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We present an independent empirical study on concurrency testing using controlled schedulers. We have
gathered 49 buggy concurrent software benchmarks, drawn from public code bases, which we call SCTBench.
We applied a modified version of an existing concurrency testing tool to SCTBench, testing five controlled
scheduling techniques: depth-first search, preemption bounding, delay bounding, a controlled random sched-
uler, and probabilistic concurrency testing (PCT). We attempt to answer several research questions, includ-
ing: Which technique performs the best, in terms of bug finding ability? How effective are the two main
schedule bounding techniques, preemption bounding and delay bounding, at finding bugs? What challenges
are associated with applying concurrency testing techniques to existing code? Can we classify certain bench-
marks as trivial or non-trivial? Overall, we found that PCT (with parameter d=3) was the most effective
technique in terms of bug finding; it found all the bugs found by the other techniques, plus an additional
three, and it missed only one bug. Surprisingly, we found that the “naı̈ve” controlled random scheduler, which
randomly chooses one thread to execute at each scheduling point, performs well, finding more bugs than pre-
emption bounding and just two fewer bugs than delay bounding. Our findings confirm that delay bounding
is superior to preemption bounding and schedule bounding is superior to an unbounded depth-first search.
The majority of bugs in SCTBench can be exposed using a small schedule bound (1-2), supporting previous
claims, although one benchmark requires 5 preemptions. We found that the need to remove nondetermin-
ism and control all synchronization (as is required for systematic concurrency testing) can be nontrivial.
There were 8 distinct programs that could not easily be included in out study, such as those that perform
network and inter-process communication. We report various properties about the benchmarks tested, such
as the fact that the bugs in 18 benchmarks were exposed 50% of the time when using random scheduling.
We note that future work should not use the benchmarks that we classify as trivial when presenting new
techniques, other than as a minimum baseline. We have made SCTBench and our tools publicly available
for reproducibility and use in future work.
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1. INTRODUCTION
As concurrency has increasingly become a mainstream concern for software develop-
ers, researchers have investigated numerous methods for finding concurrency bugs—
software defects (such as crashes, deadlocks, assertion failures, memory safety errors
and errors in algorithm implementation) that arise directly or indirectly as a result of
concurrent execution. This is motivated by the rise of multicore systems [Sutter and
Larus 2005], the ineffectiveness of traditional testing for detecting and reproducing
concurrency bugs due to nondeterminism [Křena et al. 2010], and the desire for auto-
matic, precise analysis, which is hard to achieve using static techniques [Bessey et al.
2010].

An important class of techniques employ controlled schedulers, where all schedul-
ing nondeterminism is controlled, execution is serialized, and the controlled sched-
uler determines precisely which thread is executed and for how long. The possible
schedules are searched either systematically [Wang et al. 2011; Emmi et al. 2011;
Musuvathi et al. 2008; Yang et al. 2008; Godefroid 1997], or through the use of ran-
domization [Burckhardt et al. 2010; Nagarakatte et al. 2012; Thomson et al. 2014].
In contrast, non-controlled methods include those that perturb the OS scheduler by
inserting calls to sleep (possibly with randomization) or other similar functions [Edel-
stein et al. 2002; Sen 2008; Park et al. 2009; Yu et al. 2012]. Controlled scheduling has
the attractive property that the schedule under consideration can be easily recorded,
facilitating replay of bugs.

Systematic concurrency testing (SCT) [Godefroid 1997; Musuvathi et al. 2008; Wang
et al. 2011; Yang et al. 2008; Emmi et al. 2011] (also known as stateless model check-
ing [Godefroid 1997]), is a well-known controlled scheduling technique where a mul-
tithreaded program is executed repeatedly such that a different schedule is explored
on each execution. This process continues until all schedules have been explored, or
until a time or schedule limit is reached. The analysis is highly automatic and has no
false-positives, and supports reproduction of bugs by forcing the bug-inducing sched-
ule. It has been implemented in a variety of tools, including Verisoft [Godefroid 1997],
CHESS [Musuvathi et al. 2008], INSPECT [Yang et al. 2008] and Maple [Yu et al.
2012].

Assuming a nondeterministic scheduler, the number of possible thread interleavings
for a concurrent program is exponential in the number of execution steps, so exploring
all schedules for large programs using SCT is infeasible. To combat this schedule ex-
plosion, schedule bounding techniques have been proposed, which reduce the number
of thread schedules that are considered with the aim of preserving schedules that are
likely to induce bugs. Preemption bounding [Musuvathi and Qadeer 2007a] bounds the
number of preemptive context switches that are allowed in a schedule. Delay bound-
ing [Emmi et al. 2011] bounds the number of times a schedule can deviate from the
scheduling decisions of a given deterministic scheduler. During concurrency testing,
the bound on preemptions or delays can be increased iteratively, so that all sched-
ules are explored in the limit; the intention is that interesting schedules are explored
within a reasonable resource budget. When applied iteratively, these methods are re-
ferred to as iterative preemption bounding and iterative delay bounding.

Schedule bounding has two additional benefits, regardless of bug finding ability.
First, it produces simple counterexample traces: a trace with a small number of pre-
emptions is likely to be easier to understand than a trace with many preemptions.
This property has been used in trace simplification [Huang and Zhang 2011; Jalbert
and Sen 2010]. Secondly, it gives bounded coverage guarantees: if the search explores
all schedules with at most c preemptions, then any undiscovered bugs in the program
require at least c+1 preemptions. A guarantee of this kind provides some indication of
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the necessary complexity and probability of occurrence of any bugs that might remain,
and work on concurrent software verification employs schedule bounding to improve
tractability [Lal and Reps 2009; Cordeiro and Fischer 2011; Atig et al. 2014].

The probabilistic concurrency testing (PCT) algorithm [Burckhardt et al. 2010] is an-
other controlled scheduling technique that repeatedly executes a multithreaded pro-
gram using a randomized priority-based scheduler, where the highest priority thread
that is enabled is scheduled. The initial thread priorities are chosen randomly, as are
d− 1 priority change points. Importantly, the depth of each change point (the number
of execution steps before the change point causing the currently executed thread to be
lowered) is chosen uniformly over the length of the execution. Given a program with
n threads, at most k execution steps and a bug that requires d ordering constraints to
manifest, PCT guarantees that it will find the bug in a single execution with proba-
bility 1/nkd−1 [Burckhardt et al. 2010]. We refer to PCT as being non-systematic (i.e.
non-exhaustive), because the same schedule could be explored more than once and
schedules are not exhaustively enumerated in some order. However, PCT is still a con-
trolled technique: because all scheduling nondeterminism is controlled, the schedule to
be executed is precisely determined by the PCT algorithm and not by the OS scheduler.
Thus, buggy schedules can still be recorded and replayed precisely, as with SCT.

The hypothesis that SCT with preemption and delay bounding is likely to be ef-
fective is based on empirical evidence suggesting that many interesting concurrency
bugs require only a small number of preemptive context switches to manifest [Musu-
vathi and Qadeer 2007a; Musuvathi et al. 2008; Emmi et al. 2011]. The evidence that
many concurrency bugs only require a small number of ordering constraints [Burck-
hardt et al. 2010; Lu et al. 2008], is arguably similar. Prior work has also shown that
delay bounding improves on preemption bounding, allowing additional bugs to be de-
tected [Emmi et al. 2011]. However, evaluation of systematic techniques has focused
on a particular set of C# and C++ programs that target the Microsoft Windows oper-
ating system, most of which are not publicly available. Additionally, this work does
not explicitly show that schedule bounding provides benefit over a random scheduler
for finding bugs.1 By “random scheduler”, we mean a controlled scheduler that ran-
domly chooses a thread to execute after each scheduling point. The PCT algorithm
has been shown to find bugs in large applications, such as Mozilla Firefox and Inter-
net Explorer [Burckhardt et al. 2010]. However, a thorough comparison of PCT with
systematic techniques and controlled random scheduling has not been conducted.2

We believe that these exciting and important claims about the effectiveness of con-
trolled scheduling would benefit from further scrutiny using a wider range of publicly
available applications. To this end, we present an independent, reproducible empirical
study of controlled scheduling techniques. We have put together SCTBench, a set of
49 publicly available benchmarks, gathered from a combination of stand-alone multi-
threaded test cases, and test cases drawn from 13 distinct applications and libraries.
These are benchmarks that have been used in previous work to evaluate concurrency
testing tools (although mostly not in the context of controlled scheduling), with a few
additions. The benchmarks are amenable to systematic concurrency testing (and, thus,
all controlled scheduling techniques) so that we can compare systematic techniques
with non-systematic techniques. Our study uses an extended version of Maple [Yu
et al. 2012], an open source concurrency testing tool.

1We note that [Musuvathi and Qadeer 2007a] plots the state (partial-order) coverage of preemption
bounding against a technique called “random” on a single benchmark, but the details of this and the bug
finding ability are not mentioned.

2We note that [Burckhardt et al. 2010] compares PCT against the use of random sleeps, but not against
controlled random scheduling. PCT is also compared against preemption bounding on two benchmarks.
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Our aim was to use SCTBench to empirically compare the following techniques: un-
bounded SCT, SCT with iterative preemption bounding and iterative delay bounding,
PCT, and controlled random scheduling, to answer the following research questions
(RQs):

RQ1 Which technique performs the best, in terms of bug finding ability?
RQ2 Does PCT beat the other techniques, as might be expected given previous

work [Burckhardt et al. 2010]?
RQ3 How effective is the controlled random scheduler (a naı̈ve, baseline technique) in

comparison to the other techniques?
RQ4 Does delay bounding beat preemption bounding, as in prior work [Emmi et al.

2011], and do both schedule bounding techniques beat a straightforward un-
bounded depth-first search, as in prior work [Musuvathi and Qadeer 2007a; Emmi
et al. 2011]?

RQ5 How many bugs can be found with a small number of preemptions/delays, and
can we find non-synthetic examples of concurrency bugs that require more than
three preemptions (the largest number of preemptions required to expose a bug in
previous work [Emmi et al. 2011])?

RQ6 How easy is it to apply controlled scheduling techniques (and, in particular, sys-
tematic techniques) to various existing code bases in practice?

RQ7 Can we classify certain benchmarks exhibiting defects as highly trivial or non-
trivial, based on the ease or difficulty with which the techniques we study are able
to expose defects?

We answer RQ1–RQ5 quantitatively by investigating the number of bugs found by
each technique within a schedule limit, showing how these numbers vary as the sched-
ule limit is increased. We answer RQ6 qualitatively, based on our experience collecting
and modifying benchmarks during the construction of SCTBench. To answer RQ7, we
identify a number of properties of benchmarks that indicate when bug-finding is triv-
ial, and report on the extent to which SCTBench examples exhibit these trivial prop-
erties. We also report on benchmarks that appear to present a challenge for controlled
scheduling methods, based on the fact that associated defects were missed by several
(or, in one case, all) of the techniques we study.

1.1. Main findings
We summarize the main findings of our study, which relate to the above research ques-
tions. The conclusions we draw of course only relate to the 49 benchmarks in SCT-
Bench, but this does include publicly available benchmarks used in prior work to eval-
uate concurrency testing tools. We forward-reference the Venn diagrams of Figure 3
and the cumulative graphs in Figure 4 and 5, discussed in detail in §6. These diagrams
provide an overview of our results in terms of the bug-finding ability of the various
techniques we study: iterative preemption bounding (IPB), iterative delay bounding
(IDB), depth-first search with no schedule bound (DFS), three parameterized version
of probabilistic concurrency testing (PCT d = n, for n ∈ {1, 2, 3}) and a controlled ran-
dom scheduler (Rand). For each technique evaluated, a limit of 100,000 schedules per
benchmark was used, except for two benchmarks where (as explained in §5) a lower
limit was used. We consider a bug to be an assertion failure, deadlock, crash or incor-
rect output. For the bugs that led to incorrect output, we added assertions in the code
to check the output based on the text description of the bug that we found.
RQ1, RQ2: PCT d=3 performed best. With a limit of 100,000 schedules, PCT d=3
found bugs in 48 of the 49 benchmarks—more than any other technique—including
all 45 bugs found by IDB, the next best non-PCT technique in terms of number of
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bugs found. For lower schedule limits, PCT d=3 still found the most bugs, except for
very low schedules limits (<10). This concurs with the findings of prior work, in which
PCT found bugs faster than IPB [Burckhardt et al. 2010]. However, we note that the
three bugs missed by IDB (but found by PCT d=3) are in benchmarks with high thread
counts and IDB was able to find these bugs within the schedule limit when the thread
count was reduced.
RQ3: Controlled random scheduling performed better than IPB and compara-
bly with IDB. Because it is so straightforward, our assumption prior to this study
was that use of a controlled random scheduler for bug-finding would not be effective.
We initially investigated this method merely because it provides a simple baseline that
more sophisticated techniques should surely improve upon (and because this was sug-
gested by a reviewer of the conference version of this article [Thomson et al. 2014]).
The effectiveness of controlled random scheduling for bug finding is not addressed in
prior work; the papers that introduced preemption bounding [Musuvathi and Qadeer
2007a] and delay bounding [Emmi et al. 2011] only include depth-first search or pre-
emption bounding as a baseline for finding bugs (see Footnote 1, p. 3). Our findings,
summarized in Figure 3c, contradict our assumption: with a schedule limit of 100,000,
Rand found 43 bugs, more than IPB (38) and DFS (33), and found all but 2 of the bugs
found by IDB (45). Furthermore, as shown in Figure 4, the results are similar when
lower schedule limits are considered: for schedule limits between 10 and 1000, Rand
finds up to 6 more bugs than IDB. This raises two important questions: Does IPB ac-
tually aid in bug finding, compared to more naı̈ve approaches? Are the benchmarks
used to evaluate concurrency testing tools (captured by SCTBench) representative of
real-world concurrency bugs? Our findings indicate that the answer to at least one of
these questions must be “no”. Nevertheless, as noted above, schedule bounding pro-
vides several benefits regardless of bug finding ability, which are not questioned by
our findings.
RQ3, RQ7: Researchers should compare against controlled random schedul-
ing. Much prior work that introduced new techniques did not compare against a
controlled random scheduler. Many benchmarks contain defects that can be trivially
found using a controlled random scheduler. We stress that future work should use the
controlled random scheduler as a baseline, to give an accurate representation of the
benchmarks used and the improvement obtained by the new technique.
RQ4: IDB beats IPB. Schedule bounding beats DFS. With a schedule limit of
100,000, IDB found all of the 38 bugs that were found by IPB, plus an additional 7 (see
Figure 3a). This is in line with experimental claims of prior work [Emmi et al. 2011]. A
straightforward depth-first search with no schedule bounding only exposed bugs in 33
benchmarks, all of which were also found by IPB, as well as by IDB. This also validates
prior work [Musuvathi and Qadeer 2007a; Emmi et al. 2011]. Results were similar in
terms of number of bugs found at various lower schedule limits (see Figure 4).
RQ5: Many bugs could be found using a small schedule bound. With a sched-
ule limit of 100,000, schedule bounding exposed each bug in 45 of the 49 benchmarks,
and 44 of these require a preemption bound of 2 or less. Thus, a large majority of the
bugs in SCTBench can be found with a small schedule bound. This supports previ-
ous claims that in practice many bugs can be exposed using a small number of pre-
emptions or delays [Musuvathi and Qadeer 2007a; Musuvathi et al. 2008; Emmi et al.
2011]. It also adds weight to the argument that bounded guarantees provided by sched-
ule bounding are useful. However, we note that one bug that was found by schedule
bounding requires 3 preemptions and another is reported to require a minimum of 5
preemptions. Also note that certain synthetic benchmarks (such as reorder X bad and
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twostage X bad) are challenging for schedule bounding when the number of threads
parameter, X, is increased; as X is incremented, so is the number of delays required for
IDB to find the bug. However, it is not clear whether such a scenario is likely to occur
in real multithreaded programs.
RQ6: Controlled testing techniques can be difficult to apply. There were 8 dis-
tinct programs (providing 26 potential test cases) that could not easily be included in
our study, as they use nondeterministic features or additional synchronization that
is not modelled or controlled appropriately by most tools. This includes network com-
munication, multiple processes, signals (other than pthread condition variables) and
event libraries. It is sometimes possible to apply non-systematic techniques, such as
PCT and random scheduling, to such benchmarks. However, this depends on how the
techniques are implemented.

Additionally, program modules were often difficult to test in isolation due to direct
dependencies on system functions and other program modules. Thus, creating isolated
tests suitable for concurrency testing (or even unit testing) may require significant
effort, especially for testers who are not familiar with the software under test.
RQ7: Trivial benchmarks. We argue that certain benchmarks used in prior work
are “trivial” (based on properties which we discuss in §6.4 and summarize in Table II)
and cannot meaningfully be used to compare the performance of competing techniques.
Instead, they provide a minimum baseline for any respectable concurrency testing
technique. For example, the bugs in 18 benchmarks were exposed 50% of the time
when using random scheduling; in 8 of these cases, the bugs were exposed 100% of the
time.
RQ7: Non-trivial benchmarks. We believe most benchmarks from the CHESS, PAR-
SEC and RADBench suites, as well as the misc.safestack benchmark (see §4), present
a non-trivial challenge for concurrency testing tools. Furthermore, these represent real
bugs, not synthetic tests. Future work can use these challenging benchmarks to show
the improvement obtained over prior techniques. We also recommend that the research
community focus on increasing the corpus of non-trivial concurrency benchmarks that
are available for evaluation of analysis tools.

We also summarize several notable findings that do not directly relate to the above
research questions:
Data races are common. Many (30) of the benchmarks we tested exhibited data
races. Although we did not analyze these data races in detail, to the best of our knowl-
edge they are not regarded as bugs by the relevant benchmark developers. Treating
data races as errors would hide the more challenging bugs that the benchmarks cap-
ture. Future work that uses these benchmarks must take this into account. For the
study, we explore the interleavings arising from sequentially consistent outcomes of
data races in order to expose assertion failures, deadlocks, crashes or incorrect out-
puts.
Some bugs may be missed without additional checks. Some concurrency bugs
manifest as out-of-bounds memory accesses, which do not always cause a crash. Tools
need to check for these, otherwise bugs may be missed or manifest nondeterminis-
tically, even when the required thread schedule is executed. Performing such checks
reliably and efficiently is non-trivial.

1.2. SCTBench and reproducibility of our study
To make our study reproducible, we provide the 49 benchmarks (SCTBench), our
scripts and the modified version of Maple used in our experiments, online:

http://sites.google.com/site/sctbenchmarks
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We believe SCTBench will be valuable for future work on concurrency testing in gen-
eral and SCT in particular. Each benchmark is directly amenable to SCT and exhibits
a concurrency bug. As discussed further in §5, our results are given in terms of number
of schedules, not time, which allows them to be easily compared with other work and
tools.

1.3. Contribution over conference version of this work
This article is a revised and extended version of a conference paper [Thomson et al.
2014]. The original study of [Thomson et al. 2014] was restricted to systematic concur-
rency testing with schedule bounding, using the non-systematic random scheduling
technique as a point of comparison.

The major novel contribution of the current work is an extension of the study to
consider a more advanced non-systematic technique, probabilistic concurrency testing
(PCT) [Burckhardt et al. 2010]. We provide background on the PCT method in §2 and
explain in §3 how we adapted the Maple tool to include an implementation of PCT
suitable for comparison with other controlled techniques. We discuss the incorporation
of PCT in our experimental method in §5 and include a detailed discussion of how
PCT compares with the other techniques in terms of bug-finding ability in §6. Since
the PCT method accepts a parameter d, we tested three different versions of PCT for
d ∈ {1, 2, 3} over our benchmarks.

We also increased the schedule limit in our experiments, for all techniques, from
10,000 to 100,000 (with the exception of two benchmarks which we discuss in §5). We
additionally consider in §5 how the techniques compare for schedule limits between 1
and 100,000.

2. CONCURRENCY TESTING WITH CONTROLLED SCHEDULERS
Concurrency testing using controlled scheduling works by repeatedly executing a mul-
tithreaded program, exploring a particular schedule on each execution. Execution is
serialized, so that concurrency is emulated by interleaving the instructions of differ-
ent threads. Typically, operations that can cause threads to become enabled/disabled
(unblocked/blocked) must be modelled or carefully monitored by the concurrency test-
ing implementation in order to update the state of the scheduler. The search space is
over schedules. Unlike in stateful model checking, program states are not represented.
This is appealing because the state of real software is large and difficult to capture.

In this section, we describe the controlled scheduling techniques used in the study.
We start by formalizing the notion of a schedule (§2.1). We then describe systematic
concurrency testing (§2.2), preemption bounding (§2.3) and delay bounding (§2.4), dis-
cuss upper bounds on schedules for the systematic techniques, and explain how sched-
ule bounding can be applied in an iterative manner (§2.5). We then turn to the two
non-systematic controlled techniques studied in the paper, random scheduling (§2.6)
and probabilistic concurrency testing (§2.7).

2.1. Schedules
A schedule α = 〈α(1), . . . , α(n)〉 is a list of thread identifiers. We use the following
shorthands for lists: α · t = 〈α(1), . . . , α(n), t〉; last(α) = α(n). The element α(i) refers to
the thread that is executing at step i in the execution of the multithreaded program.
where step 1 is the first step. For example, the schedule 〈T0, T0, T1, T0〉 specifies that,
from the initial state, two steps are executed by T0, one step by T1 and then one step
by T0. A step corresponds to a particular thread executing a visible operation [Gode-
froid 1997], such as a synchronization operation or shared memory access, followed by
a finite sequence of invisible operations until immediately before the next visible oper-
ation. Considering interleavings involving non-visible operations is unnecessary when
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checking safety property violations, such as deadlocks and assertion failures [Gode-
froid 1997]. The point just before a visible operation, where the scheduler decides
which thread to execute next, is called a scheduling point. Let enabled(α) denote the
set of enabled threads (those that are not blocked, and so can execute) in the state
reached by executing α. We say that the state reached by α is a terminal state when
enabled(α) = ∅. A schedule that reaches a terminal state when executed is a terminal
schedule. However, throughout the paper, when discussing the execution of a schedule
or the number of schedules explored, we shall use schedule to mean terminal schedule
unless stated otherwise.

2.2. Systematic Concurrency Testing (SCT)
Systematic concurrency testing (SCT) works by repeatedly executing a multithreaded
program, exploring a different schedule on each execution. It is assumed that the only
source of nondeterminism is from the scheduler so that repeated execution of the same
schedule always leads to the same program state. Thus, nondeterminism from sources
such as user input, files, network packets, etc. must be fixed or modelled. When the
algorithm completes, all terminal schedules have been explored. However, a time limit
or schedule limit is often imposed, since exploring all schedules is usually infeasible.

The schedule space of a deterministic program can conceptually be represented as
a prefix-tree, where each node is a schedule and the branches of a node (labelled with
thread identifiers) are the enabled threads at the scheduling point. The schedule tree
is not known a priori; it is discovered on-the-fly. Systematic concurrency testing is
usually implemented by performing a depth-first search of the schedule tree, as this
allows the unexplored schedule prefixes to be efficiently stored in a stack data struc-
ture. After exploring the first terminal schedule, the search then backtracks to the
most recent scheduling point; the next schedule is explored by executing the program
from the start, replaying the previous schedule up to the most recent scheduling point,
scheduling the next enabled thread and then continuing scheduling threads until ter-
mination.

2.3. Preemption Bounding
Preemption bounding [Musuvathi and Qadeer 2007a] is a form of SCT where the num-
ber of preemptive context switches in a schedule is bounded. We first define preemptive
and non-preemptive context switches.

Context switches. A context switch occurs in a schedule when execution switches from
one thread to another. Formally, step i in α is a context switch if and only if step i is
not the first step and α(i) 6= α(i − 1). The context switch is preemptive if and only if
α(i− 1) ∈ enabled(〈α(1), . . . , α(i− 1)〉). In other words, the thread executing step i− 1
remained enabled after that step. Otherwise, the context switch is non-preemptive.

We define the preemption count PC of a schedule recursively. A schedule of length
zero or one has no preemptions. Otherwise:

PC(α · t) =

{
PC(α) + 1 if last(α) 6= t ∧ last(α) ∈ enabled(α)
PC(α) otherwise

With a preemption bound of c, any schedule α with PC(α) > c will not be explored.
The idea behind preemption bounding is that it greatly reduces the number of sched-

ules, but still allows many bugs to be found [Musuvathi and Qadeer 2007a; Musuvathi
et al. 2008; Emmi et al. 2011]. The intuition is that many bugs only require a few
preemptions at at the right places in order to manifest. In contrast, an unbounded
search is unlikely to complete without exceeding the time or schedule limit; in these
cases, the search will end prematurely and be biased towards exploring a large num-
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T0
a) create(T1,T2 ,T3)

T1
b)
c)

x=1
y=1

T2
d) z=1

T3
e) assert(x==y)

Fig. 1: Simple multithreaded program.

ber of deep preemptions (that occur towards to end of schedules) due to the use of a
depth-first search. Many of these may not be useful for exposition of bugs. Using a low
preemption bound increases the chance of exploring all schedules within the preemp-
tion bound, without exceeding the time or schedule limit, which will include exploring
preemptions at various depths.

EXAMPLE 1. Consider Figure 1, which shows a simple multithreaded program. T0
launches three threads concurrently and is then disabled. All variables are initially zero
and threads execute until there are no statements left. We refer to the visible actions of
each thread via the statement labels (a, b, c, etc.) and we (temporarily) represent sched-
ules as a list of labels. Note that ‘a’ cannot be preempted, as there are no other threads
to switch to.

A schedule with zero preemptions is 〈a, b, c, e, d〉. Note that, for example, e is not a
preemption in this particular schedule because T1 has no more statements and so is
considered disabled after c. A schedule that causes the assertion to be violated is 〈a, b, e〉,
which has one preemption at operation e. The bug will not be found with a preemption
bound of zero, but will be found with any greater bound.

2.4. Delay Bounding
A delay conceptually corresponds to blocking the thread that would be chosen by the
scheduler at a scheduling point, which forces the next thread to be chosen instead.
The blocked thread is then immediately re-enabled. Delay bounding [Emmi et al. 2011]
bounds the number of delays in a schedule, given an otherwise deterministic scheduler.
Executing a program under the deterministic scheduler (without delaying) results in
a single terminal schedule – this is the only terminal schedule that has zero delays.

In the remainder of this paper we assume that delay bounding is applied in the
context of a non-preemptive round-robin scheduler that considers threads in thread
creation order, starting with the most recently executing thread. We assume this in-
stantiation of delay bounding because it has been used in previous work [Emmi et al.
2011] and is straightforward to explain and implement.

The following is a definition of delay bounding assuming the non-preemptive round-
robin scheduler. Assume that each thread id is a non-negative integer, numbered in
order of creation; the initial thread has id 0, and the last thread created has id N −
1. For two thread ids x, y ∈ {0, . . . , N − 1}, let distance(x, y) be the unique integer
d ∈ {0, . . . , N − 1} such that (x + d) mod N = y. Intuitively, this is the “round-robin
distance” from x to y. For example, given four threads {0, 1, 2, 3}, distance(1, 0) is 3. For
a schedule α and a thread id t, let delays(α, t) yield the number of delays required to
schedule thread t at the state reached by α:

delays(α, t) = |{x : 0 ≤ x < distance(last(α), t)) ∧ (last(α) + x) mod N ∈ enabled(α)}|

This is the number of enabled threads that are skipped when moving from last(α) to t.
For example, let last(α) = 3, enabled(α) = {0, 2, 3, 4} and N = 5. Then, delays(α, 2) = 3
because threads 3, 4 and 0 are skipped (but not thread 1, because it is not enabled).
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T0
a) create(T1,T2 ,T3)

T1
b)
c)

x=1
y=1

T2
f)
g)

x=1
y=1

T3
e) assert(x==y)

Fig. 2: Adversarial delay-bounding example.

We define the delay count DC of a schedule recursively. A schedule of length zero or
one has no delays. Otherwise:

DC(α · t) = DC(α) + delays(α, t)

With a delay bound of c, any schedule α with DC(α) > c will not be explored.
The set of schedules with at most c delays is a subset of the set of schedules with at

most c preemptions. Thus, delay bounding reduces the number of schedules by at least
as much as preemption bounding.

The intuition behind delay bounding is similar to that of preemption bounding; that
is, many bugs can be found with only a few preemptions or delays [Musuvathi and
Qadeer 2007a; Musuvathi et al. 2008; Emmi et al. 2011]. The extra idea behind delay
bounding is that it often also does not matter which thread is switched to after a
preemption; thus, allowing only the next enabled thread without spending additional
delays reduces the number of schedules more than preemption bounding, while still
allowing many bugs to be found.

EXAMPLE 2. Consider Figure 1 once more. Assume thread creation order
〈T0, T1, T2, T3〉. The assertion can also fail via: 〈a, b, d, e〉, with one delay/preemption
at d. However, a preemption bound of one yields 11 terminal schedules, while a delay
bound of one yields only 4 (note that an assertion failure is a terminal state).

Now consider Figure 2, which is a modified version of the program where the state-
ments of T2 have been replaced with the same statements as T1, which we label as f)
and g). Now, the assertion cannot fail with a delay bound of one because two delays
must occur so that T1 and T2 do not both execute all their statements. For example,
〈a, b, e〉 exposes the bug, but executing e uses two delays. However, this schedule only has
one preemption, so the assertion can still fail under a preemption bound of one.

Adding an additional n threads between T1 and T3 (in the creation order) with the
same statements as T1 will require n additional delays to expose the bug, while still
only one preemption will be needed. Empirical evidence [Emmi et al. 2011] suggests
that adversarial examples like this are not common in practice. Our results (§6) also
support this.

2.5. Upper Bounds for Terminal Schedules, and Iterative Schedule Bounding
Upper-bounds for the number of terminal schedules produced by the above systematic
techniques are described in [Musuvathi and Qadeer 2007a; Emmi et al. 2011]. In sum-
mary, assume at most n threads and at most k execution steps in each thread. Of those
k, at most b steps block (cause the executing thread to become disabled) and i steps
do not block. Complete search (exploring all schedules) is exponential in n and k, and
thus infeasible for programs with a large number of execution steps. With a schedul-
ing bound of c, preemption bounding is exponential in c (a small value), n (often, but
not necessarily, a small value) and b (usually much smaller than k). Crucially, it is no
longer exponential in k. Delay bounding is exponential only in c (a small value). Thus,
delay bounding performs well (in terms of number of schedules) even when programs
create a large number of threads.
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Schedule bounding can also be performed iteratively [Musuvathi and Qadeer 2007a],
where all schedules with zero preemptions/delays are executed, followed by those with
one preemption/delay, etc. until there are no more schedules or until a time or sched-
ule limit is reached. In the limit, all schedules are explored. Thus, iterative schedule
bounding creates a partial-order in which to explore schedules: schedule α will be ex-
plored before schedule α′ if PC(α) < PC(α′), while there is no predefined exploration
order between schedules with equal preemption counts (we address how this affects
the fairness of our evaluation in §5). The partial-order for iterative delay bounding
with respect to DC is analogous. Thus, iterative schedule bounding is a heuristic that
prioritizes schedules with a low preemption count, aiming to expose buggy schedules
before the time or schedule limit is reached.

In this study, we perform preemption bounding and delay bounding iteratively.

2.6. Controlled Random Scheduling
A controlled random scheduler uses randomization to determine the schedule that is
explored. At each scheduling point, one thread is randomly chosen from the set of en-
abled threads using a uniform distribution. This thread is then scheduled until the
next scheduling point. Unlike schedule fuzzing, where random sleeps are used to per-
turb the OS scheduler [Ben-Asher et al. 2006], the random scheduler fully controls
scheduling nondeterminism. As with any controlled scheduling technique, the exe-
cuted schedule can easily be recorded and replayed (because schedule nondetermin-
ism is controlled). However, for controlled random scheduling (and unlike SCT), no
information is saved for subsequent executions, so it is possible that the same terminal
schedule will be explored multiple times. As a result, the search cannot “complete”,
even for programs with a small number of schedules. Additionally, a random scheduler
can be used on programs that exhibit nondeterminism beyond scheduler nondetermin-
ism, although in this case schedule replay will be unreliable.

2.7. Probabilistic Concurrency Testing
The PCT algorithm [Burckhardt et al. 2010] uses a randomized priority-based sched-
uler such that the highest priority enabled thread is scheduled at each step. A bounded
number of priority change points are inserted at random depths in the execution which
change the currently executing thread’s priority to a low value. Importantly, the ran-
dom depths of the change points are chosen uniformly over the length (number of steps)
of the execution. This is in contrast to random scheduling, where a random choice is
made at every execution step.

More formally, the algorithm is described in [Burckhardt et al. 2010] as follows.
Given a program with at most n threads and at most k steps, choose a bound d.

(1) Randomly assign each of the n threads a distinct initial priority value from {d, d+
1, . . . , d+n}. The lower priority values {1, . . . , d−1} are reserved for change points.

(2) Randomly pick integers k1, . . . , kd−1 from {1, . . . , k}. These will be the priority
change points.

(3) Schedule threads strictly according to their priorities; that is, never schedule a
thread if a higher priority thread is enabled. After executing the ki-th step (1 ≤ i <
d), change the priority of the thread that executed the step to i.

The work on PCT also introduces the idea of a bug depth metric—not to be con-
fused with the depth (number of steps) of a schedule. The bug depth is defined as the
minimum set of ordering constraints between instructions from different threads that
are sufficient to trigger the bug [Burckhardt et al. 2010]. Assuming a bug with depth d,
the probability of the PCT algorithm detecting the bug on a single execution is 1/nkd−1

(inverse exponential in d).
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As with random scheduling (and unlike SCT), no information is saved during one
execution to inform subsequent executions, so the search cannot “complete” and the
technique can be used on programs with nondeterminism. Similar to schedule bound-
ing, the intuition behind PCT is that many concurrency bugs typically require certain
orderings between only a few instructions in order to manifest [Musuvathi and Qadeer
2007a; Musuvathi et al. 2008; Emmi et al. 2011; Lu et al. 2008].

EXAMPLE 3. Once again, consider the program in Figure 2. For this program, the
number of threads is n = 4 and the number of steps is k = 6. One way for the bug to
occur is for statement e to occur after b but before c. This is possible with one priority
change point, so let d = 2. Assume the initial random thread priorities chosen are:

{T0 7→ 5, T1 7→ 4, T3 7→ 3, T2 7→ 2}.
Assume the random priority change point chosen is k1 = 2. Thus, the schedule that

will be explored is: 〈a, b, e〉, which causes the assertion to fail. Statement a is executed
because T0 has the highest priority. T0 then becomes disabled, so T1 becomes the highest
priority thread that is enabled and b is executed. At this point, step 2 was just executed;
thus, the priority change point is triggered and T1’s priority is lowered to 1. T3 becomes
the highest priority thread that is enabled and so e is executed.

3. MAPLE
We chose to use a modified version of the Maple tool [Yu et al. 2012] to conduct our
experimental study. Maple is a concurrency testing tool framework for pthread [Lewis
and Berg 1998] programs. It uses the dynamic instrumentation library, PIN [Luk et al.
2005], to test binaries without the need for recompilation. One of the modules, system-
atic, is a re-implementation of the CHESS [Musuvathi et al. 2008] algorithm for pre-
emption bounding. The main reason for using Maple, instead of CHESS, is that Maple
targets pthread programs. This allows us to test a wide variety of open source mul-
tithreaded benchmarks and programs. Previous evaluations [Musuvathi and Qadeer
2007a; Musuvathi et al. 2008; Emmi et al. 2011] focus on C# programs and C++ pro-
grams that target the Microsoft Windows operating system, most of which are not pub-
licly available. In addition, CHESS requires re-linking the program with a test func-
tion that can be executed repeatedly; this requires resetting the global state (e.g. re-
setting the value of global variables) and joining any remaining threads, which can
be non-trivial. In contrast, Maple can test native binaries out-of-the-box, by restarting
the program for each terminal schedule that is explored. A downside of this approach
is that it is slower. Checking for data races is also supported by Maple; as discussed
in §5, this is important for identifying visible operations. The public version of CHESS
can only interleave memory accesses in native code if the user adds special function
calls before each access.3

DFS. As explained in §2.2, systematic techniques generally use a depth-first search
in order to efficiently store the remaining unexplored schedules using a stack data
structure. Maple is no exception; since the stack is deeply ingrained in Maple’s data
structures and algorithms, we did not attempt to implement other approaches for SCT.
The type of depth-first search determines the order in which schedules are explored—
recall from §2.2 that the schedule space can be represented as a prefix-tree, where each
node is a schedule and the branches of a node (labelled with thread identifiers) are the
enabled threads at the scheduling point. In our study, we use a left-recursive depth-
first search where child branches (thread identifiers) are ordered in thread creation

3See “Why does wchess not support /detectraces?” at http://social.msdn.microsoft.com/Forums/en-us/
home?forum=chess
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order, starting with the most recently executing thread and wrapping in a round-robin
fashion. Thus, the initial execution explores the non-preemptive round-robin schedule;
this is the same for all systematic techniques: unbounded depth-first search, iterative
preemption bounding and iterative delay bounding. We discuss the impact of depth-
first search on our study in §5.

Preemption bounding. Maple already included support for preemption bounding, us-
ing the underlying depth-first search approach.

Delay bounding. We modified Maple to add support for delay bounding, following a
similar design to preemption bounding. At each scheduling point, Maple conceptually
constructs several schedules consisting of the current schedule concatenated with an
enabled thread t. If switching to thread t will cause the delay bound to be exceeded (as
explained in §2.4), the schedule is not considered.

Controlled random scheduling. Maple already included a controlled random sched-
uler (although this was not used in prior work [Yu et al. 2012]). As explained in §2.6, at
each scheduling point, one thread is randomly chosen from the set of enabled threads
using a uniform distribution; that thread is then scheduled for one step.

PCT algorithm. Prior to our modifications, Maple already included a version of PCT
implemented using Linux scheduler priorities [Yu et al. 2012]. By changing settings of
the Linux scheduler, it is apparently possible to implement strict priorities, as required
for PCT. However, in order to ensure that we are using an implementation that is
identical to the one described in the original PCT paper [Burckhardt et al. 2010], we
re-implemented PCT within the controlled scheduler framework of Maple; as such, our
implementation is very similar to the pseudocode from the PCT paper. This also makes
the comparison fair, as all techniques are implemented on the same framework (except
for the Maple algorithm). Another reason this was necessary was so that we could run
the experiments on our cluster (see §6), where it is not possible to change the settings
of the Linux scheduler.

Maple algorithm. The Maple tool uses a non-controlled scheduler technique by de-
fault, which we refer to as the Maple algorithm [Yu et al. 2012]. This algorithm per-
forms several profiling runs, where the scheduler is not influenced, recording patterns
of inter-thread dependencies through shared-memory accesses. From the recorded pat-
terns, it predicts possible alternative interleavings that may be feasible, which are
referred to as interleaving idioms. It then performs active runs, influencing thread
scheduling to attempt to force untested interleaving idioms, until none remain or they
are all deemed infeasible (using heuristics). Unlike controlled scheduling, Maple does
not serialize execution. Though uncontrolled scheduling is generally beyond the scope
of this work, we include the Maple algorithm in our study since it is readily available
in the tool.

Busy-wait loops. A busy-wait loop (or spin loop) repeatedly checks whether another
thread has written to a shared variable before continuing. These must be handled spe-
cially in systematic concurrency testing (and often in controlled scheduling) because
they result in an infinite schedule where the looping thread is never preempted. To
handle this, we manually inserted a call to yield in every busy-wait loop. We also mod-
ified Maple so that, during systematic testing (but not during random scheduling nor
during PCT), a preemption was forced at every yield operation, without increasing the
preemption or delay count. This is unsound, as such operations do not guarantee a pre-
emption to another thread in practice and certain bugs may require a yield to not be
preempted. Prior work provides a sound solution using thread priorities [Musuvathi
and Qadeer 2008], as long as yield statements are added appropriately. However, due
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Benchmark set Benchmark types # used # skipped
CB Test cases for real applications 3 17 networked applications.
CHESS Test cases for several versions of a

work stealing queue
4 0

CS Small test cases and some small pro-
grams

29 24 were non-buggy.

Inspect Small test cases and some small pro-
grams

1 28 were non-buggy.

Miscellaneous Test case for lock-free stack and a de-
bugging library test case

2 0

PARSEC Parallel workloads 4 29 were non-buggy.
RADBenchmark Tests cases for real applications 3 5 Chromium browser; 4 net-

working; 3 (see text).
SPLASH-2 Parallel workloads 3 9 (see text).

Table I: An overview of the benchmark suites used in the study.

to its simplicity and efficiency, and the fact that we are already testing multiple differ-
ent scheduling algorithms, we used the simpler unsound approach in this study. Fur-
thermore, for benchmarks that use busy-wait loops, the bugs manifest even if yields
force a preemption (based on our understanding of the bugs) and all such bugs were
indeed found by schedule bounding in our study (except the bug in misc.safestack,
which was not found by any technique).

Busy-wait loops must also be handled specially in PCT. In the original PCT pa-
per [Burckhardt et al. 2010], the authors state that their implementation uses heuris-
tics to identify threads that are not making progress and lowers their priorities with a
small probability. In our implementation, we change the priority of the current thread
to the lowest possible priority immediately after it executes a yield operation.

4. BENCHMARK COLLECTION
We have collected a wide range of pthread benchmarks from previous work and other
sources. Our benchmarks are amenable to systematic concurrency testing so that we
can apply both the systematic and non-systematic techniques to all benchmarks. Thus,
all benchmarks are deterministic (apart from scheduler nondeterminism). The con-
trolled testing framework on which all techniques are implemented (except the uncon-
trolled Maple algorithm—§3) requires all potentially blocking functions to be modelled.
As a result, including benchmarks that use network communication, inter-process
communication, etc., would require significant changes to the framework, and so these
benchmarks were skipped.

Table I summarizes the benchmark suites (with duplicates removed), indicating
where it was necessary to skip benchmarks. “Non-buggy” means there were no existing
bugs documented and we did not find any during our examination of the benchmark.
We now provide details of the benchmark suites (§4.1) and barriers to the application
of SCT identified through our benchmark gathering exercise (§4.2).

4.1. Details of benchmark suites
Concurrency Bugs (CB) Benchmarks [Yu and Narayanasamy 2009]. Includes buggy

versions of programs such as aget (a file downloader) and pbzip2 (a file compression
tool). We modified aget, modelling certain network functions to return data from a file
and to call its interrupt handler asynchronously. Many benchmarks were skipped due
to the use of networking, multiple processes and signals (apache, memcached, MySQL).
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CHESS [Musuvathi et al. 2008]. A set of test cases for a work stealing queue, origi-
nally implemented for the Cilk multithreaded programming system [Frigo et al. 1998]
under Windows. The WorkStealQueue (WSQ) benchmark has been used frequently to
evaluate concurrency testing tools [Musuvathi and Qadeer 2008; Musuvathi et al.
2008; Musuvathi and Qadeer 2007a,b; Burckhardt et al. 2010; Nagarakatte et al.
2012]. After manually translating the benchmarks to use pthreads and C++11 atomics,
we found a bug in two of the tests that caused heap corruption, which always occurred
when we ran the tests natively (without Maple). We fixed this bug and SCT revealed
another bug that is much rarer, which we use in the study.

Concurrency Software (CS) Benchmarks [Cordeiro and Fischer 2011]. Examples
used to evaluate the ESBMC tool [Cordeiro and Fischer 2011], including small mul-
tithreaded algorithm test cases (e.g. bank account transfer, circular buffer, dining
philosophers, queue, stack), a file system benchmark and a test case for a Bluetooth
driver. These tests included unconstrained inputs. None of the bugs are input depen-
dent, so we selected reasonable concrete values. We had to remove or define various
ESBMC-specific functions to get the benchmarks to compile.

Inspect Benchmarks [Yang et al. 2008]. Used to evaluate the INSPECT concurrency
testing tool. We skipped the swarm isort64 benchmark, which did not terminate after
five minutes when performing data race detection (see §5). There were no documented
bugs, and testing all benchmarks revealed a bug in only one benchmark, qsort mt,
which we include in the study.

Miscellaneous. We encountered two individual test cases, which we include in the
study. The safestack test case, which was posted to the CHESS forums4 by Dmitry
Vyukov, is a lock-free stack designed to work on weak-memory models. The bug ex-
posed by the test case also manifests under sequential consistency, so it should be
detectable by existing SCT tools. Vyukov states that the bug requires at least three
threads and at least five preemptions. Previous work reported a bug that requires
three preemptions [Emmi et al. 2011], which was the first bug found by CHESS that
required that many preemptions.

The ctrace test case, obtained from the authors of [Kasikci et al. 2012], exposes a
bug in the ctrace multithreaded debugging library.

PARSEC 2.0 Benchmarks [Bienia 2011]. A collection of multithreaded programs
from many different areas. We used ferret (content similarity search) and
streamcluster (online clustering of an input stream), both of which contain known
bugs. We created three versions of streamcluster, each containing a distinct bug. One
of these is from an older version of the benchmark and another was a previously un-
known bug which we discovered during our study (see Memory safety in §4.2). We
configured the streamcluster benchmarks to use non-spinning synchronization and
added a check for incorrect output. All benchmarks use the “test” input values (the
smallest) with two threads, except for streamcluster2, where the bug requires three
threads.

RADBenchmark [Jalbert et al. 2011]. Consists of 15 tests that expose bugs in several
applications. The 3 benchmarks we use test parts of Mozilla SpiderMonkey (the Fire-
fox JavaScript engine) and the Mozilla Netscape Portable Runtime Thread Package,
which are suitable for SCT. We skipped 9 benchmarks due to use of networking and
multiple processes. Several tested the Chromium browser; the use of a GUI leads to

4See “Bug with a context switch bound 5” at http://social.msdn.microsoft.com/Forums/en-US/home?
forum=chess
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nondeterminism that cannot be controlled or modelled by any SCT tools we know of.
We skipped 3 benchmarks which behave unexpectedly when running under Maple’s
controlled scheduling framework. We reduced the thread counts and parameter val-
ues of stress tests, as is appropriate for controlled scheduling (see Stress tests in §4.2).
Compared to the original version of this study [Thomson et al. 2014], we compiled the
RADBench benchmarks with different compiler flags so that certain provided libraries
are statically linked.

SPLASH-2 [Woo et al. 1995]. Three of these benchmarks have been used in previous
work [Park et al. 2009; Burckhardt et al. 2010]. SPLASH-2 requires a set of macros to
be provided; the bugs are caused by a set that fail to include the “wait for threads to
terminate” macro. Thus, all the bugs are similar. For this reason, we just use the three
benchmarks from previous work, even though the macros are likely to cause issues
in the other benchmarks. We added assertions to check that all threads have termi-
nated as expected. We reduced the values of input parameters, such as the number
of particles in barnes and the size of the matrix in lu, so the tests could run with-
out exhausting memory. Reducing parameters as much as possible is appropriate for
controlled scheduling (see Stress tests in §4.2); we discuss this further in §6.

4.2. Effort Required to Apply Controlled Schedulers
Recall that we restrict our benchmarks to those where we can apply SCT, so that
we can apply all techniques to all benchmarks and because the controlled scheduler
framework we use does not model certain external calls, such as those that perform
network communication. We encountered a range of issues when trying to apply con-
trolled scheduling to the benchmarks. These are general limitations of either SCT or
concurrency testing, not of our method specifically.

Environment modelling. When applying SCT, system calls that interact with the en-
vironment, and hence can give nondeterministic results, must be modelled or fixed to
return deterministic values. Similarly, depending on the framework being used, func-
tions that can cause threads to become enabled or disabled must be handled specially,
as they affect scheduling decisions. This includes the forking of additional processes,
which requires both modelling and engineering effort to make the testing tool work
across different processes. For the above reasons, a large number of benchmarks in
the CB and RADBenchmark suites had to be skipped because they involve testing
servers, using several processes and network communication. Modelling network com-
munication and testing multiple processes are both non-trivial tasks. We believe the
difficultly of controlling nondeterminism and synchronization is a key issue in applying
controlled schedulers to existing code bases. However, note that non-systematic tech-
niques can handle programs with nondeterminism and unmodelled synchronization,
depending on how the techniques are implemented; for example, the random sched-
uler does require deterministic programs (although bug replay will be unreliable) and
blocking synchronization functions can be detected approximately (on-the-fly) using
heuristics [Nagarakatte et al. 2012].

Isolated concurrency testing. An alternative approach to modelling nondeterminism
is to create isolated tests, similar to unit testing, but with multiple threads. Unfortu-
nately, we found that many programs are not designed in a way that makes this easy.
An example is the Apache httpd web server. The server module that we inspected had
many dependencies on other parts of the server and called system functions directly,
making it difficult to create an isolated test case. Developers test the server as a whole;
network packets are sent to the server by a script running in a separate process. Note
that it is also difficult to apply (sequential) unit testing such software.
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Many applications in the CB benchmarks use global variables and function-static
variables that are scattered throughout several source files. These would need to be
handled carefully with SCT tools that require a repeatable function to test, such as
CHESS, in which the state must be reset when the function returns. This is not a
problem for Maple, which restarts the test program for every schedule explored.

Stress tests. Some of the benchmarks we obtained were stress tests, such as those
in RADBench. These benchmarks create a large number of threads that undertake
a significant amount of computation to increase the chance of exploring an unlikely
interleaving under the OS scheduler. Increasing the amount of work is often achieved
by increasing the size of the inputs or making threads execute work in a loop. In the
context of controlled scheduling, this is extremely inefficient and unnecessary; instead,
the number of threads and other parameters should be reduced as much as possible, as
the controlled scheduler ensures that unique interleavings will be explored. Artificially
increasing the thread count and parameters to make the benchmark “harder” is not
representative of how one should use controlled scheduling for bug-finding; thus, we
chose the minimum thread counts and parameters when converting stress tests and
CPU performance benchmarks (such as the PARSEC benchmarks). In practice, one
may also increase the thread count and other parameters iteratively, in case there
exist bugs that depend on higher thread counts or parameter values. However, prior
work suggests that most concurrency bugs only require certain orderings between a
small number of threads (typically two) [Lu et al. 2008]. The only instance where we
had to increase the thread count above the minimum for the bug to manifest was
for streamcluster2 from the PARSEC benchmark suite (we changed the “number of
threads” parameter, t, from two to three, although note that the benchmark actually
creates 2t threads from the main thread).

Memory safety. We found that certain concurrency bugs manifest as out-of-bounds
memory accesses, which do not always cause a crash. We implemented an out-of-
bounds memory access detector on top of Maple, which allowed us to detect a pre-
viously unknown bug in the PARSEC streamcluster3 benchmark. Unfortunately, de-
tecting out-of-bound memory accesses is a non-trivial problem and our implementation
had many false-positives where memory allocation was missed or where libraries ac-
cess bookkeeping information that lies outside of malloced regions. Furthermore, the
extra instrumentation code caused a slow-down of up to 8x; Maple’s existing infor-
mation on allocated memory was not designed to be speed-efficient. We disabled the
out-of-bound access detector in our experiments, but we note that a production quality
concurrency testing tool would require an efficient method for detecting out-of-bound
accesses to automatically identify this important class of bug. We manually added
assertions to detect the (previously unknown) out-of-bounds access in streamcluster3
and the (previously known) out-of-bounds access in fsbench bad in the CS benchmarks.
Out-of-bounds accesses to synchronization objects, such as mutexes, are still automat-
ically detected; this was used to detect the bug in pbzip2 from the CS benchmarks.

Data races. We found that 30 of the 49 benchmarks contained data races. There are
many compelling arguments against the tolerance of data races [Boehm 2011], and
according to the C++11 standard, if it is possible for a program execution to lead to a
data race, the behavior of the program for this execution is undefined. Nevertheless, at
the level of program binaries, data races do not result in undefined behavior and many
data races are not regarded as bugs by software developers. Treating data races as
errors would be too easy for benchmarking purposes, as they hide the more challenging
bugs that the benchmarks capture. A particular pattern we noticed was that data
races often occur on flags used in ad-hoc busy-wait synchronization, where one thread
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keeps reading a variable until the value changes. At the C++ level, the “benign” races
could be rectified through the use of C++11 relaxed atomics, the “busy-waits” could be
formalized using C++11 acquire/release atomics, and synchronization operations could
be added to eliminate the buggy cases. However, telling the difference between benign
and buggy data races is non-trivial in practice [Kasikci et al. 2012; Narayanasamy
et al. 2007]. We explain how we treat data races in our study in §5.

Output checking. The bugs in the benchmarks CB.aget and parsec.streamcluster2,
lead to incorrect output, as documented in the bug descriptions. Thus, we added extra
code to read the output file and trigger an assertion failure when incorrect; the output
checking code for the CB.aget was provided as a separate program, which we added to
the benchmark. Several of the PARSEC and SPLASH benchmarks do not verify their
output, greatly limiting their utility as test cases.

5. EXPERIMENTAL METHOD
Our experimental evaluation aims to compare unbounded depth-first search (DFS),
iterative preemption bounding (IPB), iterative delay bounding (IDB), controlled ran-
dom scheduling (Rand) and probabilistic concurrency testing (PCT). We also test the
default Maple algorithm (MapleAlg). Bugs are deadlocks, crashes, assertion failures
and incorrect output. Each benchmark contains a single concurrency bug.

For each controlled scheduling technique, we use a limit of 100,000 schedules to en-
able a full experimental run over our large set of benchmarks to complete on a cluster
within one month. There are two exceptions: for the chess.IWSQWS and chess.SWSQ
benchmarks (see Table III and IV) we use a schedule limit of 10,000 as in the confer-
ence version of this work [Thomson et al. 2014]; for these longer-running benchmarks,
evaluation with the higher schedule limit exceeded our one month time restriction.

We chose to use a schedule limit instead of a time limit because there are many
factors and potential optimization opportunities that can affect the time needed for a
benchmark to complete; we believe that the time variance for the different controlled
techniques (for execution of a single schedule of a given benchmark) is negligible, as-
suming reasonably optimized implementations. Furthermore, the cluster we have ac-
cess to shares its machines with other jobs, making accurate time measurement diffi-
cult. In contrast, the number of schedules explored cannot be improved upon, without
changing key aspects of the search algorithms themselves. By measuring the number
of schedules, our results can potentially be compared with other algorithms and future
work that use different implementations with different overheads.

Each benchmark goes through the following phases:

Data Race Detection Phase. In the context of systematic concurrency testing, it is
sound to only consider scheduling points before each synchronization operation, such
as locking a mutex, as long as execution aborts with an error as soon as a data race
is detected [Musuvathi et al. 2008]. Thus, if there are data races, an error will be
reported; if there are no data races and the search completes, then the program is free
from safety property violations (such as assertion failures and deadlocks). This greatly
reduces the number of schedules that need to be considered. However, treating data
races as errors is not practical for this study due to the large number of data races
in the benchmarks (see §4.2), which would make bug-finding trivial and arguably not
meaningful.

As in previous work [Yu et al. 2012], we circumvent this issue by performing dynamic
data race detection to identify a subset of load and store instructions that are known
to participate in data races. We treat these instructions as visible operations during
concurrency testing by inserting scheduling points before them. For each benchmark,
we execute Maple in its data race detection mode ten times, without controlling the

ACM Transactions on Parallel Computing, Vol. X, No. Y, Article Z, Publication date: May 2015.



Concurrency Testing Using Controlled Schedulers: an Empirical Study Z:19

schedule. Each racy instruction (stored as an offset in the binary) is treated as a visible
operation in subsequent phases. We also tried detecting data races during concurrency
testing, but this caused an additional slow-down of up to 8x, as Maple’s data race
detector is not optimized for this scenario.

Thus, the techniques explore the sequentially consistent outcomes of a subset of
the possible data races for a concurrent program. Bugs found by this method are real
(there are no false-positives), but bugs that depend on relaxed memory effects or data
races not identified dynamically will be missed. We do not believe these missed bugs
threaten the validity of our comparison, since the same information about data races
is used by all of the techniques (excluding the Maple algorithm); the set of racy in-
structions could be considered as part of the benchmark.

An alternative to under-approximation would be to use static analysis to over-
approximate the set of racy instructions. We did not try this, but speculate that im-
precision of static analysis would lead to many instructions being promoted to visible
operations, causing schedule explosion.

Note that the data races detected and used in our experiments are likely to be dif-
ferent from those in the original study [Thomson et al. 2014] because the data race
detection phase is not deterministic.

Depth-First Search (DFS) Phase. We next perform SCT using a depth-first search,
with no schedule bounding and a limit of 100,000 schedules.

Iterative Preemption Bounding (IPB) Phase. We next perform SCT on the benchmark
using iterative preemption bounding. By repeatedly executing the program, restarting
after each execution, we first explore all terminal schedules that have zero preemp-
tions, followed by all schedules that precisely one preemption, etc., until either the
limit of 100,000 schedules is reached, all schedules have been explored or a bug is
found. If a bug is found, the search does not terminate immediately; the remaining
schedules within the current preemption bound are explored (for our set of bench-
marks, it was always possible to complete this exploration without exceeding the
schedule limit). This allows us to check whether non-buggy schedules could exceed
the schedule limit when an underlying search strategy other than depth-first search is
used (see §3).

In practice, all SCT tools that we are aware of do not perform iterative preemption
bounding in this manner. Instead, with a preemption bound of c, it is necessary to
explore all schedules with c or fewer preemptions due to the use of a depth-first search.
Thus, iterative preemption bounding will explore all schedules with 0 preemptions,
followed by all schedules with 0–1 preemptions (redundantly re-exploring schedules
with 0 preemptions), followed by all schedules with 0–2 preemptions (redundantly re-
exploring schedules with 0–1 preemptions), etc. In our study, we simulate an optimized
version of preemption bounding that does not redundantly re-explore schedules with
fewer than c preemptions. We achieve this simply by ignoring previously explored, and
thus redundant, schedules when processing our log files. We chose to do this because
it might be possible to implement such an algorithm in practice and we did not want
to unfairly penalize the technique due to the specific implementation that we used.

Iterative Delay Bounding (IDB) Phase. This phase is identical to the previous, except
delay bounding is used instead of preemption bounding.

Random scheduler (Rand) Phase. We run each benchmark 100,000 times using
Maple’s controlled random scheduler mode. This allows us to compare the other tech-
niques against a naı̈ve controlled scheduler. Recall that the random scheduler may
re-explore schedules.
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Probabilistic Concurrency Testing (PCT) Phase. Recall that PCT requires parame-
ters n (maximum number of threads), k (maximum execution steps) and d (the “bug
depth”, which controls the number of priority change points that will be chosen). In
order to experiment with PCT using varying values for d, it was necessary to obtain
reasonable estimates for n and k. We obtained these estimates for each benchmark as
follows. First, we used results related to SCTBench obtained in prior work to provide
initial estimates for n and k—see Table 3, column “# threads” and “# max schedul-
ing points” in [Thomson et al. 2014]. Using these initial estimates we executed 1000
schedules of the benchmark using PCT with d=3. We chose d=3 as we believed that
this would increase the amount of interleaving, potentially increasing the chance of
observing different execution lengths. During these executions we recorded the max-
imum observed number of threads and the maximum observed number of steps; we
start counting steps from when the initial thread first launches a second thread. We
used these values for n and k, respectively, in our experiments5.

Unlike the other bounded techniques, there is no obvious way to perform iterative
PCT. In order to provide a thorough evaluation of PCT, we experimented with each d
in {1, 2, 3}, using PCT to run each benchmark for 100,000 executions for each value of
d. We present each version of PCT (parameterized with a value for d) as a separate
technique.

Maple Algorithm (MapleAlg) Phase. We test each benchmark using the Maple algo-
rithm. This algorithm terminates based on its own heuristics; we enforced a time limit
of 24 hours per benchmark, although execution only took this long due to livelocks.

Notes on depth-first search and partial-order reduction. As discussed in §3, the sys-
tematic methods we evaluate are built on top of Maple’s default depth-first search
strategy. Although depth-first search is just one possible search strategy, and different
strategies could give different results, we argue that this is not important in our study.
First, if the depth-first search biases the search for certain benchmarks, then both
schedule bounding algorithms are likely to benefit or suffer equally from this. Second,
iterative schedule bounding explores all schedules with c preemptions/delays before
any schedule with c + 1 preemptions/delays. This means that when the first schedule
with c+ 1 preemptions/delays is considered, exactly the same set of schedules, regard-
less of search strategy, will have been explored so far. Thus, if a bug is revealed at
bound c then, by exploring all schedules with bound c (as described above), we can
determine the worst case number of schedules that might have to be explored to find
a bug, accounting for an adversarial search strategy.

Partial-order reduction (POR) [Godefroid 1996] is a commonly used technique in con-
currency testing [Musuvathi et al. 2008; Musuvathi and Qadeer 2007b; Flanagan and
Godefroid 2005; Godefroid 1996]. We do not attempt to study the various POR tech-
niques in this work. This is because (a) our principle aim was to validate the findings
of prior works on controlled scheduling, most of which do not incorporate full partial-
order reduction (and indeed, the relationship between POR and schedule bounding
is complex [Coons et al. 2013; Musuvathi and Qadeer 2007b; Holzmann and Florian
2011]), and (b) each partial-order reduction technique considered would approximately
double the number of technique configurations amenable to experimental comparison.
Nevertheless, we believe that a study incorporating partial-order reduction methods
would be valuable future work. In the context of our experimental setup, this would

5We note that, in hindsight, this may be an unrealistic approach to obtaining the parameters. A better
approach would be as follows: (1) Choose any values for n and k. (2) Execute PCT for e.g. 1,000 schedules,
recording the maximum observed number of threads and steps. (3) Update n and k based on what was
observed. (4) Repeat the process to refine the values for n and k.
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involve implementing dynamic partial-order reduction (the state-of-the-art) [Flanagan
and Godefroid 2005] in Maple.

Notes on randomization. The controlled random scheduler and PCT techniques both
use a random number generator. Given one of these techniques, a seed (used to initial-
ize the random number generator) and a benchmark, the (single) schedule executed
by the technique for the benchmark is deterministic. Unlike with the systematic tech-
niques, which operate with respect to an underlying DFS algorithm with iteratively
increasing preemption or delay bounds, for the random techniques there is no implied
order between schedules: two different seeds result in two independent schedules that
can be tested in parallel.

Our method for testing the controlled random scheduler and PCT techniques was as
follows. We used a fixed initial seed to generate a single list of 100,000 seeds using a
random number generator; we used these same seeds for all benchmarks and for all
randomized techniques to produce 100,000 schedules in each case.

For a given benchmark, we can use the number of buggy schedules out of 100,000
(i.e. the proportion of buggy schedules) to compare the random-based techniques; this
is dependent on the initial seed but, as the schedule limit is increased, we would expect
this to become stable. We can also use the number of schedules before the bug is found.
However, this is very dependent on the initial seed and a technique may “get lucky”
for some benchmarks. Thus, we can instead consider the “average number of schedules
needed to expose a bug”, calculated using: 100,000 / “number of buggy schedules”; this
shows how many schedules are likely to be needed on average before a bug is found.
As the schedule limit is increased, we would expect this number to become stable and,
thus, be independent of the initial seed.

6. EXPERIMENTAL RESULTS
We conducted our experiments on a Linux cluster, with Red Hat Enterprise Linux
Server release 6.4, an x86 64 architecture and gcc 4.7.2. Our modified version of Maple
is based on the last commit from 2012.6 The benchmarks, scripts and the modified
version of Maple used in our experiments can be obtained from http://sites.google.com/
site/sctbenchmarks.

Throughout this section, we use RQ1–RQ7 to indicate that an observation relates
to one of the research questions posed in §1. When we refer to x buggy schedules, we
mean the x schedules executed by a particular technique that found the bug in a given
benchmark. When we refer to x bugs being found by a technique, we mean that the
technique found a bug in x of the benchmarks.

For RQ6, we refer the reader to §4.2, where we discuss the difficultly of applying
controlled scheduling to the benchmarks.

6.1. Venn diagrams
The Venn diagrams in Figure 3 give a concise summary of the bug-finding ability of the
techniques in terms of number of bugs found in SCTBench within the schedule limit.

Figure 3a summarizes the bugs found by the systematic techniques. In relation to
RQ4, the figure shows that IPB was superior to DFS, finding all 33 bugs found by DFS,
plus an additional 5. The figure also shows, also in relation to RQ4, that IDB found all
38 bugs found by IPB, plus an additional 7. The bugs in 4 benchmarks were missed by
all systematic techniques; we discuss this further below.

Figure 3b shows the bugs found by the non-systematic techniques, PCT and Rand.
We show the results for PCT with d=2 and d=3 because PCT found the most bugs when

6http://github.com/jieyu/maple commit at Sept 24, 2012
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Fig. 3: Venn diagrams showing number of benchmarks in which the bugs were found
with the various techniques.

using these values for d. The results show that PCT d=3 performed the best in terms
of number of bugs found within the schedule limit, finding 48 bugs, including all those
found by the other techniques (see Figure 3c and 3d also). Thus, in answer to RQ1 and
RQ2, the results show that PCT d=3 is the most capable technique at finding bugs in
SCTBench; this concurs with findings of prior work in which PCT found bugs faster
than IPB [Burckhardt et al. 2010].

Figure 3c shows the bugs found by the superior schedule bounding technique (IDB),
the random scheduler (Rand) and PCT with d=3 (the most successful configuration of
PCT). Note that the bugs in 43 benchmarks were found by both IDB and Rand, and
IDB found just 2 additional bugs that were missed by Rand. Although not shown in
these diagrams, Rand also found all the bugs found by IPB, plus an additional 5. Thus,
in answer to RQ3, Rand performed better than IPB in terms of number of bugs found
and was not far behind IDB. Furthermore, Rand found the bugs in fewer schedules
than IDB for 21 of the benchmarks. A similar observation can be made about IPB and
Rand. Thus, Rand was often faster at finding bugs than schedule bounding. We discuss
the surprising results for Rand below.

Figure 3d shows the bugs found by MapleAlg vs. PCT d=2 and PCT d=3. Maple found
29 of the 49 bugs (all of which were also found by PCT d=3) and missed 19 bugs that
were found by PCT d=3.

The bug in misc.safestack was missed by all techniques; we discuss this in more
detail below.

6.2. Cumulative plots
The graphs in Figures 4 and 5 give an alternative summary of the techniques.

Figure 4 is a cumulative plot showing the number of bugs found (y-axis) after x
schedules (x-axis) for each technique over all the benchmarks. Each line represents
a technique and is labelled by the name of the technique and the number of bugs
found by the technique within the schedule limit. If a given technique has a point at
coordinate (x, y) then there were y benchmarks for which the technique was able to
expose a bug using x schedules or fewer, i.e. for which “number of schedules to first
bug” is less than or equal to x. This plot show the the numbers of bugs that would be
found by the techniques using schedule limits lower than 100,000. For example, with
our schedule limit of 100,000, IDB and Rand found 45 and 43 bugs, respectively; with
a schedule limit of 1,000, they would have found 40 and 42 bugs, respectively.

As explained in §5, the Rand and PCT results are specific to the random seeds used
during our experiments. Thus, in Figure 5, we present results using the average num-
ber of schedules needed to expose a bug, which is given by: 100,000 / “number of buggy
schedules”. Figure 5 is similar to Figure 4, but includes only PCT d=3 and Rand (oth-
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erwise, the graph is overcrowded). The additional dashed lines show the average be-
havior of the techniques.

Observe that, in Figure 4, the ordering of the techniques by number of bugs found
remains fairly consistent for schedule limits above 1,000, the exception being IDB and
Rand, with IDB overtaking Rand in terms of bug-finding ability at 2990 schedules. In
Figure 5, the same is true when considering the average behavior of the techniques.
Thus, the number of bugs found by the techniques within our schedule limit is, for the
most part, an accurate reflection of the bug finding ability of the techniques on our
benchmarks.

Our results show that PCT d=3 almost invariably finds more bugs than the other
techniques, unless the schedule limit is extremely low. Thus, our findings for RQ1 and
RQ2 apply for a range of schedule limits. One exception is that Rand overtook PCT
d=3 at 100 schedules, but in the average case (Figure 5), PCT d=3 is still consistently
above Rand when the schedule limit is 20 or higher. Regarding RQ4, the findings that
IDB found more bugs than IPB and that IPB found more bugs than DFS both hold for
schedule limits of 50 or higher; the difference in bugs found between these techniques
increased with the schedule limit. Similarly, for RQ3, Rand beat IPB for all schedule
limits up to and including 100,000, showing that this finding is not simply due to our
choice of schedule limit. In the average case, Rand beat IPB for for all schedule limits
of 10 or greater, indicating that for non-trivial limits this finding is independent of
our choice of initial random seed. Rand was also ahead of IDB in terms of bugs found
between schedule limits 1–1,000, giving further evidence for RQ3 that Rand performed
well. In fact, Rand found 27 bugs in the first 2 schedules and was ahead of all other
techniques by at least 6 bugs; Figure 5 shows that this is not the case on average, but
after 10 schedules, both Rand and averaged Rand found 32 bugs, which is the same
as PCT d=3 (and more than all other techniques). The fact that Rand finds many of
the bugs so quickly is evidence of the trivial nature of some of the benchmarks (RQ7),
which we discuss in §6.4.

Regarding the average behavior of PCT d=3 and Rand (Figure 5), both techniques
still performed well and our main conclusions do not change. We can see that Rand
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was slightly “lucky” between 10–1,000 schedules compared to the average case and
was slightly “unlucky” at finding the bug after 10,000 schedules.

6.3. Results tables
The full set of experimental data gathered for our benchmarks is shown in Tables III
and IV. As explained in §5, we focus on the number of schedules explored rather than
time taken for analysis. The execution time of a single benchmark varied between 1-10
seconds depending on the benchmark. The longest time taken to perform ten data race
detection runs for a single benchmark was five minutes, but data race detection was
significantly faster in most cases. Data race detection could be made more efficient
using an optimized, state-of-the-art method. Because data race analysis results are
shared between all techniques (except MapleAlg), the time for data race analysis is
not relevant when comparing these methods.

For each benchmark, # max threads and # max enabled threads show the total num-
ber of threads launched and the maximum number of threads simultaneously enabled
at any scheduling point, respectively. The # max steps column shows the maximum
number of scheduling points (visible operations) k observed from when the initial
thread first launches a second thread. As explained in §5, these numbers were ob-
tained by running 1000 executions of PCT on the benchmarks.

Results for systematic techniques. In Table III, the smallest preemption or delay
bound required to find the bug for a benchmark, or the bound reached (but not fully
explored) if the schedule limit was hit, is indicated by bound; # schedules to first bug
shows the number of schedules that were explored up to and including the detection
of a bug for the first time; # schedules shows the total number of schedules that were
explored; # new schedules shows how many of these schedules have exactly bound pre-
emptions (for IPB) or delays (for IDB); # buggy schedules shows how many of the total
schedules explored exhibited the bug. As explained in §5, when a bug is found dur-
ing IPB or IDB, we continue to explore all buggy and non-buggy schedules within the
preemption or delay bound; the schedule limit was never exceeded while doing this.
An L entry denotes 100,000 (the schedule limit discussed in §5). When no bugs were
found, the bug-related columns contain 7. We indicate by % buggy, the percentage of
schedules that were buggy out of the total number of schedules explored during DFS.
We prefix the percentage with a ‘*’ when the schedule limit was reached, in which
case the percentage applies to all explored schedules, not the total number of possible
schedules.

Results for non-systematic techniques. For the Rand and PCT techniques in Table IV,
the # schedules column is omitted, as it is always 100,000 (although, as explained in §5,
the chess.IWSQWS and chess.SWSQ benchmarks use a lower schedule limit of 10,000).
This is because these techniques do not maintain a history of explored schedules and
thus there is no notion of the search terminating. The # schedules to first bug column
shows the number of schedules that were explored up to and including the detection of
a bug for the first time. The # buggy schedules column shows how many of the 100,000
schedules exhibited a bug. For each value of d that we used for PCT and for each
benchmark, we estimate the worst case (smallest) number of buggy schedules that
we should find given a bug of depth d, parameters n and k from the benchmark, and
our schedule limit of 100,000. This estimate is shown under est. worst case # buggy in
Table IV, and is calculated by computing the worst-case probability that an execution
using PCT will expose a depth-d bug (using the formula 1/nkd−1 discussed in §2.7) and
multiplying this probability by 100,000 (the schedule limit). Of course, the estimate
for each d is only relevant if the bug associated with a benchmark can in fact manifest
with depth d.
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Property # benchmarks
Bug was found with a delay bound of 0 13
Total number of schedules < 100,000 18
> 50% of random terminal schedules were buggy 18
Every random terminal schedule was buggy 8

Table II: Benchmarks where bug-finding is arguably trivial.

For the Maple algorithm, we report whether the bug was found (the found? column
in Table IV), the total number of (not necessarily distinct) schedules explored, as cho-
sen by the algorithm’s heuristics, and the total time in seconds for the algorithm to
complete. Benchmarks 32, 33 and 34 caused Maple to livelock, so the 24 hour time
limit was exceeded. We indicate this with ‘-’.

6.4. Benchmark Properties
The # max threads and # max steps columns from the results tables can be used to
estimate the total number of schedules, which may shed light on the complexity of a
given benchmark. With at most n enabled threads and at most k steps, there are at
most nk terminal schedules. On the other hand, if most of the schedules are buggy
then the number of schedules is not necessarily a good indication of bug complexity.
For example, CS.din phil2 sat has a relatively high number of schedules, but since
87% of them are buggy (see the DFS results in Table III), this bug is trivial to find. Of
course, the majority of benchmarks cannot be explored exhaustively, and estimating
the percentage of buggy schedules from the partial DFS results is problematic because
DFS is biased towards exploring deep context switches.

To answer RQ7, we present Table II which provides some further insight into the
complexity of the benchmarks, using properties derived from Tables III and IV. Bugs
found with a delay bound of zero (13 cases) will always be found on the initial schedule
for IPB, IDB and DFS, as they all initially execute the same schedule. Any technique
based on this same depth-first schedule will also find the bug immediately. It could be
argued that this schedule is effective at finding bugs, or that the bugs in question are
trivial, since the schedule includes minimal interleaving (there are no preemptions).
Benchmarks with fewer than 100,000 schedules total (as measured by unbounded
DFS, which is exhaustive) will always be exhaustively explored (and so the bug will be
found) by all systematic techniques (18 cases). Techniques can still be compared on how
quickly they find the bugs in such benchmarks. Note that the two chess benchmarks
that were explored using a schedule limit of 10,000 do not have fewer than 100,000
schedules. Bugs that were exposed more than 50% of the time when using the ran-
dom scheduler could arguably be classified as “easy-to-find” (18 cases). Among these,
bugs that were exposed 100% of the time when using the random scheduler (8 cases)
are almost certainly trivial to detect; indeed, Tables III and IV show that all of these
benchmarks were buggy for all schedules explored by all techniques. For 5 of these
benchmarks, DFS was exhaustive, showing that these bugs are not even schedule-
dependent. Note that the CS.din phil7 sat benchmark contains fewer schedules than
the smaller versions of this benchmark and has 100% buggy schedules according to
DFS. This is because CS.din phil7 sat contains an additional, unintentional bug in-
troduced by the original authors of the benchmark; when we converted the benchmark
to use (non-recursive) pthread mutexes, the bug causes additional deadlocks. We did
not fix this additional bug and instead used the benchmark as it was found.

Regarding RQ7: in our view the relatively trivial nature of some of the bugs ex-
hibited by our benchmarks has not been made clear in prior work that studies these
examples (prior to the conference version of this article [Thomson et al. 2014]). The
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controlled random scheduler can detect many of the bugs with a high probability. We
regard these easy-to-find bugs as having value only in providing a minimum baseline
for any respectable concurrency testing technique. Failure to detect these bugs would
constitute a major flaw in a technique; detecting them does not constitute a major
achievement.

6.5. Techniques In Detail
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Fig. 6: Comparison of IPB (y-axis) and IDB (x-axis), showing the number of schedules
to the first bug (cross) connected to the total number of schedules (square), up to the
bound that found the bug. Squares are labelled with the benchmark id.

IPB vs. IDB. Figure 6 compares IPB and IDB by plotting data from the following
columns in Table III: # schedules to first bug (as a cross) and # schedules (as a square).
All benchmarks are shown for which at least one of the techniques found a bug. A
benchmark is depicted as a line connecting a cross and a square. Each square is la-
belled with its benchmark id from Table III. Where the bug was not found by one of
the techniques, this is indicated with a cross at 100,000 (the schedule limit discussed in
§5). However, as described in §5, benchmarks 33 and 34 used a schedule limit of 10,000
and so the crosses for these benchmarks on the line y =10,000 indicate that IPB hit the
schedule limit without finding the bug. The cross indicates which technique was faster
at finding the bug; crosses below/above the diagonal indicate that IPB/IDB was faster.
The square indicates how many schedules exist with a bound less than or equal to the
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Fig. 7: Comparison of IPB (y-axis) and IDB (x-axis), showing total number of non-buggy
schedules (cross) connected to the total number of schedules (square), up to the bound
that found the bug. Squares are labelled with the benchmark id.

bound that found the bug. For example, when exploring benchmark 30 with IPB, the
first buggy schedule is found after 243 schedules. This schedule involves one preemp-
tion, so the search continues until all 856 schedules with at most one preemption have
been explored (bound at which the bug was found). Since the search terminated before
reaching the schedule limit, we know that the bug would be found within the first 856
schedules even if we were using an underlying search strategy other than depth-first
search. Notice that a number of benchmarks appear at (x,100,000), with x <100,000:
this is where IPB failed to find a bug and IDB succeeded (except for benchmarks 33
and 34, as explained above).

The bug-finding ability of the techniques in Figure 6 is tied to the underlying depth-
first search. It is possible that this might cause one of the techniques to “get lucky”
and find a bug quickly, while another search order could lead to many additional non-
buggy schedules being considered before a bug is found. To avoid this implementation-
dependent bias, in Figure 7 we consider the worst-case bug-finding ability. For each
benchmark, a cross plots, for IDB and IPB, the total number of non-buggy schedules
within the bound that exposed the bug. This corresponds to the difference between the
# schedules and # buggy schedules columns presented in Table III, and represents the
worst-case number of schedules that might have to be explored to find a bug, given an
unlucky choice of search ordering. The squares are the same as in Figure 6.
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Overall, IDB finds all bugs found by IPB, plus an additional seven. Regarding RQ4:
in Figure 6, most crosses fall on or above the diagonal, showing that IDB was as fast
or faster than IPB in terms of number of schedules to the first bug. The same is mostly
true for the squares, showing that IDB generally leads to a smaller total number of
schedules than IPB (up to the bound at which the bug was found). In the worst case
(Figure 7), some crosses fall under the line, but most are still very close, or represent
a small number of schedules (less than 100) where the difference between the tech-
niques is negligible. An outlier is benchmark 42 where, in the worst case, IPB requires
3 schedules to find the bug, while IDB requires 1356 schedules. Table III shows that the
bug does not require any preemptions, but requires at least one delay; this difference
greatly increases the number of schedules for IDB. We believe this can be explained
as follows. First, there must be a small number of blocking operations, leading to a
very small number of schedules with a preemption bound of zero. Second, the bug in
question requires that when two particular threads are started and reach a particular
barrier, the “master” thread (the thread that was created before the other) does not
leave the barrier first. With zero preemptions, the non-master thread can be chosen at
the first blocking operation (as any enabled thread can be chosen). With zero delays,
only the master thread can be chosen, as one delay is required to skip over the master
thread. Thus, this is an example where IDB performs worse than IPB. Nevertheless,
IDB is still able to find the bug within the schedule limit.

The CS.reorder X bad benchmark (where X is the number of threads launched – see
Table III) is the adversarial delay bounding example given in Figure 2 in §2.4; the
smallest delay bound required for the bug to manifest is incremented as the thread
count is incremented. However, IDB still performs better than IPB, as the number of
schedules in IPB increases exponentially with the thread count. Furthermore, this is
a synthetic benchmark for which the bug is found quickly by both techniques with a
low thread count.

Effectiveness of controlled random scheduling. In answer to RQ3, we have shown
above that Rand is surprisingly effective, finding more bugs than IPB and almost as
many as IDB. The cumulative plots in Figure 4 and 5 show that these findings apply
on average and for various schedule limits. A possible intuition for this is as follows.
If a bug can be exposed with just one preemption, say, then there may be a number of
scheduling points at which the preemption can occur so that the bug can be exposed.
Furthermore, there may be a number of “unexpected” operations in other threads that
will cause the bug to trigger (e.g. writing to a variable that the preempted thread is
about to access). Any schedule where (a) the preemption occurs in a suitable place, and
(b) additional preemptions do not prevent the bug from occurring, will also expose the
bug. There may be many such schedules and thus a good chance of exposing the bug
through random scheduling. More generally, if a bug can be exposed with a small delay
or preemption count, there may be a high probability that a randomly selected sched-
ule will expose the bug. A counter-example is the bug in the parsec.ferret benchmark,
which is missed by Rand but found by IDB. The bug requires a thread to be preempted
early in the execution and not rescheduled until other threads have completed their
tasks. Since Rand is very likely to reschedule the thread, it is not effective at finding
this bug. For IDB, only one delay is required, but, as seen in Table III, only one buggy
schedule was found; thus, the delay must occur at a specific scheduling point for the
bug to manifest.

The CHESS benchmarks test several versions of a work stealing queue. They
were used for evaluation in the introduction of preemption bounding [Musuvathi and
Qadeer 2007a] and thus were used to show the effectiveness of preemption bounding
as a bug finding technique. Depth-first search fails to find the bug in chess.WSQ, while
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Fig. 9: Shows, for the chess and radbench benchmarks, the number of buggy schedules
explored by Rand, and PCT for each value of d ∈ {1, 2, 3}. Each technique explored
100,000 schedules (except for chess.IWSQWS and chess.SWSQ, which use a schedule
limit of 10,000).

IPB succeeds (as in prior work). The remaining CHESS benchmarks are more complex
(lock-free) versions of chess.WSQ, which were also used in prior work. IPB and DFS
fail to find the bugs in these benchmarks, while IDB is successful (which is relevant
to RQ4). However, Rand is able to find all the bugs in these benchmarks (like IDB)
and it also finds them in fewer schedules than IDB and IPB (which is highly relevant
to RQ3). The prior work that introduced these techniques did not compare against a
random scheduler in terms of bug finding ability.

Effectiveness of Probabilistic Concurrency Testing. Figure 8 and Figure 9 compare
the effectiveness of Rand and PCT for each value of d ∈ {1, 2, 3} at finding bugs for
a subset of benchmarks; the subset is not representative of all the benchmarks—we
focus on benchmarks for which the probabilistic results are notable and worthy of dis-
cussion. The bars show the number of buggy terminal schedules exposed by the tech-
niques within 100,000 schedules (except for chess.IWSQWS and chess.SWSQ, which use
a schedule limit of 10,000). The graphs uses a log scale for the y-axis. Regarding RQ2
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and RQ3, it is interesting to see that Rand is often similar and sometimes better than
PCT in terms of number of buggy schedules found. As explained above, we conjecture
that in these cases, there are probably many places at which preemptions can occur
to allow the bug to manifest and many opportunities for an unexpected operation in
a different thread to occur after the preemption. Nevertheless, PCT with d=3 finds all
the bugs that Rand finds, plus an additional four, as shown in Figure 3b.

Recall that the PCT algorithm inserts d − 1 priority change points (see §2.7). Look-
ing at CB.stringbuffer-jdk1.4 in Figure 8, we can see that this bug was found by
both Rand and PCT d=3. Looking at Table III, this benchmark only has 2 threads and
around 10 execution steps, but the bug requires at least 2 preemptions or delays to
occur. Note that, in the PCT algorithm, a lower priority thread T1 can enable a higher
priority thread T2, in which case T2 will preempt T1, without the need for a priority
change point. Nevertheless, for this benchmark, it seems likely at least two priority
change points are needed for the bug to occur, which would explain why PCT did not
find the bug with d < 3. Interestingly, Rand is more effective at finding this bug than
PCT. The bug requires a preemption away from thread 1 and then a preemption away
from thread 2 so that execution of thread 1 continues. Unfortunately, due to the way
in which PCT lowers priorities, the second priority change point may not change the
priority ordering between the two threads—it depends on the priorities assigned to
the priority change points. For example, assume d = 3 and an initial priority mapping
of {T2 → 3, T1 → 4}, so that T1 has the highest priority. Let the first priority change
point change T1’s priority to 1, giving a priority mapping of {T1→ 1, T2→ 3} and mak-
ing T2 the new highest priority thread. Let the second priority change point change
T2’s priority to 2, giving a priority mapping of {T1 → 1, T2 → 2}. The second change
point does not change the relative priority ordering between the threads. We speculate
that this is the reason why PCT is less effective. This possibly highlights a weakness
of the PCT algorithm; on the other hand, PCT was designed carefully to ensure the
probabilistic guarantee described in §2.7, so “fixing” this issue while maintaining the
guarantee may be non-trivial.

Similar observations can be made about the other benchmarks in Figure 8 and Fig-
ure 9 by cross-referencing with Table III; if a bug requires c preemptions or delays,
then the bug will usually not be found by PCT with d − 1 < c (fewer than c priority
change points). We stress that this is not the case in general; an exception is the bug
in chess.WSQ, which requires 2 preemptions, but was found by PCT d=2 (only 1 pri-
ority change point). Thus, this is an example where a lower priority thread unblocks
a higher priority thread, resulting in a preemption. We speculate that this is because
the benchmark involves blocking locks (the other CHESS benchmarks use spin locks).
Similarly, radbench.bug2 requires 3 preemptions, but was found with PCT d=3 (2 pri-
ority change points).

For many of the benchmarks in shown in Figure 8 and Figure 9, increasing d makes
PCT more effective at finding bugs; this suggests that these bugs require certain
change points at the right places, but additional change points are unlikely to pre-
vent the bug from occurring. A good example is parsec.ferret which, as explained
above, requires a thread to be preempted early in the execution and not rescheduled
until other threads have completed their tasks. Unlike Rand, PCT is ideally suited to
exposing this bug; once the required thread has its priority lowered, it will only be
scheduled instead of other enabled threads if all other enabled threads also have their
priorities lowered; this benchmark has, on average, 4 enabled threads. Thus, as long
as d < 5, increasing d simply increases the chance of one of the priority change points
occurring at the right place.

The radbench.bug1 benchmark was found by IDB, PCT d=2 and PCT d=3; very few
buggy schedules were found by PCT. The bug requires a thread to be preempted after
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destroying a hash table and a second thread to access the hash table, causing a crash;
this explains why the bug requires only one delay and why PCT was able to find it
with at least one priority change point. It is likely that the large number of scheduling
points is what pushes this bug out of reach of the other techniques. PCT d=3 found
7 buggy schedules in radbench.bug2; the description of this bug is less clear [Jalbert
et al. 2011]. This bug and the bug in CB.stringbuffer-jdk1.4 are the only ones found
by PCT that appear to require d=3 (i.e. 2 priority change points).

PCT d=2 and PCT d=3 were the only techniques to find the bugs in
CS.twostage 100 bad, CS.reorder 10 bad and CS.reorder 20 bad. However, these
benchmarks have identical counterparts with lower thread counts. Recall that, in con-
trolled concurrency testing, the thread count should be decreased as much as possible
while still capturing an interesting concurrency scenario. Thus, these benchmarks are
perhaps not realistic test cases for controlled scheduling. Furthermore, IDB found the
bugs in the versions of these benchmarks with lower thread counts, plus all the other
bugs that were found by PCT d=3. If we ignore these “high thread count” benchmarks,
then IDB and PCT found the same number of bugs within the schedule limit; thus, it
could be argued that IDB performed similarly to PCT, which is relevant to RQ1 and
RQ2. Nevertheless, PCT found these bugs directly, without the thread count having to
be reduced, which is an interesting result.

As explained above, the CS.reorder X bad benchmark (where X is the number of
threads launched) are versions of the adversarial delay bounding example given in
Figure 2 in §2.4. One priority change point at the right place (and a particular per-
mutation of initial thread priorities) is sufficient for PCT to expose this bug. Thus,
PCT manages to find the bug even when the number of threads is doubled (compare
CS.reorder 10 bad and CS.reorder 20 bad in Table IV). This is in contrast to system-
atic techniques, where increasing the thread count increases the number of schedules
explored before the first bug, until the point where the bug is not found within the
schedule limit (see Table III).

Recall that, for each value of d that we used with PCT and for each benchmark, we
estimated the worst case (smallest) number of buggy schedules that we should find
given a bug of depth d, parameters n and k from the benchmark, and our schedule
limit of 100,000 (see §2.7 and §6.3). The estimate for each d is only relevant if the bug
associated with a benchmark can in fact manifest with depth d. These estimates can
be see in Table IV. The minimum value of d for which PCT found a bug provides an
upper bound on the bug depth; the actual bug depth may be smaller. Assuming that the
minimum value of d for which PCT found a bug is, in fact, the depth of the bug, it can be
seen that PCT always found many more schedules than the estimated number for that
bug. For example, consider chess.IWSQ in Table IV. It is likely that this bug has depth
d=2, since PCT d=1 was not able to find the bug. Assuming this, the estimated worst
case number of buggy schedules that we should find (in the PCT d=2 column) is less
than 1, yet the actual number of buggy schedules found was 4,829. In fact, for d=2 and
d=3 the majority of the benchmarks had a worst case estimate of less than 1 schedule,
suggesting that the bugs should not be found within our schedule limit (yet, most bugs
were found). Our results agree with the original evaluation of PCT [Burckhardt et al.
2010], which showed that the number of buggy schedules found in practice is usually
much greater than the smallest number of buggy schedules predicted by the formula.

Comparison with the default Maple algorithm. As shown in Figure 3d, MapleAlg
missed 20 bugs overall, 19 of which were found by other techniques. This includes
benchmarks like CS.bluetooth driver bad and CS.circular buffer bad, which were
quickly found by most other techniques. Maple livelocked on the CHESS benchmarks;
this is presumably a bug in the tool that could be fixed. MapleAlg attempts to force
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certain patterns of inter-thread accesses (or interleaving idioms) that might lead to
concurrency bugs. It is possible that some of the bugs it misses require interleaving
idioms that are not included in MapleAlg.

Small schedule bounds. To answer RQ5, we note that schedule bounding exposed
45 of the 49 bugs, and 44 of these require a preemption bound of two or less (note
that, if a bug can be found with a delay bound of c, then it can also be found with a
preemption bound of c, although not necessarily within the schedule limit when using
IPB). Furthermore, 42 of these were found using a delay bound of two or less. Thus,
a large majority of the bugs in SCTBench can be found with a small preemption or
delay bound. This supports previous claims that many bugs can be exposed using a
small number of preemptions or delays [Musuvathi and Qadeer 2007a; Musuvathi
et al. 2008; Emmi et al. 2011].

The systematic techniques missed the bugs in CS.reorder 10 bad,
CS.reorder 20 bad and CS.twostage 100 bad, which, as explained above, are du-
plicates of other benchmarks but with higher thread counts. The CS.reorder X bad
benchmark is the adversarial delay bounding example given in Figure 2 in §2.4. Thus,
these benchmarks require a delay bound of one less than X (where X is the number
of threads). However, it is not clear whether such a scenario is likely to occur in real
multithreaded programs.

The bug in radbench.bug2 requires three preemptions or delays to occur (see Ta-
ble III). The benchmark is a test case for the SpiderMonkey JavaScript engine in Fire-
fox. A bug requiring three preemptions and delays has been reported before in [Emmi
et al. 2011] and this was the first time CHESS had found such a bug. Note that we
reduced the number of threads in radbench.bug2 from six to two; thus, IPB and IDB
explore exactly the same schedules. Nevertheless, two threads is enough to expose the
bug.

The bug in misc.safestack was missed by all techniques and reportedly requires five
preemptions and three threads. Given this information, we tried running PCT with
d = 6 for 100,000 executions, but the bug did not occur. We reproduced the bug using
Relacy7, a weak memory data race detector that performs either systematic or con-
trolled random scheduling for C++ programs that use C++ atomics. The bug was found
using the random scheduling mode after 75,058 schedules. It is unclear why Maple’s
random scheduler did not find the bug. It is possible that the number of scheduling
points with Maple is higher, as Relacy only inserts scheduling points before atomic
operations.

SPLASH-2 benchmarks. As explained in §4.1, we reduced the input values in the
SPLASH-2 benchmarks; this resulted in fewer scheduling points and allowed our data
race detector to complete, without exhausting memory. Due to these changes, the
results are not directly comparable with other experiments that use the SPLASH-2
benchmarks (unless parameters are similarly reduced). However, the bugs are found
by all systematic techniques after just two schedules; this would be the same, regard-
less of parameter values. Therefore, the # schedules to first bug data for the systematic
techniques are comparable to other techniques.

7. RELATED WORK
Background on controlled scheduling was discussed in §2. We now discuss similar prior
work and other relevant concurrency testing techniques.

A prior study created a benchmark suite of concurrent programs to evaluate the bug
detection capabilities of several tools and techniques [Rungta and Mercer 2009]. Our

7http://www.1024cores.net/home/relacy-race-detector
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0 CB.aget-bug2 4 3 24 0 1 10 10 4 0 1 1 1 1 1 46486 29513 63%
1 CB.pbzip2-0.9.4 4 4 54 0 2 12 12 4 1 2 31 30 13 2 L 68226 *68%
2 CB.stringbuffer-jdk1.4 2 2 10 2 9 13 8 1 2 9 13 8 1 7 24 1 4%
3 CS.account bad 4 3 8 0 3 6 6 2 1 3 5 4 1 3 28 4 14%
4 CS.arithmetic prog bad 3 2 20 0 1 4 4 4 0 1 1 1 1 1 19680 19680 100%
5 CS.bluetooth driver bad 2 2 13 1 6 7 6 1 1 6 7 6 1 36 177 10 5%
6 CS.carter01 bad 5 3 19 1 9 19 16 2 1 8 12 11 1 8 1708 49 2%
7 CS.circular buffer bad 3 2 31 1 23 35 32 12 2 25 79 56 36 20 3991 2043 51%
8 CS.deadlock01 bad 3 2 11 1 9 12 9 2 1 7 9 8 1 10 46 3 6%
9 CS.din phil2 sat 3 2 21 0 1 3 3 3 0 1 1 1 1 1 5336 4686 87%
10 CS.din phil3 sat 4 3 32 0 1 13 13 13 0 1 1 1 1 1 L 85542 *85%
11 CS.din phil4 sat 5 4 43 0 1 73 73 73 0 1 1 1 1 1 L 86231 *86%
12 CS.din phil5 sat 6 5 39 0 1 501 501 501 0 1 1 1 1 1 L L *100%
13 CS.din phil6 sat 7 6 49 0 1 4051 4051 4051 0 1 1 1 1 1 L L *100%
14 CS.din phil7 sat 8 7 59 0 1 7 7 7 0 1 1 1 1 1 924 924 100%
15 CS.fsbench bad 28 27 155 0 1 1 1 1 0 1 1 1 1 1 L L *100%
16 CS.lazy01 bad 4 3 11 0 1 13 13 6 0 1 1 1 1 1 118 81 68%
17 CS.phase01 bad 3 2 11 0 1 2 2 2 0 1 1 1 1 1 17 17 100%
18 CS.queue bad 3 2 83 1 98 100 97 2 2 63 482 420 326 43 L 59036 *59%
19 CS.reorder 10 bad 11 10 40 0 7 L L 0 5 7 L 38129 0 7 L 0 *0%
20 CS.reorder 20 bad 21 20 89 0 7 L L 0 4 7 L 21023 0 7 L 0 *0%
21 CS.reorder 3 bad 4 3 12 1 43 74 61 2 2 25 45 35 3 126 2494 23 <1%
22 CS.reorder 4 bad 5 4 16 1 359 774 701 3 3 205 417 330 7 6409 L 86 *<1%
23 CS.reorder 5 bad 6 5 20 1 3378 8483 7982 4 4 1513 3681 2843 15 7 L 0 *0%
24 CS.stack bad 3 2 43 1 23 50 47 9 1 22 32 31 9 22 L 6361 *6%
25 CS.sync01 bad 3 2 9 0 1 2 2 2 0 1 1 1 1 1 6 6 100%
26 CS.sync02 bad 3 2 18 0 1 2 2 2 0 1 1 1 1 1 88 88 100%
27 CS.token ring bad 5 4 11 0 8 24 24 4 2 10 29 22 3 8 280 57 20%
28 CS.twostage 100 bad 101 100 792 0 7 L L 0 2 7 L 99304 0 7 L 0 *0%
29 CS.twostage bad 3 2 11 1 9 10 7 1 1 7 9 8 1 13 87 3 3%
30 CS.wronglock 3 bad 5 4 25 1 243 856 783 66 1 15 22 21 2 3233 L 3006 *3%
31 CS.wronglock bad 9 8 49 0 7 L L 0 1 31 42 41 2 7 L 0 *0%
32 chess.IWSQ 3 3 169 1 7 L 99997 0 2 2990 4378 4264 192 7 L 0 *0%
33 chess.IWSQWS 3 1 660 1 7 10000 9997 0 1 219 471 470 1 7 10000 0 *0%
34 chess.SWSQ 3 1 2406 1 7 10000 9997 0 1 773 1698 1697 1 7 10000 0 *0%
35 chess.WSQ 3 3 161 2 2814 8852 8626 640 2 801 2048 1974 192 7 L 0 *0%
36 inspect.qsort mt 3 3 81 1 31 88 84 2 1 19 28 27 1 75861 L 2127 *2%
37 misc.ctrace-test 3 2 22 1 4 20 19 12 1 4 20 19 12 4 20 12 60%
38 misc.safestack 4 3 117 1 7 L 99987 0 3 7 L 95958 0 7 L 0 *0%
39 parsec.ferret 11 11 24453 0 7 L L 0 1 51 4575 4574 1 7 L 0 *0%
40 parsec.streamcluster 5 2 1373 1 7951 16072 16066 19 1 1336 1372 1371 10 7 L 0 *0%
41 parsec.streamcluster2 7 3 4177 0 7 L L 0 1 4153 4175 4174 20 7 L 0 *0%
42 parsec.streamcluster3 5 2 1373 0 2 6 6 4 1 2 1359 1358 4 2 L 60785 *60%
43 radbench.bug1 4 3 21889 1 7 L 99962 0 1 616 14206 14205 1 7 L 0 *0%
44 radbench.bug2 2 2 171 3 59354 72704 69895 48 3 59354 72704 69895 48 7 L 0 *0%
45 radbench.bug6 3 3 101 1 84 168 165 3 1 60 86 85 3 7 L 0 *0%
46 splash2.barnes 2 2 4449 1 2 4378 4377 326 1 2 4378 4377 326 2 L 23504 *23%
47 splash2.fft 2 2 152 1 2 134 133 61 1 2 134 133 61 2 L 75434 *75%
48 splash2.lu 2 2 140 1 2 105 104 49 1 2 105 104 49 2 L 49887 *49%

Table III: Experimental results for systematic concurrency testing using iterative pre-
emption bounding (IPB), iterative delay bounding (IDB) and unbounded depth-first
search (DFS). Entries marked ‘L’ indicate 100,000, our schedule limit. A ‘7’ indicates
that no bug was found. A percentage prefixed with ‘*’ does not apply to all schedules,
only those that were explored via DFS before the schedule limit was reached.
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0 CB.aget-bug2 4 3 24 4 48591 7 25053 43 7 40313 1 5 46938 <1 3 17 37
1 CB.pbzip2-0.9.4 4 4 54 1 41771 1 16466 8 1 22971 <1 5 27385 <1 3 4 20
2 CB.stringbuffer-jdk1.4 2 2 10 23 6308 7 0 500 7 0 50 1 1979 5 3 9 7
3 CS.account bad 4 3 8 8 11912 5 25060 390 5 21936 48 5 19527 6 3 20 12
4 CS.arithmetic prog bad 3 2 20 1 L 1 L 83 1 L 4 1 L <1 3 1 1
5 CS.bluetooth driver bad 2 2 13 8 6436 7 0 295 11 3871 22 11 5968 1 7 11 7
6 CS.carter01 bad 5 3 19 1 46877 7 0 55 9 16028 2 3 29243 <1 3 6 5
7 CS.circular buffer bad 3 2 31 1 91146 7 0 34 1 12818 1 1 28763 <1 7 17 12
8 CS.deadlock01 bad 3 2 11 1 37405 7 0 275 15 9020 25 15 17234 2 7 7 5
9 CS.din phil2 sat 3 2 21 1 96860 1 L 75 2 95337 3 2 93558 <1 3 1 1

10 CS.din phil3 sat 4 3 32 1 92850 1 L 24 1 93792 <1 1 90207 <1 3 1 1
11 CS.din phil4 sat 5 4 43 1 88754 1 L 10 1 93040 <1 1 88414 <1 3 1 1
12 CS.din phil5 sat 6 5 39 1 L 1 L 10 1 L <1 1 L <1 3 1 1
13 CS.din phil6 sat 7 6 49 1 L 1 L 5 1 L <1 1 L <1 3 1 1
14 CS.din phil7 sat 8 7 59 1 L 1 L 3 1 L <1 1 L <1 3 1 1
15 CS.fsbench bad 28 27 155 1 L 1 L <1 1 L <1 1 L <1 3 1 1
16 CS.lazy01 bad 4 3 11 2 60626 1 49847 206 1 53343 18 1 56197 1 3 1 1
17 CS.phase01 bad 3 2 11 1 L 1 L 275 1 L 25 1 L 2 3 1 1
18 CS.queue bad 3 2 83 1 99986 7 0 4 38 818 <1 6 14046 <1 3 2 1
19 CS.reorder 10 bad 11 10 40 7 0 7 0 5 439 89 <1 439 135 <1 7 11 7
20 CS.reorder 20 bad 21 20 89 7 0 7 0 <1 219 131 <1 219 224 <1 7 11 7
21 CS.reorder 3 bad 4 3 12 39 2498 7 0 173 168 2653 14 115 4559 1 7 10 7
22 CS.reorder 4 bad 5 4 16 68 726 7 0 78 86 1257 4 7 2053 <1 7 11 8
23 CS.reorder 5 bad 6 5 20 68 202 7 0 41 7 688 2 7 1057 <1 7 11 7
24 CS.stack bad 3 2 43 2 60949 7 0 18 2 27680 <1 2 40159 <1 7 10 8
25 CS.sync01 bad 3 2 9 1 L 1 L 411 1 L 45 1 L 5 3 1 1
26 CS.sync02 bad 3 2 18 1 L 1 L 102 1 L 5 1 L <1 3 1 1
27 CS.token ring bad 5 4 11 9 13004 44 8238 165 11 13655 15 11 16908 1 3 5 4
28 CS.twostage 100 bad 101 100 792 7 0 7 0 <1 10548 5 <1 10548 6 <1 7 11 9
29 CS.twostage bad 3 2 11 15 7848 7 0 275 15 12097 25 15 19840 2 3 8 5
30 CS.wronglock 3 bad 5 4 25 1 31302 7 0 32 13 6442 1 4 11107 <1 3 6 4
31 CS.wronglock bad 9 8 49 1 32534 7 0 4 29 3636 <1 24 6693 <1 3 6 4
32 chess.IWSQ 3 3 169 19 133 7 0 1 61 4829 <1 24 8069 <1 7 7 -
33 chess.IWSQWS 3 1 660 3 1538 7 0 <1 584 8 <1 616 19 <1 7 9 -
34 chess.SWSQ 3 1 2406 15 88 7 0 <1 1109 2 <1 612 11 <1 7 7 -
35 chess.WSQ 3 3 161 392 106 7 0 1 61 4993 <1 24 8357 <1 7 12 12
36 inspect.qsort mt 3 3 81 72 1024 7 0 5 109 1271 <1 109 2346 <1 7 142 102
37 misc.ctrace-test 3 2 22 1 24487 2193 7 68 5 27307 3 5 33607 <1 3 1 1
38 misc.safestack 4 3 117 7 0 7 0 1 7 0 <1 7 0 <1 7 23 16
39 parsec.ferret 11 11 24453 7 0 3 39389 <1 3 63027 <1 3 69745 <1 3 27 205
40 parsec.streamcluster 5 2 1373 1 68746 1 49831 <1 1 50194 <1 1 50428 <1 3 1 2
41 parsec.streamcluster2 7 3 4177 21 12514 2 50135 <1 2 50096 <1 2 50075 <1 7 24 149
42 parsec.streamcluster3 5 2 1373 2 34448 1 50081 <1 1 50081 <1 1 50081 <1 3 1 1
43 radbench.bug1 4 3 21889 7 0 7 0 <1 3084 8 <1 79190 1 <1 7 583 13811
44 radbench.bug2 2 2 171 27071 9 7 0 1 7 0 <1 1813 54 <1 7 239 950
45 radbench.bug6 3 3 101 1 30211 7 0 3 15 4543 <1 15 7675 <1 7 11 10
46 splash2.barnes 2 2 4449 2 49933 2 49967 <1 2 49967 <1 2 49967 <1 3 1 1
47 splash2.fft 2 2 152 2 62188 2 49967 2 2 50007 <1 2 50017 <1 3 2 2
48 splash2.lu 2 2 140 1 97329 2 49967 2 2 53574 <1 2 56605 <1 3 2 3

Table IV: Experimental results for non-systematic testing with a controlled ran-
dom scheduler (Rand), PCT for each d ∈ {1, 2, 3}, and using the Maple algorithm
(MapleAlg). Entries marked ‘L’ indicate 100,000, our schedule limit. A ‘7’ indicates
that no bug was found. In the MapleAlg results, ‘-’ indicates that the Maple tool timed
out after 24 hours.
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49 test programs are drawn from 35 distinct bugs in pthread benchmarks written in
C/C++, while the prior study uses 12 distinct bugs in benchmarks written in both Java
and C#.8 Thus, our study is over a larger set of benchmarks, which are mostly distinct
from the set used in the prior study. Furthermore, 8 of our benchmarks are derived
from open source desktop libraries and applications and a further 7 are from paral-
lel performance benchmark suites (the PARSEC and SPLASH2 benchmarks). The C#
benchmarks from the prior study are standalone synthetic test cases. Our study is fo-
cused on comparing five controlled testing techniques (or seven controlled testing tech-
niques if the different parameter values for PCT are treated as distinct techniques),
implemented in the same controlled testing framework within the same tool, plus the
Maple algorithm. This allows us to compare the techniques fairly in a single tool (as op-
posed to comparing several distinct tools that may implement the techniques in differ-
ent manners), because each technique operates on the same low level implementation,
e.g. they use the same notion of scheduling points. In contrast, the prior study tests six
techniques implemented over four tools. The prior study claims to test schedule bound-
ing on 12 benchmarks by running CHESS with specific preemption bounds for each
benchmark, although the study only includes results tables for 3 of the benchmarks.
We test schedule bounding more thoroughly; we use iterative preemption bounding
and iterative delay bounding to explore schedules with various preemption and delay
bounds, and report results for both techniques on all benchmarks.

Partial-order reduction (POR) [Godefroid 1996] reduces the number of schedules
that need to be explored soundly (i.e. without missing bugs, assuming the search com-
pletes). It relies on the fact that schedules can be represented as a partial-order of
operations, where each partial-order reaches the same state. Such techniques attempt
to explore only one schedule from each partial-order. Dynamic POR [Flanagan and
Godefroid 2005] computes persistent sets [Godefroid 1996] during systematic search;
as dependencies between operations are detected, additional schedules are considered.
Happens-before graph caching [Musuvathi et al. 2008; Musuvathi and Qadeer 2007b]
is similar to state-hashing [Holzmann 1987], except the partial-order of synchroniza-
tion operations is used as an approximation of the state, resulting in a reduction sim-
ilar to sleep-sets [Godefroid 1996]. The combination of dynamic POR and schedule
bounding is complex and the topic of recent research [Coons et al. 2013; Musuvathi
and Qadeer 2007b; Holzmann and Florian 2011]. Relaxations of the happens-before
relation have also been used to further reduce the number of schedules that need to
be considered during systematic concurrency testing [Thomson and Donaldson 2015;
Huang 2015].

The parallel PCT algorithm [Nagarakatte et al. 2012] improves the PCT algorithm
by allowing parallel execution of many threads, as opposed to always serializing exe-
cution. This provides increased execution speed but maintains the probabilistic guar-
antee from PCT. We focus on controlled testing techniques where the program is se-
rialized; since we report the number of terminal schedules, increased execution speed
does not affect our results.

In addition to the Maple algorithm, there has been a wide-range of work on other
non-controlled approaches, including [Edelstein et al. 2002; Sen 2008; Park et al. 2009].
Like parallel PCT, these approaches are appealing as they allow parallel execution of
many threads and can handle complex synchronization and nondeterminism.

Randomization has been shown to be effective for search diversification in stateful
model checking, where it can be used to allow independent searches to occur in parallel

8The companion website for the prior study shows 17 benchmarks that were translated to C#, although
only 12 were used in the published study; translation was necessary so that the benchmarks could be used
with CHESS.
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for improved coverage on multicore systems within a predefined time limit [Holzmann
et al. 2011]. In our study, we use a schedule limit instead of a time limit; it is worth
noting that PCT and controlled random scheduling are both trivially parallelizable,
and that systematic techniques can also be parallelized with additional effort [Simsa
et al. 2013].

One conclusion from our study is that random scheduling may be a useful technique
and should be tried more often; random scheduling has been used in recent work (along
with systematic concurrency testing) to find bugs in asynchronous programs [Deligian-
nis et al. 2015].

We do not consider relaxed memory models in this study; as in prior work [Musu-
vathi et al. 2008; Yu et al. 2012], we assume sequential consistency. Finding weak
memory bugs would at least require instrumenting memory accesses (similar to per-
forming data race detection during controlled scheduling), which would have been far
too slow using Maple’s built-in support for this. Recent work has shown an efficient
approach for testing relaxed memory models with SCT using dynamic partial-order
reduction [Zhang et al. 2015].

Our study has briefly touched on dynamic data race detection issues. A discussion of
this wide area is out of scope here, but we refer to [Flanagan and Freund 2009] for the
state-of-the-art.

8. FUTURE WORK
We have presented an independent empirical study on concurrency testing using con-
trolled schedulers. In future work we believe it would be fruitful to expand SCTBench
through the addition of further non-trivial benchmarks, to enable larger studies to
be conducted. In future reproduction studies, we recommend evaluating the various
partial-order reduction techniques that have been proposed in recent years to soundly
reduce the size of the schedule-space.
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