
interestingness tests and both tools can take a long time for complex or large
kernels. If only the correctness of the interestingness tests is considered the
Clang Static Analyzer is not needed as Oclgrind is able to perform the same
sanity checks. For this reason it has been evaluated if it is beneficial in terms
of the runtime of the reduction not to use the Clang Static Analyzer.

The diagram in Figure 4.10 shows clearly that the reduction times for
the interestingness tests which invoke the Clang Static Analyzer prior to
Oclgrind are shorter than for the interestingness tests which make only use
of Oclgrind. On average the time per reduction increased by two and a
half hours in the latter case which corresponds to an average increase of
0.3 seconds per interestingness test.

In addition to the positive effect of the Clang Static Analyzer on the
runtime this experiment revealed also a drawback of the tool. For two of
the test cases in Figure 4.10 it reported false positive warnings about an
alleged dereference of a null pointer. The warning prohibited the reduction
of these test cases for the tests which made use of the analyser. In contrast,
the analysis of Oclgrind was correct and the reduction have been successful.
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Figure 4.9 – Relative slowdown of the uninitialised value plugins. The diagrams
show the relative slowdown between different configurations of Oclgrind. The comparison
includes all of the 1 000 automatically generated kernels which did not receive a timeout
with any configuration. This reduced the number to 320 kernels. The figures (a) and (b)
show the slowdown of both versions of the uninitialised value plugin compared against
Oclgrind without any plugin. The third figure (c) displays the additional slowdown of
the new plugin in comparison to the old plugin.
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Figure 4.10 – Reduction times for interestingness tests with and without CSA.
The runtime of the reductions is significantly shorter if the Clang Static Analyzer is
included in the interestingness tests and run before Oclgrind. For two of the test cases
the Clang Static Analyzer reports a false positive warning about a dereference of a null
pointer such that the reduction could only be performed without the analyser.
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Discussion

This chapter evaluates and assesses the results obtained via the experiments of
Chapter 4 with respect to the applicability of automatic test case reductions
in the area of many-core compilers. Key aspects of the discussion are
the robustness of the different tools along the reduction process and their
time efficiency. For this reason the reduced test cases and the runtimes of
the reductions have been analysed and compared to existing results where
applicable.

First the results of the reductions are reviewed at an abstract level
without going into the details of the of the different steps and used tools.
Afterwards the influence of the C-Reduce and the Oclgrind program on the
reduction process is examined. Finally, the interestingness tests in particular
are evaluated.

5.1 Test case reductions

During the evaluation phase of the automatic test case reduction more than
100 OpenCL kernels have been successfully reduced. Most of the reduced
test cases did not comprise any of the features related to the mode in which
the kernels had been generated, though some bugs required the presence of
barrier operations. These observations are in accordance with the results
described by Lidbury et al. [Lid+15b]. The authors also did not find any
bugs related to inter thread communication or atomic operations, except
that barriers were part of some bugs. Moreover, that in most of the modes
only “basic” bugs have been found implies that the size of the reduced test
cases should not vary which is also represented in the results of this project.
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5.1.1 Robustness of the test case reductions

Despite the fact that most of the reductions were successful, the few reduced
kernels which contained undefined behaviour show that defining accurate
interestingness test is not trivial. There exist a large number of sources of
undefined behaviour and not all can be checked easily or without restricting
the reduction process too much. The strategy during this project has been
to be conservative about warnings and to add them only to a blacklist when
they actually would have prevented an instance of undefined behaviour.
Starting directly with a large blacklist of warnings can result in unnecessary
restrictions of the reduction process and might finally lead to worse reduction
results. However, this approach of defining the warnings that are considered
as harmful incrementally during the development of the interestingness
tests has the drawback that sometimes undefined behaviour is not caught
and makes its way into the reduced test cases as it was the case in the
evaluation. After a manual inspection of the reduced test cases – which has
to be performed anyway – the undefined behaviour has been located and
the interestingness tests have been extended by the new indicators of this
kind of undefined behaviour. The next step would be to rerun the particular
reductions to verify that the undefined behaviour no longer occurs.

Besides the few cases in which the reduction ended because of undefined
behaviour, one test case initially triggered a wrong-code bug but changed into
a compiler-crash bug during the reduction. This relates to the phenomenon
of “bug slippage” which is mentioned by Chen et al. [Che+13]. In their
experiments they found that for GCC bug slippage is not a major concern
as only one instance had been observed. This seems to be in agreement with
the results of this project where the test case triggering the compiler crash
is the only known occurrence. However, in the scope of this project it has
not been evaluated whether all of the reduced test cases trigger the same
wrong-code bug as the original test cases. The only possibility to determine
whether the original bug has been preserved during the reduction seems to be
to fix the bug and to rerun the interestingness test on the original test case.
This is also the method which Chen et al. [Che+13] used to analyse their
reductions for bugs in the GCC compiler. Nevertheless, this provides only a
definite answer to the question of bug slippage if the repeated interestingness
test succeeds after the bug has been fixed, in which case it is clear that no
bug slippage has occurred. If the repeated test fails then either there was
bug slippage, or the original test case was prone to more than one compiler
bug – which is entirely possible if the large number of overall detected bugs
is considered. Furthermore, the latter scenario shows that for an ultimate
answer a new version of the compiler has to be used in which solely the bug
in question has been fixed, which is nearly infeasible to achieve.

Further, the issue of duplicates, i.e. different test cases which have the
same root cause, has not been addressed in this project. Extracting the
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problem from a test case is mostly not feasible without the chance to actually
debug the compiler. Again Chen et al. [Che+13] report that during their
evaluation about 2% of the test cases became literally equivalent after the
reduction which makes it easy to discard them. On the other hand, a
comparison of the reduced test cases in this project did not reveal any such
duplicates. Depending on the specific members of the struct which is used as
replacement for global variables the reductions seem to terminate in different
but roughly equivalent local optima. For instance, for a number of test cases
it has been observed that the order of the remaining members after the
reduction varies, but that one of them is always a pointer. For a human it
seems therefore no problem to mark all these cases as duplicates but doing
it automatically is not as easy as with literally identical test cases. Besides
this possible explanation why it might be unlikely to find exact duplicates
it has to be noted that due to the comparably small number of overall test
cases only three duplicates can be expected if the rate of 2% is assumed.

5.1.2 Performance of the test case reductions
To report a bug one has to be able to present a test case which reproduces
the wrong-behaviour but which is also small enough to reveal the root cause
of the problem without spending to much time in analysing the test case. In
practise it is hard to guess when a test case is small enough to be reported
and it seems almost impossible to evaluate the performance of the automatic
reduction based on such a loose definition. However, the GCC developers
state that “[m]ost test cases can be reduced to fewer than 30 lines!”58

On average the OpenCL kernels are reduced by two orders of magnitude to
an average size of 844 bytes. This is roughly three times larger than the results
which Regehr et al. [Reg+12] obtained by when they reduced C programs
with C-Reduce. While the reduction process has not changed significantly
a possible explanation for the larger final test cases might be the different
characteristic of the test cases. The automatically generated OpenCL kernels
rely heavily on structs as a replacement for global variables [Lid+15b]. The
consequence is that often struct members cannot be removed even if they do
not directly contribute to the bug because this would change the alignment or
padding inside the struct which itself can be the reason for miscompilations.

Yet, the automatically reduced test cases are most of the time small
enough to be reported directly without the need for further manual reductions.
The test case shown in Listing C.7 has a size of 844 bytes which is exemplary
for the evaluated reductions. With 39 lines it is slightly larger than the GCC
developers expect but with a bit of reformatting of the spacing it would also
fit into 30 lines. On the other hand, the test case is far from optimal in
terms of its size. With 15 minutes of human reduction effort, it was found

58 See https://gcc.gnu.org/bugs/minimize.html, visited on 29/08/2015.
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1// -g 1,1,1 -l 1,1,1
2struct S1 {
3volatile ushort g_300;
4};
5
6__kernel void entry(__global ulong *p1) {
7struct S1 e = {1};
8*p1 = 0;
9for(int i = 0; i < 3; i++) {
10for(int j = 0; j < 4; j++) {
11for(int k = 0; k < 6; k++) {
12*p1 += e.g_300;
13}
14}
15}
16}

Listing 5.1 – Automatically reduced test case with manual postprocesing. After
the additional manual reduction the previously automatically reducerd test case from
Listing C.7 has now only a size of 279 bytes. It still triggers a wrong-code bug on device
“dev-a”. The correct result is “0x48” but with optimisations enabled the computed
output is “0x52”.

that the test case could be further reduced by a factor of three to its final
size of 279 bytes (Listing 5.1). To achieve this result, multiple correlated
and non-trivial changes had to be performed at once. For instance had the
functions to be inlined and the access to the result buffer had be changed
from an indexed access into an array to a dereference of a pointer. These
changes were too complex than they could have been performed by the
automatic reduction as thus the result remained non-optimal.

Even though the automatic reduction got stuck in a local optimum the
manual postprocessing time of 15 is much less than it would have taken
to reduce the original test case. In the scope of this project these short
additional manual times could be confirmed in a few more trials to reduce the
results of the automatic reduction process further. For some “simple” bugs no
more than five minutes were necessary to obtain the smallest result whereas
more complex bugs took up to thirty minutes which is still acceptable.

In addition to the size of automatically reduced test cases and the manual
effort needed after automatic reductions, the third important aspect of the
performance is the time that automatic reductions take themselves. The
reduction time of nearly six hours on average for the sequential interestingness
tests seems to long as it could be useful for all kinds of bugs. For high priority
bugs which possibly block the further development it might be better to
reduce test cases manually since a skilled developer is likely to be faster. On
the other hand, for low priority bugs which can be fixed at any time there is
no disadvantage of proceeding with actual development while test cases are
reduced in the background. Moreover, another argument to aim at faster
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reduction times is that in the many-core context, where a device might not
support parallel jobs, it is not necessarily possible to run lots of reductions
on the same device in parallel to reduce the overall time.

With the parallel interestingness tests enabled the results show a signi-
ficant decrease in the reduction time. The average of 1.7 hours with four
parallel interestingness tests is comparable to the runtimes which Regehr
et al. [Reg+12] report for using C-Reduce in combination with the dynamic
instrumentation tool KCC. It has to be noted that the average runtime
of 1.7 hours has been measured for executions with the reduced number of
only one work item which is equivalent to one run of a C program in the
paper of Regehr et al. Without the change in the number of work items the
results suggest an approximately 40% longer reduction time. A more detailed
analysis of the influence of the parallel interestingness tests in combination
with the number of work items is beyond the scope of the project but should
be performed in the future.

The reason why the results show no further improvement after a parallel-
ism of four interestingness has been reached can be explained by the high
consumption of RAM by the Oclgrind tool. By inspecting a small amount
of the reductions processes manually it has been noticed that already one
instance of Oclgrind can consume multiple gigabytes of main memory. In the
parallel scenario multiple instances filled all 16GB of RAM and thus slowed
down the reduction due to swapping memory or because interestingness
tests were aborted by the operating system due to the excessive memory
consumption. After the problems with eight parallel interestingness tests
and 16GB main memory had been noticed a few reductions have been tested
on a machine with 32GB of RAM. But also this seems not to be enough
and suggests that eight parallel interestingness tests are simply not realisable
with Oclgrind.

Finally, to maximise the benefit of the automatic reductions especially for
the slow sequential reductions it would be useful to have some guideline which
test cases should be reduced first or after which amount of time the reduction
could be aborted as it would not a small test case anyway. Unfortunately the
results contain no clear indication for a dependence between the size of the
original test case and its reduction time or a relationship between the final
size and the reduction time. It rather seems to be the structure of the test
case which determines the duration of the reduction but no strong evidence
for this assumption has been found in the scope of this project.

5.2 C-Reduce

Except of the new implementation for Windows systems the principles behind
the C-Reduce framework have not been changed in the scope of this project
and hence are not evaluated. Yet, the input to the reduction process is
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different which can effect the effectiveness of the transformations, although
the OpenCL kernels have much in common which the previous C programs.
In order to optimise the performance of the reductions some specialised
transformations for features not present in the OpenCL C language are
automatically deactivated by C-Reduce and the performance of the more
general transformations has been evaluated manually.

5.2.1 Performance of the transformations

The obtained results show that finding the best configuration of the transform-
ations is a hard problem as it spans across multiple dimensions. The success
rate of a given transformation influences directly which portion of the time
spent on the transformation and respectively the following interestingness
test actually contributes to the final test case. However, it is not generally
possible to deactivate these transformations. For instance the “pass_line”
transformations which try to remove contiguous blocks have a low success
rate because their search space is huge. Yet they form nearly 60% of all
successful transformations and remove the largest portion of the test case.
On the other hand it is also not possible to deactivate all transformations
that do not remove much of the test case. Most of the specialised functions
only restructure the test case and can even increase its size again but help
to prevent circumvent local optima.

To find a final solution to the optimal set of transformations a more
detailed evaluation has to be performed but already the current results
give some hints. The “pass_clex” transformations remove specific tokens or
pattern of tokens from the test case and thus cannot remove large contiguous
chunks. Although they account for 13% of the successful transformations
they removed only 1% of the test cases and had a extremely low success
rate of 0.3%. It might therefore be worth to compare reductions with and
without these transformations in terms of the runtime and final test case
size to determine whether it would be beneficial to deactivate this group.
Furthermore, the “pass_ints” and “pass_balanced” transformations had not
single successful application although some of the reduced test case contained
valid instances for these transformations. For future reductions the reason
for the failed transformations should be examined to improve the reduction
results. Lastly and not related to the runtime performance, the renaming
operations of variables have not always been useful. While they simplify the
names of variables if they were generated randomly (g_491 → b) they make
it more difficult to understand test case in which the variables have semantic
names (g_comm_values → e).

Furthermore, the evaluation of the course of the test case sizes during the
reduction process reveals no explicit shape which could be used to optimise
the used transformations. Each reduction seems to have its unique sequence
of transformation instances and the original test case does not correlate to
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the final reduced size. But nevertheless there exist common pattern such as
long phases of slow decrease or abrupt drops which might help to extract
features for the corresponding test case. If further analyses will confirm the
existence of such characteristics they could for instance be used to detect
duplicates among the reduced test cases.

5.2.2 Performance on Windows
Maybe the most important advantage of the modification to allow C-Reduce
to run natively on Windows machines is the simpler configuration and setup.
Two years ago, a discussion about C-Reduce on Windows systems popped
up on the mailing of C-Reduce59 The author tried to build C-Reduce in
combination with the Cygwin environment but ran into several problems. In
contrast, with the new CMake build system all tools can be built without
the need to manually modify configuration files or to worry about how to
setup a suitable development environment to run the build files.

Back in 2013, John Regehr finally managed to run the same test which
has been used in this project (Section 4.2.2) under the Cygwin environment.60

However, the runtime of “a little more than 12 hours” is far worse than all
of the times measured during this project and thus cannot be used as a
baseline for the comparison. Nevertheless, the serial reduction in combination
with the Cygwin environment is still the slowest although the MSYS system
decreases the runtime only by 13%. The native implementation on the other
hand yields an improvement of 22% compared to the Cygwin system.

The boost in the performance can be attributed to the usage of the
CreateProcess mechanism instead of the Fork-Exec model. The latter
had to be emulated by the used environments since Windows does not
support it natively. The smaller overhead of creating new processes in
the new implementation leads to an even better improvement of 36% over
the “Cygwin” configuration if the parallel scenario is regarded. Though
the “MSYS” configuration is also able to improve compared to the serial
reduction it gains only additional 3%.

Despite the increase in performance the reductions on Windows systems
are with a factor around four still significantly slower than on Linux. But
not only the C-Reduce implementation itself is responsible for the slowdown.
The results show that the semantically equivalent batch script is nearly two
times less efficient than the shell script on a Linux machine. Still it improves
the runtime by 17% if compared to running the shell script on Windows.

59 See http://www.flux.utah.edu/listarchives/creduce-dev/2013-July/000418.
html, visited on 25/08/2015.

60 See http://www.flux.utah.edu/listarchives/creduce-dev/2013-July/000439.
html, visited on 25/08/2015.
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5.3 Oclgrind

In the course of this project Oclgrind has become a central part of the
interestingness tests. Before it was used as dynamical analysis tool all reduc-
tions ended with test cases which contained undefined behaviour. Oclgrind
complements the checks of the static tools and is currently the only tool to
prevent data races in the kernels. The results in Table 4.1 still contain a
few cases of failed reductions and test cases exhibiting data races but these
issue have been fixed and the latest version successfully prevents undefined
behaviour in all these cases.

Although Oclgrind is, compared to the static checkers, quite slow and
has a high memory consumption there is currently no alternative. One
possibility to increase the performance of Oclgrind could be run the tool
in a staged manor instead of with all plugins at the same time. Fast and
lightweight plugins could be executed first while slow plugins and those
with a hight memory consumption would only be executed if the previous
analyses succeeded. This approach introduces additional overhead for tests
which finally succeed or only fail after the majority of the checks has been
performed but the assumption is that most of the transformations will
produce invalid test cases. In this situation the shorter runtime for most
of the interestingness tests could outweigh the longer runtime for the tests
which are actually successful. The evaluation of this different approach has
not been done in the scope this project as the main goal was to evaluate
the potential of reductions of OpenCL kernels in general than to focus on
optimisations of specific tools. It might especially be useful if in the future
more Oclgrind plugins are involved in the reduction process.

5.3.1 Data race detection

To prevent data races during the reduction of kernels generated in the modes
atomics, atomic_reductions and inter_thread_comm the races detection
plugin of Oclgrind has been used. Initially uniform write-write races had
been tolerated which why some of the reduced test cases are marked as
“Race” (see Table 4.1). Later the option --uniform-writes has been added
to the invocation of Oclgrind to warn also about these types of races where
multiple work items write the same data concurrently. Since the generated
test cases are entirely race free the reduction should not add any kind of
race even if it might not cause direct problems. In the new configuration
Oclgrind also warns about races in all reduced test cases which have been
manually marked as invalid.

In principle the race detection plugin of Oclgrind is capable to detect all
dynamic data races which actually occur during the execution of the kernel.
It cannot warn about all data races that are statically present in the source
code. For instance data races in dynamically dead code regions will never
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occur during the execution and hence no warning is emitted. But this should
be no issue for the reduction since dead code cannot introduce undefined
behaviour and is likely to be removed during the reduction anyway.

Nevertheless, in practice the plugin has some weak spots as mentioned
in the corresponding Wiki entry.61 Especially, races between atomic and
non-atomic operations in different work groups can remain undetected and
the atomic_cmpxchg instruction is not handled at all. Until these issues
are addressed there are mainly two possible alternatives to shield against
data races. One is to include the GPUVerify tool [Bet+15; Bar+14]62 into
the interestingness tests. It provides methods for a formal analysis of GPU
kernels and is therefore also able to signalise potential data race. Other
than Oclgrind it is a static analyser and hence warns about data races in
non-executed code segments too. This means that the warnings might be
false positives which can prevent the interestingness test to succeed even if
the kernel would not have resulted in undefined behaviour.

The second way to prevent undefined behaviour caused by data races
during the reduction is to add some hard-coded check to the interestingness
tests. These checks must stop transformations which would introduce data
races into the kernel for instance by removing barriers or guards around
atomic blocks. While this has the potential to solve the problem without
the need for a sophisticated and time costly analysis it can handicap the
reduction itself leading to larger results. Further, it can be impractical
to write checks for all possible situations that could introduce undefined
behaviour.

The task to determine the best option to handle the detection of data
races is left over for future projects as it would have gone beyond the scope of
this project. During the evaluation most of the reductions were performed for
modes of CLsmith which do not include concurrent data structures and thus
only a few test cases where effected by data races. For the later evaluations
they have been ignored.

5.3.2 Uninitialised value detection
The main goal of the new plugin to detect uninitialised values during the
reduction of the randomly generated OpenCL kernels was to improve on
the high rate of false positives which have been emitted by the old plugin.
In fact the tests during the development of the plugin have not produced
any false positives and also in the reductions run for the evaluation no false
positives have been noticed. This means that the decision to implement the
shadow propagation often at the coarse level of operand finally paid off.

61 See https://github.com/jrprice/Oclgrind/wiki/Data-Race-Detection, visited on
27/08/2015.

62 See http://multicore.doc.ic.ac.uk/tools/GPUVerify/, visited on 27/08/2015.
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Nevertheless some of the reduced test cases still exhibited undefined
behaviour. The plugin failed to report uninitialised values for loads from
undefined addresses. In general it is very unlikely for arbitrary undefined
addresses to point to an allocated and valid area in the memory and thus to
remain unnoticed by the separate address check of Oclgrind. But, especially in
situation where the address is computed via the getelementptr instruction
and one of the index operands is undefined the chances are high that the
operand just happens to be zero (Listing 5.2). Accessing the first element
of an array for instance, is always a safe operation and thus is not detected
by the address check or out-of-bounds check of Oclgrind. Since the address
operand of the load instruction was not checked a clean value was loaded
from memory and the propagation chain of the undefined address operand
stopped without emitting a warning.

The issue has been fixed in the latest version of Oclgrind and already
reduced test cases have been checked again. All which did not pass the second
check have been marked as “failed” and are excluded from the evaluation
results. Further, after the problem had been addressed no more reduced test
cases contained undefined behaviour as a result of the usage of undefined
values. Hence the false negative rate is equally low as the false positive rate.

But still there exist cases in which even a perfect plugin could not
detect the undefined behaviour. The problem is that Oclgrind depends
on the Clang compiler to generate the LLVM intermediate representation
which is then used to simulate the kernel execution. If the kernel contains
undefined behaviour the compiler does not have to make any guarantees
for the compiled program and even does not have to notify the user about
potential problems [C99, § 3.4.3.2]. Therefore it is possible that the OpenCL
code of the kernel indeed contains undefined behaviour which disappears
after the translation into the LLVM IR. Although this has not been observed
during the reductions accidentally one of the constructed regression tests for
the new plugin exposed this phenomenon (Listing 5.3).

The example does not produce “wrong” code if all optimisations are
disabled. This is the default in the interestingness tests which reduces the
risk to run into this kind of problem. But nevertheless there is no guarantee
that the compiler does not alter the “misbehaviour” of a program even if
optimisations are disabled.

In terms of runtime efficiency a slowdown over the old plugin has been
expected and is also reflected in the results. Yet, the roughly five times longer
runtime compared to Oclgrind without plugins is a fair result. It is much
better than Valgrind’s Memcheck plugin for which the overall slowdown is four
times higher. Even if only the parts of the Memcheck plugin which directly
correspond to the handling of uninitialised values are taken into account a
ten times longer runtime is expected. Compared to MemorySanitizer the
new Oclgrind plugin performs slightly worse since MemorySanitizer had
only a three times overhead. This might be partly due to overheads of the
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__kernel void kf(__global ulong *r)
{

ulong a[] = {1};
ulong i;

r[0] = a[i];
}

(a) Test case

@kf.a = private unnamed_addr constant [1 x i64] [i64 1], align 8

define void @kf(i64* %r) #0 {
%1 = alloca i64*, align 8
%a = alloca [1 x i64], align 8
%i = alloca i64, align 8
store i64* %r, i64** %1, align 8
%2 = bitcast [1 x i64]* %a to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %2, i8* bitcast ([1 x i64]* @kf.a to i8*),

i64 8, i32 8, i1 false)
%3 = load i64, i64* %i, align 8
%4 = getelementptr inbounds [1 x i64], [1 x i64]* %a, i32 0, i64 %3
%5 = load i64, i64* %4, align 8
%6 = load i64*, i64** %1, align 8
%7 = getelementptr inbounds i64, i64* %6, i64 0
store i64 %5, i64* %7, align 8
ret void

}

(b) Generated LLVM IR

Listing 5.2 – Problem of losing shadows on load instructions. The variable “i” in
the test case (a) is uninitialised but used to index the array “a”. If by pure chance
the variable has a value of zero Oclgrind did not report a warning for the usage of an
uninitialised value. The problem was that the shadow propagation of the undefined
variable stopped at the highlighted load instruction in the LLVM IR (b). Despite that
the address operand “%4” is undefined a clean value is loaded from memory and used
as new shadow for the load instruction. The information about the undefined address
was lost.
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__kernel void test(__global ulong *r)
{

ulong v;
int one = 1;

if(one == 2) {
// Dynamically dead code
v = 42;

}

*r = v;
}

(a) Test case

define void @test(i64* nocapture %r) #0 {
store i64 42, i64* %r, align 8, !tbaa !8
ret void

}

(b) Generated LLVM IR

Listing 5.3 – Example of undefined behaviour in the Clang compiler. The be-
haviour of the test case (a) is undefined since dynamically the variable “v” is never
initialised. This frees the compiler from the requirements to produce a valid program
but unfortunately it decides to simply initialise the variable as if the dead code would be
executed. To reproduce the behaviour at least optimisations -O1 have to be enabled.

object-oriented and less optimised design of Oclgrind. But another important
difference is that Oclgrind has to simulate the execution of the kernels whereas
the programs instrumented with MemorySanitizer are directly executed
through the operating system. So all in all, the performance penalties are
less than expected and competitive to the other available tools.

Moreover, the slowdown is unlikely to affect the result of the reductions
by causing interestingness to fail due to the time-limit. The results show
that approximately the same portion of the executions ran into timeouts
regardless of the plugin which had been used.

The effect that the execution of some kernels was faster when the plugins
were activated seems to be counterintuitive on the first sight. One possible
explanation is a change in the caching behaviour which could be provoked by
the additional shadow data. Or the compiler might be able to apply different
and more efficient optimisations due to the added instructions of the shadow
propagation. Further, the larger number of instructions is not necessarily
proportional to the final overhead of the plugin. The CPU might be able to
fit additional instructions into otherwise stalled pipelines when for instance
Oclgrind itself has to wait for new data for the kernel.

Other than the runtime the memory consumption has not been measured
for a representative comparison since it is much easier to derive from the
implementation details than the effects on the runtime. The current version
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of the plugin maintains a one-to-one mapping between application data and
shadow data and thus doubles the total amount of memory which is allocated
throughout the execution. This, however, does not mean that the amount
of allocated application memory at any given point during the execution is
maximal twice as high as normally. Due to the lazy deallocation of shadow
memory it can still be allocated when the application memory has already
been released.

5.4 Interestingness tests

The robustness and accuracy of the interestingness tests has been a central
aspect of this project. As early trials in the beginning of the project revealed
is it essential for the reduction to have precise interestingness tests. There
exists a large number of situations in which the behaviour of a reduced test
case can be undefined. Further, it is not enough to keep the final test case
free from undefined behaviour because as soon as it is introduced during the
reduction it interferes with the actual misbehaviour of the kernel and leads
to false interestingness tests.

The results in Table 4.1 show that the developed interestingness tests
are sufficient to prevent invalid reduction results for the randomly generated
kernels. The data race issues and the general failures due to undetected
uninitialised values have been patched as soon as they have been noticed
during the evaluation. Therefore all of the manually identified problems
in the evaluated kernels are reliably detected by the latest version of the
interestingness tests.

Yet detecting all cases of undefined behaviour is only one side of the coin.
It has to be complemented with a low rate of false positive warnings. While
false negatives result in invalid test cases false positives prevent the reduction
completely. For this reason they might be considered less harmful since at
least no time is wasted on a finally invalid kernel. Nevertheless, the aim is to
keep their number small as otherwise potentially interesting bugs are missed.
In the current interestingness tests the largest source of false positive warnings
is the Clang Static Analyzer. In particular for complex and large kernels
the static analysis is stretched to its limits and the experiments without the
Clang Static Analyzer revealed two wrong-code bugs which have been missed
due to a wrong warning about an alleged dereference of a null pointer. Still
it is not possible to remove the tool from the interestingness tests as it is an
important factor for their runtime performance. Without the static check
before Oclgrind is executed the runtime per test increased by 0.3 seconds on
average which accumulates to 2.5 extra hours with approximately 30 000 tests
per reduction. Although the Clang Static Analyzer is slow for large kernels –
which was the motivation for dropping it – its static analysis can in general
be immensely faster than the dynamic execution of Oclgrind. Therefore, a
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compromise between accuracy and performance seems to be to determine the
interestingness, i.e. whether it is free from undefined behaviour and triggers
a bug, of each generated test case initially without the Clang Static Analyzer
such that no test case is wrongly rejected due to the false positive warnings
about allegedly undefined behaviour. Afterwards the reductions are started
with the Clang Static Analyzer and it is only deactivated for those test cases
where the reduction cannot be started otherwise because of a false positive
warning in the original test case. This way most of the reductions profit
from the speedup through the Clang Static Analyzer and at the same time
no wrong-code bug is overlooked.

Another alternative to optimise the runtime of the interestingness tests
could be to tighten the time-limit for each check in the test to reduce the
worst-case time. To determine a good time-limit requires a deeper analysis
of the effect of the time-limit on the reduction process than it has been
conducted in the scope of this project. It seems not trivial whether a
stricter time-limit affects only the interestingness tests after a few “bad”
transformations or all of the interestingness tests during the reduction. Since
aborted test cases are considered as invalid, the entire reduction could be
prevented in the latter case if no test succeeds within the given time.

Despite the success of the interestingness tests at least undefined be-
haviour as result of invalid arithmetic expressions [OCL12, § 6.12.3; C99,
§ 6.5.5] is not checked. Examples are signed integer overflow or the clamp
function of OpenCL if the provided minimum is larger than the maximum.
These sources of undefined behaviour cannot be detected with the static
tools – except in trivial cases were the operands are constants – and Oclgrind
currently provides no plugin to warn about them during the simulation of
the kernel. If in the future such a plugin exists it can be activated for the
interestingness tests to eliminate the risk of losing reduction results due these
kinds of undefined behaviour.

Subsequently it has to be clarified to what extent undefined behaviour has
to be reported and finally excluded from the test cases. At the moment the
static tools report any occurrence of undefined behaviour and all warnings
lead to an invalidation of the test case. In contrast, the undefined value
plugin of Oclgrind warns only about undefined behaviour if it has visible
side effects in terms of the control flow or the global resources. Thus the
test cases can for instance operate with uninitialised values as long as the
results of these operations do not influence the values of global variables.
Though, strictly speaking this provokes undefined behaviour it might help
during the reduction process to escape from local optima by allowing invalid
intermediate steps that are unlikely to change the behaviour of the compiler.
However, no guarantees in terms of the effects on the compilation process can
be made for these situations. To find an answer to this question is beyond
the scope of this project but should definitely be addressed in the future.
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This project demonstrates that the principle of automatic test case reductions
can be successfully applied in the area of many-core compilers. Moreover,
the technique of compiler fuzzing has only recently been adopted to the
OpenCL domain [Lid+15b] and a large number of defects can be found. This
increases the importance of automatic reductions as it is nearly infeasible to
perform manual reductions for all generated kernels.

The obtained results regarding the final size of reduced test cases and the
runtime of reductions are comparable to prior evaluations of reductions of C
programs [Reg+12]. The slightly larger size of reduced OpenCL kernels has
been attributed to their different structure and an extensive use of structs. In
the setting with parallel interestingness tests the runtime was similar to the
times reported for C-Reduce in combination with the dynamic instrumenta-
tion framework KCC which has been replaced with the Oclgrind simulator
for OpenCL kernels. These dynamic analysis tools are the main factor for the
runtime of the interestingness tests. This project already performed several
benchmarks to determine the best combination of tools and configurations for
the interestingness test but especially the influence of reducing the number
of work items in combination with parallel interestingness tests has to be
analysed in greater detail.

In terms of the robustness of interestingness tests the results are also
positive. Even though during the evaluations a few invalid test cases have
been observed, it was no problem to adapt the tests to prevent further
instances of this kind of undefined behaviour. The new Oclgrind plugin
which has been developed during this project forms a large part of the check
for undefined behaviour and improved significantly over the old plugin. If in
the future more plugins are added for right now unhandled kinds of undefined
behaviour such as arithmetic exceptions, it should be considered to combine
them into one larger plugin to reduce their overhead.
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Finally, the project confirmed the need for techniques to order automat-
ically generated and reduced test cases according to the kind of bugs they
are triggering. Without automatic preselection it is a time consuming task
to look through the vast amount of reduced programs manually, only to
find that most of test cases are duplicates. This problem has already been
addressed by Chen et al. [Che+13] who developed methods to perform such
an ordering. In future project these ideas should be evaluated for reduced
OpenCL kernels as well. Furthermore, in the scope of this project the analysis
of the course of transformations during the reduction process indicated a
relation between the structure of a test case and its reduction itself. It might
therefore be worth to evaluate whether the information about performed
transformations can be used to group test cases.
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A
Setup of the test environments

In the course of this project the reduction of OpenCL test cases has been
tested on three different system. This chapter describes the steps which were
necessary to set up the different environments, install the required tools and
dependencies, and finally run the reductions. Hence it can be used as user
manual or reference guide if the reduction framework has to be installed on
a new system or if at some point in the setup something does not work as
expected. If any problems have been encountered during the setup in the
scope of this project they are mentioned here and solutions are described if
available.

A.1 Linux
The central operating system for the automated test case reduction has
been Linux during this project. The main reason is that nearly all the test
machines are running with a Linux system and further most tools have
been designed with Linux as their primary target. To make the test result
reproducible this section describes how the tools needed for the automated
test case reduction can be set up in a Linux environment.

A.1.1 Prerequisites

The instructions to configure all necessary tools have been tested on fresh
Linux installations as well as on systems which already comprised different
version of the required applications. As long as the correct versions are
specified in the configuration steps no complications have been observed.
The following tools are the basic requirements to build and install the
programs for the automated test case reduction. It is thus recommended to
check the availability of these tools first.
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GCC Most of the programs have to be built from source. This requires at
least GCC 4.8 or a compatible compiler.

Git Often only the current development versions of the tools contain im-
portant bugfixes or additions. Therefore it is recommended to checkout the
sources directly from the respective Git repositories.

Perl The C-Reduce scripts are written in Perl to be portable across different
platforms. To run the C-Reduce algorithm at least Perl version 5.10.0 is
required.

Flex Some transformations are based on a lexical analysis of the test case
to remove specific tokens or patterns. The lexer is part of the C-Reduce tool
and thus has to be built from source. It is described in a special language to
generate custom scanners. The format is interpreted by the Flex tool which
converts the descriptions in compilable C sources. It can be downloaded from
the project website63 which requires to compile it manually or alternatively
for instance on Ubuntu it is available through the “flex” package.

CMake On Linux LLVM and Clang can be configured via the provided
Autotools configuration files but the CMake configuration offers more flexib-
ility and is the recommended way to use.

Python The build system of LLVM and the interestingness depend on
Python. While LLVM only requires Python 2 the interestingness tests have
been written for Python 3 as some features are not present in the earlier
version of the language.

OpenCL First of all the OpenCL header files and the OpenCL library
are required to build the host program which launches the kernels during
the reduction process. The header files can either be downloaded from the
Khronos registry64 or on Ubuntu systems they are also provided through
the “opencl-headers” package. The library is most likely provided by the
vendor of the GPU device but can alternatively also be downloaded from
the Khronos registry and has to be built manually in this case. Lastly, to
perform the reduction for an OpenCL capable device its OpenCL driver has
to be installed.

63 See http://flex.sourceforge.net, visited on 11/08/215.
64 See https://www.khronos.org/registry/cl/, visited on 10/08/2015.
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A.1.2 LLVM and Clang
LLVM and Clang are used in various situations of the test case reduction.
On the one hand Clang is used in the interestingness test to check the
validity of a given source code. Therefore it is first invoked as compiler
and afterwards the static analysis features are used to detect potentially
undefined behaviour which the less complete analysis during the compilation
has not reported. On the other hand Oclgrind and clang_delta depend
on these projects. Oclgrind uses the compiler infrastructure to generate
the LLVM IR instructions and interprets them to simulate the execution
of OpenCL kernels. The clang_delta tool relies on the AST generated by
Clang to perform some language specific transformations.

It is recommended to use version 3.7 of LLVM and Clang which is the
latest stable release.65 The most flexible way is to clone the source of LLVM
and Clang as Git repositories from the LLVM website.66 For both repositories
the branch “release_37” has to be checked out to build the release version 3.7
of LLVM and Clang. The Clang repository should be cloned into the tools
subdirectory of the LLVM sources and also should be renamed to “clang”.
Only then the Clang compiler is automatically detected by the LLVM build
system.

The alternative is to obtain the sources of LLVM and Clang from the
“LLVM Download Page”.67 As for the Git repository the source directory
of the Clang compiler has to be renamed to “clang” and moved into the
“tools” subdirectory of the LLVM source tree. Only then the build system
of LLVM will be able to automatically detect and build the Clang compiler.

To keep the source tree clean the configuration files should be created in
an extra build directory. The recommended way of configuring the LLVM
and Clang built is to use the provided CMake configuration files. To save
space and to speed up the build process it should be configured as a release
version and only the “X86” target should be selected. For instance, Unix
Makefiles with these settings can be generated with the following cmake
invocation

$ cmake -G "Unix␣Makefiles" -DCMAKE_BUILD_TYPE=Release \
-DLLVM_TARGETS_TO_BUILD=X86 SRC_ROOT

where SRC_ROOT has to be substituted with the path to the top-level LLVM
source directory. Additionally, the parameter -DCMAKE_INSTALL_PREFIX can

65 Currently the development versions of LLVM and Clang are not compatible with
the sources of C-Reduce (as of 25/09/2015). Therefore the latest stable release is
recommended.

66 See http://llvm.org/docs/GettingStarted.html#git-mirror, visited on
10/08/2015.

67 See http://llvm.org/releases/download.html#3.7.0, visited on 21/08/2015.
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be used to define a custom install location. The alternative to the CMake
configuration is to invoke the configure script from the source directory of
LLVM – preferably also out of a separate build directory.

The following instructions assume that the Clang compiler is globally
reachable through the system PATH environment. If Clang has been installed
to a custom location this has to be added to the PATH variable before any
of the other directories which might contain a version of the executable.
Otherwise the tools in the later steps in these instructions will pick up the
wrong version of LLVM and Clang.

A.1.3 Oclgrind
The Oclgrind tool forms the basis of the interestingness tests. Through
its capabilities as OpenCL simulator it can be used to perform a dynamic
analysis of the kernel under reduction and warns about undefined behaviour.
The only drawback is the long runtime on large kernels.

Like LLVM Oclgrind has to be build from source. The recommended way
is to clone a forked version68 of the Git repository and to checkout the “dev”
branch as not all patches have been merged into the main project.69 Especially
the more precise plugin to detect uninitialised values (see Section 3.4) is
needed to prevent undefined behaviour during the test case reduction.

When Oclgrind is built directly from the Git repository the configure
script has to be created via autoreconf -i before it can be used. Again it
is recommended to create a separate directory for the build files to keep the
source tree clean. Possible configuration parameters are --prefix to set a cus-
tom path for the installation location, and --with-llvm and --with-clang
respectively if LLVM and Clang are not contained in the PATH environment
or if a dedicated version should be used. The provided CMake configuration
files are primarily to support the build process on Windows systems and are
not recommended as default build system.

A.1.4 CLsmith and cl_launcher
The CLsmith application is not a direct part of the automated test case
reduction. But the purpose of this project was in particular to reduce those
random kernels generated by CLsmith. The cl_launcher application on the
contrary is used to launch the generated kernels in a standardised manner
such that the reported result can be used to detected miscompilations of the
OpenCL compilers.

The sources for both tools can be obtained as usual as Git repositories.
Originally the cl_launcher program did not initialise the final result buffer
which led to problems during the automatic reduction. Therefore a patched

68 See https://github.com/mpflanzer/Oclgrind, visited on 10/08/2015.
69 See https://github.com/jrprice/Oclgrind, visited on 10/08/2015.
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version of the repository is made available.70 To compile the new version of
cl_launcher the “init” branch has to be checked out.

This time the configure script has to be called from inside the root
directory of the cloned repository. Afterwards the first step is compile the un-
derlying Csmith files by invoking make in the same directory. This is expected
to fail with an error during the linking phase. Finally, the CLsmtih execut-
able and cl_launcher can be built by calling make from the src/CLsmith
subdirectory. To keep the interestingness tests simple it is recommended to
copy the cl_launcher application to a location which is contained in the PATH
environment. The CLsmith tool and its dependencies can be copied over
to a custom location ~/TARGET by invoking the cl_setup_test.py TARGET
script from the scripts subdirectory.

A.1.5 C-Reduce
C-Reduce is rather a framework of different tools than a single application.
But this also means that there is no simple “one-click” installation. Before
the actual reduction algorithms can be configured some other dependencies
have to be installed.

Dependencies

The following modules and programs are necessary before the C-Reduce tool
can be configured. They are broadly available, probably even through a
package manager and alternatively can be built from source.

Perl modules The C-Reduce reduction routine uses the following modules
which are not all part of a standard Perl installation. The easiest way is to
install them through the CPAN Client by invoking cpan -i MODULE where
MODULE is one of the following modules names.

• Benchmark::Timer
• Exporter::Lite

• File::Which
• Getopt::Tabular

• Regexp::Common
• Sys::CPU

Artistic Style, Delta and Indent All three tools comprise features to re-
format source code files according to different styles. They are used by
C-Reduce to alter the “shape” of the input files between transformations to
make the delta reduction routine more efficient. For instance, on Ubuntu the
three tools are available through the packages “astyle”, “delta” and “indent”.
The alternative is to download the sources71 and build the tools manually.

70 See https://github.com/mpflanzer/CLSmith for the forked repository while the ori-
ginal one can be accessed at https://github.com/ChrisLidbury/CLSmith, visited on
10/08/2015.
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Operating System Ubuntu 14.04.2 LTS
Processor Intel® Core™ i7-4770
Clockrate 3.4 GHz
Virtual cores 8
RAM 16GB

Table A.1 – Exemplary hardware information of the Linux machines. The presen-
ted information is exemplary for the used machines. The concrete models may vary.

C-Reduce

Finally, after all dependencies have been resolved, the actual C-Reduce
tool can be built. While the most important changes to make C-Reduce
compatible with OpenCL have been merged into the main project72 some
improvements regarding the individual transformations are only available
through the forked version.73 For the latest release version 3.7.0 of LLVM
and Clang the “dev” branch is provided and contains all developed patches.74

The next step is to configure the C-Reduce build – a separate build
directory is recommended – through the configure script. If LLVM cannot
be detected automatically or if C-Reduce has to be built against an other than
the default version the path can be specified via the --with-llvm parameter.
A custom install location can be specified through the parameter --prefix.
The configuration via the CMake build system is not recommended on Unix
systems as the files do not comprise all features of the Autotools build and
are intended to support builds on Windows.

Lastly, the generated Makefiles can be used to compile and install C-
Reduce by invoking make and make install.

A.1.6 Configuration overview
During the project different Linux machines have been used to generate the
test cases and also to run the reductions. Table A.1 lists exemplary the
specifications for the used machines. Further, the different machines had
access to different GPUs and driver versions. An overview over all GPUs
used as OpenCL devices from the Linux machines is provided in Table A.2.

71 See http://astyle.sourceforge.net/, http://delta.tigris.org/ and http://www.
gnu.org/software/indent/, visited on 11/08/2015.

72 See https://github.com/csmith-project/creduce, visited on 11/08/2015.
73 See https://github.com/mpflanzer/creduce, visited on 11/08/2015.
74 For the current development sources the “llvm-svn-compatible” would have to be

merged with the “opencl-extra” branch.
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Device GeForce GT 630

Platform NVIDIA CUDA
Hardware version OpenCL 1.1 CUDA
Software version 340.24
Address bits 32
Parallel compute units 1
Device GTX TITAN X

Platform NVIDIA CUDA
Hardware version OpenCL 1.2 CUDA
Software version 352.21
Address bits 64
Parallel compute units 24
Device NVS 300

Platform NVIDIA CUDA
Hardware version OpenCL 1.0 CUDA
OpenCL C version OpenCL C 1.1
Software version 340.76
Address bits 32
Parallel compute units 2
Device GeForce GTX 980

Platform NVIDIA CUDA
Hardware version OpenCL 1.1 CUDA
Software version 346.47
Address bits 32
Parallel compute units 16
Device Quadro K5200

Platform NVIDIA CUDA
Hardware version OpenCL 1.1 CUDA
Software version 346.47
Address bits 32
Parallel compute units 12

Table A.2 – List of all OpenCL devices used from Linux machines. If the OpenCL
C version is not specified explicitly it matches the hardware version.
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A.1.7 Using C-Reduce
To reduce OpenCL test cases it is recommended to download the libclc
project.75 This prepares the Clang compiler to be able to parse OpenCL
input and hence improves the reduction results of clang_delta. Moreover,
the necessary interestingness tests are provided as a separate repository76

containing various helper scripts to simplify the reduction process. Both
repositories only need to be cloned, no further configuration is required.

The next step is to set up all environment parameters. An example
configuration script is provided along with the interestingness tests. After
the parameters have been adapted to the actual values the script can be
“sourced” in the terminal to export all values. Depending on the actual task
and the status of the input files not all parameters have to be specified. Yet,
after following the instructions of this guide everything has been set up such
that all parameters can be specified.

After the environment has been configured the reduction can be started
as usual through the helper scripts (see Section 3.6.2) or directly by invoking
creduce with a test script and the to-be-reduced file.

A.2 Chromebook 2
Out of the box the Chromebook 2 ships with Google Chrome OS and is
intended as a fast and mobile office station or to surf in the internet. In this
standard configuration the provided functionality is rather restricted. How-
ever, it is possible to boot a full-size Linux distribution on the Chromebook
to make it better suited for development tasks. Further, OpenCL drivers
are provided such that the two ARM® Mali™-T628 GPUs can be utilised as
universal computing devices. The following sections describe the necessary
steps to set up a test environment to run automated test case reductions.
The steps to prepare the Linux system and to install the OpenCL drivers
closely follow the guide from Anton Lokhmotov at the ARM Community.77

A.2.1 Preparing the Chromebook 2
First, the Chromebook has to be put into its Developer mode to enable
shell access and booting from the external Micro SD card. To enter the
Developer mode the ESC and the Refresh (F3) key have to be pressed while
the Chromebook is powered on. This will start the Recovery mode of the
Chromebook. From this screen the Developer mode can be activated by
pressing Ctrl-D. Now, every time the Chromebook boots it will warn about

75 See http://libclc.llvm.org, visited on 11/08/2015.
76 See https://github.com/mpflanzer/interestingness-tests, visited on 11/08/2015.
77 See http://community.arm.com/groups/arm-mali-graphics/blog/2014/12/18/

installing-opencl-on-chromebook-2-in-30-minutes, visited on 05/08/2015.
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#!/bin/sh
GENTOO_DIR=/home/chronos/user/gentoo
mount -t proc /proc $GENTOO_DIR/proc
mount --rbind /sys $GENTOO_DIR/sys
mount --rbind /dev $GENTOO_DIR/dev
cp /etc/resolv.conf $GENTOO_DIR/etc

(a) setup.sh

#!/bin/sh
GENTOO_DIR=/home/chronos/user/gentoo
LC_ALL=C chroot $GENTOO_DIR /bin/bash

(b) enter.sh

Listing A.1 – Scripts to setup and enter the Linux environment. The setup script
has to be executed once after each reboot whereas the enter script is used each time a
new shell should be created in the Linux environment.

the activated Developer mode. This warning can be skipped by pressing
Ctrl-D, tough the process will also be continued automatically after waiting
for 30 seconds.

A.2.2 Installing Gentoo Linux
Gentoo Linux has been chosen since it is a lightweight and highly customis-
able distribution which will easily fit into the limited space of an SD card.
Moreover, everything is compiled from source such that most of the software
will be up-to-date with the current development versions.

Initially the SD card has to be formatted with an ext3 partition. This
can be done on the Chromebook itself by opening the Chrome OS developer
shell (crosh) in a new tab (Ctrl-Alt-T) and entering a proper shell with the
shell command. From this shell the fdisk tool can be used to create the
new partition on the Micro SD card.

Afterwards the Gentoo system can be downloaded and copied onto
the SD card. The following instructions assume that the SD card has
been mounted under ~/gentoo. The Samsung Exynos processor of the
Chromebook is based on the ARMv7 architecture and features a hardware
floating point unit (FPU). Thus the latest Gentoo distribution with “hardfp”
support should be downloaded78 and extracted into the ~/gentoo directory.

At this point the basic configuration of the new systems is completed.
The two scripts in Listing A.1 can be used to set up and respectively enter
the Linux environment. The setup script has to be run once after each reboot
and the enter script is used to switch to the Linux environment from the
shell embedded in the Chromebook. Both scripts can also be saved in the
~/gentoo directory.

Before new software can be installed on the Gentoo system the package
manager has to be configured. This is done by creating a directory tree as
shown in Figure A.1 and running the commands from Listing A.2 to prepare
and update the portage tool. After the initial setup installing a new package

78 See http://distfiles.gentoo.org/releases/arm/autobuilds/
current-stage3-armv7a_hardfp/, visited on 05/08/2015.
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/etc/
portage/

make.conf
profile/
package.use/
package.unmask/
package.accept_keywords/
package.keywords/

dependences

(a) Portage directories and files

$ echo "MAKEOPTS=\"-j4\"" >> /etc/portage/make.conf
$ echo "ACCEPT_KEYWORDS=\"~arm\"" >> /etc/portage/make.conf
$ touch /etc/portage/package.keywords/dependences

(b) Configuration commands

Figure A.1 – Directory structure of the portage package manager. The file
make.conf can already exists. In this case the first two commands just append to the
file. Otherwise it gets created. The directories have to be created manually and the
third command creates the empty file dependences.

should be straightforward by running the emerge command with the desired
package as argument. Some packages have to be unmasked before they
can be installed which requires two extra steps which is also explained in
Listing A.2.

Optionally a new user can be created to maintain separate directories for
user and system files. The user can be created with the useradd command,
e.g. useradd -m -G wheel,video moritz. Since the Gentoo system is
entered via the chroot command there is no real login system to change the
current user. Instead the command su - moritz can be used to start a new
login shell for the specified user.

$ emerge --sync --quiet
$ emerge --oneshot portage
$ eselect news read

(a) Update portage

$ emerge dev-vcs/git
$ emerge --autounmask-write dev-vcs/git
$ etc-update
$ emerge dev-vcs/git

(b) Install software

Listing A.2 – Updating portage and installing new packages. The update steps
in (a) have to be run at least once before any package can be installed. To install a
new package (b) the first emerge command will be enough most of the time. Only if
this fails the package has to be unmasked first by running the commands 2 and 3. The
etc-update command will prompt for the desired action which has to be confirmed
with “-3” followed by “y”.

Imperial College London, Department of Computing 148



A Setup of the test environments

KERNEL=="mali[0-9]", GROUP="video" MODE="0660"

Listing A.3 – The udev rule to change the group of the Mali GPU. Depending
on the actual groups the user is member of the “video” label has to be adapted to
a matching group. The rule has to be stored in a file named 10-mali.rules in the
directory /etc/udev/rules.d/.

It has to be noted that per default only the root user has access to the
Mali GPU device in the Chromebook. This means either the OpenCL kernels
have to be launched with the sudo command or the group of the Mali device
is changed from “misc” to “video” or any other group which the new user
belongs to.79 To make the changes persistent over reboots a new udev rule
can be created. For this purpose a new file 10-mali.rules (Listing A.3) has
to be created in /etc/udev/rules.d/. This file will be loaded each time
the Gentoo environment is entered and changes the group of the Mali GPU
to a group that is accessible to the user.

A.2.3 Enabling SSH access to the Chromebook
As alternative to working directly on the Chromebook or to copy files from
and to the Chromebook it is possible to set up an SSH server. In an article80

in the ARM® Connected Community Anton Lokhmotov describes a method
to make configuration of the SSH server persistent over reboots and how
to enable password based authentication. In addition to activating the
Developer mode of the Chromebook this method requires to turn of the
Root Filesystem Verification to make the main partition writeable. Instead
Sébastien Santoro describes in his blog81 how to start the SSH server without
modifying the root system at the expense of less configuration options and
having to restart it manually after a reboot. In this report the non permanent
setup is described.

The SSH server is a direct feature of the Chromebook, not the Gentoo
system, and thus can be enabled from the built-in developer shell of the
Chromebook. If not already done a tab with the “crosh” shell has to be
opened by pressing Ctrl-Alt-T and the developer shell must be entered by
executing the shell command. Afterwards the SSH keys which will allow
the public key authentication on the server can be created by running the
following commands:

79 Credits for this solution go to Krishnaraj Bhat who posted the necessary steps as a
comment in the Mali Developer Community. See http://community.arm.com/message/
14394#14394, visited on 05/08/2015.

80 See http://community.arm.com/groups/arm-mali-graphics/blog/2015/02/25/
running-opencl-on-chromebook-remotely, visited on 06/08/2015.

81 See http://goo.gl/sOaULG, visited on 06/08/2015.
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$ sudo mkdir -m 0711 /mnt/stateful_partition/etc/ssh
$ cd /mnt/stateful_partition/etc/ssh
$ sudo ssh-keygen -t rsa -f ssh_host_rsa_key
$ sudo ssh-keygen -t dsa -f ssh_host_dsa_key

As the name suggests, everything inside the /mnt/stateful_partition is
preserved over a reboot so the keys for the server only have to be created once.
Finally, the public key which will be used to login to the Chromebook has
to be added to the ~chronos/.ssh/authorized_keys file. Password based
authentication is disabled per default for the SSH server and since the root
partition is not writeable the configuration cannot be changed. Therefore
only key based login is possible. The authorized_keys file is also not wiped
during a reboot.

Lastly, incoming connections to port 22 have to be enabled and the SSH
server has to be started:

$ sudo iptables -A INPUT -p tcp --dport 22 -j ACCEPT
$ sudo /usr/sbin/sshd

The IP tables are reset during a reboot and the server will be shut down.
This makes it necessary to rerun the above commands after each restart of
the Chromebook.

To be able to close the lid of the Chromebook without that it enters
the sleep mode the power management has to be deactivated. This can
be done with the stop powerd command from inside the Developer shell.
It has to be noted that this also disables the keys to regulate the display
brightness and the power button. Therefore the display should be completely
dimmed before the power management is turned off. Since the function keys
are disabled one has either to reactivate the power management blindly by
typing start powerd or via a remote SSH connection. Moreover, without a
working power button simply restarting the Chromebook is not an option.
Luckily the key combination ESC, Refresh (F3) plus power button still boots
into recovery mode. This also reactivates the power management and one can
turn the Chromebook off and on again to get back into the normal system.

A.2.4 Installing the OpenCL drivers
After entering the Gentoo environment the OpenCL dependencies can be
installed. It is assumed that the next steps are performed as the root user.
The OpenCL drivers are available from the Mali Developer Center.82 On
the website the drivers for the “Mali-T62x” on the “ARMv7” CPU have to
82 See http://malideveloper.arm.com/resources/drivers/

mali-t6xx-gpu-user-space-drivers/, visited on 05/08/2015.
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be selected. After extracting the archive into a temporary location it has
to be checked that all files are owned by root, belong to the group root and
have the permissions set to 755. The prepared files have to be moved to the
/usr/lib directory and the temporary directory can be removed. Finally,
the OpenCL header files have to downloaded separately from the Khro-
nos OpenCL registry83 and saved in the (newly created) /usr/include/CL
directory.

A.2.5 Installing CLsmith, C-Reduce and dependencies
After setting up the Gentoo distribution the Chromebook it behaves much
like a normal Linux system. Thus the steps to install CLsmith, C-Reduce and
all dependencies are basically the same as in Section A.1 and only deviations
from the general install routine are explained in detail.

Prerequisites

The tools described in the following paragraphs are not directly or not
exclusively necessary for the reduction of test cases but still need to be
installed.

Git Most of the tools have to be built from sources which are provided as
Git repositories. The Git application can be installed through the Gentoo
package manager via emerge dev-vcs/git.

Perl The main reduction loop of the C-Reduce algorithm is implemented
in Perl. At least version 5.10.0 is required but Gentoo should provide a fairly
newer version via emerge dev-lang/perl.

Flex Flex is program to build custom scanners which can be used as parts
of a more complex lexer. The scanner is described in a specific format which
is interpreted by Flex and converted into compilable C source files. During
the installation of C-Reduce a tool named clex will be built from those
Flex input files. It is used to support transformations based on the removal
of single tokens or patterns. The Flex tool can be installed through the
command emerge sys-devel/flex.

CMake The easiest and recommended way to configure the build of LLVM
and Clang is to use CMake. It can be installed with the command emerge
dev-util/cmake.

83 See https://www.khronos.org/registry/cl/, visited on 05/08/2015.
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Python Both, LLVM and the interestingness tests depend on Python. While
Gentoo has Python already installed per default it has to be checked whether
Python 3 is installed. If not this can be done with emerge dev-lang/python.

LLVM, Clang and Oclgrind

There is nothing special about installing LLVM, Clang and Oclgrind on the
Chromebook which means it is sufficient to follow the guidelines for general
Linux systems.

CLsmith and cl_launcher

Also for CLsmith the guidelines for any Linux systems apply with the only
difference that a different branch of the repository has to be checked out.
The “chromebook” branch contains small changes which make the timing
mechanism of Csmith compatible with the ARM architecture (see Section 3.1)
and set compile time options to explicitly enable the hardware FPU and to
link against the Mali libraries.

C-Reduce

In addition to clang and clang-format which have already been installed
with the Clang compiler C-Reduce depends three more code formatting
tools. They are all available through the Gentoo package manager and
can be installed with the emerge command. The required packages are
app-text/delta, dev-util/astyle and dev-util/indent.

The Perl modules and the C-Reduce tool itself can be installed in the
same way as on any general Linux distribution and are thus not explained in
more detail at this point.

A.2.6 Configuration overview

The host CPU of the Chromebook has only been used for the concrete
test case reduction. The kernels have been generated and preprocessed
on a more powerful machine although it would have been possible on the
Chromebook as well. Table A.3 contains further details about the underlying
hardware of the Chromebook. In addition to the Samsung Exynos processor
the Chromebook 2 comprises two ARM Mali GPUs which can be used as
OpenCL computing devices. More detailed information is listed in Table A.4.

A.2.7 Using C-Reduce

Again the process of starting a reduction of a test case on the Chromebook is
not different from other Linux systems. Before the reduction can be started
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Operating System Gentoo Base System release 2.2 (Linux 3.8.11)
Processor SAMSUNG EXYNOS5 (Flattened Device Tree)
Model name ARMv7 Processor rev 3 (v7l)
Clockrate 1.9/1.3 GHz
Virtual cores 4 + 4
RAM 3.6 GB

Table A.3 –Hardware information of the Chromebook 2. The presented information
has been collected from the Linux system reports and the datasheet for the “Exynos 5
Octa (5420)”.

Device Mali-T628

Platform ARM platform
Hardware version OpenCL 1.1
Address bits 64
Parallel compute units 4
Device Mali-T628

Platform ARM platform
Hardware version OpenCL 1.1
Address bits 64
Parallel compute units 2

Table A.4 – List of all OpenCL devices on the Chromebook 2. For the test only
the faster first device with four compute units has been used. Both devices cannot be
used in parallel as they seem to share the memory and running both leads to runtime
crashes of the OpenCL kernels.
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the libclc project and the interestingness test helper scripts have to be cloned.
After the environment has been configured the reduction can be started as
usual through the helper scripts or directly by invoking creduce.

The only quirk on the Chromebook is that the clock and hence the shelf
must be hidden during the execution of OpenCL kernels. Otherwise the
clock enforces an update of the display through the GPU and any running
user kernels are aborted. Empirically this seems to happen every 5 to 20
seconds. Remote login via SSH and turning off the display do not solve the
problem.

A.3 Windows
During the project one goal was to get all the tools running under Windows
as well. First this section describes the steps that have to be made to set up
the complete test environment for the reduction of OpenCL kernels. This
is followed by an overview over the complete test setup. The section is
concluded with an example how C-Reduce can be used to reduce a test case.

A.3.1 Prerequisites
The instructions to set up the environment have been tested on a fresh
installation of Windows Server 2012 R2 (64 bit). The following tools are not
directly necessary to run the test case reduction but are needed during the
setup.

Visual Studio The easiest way to compile the necessary tools is to use the
provided Visual Studio Solutions. During the project Visual Studio 2013
has been used which can be freely obtained from the Microsoft website.84

Any newer version should also be sufficient.

Git Most of the tools have to be compiled from source. The simplest
way to get the sources is to clone them as Git repositories. Visual Studio
provides a Git plug-in which provides basic features of Git. To avoid problems
during compilation and execution the options core.autocrlf = false and
core.eol = lf should be set in the Git configuration file. As there seems
to be no possibility of doing this for the Visual Studio Git plug-in a good
alternative is Git for Windows.85 Furthermore this makes Git usable from
the command line and behaves as on Unix systems.

Perl The C-Reduce algorithms depend on Perl. In this project the Straw-
berry Perl86 distribution has been used. It is a Perl environment for Windows

84 See https://www.visualstudio.com, visited on 01/07/2015.
85 See https://github.com/git-for-windows/git, visited on 01/07/2015.
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which ships with all necessary tools to run Perl scripts from the command
line and to install additional Perl modules. All following instruction assume
that the Perl executable is contained in the path environment – which is the
default for Strawberry Perl.

Flex Some of the dependencies of C-Reduce need to be built from source
and require the Flex program to be installed. This program is used to
generate C source files for scanners defined through a collection of rules.
For Windows Flex is provided as GnuWin32 package.87 It is recommended
to download the complete package with setup routine as it includes all the
necessary dependencies. Furthermore, the GnuWin32\bin directory which
contains the binaries for all packages should be added to the system path.
This simplifies the configuration of the dependent projects.

CMake The project files for the tools which have to be compiled from source
can be created from CMake88 configuration files. During the installation the
CMake installer provides an option to add CMake to the environment path.
This option should be selected as otherwise the command line usage gets
more complicated. CMake can be used from the command line as well as with
a graphical user interface. Both methods will be explained in the instructions.
The version 3.3.0-rc3 which has been used in this project seems to fail to
detect a valid 64 bit compiler from the GUI. In this case the command line
interface should be used which does not have this problem.

Python The build system of LLVM and the interestingness tests depend
on a Python interpreter.89 To the run the interestingness tests Python 3 is
required. After the installation is finished the install path has to be added
manually to the environment Path variable.

OpenCL To execute the OpenCL kernels in the tests during the reduction a
working OpenCL driver has to be installed. Further, the OpenCL header files
and the OpenCL libraries are needed to compile and link the host program
which launches the kernels (see Section A.3.4). The files are specific to the
actual vendor of the device under test. Thus no general advice can be given
on how to install and set up the OpenCL framework.

86 See http://strawberryperl.com, visited on 01/07/2015.
87 See http://gnuwin32.sourceforge.net/packages/flex.htm, visited on 08/07/2015.
88 See http://www.cmake.org, visited on 01/07/2015.
89 See https://www.python.org, visited on 01/07/2015.
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source-dir\
llvm\.......................................LLVM source directory

tools\
clang\................................Clang source directory
...

build\..................Manually created directory for build files
...

Figure A.2 – Directory structure of LLVM and depended projects. The clang
tools should be placed in the llvm/tools directory. This allows the CMake build files
of LLVM to automatically detect the compiler.

A.3.2 LLVM and Clang
First of all the interestingness tests directly depend on Clang as compiler and
static analyser to reject inappropriate reductions. Furthermore, Oclgrind
depends on LLVM and Clang to generate the LLVM Intermediate Repres-
entation from the OpenCL kernels. The simulation of the kernels is based
on these instructions. To provide better reduction results C-Reduce also
comprises a tool named “clang_delta” which performs source to source trans-
formations based on the AST of the program under reduction. To generate
the AST LLVM and Clang are used.

The sources of the latest stable release for both tools can be cloned as
Git repositories. Detailed instructions are provided in the LLVM document-
ation.90 To build against the latest release, the branch “release_37” has
to be checked out in both repositories. In addition to the Git repositories
the sources of released versions are also made available as archives from the
official LLVM website.91

It is recommended to use version 3.7 of LLVM and Clang which is
currently the latest stable release. Compared to earlier versions a bug in the
code generation has been fixed (see Section 3.2) and – especially on Windows
– during the project the tools clang_delta and Oclgrind were not always
compatible with the latest contributions in the development branches.

The final directory structure should be similar to the example in Fig-
ure A.2. The source directory of the Clang compiler may has to be renamed
to “clang” and should be copied into the “tools” subdirectory of LLVM.
This ensures that the Clang compiler is automatically detected by the LLVM
CMake build files. Moreover, a build directory has been created manually
in which the configuration files will be created.

After changing into the newly created build directory CMake can be
invoked from the command line with the following command:

90 See http://llvm.org/docs/GettingStarted.html#git-mirror, visited on
01/07/2015.

91 See http://llvm.org/releases/download.html#3.7.0, visited on 21/08/2015.
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(a) Generator selection (b) Target option

Figure A.3 – LLVM build settings in CMake GUI. In the top area the source and
build path have to be set and in the options list the build target can be restricted to
the x86 architecture.

> cmake -G "Visual␣Studio␣12␣2013" ^
-DLLVM_TARGETS_TO_BUILD=X86 ..

It specifies to create a Visual Studio 2013 project for a 32 bit architecture.92

Further it configures the x86 architecture as the only build target to save
time during the compilation and disk space. The project is configured for all
build types and the desired type has to be selected later in Visual Studio. The
same project files can be generated by starting the CMake program with its
graphical user interface. In the top half of the window the paths to the LLVM
source directory and the build directory have to be specified. Afterwards
the project can be configured and on success the LLVM_TARGETS_TO_BUILD
parameter can be changed. Finally the project files can be generated. An
overview about the GUI is provided in Figure A.3.

In some cases the “MSBuild.exe” program crashed during the configura-
tion phase of CMake. Although the exact reason could not be determined
it is likely caused by testing for some unsupported features or by erroneous
CMake configuration files in the development sources of LLVM. If a dialog
box pop ups it is safe to confirm to close the crash executable. Afterwards the
configuration proceeds normally. Even with a crash during the configuration
no problems have been discovered in later stages of the build.

Once the generation of the Visual Studio project files finished they can
be opened with the LLVM.sln solution file from the build directory. If the
LLVM binaries should be installed later on it might necessary to run Visual
Studio as Administrator depending on the install location. The solution file

92 The identifier for the 64 bit version of Visual Studio is Visual Studio 12 2013 Win64.
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clang version~3.7.0 (http://.../clang.git 40b68b4) (http://.../llvm.git dccade9)
Target: i686-pc-windows-msvc
Thread model: posix

Listing A.4 – Version information of the Clang compiler. The output has been
emitted from the call to clang --version.

contains various projects for different parts and tools of the LLVM suite.
They can either be built individually or all at once – which is recommended
in the scope of this project.

The desired build configuration can be selected from the top toolbar in
Visual Studio. As long as the compiler is only used as static analysis tool in
the interestingness tests the “Release” configuration can be selected. On the
other hand, if Clang is used for debugging or has to be debugged itself the
“Debug” setting is much more useful.

Since the projects have to be built in a specific order it is not suf-
ficient just to trigger a batch build for all projects from Visual Studio.
Instead there are two special projects, namely “ALL_BUILD” and “IN-
STALL”. The “ALL_BUILD” project just complies and links all binaries
and places them into a directory matching the selected build configuration,
e.g. source-dir\llvm\build\Release\{bin,lib}. This is also the project
which is built when the complete solution is selected for building. The
“INSTALL” project first invokes the “ALL_BUILD” target and installs the
header files, libraries and binaries into the location to which the option
CMAKE_INSTALL_PREFIX points to. The default location for programs is
C:\Program Files (x86)\LLVM if the build has been configured for 32 bit
or C:\Program Files\LLVM for a 64 bit target respectively. Finally, regard-
less of the selected method, the directory containing the binaries should be
added to the Path environment variable.

If the installation has been successful the Clang compiler should now be
available from the command line. For instance, the command

> clang --version

should produce an output similar to the one in Listing A.4. The version
number should either be 3.7.0 for a build of the latest stable release or 3.8.0
if the development version has been built.

A.3.3 Oclgrind
The tool Oclgrind is used as dynamic analysis tool in the interestingness
tests to check for undefined behaviour that has not been detected through
the static analysers.
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Oclgrind has to be built from source and can be obtained as a Git
repository. The original repository is located at https://github.com/
jrprice/Oclgrind. But, as of the 01/09/2015 the new plugin which has
been developed during this project and the better control over emitted
warning messages have not been merged. Therefore the forked version
should be cloned from https://github.com/mpflanzer/Oclgrind. The
development branch “dev” is kept up-to-date with the upstream master
branch and additionally contains both improvements.

Like LLVM (see Section A.3.2) the project can be configured with the
CMake environment to generate the Visual Studio project files. The selected
architecture must match the one which had been selected for LLVM, i.e.
a 32 bit Oclgrind application requires a 32 bit LLVM build and equally for
64 bit. Again a build subdirectory is manually created to keep the source
tree clean.

In order to be able to build Oclgrind it must know about the LLVM
source locations. Therefore the LLVM install location has to be included
in the Path environment variable or the “LLVM_DIR” option has to be
specified during the CMake configuration. This parameter must point to the
directory which contains the CMake configuration file LLVMConfig.cmake
for LLVM. If LLVM previously has been installed to the standard loca-
tion the path will be C:\Program Files (x86)\LLVM\share\llvm\cmake.
When CMake is invoked from the graphical user interface and the path
has not been specified before the configuration is started it aborts with
an error message (Figure A.4). After the path has then been set as value
for the “LLVM_DIR” option the configuration can be restarted and the
generation of the project files should succeed. Alternatively CMake can
be invoked from the command line. In this case and if the LLVM install-
ation has been added to the Path environment variable the “LLVM_DIR”
parameter is automatically inferred. Otherwise it can be specified with the
-DLLVM_DIR="C:\Program␣Files␣(x86)\LLVM\share\llvm\cmake" flag.

The solution file Oclgrind.sln for the project is created in the build
directory. After opening it in Visual Studio – possibly as Administrator
if Oclgrind will be installed to the default location (recommended) – the
build configuration can be selected. To achieve a good performance with
Oclgrind the “Release” build should be selected. Afterwards the application
can be built with the “ALL_BUILD” project or built and installed with the
“INSTALL” project. If the installation succeeds Oclgrind will be installed into
C:\Program Files (x86)\Oclgrind. As Oclgrind will be invoked through
the OpenCL ICD it is not necessary to add the directory containing the
binaries to the Path environment variable.

On Windows the most convenient way is to register Oclgrind as an
OpenCL platform on its own. This is done by adding keys to the Win-
dows Registry. The name of the key is always the absolute path to the
oclgrind-rt-icd.dll library, e.g. C:\Program Files (x86)\Oclgrind\
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Figure A.4 – Oclgrind build settings in CMake GUI. The parameter “LLVM_DIR”
has to be set to the path containing the CMake configuration files for LLVM.

Application Platform Location

32 bit *\Khronos\OpenCL\Vendors
32 bit 64 bit *\Wow6432Node\Khronos\OpenCL\Vendors
64 bit 64 bit *\Khronos\OpenCL\Vendors

Table A.5 – Registry key locations for Oclgrind. The * has to be replaced with
HKEY_LOCAL_MACHINE\SOFTWARE.

lib\oclgrind-rt-icd.dll. For 32 bit architectures in general and for
64 bit applications on 64 bit architectures a key of type REG_DWORD has to
be created at HKEY_LOCAL_MACHINE\SOFTWARE\Khronos\OpenCL\Vendors.
For 32 bit applications on 64 bit architectures the location for the
key is HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Khronos\OpenCL\
Vendors. Table A.5 summarises all possible combinations.

With these modifications Oclgrind is reported like any another OpenCL
platform-device combination and can be used together with the general
OpenCL API functions. Configuration options for Oclgrind have to be
specified as environment variables.

A.3.4 cl_clauncher
The cl_launcher application is needed to run the automatically generated
kernels. While in principle the kernels could be launched with any host
program the cl_launcher tool automatically extracts metainformation from
the kernel to launch it with the correct arguments. The source code for the
application is included in the CLSmith Git repository.93

93 See https://github.com/ChrisLidbury/CLSmith, visited on 07/07/2015.
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The original version of cl_launcher does not initialise the global buffer
before running the OpenCL kernel. This has led to wrong interestingness
tests in cases where every write access to the output array has been removed
in the reduction. In such situations the tests compare uninitialised values
which results in false positives for wrong-code bugs. Instead of adding an
extra check to the interestingness test to make sure at least one write is
performed an alternative version of cl_launcher is available from the init
branch of a forked Git repository.94 There a patch has been applied through
which the global buffer is initialised with zero values before it is used in the
kernel.

The cl_launcher tool consists just of a single C-file and does only depend
on the OpenCL headers files and library. Therefore it can be easily compiled
and linked from a Developer Command Prompt95 without the need of a large
project setup. The actual command needed is the following:

> cl /I"%AMDAPPSDKROOT%\include" /FI stdbool.h cl_launcher.c ^
/link /LIBPATH:"%AMDAPPSDKROOT%\lib\x86" OpenCL.lib

It has to be invoked from inside the CLSmith\src\CLSmith directory and
produces the executable cl_launcher.exe. Depending on which OpenCL
framework is used the include path and the library path have to be adapted.
To eliminate the need to copy the application into every test directory or to
specify always the absolute path it is useful to copy the executable into a
location that is contained in the Path environment variable.

A.3.5 C-Reduce
Before the actual C-Reduce tool can be configured and built some other
helper tools which are used during the reduction have to be installed. Some
of them are distributed as pre-compiled binaries while a few have to be built
from source.

Dependencies

The following paragraphs describe shortly how to obtain the necessary
dependencies. For pre-built binaries it is explained how to install them
properly. Additionally, for custom builds the required steps are outlined.

Perl modules To run the creduce script the following Perl modules are
required. They can be installed from the CPAN Client by invoking install

94 See https://github.com/mpflanzer/CLSmith, visited on 03/08/2015.
95 Invoking the compiler and linker from the normal Command Prompt will likely not

work. The Developer Command Prompt can be started from the Visual Studio Tools
directory which has been installed alongside Visual Studio.
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followed by the module name. Alternatively, the installation is possible
from the command line by calling cpan -i MODULE where MODULE must be
replaced with the actual module name.

• Benchmark::Timer
• Exporter::Lite

• File::Which
• Getopt::Tabular

• Regexp::Common
• Sys::CPU96

Artistic Style The intention behind Artistic Style is to “beautify” source
code files to make them better readable for programmers. In the C-Reduce
algorithms it is used to simply change the shape of the program to improve the
simple delta reduction methods. A zip archive containing a pre-built binary
for Windows can be downloaded from the Sourceforge project website.97 The
binary should be extracted into a directory which is included in the system
path such that it can automatically be detected by other tools.

Indent Also Indent is used to reformat the test case during the reduction. It
can be obtained as GnuWin32 package in the form of a pre-compiled binary.98

It is recommended to download the complete installer as it also contains
potential dependencies of this tool. After the installation the GnuWin32\bin
directory which contains the binaries for all packages should be added to the
system path. This simplifies the configuration of the dependent projects.

Delta From the Delta project only the topformflat tool is used by C-Reduce.
It is the third tool that reformats source code. In contrast to the previous
two tools it does not enforce a specific code style but collapses the contents
of the source file depending on the nesting level of the code. The official
website does not provide the tool as binary but for the purpose of this project
a release version can be downloaded from the created GitHub project.99

As for the other tools the binary should be included in the system path
environment. Instead of using the pre-built release the source code can be
cloned from the repository. The project contains CMake configuration file
that can be used to build and install the files of the Delta project.

C-Reduce

Finally, C-Reduce can be installed as the actual reducer for the generated test
cases. It has to be built from source and is available as GitHub project.100

96 The “Sys::CPU” module is an optional dependency and it is likely that it will not work
on Windows.

97 See http://astyle.sourceforge.net, visited on 08/07/2015.
98 See http://gnuwin32.sourceforge.net/packages/indent.htm, visited on

08/07/2015.
99 See https://github.com/mpflanzer/delta, visited on 08/07/2015.

100 See https://github.com/mpflanzer/creduce, visited on 08/07/2015.
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Figure A.5 – Example of a clang_delta crash dialog box. This example shows the
blocking dialog box that Windows presents if a program crashes. In this case clang_delta
was not able to handle its input due to a bad reduction.

For LLVM and Clang version 3.7.0 the “dev” branch should be checked out
since it contains some OpenCL related patches which have not been applied
to the main repository.101

After the repository has been cloned the project files can be generated
with CMake as usual. If everything has been set up correctly no manual
interaction is needed to generate the Visual Studio project files. Otherwise
CMake warns about missing dependencies and how to fix them. The “creduce”
project must be built with the same configuration which had been selected
for LLVM, e.g. Release Win32. It is recommended to use the “INSTALL”
target since it distributes the various files such they find each other. To make
the creduce.pl script available from everywhere the install location should
be added to the Path environment variable.

A.3.6 Windows configuration
During the execution of C-Reduce some programs might crash either because
a bug has been triggered or because the reduction produced invalid input. In
the default configuration Windows reacts to a program crash with presenting
a dialog box to the user to ask how to handle the problem (Figure A.5).
Especially in an automated test setting this can be annoying since the test
execution will stop until an option has been selected.

Thus it is recommended to disable the dialog box completely. The
necessary steps to deactivate the pop-up dialog are described and illustrated
in an article on Raymond.cc.102 In summary, the tool gpedit.msc allows

101 This branch is not compatible with the current development sources of LLVM and
Clang. If they have to be used the branch “llvm-svn-compatible” of C-Reduce has
to be merged with the “opencl-extra” branch to create a new development branch of
C-Reduce.

102 See https://goo.gl/bgUhHS, visited on 10/07/2015.
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Operating System Microsoft Windows Server 2012 R2 Datacenter
Hypervisor Xen HVM domU
Processor Intel® Xeon® E5-2690 v2
Clockrate 3.00GHz
Virtual cores 6
RAM 10GB

Table A.6 – Exemplary hardware information of the Windows VMs. All updates
have been installed for the operating system.

to edit the “Windows Group Policies”. After starting the tool one has to
navigate through the panels “Computer Configuration”, “Administrative
Templates” and “Windows Components” to “Windows Error Reporting”.
There the option “Prevent display of the user interface for critical errors”
can be enabled.

A.3.7 Configuration overview
The following section provides an overview over the Windows machines which
where available for developing the Windows variant of C-Reduce and the
actual reduction of generated and miscompiled kernels.

Windows VM

The main development and testing of the Windows variant of C-Reduce
itself has been done on several virtual machines running with Windows
Server 2012 R2. Table A.6 contains further details about the underlying
hardware. Testing the correct setup and interaction of all programs on a
virtual machine is beneficial as the VM can be reset to an earlier configuration
or to a fresh install. This allows to validate setup routines and configurations
without side effects from earlier trials.

The Intel® Xeon® processor itself has been used as OpenCL device. While
it is not as powerful as dedicated GPUs it has been sufficient to test all
settings. The OpenCL drivers for the Intel® Xeon® processor are provided
through Intel’s OpenCL™ Runtime 15.1.103 The header files and the library
can be obtained by installing Intel® INDE.104 Alternatively AMD’s AMD
APP SDK 3.0 Beta105 does also provide OpenCL drivers and the needed files.
Lastly, if only the header files and the library are needed to compile and

103 See https://software.intel.com/en-us/articles/opencl-drivers, visited on
06/07/2015.

104 More information about Intel® Integrated Native Developer Experience (Intel® INDE) is
provided at https://software.intel.com/en-us/intel-inde, visited on 07/07/2015.

105 See http://developer.amd.com/tools-and-sdks/opencl-zone/
amd-accelerated-parallel-processing-app-sdk/, visited on 06/07/2015.

Imperial College London, Department of Computing 164

https://software.intel.com/en-us/articles/opencl-drivers
https://software.intel.com/en-us/intel-inde
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/


A Setup of the test environments

Device Oclgrind Simulator

Platform Oclgrind
Vendor University of Bristol
Hardware version OpenCL 1.2 (Oclgrind 15.5)
Device Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz

Platform Intel(R) OpenCL
Vendor Intel(R) Corporation
Hardware version OpenCL 1.2 (Build 57)
Platform Experimental OpenCL 2.0 CPU Only Platform
Vendor Intel(R) Corporation
Hardware version OpenCL 2.0 (Build 162)
Platform AMD Accelerated Parallel Processing
Vendor Advanced Micro Devices, Inc.
Hardware version OpenCL 1.2 AMD-APP (1642.5)

Table A.7 – List of all OpenCL platforms on the Windows VMs. The Oclgrind
platform has been used to validate the generated kernels itself whereas the actual test
case reduction has been performed for the other platforms.

link the host application the files can also be downloaded from the Khronos
OpenCL Registry.106 All available OpenCL platforms are listed in Table A.7.

A.3.8 Using C-Reduce
Before a reduction can be started two more dependencies have to be obtained.
Because the Clang compiler itself does not know about the types and functions
introduced through OpenCL additional headers file have to be provided. The
libclc project107 is compatible with OpenCL 1.1 and provides declarations
for the newly defined types and functions. Further, interestingness tests for
reductions of OpenCL kernels are required. During this project a collection
of interestingness tests for OpenCL kernels has been developed which can be
used on Linux and Windows since they are written in Python. The test script
as well as some helper scripts to start the reduction and to prepare the kernels
are available as Git repository.108 The repositories of both dependencies can
be cloned into any convenient location and no further interaction is required.

106 See https://www.khronos.org/registry/cl/, visited on 07/07/2015. The header files
are directly available from the website and the OpenCL library has to be built from
the ICD Loader project.

107 See http://libclc.llvm.org, visited on 13/07/2015.
108 See https://github.com/mpflanzer/interestingness-tests, visited on 14/07/2015.
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Starting a reduction of a test case with C-Reduce does not need more than
a few commands if everything has been set up as describes in the previous
sections. Some of the necessary configuration parameters have to be specified
through environment variables. The example script set_test_env.bat
which is provided together with the interestingness tests does not only contain
these variables but also those that can optionally be specified through the
environment. The values have to be adapted to the actual ones for the
given machine that is used. Afterwards the script can be invoked from the
command line to make the values available to the following steps.

After everything has been set up the best way to start a reduction is
to use the findMiscompilations.py script as described in Section 3.6.2.
Alternatively the creduce.pl script can be invoked manually. The advantage
of using the Python wrapper is that not all parameters have to be specified
as environment variables but can be passed as additional flags.109

109 For more detailed information about the available flags please see the usage information
produced by findMiscompilations.py --help.
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Tool overview

This chapter describes the basic features of the programs which have been
used in the course of this project. The focus is thereby on the usage of
the tools and the configuration options they provide. For details about the
design of the tools it is referred to Chapter 2. Further, only those options
are presented which had already been implemented at the beginning of the
project. Information about options that have been added in the scope of this
project are provided alongside the implementation details in Chapter 3.

B.1 CLsmith and cl_launcher
The CLsmith tool is the generator for random kernels whereas cl_launcher
is the host application which can be used to launch the kernels. Both tools
can be configured though various command line options [Lid+15a].

B.1.1 CLsmith

The CLsmith generator provides several modes which can be used to control
which features should be included in the generated kernels (Table B.1). They
are simply passed as parameters on the command line. The options which
have been used to generate the kernel and a few other parameters are also
written into the source files of the kernels. This allows the cl_launcher
application to configure the execution environment according to the selected
modes. Further, the seed of the random number generator used by CLsmith
can be specified. This allows to reproduce the exact same kernels of a
previous run.

The generated kernels depend on the header files safe_math_macros.h,
cl_safe_math_macros.h and CLSmith.h. These files comprise helper func-
tions to compute thread and work group ids and define macros around

Imperial College London, Department of Computing 167



B Tool overview

Mode switch Description

--atomic_reductions Includes atomic operations that involve an element
in a buffer and a local variable in the kernels

--atomics Includes critical sections in the kernels which are
guarded by an atomic expression such that the
threads enter the section deterministically

--barriers Includes memory barriers in the generated kernels.
Each barrier is surrounded by a read from one ele-
ment in a buffer and a write to a different element

--divergence Makes the control flow dependent on the linear
global id of a thread such that not all threads
execute the same instructions

--fake_divergence Includes expressions in the kernel that seem to
diverge but evaluate to the same expression during
the runtime

--group_divergence Makes the control flow dependent on the linear
group id of a thread such that not all work groups
execute the same instructions

--inter_thread_comm Includes instructions in the generated kernels
through which the threads exchange their com-
puted values during the runtime

--vector Includes vector typed expressions and vector in-
structions in the generated kernels

Table B.1 – Kernel mode switches of CLsmith. The different modes can be passed
as command line options to the CLsmith tool to include different features in the generated
kernels. The options --barriers and --divergence are mutually exclusive.
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certain arithmetic functions to prevent undefined behaviour in the kernels.
To execute the kernels the header files have to be in the same directory as
the kernel source code file.

B.1.2 cl_launcher

While in principle it would be possible to run the kernels from any host
application the cl_launcher tool automatically reads configuration parameters
from the source code file of the kernels and sets up the execution environment
as well as the data structures required by the kernels. For example are the
global and the local size coupled with the size of the output buffer passed to
the kernel and some modes require additional kernel arguments.

In addition to the parameters which are already included in the kernel
source code file itself cl_launcher provides the command line options -p
and -d to customise the platform and the device respectively on which the
kernel file specified with the option -f should be executed. Moreover, the
flag -n can be used to verify that the name of the selected device matches a
specific string.

Further optional parameters are the ---debug option to enable a more
verbose output on failures during the preparation or execution of the kernel
and the ---disable_opts option to deactivate the optimisation passes of
the OpenCL compiler of the selected device.

B.2 Oclgrind
The usage of Oclgrind differs between Unix like operating systems and
Windows. On the former systems dynamic library preloading is used to
reroute the OpenCL library calls to the Oclgrind implementations whereas
on Windows Oclgrind has to be registered as regular OpenCL device.

B.2.1 Linux

To run a kernel with Oclgrind instead of the real OpenCL device it is sufficient
to prepend the call to the host program with oclgrind or the absolute path
to the oclgrind script respectively. Additional configuration parameters
can be passed to the oclgrind script via the command line or by setting
environment variables directly. A possible invocation could look like the
following:

$ oclgrind --data-races ./cl_launcher -p 0 -d 0 -f CLProg.c

In addition to launching kernels via the original host program Oclgrind
provides the oclgrind-kernel application which acts like a host program
and does not depend on the library preloading. It expects an Oclgrind
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Bug_14.cl
entry
1 1 1
1 1 1

<size=8 fill=0 dump>

Listing B.1 – Example for an Oclgrinf simulation file. The first line is interpreted
as the path to the actual kernel file and the second line has to consist of the name of
the top level kernel function that should be called by the host application. The next
two lines describe the global and local size for the kernel execution and all following
lines specify which arguments have to passed to the kernel function.

specific file which describes the simulation parameters as input and accepts
(mostly) the same command line options as the oclgrind script.

Since the randomly generated kernels in this project have to be started
via the cl_launcher application anyway, the format of the simulation file is
not further described in this report. Instead is it referred to an article110 in
the Wiki of the Oclgrind GitHub website which explains everything in detail.
Here only a short example of such a simulator file is presented in Listing B.1.

B.2.2 Windows
Since the library preloading mechanism is not available on Windows systems
Oclgrind has to be registered as regular OpenCL platform-device combination.
The host application must than use the device number of Oclgrind to launch
the kernel. Since there is no direct way to pass arguments to configure the
Oclgrind implementation they have to be specified through environment
variables before the kernel is started. An exemplary invocation could be the
following:

> SET OCLGRIND_DATA_RACES=1
> .\cl_launcher -p 1 -d 0 -f CLProg.c

Configuration options

Most of the options that Oclgrind provides are used to activate specific
plugins or to control the output during the execution. An overview over all
options available in the original version of Oclgrind can be found in the Wiki
of the GitHub project.111 The subset of the standard parameters that have

110 See https://github.com/jrprice/Oclgrind/wiki/Running-Kernels-in-Isolation,
visited on 20/08/2015.
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Parameter Description

--build-options This parameter can be used to pass options through
to the internal invocation of the Clang compiler. In
the scope of this project it has been used to disable
optimisations via the -cl-opt-disable switch

--data-races Activates the plugin that checks whether data races
would occur during the execution of the kernel

--uninitialized Activates checks for invalid uses of undefined values.
This option has been used before the new plugin had
been implemented

Table B.2 – Used standard configuration options of Oclgrind. The table contains
only those options which are provided by the original version of Oclgrind. Additional
options are described in their corresponding sections.

been used during this project is summarised in Table B.2. Further options
have been added through the contributions to the Oclgrind project. Those
are described in the corresponding sections of Chapter 3.

B.3 C-Reduce
As mentioned earlier C-Reduce is not a single application but comprises
different tools and components. This section describes possible configuration
options for all modules that are required during a test case reduction.

B.3.1 creduce
The creduce script itself does not provide many customisable options. The
two mandatory command line parameters are first the path to a script which
is used as interestingness test and second the path to the file which will be
reduced. The optional flag -n can be used to specify the maximal amount of
transformations that should be executed in parallel (see Section 2.1.4). It
defaults to the number of (virtual) cores in the processor if the Sys::CPU
Perl module is available. Otherwise only one transformation is run at a time.
Further, the switch --verbose enables more detailed output during the
reduction. For instance, in verbose mode the result of every transformation
is emitted.

To configure which transformations should actually be performed by C-
Reduce one has to edit the creduce script by hand. All transformations are
listed in a hash table and can easily be removed. There exist also command

111 See https://github.com/jrprice/Oclgrind/wiki/Using-Oclgrind#options, visited
on 06/07/2015.
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line options to disable a few specific groups of transformations but they do
not offer a fine-grained control. Another advantage of modifying the script
directly is that the order of the transformations during the reduction can be
altered by changing the priorities of the transformations.

B.3.2 clang_delta
The clang_delta tool need not to be used explicitly if one is only interested
in the reduction of source files. However, during the project it has become
necessary to test specific transformations in isolation. For instance, to patch
the discovered bugs with out running the complete C-Reduce algorithm every
time the transformation result had to be checked.

The tool operates in two modes and depending on the mode either the
number of possible applications of the given transformation is computed
or the transformation is actually performed. The first mode is activated
by passing the option --query-instances=TRANSFORMATION through the
command line. For the second mode the desired transformation has to be
selected via the --transformation=TRANSFORMATION flag and additionally
the option --counter=NUM specifies which instance of the transformation
should be applied. Specifying a number other than one is equivalent to
advancing the state of the transformation as described in Section 2.1.4. In
both modes the file name of source file on which the transformation should
be applied is mandatory. A common invocation of clang_delta could be the
following:

$ ./clang_delta --transformation=remove-unused-var \
--counter=1 CLProg.c

B.4 Interestingness tests
The interestingness of a particular variant is determined by a user defined
(shell) script which has to return zero if the transformed source is still valid
and interesting, e.g. free from undefined behaviour but still triggers the bug.
Any other return value indicates a failed transformation.

The name of the file under reduction has to be hard-coded in the test
script112 and all references to programs or files outside of the script have
to be specified as absolute paths since the file containing the source code
and the test script are copied over to a temporary location prior to each
transformation.
112 The documentation of C-Reduce states that the name of the test case is not provided

for the test script (https://embed.cs.utah.edu/creduce/, visited on 20/08/2015).
However, it turned out that in the actual implementation the path to the test case is
the first (and only) argument passed to the test script.
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clang_ocl CLProg.cl > out_clang.txt 2>&1 &&\
! grep ’warning: zero size arrays are an extension’\

out_clang.txt > /dev/null 2>&1 &&\
! grep "excess elements in " out_clang.txt > /dev/null 2>&1 &&\
! grep "address of stack memory associated with local variable"\

out_clang.txt > /dev/null 2>&1 &&\
clang_static_analysis CLProg.cl > out_clang_static.txt 2>&1 &&\
! grep ’warning: Assigned value is garbage or undefined’\

out_clang_static.txt > /dev/null 2>&1 &&\
! grep ’warning: Dereference of null pointer’\

out_clang_static.txt > /dev/null 2>&1 &&\
timeout 60 gpuverify --local_size=1 --global_size=1 --stop-at-opt\

CLProg.cl > out_verifier.txt 2>&1 &&\
! grep ’warning: control reaches end of non-void function’\

out_verifier.txt > /dev/null 2>&1 &&\
! grep "uninitialized" out_verifier.txt > /dev/null 2>&1 &&\
timeout 60 ./cl_launcher -p 0 -d 0 -f CLProg.cl\

> out_opt.txt 2> /dev/null &&\
timeout 60 ./cl_launcher -p 0 -d 0 -f CLProg.cl ---disable_opts\

> out_noopt.txt 2> /dev/null &&\
diff out_opt.txt out_noopt.txt > /dev/null 2>&1

Listing B.2 – Example for an interestingness test. First the warnings emitted from
the Clang compiler are checked for indicators of undefined behaviour. Then the tools
“Clang Static Analyzer” and “gpuverify” are utilised. In the end the kernel is run with
and without optimisations and the results are compared. As soon as one of the tools
exits with a non-zero status the test fails immediately. For a successful test the results
between optimised and unoptimised execution have to be different.

Typical interestingness tests first validate the syntactical correctness
of the new source code by checking compiler warnings and the output of
static analysers to achieve a fast fail on bad transformations. More time
expensive analysis steps and the actual execution of the new program to
check for the desired (mis-)behaviour are postponed towards the end of the
test (Listing B.2). Furthermore, the test script should contain a timeout
after which a failed test is reported. Otherwise the reduction could get stuck
if for instance the transformed test case contains an endless loop and hence
its execution would never finish.
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void MemCheck::checkArrayAccess(const WorkItem *workItem,
const llvm::GetElementPtrInst *GEPI) const

{
// Iterate through GEPI indices
const llvm::Type *ptrType = GEPI->getPointerOperandType();

for(auto opIndex = GEPI->idx_begin(); opIndex != GEPI->idx_end(); opIndex++)
{

int64_t index = workItem->getOperand(opIndex->get()).getSInt();

if(ptrType->isArrayTy())
{

// Check index doesn’t exceed size of array
uint64_t size = ptrType->getArrayNumElements();

if((uint64_t)index >= size)
{

ostringstream info;
info << "Index␣("

<< index << ")␣exceeds␣static␣array␣size␣("
<< size << ")";

m_context->logError(info.str().c_str());
}

ptrType = ptrType->getArrayElementType();
}
else if(ptrType->isPointerTy())
{

ptrType = ptrType->getPointerElementType();
}
else if(ptrType->isVectorTy())
{

ptrType = ptrType->getVectorElementType();
}
else if(ptrType->isStructTy())
{

ptrType = ptrType->getStructElementType(index);
}

}
}

Listing C.1 – Checking getelementptr for out-of-bounds conditions. The function
sequentially walks through all indices of the instruction. Everytime the index accesses
an object of array type the number of elements of the array is queried and compared to
the index. If the index is larger or equal to the number of elements a warning is emitted.
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TypedValue ShadowFrame::getValue(const llvm::Value *V) const
{

if (llvm::isa<llvm::Instruction>(V)) {
// For instructions the shadow is already stored in the map.
assert(m_values->count(V) && "No␣shadow␣for␣instruction␣value");
return m_values->at(V);

}
else if (llvm::isa<llvm::UndefValue>(V)) {

return ShadowContext::getPoisonedValue(V);
}
else if (llvm::isa<llvm::Argument>(V)) {

// For arguments the shadow is already stored in the map.
assert(m_values->count(V) && "No␣shadow␣for␣argument␣value");
return m_values->at(V);

}
else if(auto *VC = llvm::dyn_cast<llvm::ConstantVector>(V))
{

TypedValue vecShadow = ShadowContext::getCleanValue(V);
TypedValue elemShadow;

for(unsigned i = 0; i < vecShadow.num; ++i)
{

elemShadow = getValue(VC->getAggregateElement(i));
size_t offset = i*vecShadow.size;
memcpy(vecShadow.data + offset, elemShadow.data, vecShadow.size);

}

return vecShadow;
}
else
{

// For everything else the shadow is zero.
return ShadowContext::getCleanValue(V);

}
}

Listing C.2 – Mapping shadow values to data values. The shadows of interemediate
results and function arguments are simply looked up in the map containing all shadow
values. The special undef value is mapped to a poisoned shadowed and constant vectors
are scanned componentwise for undef values to obtain are precise shadow representation.
Finally, all other values, i.e. constants, are mapped to a clean shadow.
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case llvm::Instruction::Call:
{

const llvm::CallInst *callInst = ((const llvm::CallInst*)instruction);
const llvm::Function *function = callInst->getCalledFunction();

// Check for indirect function calls
if (!function)
{

// Resolve indirect function pointer
const llvm::Value *func = callInst->getCalledValue();
const llvm::Value *funcPtr = ((const llvm::User*)func)->getOperand(0);
function = (const llvm::Function*)funcPtr;

}

assert(!function->isVarArg() && "Variadic␣functions␣are␣not␣supported!");

// For inline asm, do the usual thing: check argument shadow and mark all
// outputs as clean. Note that any side effects of the inline asm that are
// not immediately visible in its constraints are not handled.
if (callInst->isInlineAsm())
{

checkAllOperandsDefined(workItem, instruction);
shadowValues->setValue(instruction,

ShadowContext::getCleanValue(instruction));
break;

}

if(auto *II = llvm::dyn_cast<const llvm::IntrinsicInst>(instruction))
{

handleIntrinsicInstruction(workItem, II);
break;

}

if(function->isDeclaration())
{

if(!handleBuiltinFunction(workItem, function->getName().str(),
callInst, result))

{
// Handle external function calls
checkAllOperandsDefined(workItem, instruction);

if(callInst->getType()->isSized())
{

// Set return value only if function is non-void
shadowValues->setValue(instruction,

ShadowContext::getCleanValue(instruction));
}

}
break;

}

assert(!llvm::isa<const llvm::IntrinsicInst>(instruction) &&
"intrinsics␣are␣handled␣elsewhere");

// Fresh values for function
ShadowFrame *values = shadowValues->createCleanShadowFrame();

llvm::Function::const_arg_iterator argItr;
for (argItr = function->arg_begin(); argItr != function->arg_end(); argItr++)
{

const llvm::Value *Val = callInst->getArgOperand(argItr->getArgNo());
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if (!Val->getType()->isSized())
{

continue;
}

if(argItr->hasByValAttr())
{

assert(Val->getType()->isPointerTy() &&
"ByVal␣argument␣is␣not␣a␣pointer!");

// Make new copy of shadow in private memory
size_t origShadowAddress = workItem->getOperand(Val).getPointer();
size_t newShadowAddress = workItem->getOperand(argItr).getPointer();
ShadowMemory *mem = shadowWorkItem->getPrivateMemory();
unsigned char *origShadowData =
(unsigned char*)mem->getPointer(origShadowAddress);

size_t size = getTypeSize(argItr->getType()->getPointerElementType());

// Set new shadow memory
TypedValue v = ShadowContext::getCleanValue(size);
memcpy(v.data, origShadowData, size);
allocAndStoreShadowMemory(AddrSpacePrivate, newShadowAddress,

v, workItem);
values->setValue(argItr, ShadowContext::getCleanValue(argItr));

}
else
{

TypedValue newShadow = shadowContext.getMemoryPool()->clone(
shadowContext.getValue(workItem, Val));

values->setValue(argItr, newShadow);
}

}

// Now, get the shadow for the RetVal.
if(callInst->getType()->isSized())
{

values->setCall(callInst);
}

shadowValues->pushFrame(values);

break;
}

Listing C.3 – Handling of call instructions in the ShadowKepper plugin. First
indirect function calls are resolved and it is asserted that the function is not a variadic
function. Afterwards inline assembler is handled in a general way by checking the shadow
values of all arguments. Intrinsic functions and built-in functions are handled separately
from other external functions as Oclgrind knows their side effects and can perform a
precise shadow propagation. Finally, for internally defined functions a new shadow frame
is created, initilised with the shadows of all function arguments and pushed onto the
stack of shadow values. Further, the call instruction is stored in the dedicated slot in
the shadow frame if the function has a non-void return type.
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void ShadowMemory::allocate(size_t address, size_t size)
{

size_t index = extractBuffer(address);

if(m_map.count(index))
{

deallocate(address);
}

Buffer *buffer = new Buffer();
buffer->size = size;
buffer->flags = 0;
buffer->data = new unsigned char[size];

m_map[index] = buffer;
}

Listing C.4 – Lazy deallocations in the ShadowKeeper plugin. Since there are no
explicit instructions to deallocate memory the deallocations are instead performed on
demand. If a new allocation is issued for an address which is already associated with a
buffer object it is deallocated first. Since Oclgrind itself ensures the consistency of the
data memory system this strategy cannot cause problems.

bool ShadowContext::isCleanStruct(ShadowMemory *shadowMemory, size_t address,
const llvm::StructType *structTy)

{
if(structTy->isPacked())
{

unsigned size = getTypeSize(structTy);
TypedValue v = {

size,
1,
m_workSpace.memoryPool->alloc(size)

};

shadowMemory->load(v.data, address, size);

return isCleanValue(v);
}
else
{

for(unsigned i = 0; i < structTy->getStructNumElements(); ++i)
{

size_t offset = getStructMemberOffset(structTy, i);
unsigned size = getTypeSize(structTy->getElementType(i));

if(const llvm::StructType *elemTy =
llvm::dyn_cast<llvm::StructType>(structTy->getElementType(i)))

{
if(!isCleanStruct(shadowMemory, address + offset, elemTy))
{

return false;
}

}
else
{

TypedValue v = {
size,
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1,
m_workSpace.memoryPool->alloc(size)

};

shadowMemory->load(v.data, address + offset, size);

if(!isCleanValue(v))
{

return false;
}

}
}

return true;
}

}

Listing C.5 – Special check for undefined values in structs. Structs can legally
contain undefined padding values. Therefore the simple check if all bits are clean
produces false positives in the general case and can only be applied if the struct is
marked as “packed”, i.e. it is not padded. Otherwise padding areas are skipped by
iterating over all members of the struct and performing the check recursively. If any of
the members contains undefined values other than padding values of potentially nested
structs the entire top-level struct is considered as poisoned.

if(addrSpace == AddrSpaceGlobal)
{

shadowContext.getGlobalMemory()->lock(address);
}

loadShadowMemory(addrSpace, address, oldShadow, workItem);

if(!ShadowContext::isCleanValue(argShadow) ||
!ShadowContext::isCleanValue(oldShadow))

{
newShadow = ShadowContext::getPoisonedValue(4);

}
else
{

newShadow = ShadowContext::getCleanValue(4);
}

storeShadowMemory(addrSpace, address, newShadow, workItem);

if(addrSpace == AddrSpaceGlobal)
{

shadowContext.getGlobalMemory()->unlock(address);
}

Listing C.6 – Locking mechanism for general atomic operations. Only when the
atomic operations affect the global address space explicit locking is required. Then the
lock is acquired before the old shadow value is read and released after the new value has
been written. In between the new shadow value is computed by checking the argument
of the atomic operation and the old shadow value for their definedness.
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1// -g 1,1,1 -l 1,1,1
2void transparent_crc_no_string(ulong *p1, ulong p2) { *p1 += p2; }
3
4uint get_linear_global_id() {
5return (get_global_id(2) * get_global_size(1) + get_global_id(1)) *
6get_global_size(0) +
7get_global_id(0);
8}
9
10struct U0 {
11int f0;
12};
13struct S1 {
14volatile ushort g_300[2][4][7];
15short g_953[8];
16};
17void func_1() { struct U0 a, b = a; }
18
19__kernel void entry(__global ulong *p1) {
20int i, j, k;
21struct S1 c, e = {{{{0xC55AL}}}};
22struct S1 *d = &c;
23c = e;
24ulong f = i = 0;
25for (; i < 2; i++) {
26j = 0;
27for (; j < 4; j++) {
28k = 0;
29for (; k < 7; k++) {
30transparent_crc_no_string(&f, d->g_300[i][j][k]);
31}
32}
33}
34i = 0;
35for (; i < 8; i++) {
36transparent_crc_no_string(&f, d->g_953[i]);
37}
38p1[get_linear_global_id()] = f ^ 0xFFFFFFFFFFFFFFFFUL;
39}

Listing C.7 – Average sized reduced test case. The reduced test case has a size
of 844 bytes which is close to the average of the evaluated reductions. It is free from
undefined behaviour and triggers a wrong-code bug on the device “dev-a”. The correct
result is “0xffffffffffff3aa5” but with optimisations enabled the computed output is
“0xffffffffffff3aa4”.
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