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ABSTRACT
One of the benefits to programming of OpenCL is plat-
form portability. That is, an OpenCL program that fol-
lows the OpenCL specification should, in principle, execute
reliably on any platform that supports OpenCL. To assess
the current state of OpenCL portability, we provide an ex-
perience report examining two sets of open source bench-
marks that we attempted to execute across a variety of GPU
platforms, via OpenCL. We report on the portability issues
we encountered, where applications would execute success-
fully on one platform but fail on another. We classify issues
into three groups: (1) framework bugs, where the vendor-
provided OpenCL framework fails; (2) specification limita-
tions, where the OpenCL specification is unclear and where
different GPU platforms exhibit different behaviours; and
(3) programming bugs, where non-portability arises due to
the program exercising behaviours that are incorrect or un-
defined according to the OpenCL specification. The issues
we encountered slowed the development process associated
with our sets of applications, but we view the issues as pro-
viding exciting motivation for future testing and verification
efforts to improve the state of OpenCL portability; we con-
clude with a discussion of these.

1. INTRODUCTION
Open Computing Language (OpenCL) is a general-purpose

parallel programming model, designed to be implementable
on a range of devices including CPUs, GPUs, and FP-
GAs [17]. Much like mainstream programming languages
(e.g. C and Java), the OpenCL specification describes ab-
stract semantics. Concrete platforms that support OpenCL
are then responsible for providing a framework that success-
fully executes applications according to the abstract spec-
ification. This contract between programming model and
platform enables portability ; that is, a programmer can de-
velop programs based on the specification and then execute
the program on any platform that supports the program-
ming model.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IWOCL ’16, April 19 - 21, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4338-1/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2909437.2909440

58%

(29)

36%

(18)

6%

(3)

% of papers that evaluate OpenCL 

implementations from 

1, 2, and 3 GPU vendors

1 2 3

39

23

8
3 1

Number of papers that evaluate an 

OpenCL GPU implementation from 

each vendor

Figure 1: The number of vendors whose OpenCL
GPU implementations are evaluated in 50 recent pa-
pers listed at http://hgpu.org

As discussed in Sec. 3, we focus on GPU platforms in
this study. Many GPU vendors provide implementations of
OpenCL for their respective platforms. In principle, this
means that programs adhering to the OpenCL specifica-
tion should be executable across these platforms. However,
in our experiences many GPU applications (especially in
the research literature) target platforms from a single ven-
dor. To quantify this claim, we manually examined the 50
most recent papers listed on the GPU aggregate website
http://hgpu.org (retrieved 25 Jan. 2016) that feature evalu-
ation of OpenCL applications on GPU platforms (we exclude
papers that exclusively report results for CPUs and/or FP-
GAs). Our findings are summarised in Fig. 1. The pie chart
shows that over half (58%) of the papers evaluated GPUs
from one vendor only. Only three papers (6%) evaluated

chip vendor CUs type abbr. OCL
GTX 980 Nvidia 16 discrete 980 1.1
Quadro K500 Nvidia 12 discrete K5200 1.1
Iris 6100 Intel 47 integrated 6100 2.0
HD 5500 Intel 24 integrated 5500 2.0
Radeon R9 AMD 28 discrete R9 2.0
Radeon R7 AMD 8 integrated R7 2.0
Mali-T628 ARM 4 integrated T628-4 1.2
Mali-T628 ARM 2 integrated T628-2 1.2

Table 1: The GPUs we consider, spanning designs
from four vendors

http://dx.doi.org/10.1145/2909437.2909440
http://hgpu.org
http://hgpu.org


benchmark app. name description GPU architecture source language
Pannotia p-sssp single source shortest path AMD Radeon HD 7000 OpenCL 1.0
Pannotia p-mis maximal independent set AMD Radeon HD 7000 OpenCL 1.0
Pannotia p-colour graph colouring AMD Radeon HD 7000 OpenCL 1.0
Pannotia p-bc betweenness centrality AMD Radeon HD 7000 OpenCL 1.0
Lonestar ls-mst minimum spanning tree Nvidia Kepler and Fermi CUDA 7
Lonestar ls-dmr delaunay mesh refinement Nvidia Kepler and Fermi CUDA 7
Lonestar ls-bfs breadth first search Nvidia Kepler and Fermi CUDA 7
Lonestar ls-sssp single source shortest path Nvidia Kepler and Fermi CUDA 7

Table 2: The applications we consider

on GPUs from three vendors, and no paper presented ex-
periments from more than three vendors. The figure also
shows a histogram counting the number of papers that con-
ducted evaluation on a GPU from each vendor. Nvidia and
AMD are by far the most popular, even though other ma-
jor vendors (e.g. ARM, Imagination, Qualcomm) all provide
OpenCL support for their GPUs. Our investigation suggests
that insufficient effort has been put into assessing the guar-
antees of portability that OpenCL aims to provide.

In this paper, we discuss our experiences with porting and
running several open source applications across eight GPUs
spanning four vendors, detailed in Tab. 1. For each chip we
give the full GPU name, vendor, number of compute units
(CUs), specify whether the GPU is discrete or integrated,
provide a short name that we use throughout the paper for
brevity, and indicate which version of OpenCL the GPU sup-
ports (OCL). As Tab. 1 shows, we consider GPUs of different
sizes (based on number of compute units), and consider both
integrated and discrete chips. We also attempt to diversify
the intra-vendor chips. For Nvidia the 980 and K5200 are
from different Nvidia architectures (Maxwell and Kepler, re-
spectively). For Intel the 6100 is part of the higher end Iris
product line, while the 5500 is part of the consumer HD se-
ries. The applications we consider (which are summarised in
Tab. 2) are taken from two benchmark suites, Pannotia [9]
and Lonestar [8]. For each application we give the bench-
mark suite it is associated with, a short description, the
GPU architecture family the application was evaluated on,
and the original source language of the application. We de-
scribe the benchmark suites and our motivation for choosing
these applications in more detail in Sec. 3.

This report serves to assess the current state of portability
for OpenCL applications across a range of GPUs, by detail-
ing the issues that blocked portability of the applications
we studied. In this work, we consider semantic portability
rather than performance portability; that is, the issues we
document deal with the functional behaviour of applications
rather than runtime performance. Prior work has exam-
ined and addressed the issue of performance portability for
OpenCL programs on CPUs and GPUs (for example [25, 26,
2]); however, we encountered these issues when simply at-
tempting to run the applications across GPUs, without any
attempt to optimise runtime per platform. We report on
these semantic portability issues in detail, classifying them
into three main categories:

• Framework bugs, where a vendor-provided OpenCL
implementation behaves incorrectly according to the
OpenCL specification.

• Specification limitations, where the OpenCL speci-
fication is unclear and where different GPU implemen-
tations exhibit different behaviours.

• Program bugs, where the original program contains
a bug that we observe to be dormant when the pro-
gram is executed on the originally-targeted platform,
but which appears when the program is executed on
different platforms.

Several recent works have raised reliability concerns in re-
lation to GPU programming. Compiler fuzzing has revealed
many bugs in OpenCL compilers [19], targeted litmus tests
have shown surprising hardware behaviours with respect to
relaxed memory [1], and program analysis tools for OpenCL
have revealed correctness issues, such as data races, when
used to scrutinise open source benchmark suites [3, 10]. In
contrast to this prior work, which specifically set out to ex-
pose bugs, either through engineered synthetic programs [19,
1], or by searching for defects that might arise under rare
conditions [3, 10], we report here on portability issues that
we encountered “in the wild”. These issues arose without
provocation when attempting to run open source applica-
tions. In fact, as discussed further in Section 3, the porting
effort that led to this study was undertaken as part of a sep-
arate, ongoing research project; to make progress on that re-
search project we were hoping that we would not encounter
such issues. We believe that the “real-world” nature of the
issues experienced may be closer to what GPU application
developers encounter day-to-day, compared with the issues
exposed by targeted testing and formal verification.

Our hope is that this report will make the following contri-
butions to the OpenCL community. For software engineers
endeavouring to develop portable OpenCL applications, it
can serve as hazard map for issues to be aware of, and sug-
gestions for working around such issues. For vendors, it can
serve to identify areas in OpenCL frameworks that would
benefit from more robust examination and testing. For re-
searchers, the issues we report on may serve as motivational
case-studies for new verification and testing methods.

Despite the challenges we faced, in most cases we were
able to find a work-around, and overall we consider our ex-
perience a success: OpenCL application portability can be
achieved with effort, and this effort will diminish as vendor
implementations improve, aspects of the specification are
clarified, and better analysis tools become available.

The structure of the paper is as follows: Sec. 2 contains
an overview of OpenCL and common elements of a GPU
OpenCL framework. The applications we ported are de-
scribed in Sec. 3. Section 4 documents the issues we classi-
fied as framework bugs. Section 5 documents the issues we
classified as specification limitations. Section 6 documents
the issues we classified as programming bugs. We then sug-
gest ways that we believe the state of portability of OpenCL
GPU programs could be improved in Sec. 7. Finally, we con-
clude in Sec. 8.



2. BACKGROUND ON OPENCL
OpenCL Programming. An OpenCL application con-
sists of two parts: host code, usually executed on a CPU,
and device code, which is executed on an accelerator de-
vice; in this paper we consider GPU accelerators. The host
code is usually written in C or C++ (although wrappers
for other languages now exist) and is compiled using a stan-
dard C/C++ compiler (e.g. gcc or MSVC). The OpenCL
framework is accessed through library calls that allow for
the set-up and execution of a supported device. The API for
the OpenCL library is documented in the OpenCL specifica-
tion [17], and it is up to the vendor to provide a conforming
implementation that the host code can link to.

The device code is written in OpenCL C [14] (similar to
C99). The code is written in an SIMT (single instruction
multiple thread) manner, such that all threads execute the
same code, but have access to unique thread identifiers. The
device code must contain one or more entry functions where
execution begins; these functions are called kernels.

OpenCL supports a hierarchical execution model that
mirrors features common to some of the specialised hardware
that OpenCL kernels are expected to execute on, in partic-
ular features common to many GPU architectures. Threads
are partitioned into disjoint, equally-sized sets called work-
groups. Threads within the same workgroup can use OpenCL
primitives for efficient communication. For example, each
workgroup has a disjoint region of local memory ; only threads
in the same workgroup can communicate using local mem-
ory. OpenCL also provides an intra-workgroup execution
barrier. On reaching a barrier a thread waits until all threads
in its workgroup have reached the barrier. Barriers can
be used for deterministic communication. To aid in finer-
grained and intra-device communication, OpenCL provides
a set of atomic read-modify-write instructions where threads
can atomically access, modify and store a value to memory.
All device threads have access to a region of global memory.

Newer GPUs provide support for the OpenCL 2.0 mem-
ory model [17, pp. 35-53], which is similar to the C++11
memory model [13, pp. 1112-1129]. In this model, synchro-
nisation memory locations must be declared with special
atomic types (e.g. atomic_int). Accesses to these memory
locations can be annotated with a memory order indicating
the extent to which the access will synchronise with other
accesses (e.g. release, acquire), and a scope in the OpenCL
hierarchy to indicate with which other threads in the concur-
rency hierarchy the access should communicate (e.g. a scope
can be intra-workgroup or inter-workgroup). If no memory
order is provided, a default memory order of sequentially
consistent is used [14, p. 103]. Rules on the orderings pro-
vided by these annotations are given both in the standard
and (more formally) in recent academic work [5].

While support in OpenCL 2.0 facilitates finer-grained in-
teractions between the host and device, traditionally the
host and device interact at a course level of granularity, and
this is the case for the applications we consider in this pa-
per. The host and device do not share a memory region, thus
the host must explicitly transfer any input data the kernel
needs to the device through the OpenCL API. The host is
responsible for then setting the kernel arguments and finally
launching the kernel, again all using the OpenCL API.

A similar language for programming GPUs is CUDA [21].
This language is Nvidia-specific and thus not portable across
GPU vendors.

Components of an OpenCL Environment. To enable
OpenCL support for a given device, a vendor must provide
a compiler for OpenCL C that targets the instruction set of
the device, and a runtime capable of coordinating interac-
tion between the host and the specific device. It is the role
of the OpenCL specification to define requirements that the
compiler and runtime must adhere to in order to successfully
execute valid applications. It is the vendor’s job to ensure
that these requirements are met in practice, and clarity in
the OpenCL specification is essential to achieving this.

The device, compiler and runtime comprise a complete
OpenCL environment. Issues in any one of these compo-
nents can cause the contract between the OpenCL specifi-
cation and the vendor-provided environment to be violated.

3. EVALUATED APPLICATIONS
This experience report is a by-product of an ongoing

project that explores using the OpenCL 2.0 relaxed memory
model [17, pp. 35-53] to design custom synchronisation con-
structs for GPUs. For that project, we sought benchmarks
that might benefit from the use of fine-grained communica-
tion idioms. We discovered that applications containing ir-
regular parallelism over dynamic workloads provided a good
fit for our goals. With this in mind, we found two suites of
open source benchmarks to experiment with: Pannotia [9]
and Lonestar [8]. The applications are summarised in Tab. 2.
The short names of Pannotia and Lonestar applications are
prefixed with “p” and “l”, respectively.

The Pannotia benchmarks were originally developed to
examine fine-grained performance characteristics of irregular
parallelism on GPUs, such as cache hit rate and data transfer
time. The benchmarks were written in OpenCL 1.0, and
evaluated using AMD GPUs. There are six applications in
the benchmark suite in total, of which we consider four.
The two applications we did not consider were structured in
a way such that we could not easily see how to apply our
experimental custom synchronisation constructs (recall that
applying these constructs was what motivated us to evaluate
these benchmarks across GPUs from a range of vendors).

The Lonestar applications were originally written in
CUDA and evaluated using Nvidia GPUs; we ported these
applications to OpenCL. Like the Pannotia applications, the
Lonestar applications measure various performance charac-
teristics of irregular applications, including control flow di-
vergence between threads.

The Lonestar applications use non-portable, Nvidia-
specific constructs, including single dimensional texture
memory, warp-aware operations (e.g. warp shuffle com-
mands), and a device-level barrier. For each, we attempted
to provide portable OpenCL alternatives, changing texture
memory to global memory, rewriting warp-aware idioms to
use workgroup synchronisation, and using the OpenCL 2.0
memory model to write a device-level barrier. There are
seven applications in the Lonestar benchmark suite, of which
we consider four. Similar to the Pannotia benchmarks, the
three applications we did not consider were structured in a
way that we could not easily see how to apply our custom
synchronisation constructs.

Both benchmark suites contain an sssp application, how-
ever they are fundamentally different. The Lonestar version
(ls-sssp) uses shared task queues to manage the dynamic
workload. The Pannotia version (p-sssp) is implemented



by iterating over common linear algebra methods. We thus
consider them as two distinct applications.

4. FRAMEWORK BUGS
Here we outline three issues that we believe, to the best of

our knowledge and debugging efforts, to be framework bugs.
We experienced these issues when experimenting with cus-
tom synchronisation constructs in the applications of Tab. 2
across the chips of Tab. 1.

For each bug, we give a brief summary that includes a
short description of the bug, the platforms on which we ob-
served the bug, the status of the bug (indicating whether we
have reported the issue and if so whether it is under investi-
gation) and, if applicable, a work-around. We additionally
give each issue a label for ease of reference in the text.

After the summary, we elaborate more about how we came
across the issue and our debugging attempts. Where we have
not reported the issues, this is due to exposure of the issue
requiring use of our custom synchronisation constructs, the
fruits of an ongoing and as-yet-unpublished project. Once
we publish these constructs, we will report the issues.

Framework bug 1: compiler crash

Summary: The OpenCL kernel compiler crashes nonde-
terministically.
Platforms: 5500 and 6100 (Intel)
Status: Unreported
Workaround: Add preprocessor directives to reduce the
number of kernels passed to the compiler
Label: FB-CC

We encountered this error when experimenting with cus-
tom synchronisation constructs in the p-sssp application.
The original application contained four kernel functions. Us-
ing our synchronisation construct, we implemented three
new kernel functions, each of which performed some or all of
the original computation using different approaches (e.g. by
varying the number and location of synchronisation opera-
tions). For convenience, we located all seven kernel functions
in a single source file.

We noticed that when we executed scripts to benchmark
the different kernels, the application would crash roughly
one in ten times with an unknown error, producing an out-
put that looks like a memory dump. Our debugging ef-
forts showed that the application was crashing when the
OpenCL C compiler was invoked via the OpenCL API func-
tion clBuildProgram.

In an attempt to find the root cause of this issue, we tried
to reduce the size of the OpenCL source file. We were able
to reduce the problem to a kernel file that contained only
two large kernel functions. At this point, when either of the
kernel functions were removed, the error disappeared. Our
hypothesis is that the error is due to the OpenCL kernel file
containing multiple large kernel functions. We were able to
work around this issue by surrounding the kernel functions
in the kernel file with preprocessor conditionals. We then
used the -D compiler flag to exclude all kernels except the
one we were currently benchmarking.

We have not yet reported this issue as the kernels which
cause the compiler to crash contain our custom synchroni-
sation constructs.

Framework bug 2: deadlock with break-terminating
loops

Summary: Loops without bounds (using break state-
ments to exit) lead to kernel deadlock
Platforms: K5200 (Nvidia), R7, R9 (AMD)
Status: Unreported
Workaround: Re-write loop as a for loop with an over-
approximated iteration bound
Label: FB-BTL

When experimenting with the Pannotia benchmarks, we
found it natural to write the applications using an un-
bounded loop which breaks when a terminating condition
is met (e.g. when there is no more work to process). The
following code snippet illustrates this idiom:

1 while (1) {
2 terminating_condition = true;
3
4 // do computation , setting terminating_condition
5 // to false if there is more work to do
6
7 if (terminating_condition) {
8 break;
9 }

10 }

On K5200, R7 and R9, we discovered that this idiom can
deterministically cause non-termination of the kernel. Our
debugging attempts led us to substitute the infinite loop
with a finite loop with large bounds (keeping the break

statements). We began with a loop bound of INT_MAX. After
this change, the applications correctly terminated. To de-
termine if threads were actually executing the loop INT_MAX

times, we tracked how many times each of the threads ex-
ecuted the loop. We observed that no thread actually exe-
cuted the loop for INT_MAX iterations. That is, each thread
terminated early through the break statement.

Given this, we believe that the non-termination in the
original code with the infinite loop is due to a framework
bug (e.g. a compiler bug). The work-around is to replace
while(1) loop header with a for loop header that uses a
large over-approximation of the number of iterations of the
loop that will actually be executed.

As with FB-CC, we did not report the issue yet because
this example uses our currently unpublished synchronisation
constructs. While we do not believe that the issue is related
specifically to the new synchronisation constructs, it does
seem that a suitably complex kernel is required to cause this
behaviour; our attempts to reduce the issue to a significantly
smaller example caused the problem to disappear.

Framework bug 3: defunct processes

Summary: GPU applications become defunct and un-
responsive when run with a Linux host
Platforms: R7 and R9 (AMD)
Status: Known
Workaround: Change host OS to Windows
Label: FB-DP

In experimenting with new synchronisation constructs in
the Pannotia applications we generated kernels that could
potentially have high runtimes (around 30 seconds). Most
systems we experimented with employed a GPU watchdog
daemon (see Sec. 5) which catches and terminates kernels



that have executed for longer than a certain time limit (usu-
ally 1–10 seconds).

On most systems, we were able to disable the watchdog
and successfully execute our long running kernels. How-
ever, for AMD GPUs under a Linux OS, the watchdog could
not be disabled and, in fact, was quite disruptive in its be-
haviour. Specifically, long running kernels were not only
terminated, but they became defunct. These defunct pro-
cesses were unable to be killed by any command we were
able to find. A defunct GPU application blocks the GPU
from executing any new GPU application. The only means
to remove the defunct process and allow the GPU to execute
applications again was a power cycle on the machine.

Unlike the previous issues, this is a known issue and doc-
umented on the vendor’s OpenCL distribution webpage.1

This issue is documented as only affecting GPU applications
with a Linux OS host. Thus, to attempt to work around this
issue, we switched the OS on the machine to Windows; we
did not observe the error after this switch. Due to the sever-
ity of this issue (i.e. applications simply not being runnable
and requiring a reboot to restore the GPU), we hope the
issue is fixed soon.

5. SPECIFICATION LIMITATIONS
In this section we document issues we encountered that

we believe to be genuine specification limitations. That is,
these issues arise from constructs whose semantics is not
precisely dictated by the OpenCL specification, leading to
different platforms exhibiting different behaviours. While
these do not necessarily correspond to application or speci-
fication bugs, they are behaviours we found interesting and,
in some cases, surprising. Each issue required investigating
erroneous application behaviours on certain platforms when
the same application ran as expected on other platforms.

Specification limitation 1: device memory allocation
failures

Summary: Allocating device memory fails nondetermin-
istically
Platforms: 5500 and 6100 (Intel)
Workaround: Self-manage large chunks of memory
Label: SL-DMAF

For each GPU application (and input data-set) we exper-
imented with, we identified the memory requirements for
both the host and device. We then only ran applications
and input data-sets on hosts (and GPUs) with sufficient re-
sources to satisfy the application requirements. One such
application requirement is the maximum amount of mem-
ory that can be allocated at a time. A platform can check
if it satisfies this requirement by querying the device at-
tribute named CL_DEVICE_MAX_MEM_ALLOC_SIZE through the
OpenCL API. Because for Intel GPUs global device memory
is mapped to system DRAM, the total application memory
(host and device) needs to be less than amount of system
DRAM [12, p. 15].

When running experiments, we noticed that occasion-
ally GPU memory allocations would fail on Intel platforms,
returning the error CL_MEM_OBJECT_ALLOCATION_FAILURE.
This error occurs despite the fact that the total avail-

1see: http://developer.amd.com/download/AMD APP
SDK Release Notes Developer.pdf

able RAM and global memory on the host and GPU ex-
ceeds the memory requirements of the application. The
available memory on the host can be obtained by examin-
ing the Windows performance monitor utility and the to-
tal GPU global memory can be determined through the
CL_DEVICE_GLOBAL_MEM_SIZE value. In an effort to reduce
the application to a smaller test case, we found that this
behaviour arises when allocating large chunks of host mem-
ory (e.g. through malloc) before the failing device memory
allocations. The total amount of host memory allocated was
∼1.2GB while the total amount of device memory allocated
was ∼400MB. The host machine runs Windows 10 with 8GB
total memory; when idling ∼4GB of memory is free.

We were able to ask an Intel representative about this be-
haviour. The response was that memory allocation was fail-
ing due to the fragmentation of previously allocated memory.
That is, the previously allocated memory was positioned in
such a way that there did not exist a contiguous piece of
memory large enough to satisfy the memory allocation re-
quest. The solution proposed to us was to modify our code
to perform a small number of large allocations, rather than
many smaller allocations, and to manually write memory
management code to divide the large allocated chunks of
memory into the smaller chunks used by the program.

This issue shows that even though a machine has the re-
sources required to run a particular OpenCL application,
the application may still nondeterministically fail to allo-
cate memory unless the memory is explicitly user-managed.
Luckily this issue is not fatal and can be caught by checking
the result of every device memory allocation.

Because of the potential for introducing bugs using low-
level user managed data, we did not add this fix to our
application and instead opted to simply detect and re-run
executions that failed due to this issue until the memory allo-
cation succeeded. Applications that require a higher degree
of robustness (e.g. applications that cannot tolerate resets)
will likely not be able to take this approach.

Interestingly, while conceptually it would seem that this
issue could appear on any system, we observed it only for
5500 and Iris. The machine containing 5500 also contains a
small Nvidia discrete GPU (GeForce 940m). Even though
the Nvidia chip has less device memory than the 5500, the
Nvidia chip reliably runs these applications with no issues.

Specification limitation 2: GPU watchdogs

Summary: Long running GPU kernels are killed by a
watchdog
Platforms: All platforms running a display server (e.g.
X11 on Linux or any Windows OS)
Workaround: Run on platform with no graphics layer
or modify the watchdog
Label: SL-GW

Rendering of the OS GUI (e.g. Windows explorer or X11
on Linux) is frequently achieved using a GPU. Thus, if a
GPU application does not terminate, the OS GUI can be-
come unresponsive resulting in a “freeze”. In our experience,
on Windows operating systems this requires a reboot to ter-
minate the GPU application; on Linux it can usually be
resolved by opening a virtual console and manually killing
the GPU application.

To avoid having to use these disruptive measures to kill
non-terminating GPU applications, operating systems with

http://developer.amd.com/download/AMD_APP_SDK_Release_Notes_Developer.pdf
http://developer.amd.com/download/AMD_APP_SDK_Release_Notes_Developer.pdf


a GPU-driven GUI often have a GPU watchdog daemon,
which kills GPU activities that run for longer than a cer-
tain time limit. The granularity at which the GPU activ-
ity is killed varies across platforms. For example, the GPU
watchdog in Windows kills the entire process that launched
the long running kernel (i.e. the entire OpenCL application)
while the X11 watchdog only kills the kernel, and an error
code is returned to the OpenCL host. By default, the time
limit threshold is relatively short, usually only several sec-
onds. The pragmatic advantage of a watchdog is obvious: it
protects against system freezes. The price for this benefit is
that the watchdog prohibits execution of long-running, but
terminating, GPU kernels.

In our experiments with the Pannotia and Lonestar ap-
plications, we developed kernels that executed for far longer
than allowed by each of the watchdogs of our test systems,
leading to these applications (or kernels in the applications)
being killed. The method for “taming” the watchdog was
different for each OS. On Windows, the watchdog can be
straightforwardly configured through the Windows registry
TDR keys2 (requiring a reboot to register a new configura-
tion). On Linux (using X11), the watchdog can be modified
through the Xorg configuration file3 and requires only the
X11 service to be restarted.

We encountered two cases where watchdog taming was
not straightforward. First, the AMD OpenCL framework
appeared to contain a watchdog bug under Linux that pre-
vented GPU applications from terminating correctly; we
document this Sec. 4 as issue FB-DP. The workaround for
this was to load a Windows OS on the machine containing
AMD GPUs. Second, the machines containing the ARM
GPUs used a custom Linux-based OS with a custom GUI.
For this OS, we ascertained that the watchdog logic was
hard-coded into the GPU driver and there existed no way
to disable (or modify the time threshold of) the watchdog.
To work around this issue, we loaded a traditional Linux OS
on the machine; this allowed manual watchdog control.

Variations between operating systems related to default
timing thresholds and mechanisms for configuring and dis-
abling GPU watchdogs make it difficult to produce portable
GPU applications that invoke long-running kernels. This is
especially difficult given the different granularities at which
GPU activities are killed. Because watchdog properties are
not specified by the OpenCL SDK, there is no portable
method, to our knowledge, by which an application can be
programmed defensively to guard against watchdog effects.

Specification limitation 3: Occupancy vs. compute
units

Summary: The number of reported compute units can-
not safely be used as a lower bound on workgroup occu-
pancy when using a persistent thread model
Platforms: 5500 and 6100 (Intel)
Workaround: Use trial and error to determine number
of persistent threads
Label: SL-OCU

OpenCL does not provide traditional forward progress
guarantees between workgroups [17, p. 31]:

2see: https://msdn.microsoft.com/en-us/library/windows/
hardware/ff569918(v=vs.85).aspx
3see: http://nvidia.custhelp.com/app/answers/detail/a id/
3029/˜/using-cuda-and-x

A conforming implementation may choose to se-
rialize the work-groups so a correct algorithm
cannot assume that workgroups will execute in
parallel. There is no safe and portable way to
synchronize across the independent execution of
work-groups since once in the work-pool, they
can execute in any order.

Because workgroups may be serialised, an OpenCL appli-
cation can deadlock if a scheduled workgroup spins waiting
for a workgroup that is not scheduled. A proposed work-
around is known as the persistent thread model, which as-
sumes that GPU kernels launched with at most as many
workgroups as can be occupant on the GPU will have tra-
ditional forward progress guarantees [11]. Using the experi-
mentation described in [11], we found that the GPUs in our
study appear to satisfy the persistent thread model. There-
fore, by determining the workgroup occupancy of the GPU
and kernel (as the occupancy depends on the resources used
by the kernel, e.g. local memory), we can successfully im-
plement applications that rely on forward progress between
occupant workgroups.

The Lonestar applications contain a custom device-level
execution barrier that assumes kernels are launched with at
most the number of persistent workgroups, otherwise the
execution barrier will deadlock. When experimenting with
these applications across vendors, we assumed that the num-
ber of reported GPU compute units would provide a safe
lower bound on the number of the number of persistent
workgroups. Our assumption was based on documentation
from various sources. For example, the OpenCL optimisa-
tion guide from Intel states:4

An OpenCL device has one or more compute
units. A workgroup executes on a single com-
pute unit.

Our interpretation of this quote led us to believe that (at
least in the case of Intel) the GPU can be occupied by at
least as many workgroups as there are compute units.

For most platforms we experimented with, we found that
the number of compute units was a safe (although in some
cases not tight) estimate of the persistent workgroups. That
is, a device level barrier could safely be executed with ker-
nels running as many workgroups as compute units. The
one exception was in the case of GPUs from Intel (i.e. 5500
and Iris). For these GPUs we found that the reported num-
ber of compute units was much higher than the number of
workgroups that could safely execute a device-level execu-
tion barrier.

In particular, 5500 and Iris report 24 and 47 compute units
respectively from the device query OpenCL API (Query-
ing the CL_DEVICE_MAX_COMPUTE_UNITS attribute). The ls-
bfs application, which contains a device-level barrier, will
deadlock on these chips if run with the number of work-
groups equal to the number of compute units (and with
256 threads per workgroup). However, the same applica-
tion will run without error if executed with 9 and 18 work-
groups for 5500 and Iris respectively. We determined these
numbers through trial and error; that is, launching the ap-
plication with successively fewer workgroups until we did
not observe deadlock. This method is arduous as deadlocks

4from https://software.intel.com/sites/landingpage/
opencl/optimization-guide/Basic Concepts.htm

https://msdn.microsoft.com/en-us/library/windows/hardware/ff569918(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff569918(v=vs.85).aspx
http://nvidia.custhelp.com/app/answers/detail/a_id/3029/~/using-cuda-and-x
http://nvidia.custhelp.com/app/answers/detail/a_id/3029/~/using-cuda-and-x
https://software.intel.com/sites/landingpage/opencl/optimization-guide/Basic_Concepts.htm
https://software.intel.com/sites/landingpage/opencl/optimization-guide/Basic_Concepts.htm


on these machines required a reboot to restore the GPU.
Additionally this method is not robust. Kernels that use
more resources (e.g. more local memory) have fewer persis-
tent workgroups. For example, a test application that uses
the maximum amount of available local memory is only able
to run with at most 3 and 6 workgroups for 5500 and 6100
respectively without deadlock.

This experience shows that applications relying on the
persistent thread model cannot use the number of compute
units as a safe estimate for occupancy.

Specification limitation 4: memory consistency

Summary: Pre OpenCL 2.0 GPUs do not support some
inter-workgroup communication.
Platforms: Pre OpenCL 2.0 GPUs
Workaround: None
Label: SL-MC

The memory model of a device determines which values
load operations are allowed to return, e.g. stored values may
be temporarily held in a private store buffer or cache and
not visible to all other threads. Typically, operations known
as fences can be used to enforce ordering between memory
accesses, e.g. by flushing the local cache. Because synchro-
nisation constructs often require fine-grained interactions
between threads, the memory model must be considered
when implementing such constructs. Because our aim was
to experiment with custom synchronisation constructs in the
Pannotia and Lonestar applications, we required a portable
and well-documented memory model to reason about these
applications using our constructs.

While the OpenCL 1.x (1.0, 1.1, and 1.2) specification in-
cludes memory fence functions, their behaviour is not well
documented. For example, the specification for OpenCL
1.0 contains only three memory fence instructions and one
page of documentation [15, p. 200]. The other OpenCL 1.x
versions do not change in with respect to memory fences
from 1.0. In contrast, the C++11 memory model has 17
pages of documentation and several examples [13, pp. 1112-
1129]. The OpenCL 2.0 specification describes a memory
model similar to that of C++11, which allows for well-
defined fine-grained communication between threads. Un-
fortunately, OpenCL 2.0 is not widely supported currently.
To experiment on a wide range of chips, we attempted to
manually implement a subset of the OpenCL 2.0 atomic op-
erations and fences, which we use as building blocks for our
custom synchronisation constructs.

We produced two custom OpenCL 2.0 memory model im-
plementations. The first implementation uses fences avail-
able in OpenCL 1.x for synchronisation; therefore this imple-
mentation can be executed by any chip supporting OpenCL.
Our second implementation uses Nvidia-specific constructs,
namely inline PTX [22] (the low-level intermediate language
for Nvidia chips). This implementation can only be executed
on Nvidia chips; however, the memory model for Nvidia
PTX has been empirically investigated (see [1]), the results
of which we used to inform our implementation.

Given that the OpenCL 2.0 memory model is similar to
C++11, we based our OpenCL 2.0 implementation on an
existing compilation mapping of C++11 atomic operations
to PowerPC assembly instructions given in [6]. Namely,
our implementation provides the same placement of fences
as the C++11 to PowerPC compiler mapping, except us-

chip vendor CL version passed tests
GTX 480 Nvidia OpenCL 1.1 No
Tesla C2075 Nvidia OpenCL 1.1 No
GTX 980 Nvidia OpenCL 1.1 Yes
Quadro K500 Nvidia OpenCL 1.1 Yes
HD 4400 Intel OpenCL 1.2 No
Radeon HD 7970 AMD OpenCL 1.2 No
Radeon HD 6570 AMD OpenCL 1.2 No
Mali-T628 ARM OpenCL 1.2 Yes
Mali-T628 ARM OpenCL 1.2 Yes

Table 3: Pre OpenCL 2.0 chips we tested for consis-
tent inter-workgroup communication

ing OpenCL 1.0 fences (or PTX fences [22, p. 187] for
Nvidia chips) instead of PowerPC fences. In cases when
we were unsure, we erred on the side of safety, e.g. we added
the strongest available fences to attempt to guarantee re-
lease/acquire semantics for atomic operations equipped with
these memory order annotations.

To test our custom OpenCL 2.0 memory model implemen-
tation, we wrote some custom synchronisation constructs
(e.g. mutexes and concurrent data-structures) with accom-
panying unit tests. Chips that supported OpenCL 2.0 passed
the unit tests (as expected). We then ran the tests on a vari-
ety of pre OpenCL 2.0 chips via our custom memory model
implementation. The chips we tested and the outcomes are
listed in Tab. 3. The chips that passed these tests were con-
sidered in our overall study and are also given in Tab. 1.
The chips that failed were not considered any further in our
study as we found no way to enforce reliable inter-workgroup
synchronisation. The chips common to Tab. 1 and Tab. 3
are the chips that do not support OpenCL 2.0, but passed
our memory model unit tests. The chips in Tab. 1 but not
in Tab. 3 are chips that already support OpenCL 2.0.

The two Nvidia chips that failed (Tesla C2075 and
GTX 480) were shown in previous work to not support
inter-workgroup communication regardless of synchronisa-
tion (fences) [1]. This was hypothesised to be due to inco-
herent caches; that is, the L1 cache (shared within a work-
group) and the L2 cache (shared over all workgroups) did
not maintain a consistent state. We speculate that the other
chips that failed may have similar characteristics. The chips
that passed the unit tests under our custom OpenCL 2.0
implementation have continued to reliably execute all our
other experiments.

This experience shows that custom implementations of
OpenCL 2.0 primitives can behave substantially differently
across different platforms. Developers who are programming
for platforms that do not support OpenCL 2.0 but use some
OpenCL 2.0 constructs should tread carefully, even if they
have a well-informed custom implementations.

Specification limitation: floating-point accuracy

Summary: Platforms may compute with differing
floating-point accuracy
Platforms: Intel GPUs compared to Nvidia GPUs
Workaround: None
Label: SL-FPA

The ls-dmr application was originally written to use double-
precision floating-point values; however only four of the
GPUs we considered support double-precision: 980, K5200,
R7, and R9 (this can be checked through the cl_khr_fp64



chip Linux Windows
R9 Limited Yes
R7 Limited Yes
T628-2 Yes No
T628-4 Yes No

Table 4: GPU Operating system portability

extension). To try to obtain preliminary results for the other
GPUs, we experimented with changing the double-precision
values to single-precision values. Our hope was ls-dmr would
be safe with respect to this this change and we could test the
feasibility of custom synchronisation constructs in this ap-
plication. The application contains a validation check upon
completion, which we use to determine success or failure.

The first platform we attempted to run the single-precision
variant of ls-dmr on was 5500. On this platform, the single-
precision variant executed without issue, terminating suc-
cessfully and passing the validation check. We were thus
hopeful that the single-precision variant would be robust
enough to run on other platforms.

We next tried the single-precision variant on K5200; al-
though this device supports double-precision, we wanted to
access the behaviour (e.g. performance and correctness) of
the single-precision variant. We observed the application
deterministically returned error codes (e.g. due to out of
bounds memory accesses) or did not terminate. We con-
clude that on this platform, single-precision is not sufficient
for this application. Thus, even though single-precision ap-
peared to work on 5500, it reliably failed on K5200.

This experience shows that the behaviour of applications
can change across platforms, even when the same floating-
point precision is used. Floating-point representation and
accuracy for GPUs have been documented and discussed in
previous work (for example, Nvidia floating-point properties
are discussed in [27]). Additionally, the OpenCL C specifi-
cation provides several avenues for implementation defined
behaviour, as illustrated by the following quote [14, p. 176]

Support for denormalized numbers with single-
precision floating-point is optional. Denormal-
ized single-precision floating-point numbers passed
as input or produced as the output of single-
precision floating-point operations . . . may be flushed
to zero.

These implementation defined behaviours can lead to dif-
ferences in application behaviours with respect to floating-
point computations. That is, the deliberate flexibility al-
lowed for floating-point precision in the specification can
provide portability difficulties in GPU applications.

Due to the complex nature of this application (over 700
lines of code, including complex numerical routines and syn-
chronisation primitives) we were unable to pinpoint the ex-
act location where inaccuracies arise or how to work around
them. Thus we were only able to run this application on
GPUs which supported double-precision computations.

Specification limitation 6: operating system porta-
bility

Summary: Applications written to target a specific OS
(e.g. Linux) are generally not immediately portable to an-
other OS (e.g. Windows). Because of OS constraints on
GPUs, this hinders application portability.
Platforms: R7, R9 (AMD), T628-4, T628-2 (ARM)
Workaround: extend code to use OS portable con-
structs
Label: SL-OSP

In our experiences attempting to run applications across a
variety of GPUs, we found that some GPUs were only acces-
sible (or reliable) through a certain operating system. This
means that for applications to run on these“OS-constrained”
GPUs, the host code must be portable across multiple op-
erating systems. This is in contrast to our experiences with
CPUs, which are typically compatible with multiple main-
stream operating systems.

We summarise operating system compatibility for the
GPUs used in this study in Tab. 4. This table lists the
chips of Tab. 1 for which we experienced issues with OS
support. For the other chips, while support for both Linux
and Windows is available, we only experimented only with
a single operating system as the available OS didn’t cause
issues. For R7 and R9, we began our experiments on Linux,
but due to the defunct process framework bug (see Sec. 4 is-
sue FB-DP), we had to change the host operating system to
Windows. For ARM GPUs, there is no option to run Win-
dows on the host machine. This shows that at least half of
our GPUs required a particular (and distinct) OS to success-
fully run OpenCL GPU applications. The OS constraints
could possibly apply to more of our chips as we did not test
(a) Intel chips on Linux or (b) Nvidia chips on Windows.

The Pannotia and Lonestar applications were both devel-
oped targeting the Linux operating system; however, we re-
quired that the applications run under Windows (for R7 and
R9). We found that none of the applications were portable
to Windows as provided and we had to add macros for OS
portability. The issues we encountered were largely in file
I/O and timing functionality. We additionally found several
more portability issues:

• The endian.h header is not standard on Windows.
We had to provide a custom implementation of sev-
eral functions.

• Windows provides a non-portable definition of max and
min that clash with the std-provided max and min

After identifying these issues, we were able to successfully
extend the code to be portable across operating systems.

We found that the Pannotia applications contained a bug
in file I/O which was silent on Linux but caused a fatal
runtime error for Windows. We have contacted the authors
who are looking into these issues.

6. PROGRAMMING BUGS
Here we describe three issues that we class as program-

ming bugs. That is, the application code contained bugs
that could arise from (a) valid (and well-specified) OpenCL
executions that the application did not account for, or (b)
executions leading to undefined behaviour (and hence no



guaranteed semantics). However, these bugs did not mani-
fest themselves frequently (or at all) on the original target
platform. When ported to another platform these bugs man-
ifested more frequently, causing incorrect results or crashes.
Thus, although program bugs on one platform may be dor-
mant, the same bugs can have serious consequences when
executed on a different platform.

Programming bug 1: data races

Summary: Applications contain harmful data races that
do not appear on the originally-targeted platform, but do
appear after porting to another platform
Applications: ls-bfs and ls-sssp
Status: Reported and acknowledged
Workaround: Add additional synchronisation con-
structs
Label: PB-DR

This issue was encountered when porting the ls-bfs and ls-
sssp applications to OpenCL, as they were originally written
in CUDA. These applications use a custom device execution
barrier construct that allows deterministic communication
across workgroups if memory accesses are separated (i.e.
synchronised) with this barrier. If these accesses are not
synchronised, communication may be nondeterministic. We
observed these applications contain data races that could
lead to computation of incorrect results.

The data races we discovered are present in the original
CUDA versions of the ls-bfs and ls-sssp applications, but
we only observed errors when running the ported OpenCL
variant. Specifically, the CUDA variant executed reliably
on the 980 but the OpenCL variant exhibited errors roughly
one in twenty executions when executed on the same 980.

To explain the data races, we show the high level steps of
the two applications, which follow the same pattern. Each
application uses two global task lists, one for input tasks
from which threads take work, and one for output tasks to
which threads push new work. The steps the application
takes are then as follows:

1. The threads cooperate to process work from the input
task list and push new work to the output task list;

2. The threads synchronise using an execution barrier;

3. Local pointers to input and output task lists are
swapped, so that the input task list becomes the out-
put and vice versa;

4. The output task list is reset; this was previously the
input task list whose work was computed in step 1;

5. If input task list is empty the application terminates,
otherwise the process repeats starting at step 1.

The data race we discovered occurs between steps 5 and
1 (when the steps repeat). Specifically, all workgroups syn-
chronise at step 2. At this point one workgroup (a say) may
execute steps 3–5. Workgroup a then observes that the in-
put task list is not empty and continues to step 1 in which
it pushes some work to the output task list. Another work-
group (b say), which may have been stalled at step 2 during
this time, then begins to execute. Workgroup b executes
steps 3 and 4. While executing step 4, b resets the output
work list that a has previously pushed work to. Thus the

work pushed by a is lost. This leads to incorrect results in
the application. The solution is to add another execution
barrier after step 4.

We have reported these data races to the developer who
has acknowledged the issue. The developer mentioned that
rather than placing another (expensive) barrier inside the
loop, they are devising a new way to manage the task queues,
which neither contains the race nor requires the barrier.

Programming bug 2: stability

Summary: Applications that fail rarely (deemed accept-
able by the developer) on one platform, fail frequently on
a different platform
Applications: ls-dmr
Status: Acknowledged
Workaround: None

This issue was encountered when running experiments on
ls-dmr. We observed that even the original CUDA appli-
cation failed rarely (roughly one in a hundred runs) when
executed on Nvidia chips. These failures were in the form
of kernel failures that can arise e.g. due to out of bounds
memory accesses, or deadlocks. We spoke to a developer
who confirmed that these occasional failures were known but
deemed acceptable due to the nature of the computation.

In our OpenCL port, we observed roughly the same failure
rate on Nvidia chips. However, when we attempted to run
the application on AMD chips (R7 and R9) we observed fail-
ures on every execution. Thus ls-dmr is completely unusable
on these platforms. We were unable to run this application
on other GPUs as it requires double-precision floating-point
arithmetic, which is only supported on the Nvidia and AMD
chips we consider.

We see both a positive and negative aspect to this result.
On the negative side, applications that were deemed stable
enough on one platform may become unusable when run on
a different platform. On the positive side, if the common
failures on AMD are the cause of the uncommon failures on
Nvidia, then the application would be much easier to debug
on an AMD platform where the errors are frequent.

We did not attempt to debug this issue as the application
is complex and modifying it would require domain knowl-
edge outside the range of our expertise. The kernel contains
over 700 lines of code, including complex numerical routines
and custom synchronisation constructs. We have reported
our experiences to the developer, hoping that our insights
could aid in producing a fix.
Programming bug 3: structs containing pointers as
kernel arguments

Summary: Struct kernel arguments containing global
memory pointers behave as expected on some platforms
and fail on others
Applications: All Lonestar OpenCL ports
Status: Acknowledged
Workaround: Pass all global memory buffers to kernel
individually
Label: PB-KA

The Lonestar benchmarks are originally provided in CUDA;
we then created OpenCL ports to investigate these applica-
tions across multiple vendors. The original CUDA applica-
tions utilised structs to encapsulate logically related data.



For example, a graph struct contains several arrays describ-
ing nodes and edges. The graph struct is initialised on the
host and then copied to the GPU global memory, still in the
graph struct form.

In porting the Lonestar applications to OpenCL, we at-
tempted to use the same struct-based approach. The anal-
ogous OpenCL structs contained pointers to global memory
that were set to particular global memory addresses (previ-
ously allocated on the host) by a distinct initialisation ker-
nel. We then passed the (initialised) struct to the kernel
containing the main computation of the application.

In our experience, all of our OpenCL Lonestar applica-
tions ports behaved as expected across all chips using this
data-structure idiom except for ls-mst on ARM chips. For
these GPUs we observed that executions of this application
would frequently produce results that failed the application
post-condition (roughly 75% of the runs).

The main computation in the ls-mst application happens
in a host-side loop that enqueues several kernels. We at-
tempted to debug further by recording intermediate values
at each iteration of this host-side loop. However, when we
instrumented the code to record intermediate values, we ob-
served that the error disappeared and the application would
deterministically return the expected result. In fact, any
delay placed inside the computation loop (e.g. a print state-
ment) tended to cause the application to behave as expected.

We attempted several other debugging methods. First,
we attempted sequentialising the program (i.e. reducing the
number of GPU threads to one). A well-defined sequen-
tial program with static inputs should produce deterministic
outputs; however the application continued to provide non-
deterministic outputs. We then used the Oclgrind tool [24]
to check for errors (e.g. memory safety violations). The tool
reported no errors with the application.

Give that (1) this issue was only observed on ARM GPUs
and (2) our debugging attempts did not reveal any program-
ming bugs, we believed that the issue was a framework bug
(see Sec. 4) and we contacted ARM representatives. Af-
ter some discussion, we discovered that the Lonestar data-
structure idiom (described in the previous paragraphs) ap-
peared to be undefined in OpenCL. Specifically, the OpenCL
spec states [16, p. 235]:

Arguments to kernel functions that are declared
to be a struct or union do not allow OpenCL
objects to be passed as elements of the struct or
union

However, despite this quote disallowing the Lonestar data-
structure idiom, our Lonestar OpenCL ported applications
behaved exactly as expected on all platforms except ARM.
To the best of our knowledge, CUDA does not have the
same restrictions on data-structure kernel arguments. Thus
the original CUDA Lonestar applications would not have
this issue. We are now aware of this issue in our OpenCL
ports of the Lonestar applications and will address them by
removing struct kernel arguments and replacing them with
multiple non-struct arguments containing the fields of the
original structs. Because this specification rule is quite con-
straining (requiring verbose changes to an otherwise natural
solution), we believe that this issue could also be seen as
specification limitation. If the OpenCL specification relaxed
this constraint to allow struct arguments containing global
memory pointers, then OpenCL applications could be bet-

ter engineered with more data encapsulation and less calls
to the verbose OpenCL API.

7. LOOKING FORWARD
Despite the issues we encountered, we consider our porta-

bility experiences successful. That is, we were able to exper-
iment with a variety of custom synchronisation constructs
across a wide range of different GPUs (as this was our ini-
tial aim). However, we believe that we as a community of
academics, vendors, and application developers can work to-
gether to improve the current state of portability of OpenCL
GPU applications.

In this section we identify several areas in which we believe
innovation could help to to address some of the specification
limitations we encountered, in some cases making concrete
proposals for action. We discuss the current work that we
are aware of in each area, and hope that our discussion will
motivate future work.

7.1 Conformance Tests
In order to use the OpenCL or logo on a product, a vendor

implementation must execute and pass the OpenCL confor-
mance tests (available to OpenCL adopters). These tests
serve to ensure that potential platforms correctly implement
the OpenCL API. However given our experiences and re-
sults in previous work (e.g. [19]), we believe that the existing
conformance tests could be extended to catch some of the
framework bugs we experienced.

As a concrete example, two of the framework bugs we
encountered (FB-CC and FB-BLT in Sec. 4) are likely com-
piler bugs. Recent work on OpenCL compiler fuzzing has
produced tests which revealed a surprisingly large number
of OpenCL compiler bugs [19]. These types of tests could
be integrated into the conformance test suite.

Another example is the memory model tests recently de-
veloped for Nvidia chips [1]; similar tests could be generated
for the OpenCL 2.0 memory model. While we did not di-
rectly observe errors related to OpenCL 2.0 memory model
operations, we still believe such tests could be useful, e.g.
allowing developers to check custom implementations of the
OpenCL 2.0 memory model. In PD-MC (Sec. 5) we noticed
that for some chips we were able to successfully provide a
custom implementation and for others we were not. It would
be useful to test our custom implementations in depth.

Our proposal: public conformance tests. The OpenCL
conformance tests are not publicly available; obtaining them
requires membership of the Khronos Group, which is not
free. Furthermore, we believe that for legal reasons and var-
ious technical reasons (e.g. legacy device support), it may
be difficult and time consuming to influence the official con-
formance tests. As an alternative, we suggest that the com-
munity develops a public and open source set of supplemen-
tary conformance tests, to which anyone can contribute tests
through a process whereby candidate tests are reviewed by
members of the community for technical suitability.

7.2 Specification Details
We found the most difficult aspect of experimenting with

applications across a variety of platforms relates to areas
where the OpenCL specification is unclear; in particular the
issues discussed in Sec. 5. A lack of clarity inevitably leads
to differences in the way multiple vendor implementations
behave. We believe the specification should allow for clarity



in some of these areas without necessarily becoming more
restrictive. This could be realised, for example, through
optional extensions that can be queried at runtime.

One of the more disruptive aspects we had to deal with
was the GPU watchdog (see PD-GW in Sec. 5). We found
no mention of the watchdog in the OpenCL specification, yet
every system with a graphical operating system contained a
watchdog. Dealing with the watchdog also varied between
systems, and for half of the GPUs we experimented with
(R7, R9, T628-4, T628-2) required a completely new OS to
be loaded in order to circumvent the watchdog.

Our proposal: API support for GPU watchdogs. Our
experience would have been much simpler if the watchdog
could be controlled (or at least queried) through the OpenCL
API. An OpenCL extension could enabled this.

A concern we have in relation to the custom synchro-
nisation primitives we are developing is whether our as-
sumptions about the OpenCL execution model are valid.
Specifically, when experimenting with a device-wide exe-
cution barrier, we assume the persistent thread model [11].
While the OpenCL specification now gives memory ordering
rules for inter-workgroup communication through the mem-
ory model, it gives no execution model for inter-workgroup
interactions. Empirically, it appears all GPUs we exper-
imented with implement the persistent thread execution
model, but we do not know whether this is certainly the case,
nor whether it is the case by design. Additionally, as seen
in PD-OCU (Sec. 5), there are seemingly no guarantees on
how workgroups are mapped to compute units. Defining an
inter-workgroup execution model would (a) help application
developers to know if the assumptions they are making are
valid, (b) allow vendors to expose features of their devices
that developers can exploit to achieve high performance, and
(c) provide authors of testing and verification tools with de-
tails of execution model constraints with respect to which
programs must be checked.

Our proposal: API support for querying execution
model properties. We propose that an inter-workgroup
execution model should be incorporated into OpenCL, through
API functions that allow an application to query whether a
device offers a persistent thread model, and to elicit details
related to the mapping of work groups to compute units for
a given kernel. Our proposal could initially be addressed via
an OpenCL extension.

7.3 Verification and Testing Tools
We believe GPU verification and testing tools can provide

a way to detect and aid in repairing programming bugs.
Specifically, such tools can aid in detecting and fixing the
sorts of bugs we report on in Sec. 6. Our experiences with
defects that manifest on some platforms but not others sug-
gest that analysis tools should aim to detect executions that
are buggy according to the OpenCL specification, whether
or not the executions are observed on a particular device.
This, combined with robust conformance tests, will help en-
sure that applications are portable.

For OpenCL we are aware of several current tools, each
with their own strengths and shortcomings.

The Oclgrind tool is a dynamic analyser that checks
for various issues including out of bounds memory accesses
and data races [24]. It additionally can check validity of
OpenCL API calls on the host. The tool has been designed

so that it can be extended with further analyses, a recent
example being a state-of-the-art analysis that detects reads
from uninitialised variables [23]. Because Oclgrind is a
dynamic analysis tool, the errors it reports are always gen-
uine bugs. A downside of this is that Oclgrind can only
detect errors that are exposed by a concrete execution on a
given program input, with respect to a particular choice of
thread interleavings. Thus Oclgrind cannot guarantee the
absence of bugs.

A more formal tool, GPUVerify, uses verification con-
dition generation to attempt to formally prove properties of
OpenCL kernels [7]. It checks for safe memory accesses and
data races. The engine assumes a data race free model of
OpenCL (different from the more recent OpenCL 2.0 mem-
ory model) which guarantees deterministic runs. Under this
assumption, GPUVerify is able to efficiently check all in-
terleavings of threads executing a kernel. Modulo some prac-
tical caveats, GPUVerify is a sound analyser—the tool will
catch all possible data race bugs. On the downside, GPU-
Verify may also report false alarms, that is, report errors
that are not concretely bugs. Another consideration is that
many of the custom synchronisation primitives we experi-
ment with violate GPUVerify’s data race-free assumption,
and GPUVerify would need to be extended to reason about
these programs; currently the tool has only limited support
for reasoning about atomic operations [4].

We also mention related tools for CUDA. Similar to
Oclgrind, cuda-memcheck (provided by Nvidia) dynam-
ically checks for out of bounds memory accesses and has an
option to check for data races [20]. The GKLEE tool pro-
vides similar checks but has the ability to model symbolic
inputs and explores all possible interleavings [18]. GKLEE
assumes the same data race-free model as GPUVerify, thus
would need to be adapted to handle custom synchronisation
constructs.

Status and future of tools. In this experience report, the
only tool we were able to leverage was Oclgrind to check
for memory safety. We were unable to use GPUVerify be-
cause of the lack of support for atomic operations, which
our custom synchronisation idioms relied on. Our hope is
that these tools will continue to be developed and adapted
to the new features and programming styles of OpenCL. It
may encourage developers to use such tools more frequently
if they are supported by, and easily integrated into, ven-
dor developer tools. One such example is the integration of
GPUVerify into the ARM Mali Graphics Debugger.5

8. CONCLUSION
We have shared our experiences arising from porting sev-

eral open source applications to run across a variety of
OpenCL GPU platforms. In our efforts we encountered sev-
eral issues, which we divided into three categories: frame-
work bugs, specification limitations, and programming bugs.
In most cases, we were able to work around the issues and
largely consider our experience a success. However, we do
believe that the current state of portability in OpenCL pro-
grams could be improved. We hope that our suggestions for
improvements in relation to OpenCL portability issues will

5See: https://community.arm.com/groups/arm-mali-
graphics/blog/2015/04/14/debugging-opencl-applications-
with-mali-graphics-debugger-v21-and-gpuverify

https://community.arm.com/groups/arm-mali-graphics/blog/2015/04/14/debugging-opencl-applications-with-mali-graphics-debugger-v21-and-gpuverify
https://community.arm.com/groups/arm-mali-graphics/blog/2015/04/14/debugging-opencl-applications-with-mali-graphics-debugger-v21-and-gpuverify
https://community.arm.com/groups/arm-mali-graphics/blog/2015/04/14/debugging-opencl-applications-with-mali-graphics-debugger-v21-and-gpuverify


aid the OpenCL community in realising the full potential
offered by the programming model.
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