
One Size Doesn’t Fit All: Quantifying Performance
Portability of Graph Applications on GPUs

Tyler Sorensen
Princeton University, USA

UC Santa Cruz, USA
tyler.sorensen@ucsc.edu

Sreepathi Pai
University of Rochester, USA
sree@cs.rochester.edu

Alastair F. Donaldson
Imperial College London, UK

afd@ic.ac.uk

Abstract—Hand-optimising graph algorithm code for different
GPUs is particularly labour-intensive and error-prone, involving
complex and ill-understood interactions between GPU chips,
applications, and inputs. Although the generation of optimised
variants has been automated through graph algorithm DSL
compilers, these do not yet use an optimisation policy. Instead
they defer to techniques like autotuning, which can produce good
results, but at the expense of portability.

In this work, we propose a methodology to automatically
identify portable optimisation policies that can be tailored (“semi-
specialised”) as needed over a combination of chips, applications
and inputs. Using a graph algorithm DSL compiler that targets
the OpenCL programming model, we demonstrate optimising
graph algorithms to run in a portable fashion across a wide
range of GPU devices for the first time. We use this compiler
and its optimisation space as the basis for a large empirical
study across 17 graph applications, 3 diverse graph inputs
and 6 GPUs spanning multiple vendors. We show that existing
automatic approaches for building a portable optimisation policy
fall short on our dataset, providing trivial or biased results.
Thus, we present a new statistical analysis which can characterise
optimisations and quantify performance trade-offs at various
degrees of specialisation.

We use this analysis to quantify the performance trade-
offs as portability is sacrificed for specialisation across three
natural dimensions: chip, application, and input. Compared to
not optimising programs at all, a fully portable approach provides
a 1.15× improvement in geometric mean performance, rising to
1.29× when specialised to application and inputs (but not hard-
ware). Furthermore, these semi-specialised optimisations provide
insights into performance-critical features of specialisation. For
example, optimisations specialised by chip reveal subtle, yet
performance-critical, characteristics of various GPUs.

I. INTRODUCTION

Program transformations, e.g. compiler optimisations, in-
fluence the runtime performance of programs but are affected
by the environment in which the program will run, such as
the architecture, the actual program (application), and input.
If these aspects are fixed, then the transformations can be
specialised, usually by autotuning [1]–[7], often resulting in
significant performance improvements.

Unfortunately, by design, such specialisation does not trans-
fer to other environments. If the architecture, application, or
even input change, then the performance impact of trans-
formations may also change. In some undesirable cases, a
transformation that caused a speedup for one environment can
cause slowdowns for another. In our work, for example, a read-

modify-write aggregation transformation applied to the sg-cmb
microbenchmark (discussed in Section VIII) shows a speedup
of more than 22× on an AMD GPU, but yields a slowdown
(.88×) on an Nvidia GPU.

Although specialisation is useful, identifying transforma-
tions that lead to portable performance improvements, i.e.
those that yield improvements consistently, can deliver im-
portant insights into similarities (and differences) across envi-
ronments. Additionally, portable transformations can be more
widely deployed, reducing the maintenance demanded by
fragile specialisations. To the best of our knowledge, however,
there is no systematic and automatic methodology that can
identify these portable transformations from a larger set of
compiler transformations. In part, this is not a straightforward
problem: prior work [8]–[10] has shown that even identifying
transformations that yield performance improvements in a
fixed environment can be confounded by chance effects.

Worse, a quest in search of portable transformations may be
quixotic – there may be no such set of portable transformations
due to the diversity of architectures today. In that event,
then, we would like a rigorous methodology that explicitly
delimits the environment in which a particular transformation
is effective. For example, an analysis that can confirm that
transformation T only yields performance improvements on
architecture A is still valuable. Knowledge of such semi-
portable transformations would also immediately enable semi-
specialisation. Specialisation does not have to be an all or
nothing strategy. Transformations can be specialised across
some components of the environment (e.g. the application) if
they are known at the time of transformation, while remaining
unspecialised and portable over others.

What we lack, however, is a methodology to precisely
quantify the performance trade-off associated with speciali-
sation vs. portability. For example, writers of domain-specific
compilers might wonder whether autotuning (i.e. full special-
isation) is really worth it for their domain. Could they get
away with enabling a set of options “semi-specialised” to
most environments they expect their compilers to generate
code for? Settling a question like this would require rigorously
quantifying the performance gap of such semi-specialisation
over full specialisation.

In this work, we provide a methodology to resolve these
questions for the common case of a (usually domain-specific)

compiler with a tunable set of transformations, where the
performance of transformations is affected by applications,
their inputs and the architectures they run on.

We subject our methodology to one of the most stringent
experimental evaluations seen in this space. Our domain-
specific compiler is a recent state-of-the-art compiler for graph
algorithms on GPUs [11]. We use graph algorithms, because
their performance is heavily influenced in non-trivial ways
by their inputs. The same graph application running on a
road network graph (large diameter, low average degree) and
a social network graph (small diameter, power-law degree
distribution) can experience different bottlenecks on the same
hardware, confounding and throwing off simplistic search
methods for portable transformations. A compiler framework
ensures we can have thorough experimental coverage of all
transformations as compared to evaluations that manually
optimise [12]. By adapting the compiler to generate OpenCL,
we are also able to run the graph algorithms on a diverse set of
GPUs, vastly expanding the discourse over just Nvidia GPUs
used in prior work.

Thus, for the first time, we quantify the performance porta-
bility of state-of-the-art graph applications on GPUs. Our work
uses 17 graph applications (Table VII), using 3 classes of
inputs (Table VIII), on 6 GPUs which span 4 vendors (Table I).
These elements are described in more detail in Section VI. The
transformation space considers 95 optimisation combinations
involving load balancing, on-chip synchronisation, and read-
modify-write (RMW) aggregation, discussed in Section V.
These transformations (and our application set) exercise most
features of the OpenCL standard, providing fine-grained evi-
dence for the performance portability (or lack thereof) of this
widely supported standard.

a) Contributions: Our contributions are:

• A large high-quality dataset on the impact of performance
optimisations on graph algorithms running on a very
diverse set of GPUs (Section VI). Compared to prior
work, our study is the first to run high-performance graph
algorithms on many non-Nvidia GPUs.

• A methodology that identifies portable optimisations from
this dataset, and also allows us to delineate the scope of
optimisations across architectures, applications and inputs
(Section III). Our strategy avoids common pitfalls such as
identifying trivial or biased optimisations (Section II-C)
by using a rank-based magnitude-agnostic analysis.

• A quantification, for the first time, of the performance
tradeoffs associated with specialisation vs. portability
across three dimensions: applications, inputs and GPUs
(Section VII).

• A methodology to identify performance-critical differ-
ences in GPUs using information from the portability
of optimisations (Section VIII). For example, we find
that an ARM GPU suffers significant performance loss
from memory divergence, which can be alleviated using
a semantically unnecessary barrier.

TABLE I
THE 6 GPUS CONSIDERED IN THIS STUDY, THEIR NUMBER OF COMPUTE

UNITS (#CUS), THE SUBGROUP SIZE (SG SIZE) AND A SHORT NAME USED
THROUGHOUT THE TEXT.

Vendor Chip #CUs SG Short
Size Name

Nvidia Quadro M4000 13 32 M4000
GTX 1080 20 32 GTX1080
HD5500 27 8,16 HD5500Intel Iris 6100 47 8,16 IRIS

AMD Radeon R9 Fury 28 64 R9
ARM Mali-T628 4 1 MALI

geomean

M4000

Gtx1080

Mali

Iris

Hd5500

R9

R9 Hd5500 Iris Mali Gtx1080 M4000 geomean

e
v
a
lu

a
te

d
 o

n
 c

h
ip

optimal optimisations for chip

1.17 1.17 1.17 1.22 1.18 1.17 NA

1.10 1.16 1.15 1.23 1.05 1.00 1.11

1.23 1.32 1.29 1.36 1.00 1.14 1.22

1.46 1.33 1.41 1.00 1.50 1.43 1.34

1.08 1.05 1.00 1.19 1.18 1.15 1.11

1.19 1.00 1.06 1.23 1.25 1.18 1.15

1.00 1.20 1.15 1.32 1.15 1.15 1.16

Fig. 1. Heatmap of the geomean slowdown compared to the optimal
optimisations for one chip on all other chips (higher is worse).

II. INITIAL OBSERVATIONS AND MOTIVATION

While the methodology of our study is not tied to a par-
ticular domain, graph algorithms for GPUs are an interesting
and pragmatic case-study given recent research interest [11],
[13] and industry support [14]. In this section, we present
preliminary motivation, illustrating the added complexity of
considering cross-GPU portability and showing shortcomings
of existing methods in the analysis of this dataset.

The GPUs of our study are summarised in Table I and
described in more detail in Section VI-A: the table is shown
early to facilitate discussion in this section. While we do
mention optimisations, applications and inputs in this section,
the discussions here do not require details apart from their
names. As such, they are described more completely in Sec-
tion V, Section VI-B and Section VI-C, respectively. To ease
presentation: GPU names are given in SMALL CAPS; input
names are given in fixed-width; optimisation names are
given in sans-serif; and application names are given CAPS
with application variants distinguished by CAPSsubscript.

A. GPUs: A Distinct Dimension

Our dataset allows us to compare the performance of opti-
mal optimisation settings on a given GPU for an application
and input when it is run with the same settings on another
GPU. This allows us to study how performance varies when
settings specialised to one GPU are applied to another. We

TABLE II
THE MAX SPEEDUP AND SLOWDOWN PER CHIP AND ASSOCIATED

APPLICATION. THE INPUT IN EACH CASE IS USA.NY .

Max Speedup Max Slowdown

App Value App Value

GTX1080 SSSPnf 5.10 PRwl 7.99
M4000 SSSPnf 3.54 PRtp 10.00
HD5500 SSSPnf 16.61 PRtp 22.15
IRIS BFStp 13.25 PRwl 18.70
R9 BFShybrid 14.61 SSSPwl 6.89
MALI BFStp 3.95 SSSPwl 15.21

use the geomean slowdown to summarise these performance
numbers across all applications, inputs and GPUs.

The results are summarised in the heatmap of Figure 1,
where the rows correspond to GPUs that the programs are
run on and the columns correspond to optimal optimisations
for different GPUs. The diagonal is 1.00 as there are no
slowdowns for a GPU using its own optimal optimisations.
The values of the bottom row show the geomean across all
values in the column associated with an optimisation strategy.
Smaller values indicate a given optimisation strategy is more
portable, causing fewer slowdowns across GPUs. The numbers
of the far right column show the geomean across the row
associated with the GPU. Smaller values indicate a given GPU
suffers fewer slowdowns under optimisation strategies tailored
for different GPUs.

Unsurprisingly, the two Intel GPUs (IRIS and HD5500)
show only small slowdowns when optimal optimisations are
ported between them. In contrast, Nvidia’s GTX1080 (a newer
architecture) slows down when settings from M4000 (an
older architecture) are used. However, M4000 works well
with GTX1080 settings. These counter-intuitive generational
differences are concerning, for they make knowledge gained
on one GPU less transferable to another. Interestingly, IRIS
behaves well under the R9 strategy (1.08×), but the reverse is
not true (1.15×). MALI suffers from the highest slowdowns,
likely due to its architectural differences, i.e. it is a mobile
GPU. Similarly, the optimal strategy for MALI causes the
highest slowdowns on other GPUs.

We note that no optimisation setting specialised to an appli-
cation, input and GPU is completely portable to other GPUs;
any chip-specialised optimisation strategy causes at least a
slowdown of 1.1× (geomean) when evaluated across the other
chips of our study. These results are concrete evidence that
that GPUs are an independent portability dimension in this
domain, i.e. optimisations specialised to one GPU may cause
slowdowns on another.

B. Fantastic Speedups and Horrible Slowdowns

Here we examine the possible envelope of relative perfor-
mance speedups and slowdowns in this domain. We first note
that the maximum geomean speedup (using optimal optimisa-
tions queried from our dataset) across all GPU, applications,
input combinations is 1.5×. While this seems low, as well as

TABLE III
THE TOP AND BOTTOM FIVE OPTIMISATION COMBINATIONS RANKED
ACCORDING TO THE NUMBER OF PROGRAMS SLOWED DOWN WHEN

APPLIED OVER ALL CHIP, APP., INPUT COMBINATIONS; THE TWO MIDDLE
RANKS (12 AND 26) ARE DISCUSSED IN THE TEXT.

Rank Enabled Opts Slowdowns Speedups Geomean

0 fg8 36 60 1.01
1 fg 37 58 0.98
2 wg, fg8 38 61 1.00
3 wg, fg 41 55 0.96
4 sg 41 56 1.00

12 coop-cv, oitergb 49 66 1.18

26 fg8, sg, oitergb 60 103 1.15

90 wg, coop-cv, oitergb 157 44 0.72
91 sz256, wg, oitergb 167 44 0.61
92 sz256, wg 173 23 0.60
93 sz256, wg, coop-cv, 189 35 0.54

oitergb
94 sz256, wg, coop-cv 195 22 0.53

the values in the previous section appearing modest, we now
show that at the extreme end of the spectrum there are signif-
icant speedups and slowdowns in this domain. Table II shows
these values per GPU along with their associated applications,
while the input in every case turns out to be usa.ny. We see
that the optimisations can cause both significant speedups (up
to 16×) and slowdowns (up to 22×). Thus, optimisations have
significant opportunities to provide speedups despite modest
aggregate values, and can dramatically punish performance if
applied in the wrong environment.

If we restrict our focus to the two Nvidia chips, these results
mirror prior work, which only evaluated Nvidia GPUs [11].
The top speedup is 5× and the maximum slowdown is 10×
compared to the 16× speedup and 22× slowdown values seen
across our cross-vendor GPUs. Thus, previous work limited to
Nvidia failed to convey the full performance envelope, both
in potential gains and loses, in this domain.

C. First Analysis Attempts

Given that optimisations specialised per chip are not com-
pletely portable, we now turn our attention to difficulties
involved in identifying portable optimisation settings. Our
dataset allows us to examine all possible optimisation com-
binations, of which there are 95. We query our data, applying
every optimisation combination globally, i.e. across all (GPU,
application, input) tuples. For each tuple, we consider the
performance impact of applying the optimisation combination
compared to the baseline, i.e. no optimisations. We record
whether the optimisations caused a speedup, slowdown, and
the magnitude of the effect. The top five, bottom five, and
two middle optimisation combinations are shown in Table III,
ranked by the number of tuples (out of 295) that showed
slowdowns when the optimisations were applied. Using this,
we now discuss several natural methods for performance
portability analysis and how they fall short.

TABLE IV
THE # OF SPEEDUPS/SLOWDOWNS FOR EACH GPU WHEN APPLYING THE

OPTIMISATION COMBINATIONS OF RANKS 12 AND 26 OF TABLE II

Rank M4000 GTX1080 HD5500 IRIS R9 MALI

12 10/21 00/16 12/03 10/02 14/02 20/05
26 22/13 13/07 17/04 10/10 21/12 20/04

a) Do No Harm: Prior work on GPU performance porta-
bility analysis used a do no harm approach, where optimisa-
tions were only selected if they did not cause a slowdown
across any of the programs [7]. Table III shows that this
approach does not work in our domain. The optimisation
combination causing the fewest slowdowns (rank 0), still
causes slowdowns in 36 tuples. Thus, the do no harm approach
would suggest using the baseline, i.e. no optimisations. While
this is the safest approach across our dataset, it is underwhelm-
ing in that the high speedups of Table II are immediately
unreachable.

b) Fewest Slowdowns: The natural extension to the do
no harm approach, is harm the fewest: choose the optimisation
strategy that causes slowdowns in the fewest tuples. This
would also correspond to the rank 0 optimisation. This op-
timisation strategy also has drawbacks: the geomean speedup
across all tuples is a mere 1.01×, and the highest individual
speedup (not shown in table) is an underwhelming 2.03×.

c) Maximise Geomean: We then may seek the optimi-
sation combination with the highest geomean globally; this
would be the rank 12 optimisation with a geomean of 1.18×.
This approach has a subtle flaw. Table II shows that certain
GPUs are more sensitive to optimisations and yield larger
speedups than others. While the geomean is more robust to
outliers than the arithmetic mean, it is still a magnitude-
based metric. Indeed, if we look at the per-chip speedups and
slowdowns from this optimisation, shown in Table IV, we see
that this strategy is easily biased, yielding no speedups on
GTX1080 and over twice as many slowdowns as speedups on
M4000. Any magnitude-based analysis will be biased towards
sensitive GPUs (or applications or inputs).

d) Our Approach: Our method, described in Section III,
uses a magnitude-agnostic rank-based analysis and identifies
the rank 26 optimisation combination in Table III as the most
portable. While it does not produce the fewest slowdowns,
or highest geomean, Table IV shows that it avoids the bias
against GTX1080 and M4000 and has a respectable individual
maximum speedup of 6.41×.

III. PORTABLE OPTIMISATION STRATEGIES

The details of the optimisations considered in this work
will be discussed in Section V; however our main contribution
deals with reasoning about general effects of optimisations
when deployed in diverse environments. Thus, we speak about
optimisations abstractly in this section.

At a high-level, an optimisation strategy maps a tuple of
the form (application, input, chip)1 to a set of optimisations

1We use chip instead of GPU to include the runtime environment.

TABLE V
FUNCTIONS THAT DEFINE OPTIMISATION STRATEGIES. PARAMETERS: a –

APPLICATION, i – INPUT AND c – CHIP. DON’T-CARE ARGUMENTS,
IGNORED BY THE FUNCTION, ARE DENOTED BY *.

Specialised Function Output Optimisation

baseline(a=*, i=*, c=*) none
global(a=*, i=*, c=*) best on average
app(a=A, i=*, c=*) best for app. A
input(a=*, i=I, c=*) best for input I
chip(a=*, i=*, c=C) best for chip C
chip_app(a=A, i=*, c=C) best for chip I and app. A
input_app(a=A, i=I, c=*) best for input I and app. A
chip_input(a=*, i=I, c=C) best for chip C and input I
oracle(a=A, i=I, c=C) best for C, I , and A

(i.e. compiler flags). To concretise what we mean by portable
optimisation strategy, we formalise these strategies as func-
tions (Table V). These functions cover all 8 combinations
of specialisations over application, input, and chip, plus an
additional baseline function. Each function defines an epony-
mous optimisation strategy that maps an (application, input,
chip) tuple to an optimisation configuration: a set of enabled
optimisations. The optimisations considered in this study are
binary (on/off), with the exception of the fg optimisation
and the workgroup size, which take numeric values (see
Section V). In this work, we consider two choices for fg,
recorded as mutually exclusive binary optimisations fg1 or
fg8. Similarly, workgroup sizes of 128 or 256 are considered.

Some of these functions are easily defined. For example, the
baseline optimisation strategy disables all optimisations, so it
maps all (application, input, chip) arguments to the empty op-
timisation configuration. In effect, baseline is not specialised.
At the other extreme, the oracle function maps each (applica-
tion, input, chip) tuple to the optimisation configuration that
delivered the highest speedup. It is constructed by exhaustively
examining performance data from our experiments.

In this section, we present a method to construct par-
tially specialised functions. Consider the function app, which
specialises for application and ignores the input and chip
parameters. It can be described as selecting those optimisations
that are “best” for an application across all inputs and all
chips. Such specialisations can also be extended into multiple
dimensions. The function chip app, which specialises for chip
and application, returns those optimisations that are “best” for
a particular application on a particular chip across all inputs.

This section describes the methodology to systematically
construct these functions using performance data. Our results
then examine: (1) how each of these strategies fares against
the oracle strategy, i.e. how much is lost without specialisation
in particular dimensions (Section VII); and (2) performance
critical differences between GPUs that are exposed when
comparing per-chip specialised optimisation configurations
(Section VIII).

A. Optimisation Strategies by Specialisation

We now describe our analysis that produces, from empirical
data, a spectrum of optimisation strategies between baseline

and oracle, by incorporating more and more test information.
A key challenge here is to soundly identify useful optimisa-
tions – those that impact positively on performance on average
– under various degrees of specialisation.

At a high level, to determine whether an optimisation should
be enabled or not for a (set of) test(s), the empirical data is split
into two sets. The first contains timings when the optimisation
was enabled and the second when it was disabled. We then use
a statistical procedure, the Mann-Whitney U (MWU) test [15],
to determine whether the optimisation caused a change in
test runtimes. If so, then we compare the runtime medians
to determine the direction of change. Only in the case of a
statistically significant speedup do we enable the optimisation.

To specialise the optimisation configurations per chip, ap-
plication, input or combination of these, we perform the
above analysis, but on partitions of our data. For example,
when specialising optimisations per chip, we partition the data
into subsets, one for each chip, and run the aforementioned
procedure on each partition. Each partition will yield an
optimisation strategy specialised to that partition’s chip.

The analysis is shown in detail in Algorithm 1, with special-
isation illustrated for the per-chip case (other specialisations
are similar). We describe our approach top-down starting with
function SPECIALISE FOR CHIP (line 1). This function simply
iterates through the available chips in the global list CHIPS
(line 3), partitions the data into a set per chip (line 4), and
then launches the analysis for the partition, which returns an
optimisation strategy recommended for the partition (line 5).

The function that identifies an optimisation configuration for
a partition is OPTS FOR PARTITION (line 7). Here, we aim to
extract the effect of an individual optimisation opt across the
entirety of the data partition. To do this, we construct two lists
A and B per optimisation (line 10). The lists are populated
by iterating through all the valid optimisation settings where

Algorithm 1 Finding optimisation strategies.
1: function SPECIALISE FOR CHIP(data)
2: chip opts = MAP()
3: for chip in CHIPS do
4: chip data = {X in data where X was run on chip}
5: chip opts[chip] = OPTS FOR PARTITION(chip data)
6: return chip opts

7: function OPTS FOR PARTITION(partition)
8: enabled opts = {}
9: for opt in OPTS do

10: A = [], B = []
11: for os in ALL OPT SETTINGS(opt) do
12: dis os = os[opt = disabled]
13: for p in partition do
14: if SIGNIFICANT(p[os], p[dis opt]) then
15: A.add(p[os] / p[dis opt])
16: B.add(1.0)
17: if ENABLE OPT(A,B) then
18: enabled opts .add(opt)
19: return enabled opts

20: function ENABLE OPT(A,B)
21: reject null = MWU(A,B)
22: return reject null and MEDIAN(A) < 1.0

opt is enabled, returned by ALL OPT SETTING (line 11).
For each optimisation setting, we create the mirror setting

where opt is disabled (line 12), thus the only difference
between os and dis os is that opt is enabled in the former
and disabled in the latter. We then iterate through all test data
in partition (label 13), checking for each test p if the differ-
ence in runtime under the two optimisation configurations is
significant (using the 95% CI) via SIGNIFICANT (line 14).
If so, then we normalise the runtime with optimisation enabled
to the runtime when it was disabled and add it to the list A
(line 15), while adding 1.0, the normalised baseline, to the list
B (line 16).

With data from A and B, we can now perform a statistical
analysis to determine if we should enable opt (lines 17 and
18). Essentially, ENABLE OPT (line 20), takes the two lists
A and B and applies the MWU test (line 21). The MWU
test assesses whether there is a statistical difference in ranks
between the two lists, i.e. if one list has stochastically larger
values than the other. If the test confirms with p < .05, we
check the median of A to determine whether we enable the
optimisation.

While we could use a variety of statistical methods on
the normalised runtimes, the MWU test has the property of
being rank-based, i.e. it does not consider the magnitudes of
value differences. As we saw in Section II-C, magnitude-based
approaches can produce biased results.

IV. OPENCL BACKGROUND

In this section we provide necessary background for the dis-
cussions in Sections V to VII, namely we describe the OpenCL
programming model and how the programming constructs map
to generic GPU architecture features.

An OpenCL program has two parts: code that is executed
on the host (e.g. the CPU system), and code that is executed
on the device (e.g. a GPU). The host code is written in C/C++,
and is responsible for setting up the device memory and calling
device programs (called kernels), via an API. The device code
is written in OpenCL C [16], which is derived from C99.
The code is executed in an SPMD (single program, multiple
data) manner. That is, each thread executes the same program,
but has access to unique identifiers that can be used to guide
different threads to different data or program locations.

A. OpenCL Hierarchy

OpenCL C supports a hierarchical programming abstraction
with components that map naturally to GPU architectural
features. At the base level there are threads, which are
partitioned into subgroups. Threads in the same subgroup are
often executed on the same hardware vector unit. Multiple
subgroups make up a workgroup. Typically subgroups in the
same workgroup are executed on the same compute unit or
CU, a hardware resource that can execute several subgroups
concurrently. A kernel is executed by one or more workgroups.

TABLE VI
OPTIMISATIONS AND THEIR PERFORMANCE PARAMETERS

Optimisation Performance Parameters

coop-cv
workgroup size, subgroup size, atomic
read–modify–write throughput, subgroup
collectives throughput

fg local memory, workgroup-barriers

sg subgroup size, subgroup-barrier throughput,
local memory constraints

wg
workgroup size, local memory constraints,
workgroup-barrier throughput, workgroup
atomic load/store throughput

oitergb
kernel launch and host-device memory
transfer overhead, global synchronisation,
inter-workgroup scheduler

sz256 occupancy, workgroup-local resource limits

a) OpenCL Memory Regions: The memory region shared
at the highest level of the hierarchy is global memory. All
threads executing a kernel can access the device’s global mem-
ory; threads can perform ordinary reads from and writes to this
memory, along with a variety of read-modify-write instructions
(e.g. compare-and-swap). Threads in the same workgroup can
communicate (using the same operations) through faster local
memory, typically provided in a CU-local cache.

Finally, threads have a private memory region where thread-
local values can be stored, typically provided in a register
file. Many GPUs now also provide subgroup communication
primitives, so threads in the same subgroup can efficiently
communicate values in private memory.

b) Synchronisation: GPU synchronisation mechanisms
include the intra-workgroup barrier, in which threads in the
same workgroup can synchronise via a primitive instruction
and the more recent, subgroup barrier, which allows threads
in the same subgroup to synchronise. These barrier instruc-
tions are required to be convergent, i.e. executed by all
the synchronising threads, or none of them. Thus, if these
instructions appear in a loop, it should be ensured that the
loop is uniform across workgroups or subgroups, depending
on the barrier flavour. OpenCL 2.0 provides a detailed memory
consistency model, similar to C++, which allows fine-grained
communication in a well-defined, race-free manner through
special atomic instructions, which provide building blocks for
useful synchronisation idioms (e.g. mutexes).

The OpenCL standard does not provide any independent for-
ward progress guarantees between threads in different work-
groups. This means that in principle, blocking synchronisation,
such as inter-workgroup barriers, are prone to unfair execu-
tions that lead to threads being blocked indefinitely. However,
prior work has shown that current GPUs do provide a degree of
forward progress under the occupancy bound execution model
which states that concurrently executing threads will continue
to be concurrently executed [17]–[19]. Several applications
and optimisations in our study rely on this assumption.

V. GENERALISING OPTIMISATIONS TO OPENCL

Recent work on GPU acceleration of graph algorithms
presented four key architecture-independent graph algorithm
optimisations, which were shown—via their embedding in an
optimising compiler generating CUDA code—to achieve state-
of-the-art performance for a number of applications running
on Nvidia GPUs [11]. To study performance portability, we
generalise the key optimisations to OpenCL and retarget this
compiler, which generates only CUDA, to generate OpenCL.

We discuss the four optimisations in Sections V-A to V-D,
in each case providing: a description of the optimisation;
challenges associated with generalising the optimisation to
OpenCL; and features that govern the performance potential.
The optimisations are summarised in Table VI.

A. Cooperative Conversion

The OpenCL execution hierarchy can be exploited to reduce
the cost of expensive, serialising operations such as atomic
read-modify-write (RMW) instructions. For example, many
graph algorithms track the dynamic workload through a global
worklist. Each push to this worklist by a thread ordinarily
requires one RMW. However, threads can communicate at the
subgroup (or workgroup) levels to combine individual pushes
into a single push of multiple items that uses only one atomic
RMW. We abbreviate this optimisation to coop-cv.

a) OpenCL Generalisation: Unlike in CUDA, OpenCL
subgroups do not have to execute in lockstep.2 Therefore,
subgroup operations must be uniform, i.e. they are executed
by all the threads in the subgroup or none of them. Thus, our
compiler must generate uniform branches (e.g. by equalising
loop trip counts across threads) and use predication to prevent
execution of code that would ordinarily have not executed.

b) Performance Considerations: The number of elided
atomic RMW operations depends on workgroup size and
subgroup size. Communication uses local memory and the
appropriate barriers (workgroup/subgroup). Note that on ar-
chitectures that implement subgroups with lockstep execution,
subgroup barriers are free. The performance impact of this
optimisation depends on the the overhead of the orchestration
vs. the cost of the global RMW operations.

B. Nested Parallelism

Not to be confused with OpenCL Nested Parallelism [20,
Sec. 3.2.3], which mimics CUDA’s Dynamic Parallelism [21,
App. D], the nested parallelism optimisation tackles the classic
problem of parallelising nested loops, the inner of which is
usually irregular in graph algorithms. Specifically, it generates
inspectors and executors that inspect the inner loop iteration
space at runtime and redistribute work among the threads. The
specific schemes for distributing work are based on proposals
by [22] and redistribute work among threads of the workgroup
(wg) or threads of the subgroup (sg). When redistributing to
threads of the workgroup, the executor can choose between
serialising the outer loop or linearising the iteration space

2Starting with Nvidia Volta, CUDA warps do not execute in lockstep either.

(fine-grained or fg). Often, all three strategies wg, sg or fg
must be used in combination, with wg handling high-degree
nodes, sg handling medium-degree nodes and fg handling the
rest.

The fg variant can also be parameterised by the number of
edges processed per iteration. We consider two possibilities in
this work: a single edge (denoted fg1) and eight edges (de-
noted fg8). The entire class of nested parallelism optimisations
is abbreviated to np.

a) OpenCL Generalisation: The fg scheme of this op-
timisation is straightforwardly ported to OpenCL. The wg
scheme scheme requires concurrent writes to the same location
in a leader-election idiom. OpenCL deems this as data-race,
rending the entire program undefined. Thus, we identified all
race-y accesses and change them to OpenCL 2.0 atomic opera-
tions. The sg scheme requires OpenCL subgroup adaptations,
similar to coop-cv.

b) Performance Considerations: Because these schemes
involve inter-thread communication mediated through barriers
(both workgroup and subgroup), the throughput of barriers
is a critical factor. Communication and work redistribution
occur through local memory so its read and write latency is
important. Finally, if there is very little load imbalance among
threads (for example, due to uniform degree graphs), these
schemes simply add overhead.

C. Iteration Outlining

Many graph algorithms execute kernels iteratively until a
fixed point has been reached. In breadth-first search (BFS),
the number of dependent iterations is proportional to the
diameter of the graph, which in the case of planar graphs like
road networks, may be thousands of iterations. If each kernel
execution is very short, then the launch overhead dominates
execution time. In iteration outlining, code that launches
kernels is outlined to the GPU. As a result, kernel launches are
turned into GPU function calls, with synchronisation between
function calls provided by a global barrier. We abbreviate
this optimisation to oitergb (outline iterations using a global
barrier).

a) OpenCL Generalisation: The crux of this OpenCL
implementation is a portable global barrier. Although global
barriers have been proposed on a per-GPU basis, e.g. for
CUDA [19], they cannot be used as is, since OpenCL barriers
need to be (functionally) portable. Current GPUs do not pro-
vide forward progress properties across all threads and a non-
portable global barrier implementation can hang. To provide
a portable global barrier, we follow the recipe given in [17],
which involves dynamically discovering the occupancy of the
GPU at runtime and creating a custom execution environment
in which a barrier can be executed.

b) Performance Considerations: The performance im-
pact of iteration outlining on a platform depends on the relation
between the kernel launch overhead (including a memory
copy), the execution time of the barrier and the execution
time of the kernel. While the first two are largely architecture-
dependent, the last also depends on the application and input.

TABLE VII
THE 17 APPLICATIONS CONSIDERED IN THIS STUDY ALONG WITH THEIR

APPLICABLE OPTIMISATIONS. APPLICATION VARIANTS CONSIDERED
STATE-OF-THE-ART ARE NOTED WITH A (*)

App Variant Available Opts

BFS cx, topo, tp, wl, hybrid* sz256, np, coop-cv, oitergb
CC * sz256, np, coop-cv, oitergb
MIS worklist, pannotia* sz256, coop-cv, oitergb
MST single-wl, multiple-wl* sz256, coop-cv

residual-wl* sz256, np, coop-cvPR residual, tp sz256, np
topo sz256, coop-cv, oitergbSSSP wl, nf* sz256, np, coop-cv, oitergb

TRI * sz256, np

TABLE VIII
THE 3 GRAPH INPUTS CONSIDERED IN THIS STUDY, ALONG THE NUMBER

OF NODES, EDGES, AVERAGE DEGREES AND DIAMETER

Input Nodes Edges Avg/Max DiameterDegree

usa.ny 264346 730100 2.76/8 620
rmat20 1048576 8259994 7.88/1181 13
2e23 8388608 33554432 4.00/16 18

D. Workgroup Size

The final optimisation we consider is simply resizing the
number of threads in the workgroup from 128 to 256. We
choose 128 as the default as not all of the GPUs we investigate
support the workgroup size of 256 (see Section VI-A). The
workgroup size is known to affect occupancy, which can affect
performance. Functionally, this optimisation requires that all
kernels be agnostic to the workgroup size. Our compiler only
generates kernel with this property, thus implementation is
straightforward. We abbreviate this optimisation to sz256;
when the optimisation is disabled, the workgroup size is 128,
and when it is enabled, the workgroup size is 256.

E. The Optimisation Space

With the exception of fg and sz256, all optimisations can
be enabled or disabled independently. In the case of fg, we
consider two variants, fg1 and fg8. In the case of sz256,
we consider two values: 128 or 256. Thus, there are 95 total
optimisation combinations, excluding the baseline, where no
optimisations are enabled.

VI. GPUS, APPS AND INPUTS OF THE STUDY

We now detail the scope of our study: the different GPUs,
applications and inputs for which performance data were gath-
ered. Formally, an application is a graph algorithm expressed
in our DSL. An application accepts an input, which is a
graph. A chip refers to a GPU, but also includes the runtime
environment. The GPUs, applications and inputs used in this
study are summarised in Tables I, VII and VIII, respectively.
We now provide an overview of each dimension.

A. GPUs Studied

Table I summarises the GPU platforms we use for our
evaluation: 6 GPUs spanning 4 vendors. The AMD R9 GPU
and the Nvidia GPUs are discrete; all others are integrated.
GPUs from the same vendor also span different architecture
configurations: the Nvidia M4000 and GTX1080 GPUs be-
long to the Maxwell and Pascal architectures respectively;
the Intel HD5500 and IRIS GPUs both use the Broadwell
architecture, but at different graphics tiers (GT2 and GT3,
respectively). Experiments for the Intel and AMD GPUs were
run on the Windows OS, whereas Linux was used for the
Nvidia and ARM GPUs.

Due to varying support of OpenCL versions, the GPUs of
Table I do not all support the features required for our opti-
misations (Section V). However, using various GPU-specific
functionality, we were able to mimic the required memory
model and subgroup support.

The ARM and Nvidia chips do not natively support the
OpenCL 2.0 memory consistency model. Thus, we needed
to add atomic load/store operations and memory fences, as
required by the specification. For Nvidia, we use inline PTX
memory fences [23] to provide OpenCL 2.0 atomics as in
prior work [24]. On ARM, because there is no low-level inline
language support, we provide a best-effort implementation
using memory fences provided in early versions of OpenCL
(1.x) and validate our results against an oracle implementation.

Only the AMD GPUs support OpenCL subgroups natively.
For Intel GPUs, we use their specialised subgroup exten-
sion [25] that provides the needed functionality. On Nvidia,
whose hardware supports subgroups, though its OpenCL im-
plementation does not, we use inline PTX to access the
equivalent warp intrinsics [23, p. 209]. Our ARM GPU does
not support subgroups [26], so we default to a subgroup size
of one, which is a trivial, but semantically valid.

No GPU guarantees the forward progress required by the
blocking synchronisation used in our programs (i.e. global
barriers, and mutexes). However, prior work has demonstrated
that the GPUs in our study empirically support a limited form
of forward progress [17] sufficient to implement our required
synchronisation idioms.

B. Applications

The IrGL compiler is accompanied by 19 graph applica-
tions, of which we are able to use 17. We do not use Delaunay
Mesh Refinement (DMR) or SSSP (priority worklist variant)
since some of their (large) support libraries are written in
CUDA with no simple OpenCL alternative. The applications
can be split into 7 high-level problems – Breadth-first search
(BFS), Connected Components (CC), Maximal independent
set (MIS), Minimal spanning tree (MST), PageRank (PR),
Single-source shortest path (SSSP), and Triangle counting
(TRI). Each problem has multiple implementation strategies,
summarised in Table VII, the strategies marked (*) implement
the fastest algorithms. An empty “Variants” column indicates
that there is only one variant of the algorithm. The “Available

0%

5%

10%

15%

20%

25%

30%

35%

sz256 coop-cv oitergb fg1 fg8 sg wg

p
e
rc

e
n
t

o
f

b
e
n
ch

m
a
rk

s

optimisation

R9
Hd5500

Iris
Mali

Gtx1080
M4000

Fig. 2. Summary of optimisations necessary for top speedups per chip.

Opts” column shows which optimisations apply to an imple-
mentation – we generate variants with all possible combina-
tions of these optimisations for our study. Each application is
accompanied by a checker to validate executions.

C. Inputs

We use inputs from three classes: a road network of New
York (usa.ny), a uniformly random graph (2e23), and a
RMAT-style graph (rmat20) [27]. The usa.ny road network
is a high-diameter, uniform low degree graph. The 2e23
is synthetic random graph with uniformly distributed edges.
rmat20 is also a synthetic graph, but constructed using a
recursive procedure, so that vertex degrees exhibit a power-
law distribution [27]. We did not run MST on 2e23 due to
an undiagnosed error.

D. Gathering Data

For our results, we record the time it takes to execute
the application on the GPU. Because the optimisations we
consider are only related to graph computation, and not file
IO or memory transfers, we ignore time taken to load the
graph inputs or the initial and final transfers of graph data to
and from the GPU. Indeed, this is the approach taken in the
original presentation of these optimisations [11].

We run each test three times. We compute the average and
95% confidence intervals [28]. In total, out of the 295 tests, we
were unable to observe speedups using any optimisation com-
bination in 127 (43%). These tests are fairly evenly distributed
across chips. Thus some application, input combinations are
not sensitive to our optimisations.

In total, across all platforms and benchmarks, our experi-
mental run takes 237 hours. The slowest platform is MALI,
taking 97 hours as the GPU is significantly smaller, having a
clock rate of only 533 MHz and 4 compute units.

E. Optimisations Across GPUs

Given that the optimisations of Section V were originally
developed for, and have only been tested on Nvidia GPUs [11],
we now assess these optimisations for cross-vendor utility.
To do this, we find the optimisation combination (call it O)
which yields the lowest runtime for each chip, application,
input combination (call the combination T). We then examine

0%

20%

40%

60%

80%

100%

ba
se

lin
e

gl
ob

al
ch

ip
ap

p
in

pu
t

ch
ip

/a
pp

in
pu

t/a
pp

ch
ip

/in
pu

ts

or
ac

le

portable specialised 1 dim specialised 2 dim

p
e
rc

e
n
t

o
f

te
st

s

optimisations strategies

speedups no difference slowdowns

0

60
32 27 32

13 16 18 0

165
2

13 34 32
48 29 33

0

0

103 120 104 101 104 120 114

165

Fig. 3. For each degree of specialisation, the percentage of tests that the
corresponding optimisation strategy provided: a speedup, no difference or
slowdown. Test counts are given on the bars.

1

1.1

1.2

1.3

1.4

1.5

ba
se

lin
e

gl
ob

al
ap

p
in

pu
t

ch
ip

ch
ip

/a
pp

ch
ip

/in
pu

ts

in
pu

t/a
pp

or
ac

le

portable specialised 1 dim specialised 2 dim

g
e
o
m

e
a
n
 s

lo
w

d
o
w

n
 (

lo
g

)

optimisations strategies

1.5

1.31 1.3
1.26 1.24 1.24

1.16 1.15

1.00

Fig. 4. The geomean slowdown compared to the oracle across all tests for
different opt. strategies. Concrete test counts are given on the bars.

each individual optimisation o enabled in O; if removing o
from O causes a statistically significant slowdown (discussed
in Section VI-D) in T , then we say o is necessary for the
top speedup in T . Figure 2 shows, for each optimisation, the
percentage of top speedups that the optimisation is necessary
for. To show cross-vendor utility, we show optimisations split
per chip. Although the percentages vary, every optimisation is
necessary for some top speedups across all chips. Thus, these
optimisations are not specific to Nvidia GPUs.

VII. QUANTIFYING SEMI-SPECIALISATION

We now present the results of applying our analysis of
Section III-A to our data for various degrees of portability.
This allows us to quantify the trade-off whereby performance
improves as portability is reduced. We show summary results
relating to portability vs. specialisation for our test set, con-
sidering three dimensions of specialisation: chip, application,
and input. To specialise over a dimension d, we partition our
tests into distinct subsets where all tests in a subset have the
same value for d. Each subset is then assigned an optimisation
strategy using our analysis of Section III-A.

The concrete per-chip strategy is discussed in Section VIII;
other strategies are elaborated on in [29, Ch. 4].

The Effects of Specialisation: We start our results discus-
sion with Figure 3 which shows, for each optimisation strategy,
the percentage of tests that exhibited a speedup, slowdown or
no significant change under the optimisation strategy. In this
chart we exclude the 43% of tests for which we did not observe
speedups (see Section VI-D). As a result, the baseline strategy
shows no difference on all tests and the oracle strategy shows
speedups on all tests.

The completely portable strategy (global) provides a
speedup on 62% of the tests and a slowdown on 18% of
tests (compared to baseline). Each additional dimension of
specialisation roughly halves the number of slowdowns.

The number of speedups does not appear to follow the
same trend, even occasionally decreasing as portability is
reduced, e.g. when application or input specialisation is added
to the chip specialisation, the number of speedups decreases.
However, in these cases, the number of slowdowns shows
a larger decrease; this decrease in slowdowns is where the
benefit of specialisation occurs.

While Figure 3 shows the number of speedups and slow-
downs, it does not measure the magnitude of the runtime
differences between optimisation strategies. Figure 4 shows
the geomean slowdown over all tests normalised to the oracle.

Using both Figure 3 and 4, we make the following observa-
tions: the optimal single dimension to specialise for speedups
is chip, which provides 120 speedups as opposed to 104 and
101 for app and input respectively. Additionally, the geomean
slowdown is 1.24× as opposed to 1.3× and 1.26× for app and
input. Specialising for applications gives the fewest slowdowns
but also the largest mean slowdown.

On the other hand, the optimal two dimensions to specialise
across for speedups is inputs and applications, with 120 tests
showing a speedup with a geomean slowdown of 1.15×. While
the single dimension chip specialisation gives the same number
of speedups, it has twice as many slowdowns (16 vs. 32).
The optimal two dimensions for the fewest slowdowns is
applications and chip, with 13 slowdowns. This optimisation
strategy also has the largest geomean slowdown at 1.24×.
Interestingly, this is the same geomean slowdown as the
optimisation strategy for only chips. This suggests that the
chip and application dimensions do not synergise well.

VIII. DISSECTING CHIP-SPECIFIC OPTIMISATIONS

The chip function selects optimisations solely based on
chip and can be used to identify performance-critical differ-
ences between GPUs. Table IX contains the full chip function
obtained from our analysis, along with the effect size reported
by the MWU test. Recommendations by our analysis to enable
an optimisation for a chip are marked with a X. Similarly,
recommendations that an optimisation should not be enabled
(because it is ineffective or hurts performance on that chip)
are marked with 7 using a lighter font color. In one case
(fg8 on MALI), there are not enough results with statistically
significant differences for the analysis to make a confident
decision (i.e. with p < .05).

TABLE IX
THE OPTIMISATION RECOMMENDATIONS BY OUR ANALYSIS PER CHIP,

DEFINING THE CHIP FUNCTION OF TABLE V. ENTRIES ARE GIVEN WITH
THEIR COMMON LANGUAGE EFFECT SIZE AND MARKED WITH A X(7) TO
INDICATE THAT THEY ARE RECOMMENDED TO BE ENABLED (DISABLED).
ONE OPTIMISATION IS UNCERTAIN (MARKED WITH ?). WE OMIT SZ256

AS IT IS NOT RECOMMENDED FOR ANY CHIP. WE OMIT FG1 AS IT IS
RECOMMENDED IN EVERY CASE THAT FG8 IS RECOMMENDED AND IS

LESS EFFECTIVE (ACCORDING TO MEDIAN SPEEDUP).

Chip coop-cv oitergb fg8 sg wg

R9 X.70 X.65 X.90 X.74 7.18
HD5500 7.41 X.65 X.54 X.56 7.11
IRIS X.67 X.73 X.58 X.63 7.09
MALI 7.12 X.71 ?.47 X.76 7.12
GTX1080 7.19 7.22 X.86 X.78 7.32
M4000 7.07 7.47 X.86 X.68 7.22

Table IX also lists the common language effect size [30]
(CL) for an optimisation on each chip. The CL denotes the
probability a randomly chosen program and input pair will
show a speedup for an optimisation on a particular chip.
Recall that our definitions of speedup and slowdown require
statistically significant differences with 95% confidence.

From the effect size, we see that fg8 nearly always provides
a speedup on AMD and Nvidia GPUs (with over an 85%
probability). On Intel GPUs, fg8 also provides speedups, but
it is not as widely applicable – less than a 60% probability.
While all chips enable sg, the effect size varies from between
.56 and .78. The effect size for wg is low for all chips, however
it is non-zero, meaning there are some cases where it provides
a speedup (as seen in Figure 2). Interestingly, fg8 on MALI
and oitergb on M4000 have the same effect size (.47), but
the test was not confident on the former. This is because there
were not as many samples with significant differences in the
comparison sets for the MALI. Finally, although we ran each
test only three times, this was sufficient for our analysis to
make confident recommendations on all but one of the chip,
optimisation query pair.

We now demonstrate how differences in the recommended
optimisations can reveal insights about different chips. In
particular, we focus on why the strategies for: (1) the two
Nvidia chips do not enable oitergb (2) IRIS and R9 enable
coop-cv, and (3) MALI enables sg, even though it does not
have (physical) subgroups.

a) Overhead of Kernel Launches and Memory Copies:
The oitergb optimisation is enabled by all chips except those
from Nvidia. We investigate the cause by using a microbench-
mark similar to the one used to motivate the optimisation on
Nvidia architectures [11]. Essentially, this launches a constant-
time kernel a fixed number of times (10000), interleaving
the launches with a memory copy of a single integer from
the GPU to the CPU. The constant-time kernels establish the
exact utilisation of the GPU, so timing the entire procedure
reveals the this overhead of launching these kernels and of the
memory copies that oitergb is designed to reduce. OpenCL
does not provide device timers, thus we use a calibration loop

0%

20%

40%

60%

80%

100%

30 100 1000

G
P
U

 u
ti

lis
a
ti

o
n

Time per Kernel Invocation (µs)

R9
HD5500

Iris
Mali
GTX

M4000

Fig. 5. Per-chip results of the kernel launch frequency microbenchmark.

TABLE X
MICROBENCHMARK RESULTS FOR SUBGROUP ATOMIC COMBINING

(sg-cmb) AND WG MEMORY DIVERGENCE (m-divg).

R9 HD5500 IRIS MALI GTX1080 M4000

sg-cmb 22.10 .98 7.95 1.06 .88 .97
m-divg 1.04 1.07 1.08 6.45 1.27 1.08

and therefore our results are somewhat noisy.
Figure 5 shows the utilisation of the GPU as the kernel

execution time is varied. For a given kernel time, we can see
that Nvidia chips have relatively higher utilisation than other
chips, implying that they have the lowest launch and memory
copy latencies. The kernel launch and memory copy overheads
are sufficiently higher for all other chips that they need oitergb
for performance. Note that oitergb is used on Nvidia GPUs
(Figure 2), but for fewer benchmarks than other chips.

b) Subgroup Atomic RMW Combining: The coop-cv
optimisation is enabled for R9 and IRIS (but not the other Intel
chip, HD5500). The most common form of this optimisation
aggregates atomic RMW instructions within a subgroup. To
investigate why this optimisation is only turned on for a
few architectures, we wrote an OpenCL microbenchmark to
measure the time for N atomic_fetch_and_add invo-
cations on a single memory location (here, N = 20000).
We wrote a separate microbenchmark that measures the time
after combining all atomics in the subgroup into one atomic
(mimicking coop-cv), thus potentially improving throughput
by the size of the subgroup. The sg-cmb row of Table X shows
the speedup of this coop-cv version over the original.

The speedups from R9 and IRIS, the two chips for which our
analysis suggest the coop-cv optimisation, are notably higher
than values for the other chips. The overhead of subgroup
communication for combining causes the speedups to be a
fraction of the subgroup size – R9 has a subgroup size of 64,
but sees only a 22× speedup. IRIS uses a subgroup size of 16
for these kernels, and delivers about half of that as speedup.

MALI has a subgroup size of 1, and does not show speedup
as expected. The Nvidia chips and HD5500 do not exhibit
speedups, but on further investigation we find that their re-
spective OpenCL JIT compilers already implement the coop-

cv optimisation for subgroups.
c) Intra-workgroup Memory Divergence: Since MALI

has a trivial subgroup size of 1, we were intrigued to find
that sg is enabled for it. Recall that sg improves load balance
by redistributing work over threads from the same subgroup.
By careful elimination, we discovered that workgroup barriers
placed to separate sg execution from the rest of the kernel
were the source of the speedup. Previous work [31] has found
that gratuitous barriers can reduce the memory divergence and
thus, improve performance.

We built a microbenchmark to test this by having two
kernels access a large array using strided accesses In one
kernel, a gratuitous barrier is added into the loop, thus that
threads in the workgroup are never more than one iteration
away from each other. The speedup of the kernel with barriers
over the kernel without barriers across all chips is shown in
the m-divg row of Table X.

While all chips appear to benefit from the barrier, the clear
outlier is MALI, on which adding the gratuitous barrier leads
to a 6.45× speedup. Thus, MALI appears to be extremely
sensitive to intra-workgroup memory divergence – Figure 2
shows that sg is required for top speedups on MALI more than
any other chip. Thus, while initially confounding, our findings
suggests a new optimisation may be required to protect against
memory divergence.

IX. RELATED AND FUTURE WORK

a) Related Work : Our work aims to identify portable
optimisations automatically. Prior work [8] has proposed sta-
tistical techniques for fixed environments, but our work allows
reasoning over multiple dimensions – a necessity when dealing
with graph algorithms. We cannot use randomisation a la
STABILIZER since most OpenCL toolchains are proprietary.
While it would improve the quality of the data we collect [10],
our method would otherwise remain unchanged. Our method
is motivated by prior work that shows empirical data from
computer systems is largely not normally distributed, making
techniques like ANOVA inapplicable, and instead uses quantile
regression [9]. The MWU test is similarly non-parametric.

Muralidharan et al. [1] propose a technique for autotuning
across architectures without retraining for the target architec-
ture. Using performance data obtained from different Nvidia
GPUs, and runtime data, an SVM is used to predict performant
variants. Our work aims to construct descriptive models as
opposed to predictive models, and treats GPUs, applications
and inputs as black boxes. Appropriately suited to the the poor
state of vendor OpenCL profilers, we require only the ability
to time the execution of a program.

Varbanescu et al. [12] study the portability of three OpenCL
graph algorithms using a CPU and two Nvidia GPUs and
conclude that the effects of inputs swamped out any benefits
gained by optimising them for specific OpenCL platforms. Our
results support their findings that inputs play a significant role
in performance, but we show that specialising for chips or
applications is better than not optimising at all. Additionally,

specialising across more than one dimension can deliver even
more performance.

Merrill et al. [6] construct a performance-portable library of
parallel primitives containing reductions, scans, sorting, etc. by
encoding tunable parameters such as number of items per load,
the number of threads per thread block, etc. in the CUDA/C++
type system. Their system is evaluated on three Nvidia GPUs
and concludes similarly about the lack of a globally applicable
optimisations for those problems. Other work [7], [32] has
studied the performance portability of OpenCL on problems
such as SGEMM, SpMV and FFT.

b) Future Work: The combination of increasing architec-
tural diversity and magnitude-agnostic performance analysis
provides many interesting avenues for future work. In partic-
ular, in this work we have used an exhaustive set of runtime
results, across all application, input, and chip combinations.
For future work, we want to explore whether smaller sample
sizes from the test domain could be sufficient to yield sig-
nificant results. This would not only cut down experimental
time (allowing for larger domains), but also open up further
applications, e.g. in developing predictive models, rather than
the descriptive models shown in this work. Our models, in
which architectural performance portability is a first class
concern, are immediately applicable in compilers that target
highly heterogeneous systems, such as TVM [33].

Finally, we aim to apply our magnitude-agnostic analysis
technique to other domains, e.g. in dense linear algebra li-
braries. While prior work has examined this, we aim to explore
if previous results were subject to bias or other shortcomings,
as we’ve shown is possible in Section II. Such issues will
become increasingly common as the diversity of architectures
continues to grow and we need to use sound, automated
techniques to debug issues in performance portability at scale.

X. CONCLUSION

We have shown that universally beneficial (or harmful)
optimisations do not exist in the domain of graph algorithms.
Therefore, we devised a data analysis that can consume
experimental data and yield optimisation strategies tailored
for portability by various degrees of specialisation; e.g. over
chips, applications and inputs. Our analysis avoids reaching
trivial or biased conclusions by using a magnitude-agnostic
rank-based analysis. This analysis, run over a large study GPU
graph algorithms on a diverse set of GPUs, allowed us to
identify optimisation limits and quantify for the first time, the
gap between specialisation and portability. By examining chip-
specific optimisations, we were also able to identify several
performance bottlenecks such as kernel launch latency, lack
of atomic RMW combining, and memory divergence.

ACKNOWLEDGMENTS

This work was supported by a Google Faculty Re-
search Award and UK EPSRC IRIS Programme Grant
(EP/R006865/1). We thank our anonymous reviewers whose
comments improved the statistical presentation in this work.

REFERENCES

[1] S. Muralidharan, A. Roy, M. Hall, M. Garland, and P. Rai,
“Architecture-Adaptive Code Variant Tuning,” in Proceedings of the
Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’16.
New York, NY, USA: ACM, 2016, pp. 325–338. [Online]. Available:
http://doi.acm.org/10.1145/2872362.2872411

[2] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly,
and S. Amarasinghe, “Autotuning Algorithmic Choice for Input
Sensitivity,” in Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’15.
New York, NY, USA: ACM, 2015, pp. 379–390. [Online]. Available:
http://doi.acm.org/10.1145/2737924.2737969

[3] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and
B. Catanzaro, “Nitro: A Framework for Adaptive Code Variant
Tuning,” in Proceedings of the 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, ser. IPDPS ’14. Washington,
DC, USA: IEEE Computer Society, 2014, pp. 501–512. [Online].
Available: http://dx.doi.org/10.1109/IPDPS.2014.59

[4] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “OpenTuner: An Extensible
Framework for Program Autotuning,” in Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation,
ser. PACT ’14. New York, NY, USA: ACM, 2014, pp. 303–316.
[Online]. Available: http://doi.acm.org/10.1145/2628071.2628092

[5] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
and S. Amarasinghe, “PetaBricks: A Language and Compiler for
Algorithmic Choice,” in Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’09. New York, NY, USA: ACM, 2009, pp. 38–49. [Online].
Available: http://doi.acm.org/10.1145/1542476.1542481

[6] D. Merrill, M. Garland, and A. Grimshaw, “Policy-based tuning for
performance portability and library co-optimization,” in 2012 Innovative
Parallel Computing (InPar), May 2012, pp. 1–10.

[7] J. Price and S. McIntosh-Smith, “Exploiting auto-tuning to analyze and
improve performance portability on many-core architectures,” in High
Performance Computing. Springer, 2017, pp. 538–556.

[8] C. Curtsinger and E. D. Berger, “STABILIZER: Statistically Sound
Performance Evaluation,” in Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’13. New York, NY, USA: ACM,
2013, pp. 219–228. [Online]. Available: http://doi.acm.org/10.1145/
2451116.2451141

[9] A. B. de Oliveira, S. Fischmeister, A. Diwan, M. Hauswirth, and
P. F. Sweeney, “Why You Should Care About Quantile Regression,” in
Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’13. New York, NY, USA: ACM, 2013, pp. 207–218.
[Online]. Available: http://doi.acm.org/10.1145/2451116.2451140

[10] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney,
“Producing Wrong Data Without Doing Anything Obviously Wrong!”
in Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS XIV. New York, NY, USA: ACM, 2009, pp. 265–276.
[Online]. Available: http://doi.acm.org/10.1145/1508244.1508275

[11] S. Pai and K. Pingali, “A compiler for throughput optimization of graph
algorithms on GPUs,” in OOPSLA, 2016, pp. 1–19.

[12] A. L. Varbanescu, M. Verstraaten, C. de Laat, A. Penders, A. Iosup, and
H. Sips, “Can Portability Improve Performance?: An Empirical Study
of Parallel Graph Analytics,” in Proceedings of the 6th ACM/SPEC

International Conference on Performance Engineering, ser. ICPE ’15.
New York, NY, USA: ACM, 2015, pp. 277–287. [Online]. Available:
http://doi.acm.org/10.1145/2668930.2688042

[13] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: a high-performance graph processing library on the GPU,”
in PPoPP, 2016, pp. 11:1–11:12.

[14] Nvidia, “nvGraph library user’s guide,” May 2018, https://docs.nvidia.
com/cuda/pdf/nvGRAPH Library.pdf.

[15] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The Annals
of Mathematical Statistics, vol. 18, no. 1, pp. 50–60, 1947. [Online].
Available: https://projecteuclid.org/euclid.aoms/1177730491

[16] Khronos OpenCL Working Group, “The OpenCL C specification,”
November 2013.

[17] T. Sorensen, A. F. Donaldson, M. Batty, G. Gopalakrishnan, and
Z. Rakamaric, “Portable inter-workgroup barrier synchronisation for
GPUs,” in OOPSLA, 2016, pp. 39–58.

[18] K. Gupta, J. Stuart, and J. D. Owens, “A study of persistent threads style
GPU programming for GPGPU workloads,” in InPar, 2012, pp. 1–14.

[19] S. Xiao and W. Feng, “Inter-block GPU communication via fast barrier
synchronization,” in IPDPS, 2010, pp. 1–12.

[20] Khronos Group, “The OpenCL specification version: 2.0 (rev. 29),” July
2015, https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf.

[21] Nvidia, “CUDA C programming guide, version 10.1,” August 2019.
[22] D. Merrill, M. Garland, and A. S. Grimshaw, “High-performance and

scalable GPU graph traversal,” TOPC, vol. 1, no. 2, p. 14, 2015.
[23] Nvidia, “Parallel thread execution ISA: Version 6.0,” Sept. 2017, http:

//docs.nvidia.com/cuda/pdf/ptx isa 6.0.pdf.
[24] J. Wickerson, M. Batty, T. Sorensen, and G. A. Constantinides, “Auto-

matically comparing memory consistency models,” in POPL. ACM,
2017.

[25] B. Ashbaugh, “cl intel subgroups version 4,” Aug. 2016, https://www.
khronos.org/registry/OpenCL/extensions/intel/cl intel subgroups.txt.

[26] A. Lokhmotov, “ARM Midgard architecture,” 2011,
http://www.heterogeneouscompute.org/hipeac2011Presentations/
OpenCL-Midgard.pdf.

[27] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in Proceedings of the 2004 SIAM International
Conference on Data Mining, pp. 442–446.

[28] R. Jain, The art of computer systems performance analysis - techniques
for experimental design, measurement, simulation, and modeling, ser.
Wiley professional computing. Wiley, 1991.

[29] T. Sorensen, “Inter-workgroup barrier synchronisation on graphics pro-
cessing units,” Ph.D. dissertation, Imperial College London, 2018,
http://www.cs.princeton.edu/∼ts20/files/phdthesis.pdf.

[30] K. O. McGraw and S. P. Wong, “A common language effect size
statistic,” Psychological Bulletin, vol. 111, no. 2, pp. 361–365, 1992.

[31] S. H. Lo, C. R. Lee, Q. L. Kao, I. H. Chung, and Y. C. Chung, “Improv-
ing GPU memory performance with artificial barrier synchronization,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 9,
pp. 2342–2352, 2014.

[32] Y. Zhang, M. Sinclair, and A. A. Chien, “Improving Performance
Portability in OpenCL Programs,” in Supercomputing, ser. Lecture
Notes in Computer Science. Springer, Berlin, Heidelberg, Jun. 2013,
pp. 136–150. [Online]. Available: https://link.springer.com/chapter/10.
1007/978-3-642-38750-0 11

[33] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Q. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM:
an automated end-to-end optimizing compiler for deep learning,” in
Operating Systems Design and Implementation, OSDI. USENIX
Association, 2018, pp. 578–594.

