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ABSTRACT
In this talk, we will discuss how support (or lack of it) for various

OpenCL (OCL) features affects performance of graph applications

executing on GPU platforms. Given that adoption of OCL features

varies widely across vendors, our results can help quantify the

performance benefits and potentially motivate the timely adoption

of these OCL features.

Our findings are drawn from the experience of developing an

OCL backend for a state-of-the-art graph application DSL, IrGL,

originally developed with a CUDA backend [1]. IrGL allows com-

petitive algorithms for applications such as breadth-first-search,

page-rank, and single-source-shortest-path to be written at a high

level. A series of optimisations can then be applied by the com-

piler to generate OCL code. These user-selectable optimisations

exercise various features of OCL: on one end of the spectrum, ap-

plications compiled without optimisations require only core OCL

version 1.1 features; on the other end, a certain optimisation re-

quires inter-workgroup forward progress guarantees, which are

yet to be officially supported by OCL, but have been empirically

validated and are relied upon e.g. to achieve global device-wide

synchronisation [3]. Other optimisations require OCL features such

as: fine-grained memory consistency guarantees (added in OCL 2.0)

and subgroup primitives (added to core in OCL 2.1).

Our compiler can apply 6 independent optimisations (Table 1),

each of which requires an associated minimum version of OCL to

be supported. Increased OCL support enables more and more opti-

misations: 2 optimisations are supported with OCL 1.x; 1 additional

optimization with OCL 2.0; and a further 2 with OCL 2.1. Using

OCL FP to denote v2.1 extended with forward progress guarantees
(not officially supported at present), the last optimisation is enabled.

We will discuss the OCL features required for each optimisation and

the idioms in which the features are used. Use-case discussions of

these features (e.g. memory consistency and subgroup primitives)

are valuable as there appear to be very few open-source examples:

a GitHub search yields only a small number of results.

Our compiler enables us to carry out a large and controlled

study, in which the performance benefit of various levels of OCL

support can be evaluated. We gather runtime data exhaustively on

all combinations across: all optimisations, 17 applications, 3 graph
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Figure 1: Summary of optimisations used per-chip to obtain
the top speedups in our empirical study. An optimisation is
counted when it was required for an application/input tuple
to reach the highest speedup.

inputs, 6 different GPUs, spanning 4 vendors: Nvidia, AMD, Intel

and ARM (Table 2).

We show two notable results in this abstract: our first result, sum-

marised in Figure 1, shows that all optimizations can be beneficial

across a range of GPUs, despite significant architectural differences

(e.g. subgroup size as seen in Table 2). This provides motivation

that previous vendor specific approaches (e.g. for Nvidia) can be

ported to OCL and achieve speedups on range of devices.

Our second result, summarised in Figure 2, shows that if feature

support is limited to OCL 2.0 (or below), the available optimisa-

tions (fg wg sz256) fail to achieve any speedups in over 70% of the

chip/application/input benchmarks. If support for OCL 2.1 (adding

the optimizations: sg coop-cv) is considered, this number drops to

60% but observed speedups are modest, rarely exceeding 2×. Finally,

if forward progress guarantees are assumed (adding the oitergb
optimization), speedups are observed in over half of the cases, in-

cluding impressive speedups of over 14× for AMD and Intel GPUs.

This provides compelling evidence for forward progress properties

to be considered for adoption for a future OCL version.

An extended version of this material can be found in [2, ch. 5].
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Table 1: List of optimisations, the OpenCL features they exploit and the architectural parameters that influence performance.
Support class refers to the OpenCL version support described in the text.

Optimisation OCL features Support class Architecture parameters

cooperative

conversion

(coop-cv)

Local memory, sub_group_any,
sub_group_reduce, barrier,
atomic_fetch_and_add, popcount

OCL 2.1

workgroup size, subgroup size,

atomic read–modify–write

throughput, subgroup collectives

throughput

fine-grained nested

parallelism (fg)
Local memory, barrier OCL 1.x

local memory size, barrier

throughput

subgroup nested

parallelism (sg)

Local memory, sub_group_barrier,
sub_group_any, atomic_store,
atomic_load

OCL 2.1

subgroup size, subgroup barrier

throughput, local memory size

workgroup nested

parallelism (wg)
Local memory, atomic_store,
atomic_load, barrier

OCL 2.0

workgroup size, local memory size,

barrier throughput, atomic

load/store throughput

iteration outlining

(oitergb)
atomic_load, atomic_store OCL FP

overheads for kernel launch and

memory transfers, global memory

fence throughput, workgroup

scheduler behaviour

workgroup size of

256 (sz256)
clEnqueueNDRangeKernel OCL 1.x occupancy, resource limits
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Figure 2: Summary of top speedups over all tests
(chip/application/input tuples), grouped by OCL sup-
port class. As higher levels of support are provided, a
larger number of tests achieve higher speedups, with the
experimental support class OCL FP providing a significant
proportion of speedups over 2×.

Table 2: The GPUs considered in this work: a short name
used in figures, the number of compute units (#CUs), the
subgroup size (SG size), and the supported OpenCL version
(OCL).

Vendor Chip Short name #CUs SG size OCL

Nvidia

Quadro M4000 M4000 13 32 1.2

GTX 1080 Gtx1080 20 32 1.2

HD5500 Hd5500 27 8,16 2.0

Intel

Iris 6100 Iris 47 8,16 2.0

AMD Radeon R9 Fury R9 28 64 2.0

ARM Mali-T628 Mali-4 4 1 1.2

[3] Tyler Sorensen, Alastair F. Donaldson, Mark Batty, Ganesh Gopalakrishnan, and

Zvonimir Rakamaric. 2016. Portable inter-workgroup barrier synchronisation

for GPUs. In OOPSLA. 39–58.
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