
Cooperative Kernels: GPU Multitasking for Blocking Algorithms
Tyler Sorensen

Imperial College London
London, UK

t.sorensen15@imperial.ac.uk

Hugues Evrard
Imperial College London

London, UK
h.evrard@imperial.ac.uk

Alastair F. Donaldson
Imperial College London

London, UK
alastair.donaldson@imperial.ac.uk

ABSTRACT
There is growing interest in accelerating irregular data-parallel
algorithms on GPUs. These algorithms are typically blocking, so
they require fair scheduling. But GPU programming models (e.g.
OpenCL) do not mandate fair scheduling, and GPU schedulers are
unfair in practice. Current approaches avoid this issue by exploit-
ing scheduling quirks of today’s GPUs in a manner that does not
allow the GPU to be shared with other workloads (such as graphics
rendering tasks). We propose cooperative kernels, an extension to
the traditional GPU programming model geared towards writing
blocking algorithms. Workgroups of a cooperative kernel are fairly
scheduled, and multitasking is supported via a small set of language
extensions through which the kernel and scheduler cooperate. We
describe a prototype implementation of a cooperative kernel frame-
work implemented in OpenCL 2.0 and evaluate our approach by
porting a set of blocking GPU applications to cooperative kernels
and examining their performance under multitasking.

CCS CONCEPTS
• Software and its engineering → Multiprocessing / multi-
programming /multitasking; Semantics; •Computingmethod-
ologies → Graphics processors;

KEYWORDS
GPU, cooperative multitasking, irregular parallelism

ACM Reference format:
Tyler Sorensen, Hugues Evrard, and Alastair F. Donaldson. 2017. Coopera-
tive Kernels: GPU Multitasking for Blocking Algorithms. In Proceedings of
2017 11th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Paderborn, Germany, September 4–8, 2017 (ESEC/FSE’17), 11 pages.
https://doi.org/10.1145/3106237.3106265

1 INTRODUCTION
The Needs of Irregular Data-parallel Algorithms. Many inter-
esting data-parallel algorithms are irregular : the amount of work to
be processed is unknown ahead of time and may change dynami-
cally in a workload-dependent manner. There is growing interest in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106265

kill

kill

fork

gather time

time

execution time

3210

Graphics request 2CU

Graphics terminated

Host CPU GPU Compute Units (CU)

graphics graphics

Figure 1: Cooperative kernels can flexibly resize to let other
tasks, e.g. graphics, run concurrently

accelerating such algorithms on GPUs [1–4, 6, 7, 11, 13, 14, 16, 19,
21, 25, 26, 30, 32]. Irregular algorithms usually require blocking syn-
chronisation between workgroups, e.g. many graph algorithms use
a level-by-level strategy, with a global barrier between levels; work
stealing algorithms require each workgroup to maintain a queue,
typically mutex-protected, to enable stealing by other workgroups.

To avoid starvation, a blocking concurrent algorithm requires
fair scheduling of workgroups. For example, if one workgroup
holds a mutex, an unfair scheduler may cause another workgroup
to spin-wait forever for the mutex to be released. Similarly, an
unfair scheduler can cause a workgroup to spin-wait indefinitely at
a global barrier so that other workgroups do not reach the barrier.

A Degree of Fairness: Occupancy-bound Execution. The cur-
rent GPU programming models—OpenCL [12], CUDA [18] and
HSA [10], specify almost no guarantees regarding scheduling of
workgroups, and current GPU schedulers are unfair in practice.
Roughly speaking, each workgroup executing a GPU kernel is
mapped to a hardware compute unit.1 The simplest way for a GPU
driver to handle more workgroups being launched than there are
compute units is via an occupancy-bound execution model [6, 26]
where, once a workgroup has commenced execution on a compute
unit (it has become occupant), the workgroup has exclusive access
to the compute unit until it finishes execution. Experiments suggest
that this model is widely employed by today’s GPUs [1, 6, 19, 26].

The occupancy-bound execution model does not guarantee fair
scheduling between workgroups: if all compute units are occupied
then a not-yet-occupant workgroup will not be scheduled until
some occupant workgroup completes execution. Yet the execution
model does provide fair scheduling between occupant workgroups,
which are bound to separate compute units that operate in parallel.
Current GPU implementations of blocking algorithms assume the
occupancy-bound execution model, which they exploit by launch-
ing no more workgroups than there are available compute units [6].

1In practice, depending on the kernel, multiple workgroups might map to the same
compute unit; we ignore this in our current discussion.

https://doi.org/10.1145/3106237.3106265
https://doi.org/10.1145/3106237.3106265

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Tyler Sorensen, Hugues Evrard, and Alastair F. Donaldson

Resistance to Occupancy-bound Execution. Despite its practi-
cal prevalence, none of the current GPU programming models
actually mandate occupancy-bound execution. Further, there are
reasons why this model is undesirable. First, the execution model
does not enable multitasking, since a workgroup effectively owns a
compute unit until the workgroup has completed execution. The
GPU cannot be used meanwhile for other tasks (e.g. rendering). Sec-
ond, energy throttling is an important concern for battery-powered
devices [31]. In the future, it will be desirable for a mobile GPU
driver to power down some compute units, suspending execution
of associated occupant workgroups, if the battery level is low.

Our assessment, informed by discussions with a number of indus-
trial practitioners who have been involved in the OpenCL and/or
HSA standardisation efforts (including [9, 22]), is that GPU ven-
dors (1) will not commit to the occupancy-bound execution model
they currently implement, for the above reasons, yet (2) will not
guarantee fair scheduling using preemption. This is due to the high
runtime cost of preempting workgroups, which requires managing
thread local state (e.g. registers, program location) for all workgroup
threads (up to 1024 on Nvidia GPUs), as well as shared memory,
the workgroup local cache (up to 64 KB on Nvidia GPUs). Vendors
instead wish to retain the essence of the simple occupancy-bound
model, supporting preemption only in key special cases.

For example, preemption is supported by Nvidia’s Pascal archi-
tecture [17], but on a GTX Titan X (Pascal) we still observe star-
vation: a global barrier executes successfully with 56 workgroups,
but deadlocks with 57 workgroups, indicating unfair scheduling.

Our Proposal: Cooperative Kernels. To summarise: blocking al-
gorithms demand fair scheduling, but for good reasons GPU ven-
dors will not commit to the guarantees of the occupancy-bound
execution model. We propose cooperative kernels, an extension to
the GPU programming model that aims to resolve this impasse.

A kernel that requires fair scheduling is identified as cooperative,
and written using two additional language primitives, offer_kill and
request_fork, placed by the programmer. Where the cooperative
kernel could proceed with fewer workgroups, a workgroup can
execute offer_kill, offering to sacrifice itself to the scheduler. This
indicates that the workgroup would ideally continue executing, but
that the scheduler may preempt the workgroup; the cooperative
kernel must be prepared to deal with either scenario. Where the
cooperative kernel could use additional resources, a workgroup
can execute request_fork to indicate that the kernel is prepared to
proceed with the existing set of workgroups, but is able to benefit
from one or more additional workgroups commencing execution
directly after the request_fork program point.

The use of request_fork and offer_kill creates a contract between
the scheduler and the cooperative kernel. Functionally, the sched-
uler must guarantee that the workgroups executing a cooperative
kernel are fairly scheduled, while the cooperative kernel must be ro-
bust toworkgroups leaving and joining the computation in response
to offer_kill and request_fork. Non-functionally, a cooperative ker-
nel must ensure that offer_kill is executed frequently enough such
that the scheduler can accommodate soft-real time constraints, e.g.
allowing a smooth frame-rate for graphics. In return, the scheduler
should allow the cooperative kernel to utilise hardware resources

where possible, killing workgroups only when demanded by other
tasks, and forking additional workgroups when possible.

Cooperative kernels allow for cooperativemultitasking (see Sec. 6),
used historically when preemption was not available or too costly.
Our approach avoids the cost of arbitrary preemption as the state of
a workgroup killed via offer_kill does not have to be saved. Previous
cooperative multitasking systems have provided yield semantics,
where a processing unit would temporarily give up its hardware
resource. We deviate from this design as, in the case of a global
barrier, adopting yield would force the cooperative kernel to block
completely when a single workgroup yields, stalling the kernel until
the given workgroup resumes. Instead, our offer_kill allows a ker-
nel to make progress with a smaller number of workgroups, with
workgroups potentially joining again later via request_fork.

Figure 1 illustrates sharing of GPU compute units between a
cooperative kernel and a graphics task. Workgroups 2 and 3 of
the cooperative kernel are killed at an offer_kill to make room
for a graphics task. The workgroups are subsequently restored to
the cooperative kernel when workgroup 0 calls request_fork. The
gather time is the time between resources being requested and the
application surrendering them via offer_kill. To satisfy soft-real
time constraints, this time should be low; our experimental study
(Sec. 5.4) shows that, in practice, the gather-time for our applications
is acceptable for a range of graphics workloads.

The cooperative kernels model has several appealing properties:

(1) By providing fair scheduling between workgroups, coopera-
tive kernels meet the needs of blocking algorithms, including
irregular data-parallel algorithms.

(2) The model has no impact on the development of regular (non-
cooperative) compute and graphics kernels.

(3) Themodel is backwards-compatible: offer_kill and request_fork
may be ignored, and a cooperative kernel will behave exactly
as a regular kernel does on current GPUs.

(4) Cooperative kernels can be implemented over the occupancy-
bound execution model provided by current GPUs: our proto-
type implementation uses no special hardware/driver support.

(5) If hardware support for preemption is available, it can be lever-
aged to implement cooperative kernels efficiently, and coopera-
tive kernels can avoid unnecessary preemptions by allowing
the programmer to communicate “smart” preemption points.

Placing the primitives manually is straightforward for the rep-
resentative set of GPU-accelerated irregular algorithms we have
ported so far. Our experiments show that the model can enable
efficient multitasking of cooperative and non-cooperative tasks.

In summary, our main contributions are: cooperative kernels, an
extended GPU programming model that supports the scheduling
requirements of blocking algorithms (Sec. 3); a prototype implemen-
tation of cooperative kernels on top of OpenCL 2.0 (Sec. 4); and
experiments assessing the overhead and responsiveness of the coop-
erative kernels approach over a set of irregular algorithms (Sec. 5),
including a best-effort comparison with the efficiency afforded by
hardware-supported preemption available on Nvidia GPUs.

We begin by providing background on OpenCL via two motivat-
ing examples (Sec. 2). At the end we discuss related work (Sec. 6)
and avenues for future work (Sec. 7).

Cooperative Kernels: GPU Multitasking for Blocking Algorithms ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

1 kernel work_stealing(global Task * queues) {
2 int queue_id = get_group_id();
3 while (more_work(queues)) {
4 Task * t = pop_or_steal(queues, queue_id);
5 if (t)
6 process_task(t, queues, queue_id);
7 }
8 }

Figure 2: An excerpt of awork stealing algorithm inOpenCL

2 BACKGROUND AND EXAMPLES
We outline the OpenCL programming model on which we base
cooperative kernels (Sec. 2.1), and illustrate OpenCL and the sched-
uling requirements of irregular algorithms using two examples: a
work stealing queue and frontier-based graph traversal (Sec. 2.2).

2.1 OpenCL Background
An OpenCL program is divided into host and device components.
A host application runs on the CPU and launches one or more
kernels that run on accelerator devices—GPUs in the context of this
paper. A kernel is written in OpenCL C, based on C99. All threads
executing a kernel start at the same entry function with identical
arguments. A thread can call get_global_id to obtain a unique id,
to access distinct data or follow different control flow paths.

The threads of a kernel are divided into workgroups. Functions
get_local_id and get_group_id return a thread’s local id within its
workgroup and the workgroup id. The number of threads per work-
group and number of workgroups are obtained via get_local_size
and get_num_groups. Execution of the threads in a workgroup can
be synchronised via a workgroup barrier. A global barrier (synchro-
nising all threads of a kernel) is not provided as a primitive.

Memory Spaces and Memory Model. A kernel has access to four
memory spaces. Shared virtual memory (SVM) is accessible to all
device threads and the host concurrently. Global memory is shared
among all device threads. Each workgroup has a portion of local
memory for fast intra-workgroup communication. Every thread has
a portion of very fast private memory for function-local variables.

Fine-grained communication within a workgroup, as well as
inter-workgroup communication and communication with the host
while the kernel is running, is enabled by a set of atomic data types
and operations. In particular, fine-grained host/device communica-
tion is via atomic operations on SVM.

Execution Model. OpenCL [12, p. 31] and CUDA [18] specifically
make no guarantees about fair scheduling between workgroups
executing the same kernel. HSA provides limited, one-way guaran-
tees, stating [10, p. 46]: “Work-group A can wait for values written
by work-group B without deadlock provided ... (if) A comes after B
in work-group flattened ID order”. This is not sufficient to support
blocking algorithms that use mutexes and inter-workgroup barriers,
both of which require symmetric communication between threads.

2.2 Motivating Examples
Work Stealing. Work stealing enables dynamic balancing of tasks
across processing units. It is useful when the number of tasks to be

1 kernel graph_app(global graph * g,
2 global nodes * n0, global nodes * n1) {
3 int level = 0;
4 global nodes * in_nodes = n0;
5 global nodes * out_nodes = n1;
6 int tid = get_global_id();
7 int stride = get_global_size();
8 while(in_nodes.size > 0) {
9 for (int i = tid; i < in_nodes.size; i += stride)
10 process_node(g, in_nodes[i], out_nodes, level);
11 swap(&in_nodes, &out_nodes);
12 global_barrier();
13 reset(out_nodes);
14 level++;
15 global_barrier();
16 }
17 }

Figure 3: An OpenCL graph traversal algorithm

processed is dynamic, due to one task creating an arbitrary number
of new tasks. Work stealing has been explored in the context of
GPUs [2, 30]. Each workgroup has a queue from which it obtains
tasks to process, and to which it stores new tasks. If its queue is
empty, a workgroup tries to steal a task from another queue.

Figure 2 illustrates a work stealing kernel. Each thread receives
a pointer to the task queues, in global memory, initialised by the
host to contain initial tasks. A thread uses its workgroup id (line 2)
as a queue id to access the relevant task queue. The pop_or_steal
function (line 4) pops a task from the workgroup’s queue or tries
to steal a task from other queues. Although not depicted here,
concurrent accesses to queues insidemore_work and pop_or_steal
are guarded by a mutex per queue, implemented using atomic
compare and swap operations on global memory.

If a task is obtained, then the workgroup processes it (line 6),
which may lead to new tasks being created and pushed to the
workgroup’s queue. The kernel presents two opportunities for spin-
waiting: spinning to obtain amutex, and spinning in themain kernel
loop to obtain a task. Without fair scheduling, threads waiting for
the mutex might spin indefinitely, causing the application to hang.

Graph Traversal. Figure 3 illustrates a frontier-based graph tra-
versal algorithm; such algorithms have been shown to execute
efficiently on GPUs [1, 19]. The kernel is given three arguments in
global memory: a graph structure, and two arrays of graph nodes.
Initially, n0 contains the starting nodes to process. Private variable
level records the current frontier level, and in_nodes and out_nodes
point to distinct arrays recording the nodes to be processed during
the current and next frontier, respectively.

The application iterates as long as the current frontier contains
nodes to process (line 8). At each frontier, the nodes to be pro-
cessed are evenly distributed between threads through stride based
processing. In this case, the stride is the total number of threads, ob-
tained via get_global_size. A thread calls process_node to process
a node given the current level, with nodes to be processed during
the next frontier being pushed to out_nodes. After processing the
frontier, the threads swap their node array pointers (line 11).

At this point, the GPU threads must wait for all other threads
to finish processing the frontier. To achieve this, we use a global

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Tyler Sorensen, Hugues Evrard, and Alastair F. Donaldson

barrier construct (line 12). After all threads reach this point, the
output node array is reset (line 13) and the level is incremented.
The threads use another global barrier to wait until the output node
is reset (line 15), after which they continue to the next frontier.

The global barrier used in this application is not provided as
a GPU primitive, though previous works have shown that such a
global barrier can be implemented [26, 34], based on CPU barrier
designs [8, ch. 17]. These barriers employ spinning to ensure each
thread waits at the barrier until all threads have arrived, thus fair
scheduling between workgroups is required for the barrier to oper-
ate correctly. Without fair scheduling, the barrier threads may wait
indefinitely at the barrier, causing the application to hang.

The mutexes and barriers used by these two examples appear
to run reliably on current GPUs for kernels that are executed with
no more workgroups than there are compute units. This is due to
the fairness of the occupancy-bound execution model that current
GPUs have been shown, experimentally, to provide. But, as dis-
cussed in Sec. 1, this model is not endorsed by language standards
or vendor implementations, and may not be respected in the future.

In Sec. 3.2 we show how the work stealing and graph traversal
examples of Figs. 2 and 3 can be updated to use our cooperative
kernels programming model to resolve the scheduling issue.

3 COOPERATIVE KERNELS
We describe the semantics of our cooperative kernels programming
model (Sec. 3.1), use ourmotivating examples to discuss programma-
bility (Sec. 3.2) and outline nonfunctional properties required by the
model (Sec. 3.3). In the extended version of this paper we present a
formal semantics, and discuss alternative semantic choices [27].

3.1 Semantics of Cooperative Kernels
As with a regular OpenCL kernel, a cooperative kernel is launched
by the host application, passing parameters to the kernel and speci-
fying a desired number of threads and workgroups. Unlike in a reg-
ular kernel, the parameters to a cooperative kernel are immutable
(though pointer parameters can refer to mutable data).

Cooperative kernels are written using the following extensions:
transmit, a qualifier on the variables of a thread; offer_kill and
request_fork, the key functions that enable cooperative scheduling;
and global_barrier and resizing_global_barrier primitives for inter-
workgroup synchronisation.

Transmitted Variables. A variable declared in the root scope of
the cooperative kernel can optionally be annotated with a new
transmit qualifier. Annotating a variable v with transmit means
that when a workgroup uses request_fork to spawn new work-
groups, the workgroup should transmit its current value for v to
the threads of the new workgroups. We detail the semantics for
this when we describe request_fork below.

ActiveWorkgroups. If the host application launches a cooperative
kernel requesting N workgroups, this indicates that the kernel
should be executed with a maximum of N workgroups, and that as
many workgroups as possible, up to this limit, are desired. However,
the scheduler may initially schedule fewer than N workgroups, and
as explained below the number of workgroups that execute the
cooperative kernel can change during the lifetime of the kernel.

The number of active workgroups—workgroups executing the
kernel—is denotedM . Active workgroups have consecutive ids in
the range [0,M − 1]. Initially, at least one workgroup is active; if
necessary the scheduler must postpone the kernel until some com-
pute unit becomes available. For example, in Fig. 1: at the beginning
of the executionM = 4; while the graphics task is executingM = 2;
after the forkM = 4 again.

When executed by a cooperative kernel, get_num_groups re-
turnsM , the current number of active workgroups. This is in con-
trast to get_num_groups for regular kernels, which returns the
fixed number of workgroups that execute the kernel (see Sec. 2.1).

Fair scheduling is guaranteed between active workgroups; i.e.
if some thread in an active workgroup is enabled, then eventually
this thread is guaranteed to execute an instruction.

Semantics for offer_kill. The offer_kill primitive allows the coop-
erative kernel to return compute units to the scheduler by offering
to sacrifice workgroups. The idea is as follows: allowing the sched-
uler to arbitrarily and abruptly terminate execution of workgroups
might be drastic, yet the kernel may contain specific program points
at which a workgroup could gracefully leave the computation.

Similar to the OpenCL workgroup barrier primitive, offer_kill,
is a workgroup-level function—it must be encountered uniformly
by all threads in a workgroup.

Suppose a workgroup with idm executes offer_kill. If the work-
group has the largest id among active workgroups then it can
be killed by the scheduler, except that workgroup 0 can never be
killed (to avoid early termination of the kernel). More formally, if
m < M − 1 orM = 1 then offer_kill is a no-op. If insteadM > 1 and
m = M − 1, the scheduler can choose to ignore the offer, so that
offer_kill executes as a no-op, or accept the offer, so that execution
of the workgroup ceases and the number of active workgroupsM
is atomically decremented by one. Figure 1 illustrates this, showing
that workgroup 3 is killed before workgroup 2.

Semantics for request_fork. Recall that a desired limit of N work-
groups was specified when the cooperative kernel was launched,
but that the number of active workgroups,M , may be smaller than
N , either because (due to competing workloads) the scheduler did
not provide N workgroups initially, or because the kernel has given
up some workgroups via offer_kill calls. Through the request_fork
primitive (also a workgroup-level function), the kernel and sched-
uler can collaborate to allow new workgroups to join the computa-
tion at an appropriate point and with appropriate state.

Suppose a workgroup with id m ≤ M executes request_fork.
Then the following occurs: an integer k ∈ [0,N −M] is chosen by
the scheduler; k new workgroups are spawned with consecutive
ids in the range [M,M + k − 1]; the active workgroup count M is
atomically incremented by k .

The k new workgroups commence execution at the program
point immediately following the request_fork call. The variables
that describe the state of a thread are all uninitialised for the threads
in the new workgroups; reading from these variables without first
initialising them is an undefined behaviour. There are two excep-
tions to this: (1) because the parameters to a cooperative kernel
are immutable, the new threads have access to these parameters
as part of their local state and can safely read from them; (2) for
each variable v annotated with transmit, every new thread’s copy

Cooperative Kernels: GPU Multitasking for Blocking Algorithms ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

of v is initialised to the value that thread 0 in workgroupm held
for v at the point of the request_fork call. In effect, thread 0 of the
forking workgroup transmits the relevant portion of its local state
to the threads of the forked workgroups.

Figure 1 illustrates the behaviour of request_fork. After the
graphics task finishes executing, workgroup 0 calls request_fork,
spawning the two new workgroups with ids 2 and 3. Workgroups 2
and 3 join the computation where workgroup 0 called request_fork.

Notice that k = 0 is always a valid choice for the number of
workgroups to be spawned by request_fork, and is guaranteed if
M is equal to the workgroup limit N .

Global Barriers. Because workgroups of a cooperative kernel are
fairly scheduled, a global barrier primitive can be provided. We
specify two variants: global_barrier and resizing_global_barrier.

Our global_barrier primitive is a kernel-level function: if it ap-
pears in conditional code then it must be reached by all threads
executing the cooperative kernel. On reaching a global_barrier, a
thread waits until all threads have arrived at the barrier. Once all
threads have arrived, the threads may proceed past the barrier with
the guarantee that all global memory accesses issued before the
barrier have completed. The global_barrier primitive can be imple-
mented by adapting an inter-workgroup barrier design, e.g. [34],
to take account of a growing and shrinking number of workgroups,
and the atomic operations provided by the OpenCL 2.0 memory
model enable a memory-safe implementation [26].

The resizing_global_barrier primitive is also a kernel-level func-
tion. It is identical to global_barrier, except that it caters for coop-
eration with the scheduler: by issuing a resizing_global_barrier the
programmer indicates that the cooperative kernel is prepared to
proceed after the barrier with more or fewer workgroups.

When all threads have reached resizing_global_barrier, the num-
ber of active workgroups,M , is atomically set to a new value,M ′

say, with 0 < M ′ ≤ N . If M ′ = M then the active workgroups
remain unchanged. IfM ′ < M , workgroups [M ′,M − 1] are killed.
IfM ′ > M thenM ′−M new workgroups join the computation after
the barrier, as if they were forked from workgroup 0. In particular,
the transmit-annotated local state of thread 0 in workgroup 0 is
transmitted to the threads of the new workgroups.

The semantics of resizing_global_barrier can be modelled via
calling request_fork and offer_kill, surrounded and separated by
calls to a global_barrier. The enclosing global_barrier calls ensure
that the change in number of active workgroups from M to M ′

occurs entirely within the resizing barrier, so thatM changes atom-
ically from a programmer’s perspective. The middle global_barrier
ensures that forking occurs before killing, so that workgroups
[0,min(M,M ′) − 1] are left intact.

Because resizing_global_barrier can be implemented as above,
we do not regard it conceptually as a primitive of our model. How-
ever, in Sec. 4.2 we show how a resizing barrier can be implemented
more efficiently through direct interaction with the scheduler.

3.2 Programming with Cooperative Kernels
A Changing Workgroup Count. Unlike in regular OpenCL, the
value returned by get_num_groups is not fixed during the lifetime
of a cooperative kernel: it corresponds to the active group countM ,
which changes as workgroups execute offer_kill, and request_fork.

The value returned by get_global_size is similarly subject to change.
A cooperative kernel must thus be written in a manner that is robust
to changes in the values returned by these functions.

In general, their volatility means that use of these functions
should be avoided. However, the situation is more stable if a coop-
erative kernel does not call offer_kill and request_fork directly, so
that only resizing_global_barrier can affect the number of active
workgroups. Then, at any point during execution, the threads of
a kernel are executing between some pair of resizing barrier calls,
which we call a resizing barrier interval (considering the kernel
entry and exit points conceptually to be special cases of resizing
barriers). The active workgroup count is constant within each resiz-
ing barrier interval, so that get_num_groups and get_global_size
return stable values during such intervals. As we illustrate below
for graph traversal, this can be exploited by algorithms that perform
strided data processing.

AdaptingWork Stealing. In this example there is no state to trans-
mit since a computation is entirely parameterised by a task, which
is retrieved from a queue located in global memory. With respect
to Fig. 2, we add request_fork and offer_kill calls at the start of
the main loop (below line 3) to let a workgroup offer itself to be
killed or forked, respectively, before it processes a task. Note that
a workgroup may be killed even if its associated task queue is not
empty, since remaining tasks will be stolen by other workgroups. In
addition, since request_forkmay be the entry point of a workgroup,
the queue id must now be computed after it, so we move line 2 to
be placed just before line 4. In particular, the queue id cannot be
transmitted since we want a newly spawned workgroup to read its
own queue and not the one of the forking workgroup.

Adapting Graph Traversal. Figure 4 shows a cooperative version
of the graph traversal kernel of Fig. 3 from Sec. 2.2. On lines 12
and 15, we change the original global barriers into a resizing barri-
ers. Several variables are marked to be transmitted in the case of
workgroups joining at the resizing barriers (lines 3, 4 and 5): level
must be restored so that new workgroups know which frontier
they are processing; in_nodes and out_nodes must be restored so
that new workgroups know which of the node arrays to use for
input and output. Lastly, the static work distribution of the original
kernel is no longer valid in a cooperative kernel. This is because
the stride (which is based on M) may change after each resizing
barrier call. To fix this, we re-distribute the work after each resizing
barrier call by recomputing the thread id and stride (lines 7 and
8). This example exploits the fact that the cooperative kernel does
not issue offer_kill nor request_fork directly: the value of stride ob-
tained from get_global_size at line 8 is stable until the next resizing
barrier at line 12.

Patterns for Irregular Algorithms. In Sec. 5.1 we describe the
set of irregular GPU algorithms used in our experiments, which
largely captures the irregular blocking algorithms that are available
as open source GPU kernels. These all employ either work stealing
or operate on graph data structures, and placing our new constructs
follows a common, easy-to-follow pattern in each case. The work
stealing algorithms have a transactional flavour and require little
or no state to be carried between transactions. The point at which
a workgroup is ready to process a new task is a natural place for

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Tyler Sorensen, Hugues Evrard, and Alastair F. Donaldson

1 kernel graph_app(global graph *g,
2 global nodes *n0, global nodes *n1) {
3 transmit int level = 0;
4 transmit global nodes *in_nodes = n0;
5 transmit global nodes *out_nodes = n1;
6 while(in_nodes.size > 0) {
7 int tid = get_global_id();
8 int stride = get_global_size();
9 for (int i = tid; i < in_nodes.size; i += stride)
10 process_node(g, in_nodes[i], out_nodes, level);
11 swap(&in_nodes, &out_nodes);
12 resizing_global_barrier();
13 reset(out_nodes);
14 level++;
15 resizing_global_barrier();
16 }
17 }

Figure 4: Cooperative version of the graph traversal kernel
of Fig. 3, using a resizing barrier and transmit annotations

offer_kill and request_fork, and few or no transmit annotations are
required. Figure 4 is representative of most level-by-level graph
algorithms. It is typically the case that on completing a level of
the graph algorithm, the next level could be processed by more or
fewer workgroups, which resizing_global_barrier facilitates. Some
level-specific state must be transmitted to new workgroups.

3.3 Non-Functional Requirements
The semantics presented in Sec. 3.1 describe the behaviours that
a developer of a cooperative kernel should be prepared for. How-
ever, the aim of cooperative kernels is to find a balance that allows
efficient execution of algorithms that require fair scheduling, and
responsive multitasking, so that the GPU can be shared between
cooperative kernels and other shorter tasks with soft real-time
constraints. To achieve this balance, an implementation of the coop-
erative kernels model, and the programmer of a cooperative kernel,
must strive to meet the following non-functional requirements.

The purpose of offer_kill is to let the scheduler destroy a work-
group in order to schedule higher-priority tasks. The scheduler
relies on the cooperative kernel to execute offer_kill sufficiently
frequently that soft real-time constraints of other workloads can
be met. Using our work stealing example: a workgroup offers itself
to the scheduler after processing each task. If tasks are sufficiently
fast to process then the scheduler will have ample opportunities
to de-schedule workgroups. But if tasks are very time-consuming
to process then it might be necessary to rewrite the algorithm so
that tasks are shorter and more numerous, to achieve a higher rate
of calls to offer_kill. Getting this non-functional requirement right
is GPU- and application-dependent. In Sec. 5.2 we conduct experi-
ments to understand the response rate that would be required to
co-schedule graphics rendering with a cooperative kernel, main-
taining a smooth frame rate.

Recall that, on launch, the cooperative kernel requests N work-
groups. The scheduler should thus aim to provide N workgroups if
other constraints allow it, by accepting an offer_kill only if a com-
pute unit is required for another task, and responding positively to
request_fork calls if compute units are available.

4 PROTOTYPE IMPLEMENTATION
Our vision is that cooperative kernel support will be integrated
in the runtimes of future GPU implementations of OpenCL, with
driver support for our new primitives. To experiment with our
ideas on current GPUs, we have developed a prototype that mocks
up the required runtime support via a megakernel, and exploits
the occupancy-bound execution model that these GPUs provide to
ensure fair scheduling between workgroups. We emphasise that an
aim of cooperative kernels is to avoid depending on the occupancy-
bound model. Our prototype exploits this model simply to allow
us to experiment with current GPUs whose proprietary drivers we
cannot change. We describe the megakernel approach (Sec. 4.1) and
detail various aspects of the scheduler component of our implemen-
tation (Sec. 4.2).

4.1 The Megakernel Mock Up
Instead of multitasking multiple separate kernels, we merge a set of
kernels into a megakernel—a single, monolithic kernel. The megak-
ernel is launched with as many workgroups as can be occupant
concurrently. One workgroup takes the role of the scheduler,2 and
the scheduling logic is embedded as part of the megakernel. The
remaining workgroups act as a pool of workers. A worker repeat-
edly queries the scheduler to be assigned a task. A task corresponds
to executing a cooperative or non-cooperative kernel. In the non-
cooperative case, the workgroup executes the relevant kernel func-
tion uninterrupted, then awaits further work. In the cooperative
case, the workgroup either starts from the kernel entry point or
immediately jumps to a designated point within the kernel, de-
pending on whether the workgroup is an initial workgroup of the
kernel, or a forked workgroup. In the latter case, the new work-
group also receives a struct containing the values of all relevant
transmit-annotated variables.

Simplifying Assumptions. For ease of implementation, our pro-
totype supports multitasking a single cooperative kernel with a sin-
gle non-cooperative kernel (though the non-cooperative kernel can
be invoked many times). We require that offer_kill, request_fork
and resizing_global_barrier are called from the entry function of a
cooperative kernel. This allows us to use goto and return to direct
threads into and out of the kernel. With these restrictions we can
experiment with interesting irregular algorithms (see Sec. 5). A
non-mock implementation of cooperative kernels would not use
the megakernel approach, so we did not deem the engineering ef-
fort associated with lifting these restrictions in our prototype to be
worthwhile.

4.2 Scheduler Design
To enable multitasking through cooperative kernels, the runtime
(in our case, the megakernel) must track the state of workgroups, i.e.
whether a workgroup is waiting or computing a kernel; maintain
consistent context states for each kernel, e.g. tracking the number
of active workgroups; and provide a safe way for these states to be
modified in response to request_fork/offer_kill. We discuss these is-
sues, and describe the implementation of an efficient resizing barrier.
2We note that the scheduler requirements given in Sec. 3 are agnostic to whether the
scheduling logic takes place on the CPU or GPU. To avoid expensive communication
between GPU and host, we choose to implement the scheduler on the GPU.

Cooperative Kernels: GPU Multitasking for Blocking Algorithms ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

We describe how the scheduler would handle arbitrary combina-
tions of kernels, though as noted above our current implementation
is restricted to the case of two kernels.

Scheduler Contexts. To dynamically manage workgroups execut-
ing cooperative kernels, our framework must track the state of
each workgroup and provide a channel of communication from
the scheduler workgroup to workgroups executing request_fork
and offer_kill. To achieve this, we use a scheduler context structure,
mapping a primitive workgroup id the workgroup’s status, which
is either available or the id of the kernel that the workgroup is cur-
rently executing. The scheduler can then send cooperative kernels
a resource message, commanding workgroups to exit at offer_kill,
or spawn additional workgroups at request_fork. Thus, the sched-
uler context needs a communication channel for each cooperative
kernel. We implement the communication channels using atomic
variables in global memory.

Launching Kernels and Managing Workgroups. To launch a
kernel, the host sends a data packet to the GPU scheduler con-
sisting of a kernel to execute, kernel inputs, and a flag indicating
whether the kernel is cooperative. In our prototype, this host-device
communication channel is built using fine-grained SVM atomics.

On receiving a data packet describing a kernel launch K , the
GPU scheduler must decide how to schedule K . Suppose K requests
N workgroups. The scheduler queries the scheduler context. If
there are at least N available workgroups, K can be scheduled
immediately. Suppose instead that there are only Na < N available
workgroups, but a cooperative kernelKc is executing. The scheduler
can use Kc ’s channel in the scheduler context to command Kc to
provide N − Na workgroups via offer_kill. Once N workgroups
are available, the scheduler then sends N workgroups from the
available workgroups to execute kernel K . If the new kernel K is
itself a cooperative kernel, the scheduler would be free to provide
K with fewer than N active workgroups initially.

If a cooperative kernel Kc is executing with fewer workgroups
than it initially requested, the scheduler may decide make extra
workgroups available to Kc , to be obtained next time Kc calls
request_fork. To do this, the scheduler asynchronously signals Kc
through Kc ’s channel to indicate the number of workgroups that
should join at the next request_fork command. When a workgroup
w of Kc subsequently executes request_fork, thread 0 ofw updates
the kernel and scheduler contexts so that the given number of new
workgroups are directed to the program point after the request_fork
call. This involves selecting workgroups whose status is available,
as well as copying the values of transmit-annotated variables to
the new workgroups.

An Efficient Resizing Barrier. In Sec. 3.1, we defined the seman-
tics of a resizing barrier in terms of calls to other primitives. It is
possible, however, to implement the resizing barrier with only one
call to a global barrier with request_fork and offer_kill inside.

We consider barriers that use the master/slave model [34]: one
workgroup (master) collects signals from the other workgroups
(slaves) indicating that they have arrived at the barrier and are
waiting for a reply indicating that they may leave the barrier. Once
the master has received a signal from all slaves, it replies with a
signal saying that they may leave.

Table 1: Blocking GPU applications investigated

App. barriers kill fork transmit LoC inputs
color 2 / 2 0 0 4 55 2
mis 3 / 3 0 0 0 71 2
p-sssp 3 / 3 0 0 0 42 1
bfs 2 / 2 0 0 4 185 2
l-sssp 2 / 2 0 0 4 196 2
octree 0 / 0 1 1 0 213 1
game 0 / 0 1 1 0 308 1

Pannotia Lonestar GPU work stealing

Incorporating request_fork and offer_kill into such a barrier is
straightforward. Upon entering the barrier, the slaves first execute
offer_kill, possibly exiting. The master then waits forM slaves (the
number of active workgroups), whichmay decrease due to offer_kill
calls by the slaves, but will not increase. Once the master observes
thatM slaves have arrived, it knows that all other workgroups are
waiting to be released. The master executes request_fork, and the
statement immediately following this request_fork is a conditional
that forces newly spawned workgroups to join the slaves in waiting
to be released. Finally, the master releases all the slaves: the original
slaves and the new slaves that joined at request_fork.

This barrier implementation is sub-optimal because workgroups
only execute offer_kill once per barrier call and, depending on order
of arrival, it is possible that only one workgroup is killed per barrier
call, preventing the scheduler from gathering workgroups quickly.

We can reduce the gather time by providing a new query function
for cooperative kernels, which returns the number of workgroups
that the scheduler needs to obtain from the cooperative kernel. A
resizing barrier can now be implemented as follows: (1) the master
waits for all slaves to arrive; (2) the master calls request_fork and
commands the new workgroups to be slaves; (3) the master calls
query, obtaining a valueW ; (4) the master releases the slaves, broad-
casting the valueW to them; (5) workgroups with ids larger than
M −W spin, calling offer_kill repeatedly until the scheduler claims
them—we know from query that the scheduler will eventually do
so. We show in Sec. 5.4 that the barrier using query greatly reduces
the gather time in practice.

5 APPLICATIONS AND EXPERIMENTS
We discuss our experience porting irregular algorithms to cooper-
ative kernels and describe the GPUs on which we evaluate these
applications (Sec. 5.1). For these GPUs, we report on experiments to
determine non-cooperative workloads that model the requirements
of various graphics rendering tasks (Sec. 5.2). We then examine the
overhead associated with moving to cooperative kernels when mul-
titasking is not required (Sec. 5.3), as well as the responsiveness and
throughput observed when a cooperative kernel is multi-tasked
with non-cooperative workloads (Sec. 5.4). Finally, we compare
against a performance model of kernel-level preemption, which we
understand to be what current Nvidia GPUs provide (Sec. 5.5).

5.1 Applications and GPUs
Table 1 gives an overview of the 7 irregular algorithms that we
ported to cooperative kernels. Among them, 5 are graph algorithms,

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Tyler Sorensen, Hugues Evrard, and Alastair F. Donaldson

based on the Pannotia [3] and Lonestar [1] GPU application suites,
using global barriers. We indicate how many of the original number
of barriers are changed to resizing barriers (all of them), and how
many variables need to be transmitted. The remaining two algo-
rithms are work stealing applications: each required the addition
of request_fork and offer_kill at the start of the main loop, and no
variables needed to be transmitted (similar to example discussed in
Sec. 3.2). Most graph applications come with 2 different data sets
as input, leading to 11 application/input pairs in total.

Our prototype implementation (Sec. 4) requires two optional
features of OpenCL 2.0: SVM fine-grained buffers and SVM atomics.
Out of the GPUs available to us, from ARM, AMD, Nvidia, and Intel,
only Intel GPUs provided robust support of these features.

We thus ran our experiments on three Intel GPUs: HD 520,
HD 5500 and Iris 6100. The results were similar across the GPUs,
so for conciseness, we report only on the Iris 6100 GPU (driver
20.19.15.4463) with a host CPU i3-5157U. The Iris has a reported 47
compute units. Results for the other Intel GPUs are available in the
extended version of this paper [27].

5.2 Sizing Non-cooperative Kernels
Enabling rendering of smooth graphics in parallel with irregular
algorithms is an important use case for our approach. Because our
prototype implementation is based on a megakernel that takes over
the entire GPU (see Sec. 4), we cannot assess this directly.

We devised the following method to determine OpenCL work-
loads that simulate the computational intensity of various graphics
rendering workloads. We designed a synthetic kernel that occupies
all workgroups of a GPU for a parameterised time period t , invoked
in an infinite loop by a host application. We then searched for a
maximum value for t that allowed the synthetic kernel to execute
without having an observable impact on graphics rendering. Using
the computed value, we ran the host application for X seconds,
measuring the time Y < X dedicated to GPU execution during
this period and the number of kernel launches n that were issued.
We used X ≥ 10 in all experiments. The values (X − Y)/n and X/n
estimate the average time spent using the GPU to render the display
between kernel calls (call this E) and the period at which the OS
requires the GPU for display rendering (call this P), respectively.

We used this approach to measure the GPU availability required
for three types of rendering: light, whereby desktop icons are
smoothly emphasised under the mouse pointer; medium, whereby
window dragging over the desktop is smoothly animated; and heavy,
which requires smooth animation of a WebGL shader in a browser.
For heavy we usedWebGL demos from the Chrome experiments [5].

Our results are the following: P = 70ms and E = 3ms for light;
P = 40ms, E = 3ms for medium; and P = 40ms, E = 10ms for
heavy. For medium and heavy, the 40ms period coincides with the
human persistence of vision. The 3ms execution duration of both
light and medium configurations indicates that GPU computation
is cheaper for basic display rendering compared with more complex
rendering.

5.3 The Overhead of Cooperative Kernels
Experimental Setup. Invoking the cooperative scheduling primi-
tives incurs some overhead even if no killing, forking or resizing

Table 2: Cooperative kernel slowdown w/o multitasking

overall barrier wk.steal.
mean max mean max mean max
1.07 1.23‡ 1.06 1.20� 1.12 1.23‡

‡octree, �color G3_circuit

actually occurs, because the cooperative kernel still needs to inter-
act with the scheduler to determine this. We assess this overhead
by measuring the slowdown in execution time between the original
and cooperative versions of a kernel, forcing the scheduler to never
modify the number of active workgroups in the cooperative case.

Recall that our mega kernel-based implementation merges the
code of a cooperative and a non-cooperative kernel. This can reduce
the occupancy for the merged kernel, e.g. due to higher register
pressure, This is an artifact of our prototype implementation, and
would not be a problem if our approach was implemented inside
the GPU driver. We thus launch both the original and cooperative
versions of a kernel with the reduced occupancy bound in order to
meaningfully compare execution times.

Results. Tab. 2 shows the geometric mean and maximum slow-
down across all applications and inputs, with averages and maxima
computed over 10 runs per benchmark. For the maximum slow-
downs, we indicate which application and input was responsible.
The slowdown is below 1.25 even in the worst case, and closer to 1
on average. We consider these results encouraging, especially since
the performance of our prototype could clearly be improved upon
in a native implementation.

5.4 Multitasking via Cooperative Scheduling
We now assess the responsiveness of multitasking between a long-
running cooperative kernel and a series of short, non-cooperative
kernel launches, and the performance impact of multitasking on
the cooperative kernel.

Experimental Setup. For a given cooperative kernel and its in-
put, we launch the kernel and then repeatedly schedule a non-
cooperative kernel that aims to simulate the intensity of one of the
three classes of graphics rendering workload discussed in Sec. 5.2.
In practice, we use matrix multiplication as the non-cooperative
workload, with matrix dimensions tailored to reach the appropriate
execution duration. We conduct separate runs where we vary the
number of workgroups requested by the non-cooperative kernel,
considering the cases where one, a quarter, a half, and all-but-one,
of the total number of workgroups are requested. For the graph
algorithms we try both regular and query barrier implementations.

Our experiments span 11 pairs of cooperative kernels and inputs,
3 classes of non-cooperative kernel workloads, 4 quantities of work-
groups claimed for the non-cooperative kernel and 2 variations of
resizing barriers for graph algorithms, leading to 240 configurations.
We run each configuration 10 times, in order to report averaged per-
formance numbers. For each run, we record the execution time of
the cooperative kernel. For each scheduling of the non-cooperative
kernel during the run, we also record the gather time needed by
the scheduler to collect workgroups to launch the non-cooperative
kernel, and the non-cooperative kernel execution time.

Cooperative Kernels: GPU Multitasking for Blocking Algorithms ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

.1

1

10

high (40)
low (70)

1000

1 N/4 N/2 N-1

time (ms)

number of non-cooperative workgroups

Iris octree

gather time
light task

heavy task

.1

1

10

high (40)
low (70)

1000

1 N/4 N/2 N-1

time (ms)

number of non-cooperative workgroups

Iris bfs usa

gather time (W/O query)
gather time

light task
heavy task

.1

1

10

high (40)
low (70)

1000

1 N/4 N/2 N-1

time (ms)

number of non-cooperative workgroups

Iris color G3-circuit

gather time (W/O query)
gather time

light task
heavy task

Figure 5: Example gather time and non-cooperative timing results

Responsiveness. Figure 5 reports, on three configurations, the av-
erage gather and execution times for the non-cooperative kernel
with respect to the quantity of workgroups allocated to it. A loga-
rithmic scale is used for time since gather times tend to be much
smaller than execution times. The horizontal grey lines indicates
the desired period for non-cooperative kernels. These graphs show
a representative sample of our results; the full set of graphs for all
configurations is provided in the extended version of this paper [27].

The left-most graph illustrates a work stealing example. When
the non-cooperative kernel is given only one workgroup, its execu-
tion is so long that it cannot complete within the period required
for a screen refresh. The gather time is very good though, since the
scheduler needs to collect only one workgroup. The more work-
groups are allocated to the non-cooperative kernels, the faster it
can compute: here the non-cooperative kernel becomes fast enough
with a quarter (resp. half) of available workgroups for light (resp.
heavy) graphics workload. Inversely, the gather time increases since
the scheduler must collect more and more workgroups.

The middle and right graphs show results for graph algorithms.
These algorithms use barriers, and we experimented with the reg-
ular and query barrier implementations described in Sec. 4.2. The
execution times for the non-cooperative task are averaged across
all runs, including with both types of barrier. We show separately
the average gather time associated with each type of barrier. The
graphs show a similar trend to the left-most graph: as the number of
non-cooperative workgroups grows, the execution time decreases
and the gather time increases. The gather time is higher on the
rightmost figure as the G3 circuit input graph is rather wide than
deep, so the graph algorithm reaches resizing barriers less often
than for the USA road input of the middle figure for instance. The
scheduler thus has fewer opportunities to collect workgroups and
gather time increases. Nonetheless, scheduling responsiveness can
benefit from the query barrier: when used, this barrier lets the
scheduler collect all needed workgroups as soon as they hit a resiz-
ing barrier. As we can see, the gather time of the query barrier is
almost stable with respect to the number of workgroups that needs
to be collected.

Performance. Figure 6 reports the overhead brought by the sched-
uling of non-cooperative kernels over the cooperative kernel ex-
ecution time. This is the slowdown associated with running the

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 N/4 N/2 N-1

m
ed

ia
n

ov
er

he
ad

workgroups

 5

 25

 125

 625

1 N/4 N/2 N-1

m
ed

ia
n

pe
rio

d
(m

s)

workgroups

heavy
medium

light

Figure 6: Performance impact of multitasking cooperative
and non-cooperative workloads, and the period with which
non-cooperative kernels execute

cooperative kernel in the presence of multitasking, vs. running
the cooperative kernel in isolation (median over all applications
and inputs). We also show the period at which non-cooperative
kernels can be scheduled (median over all applications and inputs).
Our data included some outliers that occur with benchmarks in
which the resizing barrier are not called very frequently and the
graphics task requires half or more workgroups. For example, a
medium graphics workload for bfs on the rmat input has over an
8× overhead when asking for all but one of the workgroups. As
Figure 6 shows, most of our benchmarks are much better behaved
than this. In future work is required to examine the problematic
benchmarks in more detail, possibly inserting more resizing calls.

We show results for the three workloads listed in Sec. 5.2. The
horizontal lines in the period graph correspond to the goals of the
workloads: the higher (resp. lower) line corresponds to a period of
70ms (resp. 40ms) for the light (resp. medium and heavy) workload.

Co-scheduling non-cooperative kernels that request a single
workgroup leads to almost no overhead, but the period is far too
high to meet the needs of any of our three workloads; e.g. a heavy
workload averages a period of 939ms. As more workgroups are ded-
icated to non-cooperative kernels, they execute quickly enough to
be scheduled at the expected period. For the light andmediumwork-
loads, a quarter of the workgroups executing the non-cooperative
kernel are able to meet their goal period (70 and 40ms resp.). How-
ever, this is not sufficient to meet the goal for the heavy workload

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Tyler Sorensen, Hugues Evrard, and Alastair F. Donaldson

Table 3: Overhead of kernel level preemption vs cooperative
kernels for three graphics workloads

g. workload kernel-level cooperative resources
light 1.04 1.04 N /4
medium 1.08 1.08 N /4
heavy 1.33 1.47 N /2

(giving a median period of 104ms). If half of the workgroups are al-
located to the non-cooperative kernel, the heavy workload achieves
its goal period (median of 40ms). Yet, as expected, allocating more
non-cooperative workgroups increases the overhead of the cooper-
ative kernel. Still, heavy workloads meet their period by allocating
half of the workgroups, incurring a slow down of less than 1.5×
(median). Light and medium workloads meet their period with only
a small overhead; 1.04× and 1.08× median slowdown respectively.

5.5 Comparison with Kernel-Level Preemption
Nvidia’s recent Pascal architecture provides hardware support for
instruction-level preemption [17, 24], however, preemption of en-
tire kernels, but not of individual workgroups is supported. Intel
GPUs do not provide this feature, and our OpenCL prototype of
cooperative kernels cannot run on Nvidia GPUs, making a direct
comparison impossible. We present here a theoretical analysis of
the overheads associated with sharing the GPU between graphics
and compute tasks via kernel-level preemption.

Suppose a graphics workload is required to be scheduled with
period P and duration D, and that a compute kernel requires time
C to execute without interruption. If we assume the cost of preemp-
tion is negligible (e.g. Nvidia have reported preemption times of 0.1
ms for Pascal [24], because of special hardware support), then the
overhead associated with switching between compute and graphics
every P time steps is P/(P − D).

We compare this task-level preemption overhead model with our
experimental results per graphics workload in Tab. 3. We report the
overhead of the configuration that allowed us to meet the deadline
of the graphics task. Based on the above assumptions, our approach
provides similar overhead for low and medium graphics workloads,
however, has a higher overhead for the high workload.

Our low performance for heavy workloads is because the graph-
ics task requires half of the workgroups, crippling the cooperative
kernel enough that request_fork calls are not issued as frequently.
Future work may examine how to insert more resizing calls in these
applications to address this. These results suggest that a hybrid
preemption scheme may work well. That is, the cooperative ap-
proach works well for light and medium tasks; on the other hand,
heavy graphics tasks benefit from the coarser grained, kernel-level
preemption strategy. However, the preemption strategy requires
specialised hardware support in order to be efficient.

6 RELATEDWORK
Irregular Algorithms and Persistent kernels. There has been a
lot of work on accelerating blocking irregular algorithms using
GPUs, and on the persistent threads programming style for long-
running kernels [1–4, 6, 7, 11, 13, 14, 16, 19, 21, 25, 26, 30, 32].
These approaches rely on the occupancy-bound execution model,

flooding available compute units with work, so that the GPU is
unavailable for other tasks, and assuming fair scheduling between
occupant workgroups, which is unlikely to be guaranteed on future
GPU platforms. As our experiments demonstrate, our cooperative
kernels model allows blocking algorithms to be upgraded to run in
a manner that facilitates responsive multitasking.

GPU Multitasking and Scheduling. Hardware support for pre-
emption has been proposed for Nvidia GPUs, as well as SM-draining
whereby workgroups occupying a symmetric multiprocessor (SM; a
compute unit using our terminology) are allowed to complete until
the SM becomes free for other tasks [28]. SM draining is limited
the presence of blocking constructs, since it may not be possible to
drain a blocked workgroup. A follow-up work adds the notion of
SM flushing, where a workgroup can be re-scheduled from scratch
if it has not yet committed side-effects [20]. Both approaches have
been evaluated using simulators, over sets of regular GPU ker-
nels. Very recent Nvidia GPUs (i.e. the Pascal architecture) support
preemption, though, as discussed in Sec. 1 and Sec. 5.5, it is not
clear whether they guarantee fairness or allow tasks to share GPU
resources at the workgroup level [17].

CUDA and OpenCL provide the facility for a kernel to spawn
further kernels [18]. This dynamic parallelism can be used to imple-
ment a GPU-based scheduler, by having an initial scheduler kernel
repeatedly spawn further kernels as required, according to some
scheduling policy [15]. However, kernels that uses dynamic paral-
lelism are still prone to unfair scheduling of workgroups, and thus
does not help in deploying blocking algorithms on GPUs.

CooperativeMultitasking. Cooperative multitasking was offered
in older operating systems (e.g. pre 1995 Windows) and is still used
by some operating systems, such as RISC OS [23]. Additionally,
cooperative multitasking can be efficiently implemented in today’s
high-level languages for domains in which preemptive multitasking
is either too costly or not supported on legacy systems [29].

7 CONCLUSIONS AND FUTUREWORK
We have proposed cooperative kernels, a small set of GPU program-
ming extensions that allow long-running, blocking kernels to be
fairly scheduled and to share GPU resources with other workloads.
Experimental results using our megakernel-based prototype show
that the model is a good fit for current GPU-accelerated irregular
algorithms. The performance that could be gained through a native
implementation with driver support would be even better. Avenues
for future work include seeking additional classes of irregular al-
gorithms to which the model might (be extended to) apply (to),
investigating implementing native support in open source drivers,
and integrating cooperative kernels into template- and compiler-
based programming models for graph algorithms on GPUs [19, 33].

ACKNOWLEDGMENTS
We are grateful to Lee Howes, Bernhard Kainz, Paul Kelly, Christo-
pher Lidbury, StevenMcDonagh, Sreepathi Pai, andAndrewRichards
for insightful comments throughout the work. We thank the FSE
reviewers for their thorough evaluations and feedback. This work
is supported in part by EPSRC Fellowship EP/N026314, and a gift
from Intel Corporation.

Cooperative Kernels: GPU Multitasking for Blocking Algorithms ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] M. Burtscher, R. Nasre, and K. Pingali. A quantitative study of irregular programs

on GPUs. In IISWC, pages 141–151. IEEE, 2012.
[2] D. Cederman and P. Tsigas. On dynamic load balancing on graphics processors.

In EGGH, pages 57–64, 2008.
[3] S. Che, B.M. Beckmann, S. K. Reinhardt, and K. Skadron. Pannotia: Understanding

irregular GPGPU graph applications. In IISWC, pages 185–195, 2013.
[4] A. A. Davidson, S. Baxter, M. Garland, and J. D. Owens. Work-efficient parallel

GPU methods for single-source shortest paths. In IPDPS, pages 349–359, 2014.
[5] Google. Chrome Experiments. https://www.chromeexperiments.com.
[6] K. Gupta, J. Stuart, and J. D. Owens. A study of persistent threads style GPU

programming for GPGPU workloads. In InPar, pages 1–14, 2012.
[7] P. Harish and P. J. Narayanan. Accelerating large graph algorithms on the GPU

using CUDA. In HiPC, pages 197–208, 2007.
[8] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan

Kaufmann Publishers Inc., 2008.
[9] L. W. Howes. Personal communication. Editor of the OpenCL 2.0 specification.

10 September 2016.
[10] HSA Foundation. HSAIL virtual ISA and programming model, compiler writer,

and object format (BRIG), February 2016. http://www.hsafoundation.com/
standards/.

[11] R. Kaleem, A. Venkat, S. Pai, M. W. Hall, and K. Pingali. Synchronization trade-
offs in GPU implementations of graph algorithms. In IPDPS, pages 514–523,
2016.

[12] Khronos Group. The OpenCL specification version: 2.0 (rev. 29), July 2015.
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf.

[13] M. Méndez-Lojo, M. Burtscher, and K. Pingali. A GPU implementation of
inclusion-based points-to analysis. In PPoPP, pages 107–116, 2012.

[14] D. Merrill, M. Garland, and A. S. Grimshaw. High-performance and scalable
GPU graph traversal. TOPC, 1(2):14, 2015.

[15] P. Muyan-Özçelik and J. D. Owens. Multitasking real-time embedded GPU
computing tasks. In PMAM, pages 78–87, 2016.

[16] S. Nobari, T. Cao, P. Karras, and S. Bressan. Scalable parallel minimum spanning
forest computation. In PPoPPP, pages 205–214, 2012.

[17] NVIDIA. NVIDIA Tesla P100, 2016. Whitepaper WP-08019-001_v01.1.
[18] Nvidia. CUDA C programming guide, version 7.5, July 2016.

[19] S. Pai and K. Pingali. A compiler for throughput optimization of graph algorithms
on GPUs. In OOPSLA, pages 1–19, 2016.

[20] J. J. K. Park, Y. Park, and S. A. Mahlke. Chimera: Collaborative preemption for
multitasking on a shared GPU. In ASPLOS, pages 593–606, 2015.

[21] T. Prabhu, S. Ramalingam, M. Might, and M. W. Hall. EigenCFA: accelerating
flow analysis with GPUs. In POPL, pages 511–522, 2011.

[22] A. Richards. Personal communication. CEO of Codeplay Software Ltd. 2 Sep-
tember 2016.

[23] RISC OS. Preemptive multitasking. http://www.riscos.info/index.php/
Preemptive_multitasking.

[24] R. Smith and Anandtech. Preemption improved: Fine-grained preemp-
tion for time-critical tasks, 2016. http://www.anandtech.com/show/10325/
the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10.

[25] S. Solomon, P. Thulasiraman, and R. K. Thulasiram. Exploiting parallelism in
iterative irregular maxflow computations on GPU accelerators. In HPCC, pages
297–304, 2010.

[26] T. Sorensen, A. F. Donaldson, M. Batty, G. Gopalakrishnan, and Z. Rakamaric.
Portable inter-workgroup barrier synchronisation for GPUs. In OOPSLA, pages
39–58, 2016.

[27] T. Sorensen, H. Evrard, and A. F. Donaldson. Cooperative kernels: Gpu multi-
tasking for blocking algorithms (extended version). CoRR, 2017.

[28] I. Tanasic, I. Gelado, J. Cabezas, A. Ramírez, N. Navarro, and M. Valero. Enabling
preemptive multiprogramming on GPUs. In ISCA, pages 193–204, 2014.

[29] M. Tarpenning. Cooperative multitasking in c++. Dr. Dobb’s J., 16(4), Apr. 1991.
[30] S. Tzeng, A. Patney, and J. D. Owens. Task management for irregular-parallel

workloads on the GPU. In HPG, pages 29–37, 2010.
[31] N. Vallina-Rodriguez and J. Crowcroft. Energy management techniques in

modern mobile handsets. IEEE Communications Surveys and Tutorials, 15(1):
179–198, 2013.

[32] V. Vineet, P. Harish, S. Patidar, and P. J. Narayanan. Fast minimum spanning
tree for large graphs on the GPU. In HPG, pages 167–171, 2009.

[33] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens. Gunrock:
a high-performance graph processing library on the GPU. In PPoPP, pages
11:1–11:12, 2016.

[34] S. Xiao and W. Feng. Inter-block GPU communication via fast barrier synchro-
nization. In IPDPS, pages 1–12, 2010.

https://www.chromeexperiments.com
http://www.hsafoundation.com/standards/
http://www.hsafoundation.com/standards/
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://www.riscos.info/index.php/Preemptive_multitasking
http://www.riscos.info/index.php/Preemptive_multitasking
http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10
http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10

	Abstract
	1 Introduction
	2 Background and Examples
	2.1 OpenCL Background
	2.2 Motivating Examples

	3 Cooperative Kernels
	3.1 Semantics of Cooperative Kernels
	3.2 Programming with Cooperative Kernels
	3.3 Non-Functional Requirements

	4 Prototype Implementation
	4.1 The Megakernel Mock Up
	4.2 Scheduler Design

	5 Applications and Experiments
	5.1 Applications and GPUs
	5.2 Sizing Non-cooperative Kernels
	5.3 The Overhead of Cooperative Kernels
	5.4 Multitasking via Cooperative Scheduling
	5.5 Comparison with Kernel-Level Preemption

	6 Related Work
	7 Conclusions and Future Work
	References

