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Abstract

We describe a thread-modular technique for proving termination of massively
parallel GPU kernels. The technique reduces the termination problem for these
kernels to a sequential termination problem by abstracting the shared state,
and as such allows us to leverage termination analysis techniques for sequential
programs. An implementation in KITTeL is able to show termination of 94% of
604 kernels collected from various sources.

Keywords: termination, abstraction, GPUs, concurrency
2010 MSC: 68Q60

1. Introduction

Termination analysis for sequential programs has made significant progress
in the last two decades, owing to the discovery of transition invariants [1], form-
ing the basis for tools like Terminator [2], and advances in termination analysis
techniques for term rewriting systems, as implemented by tools like AProVE [3]
and KITTeL [4, 5]. Researchers are now turning their attention to termination
analysis for concurrent programs, which can be difficult due to the need for inter-
thread reasoning to establish that computational progress is not unbounded.

The main contribution of this paper is to show that, despite the general
difficulty of termination analysis in the presence of concurrency, in the domain
of graphics processing unit (GPU) programming, existing methods for estab-
lishing termination of sequential programs can be successfully re-used to enable
termination arguments for GPU programs to be established.

GPUs are highly parallel shared-memory processors that can accelerate com-
putationally intensive applications such as medical imaging [6] and computa-
tional fluid dynamics [7]. To leverage the power of a GPU, a programmer
identifies a part of an application that exhibits parallelism. This part can then
be extracted into computational kernel and offloaded to execute on a GPU.
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As GPUs are separate devices to which kernels are offloaded, it is generally
difficult to perform live debugging. Hence, different means are needed to identify
bugs. For this reason, many researchers (including us [8, 9]) have looked at
proving safety properties of kernels, in particular ones related to data races
(see [8] for a recent overview of the work in this area). The current paper is the
first to consider termination.1

Termination is important from a theoretical perspective, e.g., because the
data race detection method described in [8], which underpins our GPUVerify
tool, is only sound for terminating kernels. However, it is even more important
from a practical perspective. Unlike CPU applications, which may be reactive,
GPU kernels are required to terminate: any data computed by a kernel is in-
accessible from the CPU as long as the kernel has not terminated. Besides the
data being inaccessible, kernels with accidental infinite loops can have a severe
impact on the systems on which they run: while working on the experiments
from [11], we accidentally introduced infinite loops on numerous occasions; this
often made our systems unresponsive, and sometimes caused transient hardware
failures and spontaneous reboots.

The termination technique we describe below is thread-modular. It operates
by abstracting the state shared between the threads of a kernel and by con-
sidering each thread in isolation. As such, we reduce a concurrent termination
problem to a sequential one, and are able to build on and re-use existing tech-
niques and tools for proving termination. In fact, the sequential termination
problem we end up with is somewhat easier than usual in that there is no rea-
son to consider recursive calls and dynamically changing data structures; these
features are generally not supported by kernel programming languages.

The contributions of this paper are as follows:

1. We leverage termination analysis techniques for sequential programs to
obtain an analysis technique for GPU kernels. The analysis technique
considers the execution of a kernel for a single arbitrary thread, using
abstraction to over-approximate the possible effects of other threads; we
show that if the arbitrary thread terminates in this abstract setting, then
the GPU kernel is also guaranteed to terminate.

2. We adapt an existing termination analysis tool—KITTeL [4, 5]—and lever-
age the Clang/LLVM compiler to obtain a largely automatic source code-
level termination analysis tool for CUDA [12] and OpenCL [13], the most
widely used GPU programming languages.

3. We present an evaluation of our method on a set of 604 CUDA and
OpenCL kernels, of which 386 have loops. Termination analysis is natu-
rally fully automatic for the loop-free kernels, as well as for 90% of the
kernels with loops, backing up our claim that methods for sequential ter-
mination analysis are effective when applied in the domain of GPU pro-
gramming. We note that the success is in large part due to the fact that

1An outline of our approach was presented at the International Workshop on Termination
in 2014 [10].
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termination of GPU kernels rarely depends on values in shared memory.

4. We consider various features of KITTeL and evaluate their effectiveness
over our set of 604 kernels. The evaluation highlights that more research
into bitvector modelling and invariant inference seems appropriate in the
context of sequential termination analysis.

In our view, the fact that sequential termination analysis techniques can be
pushed towards providing automated termination analysis for GPU kernels is an
encouraging result that shows how far the termination analysis field has come.

2. Anatomy of a GPU Kernel

Kernel programming languages such as CUDA [12] and OpenCL [13] are
data-parallel languages that use barriers for synchronisation. When a thread
reaches a barrier, it waits until all other threads have also reached the bar-
rier. Once the barrier has been reached by all threads, execution stalls until all
outstanding writes to shared memory have been committed. Committing the
writes ensures that any write to shared memory that occurs before the barrier is
visible to all threads after the barrier; this enables the threads to communicate.

As a running example throughout this paper we use the kernel depicted in
Figure 1. This kernel, written in the CUDA kernel programming language [12],
implements a Kogge-Stone prefix-sum [14]. Given an array in with values n0,
n1, . . . , ni, . . . , nm, the kernel computes an array out with values

n0, n0 + n1, . . . ,
∑

0≤k≤i

nk, . . . ,
∑

0≤k≤m

nk .

Computation of these values proceeds by having a thread block consisting of
blockDim.x threads execute the prefix-sum algorithm. The array parameters
in and out are shared between all threads, i.e., they are global arrays in CUDA
terminology. The variable temp is local, meaning that every thread has a private
copy not accessible to any other thread. The execution of a thread may depend
on its unique identifier threadIdx.x, and threads may synchronise by calling
the syncthreads function, which represents a barrier in CUDA.

Although the kernel in Figure 1 is intended to be executed by a single 1-
dimensional thread block, thread blocks may be multi-dimensional, and multiple
blocks may be grouped into a grid to perform a computation. Moreover, there
is an additional layer of memory, called shared memory, which sits in between
global and local memory and which is shared solely between the threads in a
single block.

We ignore multi-dimensional thread blocks in the remainder of this pa-
per, as they only differ from 1-dimensional blocks in the availability of multi-
dimensional thread identifiers, and these can easily be encoded as 1-dimensional
identifiers. We also ignore grids, because their behaviour is identical to that of
individual blocks, except that no synchronisation is possible between the threads
in different blocks. As such, termination at the level of grids follows trivially
once we are able to prove termination at the level of blocks.
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global void KoggeStone(int ∗in, int ∗out) {
out[threadIdx.x] = in[threadIdx.x];
syncthreads();

for (unsigned offset = 1; offset < blockDim.x; offset ∗= 2) {
int temp;
if (threadIdx.x >= offset)
{ temp = out[threadIdx.x − offset]; }
syncthreads();

if (threadIdx.x >= offset)
{ out[threadIdx.x] = temp + out[threadIdx.x]; }
syncthreads();

}
}

Figure 1: The Kogge-Stone prefix-sum in CUDA

Given that we only consider a single thread block, we bunch together global
and shared memory, and simply call this memory shared memory from here on-
wards. Our implementation, discussed in Section 5, supports multi-dimensional
thread blocks, grids, and global and shared memory in full, and is also able to
handle kernels written in OpenCL [13].

3. Kernel Programming Language

We define a simple kernel programming language, with an interleaving op-
erational semantics, with respect to which we will describe our thread-modular
termination analysis in the next section. The language is a slight variation on
the language from an earlier paper in which we investigate the correctness of
prefix-sums [15]: the grammar of the language is taken as-is, but instead of
considering a type system with multiple types, we consider only a single type
Word, the type of all memory words. A single type suffices for our exposition,
and adapting the analysis to handle multiple types is trivial.

The grammar of our language is as follows:

expr e ::= c | v | A[e] | e1 op e2
stmt s ::= v := e | A[e1] := e2 | if (e) {ss1} else {ss2} | while (e) {ss} | barrier
stmts ss ::= ε | s; ss

Here, c ranges over literal values, v and A range, respectively, over scalar and
array variable names, and op ranges over an unspecified set of binary operators.
The language is easily extended to cater for operators of other arities. Literals,
variables, and array elements are all of type Word; each binary operator has
type Word ×Word → Word. We also assume the existence of two designated
literal values true, false ∈Word, representing the Booleans.

The statements v := e and A[e1] := e2 denote assignment to variables and ar-
ray elements, respectively. The statement if (e) {ss1} else {ss2} represents con-
ditional execution, and while (e) {ss} allows for iteration. The barrier statement
enables synchronisation between threads. By ε we denote an empty sequence of
statements, and s; ss prefixes a sequence of statements ss with a statement s.
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out [tid ] := in[tid ];
barrier;
offset := 1;
while (offset < N) {

if (tid ≥ offset)
{ temp := out [tid − offset ]; }

barrier;
if (tid ≥ offset)
{ out [tid ] := temp + out [tid ]; }

barrier;
offset := offset ∗ 2;

}

Figure 2: The kernel from Figure 1 represented in our simple kernel programming language

A kernel program P is a sequence of statements ss; all threads executing
the kernel program execute ss. Figure 2 shows a translation of the Kogge-
Stone kernel of Figure 1 into our simple kernel programming language, where
we omit empty else-branches for brevity. Each call to syncthreads is turned
into a barrier statement. The CUDA built-in variables threadIdx.x and
blockDim.x map to the variables tid and N ; these variables represent the
unique identity of a thread and the total thread-count, respectively.

Operational Semantics. Let Var be a set of variables and Arr be a set of arrays.
Our semantics is defined over variable stores σv, mapping variables v ∈ Var to
elements of type Word, array stores σA, mapping arrays A ∈ Arr to maps M of
type Word→Word, and a finite set D ⊆Word of thread identifiers. We assume
D to be arbitrary but fixed in the remainder.

Each expression is evaluated under a variable store σv and an array store
σA. Denoting the evaluation of an expression e by JeKσv

σA
∈Word, we define:

JcKσv
σA

= c JA[e]Kσv
σA

= σA(A)(JeKσv
σA

)

JvKσv
σA

= σv(v) Je1 op e2Kσv
σA

= Je1Kσv
σA

op Je2Kσv
σA

A variable store is paired with a sequence of statements to form a thread
state (σv,t, sst), where σv,t represents the private memory of a thread t ∈ D,
mapping private variables to values, and where sst is the sequence of statements
that remains to be executed by t. An array store is combined with multiple
thread states to form a kernel state (σA,K). The array store σA represents the
shared memory of a kernel, mapping shared array elements to values, and K
is a map from D to thread states, specifying the current state of each thread
executing the kernel.

Our operational semantics, as presented in Figure 3, is an interleaving se-
mantics defined over kernel states. The semantics consists of two parts:

• a thread-level semantics (Figure 3a) describing the execution of a single
statement by a single thread given a triple (σv, σA, ss), where σv is the

5



x = JeKσv
σA

(σv, σA, v := e; ss′)→t (σv[v 7→ x], σA, ss
′)

(T-Assign)

x1 = Je1Kσv
σA

x2 = Je2Kσv
σA

M = σA(A)[x1 7→ x2]

(σv, σA, A[e1] := e2; ss′)→t (σv, σA[A 7→M ], ss′)
(T-Array)

JeKσv
σA

(σv, σA, if (e) {ss1} else {ss2}; ss′)→t (σv, σA, ss1 · ss′)
(T-Ite-True)

¬JeKσv
σA

(σv, σA, if (e) {ss1} else {ss2}; ss′)→t (σv, σA, ss2 · ss′)
(T-Ite-False)

JeKσv
σA

(σv, σA,while (e) {ss}; ss′)→t (σv, σA, ss · while (e) {ss}; ss′)
(T-Loop-True)

¬JeKσv
σA

(σv, σA,while (e) {ss}; ss′)→t (σv, σA, ss
′)

(T-Loop-False)

(a) The thread-level rules (specified over triples (σv, σA, ss))

K(t) = (σv,t, sst)
(σv,t, σA, sst)→t (σ′v,t, σ

′
A, ss

′
t) K ′ = K[t 7→ (σ′v,t, ss

′
t)]

(σA,K)→k (σ′A,K
′)

(K-Step)

(
∀t :

∨ (K(t) = (σv,t,barrier; sst) ∧ K ′(t) = (σv,t, sst))
(K(t) = (σv,t, ε) ∧ K ′(t) = (σv,t, ε))

)
∃ t : K(t) = (σv,t,barrier; sst)

(σA,K)→k (σA,K
′)

(K-Barrier)

(b) The Kernel-level rules (specified over kernel states (σA,K))

Figure 3: Operational semantics of our kernel programming language

current (private) variable store of the thread, σA is the current (shared)
array store of the kernel, and ss is the sequence of statements that remains
to be executed by the thread;

• a kernel-level semantics (Figure 3b) describing the interleaving and syn-
chronisation of the threads executing a kernel given a kernel state (σA,K)
representing the current execution state of the kernel.

The thread-level rules of Figure 3a are standard for an imperative language,
except that, instead of a single store, we have both a variable and an array store
to account for private and shared memory. The assignment statements evaluate
the relevant expressions and update the relevant store using the resulting values;
the rules for the if- and while-statements evaluate the guard e under σv and σA
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and proceed accordingly. In the figure, σ[x 7→ y] denotes a map identical to σ
except that σ[x 7→ y](x) = y. Furthermore, ss · ss′ denotes the concatenation
of the sequences ss and ss′.

The kernel-level rule K-Step of Figure 3b facilitates the interleaving of
threads by selecting a thread state K(t) = (σv,t, sst) and performing a single
thread-level step with respect to (σv,t, σA, sst). Observe that no thread-level
rule applies when sst = ε or sst = barrier; ss′t, i.e., when thread t has termi-
nated or is at a barrier. Thus, rule K-Step can only fire when there is at least
one active thread that is able to execute a non-barrier statement.

Rule K-Barrier enables synchronisation between threads: no thread can
proceed beyond a barrier until each thread t ∈ D either

• has reached a barrier, i.e., K(t) = (σv,t,barrier; sst), or

• has terminated, i.e., K(t) = (σv,t, ε).

In the first case, the barrier statement is removed from the sequence of state-
ments that remains to be executed by t. In the second case, the state of t
remains unchanged. The second premise of rule K-Barrier ensures that at
least one thread is at the barrier. This guarantees that the rule does not fire
once all threads have terminated. If we omit this condition, termination of all
threads would not imply kernel termination (as defined below).

Remark 1 (Barrier Semantics). As in [15], the kernel-level rule K-Barrier
follows the MPI programming model [16] in which threads may synchronise at
syntactically distinct barriers. In OpenCL and CUDA the rules for barrier
synchronisation are stricter [13, 12], requiring that (i) all threads synchronise
at the same barrier, and that (ii) all threads have executed the same number of
iterations of a loop l in case the barrier occurs inside l. A precise semantics for
barrier synchronisation in GPU programming is presented in [8, 9].

The less restrictive MPI-style synchronisation model makes our termination
analysis and associated main theorem (Theorem 3) more widely applicable.
Adding stricter conditions to rule K-Barrier to capture the specific synchro-
nisation requirements for GPU kernels does not affect our approach to proving
termination. In other words, if a separate technique is able to ascertain that
barriers are used correctly under the stricter rules for GPU kernels, then our
termination analysis method can be applied unmodified.

Remark 2 (Atomicity of Statements). The interleaving semantics of Fig-
ure 3 assumes that statements are executed atomically with respect to sequen-
tially consistent memory [17]. This does not accurately reflect the execution and
memory models of GPUs [11]. However, this only affects kernels with data-races.

We believe that racy kernels should be avoided, as it is not clear from the
OpenCL and CUDA specifications [13, 12] whether such kernels are well-defined.
A separate data race analysis, e.g., the one implemented by GPUVerify [8, 18],
can be used to assess race-freedom.
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Execution and Termination. Let P be a kernel program. An initial state of
P is any kernel state (σA,K) such that for each thread identifier t ∈ D we
have K(t) = (σv, P ) with σv(tid) = t and σv(N) = |D|. Thus, each thread
starts executing from the same sequence of statements P , and the variables
tid and N represent, respectively, the unique identity of a thread and the total
thread-count. Our main result in the next section does not depend on tid and N ,
and, hence, our approach facilitates parameterised termination analysis for GPU
kernels with respect to arbitrary thread counts. Nevertheless, we prefer to make
tid and N explicit, because concrete kernels often rely on certain predicates to
hold relating the number of threads and the values of certain kernel parameters.
For example, in order to correctly compute a prefix-sum over an array of length
n, the kernel of Figure 2 requires |D| = n.

Given an initial state K0 of a kernel program P , an execution of P starting
from K0 is any finite or infinite sequence

K0 →k K1 →k · · · →k Ki →k Ki+1 →k · · ·

with each Ki (i ≥ 0) a kernel state, and where the consecutive states are related
by the →k-relation of Figure 3b. A program P is said to terminate for an
initial kernel state K0 of P , if all executions starting from K0 are finite. A
kernel program P terminates if it terminates for each of its initial kernel states.

4. Proving Termination by Thread-Modular Analysis

We now reduce the termination problem for kernel programs to a sequen-
tial termination problem. The reduction makes the termination analysis of
kernel programs thread-modular by checking termination of a single, arbitrary
thread under an environmental abstraction that over-approximates the effects
of all other threads. This allows the termination analysis for GPU kernels to
re-use the wealth of existing research into termination analysis for sequential
programs, including the rewriting-based techniques that we re-use in our tool
implementation (see Section 5).

Our environmental abstraction ignores the contents of the (shared) array
store and instead assumes that accessing an array element yields a nondeter-
ministically selected value from Word. We achieve this by replacing the array-
aware expression evaluation function J·Kσv

σA
: expr→Word by an array-oblivious

function J·Kσv
? : expr→ 2Word defined as:

JcKσv
? = {c} JA[e]Kσv

? = Word

JvKσv
? = {σv(v)} Je1 op e2Kσv

? = {x1 op x2 | x1 ∈ Je1Kσv
? ∧ x2 ∈ Je2Kσv

? }

Thus, JeKσv
? yields the set of all possible values an expression e may evaluate

to given a variable store σv, and assuming that any array access may yield any
value from Word.
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x ∈ JeKσv
?

(σv, v := e; ss′)→a (σv[v 7→ x], ss′)
(A-Assign)

(σv, A[e1] := e2; ss′)→a (σv, ss
′)

(A-Array)

true ∈ JeKσv
?

(σv, if (e) {ss1} else {ss2}; ss′)→t (σv, ss1 · ss′)
(A-Ite-True)

false ∈ JeKσv
?

(σv, if (e) {ss1} else {ss2}; ss′)→a (σv, ss2 · ss′)
(A-Ite-False)

true ∈ JeKσv
?

(σv,while (e) {ss}; ss′)→a (σv, ss · while (e) {ss}; ss′)
(A-Loop-True)

false ∈ JeKσv
?

(σv,while (e) {ss}; ss′)→a (σv, ss
′)

(A-Loop-False)

(σv,barrier; ss)→a (σv, ss)
(A-Barrier)

Figure 4: Abstract operational semantics of our kernel programming language

Abstract Operational Semantics. Employing our updated definition of expres-
sion evaluation, we specify an abstract operational semantics in Figure 4. The
semantics is defined over abstract states (σv, ss), with σv a variable store and ss
a sequence of statements. Hence, the semantics can be thought of as executing
a single thread while ignoring the array store.

We discuss the abstract rules and relate them to the concrete rules of Fig-
ure 3. Rule A-Assign is the corresponding abstract version of rule T-Assign.
The rule evaluates e under our abstract expression evaluation function before
nondeterministically assigning one of the values from JeKσv

? to v. As we abstract
from the array store, rule A-Array is a simple no-op, unlike rule T-Array,
which updates the array store. The rules for the if- and while-statements gener-
alise the corresponding rules from Figure 3a by checking whether the appropriate
truth value occurs in JeKσv

? . As the abstract semantics models the sequential
semantics of a single thread, rule K-Step is disposed of, and K-Barrier is
lowered to rule A-Barrier, which is a no-op. To summarise: our abstract se-
mantics ensures that the contents of σA becomes irrelevant and that a thread
no longer has to wait for any other thread once it reaches a barrier.

Abstract Execution and Termination. Recall that D is a finite set of thread
identifiers. If P is a kernel program, then an abstract initial state of P is defined
as any pair (σv, P ) such that σv(tid) ∈ D and σv(N) = |D|. Given an abstract
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initial state A0 of P , an abstract execution of P starting from A0 is any finite
or infinite sequence

A0 →a A1 →a · · · →a Ai →a Ai+1 →a · · ·

with each Ai (i ≥ 0) an abstract state, and where the consecutive states are
related by the →a-relation of Figure 4. A program P is said to terminate for
an initial abstract state A0 of P , if all abstract executions starting from A0

are finite. A kernel program P terminates under the abstract semantics if it
terminates for each of its initial abstract states.

Thread-Modular Analysis. We now present our main result, which shows that
termination analysis can be performed by considering the termination of each
thread in isolation with respect to our abstract semantics.

Theorem 3. Let P be a kernel program. If P terminates under the abstract
semantics of Figure 4, then P terminates under the interleaving semantics of
Figure 3.

Proof. Given a thread t and a kernel state K = (σA,K), define abst(K) =
K(t). Trivially, we have that abst(K) = abst(K′) if K →k K′ by rule K-Step
and when the rule is not instantiated by thread t. Moreover:

1. If K →k K′ by rule K-Step and the rule is instantiated by thread t, then
we have that abst(K) →a abst(K′) by the abstract rule corresponding to
thread-level rule employed in the application of K-Step. This follows
once we observe that for any expression e, variable store σv, and array
store σA, we have JeKσv

σA
∈ JeKσv

? (as JA[e]Kσv
σA
∈Word).

2. If rule K-Barrier is applied, then there are two cases to consider, as t
may either be at a barrier or may have terminated. If t is at a barrier,
we have that abst(K) →a abst(K′) by rule A-Barrier. This follows as
K(t) = (σv,t,barrier; sst) and K ′(t) = (σv,t, sst). If t has terminated, we
have that abst(K) = abst(K′), as K(t) = K ′(t).

We now prove the contrapositive of our theorem. Thus, suppose there exists
a kernel program P which has an infinite execution under our interleaving se-
mantics. Rule K-Step must fire infinitely often in the course of this execution,
because if only rule K-Barrier would fire from some K = (σA,K) onwards,
then we have for at least one thread t that the sequence of statements sst in
K(t) = (σv,t, sst) equals an infinite sequence of barrier statements, which is
impossible as sst is finite.

Suppose that the infinite execution of P starts from K0. As the number of
threads is finite, we have by the pigeon-hole principle that there exists at least
one thread t ∈ D for which rule K-Step fires an infinite number of times as part
of the infinite execution. By the observations at the beginning of this proof, it
is now immediate that there also exists an infinite abstract execution starting
from abst(K0), and the theorem follows. 2
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if (tid = 0)
{A[0] := 1; }

temp := 0;
while (temp < N) {

if (tid = 0)
{A[0] := A[0] + 1; }

barrier;
temp := A[0];
barrier;
}

Figure 5: A kernel that cannot be shown terminating using Theorem 3

With the above theorem in hand, we can show that the kernel of Figure 2
terminates. As the variable offset is thread-private and as its value does not de-
pend on any shared array access, its value is uniquely determined in the abstract
semantics by the abstract expression evaluation function. More specifically, as-
suming no overflow occurs, the value of offset strictly increases during each
loop-iteration, as the variable is initially set to a positive value and multiplied
by 2 at the end of each iteration. Hence, as N is a private variable with a con-
stant value, termination of the program under the abstract semantics follows,
and by Theorem 3 the same holds true under the concrete semantics.

In general, the reverse of the above theorem does not hold: termination
might depend on shared memory sub-expressions evaluating to specific values.
Consider, e.g., the kernel of Figure 5, where we omit empty else-branches. Ter-
mination of this kernel depends on thread 0 assigning increasingly larger val-
ues to A[0]. However, in our abstract semantics, the value assigned to temp
during each loop-iteration will be chosen nondeterministically and, hence, may
always be chosen to be smaller than N . Although this is the case, we show
experimentally in Section 6 that for the vast majority of kernels in open source
benchmark suites, termination does not depend on the values of shared memory
sub-expressions.

5. Implementation in KITTeL

The KITTeL termination analysis tool [4, 5] consists of a front-end, named
llvm2KITTeL, which takes LLVM bitcode2 and translates this into an integer-
based rewrite system, and a back-end which tries to automatically prove termi-
nation of the generated rewrite system.

In integer-based rewriting, rules are of the following form:

f(x1, . . . , xm)→ g(e1, . . . , en) [C] .

2http://llvm.org/
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start → loop head(tid , 1) [0 ≤ tid < N ]
loop head(tid , offset) → loop body1(tid , offset) [offset < N ]
loop head(tid , offset) → loop tail [offset ≥ N ]

loop body1(tid , offset) → if1(tid , offset) [tid ≥ offset ]
loop body1(tid , offset) → loop body2(tid , offset , temp) [tid < offset ]

if1(offset) → loop body2(tid , offset , temp)
loop body2(tid , offset , temp) → if2(tid , offset , temp) [tid ≥ offset ]
loop body2(tid , offset , temp) → loop body3(tid , offset) [tid < offset ]

if2(tid , offset , temp) → loop body3(tid , offset)
loop body3(tid , offset) → loop head(tid , offset ∗ 2)

loop tail → end

Figure 6: The kernel from Figure 1 represented as an integer-based rewrite system

Here, f and g are function symbols, x1, . . . , xm are variables of type Int (the
type of mathematical integers), e1, . . . , en are expressions of type Int, and
C is a Boolean expression. The expressions e1, . . . en, and C may contain
variables of type Int; these variables may be fresh and need not come from x1,
. . . , xm. Rewriting f(i1, . . . , im) to g(j1, . . . , jn) with i1, . . . im, j1, . . . jn ∈ Int
requires C to be satisfied. Specifically, there must exist a substitution σ mapping
variables to mathematical integers such that σ(f(x1, . . . , xm)) = f(i1, . . . , im)
and σ(g(e1, . . . , en)) = g(j1, . . . , jn), and such that σ(C) holds. We refer the
reader to [4] for further details; an example of an integer-based rewrite system
is presented in Figure 6, and discussed below.

Changes to KITTeL. We adapted llvm2KITTeL to handle GPU kernels (com-
piled to LLVM bitcode by Clang3); we did not make any changes to the ter-
mination analysis back-end. As llvm2KITTeL models only a single thread and
already abstracts from most memory operations (yielding nondeterministic val-
ues for loads from memory), the changes we needed to make were minimal: (i)
we ensured that llvm2KITTeL abstracts loads even in the cases where it usually
would not (e.g., when a pointer points to a unique global variable represent-
ing a single integer), (ii) we disabled the hoisting of loop-invariant loads from
loops (due to concurrency the loaded values may differ between loop iterations),
and (iii) we made llvm2KITTeL aware of the fact that the number of threads
executing a kernel is constant for the duration of an execution (the number of
threads is often referred to in loop guards; hence, awareness that this number
is constant—or at least bounded—is often critical for showing termination).

Given the above changes, llvm2KITTeL transforms the kernel from Figure 1
into the rewrite system of Figure 6, where we omit empty conditions. As in
Section 3, tid and N correspond, respectively, to the CUDA built-in variables
threadIdx.x and blockDim.x. Observe that the shared arrays in and

3http://clang.llvm.org/
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out have been removed in accordance with Theorem 3. Barriers have also
been removed, as they correspond to no-ops in our abstract semantics. The
translation is otherwise straightforward. The top-most rule showcases the fact
that not all variables need to occur on the left-hand side of a rule: tid only
occurs on the right-hand side and in the condition 0 ≤ tid < N .

Although the changes made to llvm2KITTeL are straightforward, using the
tool requires awareness of loop invariants and the limitations of mathematical
integers.

Loop Invariants. To prove termination, it may be necessary to specify certain
loop invariants—ideally automatically inferred by the employed termination
tool [19]. For example, in the case of the kernel from Figure 1, proving ter-
mination requires one to observe that offset is always greater than 0.

In KITTeL, loop invariants can either be specified by hand, or inferred with
the help of the Apron numerical abstract domain library [20]. We experimented
with both strategies, as detailed in the next section. In the case of manually
provided loop invariants, we ensured correctness by proving the validity of the
invariants with the help of GPUVerify prior to running our experiments. In prin-
ciple, we could extend GPUVerify’s invariant inference engine to generate the
required invariants automatically. However, this would require infrastructure to
feed the generated invariants into KITTeL, which is currently lacking.

GPUVerify uses the Houdini algorithm [21] to infer invariants using a tem-
plate-based approach [8, 22]. Candidate invariants are first guessed using a
set of predefined templates, and an iterative process is then used to eliminate
candidates that do not hold, converging on a set of mutually inductive invariants.
As discussed in the next section, we have identified several classes of invariants
that work well for termination analysis. From these classes, we could in principle
derive a set of templates for GPUVerify’s invariant inference engine, so as to
automatically infer many of the loop invariants required for proving termination.

Bitvectors. Integer-based rewrite systems are defined over mathematical inte-
gers. This offsets them from the hardware that executes GPU kernels, which
represents integers as finite bitvectors. As a result, we can construct kernels
that can be shown to be terminating with KITTeL, but which will fail to ter-
minate when executed on actual hardware, and vice versa. To guard against
this, llvm2KITTeL offers the possibility to enrich the rewrite systems it gener-
ates with additional constraints that mimic bitvector behaviour [5]. We exper-
imented with this option as detailed in the next section, although in line with
most termination research we defaulted to using mathematical integers.

6. Evaluation

To evaluate the effectiveness of Theorem 3, we applied KITTeL to a suite
of 604 OpenCL and CUDA kernels, 386 of which have loops. To demonstrate
that our approach works out-of-the-box (bar the manual specification of loop
invariants), with the kernel code itself being the only source of information about
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Table 1: Observed thread counts for the kernels in our benchmark set

Thread count 1 2-100 101-10,000 10,001-1,000,000 > 1,000,000

Number of kernels 17 37 149 258 143

the presence of (potentially non-terminating) loops, we included the loop-free
kernels in our evaluation. The kernels have on average 86 lines of code4 and
originate from nine sources:

• The AMD Accelerated Parallel Processing SDK v2.6 [23] (79 kernels, 55
of which have loops).

• The NVIDIA GPU Computing SDK v5.0 [24] (184 kernels, 110 of which
have loops); we also included 8 kernels from v2.0 of the SDK, 7 of which
have loops.

• The C++ AMP Sample Projects [25] hand-translated to CUDA (20 ker-
nels, 16 of which have loops)

• The gpgpu-sim benchmarks [26] (33 kernels, 24 of which have loops)

• The Parboil benchmarks v2.5 [27] (25 kernels, 19 of which have loops)

• The Rodinia benchmark suite v2.4 [28] (40 kernels, 25 of which have loops)

• The SHOC benchmark suite [29] (87 kernels, 55 of which have loops)

• A set of kernels generated from the PolyBench/C benchmarks v3.2 [30] by
the PPCG [31] parallel code generator (64 kernels, 49 of which have loops)

• Basemark’s (previously Rightware’s) Basemark CL v1.1 [32] (64 kernels,
26 of which have loops)

The kernel counts above do not include 4 kernels that we manually removed
because they use CUDA surfaces [12], which we currently do not support. Each
suite is publicly available except for Basemark CL which was provided to us
under an academic license. The collection covers all the publicly available GPU
benchmark suites we are aware of except for LonestarGPU [33].

Thread Counts. Recall from Section 3 that the correctness of a kernel often
depends on the number of threads that execute the kernel. In principle, this
also applies to termination. Hence, stopping short of manually inspecting each
kernel to see whether the thread count impacts termination, we took a pragmatic
approach and ran every benchmark on a GPU to determine the number of
threads each kernel is usually executed with. The obtained numbers were then
used to fix the thread counts for the duration of our experiments.

4Counted using cloc 1.60 (http://cloc.sourceforge.net)
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//@ invariant(i > 0)
for(i = 1; i < n; i ∗= 2)
{ . . . }

(a)

int s = blockDim.x;

//@ invariant(s > 0)
for(i = 0; i < n; i += s)
{ . . . }

(b)

int n = 100;

//@ invariant(i ≤ n)
for(i = 0; i != n; i++)
{ . . . }

(c)

Figure 7: Code fragments exemplifying the forms of the invariants we specified manually

As can be seen in Table 1, the concrete thread counts for the kernels varied
widely, with the majority of the kernels having a thread count of over 10,000.
This underlines the need for a scalable thread-modular analysis: the state spaces
that would need to be considered when modelling all threads explicitly would
be exceedingly large.

Experimental Setup. All experiments were performed on a workstation with a
4-core Intel Xeon E5-2609 2.4GHz and 16GB of RAM running Ubuntu 14.04
and Clang/LLVM 3.5.1. The reported times are averages over five runs and
include the time needed to compile a kernel to bitcode. The timeout used was
5 minutes.

We adapted llvm2KITTeL as described in the previous section and invoked
the tool with the -solver option, which eliminates rewrite rules with unsatisfi-
able constraints as early as possible during the generation of a rewrite system,
generally resulting in smaller systems. As default we used manually specified
loop invariants and passed the -increase-strength option to llvm2KITTeL.
The -increase-strength option turns left and right shifts into, respectively,
multiplications and divisions by 2. This transformation facilitates termination
analysis of GPU kernels where the loop counter is being shifted, which is com-
mon in kernels implementing reductions and prefix-sums. The underlying SMT
solver used was Yices 2.3.0. Both llvm2KITTeL5 and KITTeL6 were downloaded
on the 12th of February 2015.

Below, we first discuss the performance of the default setup over our bench-
mark set, and analyse the kernels for which termination could not be shown.
Thereafter, we consider the impact of the -increase-strength option on the
termination analysis, and the effectiveness of KITTeL’s automatic invariant in-
ference capabilities based on Apron 0.9.10, which are not used by default.
Finally, we consider llvm2KITTeL’s bitvector modelling capabilities.

Manually Specified Loop Invariants. We manually specified loop invariants for
53 kernels, as KITTeL would otherwise fail to prove termination of these kernels.
The required invariants stated that (i) the loop counter is positive (32 kernels),
that (ii) the variables defining the step value of the loop counter are positive

5https://github.com/s-falke/llvm2kittel
6https://github.com/s-falke/kittel-koat
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(19 kernels), and that (iii) the loop counter is less than or equal to the value it
is tested against for inequality in the loop guard (2 kernels). As mentioned in
the previous section, we proved all of these invariants correct with the help of
GPUVerify prior to running our experiments.

Figure 7 gives an example of each kind of manually specified invariant, using
JML-style notation [34]. We note that the specified invariants provide sufficient
information for KITTeL to be able to prove termination. To understand the
examples, it is important to be aware that KITTeL’s termination analysis works
on a loop-by-loop basis while ignoring variable initialisations that occur outside
these loops. In the case of the loop of Figure 7a, this means that absence of the
invariant would imply that KITTeL would analyse the loop assuming both i > 0
and i ≤ 0 (for i is initialised outside the loop). However, in the latter case the
loop counter would either decrease or remain zero, leading to nontermination.
Similarly, for the loop of in Figure 7b, omitting the loop invariant would imply
that KITTeL would assume s to have a completely arbitrary value. Hence, i
would not necessarily increase with each iteration, again leading to nontermina-
tion. Finally, in the case of Figure 7c, absence of the invariant would imply that
KITTeL could assume that i > n on entry to the loop. As such, incrementing i
would never yield the loop exit condition i!= n.

6.1. Results for the Default Setup

Unsurprisingly, KITTeL managed to prove termination of each of the 218
loop-free kernels: for these kernels llvm2KITTeL always outputs the single-rule
integer-based rewrite system

start→ end ,

where loop-freeness of a kernel is determined by querying the control-flow graph
of the kernel for cycles. On average termination of the loop-free kernels was
shown in 0.40s, with the maximum time required being 0.56s.

The cumulative histogram of Figure 8 plots the analysis time for the 386
kernels with loops on a log-log scale. A point at (x, y) indicates that for x kernels
with loops, termination could be shown within y seconds. Of the 386 kernels
with loops, 348 could be shown to be terminating, with the analysis taking
less than 1s in the case of 266 kernels. On average, termination was shown in
1.69s and the maximum time needed was 65.88s. Of the 38 kernels for which
termination could not be shown, 34 reached the timeout of 5 minutes. In 4 cases
KITTeL indicated that the constructed rewrite system was nonterminating (this
does not imply that the original kernels are nonterminating, as the constructed
rewrite system in general over-approximates the behaviour of a thread).

We manually inspected the 38 kernels to see why termination could not
be shown. All 4 cases where KITTeL indicated nontermination would require
reasoning over floating point numbers, which KITTeL does not support (see
Figure 9a for an example, where termination follows as i+1.0 > i for small
floating point numbers, assuming i is not updated in the loop body).
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Figure 8: Cumulative histogram showing the time taken to prove termination of the 386
kernels with loops in the default setup

for(float i = 1.0; i < n; i += 1.0)
{ . . . }

(a)

while(atomicInc(p) < n)
{ . . . }

(b)

Figure 9: Loops that could not be shown terminating by KITTeL

In 4 cases, kernel termination depends on the behaviour of built-in atomic
increment operations (see Figure 9b for an example, where p points to a shared
memory word, and where termination follows as atomicInc returns monotoni-
cally increasing values, assuming the shared memory word pointed to by p is not
updated in the loop body). Currently, llvm2KITTeL models atomic increment
operations as returning unconstrained, arbitrary values and, hence, termination
cannot be shown.

In 20 cases, termination would require reasoning about shared memory and,
hence, the over-approximation from Theorem 3 is too coarse (see Figure 5 for
an example). Of these 20 cases, there are 5 where the value tested against in
the loop guard lives in shared memory, although this value is never changed
during execution. In 11 cases, termination depends on some constant data in
shared memory being of a specific form, e.g., a graph without cycles or a null-
terminated string. In the 4 remaining cases, a thread may only terminate once
it knows that all threads have finished performing a certain computation; this
information is communicated through shared memory.

The above leaves 10 kernels, all timing out, with 5 timeouts in llvm2KITTeL

and 5 in the KITTeL back-end. Of the 5 kernels timing out in llvm2KITTeL, 4
could be shown terminating by turning off the -increase-strength option (see
below). For the remaining kernel timing out in llvm2KITTeL, no combination of
options could be found that let llvm2KITTeL produce an integer-based rewrite
system within the 5 minute timeout period. For the 5 kernels timing out in
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Figure 10: Scatter plot comparing the time taken to prove termination of kernels with loops
in the default setup and with the -increase-strength option turned off

KITTeL, the generated rewrite systems could be shown terminating by hand,
indicating that the analysis techniques used by KITTeL could be improved.

6.2. Impact of the Increase Strength Option

As the -increase-strength option does not change the shape of the control-
flow graph of a kernel, turning off the option did not affect KITTeL’s ability to
prove termination of all 218 loop-free kernels. Each loop-free kernel could still
be shown terminating within 0.56s. For this reason we focus on kernels with
loops in the remainder.

By default, llvm2KITTeL’s modelling of left and right shifts is imprecise,
with the operations yielding unconstrained nondeterministic values. This is
improved upon by the -increase-strength option by lifting left and right
shifts to multiplication and division by 2, which llvm2KITTeL models more
accurately. Hence, we hypothesised that turning off the -increase-strength

option would (i) cause KITTeL to no longer be able to show termination of
kernels that use shifts to update loop counters, leading instead to timeouts
due to the use of unconstrained nondeterministic values, and would (ii) reduce
analysis time for kernels that do not use shifts to update loop counters, as the
less accurate modelling generally yields integer-based rewrite systems that still
terminate, but which have fewer constraints.

The scatter plot of Figure 10 compares the default setup with the setup
that has the -increase-strength option turned off. A point at (x, y) indicates
that the analysis took x seconds in the default setup vs. y seconds with the
option turned off. Points lying below the diagonal thus indicate cases where it
was beneficial to disable the -increase-strength option. The axes are plotted
using log scales.

In the case of 41 kernels where termination could be shown in the default
setup, timeouts occurred once the -increase-strength option was turned off.
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These 41 kernels are precisely those kernels in our benchmark set that use shifts
to update loop counters, confirming our hypothesis that termination of these
kernels can no longer be shown.

In the case of 4 kernels, the opposite happened: although termination could
not be shown in the default setup, turning the -increase-strength option
off allowed KITTeL to prove termination. Closer inspection revealed that the 4
kernels implement cryptographic hash functions (variants of the MD5 and SHA-
256 algorithms), which extensively use shifts, but not to update loop counters.
The less precise modelling caused llvm2KITTeL to generate fewer constraints
and allowed it to produce integer-based rewrite systems, where it was not able
to do so before (see above).

Disregarding the 41 kernels for which termination could no longer be shown
once the -increase-strength option was turned off, the Wilcoxon signed ranks
test [35] (T = 19250, n = 345, p < 0.05) indicated that there is a significant
difference in running time with and without the option. The sum of the negative
difference ranks (

∑
R− = 22366) was larger than the sum of positive difference

ranks (
∑
R+ = 19250), indicating that less running time was required when

the -increase-strength option was turned off. Moreover, the effect size for
the matched-pair samples was 0.31.7 Hence, our analysis provides some evi-
dence that running time improves for kernels that do not use shifts to update
loop counters when -increase-strength is turned off, confirming our second
hypothesis.

The above suggests it would be beneficial to refine the -increase-strength
option by introducing a static analysis that determines whether a shift is used to
update a loop counter. This would enable llvm2KITTeL to selectively transform
shifts based on their use.

6.3. Automatic Invariant Inference

To experiment with the automatic inference of invariants, we removed all
manually specified invariants from our kernels and turned on invariant inference
in KITTeL. As in the case of the previous two experiments, KITTeL managed to
prove termination of all 218 loop-free kernels, where the maximum time required
was again 0.56s. Hence, we again ignore all loop-free kernels in the remainder.

As KITTeL does not know a priori which kernels require inference of loop
invariants, it indiscriminately applies Apron to each kernel it is asked to prove
termination of. Hence, as invariant inference takes time and as each inferred
invariant increases the size of constraints in the integer-base rewrite system, we
hypothesised that inferring invariants would significantly increase the overall
running time. Moreover, Apron is only able to infer loop invariants of the first
two forms we discussed above (positive loop counter and positive step value), and
we thus also hypothesised that KITTeL would not be able to prove termination

7The effect size [35] determines the degree of association, similar to a correlation coefficient,
and ranges between 0 and 1. Conventions define the effect size to be small = 0.10, medium
= 0.30, or large = 0.50.
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Figure 11: Scatter plot comparing the time taken to prove termination of kernels with loops
in the default setup and with automatic invariant inference

of the 2 kernels requiring an invariant of the third form (loop counter less than
or equal to the value it is tested against for inequality).

The scatter plot of Figure 11 compares the default setup (with manually
supplied invariants) and the setup with automatic invariant inference. A point
at (x, y) indicates that the analysis took x seconds in the default setup vs.
y seconds with automatic invariant inference. Thus, a point lying above the
diagonal denotes a benchmark for which the default options led to faster analysis
than when automatic invariant inference was turned on. The axes are plotted
using log scales.

In the case of 15 kernels that did not require manually supplied invariants,
KITTeL failed to prove termination within the 5 minute timeout period once au-
tomatic invariant inference was turned on, while it was able to show termination
in the default setup. In 45 of the 53 cases where manual invariants were required,
KITTeL managed to prove termination once automatic inference was turned on.
In 2 of the remaining 8 cases, KITTeL managed to infer the correct invariant but
timed out nevertheless. The remaining 6 kernels included the 2 kernels requiring
an invariant stating that the loop counter is less than or equal to the value it is
tested against for inequality, confirming our second hypothesis. In the case of
the other 4 kernels, it is not clear to us why KITTeL failed to infer the correct
invariants. This might possibly be due to limitations of Apron, but giving a
definitive answer to this question requires a more thorough understanding of
Apron than we currently have.

In one case termination could be shown once automatic invariant inference
was turned on, while KITTeL was not able to show termination of the kernel in
either the default setup or in the -increase-strength experiment, while the
invariants we added manually to this kernel should have sufficed. Hence, the
additional inferred invariants simplified the task of proving termination.

Disregarding the 2 kernels that required invariants Apron is not capable
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Figure 12: Scatter plot comparing the time taken to prove termination of kernels with loops
in the default setup and with bitvector modelling (C++ AMP Sample Projects only)

of generating, the Wilcoxon signed ranks test (T = 8365, n = 384, p < 0.05)
indicated that there is a significant difference in running time with and without
automatic inference. The sum of the positive difference ranks (

∑
R+ = 47915)

was larger than the sum of negative difference ranks (
∑
R− = 8365), indicat-

ing that more running time was required once automatic inference was turned
on. Moreover, the effect size for the matched-pair samples was 0.67. Hence,
our analysis provides evidence that running time suffers when automatic invari-
ant inference is used, confirming our first hypothesis. Note, however, that the
times reported for the default setup did not include the time an expert needed
to manually provide the necessary invariants. On the other hand, the invari-
ants inferred by Apron were not checked for correctness, while the manually
provided invariants were.

6.4. Impact of Bitvector Modelling

For our final experiment we considered the bitvector modelling mode of
llvm2KITTeL [5]. In this mode llvm2KITTeL generates additional constraints
mimicking bitvector behaviour. As we expected the additional constraints to
cause significant slowdown, we only considered the 20 kernels from the C++
AMP Sample Projects collection (16 of which have loops), which in the default
setup could all be shown to be terminating without the help of manually supplied
invariants.

As in our previous experiments, KITTeL was able to prove termination of all
loop-free kernels within 0.56s. Hence, we focus on the 16 kernels with loops in
the remainder.

The scatter plot of Figure 12 compares the default setup and the setup with
bitvector modelling. A point at (x, y) indicates that the analysis took x seconds
in the default setup vs. y seconds with bitvector modelling. A point lying above
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the diagonal thus indicates that the analysis is faster in the default setup. The
axes are plotted using a log scale.

Of the 16 kernels with loops, KITTeL only managed to prove termination of
6 within the 5 minute timeout period, and in each case proving termination was
slower than in the default setup, as we expected.

We manually inspected the remaining 10 kernels to see whether KITTeL

should in principle be able to prove termination, or whether this is hindered
by the bitvector modelling (e.g., due to the occurrence of bitvector overflows).
In 9 cases we did not find any reason why termination should not be provable,
and we attribute the occurrence of timeouts to the increased number of con-
straints in the generated rewrite system. In the remaining case, a loop bound
was an input parameter to the kernel and the loop counter would always be
incremented by 2. This means that, if the loop bound would be chosen equal to
the maximum integer value, termination would not occur. Hence, the difference
between bitvectors and mathematical integers is not just a theoretical oddity,
but shows up in concrete edge cases.

7. Related Work

Although the literature on termination analysis is vast, only limited effort has
been directed towards proving termination of multi-threaded programs. A tech-
nique for proving termination of individual threads is described in [36]. Whole
program termination of multi-threaded programs using atomic operations is
considered in [37, 38], and termination of programs consisting of “concurrent
objects” (an instance of the actor model) is discussed in [39, 40]. The cur-
rent paper is the first to consider whole program termination for multi-threaded
programs (kernels) where the main synchronisation mechanism is barrier syn-
chronisation.8

The technique described in [38] assumes that a counterexample to termina-
tion exists and does case splitting over the counterexample using a set of proof
rules. A case is eliminated when it is found to be contradictory, and termination
is shown when no cases remain. In contrast, each of the other aforementioned
techniques, including the one described in this paper, can be seen as an in-
stance of rely/guarantee reasoning [41]. In [36] threads are abstracted in an
environment that can be relied upon to behave in a certain way by the thread
whose termination one wants to prove. A proof rule that facilitates proving
termination in a rely/guarantee setting is discussed in [37]. In our case, the re-
ly/guarantee conditions are extremely weak: a read from shared memory cannot
be relied upon by a thread to yield any specific value, and no thread guarantees
anything about the values it writes to shared memory. This is similar to the
technique described in [39], which loses all the information about the shared

8A model of a single CUDA kernel is mentioned in [38]. Unfortunately, the model does not
take into account thread identifiers and allows for threads to ignore certain barriers. Hence,
termination of the model does not reflect termination of the original kernel.
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state at each scheduling point. The technique described in [40] improves upon
[39] by introducing rely/guarantee conditions that establish that shared data is
only changed a finite number of times during program execution.

Besides being an instance of rely/guarantee reasoning, our method for prov-
ing termination is also related to the technique that underpins the soundness of
GPUVerify. Similar to our method, the technique implemented in GPUVerify
depends on a shared state abstraction. The abstraction allows race-freedom to
be proved by considering two arbitrary threads [8, 9].

Our choice for KITTeL was motivated by the fact that Clang/LLVM is cur-
rently the only freely available compiler that is able to handle CUDA and
OpenCL kernels. Hence, not wanting to spend significant effort developing
a new compiler font-end, this limited us to termination analysis tools that ac-
cept LLVM bitcode as input. Of these there are currently two: KITTeL and
AProVE [3]. The latter is not open source and, hence, could not easily be
adapted along the lines described in Section 5.

AProVE is also able to handle the integer-based rewrite systems generated
by llvm2KITTeL. However, experimenting with this combination revealed that
the systems generated by llvm2KITTeL are in general not of the kind AProVE
is tuned towards, resulting in poor performance. Tailoring llvm2KITTeL more
towards AProVE is virtually impossible, as there is no publicly available in-
formation detailing the kinds of systems for which AProVE does have satisfac-
tory performance. For these reasons, we did not consider the combination of
llvm2KITTeL and AProVE in our experimental evaluation. Other tools that are
able to prove termination of integer-based rewrite systems, such as Ctlr [42], gen-
erally do not allow for fresh variables to occur on the right-hand sides of rewrite
rules—which we use to model our shared state abstraction—and, hence, are not
suitable for our purposes.

8. Conclusion and Future Work

We have presented a thread-modular technique for proving termination of
massively parallel GPU kernels. The technique reduces the termination prob-
lem for these kernels to a sequential termination problem by abstracting the
shared state. Implementing the technique in KITTeL, we were able to prove
termination of 94% of the kernels in our benchmark set, and of 90% of the ker-
nels with loops. Our experience shows that the excellent progress the rewriting
community has made in relation to sequential termination analysis can be di-
rectly leveraged to enable efficient termination analysis in the emerging domain
of GPU programming—an encouraging result.

Experimental Conclusions. The effectiveness of KITTeL [4, 5] is partially due
to the replacement of shifts by multiplications and divisions. Without these
replacements the percentage of successful termination proofs drops to 88%, or
to 81% for the kernels with loops. Our experiments suggest that we can obtain
a higher success rate by making the replacements more selective, only replacing
those shifts that affect loop counters.
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All above percentages are based on kernels for which we manually specified
loop invariants. Usability-wise it would be much preferred to automatically
infer invariants. KITTeL supports this approach through its use of the Apron
numerical abstract domain library [20]. However, as our experiments show, the
use of this library increases running time, and it is not always the case that all
necessary invariants are inferred. To limit these effects, KITTeL could potentially
benefit from a bespoke invariant inference engine that solely generates invariants
facilitating termination proofs (compared to Apron which is fairly generic in
its aims). A bespoke engine should infer at least the invariants of Figure 7. A
selected number of other invariants should possibly also be inferred, because
these may help improve the chances of proving termination, as one kernel in our
inference experiment indicates.

Although KITTeL is highly effective, the tool defaults to modelling integers
as mathematical integers. Hence, there is a mismatch with actual hardware,
which represents integers as bitvectors. Enabling bitvector modelling in KITTeL

is possible, and this shows that the difference between integers and bitvectors is
not just theoretical, but that concrete kernels exist for which the behaviour is
different. Unfortunately, performance of bitvector modelling is currently poor,
and further research is needed to make it perform as well as the approach using
mathematical integers.

Future Work. The current main shortcoming of our approach is the very coarse
shared state abstraction where accessing the shared state yields completely non-
deterministically selected values. Hence, besides the future work suggested by
our experiments, and as discussed above, we would like to investigate more
precise shared state abstractions. In particular, we would like to investigate
abstractions which model certain properties of constant data living in shared
memory, e.g., by automatically identifying the constant data and making it
private. This should facilitate termination proofs for kernels where either the
constant value tested against in a loop guard lives in shared memory, or where
the constant data is required to be of a specific form. Relatedly, we would like
to apply our prior work on barrier invariants [43] to capture invariants of the
shared state that are key to establishing termination; this will potentially en-
able proving termination of kernels where values communicated between threads
during kernel execution affect termination.

We would also like to investigate abstractions that are able to handle the
atomic increment operations supported by CUDA and OpenCL (see Figure 9b).
Termination of kernels using these operations could potentially be established
by modelling these operations as returning monotonically increasing values; an
idea also applied to the reasoning about data race-freedom of such kernels [44].

Finally, we would like to implement the described approach to proving of
GPU kernels in other termination analysis tools to see how these compare with
KITTeL. A prime candidate here is T2 [45], as llvm2KITTeL has been extended
with the ability to generate input for this tool [46]. A comparison with the
Arctor tool from [38] would also be interesting, as this tool currently seems to
be the only tool that offers truly scalable termination analysis for concurrent
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programs. A significant difficulty with this latter comparison will be that Arctor
accepts neither kernel sources nor LLVM bitcode as input and, hence, a front-
end would need to be developed to be able to experiment with a benchmark
suite of the size we considered in the current paper.
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