Uncovering Bugs in Distributed Storage Systems during Testing (not in Production!)

Pantazis Deligiannis†, Matt McCutchen‡, Paul Thomson†, Shuo Chen*
Alastair F. Donaldson‡, John Erickson*, Cheng Huang*, Akash Lal*
Rashmi Mudduluru*, Shaz Qadeer*, Wolfram Schulte*

†Imperial College London, ‡Massachusetts Institute of Technology, *Microsoft

Abstract

Testing distributed systems is challenging due to multiple sources of nondeterminism. Conventional testing techniques, such as unit, integration and stress testing, are ineffective in preventing serious but subtle bugs from reaching production. Formal techniques, such as TLA+, can only verify high-level specifications of systems at the level of logic-based models, and fall short of checking the actual executable code. In this paper, we present a new methodology for testing distributed systems. Our approach applies advanced systematic testing techniques to thoroughly check that the executable code adheres to its high-level specifications, which significantly improves coverage of important system behaviors.

Our methodology has been applied to three distributed storage systems in the Microsoft Azure cloud computing platform. In the process, numerous bugs were identified, reproduced, confirmed and fixed. These bugs required a subtle combination of concurrency and failures, making them extremely difficult to find with conventional testing techniques. An important advantage of our approach is that a bug is uncovered in a small setting and witnessed by a full system trace, which dramatically increases the productivity of debugging.

1 Introduction

Distributed systems are notoriously hard to design, implement and test [6, 31, 20, 27, 35]. This challenge is due to many sources of nondeterminism [7, 23, 32], such as unexpected node failures, the asynchronous interaction between system components, data losses due to unreliable communication channels, the use of multithreaded code to exploit multicore machines, and interaction with clients. All these sources of nondeterminism can easily create Heisenbugs [16, 38], corner-case bugs that are difficult to detect, diagnose and fix. These bugs might hide inside a code path that can only be triggered by a specific interleaving of concurrent events and only manifest under extremely rare conditions [16, 38], but the consequences can be catastrophic [1, 44].

Developers of production distributed systems use many testing techniques, such as unit testing, integration testing, stress testing, and fault injection. In spite of extensive use of these testing methods, many bugs that arise from subtle combinations of concurrency and failure events are missed during testing and get exposed only in production. However, allowing serious bugs to reach production can cost organizations a lot of money [42] and lead to customer dissatisfaction [1, 44].

We interviewed technical leaders and senior managers in Microsoft Azure regarding the top problems in distributed system development. The consensus was that one of the most critical problems today is how to improve testing coverage so that bugs can be uncovered during testing and not in production. The need for better testing techniques is not specific to Microsoft; other companies, such as Amazon and Google, have acknowledged [7, 39] that testing methodologies have to improve to be able to reason about the correctness of increasingly more complex distributed systems that are used in production.

Recently, the Amazon Web Services (AWS) team used formal methods “to prevent serious but subtle bugs from reaching production” [39]. The gist of their approach is to extract the high-level logic from a production system, represent this logic as specifications in the expressive TLA+ [29] language, and finally verify the specifications using a model checker. While highly effective, as demonstrated by its use in AWS, this approach falls short of “verifying that executable code correctly implements the high-level specification” [39], and the AWS team admits that it is “not aware of any such tools that can handle distributed systems as large and complex as those being built at Amazon” [39].

We have found that checking high-level specifications is necessary but not sufficient, due to the gap between...
the specification and the executable code. Our goal is to bridge this gap. We propose a new methodology that validates high-level specifications directly on the executable code. Our methodology is different from prior approaches that required developers to either switch to an unfamiliar domain specific language \cite{25,10}, or manually annotate and instrument their code \cite{45}. Instead, we allow developers to systematically test production code by writing test harnesses in C#, a mainstream programming language. This significantly lowered the acceptance barrier for adoption by the Microsoft Azure team.

Our testing methodology is based on P# \cite{9}, an extension of C# that provides support for modeling, specification, and systematic testing of distributed systems written in the Microsoft .NET framework. To use P# for testing, the programmer has to augment the original system with three artifacts: a model of the nondeterministic execution environment of the system; a test harness that drives the system towards interesting behaviors; and safety or liveness specifications. P# then systematically exercises the test harness and validates program behaviors against the provided specifications.

The original P# paper \cite{9} discussed language design issues and data race detection for programs written in P#, whereas this work focuses on using P# to test three distributed storage systems inside Microsoft: Azure Storage vNext; Live Table Migration; and Azure Service Fabric. We uncovered numerous bugs in these systems, including a subtle liveness bug that only intermittently manifested during stress testing for months without being fixed. Our testing approach uncovered this bug in a very small setting, which made it easy for developers to examine traces, identify, and fix the problem.

To summarize, our contributions are as follows:

- We present a new methodology for modeling, specifying properties of correctness, and systematically testing real distributed systems with P#.
- We discuss our experience of using P# to test three distributed storage systems built on top of Microsoft Azure, finding subtle bugs that could not be found with traditional testing techniques.
- We evaluate the cost and benefits of using our approach, and show that P# can detect bugs in a small setting and with easy to understand traces.

2 Testing Distributed Systems with P#

The goal of our work is to find bugs in distributed systems before they reach production. Typical distributed systems consist of multiple components that interact with each other via message passing. If messages—or unexpected failures and timeouts—are not handled properly, they can lead to subtle bugs. To expose these bugs, we use P#, an extension of the C# language that provides: (i) language support for specifying properties of correctness, and modeling the environment of distributed systems written in .NET; and (ii) a systematic testing engine that can explore interleavings between distributed events, such as the nondeterministic order of message deliveries, client requests, failures and timeouts.

Modeling using P# involves three core activities. First, the developer must modify the original system so that messages are not sent through the real network, but are instead dispatched through the PSharp.Send(...) method. Such modification does not need to be invasive, as it can be performed using virtual method dispatch, a C# language feature widely used for testing. Second, the developer must write a P# test harness that drives the system towards interesting behaviors by nondeterministically triggering various events (see \cite{2.3}). The harness is essentially a model of the environment of the system. The purpose of these first two activities is to explicitly declare all sources of nondeterminism in the system using P#. Finally, the developer must specify the criteria for correctness of an execution of the system-under-test. Specifications in P# can encode either safety or liveness properties (see \cite{2.4} and \cite{2.5}).

During testing, the P# runtime is aware of all sources of nondeterminism that were declared during modeling, and exploits this knowledge to create a scheduling point each time a nondeterministic choice has to be taken. The P# testing engine will serialize (in a single-box) the system, and repeatedly execute it from start to completion, each time exploring a potentially different set of nondeterministic choices, until it either reaches a user-supplied bound (e.g. in number of executions or time), or it hits a safety or liveness property violation. This testing process is fully automatic and has no false-positives (assuming an accurate test harness). After a bug is discovered, P# generates a trace that represents the buggy schedule, which can then be replayed to reproduce the bug. In contrast to logs typically generated during production, the P# trace provides a global order of all communication events, and thus is easier to debug.

Due to the highly asynchronous nature of distributed systems, the number of possible states that these systems can reach is exponentially large. Tools such as MoDIST \cite{48} and dBug \cite{45} focus on testing unmodified distributed systems, but this can easily lead to state-space explosion when trying to exhaustively explore the entire state-space of a production-scale distributed storage system, such as the Azure Storage vNext. On the other hand, techniques such as TLA+ \cite{29} have been successfully used in industry to verify specifications of complex distributed systems \cite{39}, but they are unable to verify the actual implementation.
In this work, we are proposing a solution between the above two extremes: test the real implementation of one or more components against a modeled in P# environment. The benefit of our approach is that it can detect bugs in the actual implementation of P# by exploring a much reduced state-space. Note that testing with P# does not come for free; developers have to invest effort and time into building a test harness using P#. However, developers already spend significant time in building test suites for distributed systems prior to deployment. The P# approach augments this effort; by investing time in modeling the environment, it offers dividends by finding more bugs (see §). In principle, our methodology is not specific to P# and the .NET framework, and can be used in combination with any other programming framework that has equivalent capabilities.

2.1 The P# programming model

P# programs consist of multiple state machines that communicate with each other asynchronously by exchanging events. In the case of distributed systems, P# events can be used to model regular messages between system components, failures or timeouts. A P# machine declaration is similar to a C# class declaration, but a machine also contains an event queue, and one or more states. Each state can register actions to handle incoming events.

P# machines run concurrently with each other, each executing an event handling loop that dequeues the next event from the queue and handles it by invoking the registered action. An action might transition the machine to a new state, create a new machine, send an event to a machine, access a field or call a method. In P#, a send operation is non-blocking; the event is simply enqueued into the queue of the target machine, which will dequeue and handle the event concurrently. All this functionality is provided in a lightweight runtime library, built on top of Microsoft’s Task Parallel Library [33].

2.2 An example distributed system

Figure 1 presents the pseudocode of a simple distributed storage system that was contrived for the purposes of explaining our testing methodology. The system consists of a client, a server and three storage nodes (SNs). The client sends a ClientReq message to the server, which contains data to be replicated, and then waits to get an acknowledgement before sending the next request. When the server receives a ClientReq, it first stores the data locally (in the Data field), and then broadcasts a ReplReq message to all SNs. When an SN receives a ReplReq, it handles the message by storing the received data locally (using the store method). Each SN has a timer installed, which sends periodic Timeout messages. Upon receiving a Timeout, an SN sends a Sync message to the server that contains the storage log. The server handles Sync by calling the isUpToDate method to check if the SN log is up-to-date. If it is not, the server sends a repeat ReplReq message to the outdated SN. If the SN log is up-to-date, then the server increments a replica counter by one. Finally, when there are three replicas available, the server sends an Ack message to the client.

There are two bugs in the above example. The first bug is that the server does not keep track of unique replicas. The replica counter increments upon each up-to-date Sync, even if the syncing SN is already considered a replica. This means that the server might send an Ack when fewer than three replicas exist, which is erroneous behavior. The second bug is that the server does not reset the replica counter to 0 upon sending an Ack. This means that when the client sends another ClientReq, it will never receive Ack, and thus block indefinitely.

2.3 Modeling the example system

To systematically test the example of Figure 1, the developer must first create a P# test harness, and then specify the correctness properties of the system. Figure 2 illustrates a test harness that can find the two bugs discussed in §2.2. Each box in the figure represents a concurrently running P# machine, while an arrow represents an event being sent from one machine to another. We use three types of boxes: (i) a box with rounded corners and thick border denotes a real component wrapped inside a P# machine; (ii) a box with thin border denotes a modeled
component in P#; and (iii) a box with dashed border denotes a special P# machine used for safety or liveness checking (see §2.4 and §2.5).

We do not model the server component since we want to test its actual implementation. The server is wrapped inside a P# machine, which is responsible for: (i) sending events via the PSharp.Send(...) method, instead of the real network; and (ii) delivering received events to the wrapped component. We model the SNs so that they store data in memory rather than on disk (which could be inefficient during testing). We also model the client so that it can drive the system by repeatedly sending a nondeterministicaly generated ClientReq and then waiting for an Ack message. Finally, we model the timer so that P# takes control of all time-related nondeterminism in the system. This allows the P# runtime to control when a Timeout event will be sent to the SNs during testing, and systematically explore different schedules.

P# uses object-oriented language features such as interfaces and virtual method dispatch to connect the real code with the modeled code. Developers in industry are used to working with such features, and heavily employ them in testing production systems. In our experience, this significantly lowers the bar for engineering teams inside Microsoft to embrace P# for testing.

In §2.4 and §2.5 we discuss how safety and liveness specifications can be expressed in P# to check if the example system is correct. The details of how P# was used to model and test real distributed storage systems in Microsoft are covered in §3. §4 and §5. Interested readers can also refer to the P# GitHub repository\footnote{https://github.com/p-org/PSharp} to find a manual and samples (e.g. Paxos \cite{30} and Raft \cite{40}).

2.4 Specifying safety properties in P#

Safety property specifications generalize the notion of source code assertions; a safety violation is a finite trace leading to an erroneous state. P# supports the usual assertions for specifying safety properties that are local to a P# machine, and also provides a way to specify global assertions by using a safety monitor \cite{10}, a special P# machine that can receive, but not send, events.

A safety monitor maintains local state that is modified in response to events received from ordinary (non-monitor) machines. This local state is used to maintain a history of the computation that is relevant to the property being specified. An erroneous global behavior is flagged via an assertion on the private state of the safety monitor. Thus, a monitor cleanly separates instrumentation state required for specification (inside the monitor) from program state (outside the monitor).

The first bug in the example of §2.2 is a safety bug. To find it, the developer can write a safety monitor (see Figure 2) that contains a map from unique SN ids to a Boolean value, which denotes if the SN is a replica or not. Each time an SN replicates the latest data, it notifies the monitor to update the map. Each time the server issues an Ack, it also notifies the monitor. If the monitor detects that an Ack was sent without three replicas actually existing, a safety violation is triggered.

2.5 Specifying liveness properties in P#

Liveness property specifications generalize nontermination; a liveness violation is an infinite trace that exhibits lack of progress. Typically, a liveness property is specified via a temporal logic formula \cite{41,29}. We take a different approach and allow the developers to write a liveness monitor \cite{10}. Similar to a safety monitor, a liveness monitor can receive, but not send, events.

A liveness monitor contains two special types of states: hot and cold. A hot state denotes a point in the execution where progress is required but has not happened yet; e.g. a node has failed but a new one has not launched yet. A liveness monitor enters a hot state when it is notified that the system must make progress. The liveness monitor leaves the hot state and enters the cold state when it is notified that the system has progressed. An infinite execution is erroneous if the liveness monitor is in the hot state for an infinitely long period of time. Our liveness monitors can encode arbitrary temporal logic properties.

A liveness violation is witnessed by an infinite execution in which all concurrently executing P# machines are fairly scheduled. Since it is impossible to generate an infinite execution by executing a program for a finite amount of time, our implementation of liveness checking in P# approximates an infinite execution using several heuristics. In this work, we consider an execution longer than a large user-supplied bound as an "infinite" execution \cite{25,37}. Note that checking for fairness is not relevant when using this heuristic, due to our pragmatic use of a large bound.

The second bug in the example of §2.2 is a liveness bug. To detect it, the developer can write a liveness monitor (see Figure 3) that transitions from a hot state, which
denotes that the client sent a `ClientReq` and waits for an `Ack`, to a cold state, which denotes that the server has sent an `Ack` in response to the last `ClientReq`. Each time a server receives a `ClientReq`, it notifies the monitor to transition to the hot state. Each time the server issues an `Ack`, it notifies the monitor to transition to the cold state. If the monitor is in a hot state when the bounded infinite execution terminates, a liveness violation is triggered.

3 Case Study: Azure Storage vNext

Microsoft Azure Storage is a cloud storage system that provides customers the ability to store seemingly limitless amounts of data. It has grown from tens of petabytes in 2010 to exabytes in 2015, with the total number of objects stored exceeding 60 trillion [17].

Azure Storage vNext is the next generation storage system currently being developed for Microsoft Azure, where the primary design target is to scale the storage capacity by more than 100×. Similar to the current system, vNext employs containers, called extents, to store data. Extents can be several gigabytes each, consisting of many data blocks, and are replicated over multiple `Extent Nodes` (ENs). However, unlike the current system, which uses a Paxos-based, centralized mapping from extents to ENs [5], vNext achieves scalability by using a *distributed mapping*. In vNext, extents are divided into partitions, with each partition managed by a lightweight `Extent Manager` (ExtMgr). This partitioning is illustrated in Figure [5].

One of the responsibilities of an ExtMgr is to ensure that every managed extent maintains enough *replicas* in the system. To achieve this, an ExtMgr receives frequent periodic *heartbeat* messages from every EN that it manages. EN failure is detected by missing heartbeats. An ExtMgr also receives less frequent, but still periodic, *synchronization reports* from every EN. The sync reports list all the extents (and associated metadata) stored on the EN. Based on these two types of messages, an ExtMgr identifies which ENs have failed, and which extents are affected by the failure and are missing replicas as a result. The ExtMgr then schedules tasks to repair the affected extents and distributes the tasks to the remaining ENs. The ENs then repair the extents from the existing replicas and lazily update the ExtMgr via their next periodic sync reports. All the communications between an ExtMgr and the ENs occur via network engines installed in each component of vNext (see Figure [3]).

To ensure correctness, the developers of vNext have instrumented extensive, multiple levels of testing:

1. **Unit testing**, in which emulated heartbeats and sync reports are sent to an ExtMgr. These tests check that the messages are processed as expected.

2. **Integration testing**, in which an ExtMgr is launched together with multiple ENs. An EN failure is subsequently injected. These tests check that the affected extents are eventually repaired.

3. **Stress testing**, in which an ExtMgr is launched together with multiple ENs and many extents. The test keeps repeating the following process: injects an EN failure, launches a new EN and checks that the affected extents are eventually repaired.

Despite the extensive testing efforts, the vNext developers were plagued for months by an elusive bug in the ExtMgr logic. All the unit test suites and integration test suites successfully passed on each test run. However, the stress test suite failed *from time to time* after very long executions; in these cases, certain replicas of some extents failed without subsequently being repaired.

This bug proved difficult to identify, reproduce and troubleshoot. First, an extent never being repaired is *not* a property that can be easily checked. Second, the bug appeared to manifest only in very long executions. Finally, by the time that the bug did manifest, very long execution traces had been collected, which made manual inspection tedious and ineffective.

To uncover the elusive extent repair bug in Azure Storage vNext, its developers wrote a test harness using P#. The developers expected that it was more likely for the...
Figure 5: The real Extent Manager is wrapped inside the ExtentManager P# machine.

Figure 6: Internal components of the real Extent Manager in Microsoft Azure Storage vNext.

Figure 7: Modeled vNext network engine.

3.1 The ExtentManager machine

The real ExtMgr in vNext, which is our system-undertested, is wrapped inside the ExtentManager machine, as illustrated in the code snippet of Figure 5.

Real Extent Manager. The real ExtMgr (see Figure 6) contains two data structures: ExtentCenter and ExtentNodeMap. The ExtentCenter maps extents to their hosting ENs. It is updated upon receiving a periodic sync report from an EN. Recall that a sync report from a particular EN lists all the extents stored at the EN. Its purpose is to update the ExtMgr’s possibly out-of-date view of the EN with the ground truth. The ExtentNodeMap maps ENs to their latest heartbeat times.

ExtentManager acts as a thin wrapper machine for the real ExtMgr component in vNext (see §3.1).

ExtentNode is a simple model of an EN (see §3.2).

Timer exploits the nondeterministic choice generation available in P# to model timeouts (see §3.3).

TestingDriver is responsible for driving testing scenarios, relaying messages between machines, and injecting failures (see §3.4).

RepairMonitor collects EN-related state to check if the desired liveness property is satisfied (see §3.5).

3.2 ExtentManager implementation

The real ExtMgr in vNext, which is our system-undertest, is wrapped inside the ExtentManager machine, as illustrated in the code snippet of Figure 5.

Real Extent Manager. The real ExtMgr (see Figure 6) contains two data structures: ExtentCenter and ExtentNodeMap. The ExtentCenter maps extents to their hosting ENs. It is updated upon receiving a periodic sync report from an EN. Recall that a sync report from a particular EN lists all the extents stored at the EN. Its purpose is to update the ExtMgr’s possibly out-of-date view of the EN with the ground truth. The ExtentNodeMap maps ENs to their latest heartbeat times.

ExtentManager internally runs a periodic EN expiration loop that is responsible for removing ENs that have been missing heartbeats for an extended period of time, as

Figure 6: Internal components of the real Extent Manager in Microsoft Azure Storage vNext.

Figure 7: Modeled vNext network engine.

3.1 The ExtentManager machine

The real ExtMgr in vNext, which is our system-undertest, is wrapped inside the ExtentManager machine, as illustrated in the code snippet of Figure 5.

Real Extent Manager. The real ExtMgr (see Figure 6) contains two data structures: ExtentCenter and ExtentNodeMap. The ExtentCenter maps extents to their hosting ENs. It is updated upon receiving a periodic sync report from an EN. Recall that a sync report from a particular EN lists all the extents stored at the EN. Its purpose is to update the ExtMgr’s possibly out-of-date view of the EN with the ground truth. The ExtentNodeMap maps ENs to their latest heartbeat times.

ExtentManager acts as a thin wrapper machine for the real ExtMgr component in vNext (see §3.1).

ExtentNode is a simple model of an EN (see §3.2).

Timer exploits the nondeterministic choice generation available in P# to model timeouts (see §3.3).

TestingDriver is responsible for driving testing scenarios, relaying messages between machines, and injecting failures (see §3.4).

RepairMonitor collects EN-related state to check if the desired liveness property is satisfied (see §3.5).

3.1 The ExtentManager machine

The real ExtMgr in vNext, which is our system-undertest, is wrapped inside the ExtentManager machine, as illustrated in the code snippet of Figure 5.

Real Extent Manager. The real ExtMgr (see Figure 6) contains two data structures: ExtentCenter and ExtentNodeMap. The ExtentCenter maps extents to their hosting ENs. It is updated upon receiving a periodic sync report from an EN. Recall that a sync report from a particular EN lists all the extents stored at the EN. Its purpose is to update the ExtMgr’s possibly out-of-date view of the EN with the ground truth. The ExtentNodeMap maps ENs to their latest heartbeat times.

ExtentManager acts as a thin wrapper machine for the real ExtMgr component in vNext (see §3.1).

ExtentNode is a simple model of an EN (see §3.2).

Timer exploits the nondeterministic choice generation available in P# to model timeouts (see §3.3).

TestingDriver is responsible for driving testing scenarios, relaying messages between machines, and injecting failures (see §3.4).

RepairMonitor collects EN-related state to check if the desired liveness property is satisfied (see §3.5).

3.2 ExtentManager implementation

The real ExtMgr in vNext, which is our system-undertest, is wrapped inside the ExtentManager machine, as illustrated in the code snippet of Figure 5.

Real Extent Manager. The real ExtMgr (see Figure 6) contains two data structures: ExtentCenter and ExtentNodeMap. The ExtentCenter maps extents to their hosting ENs. It is updated upon receiving a periodic sync report from an EN. Recall that a sync report from a particular EN lists all the extents stored at the EN. Its purpose is to update the ExtMgr’s possibly out-of-date view of the EN with the ground truth. The ExtentNodeMap maps ENs to their latest heartbeat times.

ExtentManager acts as a thin wrapper machine for the real ExtMgr component in vNext (see §3.1).

ExtentNode is a simple model of an EN (see §3.2).

Timer exploits the nondeterministic choice generation available in P# to model timeouts (see §3.3).

TestingDriver is responsible for driving testing scenarios, relaying messages between machines, and injecting failures (see §3.4).

RepairMonitor collects EN-related state to check if the desired liveness property is satisfied (see §3.5).
3.2 The ExtentNode machine

The ExtentNode machine is a simplified version of the original EN. The machine omits most of the complex details of a real EN, and only models the necessary logic for testing. This modeled logic includes: repairing an extent from its replica, and sending sync reports and heartbeat messages periodically to ExtentManager.

The P# test harness leverages components of the real vNext system whenever it is appropriate. For example, ExtentNode re-uses the ExtentCenter data structure, which is used inside a real EN for extent bookkeeping. In the modeled extent repair logic, ExtentNode takes action upon receiving an extent repair event from the ExtentManager machine. It sends a copy request to a source ExtentNode machine where a replica is stored. After receiving an ExtentCopyRespEvent event from the source machine, it updates the ExtentCenter, as illustrated in Figure 8.

In the modeled EN sync logic, the machine is driven by an external timer modeled in P# (see §3.3). It prepares a sync report with ExtentCenter.GetSyncReport(...), and then asynchronously sends the report to ExtentManager using PSharp.Send(...). The ExtentNode machine also includes failure-related logic (see §3.4).

3.3 The Timer machine

System correctness should not hinge on the frequency of any individual timer. Hence, it makes sense to delegate all nondeterminism due to timing-related events to P#. To achieve this, all the timers inside ExtMgr are disabled (see Figure 5), the EN expiration loop and the extent repair loop are driven instead by timers modeled in P#, an approach also used in previous work [10]. Similarly, ExtentNode machines do not have internal timers either. Their periodic heartbeats and sync reports are also driven by timers modeled in P#.

Figure 9 shows the Timer machine in the test harness. Timer invokes the P# method Nondet(), which generates a nondeterministic choice controlled by the P# runtime. Using Nondet() allows the machine to nondeterministically send a timeout event to its target (the ExtentManager or ExtentNode machines). The P# testing engine has the freedom to schedule arbitrary interleavings between these timeout events and all other regular system events.

3.4 The TestingDriver machine

The TestingDriver machine drives two testing scenarios. In the first scenario, TestingDriver launches one ExtentManager and three ExtentNode machines, with a single extent on one of the ENs. It then waits for the extent to be replicated at the remaining ENs. In the second testing scenario, TestingDriver fails one of the

3We had to make a minor change to the real ExtMgr code to facilitate modeling: we added the DisableTimer method, which disables the real ExtMgr timer so that it can be replaced with the P# timer.
RepairMonitor is a P# liveness monitor (see §3.5) that transitions between a cold and a hot state. Whenever an EN fails, the monitor is notified with an ENFailedEvent event. As soon as the number of extent replicas falls below a specified target (three replicas in the current P# test harness), the monitor transitions into the hot state. As shown in the earlier Figure 8, the chosen ExtentNode machine processes the ENFailedEvent, notifies the liveness monitor of its failure (see §3.5) and terminates itself by invoking the P# method Halt(). P# not only enumerates interleavings of asynchronous event handlers, but also the values returned by calls to Nondet(), thus enumerating different failure scenarios.

3.5 The RepairMonitor liveness monitor

RepairMonitor is a P# liveness monitor (see §3.5) that transitions between a cold and a hot state. Whenever an EN fails, the monitor is notified with an ENFailedEvent event. As soon as the number of extent replicas falls below a specified target (three replicas in the current P# test harness), the monitor transitions into the hot repairing state, waiting for all missing replicas to be repaired. Whenever an extent replica is repaired, RepairMonitor is notified with an ExtentRepairedEvent event. When the replica number reaches again the target, the monitor transitions into the cold repaired state, as illustrated in the code snippet of Figure 11.

In the extent repair testing scenarios, RepairMonitor checks that it should always eventually end up in the cold state. Otherwise, RepairMonitor is stuck in the hot state for infinitely long. This indicates that the corresponding execution sequence results in an extent replica never being repaired, which is a liveness bug.

3.6 Liveness Bug in Azure Storage vNext

It took less than ten seconds for the P# testing engine to report the first occurrence of a liveness bug in vNext (see §6). Upon examining the debug trace, the developers of vNext were able to quickly confirm the bug.

The original P# trace did not include sufficient details to allow the developers to identify the root cause of the problem. Fortunately, running the test harness took very little time, so the developers were able to quickly iterate and add more refined debugging outputs in each iteration. After several iterations, the developers were able to pinpoint the exact culprit and immediately propose a solution for fixing the bug. Once the proposed solution was implemented, the developers ran the test harness again. No bugs were found during 100,000 executions, a process that only took a few minutes.

The liveness bug occurs in the second testing scenario, where the TestingDriver machine fails one of the ExtentNode machines and launches a new one. RepairMonitor transitions to the hot repairing state and is stuck in the state for infinitely long.

The following is one particular execution sequence resulting in this liveness bug: (i) EN0 fails and is detected by the EN expiration loop; (ii) EN0 is removed from ExtentNodeMap; (iii) ExtCentMap is updated and the replica count drops from 3 (which is the target) to 2; (iv) ExtMgr receives a sync report from EN0; (v) the extent center is updated and the replica count increases again from 2 to 3. This is problematic since the replica count is equal to the target, which means that the extent repair loop will never schedule any repair task. At the same time, there are only two true replicas in the system, which is one less than the target. This execution sequence leads to one missing replica; repeating this process two more times would result in all replicas missing, but ExtMgr would still think that all replicas are healthy. If released to production, this bug would have caused a very serious incident of customer data unavailability.

The culprit is in step (iv), where ExtMgr receives a sync report from EN0 after deleting the EN. This interleaving is exposed quickly by P#’s testing engine that has the control to arbitrarily interleave events. It may also occur, albeit much less frequently, during stress testing due to messages being delayed in the network. This explains why the bug only occurs from time to time during stress testing and requires long executions to manifest. In contrast, P# allows the bug to manifest quickly, the developers to iterate rapidly, the culprit to be identified promptly, and the fix to be tested effectively and thoroughly, all of which have the potential to vastly increase the productivity of distributed storage system development.

class RepairMonitor : Monitor {
 private HashSet<Machine> ExtentNodesWithReplica;

 // cold state: repaired
 cold state Repaired {
 if (ReplicaCount == Harness.REPLICA_COUNT_TARGET) {
 jumpto Repaired;
 }
 }

 // hot state: repairing
 hot state Repairing {
 void ProcessRepairCompletion(ExtentNodeMachine en) {
 ExtentNodesWithReplica.Add(en);
 if (ReplicaCount == Harness.REPLICA_COUNT_TARGET)
 jumpto Repaired;
 }
 }
}

Figure 11: The RepairMonitor liveness monitor.
4 Case Study: Live Table Migration

Live Table Migration (MigratingTable) is a library designed to transparently migrate a key-value data set between two Microsoft Azure tables [24] (called the old table and the new table, or collectively the backend tables) while an application is accessing this data set. The MigratingTable testing effort differs from the vNext effort in two significant ways: the P# test harness was developed along with the system rather than later; and it checks complete compliance with an interface specification rather than just a single liveness property. Indeed, the P# test caught bugs throughout the development process (see §6).

During migration, each application process creates its own MigratingTable instance (MT) that refers to the same backend tables (BTs). The application performs all data access via the MT, which provides an interface named IChainTable similar to that of an Azure table (the MT assumes that the BTs provide the same interface via an adapter). A migrator job moves the data in the background. In the meantime, each logical read and write operation issued to an MT is implemented via a sequence of backend operations on the BTs according to a custom protocol. The protocol is designed to guarantee that the output of the logical operations complies with the IChainTable specification, as if all the operations were performed on a single virtual table (VT). The goal of using P# was to systematically test this property.

There are two main challenges behind testing MigratingTable: (i) the system is highly concurrent; and (ii) the logical operations accept many parameters that affect the behavior in different ways. The developers could have chosen specific input sequences, but they were not confident that these sequences would cover the combinations of parameters that might trigger bugs. Instead, they used the P# Nondet() method to choose all of the parameters independently within certain limits. They issued the same operations to the MTs and to a reference table (RT) running a reference implementation of the IChainTable specification, and compared the output. This reference implementation was reused for the BTs, since the goal was not to test the real Azure tables.

The complete test environment is shown in Figure 12. It consists of a Tables machine, which contains the BTs and RT, and serializes all operations on these tables; a set of Service machines that contain identically configured MTs; and a Migrator machine that performs the background migration. Each Service machine issues a random sequence of logical operations to its MT, which performs the backend operations on the BTs via P# events. The developers instrumented the MTs to report the linearization point of each logical operation, i.e., the time at which it takes effect on the VT, so the test harness could perform the operation on the RT at the same time. (More precisely, after processing each backend operation, the Tables machine enters a P# state that blocks all further work until the MT reports whether the backend operation was the linearization point and, if so, the logical operation has been completed on the RT. This way, the rest of the system never observes the RT to be out of sync with the VT.) For further implementation details of MigratingTable and its test harness, we refer the reader to the source code repository [36].

5 Case Study: Azure Service Fabric

Azure Service Fabric (or Fabric for short) is a platform and API for creating reliable services that execute on a cluster of machines. The developer writes a service that receives requests (e.g. HTTP requests from a client) and mutates its state based on these requests. To make a user service reliable, Fabric launches several replicas of the service, where each replica runs as a separate process on a different node in the cluster. One replica is selected to be the primary which serves client requests; the remaining replicas are secondaries. The primary forwards state-mutating operations to the secondaries so that all replicas eventually have the same state. If the primary fails, Fabric elects one of the secondaries to be the new primary, and then launches a new secondary, which will receive a copy of the state of the new primary in order to "catch up" with the other secondaries. Fabric services are complex asynchronous and distributed applications, and are thus challenging to test.

Our primary goal was to create a P# model of Fabric (where all the Fabric asynchrony is captured and controlled by the P# runtime) to allow thorough testing of
Fabric services. The model was written once to include all behaviors of Fabric, including simulating failures and recovery, so that it can be reused repeatedly to test many Fabric services. This was the largest modeling exercise among the case studies, but the cost was amortized across testing multiple services. This is analogous to prior work on device driver verification [2], where the cost of developing a model of the Windows kernel was amortized across testing multiple device drivers. Note that we model the lowest Fabric API layer (Fabric.dll), which is currently not documented for use externally; we target internally-developed services that use this API.

Using P# was very helpful in debugging the model itself. To systematically test the model, we wrote a simple service in P# that runs on our P# Fabric model. We tested a scenario where the primary replica fails at some nondeterministic point. One bug that we found occurred when the primary failed as a new secondary was about to receive a copy of the state; the secondary was then elected to be the new primary and yet, because the secondary stopped waiting for a copy of the state, it was then “promoted” to be an active secondary (one that has caught up with the other secondaries). This caused an assertion failure in our model, because only a secondary can be promoted to an active secondary, which allowed us to detect and fix this incorrect behavior.

The main system that we tested using our P# Fabric model is CScale [12], a big data stream processing system. Supporting CScale required significant additions to the model, making it much more feature-complete. CScale chains multiple Fabric services, which communicate via remote procedure calls (RPCs). To close the system, we modeled RPCs using PSharp.Send(…). Thus, we converted a distributed system that uses both Fabric and its own network communication protocol into a closed, single-process system. A key challenge in our work was to thoroughly test CScale despite the fact that it uses various synchronous and asynchronous APIs besides RPCs. This work is still in-progress. However, we were able to find a NullReferenceException bug in CScale by running it against our Fabric model. The bug has been communicated to the developers of CScale, but we are still awaiting a confirmation.

6 Quantifying the Cost of Using P#

We report our experience of applying P# on the three case studies discussed in this paper. We aim to answer the following two questions:

1. How much human effort was spent in modeling the environment of a distributed system using P#?
2. How much computational time was spent in systematically testing a distributed system using P#?

<table>
<thead>
<tr>
<th>System-under-test</th>
<th>P# Test Harness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#LoC #B #LoC #M #ST #AH</td>
</tr>
<tr>
<td>vNext Extent Manager</td>
<td>19,775 1 684 5 11 17</td>
</tr>
<tr>
<td>MigratingTable</td>
<td>2,267 11 2,275 3 5 10</td>
</tr>
<tr>
<td>Fabric User Service</td>
<td>31,959 1* 6,534 13 21 87</td>
</tr>
</tbody>
</table>

Table 1: Statistics from modeling the environment of the three Microsoft Azure-based systems under test. The (*) denotes “awaiting confirmation”.

6.1 Cost of environment modeling

Environment modeling is a core activity of using P#. It is required for closing a system to make it amenable to systematic testing. Table 1 presents program statistics for the three case studies. The columns under “System” refer to the real system-under-test, while the columns under “P# Test Harness” refer to the test harness written in P#.

Modeling the environment of the Extent Manager in the Azure Storage vNext system required approximately two person weeks of part-time developing. The P# test harness for this system is the smallest (in lines of code) from the three case studies. This was because this modeling exercise aimed to reproduce the particular liveness bug that was haunting the developers of vNext.

Developing both MigratingTable and its P# test harness took approximately five person weeks. The harness was developed in parallel with the actual system. This differs from the other two case studies, where the modeling activity occurred independently and after the development process.

Modeling Fabric required approximately five person months, an effort undertaken by the authors of P#. In contrast the other two systems discussed in this paper were modeled and tested by their corresponding developers. Although modeling Fabric required a significant amount of time, it is a one-time effort, which only needs incremental refinement with each release.

6.2 Cost of systematic testing

Using P# we managed to uncover 8 serious bugs in our case studies. As discussed earlier in the paper, these bugs were hard to find with traditional testing techniques, but P# managed to uncover and reproduce them in a small setting. According to the developers, the P# traces were useful, as it allowed them to understand the bugs and fix them in a timely manner. After all the discovered bugs
were fixed, we added flags to allow them to be individually re-introduced, for purposes of evaluation.

Table 2 presents the results from running the P# random and priority-based systematic testing schedulers for 100,000 executions. We report: whether the bug was found (BF?) (√ means it was found, ○ means it was found only using a custom test case, and ⚤ means it was not found); time in seconds to find the bug (Time to Bug); and number of nondeterministic choices made in the first execution that found the bug (#NDC).

were fixed, we added flags to allow them to be individually re-introduced, for purposes of evaluation.

Table 2 presents the results from running the P# systematic testing engine on each case study with a re-introduced bug. The CS column shows which case study corresponds to each bug: “1” is for the Azure Storage vNext; and “2” is for MigratingTable. We do not include the Fabric case study, as we are awaiting confirmation of the found bug (see [3]). We performed all experiments on a 2.5GHz Intel Core i5-4300U CPU with 8GB RAM running Windows 10 Pro 64-bit. We configured the P# systematic testing engine to perform 100,000 executions. All reported times are in seconds.

We implemented two different schedulers that are responsible for choosing the next P# machine to execute in each scheduling point: a random scheduler, which randomly chooses a machine from a list of enabled machines; and a randomized priority-based scheduler, which always schedules the highest priority enabled machine (these priorities change at random points during execution, based on a random distribution). We decided to use these two schedulers, because random scheduling has proven to be efficient for finding concurrency bugs [43, 9]. The random seed for the schedulers was generated using the current system time. The priority-based scheduler was configured with a budget of 2 random machine priority change switches per execution.

For the vNext case study, both schedulers were able to reproduce theExtentNodeLivenessViolation bug within 11 seconds. The reason that the number of nondeterministic choices made in the buggy execution is much higher than the rest of the bugs is that ExtentNodeLivenessViolation is a liveness bug: as discussed in [25], we leave the program to run for a long time before checking if the liveness property holds.

For the MigratingTable case study, we evaluated the P# test harness of [4] on eleven bugs, including eight organic bugs that actually occurred in development and three notional bugs (denoted by *), which are other code changes that we deemed interesting ways of making the system incorrect. The harness found seven of the organic bugs, which are listed first in Table 2. The remaining four bugs (marked ○) were not caught with our default test harness in the 100,000 executions. We believe this is because the inputs and schedules that trigger them are too rare in the used distribution. To confirm this, we wrote a custom test case for each bug with a specific input that triggers it and were able to quickly reproduce the bugs; the table shows the results of these runs. Note that the random scheduler only managed to trigger seven of the MigratingTable bugs; we had to use the priority-based scheduler to trigger the remaining four bugs.

The QueryStreamedBackUpNewStream bug in MigratingTable, which was found using P#, stands out because it reflects a type of oversight that can easily occur as systems evolve. This bug is in the implementation of a streaming read from the virtual table, which should return a stream of all rows in the table sorted by key. The essential implementation idea is to perform streaming reads from both backend tables and merge the results. According to the IChainTable specification, each row read from a stream may reflect the state of the table at any time between when the stream was started and the row was read. The developers sketched a proof that the

Table 2: Results from running the P# random and priority-based systematic testing schedulers for 100,000 executions. We report: whether the bug was found (BF?) (√ means it was found, ○ means it was found only using a custom test case, and ⚤ means it was not found); time in seconds to find the bug (Time to Bug); and number of nondeterministic choices made in the first execution that found the bug (#NDC).

<table>
<thead>
<tr>
<th>CS</th>
<th>Bug Identifier</th>
<th>P# Random Scheduler</th>
<th>P# Priority-based Scheduler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BF?</td>
<td>Time to bug (s)</td>
</tr>
<tr>
<td>1</td>
<td>ExtentNodeLivenessViolation</td>
<td>✓</td>
<td>10.56</td>
</tr>
<tr>
<td>2</td>
<td>QueryAtomicFilterShadowing</td>
<td>✓</td>
<td>157.22</td>
</tr>
<tr>
<td>2</td>
<td>QueryStreamedLock</td>
<td>✓</td>
<td>2,121.45</td>
</tr>
<tr>
<td>2</td>
<td>QueryStreamedBackUpNewStream</td>
<td>⚤</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>DeleteNoLeaveTombstonesEtag</td>
<td>⚤</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>DeletePrimaryKey</td>
<td>✓</td>
<td>2.72</td>
</tr>
<tr>
<td>2</td>
<td>EnsurePartitionSwitchedFromPopulated</td>
<td>✓</td>
<td>25.17</td>
</tr>
<tr>
<td>2</td>
<td>TombstoneOutputETag</td>
<td>✓</td>
<td>8.25</td>
</tr>
<tr>
<td>2</td>
<td>QueryStreamedFilterShadowing</td>
<td>⚤</td>
<td>0.55</td>
</tr>
<tr>
<td>⚤</td>
<td>MigrateSkipPreferOld</td>
<td>⚤</td>
<td>-</td>
</tr>
<tr>
<td>⚤</td>
<td>MigrateSkipUseNewWithTombstones</td>
<td>⚤</td>
<td>-</td>
</tr>
<tr>
<td>⚤</td>
<td>InsertBehindMigrator</td>
<td>○</td>
<td>0.32</td>
</tr>
</tbody>
</table>

4 A P# machine is considered enabled when it has at least one event in its queue waiting to be dequeued and handled.
merging process would preserve this property as long as the migrator was only copying rows from the old table to the new table. But when support was added for the migrator to delete the rows from the old table after copying, it became possible for the backend streams to see the deletion of a row from the old table but not its insertion into the new table, even though the insertion happens first, and the row would be missed.

The P# test discovered the above bug in a matter of seconds. The MigratingTable developers spent just 10 minutes analyzing the trace to diagnose what was happening, although admittedly, this was after they added MigratingTable-specific trace information and had several days of experience analyzing traces. Out of the box, P# traces include only machine- and event-level information, but it is easy to add application-specific information, and we did so in all of our case studies.

7 Related Work

Most related to our work are model checking [15] and systematic concurrency testing [25, 26, 47, 48, 11, 13, 21, 45, 19, 31], two powerful techniques that have been widely used in the past for finding Heisenbugs in the actual implementation of distributed systems. State-of-the-art model checkers, such as ModIST [48] and dBug [45], typically focus on testing entire, often unmodified, distributed systems, an approach that easily leads to state-space explosion. DEcIDE [21], built on top of ModIST, aims to reduce the state-space when exploring unmodified distributed systems. DEcIDE explores individual components of a large system in isolation, and then dynamically extracts interface behavior between components to perform a global exploration. In contrast, we try to offer a more pragmatic approach for handling state-space explosion. We first partially model a distributed system using P#. Then, we systematically test the actual implementation of each system component against its P# test harness. Our approach aims to enhance unit and integration testing, techniques widely used in production, where only individual or a small number of components are tested at each time.

SAMC [31] offers a way of incorporating application-specific information during systematic testing to reduce the set of interleavings that the tool has to explore. Such techniques based on partial-order reduction [14, 13] are complementary to our approach: P# could use them to reduce the exploration state-space. Likewise, other tools can use language technology like P# to write models and reduce the complexity of the system-under-test.

MacEMc [25] is a model checker for distributed systems written in the MacE language. The focus of MacEMc is to find liveness property violations using an algorithm based on bounded random walk, combined with heuristics. Because MacEMc can only test systems written in MacE, it cannot be easily used in an industrial setting. In contrast, P# can be applied on legacy code written in C#, a mainstream language.

Formal methods have been successfully used in industry to verify the correctness of distributed protocols. A notable example is the use of TLA+ [29] by the Amazon Web Services team [32]. TLA+ is an expressive formal specification language that can be used to design and verify concurrent programs via model checking. A limitation of TLA+, as well as other similar specification languages, is that they are applied on a model of the system and not the actual system. Even if the model is verified, the gap between the real-world implementation and the verified model is still significant, so implementation bugs are still a realistic concern.

More recent formal approaches include the Verdi [46] and IronFleet [22] frameworks. In Verdi, developers can write and verify distributed systems in Coq [8]. After the system has been successfully verified, Verdi translates the Coq code to OCaml, which can be then compiled for execution. Verdi does not currently support detecting liveness property violations, an important class of bugs in distributed systems. In IronFleet, developers can build a distributed system using the Dafny [34] language and program verifier. Dafny verifies system correctness using the Z3 [8] SMT solver, and finally compiles the verified system to a .NET executable. In contrast, P# performs bounded testing on a system already written in .NET, which in our experience lowers the bar for adoption by engineering teams.

8 Conclusion

We presented a new methodology for testing distributed systems. Our approach involves using P#, an extension of the C# language that provides advanced modeling, specification and systematic testing capabilities. We reported experience on applying P# on three distributed storage systems inside Microsoft. Using P#, the developers of these systems found, reproduced, confirmed and fixed numerous bugs.

9 Acknowledgments

We thank our shepherd Haryadi Gunawi for his valuable guidance that significantly improved the paper, and the anonymous reviewers for their constructive comments. We also thank Ankush Desai from UC Berkeley, and Rich Draves, David Goebel, David Nichols and SW Worth from Microsoft, for their valuable feedback and discussions at various stages of this work. We acknowledge that this research was partially supported by a gift from Intel Corporation.
References

