
The next 7000 programming languages

Robert Chatley1, Alastair Donaldson1, and Alan Mycroft2

1 Department of Computing, Imperial College, London, UK
firstname.lastname@imperial.ac.uk

2 Computer Laboratory, University of Cambridge, UK
firstname.lastname@cl.cam.ac.uk

Abstract. Landin’s seminal paper “The next 700 programming lan-
guages” considered programming languages prior to 1966 and speculated
on the next 700. Half-a-century on, we cast programming languages in a
Darwinian ‘tree of life’ and explore languages, their features (genes) and
language evolution from the viewpoint of ‘survival of the fittest’.
We investigate this thesis by exploring how various languages fared in the
past, and then consider the divergence between the languages empirically
used in 2017 and the language features one might have expected if the
languages of the 1960s had evolved optimally to fill programming niches.
This leads us to characterise three divergences, or ‘elephants in the room’,
where actual current language use, or feature provision, differs from that
which evolution might suggest. We conclude by speculating on future
language evolution.

1 Why are programming languages the way they are?
And where are they going?

In 1966 the ACM published Peter Landin’s landmark paper “The next 700
programming languages” [22]. Seven years later, Springer’s “Lecture Notes in
Computer Science” (LNCS) was born with Wilfred Brauer as editor of the
first volume [5]. Impressively, the contributed chapters of this first volume cov-
ered almost every topic of what we now see as core computer science—from
computer hardware and operating systems to natural-language processing, and
from complexity to programming languages. Fifty years later, on the occasion
of LNCS volume 10000, it seems fitting to reflect on where we are and make
some predictions—and this essay focuses on programming languages and their
evolution.

It is worth considering the epigraph of Landin’s article, a quote from the
July 1965 American Mathematical Association Prospectus: “. . . today . . . 1,700
special programming languages used to ‘communicate’ in over 700 application
areas”. Getting an equivalent figure nowadays might be much harder—our title
of ‘next 7000 languages’ is merely rhetorical.

On one hand, Conway and White’s 2010 survey3 (the inspiration behind
RedMonk’s ongoing surveys) found only 56 languages used in GitHub projects or
3 http://www.dataists.com/2010/12/ranking-the-popularity-of-programming-
langauges/ [sic]

appearing as StackOverflow tags. This provides an estimate of the number of lan-
guages “in active use”, but notably excludes those in large corporate projects (not
on GitHub) particularly where there is good local support or other disincentives
to raising programming problems in public. One the other hand, programming
languages continue to appear at a prodigious rate; if we count every proposed
language, perhaps including configuration languages and research-paper calculi,
the number of languages must now be in six digits.

The main thrust of Landin’s paper was arguing that the next 700 languages
after 1966 ought to be based around a language family which he named ISWIM
and characterised by: (i) nesting by indentation (perhaps to counter the Fortran-
based “all statements begin in column 7” tendency of the day), (ii) flexible
scoping mechanisms based on λ-calculus with the ability to treat functions as
first-class values and (iii) imperative features including assignment and control-
flow operators. Implicit was an expectation that there should be a well-defined
understanding of when two program phrases were semantically equivalent and
that compound types such as tuples should be available.

While the lightweight lexical scope ‘{. . . }’ is now often used for nesting in-
stead of adopting point (i),4 it is entertaining to note that scoping and control
(ii) and (iii) have recently been drivers for enhancements in Java 8 and 9 (e.g.
lambdas, streams, CompletableFutures and reactive programming).

Landin argued that ISWIM should be a family of languages, parameterised
by its ‘primitives’ (presumably to enable it to be used in multiple application-
specific domains). Nowadays, domain-specific use tends to be achieved by intro-
ducing abstractions or importing libraries rather than via adjustments to the
core language itself. Indeed there seems to be a strong correlation between the
number and availability of libraries for a language and its popularity.

The aim of this article is threefold: to explore trends in language design (both
past, present and future), to argue that Darwinian evolution by fitness holds for
languages as well as life-forms (including reasons why some less-fit languages can
persist for extended periods of time) and to identify some environmental pres-
sures (and perhaps even under-occupied niches) that language evolution could,
and we argue should, explore.

Our study of programming-language niches discourages us from postulating
a universal core language corresponding to Landin’s ISWIM.

1.1 Darwinian evolution and programming languages

We start by drawing an analogy between the evolution of programming languages
and that of plants colonising an ecosystem. Here species of plants correspond to
programming languages, and a given area of land corresponds to a family of
related programming tasks (the word ‘nearby’ is convenient in both cases).

This analogy enables us to think more deeply about language evolution. In
the steady-state (think of your favourite bit of land—be it countryside, scrub,
or desert) there is little annual change in inhabitation. This is in spite of the

4 Mainstream languages using indentation include Python and Haskell.

2

various plants, or adherents of programming languages, spreading seeds—either
literally, or seeds of dissent—and attempting to colonise nearby niches.

However, things usually are not truly steady state, and invasive species of
plants may be more fitted to an ecological niche and supplant current inhabi-
tants. In the programming language context, invasive languages can arise from
universities, which turn out graduates who quietly adopt staid programming
practices in existing projects until they are senior enough to start a new project—
or refactor5 an old one—using their education. Invasive languages can also come
from industry—how many academics would have predicted that, by 2016 accord-
ing to RedMonk, JavaScript would be the most popular language on GitHub
and also be most tagged in StackOverflow? A recent empirical study shows that
measuring popularity via volume of code in public GitHub repositories can be
misleading due to code duplication, and that JavaScript code exhibits a high
rate of duplication [24]. Nevertheless, it remains evident that JavaScript is one
of the most widely used languages today.

It is useful here to distinguish between the success of a species of plant
(or a programming language) and that of a gene (or programming language
concept). For example, while pure functional languages such as Haskell have
been successful in certain programming niches the idea (gene) of passing side-
effect-free functions to map, reduce, and similar operators for data processing,
has recently been acquired by many mainstream programming languages and
systems; we later ascribe this partly to the emergence of multi-core processors.

This last example highlights perhaps the most pervasive form of competi-
tion for niches (and for languages, or plants, to evolve in response): climate
change. Ecologically, an area becoming warmer or drier might enable previously
non-competitive species to get a foothold. Similarly, even though a given pro-
gramming task has not changed, we can see changes in available hardware and
infrastructure as a form of climate change—what might be a great language for
solving a programming problem on a single-core processor may be much less
suitable for multi-core processors or data-centre solutions.

Amusingly, other factors which encourage language adoption (e.g. libraries,
tools, etc.) have a plant analogy as symbiotes—porting (or creating) a wide
variety of libraries for a language enhances its prospects.

The academic literature broadly lumps programming languages together into
paradigms, such as imperative, object-oriented and declarative; we can extend our
analogy to view paradigms as being analogous to major characteristics of plants,
with languages of particular paradigms being particularly well-adapted to cer-
tain niches; for example xerophytes are well-adapted for deserts, and functional
languages are well-suited to processing of inductively defined data structures.
Interestingly, the idea of convergent evolution appears on both sides of the anal-
ogy, in our example this would be where two species had evolved to become
xerophytes, despite their most recent common ancestor not being a xerophyte.
Similarly language evolution can enable languages to acquire aspects of multi-

5 Imagine the discussions which took place at Facebook on how to post-fit types to
its one million lines of PHP, and hence to the Hack programming language.

3

ple paradigms (Ada, for example, is principally an imperative language despite
having object-oriented capabilities, and C# had a level of functional capabilities
from the off, amplified by the more-recent LINQ library for data querying).

Incidentally, the idea of a programming-language ecosystem with many niches
provides post-hoc academic justification for why past attempts to create a ‘uni-
versal programming language’ (starting back as far as PL/I) have often proved
fruitless: a language capable of expressing multiple programming paradigms risks
becoming inherently complex, and thus difficult to learn and to use effectively.
A central cause of this complexity is the difficulty of reasoning about feature
interaction. A modern language that has carefully combined multiple paradigms
since its inception is Scala. However, due to the resulting flexibility, there can be
many different stylistic approaches to solving a particular programming problem
in Scala, using different elements of the language. The language designer, Martin
Odersky, describes Scala as “. . . a bit of a chameleon. . . . depending at [sic] what
piece of code you look at, Scala might look very simple or very complex.”6

Finally, there is the issue of software system evolution. Just as languages
evolve, a given software system (solution to a programming problem) is more
likely to survive if it evolves to exploit more powerful concepts offered by later
versions of a language. It is noteworthy that tool support often helps here, and
we observe the growing importance of tools in supporting working with, adding
to and transforming large programs in a given language.

We discuss some of these ideas more concretely in Section 3 but to sum-
marise, the main external (climate-change) pressures on language evolution as
we currently see them are:

– the change from single-core to multi-core and cloud-like computing;
– support for large programs with components that change over time;
– error resilience, helping programmers to produce reliable software;
– new industrial trends or research developments.

Conceptual framework In our setting the principal actors are programming
tasks which are implemented to produce software systems using programming
languages; the underlying available range of language concepts and hardware
and systems models continue to change, and together with fashion (programmer-
perceived and industrial views of fitness) drive the mutual evolution of program-
ming languages and software systems.

We see evolution as ‘selection of the fittest’ following mutation (introduc-
tion of new genes etc.). While the mechanism for mutation (human design in
programming languages vs. random mutation in organisms) differs this does not
affect the selection aspect. While all living things undergo evolution, we centre on
plant analogies as these help us focus on colonies rather than worrying about in-
dividual animal conflicts. ‘Fitness’ extends naturally: it captures the probability
that adopting a given programming language in a project will cause program-
mers to report favourably upon it later—just as botanical fitness includes the
6 http://www.scala-lang.org/old/node/8610

4

probability a seed falling in a niche will germinate and mature to produce viable
seeds itself. We discuss aspects of fitness later (e.g. ease of programming).

1.2 Paper structure

We start by taking a more detailed look at history (Section 2), discuss the factors
that drive programming language evolution (Section 3), and review the most
popular programming languages at time of writing, according to the RedMonk,
IEEE Spectrum and TIOBE rankings (Section 4). Our analysis identifies three
‘elephants in the room’—language trends that rather conflict with a ‘survival of
the fittest’ viewpoint—which we discuss in some detail (Section 5). We conclude
by speculating on future language evolution (Section 6).

2 What’s new since 1966?

By 1966, much of the modern gene-pool of programming language concepts was
well-established. We had Fortran, Algol 60 and Lisp capturing familiar concepts,
e.g. stack-allocated local variables, heap-allocated records, if-then-else and itera-
tion, named procedures and functions (including recursion), both static and dy-
namic typing, and a peek around the corner to 1967 and 1968 gave us references
to structured data with named components (Algol 68) and object-orientation
and subtyping (Simula 67).7 The historic importance of COBOL should not be
understated: from 1959 it provided a way to describe, read, print and manipu-
late fixed-format text and binary records—which fed both into language design
(records) and databases.

Some early divergences remain: compare programming paradigms (functional,
relational, object-oriented etc.) with the four major groups of plants (flowering
plants, conifers, mosses and ferns). Another programming-language example is
between static and dynamic typing. Modern fashion in real-world programming
appears once again to be embracing dynamic typing for practical programming
(witness the use of JavaScript, Python, Ruby and the like), often acting as glue
languages to connect libraries written in statically typed languages.

We now briefly outline what we see as some of the main developments in
programming languages, and drivers of programming language evolution, since
these early days.

What we do not cover Space precludes us from covering all such languages
and drivers. Our selection is guided by those languages currently most used for
mainstream software development, and their ancestors. As a result, there are
certain important categories of language that we do not cover, e.g. logic and
probabilistic programming languages.

7 Landin emphasised the λ-calculus as a theoretical base for programming languages,
and did not mention the richer notion of scoping which object-orientation adds.

5

2.1 Tasks, tools and teams

In the early days of computing, computers were mainly used for business process-
ing or for scientific endeavour. Over the years, the range of problems that pro-
gramming is applied to has exploded, along with the power and cost-effectiveness
of computing hardware. As programming languages have evolved to inhabit these
niches, the range of people who use them and the situations that they use them
in has expanded, and conversely the widening set of applications has encouraged
language evolution: there has been an increasing need for languages to provide
features that help programmers to manage complexity, and to take better ad-
vantage of computing resources.

Another decision point in choosing a language is “get it working” versus
“get it right” versus “get it fast/efficient”. In different situations, each might be
appropriate, and the software-system context, or niche, determines the fitness
of individual languages and hence guides the language choice. A quick script to
do some data-processing is obviously quite different from an I/O driver, or the
control system of a safety-critical device.

Software was initially developed by one person at one computer. Now it is de-
veloped by distributed teams, often spanning across continents or organisations.
The size of software systems has also increased massively. From systems running
on one machine, distributed systems can now execute across hundreds or thou-
sands of machines in data-centres around the world, and comprise tens of millions
of lines of code. Language implementations have evolved to help humans manage
this complexity, e.g. by providing sophisticated support for packages and mod-
ules, including dynamic loading and versioning. Some languages (or runtimes)
provide these as core functionality, for example Java and C# provide the ability
to dynamically load classes from jar files or assemblies. For other languages, ac-
companying tools have been developed that help to manage and compose depen-
dencies, e.g. ‘npm’ (Node Package Manager) for Node.js. Such language features
and tools can help to avoid so-called “dependency hell” (“DLL hell” in Windows
applications), whereby an application depends on a given shared library that,
due to poorly planned sets of inter-component dependencies, in turn depends on
an intricate mixture of specific versions of additional library components, some
of which conflict with one another, and many of which are in essence irrelevant
to the application under construction.

The way that teams work to develop software has also changed. Single-person
approaches were succeeded by waterfall-style development processes for manag-
ing multi-person software projects, which in turn have been largely superseded
(for all but the most safety-critical systems) by more agile approaches such as
eXtreme Programming [4]. Agile methods require analysis, testing and transfor-
mation tools to support frequent and reliable change, and to provide the rapid
feedback essential for developer productivity. Languages where these are well
supported have a natural advantage in the ecosystem.

Finally, one of the biggest changes since 1967 has been in the tools we use
to support programming—enabled, of course, by the vast increase in computing
power over this time. While classical editors, compilers and (static) linkers are

6

still present there has been an explosion in new forms of tool support and their
use: integrated development environments (IDEs) including support for code
analysis and refactoring, version control systems, test generators, along with
tools for dynamically linking to code and data outwith the project. These evolve
much more quickly and largely independently of the huge code bases in software
systems; the latter in general only evolve incrementally to capture software-
feature change (and even more slowly in reflecting their underlying programming-
language evolution). We claim that appropriate tool support is a strong factor in
programming-language fitness, and hence for language choice in a given software
project.

2.2 Systems programming and the rise of C

The success of the C programming language and that of Unix are inseparably
intertwined. Ritchie [35] writes: “C came into being in the years 1969–1973, in
parallel with the early development of the Unix operating system; the most
creative period occurred during 1972.” In ecosystem terms, C is significant as it
successfully out-competed rival languages to become almost the only widely used
systems programming language. Gabriel remarks that “Unix and C are the ulti-
mate computer viruses” [11], arguing that their “worse-is-better” design, where
implementation simplicity is favoured over other features such as full correct-
ness and interface simplicity, makes Unix and C so easy to port that they virally
infected practically all systems. Alluding to natural selection, Gabriel writes:
“worse-is-better, even in its straw-man form, has better survival characteristics
than the-right-thing”.

Designed for relatively low-level systems programming, C provides mecha-
nisms for fine-grained and efficient management of memory—needed to build
operating systems and device drivers, or for programming resource-constrained
environments such as embedded systems. C is usually the first higher-than-
assembly-level language supported on a new architecture. Regarded for a long
time (and still to a large degree) as an inevitable price for its high performance, C
is an unsafe language: run-time errors, such as buffer overflows, are not typically
caught by language implementations, so a program may continue to execute after
an erroneous operation. This provides wide scope for attacks, e.g. control-flow
hijacking and reading supposedly confidential data. A botanical analogy might
be the prevalence of cacti in deserts, when some would prefer orchids as pret-
tier and lacking spines; we have to either adjust the niche—requiring beauty (or
security), contribute more to fitness by human intervention, or produce a new
plant species (or language) that better fits the existing niche while having the
desired characteristics.

Certainly C has been one of the most influential programming languages, in-
fluencing the syntax, and to some degree semantics, of C++, Java and C#, and
forming the basis of parallel programming languages such as CUDA (NVIDIA’s
proprietary language for graphics-processing unit (GPU) programming) and
OpenCL (an industry-standard alternative). Moreover, C continues to be very

7

widely used; arguably much more so than it should be given its unsafe nature.
We return to this point in Section 5.1.

2.3 Object-orientation and the rise of Java

The object-oriented paradigm, where domain entities are represented as objects
that communicate by sending messages, became the dominant style of com-
mercial software development in the 1990s. Building on Kay’s original ideas,
embodied in Smalltalk, came a number of very influential languages, includ-
ing Delphi, Eiffel, Oberon, Self, and Simula 67. These impacted the design of
what are now the most widely used object-oriented languages—Java, C++ and
C#—which continue to thrive while many of these earlier languages are now
extinct or restricted to communities of enthusiasts. (We acknowledge that some
purists question whether languages such as Java, C++ and C# are truly object-
oriented—e.g. they fail the so-called “Ingalls Test”8 [30, Section 11.6.4]—but they
are widely regarded as belonging to the object-oriented paradigm.)

We also see influence in the growth of tooling, with the modern day Eclipse
IDE having its roots in IBM’s VisualAge for Java, which in turn evolved from
VisualAge for Smalltalk. A significant driver of Java’s early spread was its “write
once, run anywhere” philosophy, whereby a Java compiler generates code that
can run on any conformant implementation of the Java Virtual Machine (JVM).
Support for the JVM by web browsers, and the popularity of ‘applets’ embedded
in web-pages drove the adoption of Java. Its clean design and safe execution made
it a popular teaching language in universities.

Other features also drove adoption: Java, C++ and C# provided support for
exceptions—meeting a practical need for mainstream languages to capture this
idiom. Java and C# embraced ideas originating in languages such as Lisp and
Smalltalk—automatic memory-management (garbage collection) and the idea of
managed run-time environment abstracting away from the underlying operating
system (or browser!). There remains a tension between C/C++, with manual
allocation and the associated lack of safety, and Java and C# which, while safe,
can be problematic in a resource-constrained or real-time environment.

Note that there are two separate genes, representing class-based inheritance
(originating in Simula) and prototype-based inheritance (originating in Self, ini-
tially a dialect of Smalltalk) for object-oriented languages. There are arguments
in favour of each: the former allows static typing and is used by more main-
stream languages; the latter is used in JavaScript, and therefore in some sense
more successful!

2.4 Web programming, the re-emergence of dynamic typing, and
the rise of JavaScript

Although some early programming languages were dynamically typed—notably
Lisp—the focus of much research into programming languages in the 70s, 80s and
8 https://www.youtube.com/watch?v=Ao9W93OxQ7U, 26 minutes in.

8

90s was on statically typed languages with stronger and richer type systems. In
industry, relatively strongly, statically typed, languages also became increasingly
popular, with dynamically typed languages largely restricted to scripting and
introductory programming.

The massive change since then has been the importance of programming for
the web, through languages such as JavaScript and PHP, which are dynamically
typed. Web programming is so pervasive that JavaScript is now one of the most
widely used programming languages. From a language-design perspective this
is somewhat ironic. Although a lot of high-end research into dynamically typed
programming languages had been conducted (e.g. notably working with systems
like CLOS [13], and building on those with languages like Self [47]), in fact
Brendan Eich designed and implemented JavaScript (then named Mocha) in 10
days, seemingly with no recourse to these research endeavours [42].

Other dynamically typed languages have developed a strong following in-
cluding Python and Ruby. Both are general-purpose languages, but Python has
become particularly popular among scientists [33], and a major driver of Ruby
adoption was the Rails framework of Heinemeier Hansson [36] designed to facili-
tate server-side web-application programming and easy database integration. We
reflect further on the popularity of dynamically typed languages in Section 5.2.

2.5 Functional programming languages

Functional languages, where function abstraction and application are the main
structuring regime, originated in Lisp. For many years, functional programming
languages lived in an “enthusiasts’ ghetto”, attracting strong supporters for spe-
cific programming areas, but their discouraging of mutating existing values was
a step too far for many mainstream programmers. Recently however, their ideas
appear to be becoming mainstream. Two of the most influential functional lan-
guages, Haskell and ML, are currently among the most widely used functional
languages (with the OCaml dialect enjoying the most use in the case of ML),
and both languages being used in quantitative (equity) trading applications in
banks, who argue that these languages allow their quant analysts to code more
quickly and correctly.9 One justification for this resurgence is that concurrency
and mutation appear hard for programmers to use together in large systems,
needing error-prone locks or hard-to-document whole-program assumptions of
when and how data structures can be modified.

Functional languages have also inspired so-called “multi-paradigm” languages,
principally F# and Scala, both of which feature first-class functional concepts;
these in turn have been incorporated into mainstream object-oriented languages,
most notably the LINQ extensions to C#, and lambdas in Java 8 and C++11.

Even aspects (genes) of functional languages which previously seemed ab-
struse to the mainstream have been incorporated into modern general-purpose
languages. For example Java 8’s streams incorporate the ideas of lazy evaluation,

9 https://adtmag.com/Ramel0911

9

deforestation and the functional idiom of transforming one infinite stream into
another.

2.6 Flexible type systems

At the time of Landin’s article, and indeed for most of the decade following
it, there was a split between, on one hand, dynamically typed languages such
as Lisp, which checked types at run time at the cost of reduced execution effi-
ciency and unexpected errors and, on the other hand, statically typed languages
giving increased efficiency and the possibility of eliminating type errors at com-
pile time (even if this had holes, such as in C and Algol 60). However, such
static type systems were often inexpressive; a running joke at the time of one
author’s PhD was that, e.g. in Pascal one had to write functions only differing
in types for finding the lengths of integer lists and string lists so that the com-
piler could generate duplicated code. The late 1970’s saw parameterised types,
and polymorphically typed (or ‘generic’) functions for operating over them. The
language ML (originally part of the Edinburgh LCF theorem-proving system)
was hugely instrumental here. In a sense ML was almost exactly “ISWIM with
types”, albeit without syntax-by-indentation. Types have continued to grow in
expressiveness, with type systems in Java and C# including three forms of poly-
morphism (generics, overloading and (bounded) sub-type polymorphism) all in
the same language.

More heavyweight type disciplines, such as dependently typed languages (e.g.
Agda, Coq) remain firmly away from the mainstream, in spite of the high pre-
cision that they offer and their potential link to program verification (see Sec-
tion 6.2). There is an argument that very precise types can end up revealing
details about a system’s internals, and that the desire for a particular type
structure can have a more direct influence on program structure than might re-
ally be desirable; these have been dubbed the “Visible Plumbing Program” and
the “Intersection Problem”, respectively [9].

2.7 Parallelism and the rise of multi-core

The appearance of multi-core x86 processors from 2005 was, in retrospect, hugely
disruptive to programming languages. While parallel processing was not new
(e.g. High Performance Fortran offered relatively sophisticated language support
for parallel programming [20]), multi-core (and later GPU) technology caused
everyday programmers to want their language to support it. This world feels
a little like Landin’s in 1966—there are many language features and libraries
offering support for various aspects of parallelism. Dedicated languages and li-
braries include Cilk Plus, Threading Building Blocks and OpenMP for multi-
core CPUs, and OpenCL, CUDA, Vulkan, Metal and RenderScript for targeting
GPUs. Within a single language there can be many mechanisms by which to
exploit parallelism: in Java one can use parallel streams, an executor service, cre-
ate one’s own thread objects; in Haskell there are also multiple approaches [27].
More than a decade on, language support for parallelism remains patchy and

10

has converged less than we might have hoped, a point to which we return in
Section 5.3.

2.8 Domain-oriented programming languages

Just as in Landin’s day, many languages have been created for solving problems
in particular domains. While Turing completeness means that we should be able
to apply any general purpose language to any programming task, domain-specific
languages often offer more convenient syntax and library support than would
be possible in a mainstream language, with examples including spreadsheets,
SQL, MATLAB and R, along with scripting languages for computer-game and
graphics-rendering engines.

3 Observed programming language evolution

We now re-cast the changes of the previous section as language evolution pres-
sures, discussing: the factors that keep programming languages alive (Section 3.1),
the forces that lead to language evolution (Section 3.2), and cases where lan-
guages have become practically extinct due to not having evolved (Section 3.3).

3.1 Factors that keep programming languages alive

Although the landscape of programming languages evolves, many languages take
root and stick around. We observe several forces that keep languages alive. In
the evolutionary model, these ‘forces’ sum to contribute to the overall fitness of
a language in a given niche.

Legacy software The amount of software in the world increases day by day. New
systems (and modules within systems) are created at a much faster rate than
they are deleted. Existing code that performs valuable business functions needs
to be updated and upgraded to provide additional functionality or to integrate
with other systems. Replacing a system wholesale is a major decision, and costly
for large systems. The need to tend to existing successful systems, using whatever
language they were originally written in, is a strong force in keeping languages
alive. Even though COBOL is often perceived as a dead language, as recently as
2009, it was estimated to have billions of lines of code in active use10 and some
of these surely remain, even if they are not widely advertised.

Community Enthusiasm and support for a particular programming language is
often fostered if there is an active and encouraging community around it. This
can be helpful in encouraging beginners, or in supporting programmers in their
daily tasks, by providing advice on technical problems as they come up. Lan-
guage communities, like any social group, tend to reflect the design parameters
10 http://skeptics.stackexchange.com/questions/5114/did-cobol-have-250-

billion-lines-of-code-and-1-million-programmers-as-late-as-2 [sic]

11

of the language they discuss; some are seen as formal and academic and others
more down-to-earth.. For example, there is a saying in the Ruby community,
which has a reputation for being supportive and helpful: “Matz [the language
creator] is nice and so we are nice”.11 In contrast, the community that has grown
up around Scala is perceived to be much more academically focused, biased to-
wards more mathematical thinking and language, and sometimes perceived as
less welcoming to people from a “general developer” background. In his (some-
what polemical) ScalaDays 2013 keynote12, Rod Johnson gives his impressions
of the Scala community as being somewhere where “there do seem to be quite a
few people who aren’t highly focused on solving real world problems” and where
some members appear to have the opinion that “ignorance should be punished”.

Ease of getting started In order for a new language to take hold, it helps if it
is easy for new programmers (either novices, or just newcomers to the language
in question) to get started quickly. The speed with which a new programmer
can write and run their first program depends on many things: the simplicity of
language design, clarity of tutorials, the amount one needs to learn before getting
started, and the support of tooling (including helpful error messages, a subject
taken to heart by languages like Elm). This in turn can affect the longevity of a
language—as this depends on a continued influx of new programmers.

Habitability In his book Patterns of Software [12], Gabriel describes the charac-
teristic of habitability : “Habitability makes a place livable, like home. And this is
what we want in software—that developers feel at home, can place their hands
on any item without having to think deeply about where it is.” If a language
has widely adopted idioms, and projects developed in that language are ha-
bitually laid out according to familiar structure then it easy for programmers
to feel at home. Languages that promote “one way to do things” may help to
engender this consistency. Habitability may also come from having a common
tool-ecosystem.13. For example, if we download a Java project and find that it is
structured as a Maven14 project, then it is easy to locate the source, tests, depen-
dencies, build configuration, etc., if we are familiar with other Maven projects.
Similarly in modern Ruby projects we might expect a certain structure and the
use of Bundler15 to perform a similar role. These sort of tools are often only
de-facto standards, as a result of wide adoption, but consistent project layout,
build process, etc., provided by standard tools, reduces cognitive load for the
developer, and in turn may make a programmer feel more at home working in a
given language, especially when coming to work on a new project [14].
11 https://en.wiktionary.org/wiki/MINASWAN
12 https://www.youtube.com/watch?v=DBu6zmrZ_50 particularly from 21 minutes in.
13 Note that other uses of ‘ecosystem’ in this paper refer to the ecosystem of languages

competing for a programming niche, but the ‘tool-ecosystem’ refers to the toolset
available to support programming in a given language—we earlier noted that this
improved the fitness of a given language by behaving as a symbiote.

14 https://maven.apache.org/
15 http://bundler.io/

12

Libraries The availability of libraries of reusable code adds to the ease of getting
things done in a particular language. Whether we want to read a file, invoke a
web service over HTTP, or even recognise car licence plates in a photograph, if
we can easily find a library to do so in a particular language, that language is
appealing for getting the job done in the short term. Some languages come with
rich standard libraries as part of their distribution. In other cases the prolifera-
tion of community-contributed libraries on sites like GitHub leads to a plethora
of options. When there are a large number of libraries available, it often becomes
part of the culture in the community centred around a particular language to
contribute. The plentiful supply of libraries begets the plentiful supply of li-
braries. We note, however, that recent trends to rely on third-party libraries for
even the simplest of routines can lead to problems. For example, the removal of
the widely used ‘left-pad’ library from the ‘npm’ JavaScript package manager
caused a great deal of chaos.16

Tools Although language designers may hope or believe that their new language
allows programming tasks to be solved in new, perhaps more elegant ways, it
is not the language alone that determines the productivity of a programmer at
work. A programmer needs to write and change code, navigate existing code
bases, debug, compile, build and test, deploy their code, and often integrate
existing components and libraries, in order to get their work done and to deliver
working features into the hands of their users. A programming language therefore
exists within a tool-ecosystem.

Java, for example, is a very popular language that is highly productive for
many development teams. This is not only down to the design of the language
itself—some might argue that it is in fact in spite of this, as Java is often seen
as relatively unsophisticated in terms of language features. It is also—indeed,
perhaps largely—due to the supply of good tools and libraries that are available
to Java developers. Anecdotally we have heard stories from many commercial
developers who have actively chosen to work in Java rather than working with
a more sophisticated language, due to the availability of powerful Java-focused
tools such as IntelliJ’s IDEA,17 with their rich support for automated refactoring
and program transformation, contrasted with the comparative lack of tool sup-
port for richer languages. This gap in tool support can even inhibit the uptake
of JVM-targeted languages such as Scala, something addressed with the recent
IntelliJ IDEA support for Scala and Java 9.

To some degree, tools can compensate for perceived deficiencies in a language,
and generally evolve faster than the language itself, because a change to a tool
does not have the same impact on existing software as a change to a language
specification does.

Support of change One might think that agile methods would favour dynami-
cally typed languages, and indeed part of their popularity is the sense that they

16 http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos
17 https://www.jetbrains.com/idea/

13

allow a developer to get something done without having to worry about a lot
of the “boiler-plate” associated with stricter and more verbose languages. But
there is a counter-pressure for statically typed languages when working on large
systems. Agile methods promote embracing change, with code bases evolving
through a continuous sequence of updates and refactorings [10]. These activities
of transforming a code base are more easily done when supported by tools, and
refactoring tools work better when type information is available [40]. However,
this is not a one-way street. The increased complexity of Scala’s type system
over Java makes it harder to create effective automated refactoring tools. Also
the additional sophistication of the compiler means that compared to Java the
compilation and build times are relatively long. This can lead to frustration when
developers want to make frequent small changes.

A workflow that involves making frequent small changes to a working sys-
tem requires a harness that developers can rely on to mitigate risk and to allow
sustainable progress. A practice commonly used by agile teams is test-driven
development (TDD) [3]. It is misleading to say that particular languages explic-
itly support TDD, but in a language like Java or C# with good tooling, we can
get a lot done working in a TDD fashion because the tools can generate a lot
of our implementation code for us based on tests and types—although this is
really just a mechanisation of mundane manual work, there is no real intelligent
synthesis at play.18 In dynamic languages we need tests even more, because we
have less assurance about the safety and correctness of our program from the
type system. Fortunately, some flavours of test—for example tests using mock
objects [25]—may be more convenient to write in dynamic languages as we do
not have to introduce abstractions to ‘convince’ the type system that a particu-
lar test double19 can be used in a type-compatible manner as a substitute for a
real dependency, given the late binding that is characteristic of such languages.

Supply of talent When building a new system, the choice of language is not just
a technical decision, but also an economic one. Do we have the developers needed
to build this system? If we need to hire more, or one day need to replace a current
staff member, how much would it cost to hire someone with the relevant skills?
Knowledge of some languages is easy to find, whilst others are specialist niches.
At the time of writing there is a good supply of programmers in the job market
who know Java, C#, JavaScript etc. There are comparatively few Haskell, Rust
or Erlang developers. This scarcity of supply relative to demand naturally leads
to high prices.

High performance Some languages (C and C++ in particular) are not going
to die in the immediate future because they are so performant. We return to
the longevity of C in Section 5.1 and speculate on the future of C and C++

18 This is in contrast to methods such as property-based testing, that synthesise tests
in a smart manner by exploiting type-system guarantees and programmer-defined
property specifications [7].

19 https://martinfowler.com/bliki/TestDouble.html

14

in Section 6.1. A design goal of the relatively new Rust language is to achieve
C-like performance without sacrificing memory safety, through type system inno-
vations. In order to achieve high performance, Rust in particular aims to provide
static guarantees of memory safety, to avoid the overhead of run-time checks.

An important niche Some languages just solve an important class of problem
particularly well. Ada is barely used if we look globally, but it is very much
alive (particularly the SPARK subset of Ada) for building high-assurance soft-
ware [28]. The same is true for Fortran, but with respect to scientific computing.
Both languages have reasonably recent standards (Ada 2012 and Fortran 2008).

3.2 Incentives for evolution

Technological advances Advances in technology make new applications possible
in principle, and languages adapt to make them possible—and feasible to build—
in practice. An early aim of Java was to be the language of the web, and the
mass adoption of the web as a platform for applications has led to sustenance and
growth of languages such as JavaScript and PHP. The fact that JavaScript is the
only programming language commonly supported by all web browsers has made
it a de-facto standard for front-end web developers. The rise of the iPhone and
its native apps saw a surge in Objective-C development as programmers created
apps, with Apple later creating the Swift language to provide a better developer
experience on iOS. Multi-core processor technology has led to parallelism being
supported, albeit in a fragmented manner, in many more languages than would
otherwise be the case.

Reliability and security As discussed in Section 2.3, many languages are now
managed, so that basic correctness properties are checked at run time, and such
that the programmer can be less concerned with memory allocation and deal-
location. This eliminates large classes of security vulnerabilities associated with
invalid memory access. It is common for language syntax and semantics to evolve
in support of program reasoning: through keywords for programmer-specified as-
sertions and contracts (particularly notable in the evolution of Ada, thanks to
its SPARK subset [28]20); via more advanced type systems, such as generics
(to avoid unsafe casts), types to control memory ownership (in Rust, for exam-
ple), and dependent types to encode richer properties (increasingly available in
functional languages); by updating language specifications with more rigorous
semantics for operations that were previously only informally specified;21 and
by adding facilities for programmers to specify software engineering intent (an
example being the option to annotate an overriding method with @Override in

20 Our point here is that some languages have evolved to provide support for contracts.
Contracts have also enjoyed first-class support from the inception of some languages,
e.g. Eiffel.

21 One example is C++11 adding concurrency semantics for weak memory models; the
difficulty of this was illustrated by its unwanted “out of thin air” (OOTA) behaviour.

15

Java, or with the override specifier in C++, to fault misspelt overrides stati-
cally). As well as language evolution leading to improved reliability and security,
there is also the notion of language subsets that promote more disciplined pro-
gramming, or that provide more leverage for analysis tools, including a proposed
safe subset of C++22, the ECMAScript “strict” mode for JavaScript, and, again,
the SPARK subset of Ada.

In addition to the above points, which centre on enabling programmers to
avoid their own errors, it is also important to manage situations where external
failures occur: power loss, network loss, hardware failure and the like. Classi-
cally this was achieved by checkpointing and rollback recovery. But as systems
grow, especially in concurrency and distribution, there is increasing trend for
more-locally managed failure. The Erlang fail fast design style seems to work
effectively: tasks can be linked together, so that if one fails (for example an unan-
ticipated programming situation leading to an uncaught exception, but partic-
ularly useful for external failures) then all its linked tasks are killed, and the
creator can either re-start the tasks if the error is transitory, or clean up grace-
fully. Another inspiration is the functional-style absence of side effects, exploited
for example by Google MapReduce [8]. If a processor doing one part of the ‘map’
fails, then another processor can just repeat the work. This would be far more
complicated with side-effects and distributed rollback. An interesting project
along these lines was the Murray et al. [31] CIEL cloud-execution engine (and
associated scripting language Skywriting) where computational idempotence was
a core design principle.

Competition between languages Some languages evolve via competition. For ex-
ample, many features of C# were influenced by Java; in turn, support for lamb-
das in Java 8 seems to have been influenced by similar capabilities in C#, and
C++ was augmented with higher-order function support at roughly the same
time. In the multi-core world there is clear competition between CUDA and
OpenCL, with CUDA leading on advanced features that NVIDIA GPUs can
support, and OpenCL gradually adopting the successful features that can also be
implemented across GPU vendors. Competition-driven evolution demonstrates
the value to users of having multiple languages occupying the same niche.

Company and community needs Several languages have been born, or evolved,
to meet company needs. Usually this occurs in scenarios where the companies
in question are large enough to benefit from the new or evolved language even
if it is only used internally, though many languages have found large external
communities. Notable examples include Microsoft’s extensions to C and C++,
the design of Go, Rust and Swift by Google, Mozilla and Apple, respectively,
and Hack as an extension of PHP by Facebook.23 Open source communities
have also produced influential language extensions—perhaps most notably the
various GNU extensions to C and C++.
22 http://www.stroustrup.com/resource-model.pdf
23 http://hacklang.org/

16

3.3 Extinction due to non-evolution

Languages become extinct when they are no longer used, but we must separate
“no longer used for new projects” (e.g. COBOL) from “(probably) no systems
using them left in existence” (e.g. Algol 60). (Of course community support for
historic languages and systems means that even these definitions are suspect.)
What interests us is the question of why a previously influential language might
become used less and less? There seem to be two overlapping reasons for this:
(i) revolutionary replacement: the concepts of the language were innovative,
but its use in the wider ecosystem was less attractive—other languages which
incorporated its features have now supplanted it; and (ii) loss of fitness: the
language was well-used in many large projects, but doubts about its continuing
ecological fitness arose. Algol 60 and arguably Smalltalk fits the first of these
criteria well, while Fortran, Lisp, C and arguably COBOL fit the second.

Languages in the latter category can avoid extinction by evolving. This is
most notably the case for Fortran, but C also fit this scheme, as does C++: new
features have been added to the languages in successive versions. Similarly Lisp
has evolved with Common Lisp, Racket and Clojure being modern forms. The
key issue here is backwards compatibility: old programs must continue to work
in newer versions of the language with at most minor textual changes. A popular
technique for removing old features felt to be harmful for future versions of the
language is to deprecate them—marking them for future deletion and allowing
tool-chains to warn on their use. This technique is used in the ISO standards for C
and Fortran (most recent standards in 2011 and 2008 respectively); Lisp dialects
have evolved more disparately, but are still largely backwards compatible.

It is worth noting here that Fortran’s evolution fits the plant-ecosystem model
quite well. However, the revolutionary replacement model is more akin to ‘ar-
tificial life’ or ‘genetically modified organisms’ in the way the existing genetic
features are combined into a new plant or programming language.

In closing this section, we note that Fortran (first standardised in 1958, most
recent standard in 2008, and Fortran 2015 [sic] actively in standardisation) seems
practically immortal for large-scale numeric code, such as weather forecasting
and planetary modelling. Anecdotally, it largely fights off C++ because of the
power that C++ provides for writing code that others cannot easily understand
or that contains subtle bugs. One example of this is that Fortran largely for-
bids aliasing, which limits the flexibility of the language for general-purpose
programming, but reduces the scope for aliasing-related programmer errors, and
aids compilers in generating efficient code. By contrast Algol, in spite of be-
ing perhaps the most influential language of all time, has effectively become
extinct—the attempt to move from Algol 60 to Algol 68 did not prove effec-
tive in holding on to its territory. It’s hard to pin down the exact reason: other
languages developed while the Algol standard was effectively frozen awaiting
Algol 68, the lack of support for (or even community-belief in) separate compi-
lation, the default of call-by-name meaning that any sensible upgrade would fail
to be backward-compatible, etc.

17

There’s an interesting comparison here: “would you prefer to be immortal
or to be posthumously praised for spreading your genes around the world?” A
quote from Joe Armstrong also seems relevant here [41]:

People keep asking me “What will happen to Erlang? Will it be a popular
language?” I don’t know. I think it’s already been very influential. It
might end up like Smalltalk. I think Smalltalk’s very, very influential
and loved by an enthusiastic band of people but never really very widely
adopted.

4 Range of important languages in 2017

Posing the question “What are the important languages of 2017?” gives a range
of answers from “well it’s obviously X, Y and Z” to “what do you mean by
important?”. While there are important legacy languages with millions lines
of existing code (Fortran, and perhaps COBOL and arguably even C), here we
pragmatically explore various recent programming language popularity rankings:
the RedMonk Programming Language Rankings (June 2016),24 the 2015 Top 10
Programming Languages according to IEEE Spectrum (July 2015),25 and the
TIOBE Index (February 2017).26

These are of course just a subset of available rankings; the rankings differ as
to how language importance is measured; data for the amount of code written is
hard to come by when much deployed code is not publicly available at the source
level (Wired reported in 2015 that “Google is 2 billion lines of code—and it’s
all in one place”27); and it unlikely that code duplication is accounted for when
judging how much code is associated with a particular language—a recent study
by Lopes et al. shows that accounting for duplication is challenging [24]. We
note that these rankings assess language importance based on volume of code,
rather than by assessing how influential a language is in terms of ideas (genes)
it contains, or introduces, that are used in later languages.

Nevertheless, we believe the data these rankings offer provides a reasonable
snapshot capturing at least the core set of languages broadly agreed to be in wide
use today. They are summarised in Table 1, with the IEEE Spectrum ranking
stopping at 10 and the other rankings at 20 (modulo a 20th-place tie).

We broadly partition the languages in these rankings into five categories:

– Mainstream: languages whose presence and approximate position in the
rankings comes as no surprise, and that we expect to be around for the
foreseeable future.

24 http://redmonk.com/sogrady/category/programming-languages/
25 http://spectrum.ieee.org/computing/software/the-2015-top-ten-

programming-languages
26 http://www.tiobe.com/tiobe-index/
27 https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-

place/

18

Position RedMonk (2016) IEEE Spectrum (2015) TIOBE (2017)
1 JavaScript Java Java
2 Java C C
3 PHP C++ C++
4 Python Python C#
5 (5=) C# C# Python
6 (5=) C++ R PHP
7 (5=) Ruby PHP JavaScript
8 CSS JavaScript Visual Basic
9 C Ruby Delphi/Object Pascal

10 Objective-C MATLAB Perl
11 Shell Ruby
12 R Swift
13 Perl Assembly language
14 Scala Go
15 Go R
16 Haskell Visual Basic
17 Swift MATLAB
18 MATLAB PL/SQL
19 Visual Basic Objective-C
20 (20=) Clojure Scratch
21 (20=) Groovy

Table 1. Popular languages according to three sources (mid-2015–early 2017)

– Rising : languages that we perceive to have rapidly growing user communities,
with an associated buzz of excitement. The popularity of rising language is
likely to be recent, and expected to increase either directly, or indirectly
through influence on mainstream languages.

– Declining : languages that are still in active use, including for new projects,
but which we perceive to be on the decline, e.g. because they are less widely
used than mainstream languages, yet lack the buzz of excitement surrounding
rising languages.

– Legacy : languages that are largely used in order to maintain legacy systems,
and in which we expect very little new code is developed.

– Domain-oriented : languages that are key to important application domains,
but that one would not normally use to develop general-purpose software.

This partitioning into categories between them is skewed by our personal biases,
perspectives and experience; no doubt our allocations to rising and declining
will be controversial.

Mainstream Firmly in the top ten of all three rankings, it is widely agreed that
the major imperative and object-oriented languages—C, C++, C# and Java—
are mainstream. These include the languages used to implement most systems
infrastructure (C/C++), a large body of enterprise applications (Java/C#), the
majority of desktop computer games (C++), and most Android apps (Java).

19

These languages are all statically typed. We also regard JavaScript, Python and
Ruby—all dynamically typed—as mainstream. JavaScript tops the RedMonk
ranking, Python is in the top 5 in all rankings, and Ruby is top-ten in all but
the TIOBE ranking, where it sits at 11th place.

Rising We sense a great deal of excitement surrounding functional programming
languages, and languages with first class functional-programming features, thus
we regard Haskell, Clojure and Scala as rising. These three languages feature in
the lower half of the RedMonk chart, but do not appear on the TIOBE list. One
of the authors recalls being taught Haskell as an undergraduate student in 2000,
at which point there seemed to be little general expectation that the language,
though clearly important and influential, would become close to mainstream; the
situation is very different 17 years later. We also see the influence of Haskell and
functional programming in up-and-coming languages like Elm. Elm is written in
Haskell and has a Haskell-like syntax but compiles to HTML, CSS and JavaScript
for the browser, making it a candidate for a wide range of web-programming
tasks.

Swift is evidently rising as the language of choice for iOS development, in
part as a replacement for Objective-C. Swift’s syntax is clearly influenced by
languages like Ruby, although Swift is statically typed. As Swift has now been
open-sourced, we are seeing the community around it growing, and helping to
improve its tool-ecosystem.

With the exception of Swift, which enjoys good support in Apple’s Xcode,
when one compares the tool support for these rising languages to that for the lan-
guages we class as mainstream, the contrast is stark. If these languages continue
to rise, we expect and hope that better tooling will evolve around them.

Some languages that do not make these rankings, but which we regard as
rising, include: Rust, which has certainly generated a lot of academic excitement
in relation to its type system; F# (well-supported by Visual Studio), which
like Scala is multi-paradigm with strong functional programming support; and
Kotlin, which by being built together with its IDE might avoid the tools-shortage
risk of a new language. Another language with a syntax influenced by Ruby is
Elixir, which targets the Erlang virtual machine and promotes an actor model
of concurrency.

Declining It seems that niches occupied by Objective-C, PHP and Perl are
gradually being dominated by Swift, JavaScript, and Python/Ruby, thus we
view these languages as declining. Similarly our impression is that Visual Basic
is a declining language, its niches perhaps being taken over by C#.

Legacy We attribute the presence of Object Pascal (and its Delphi dialect) in
the top ten of the TIOBE ranking to the significant amount of such code being
maintained in legacy software, and speculate that this language is rarely used
for new projects.

20

Domain-oriented It is encouraging to see Scratch, an educational language,
mentioned in the TIOBE list; we class this as domain-oriented since the goal
of Scratch is to teach programming rather than for production development.
Among the languages used by people who often do not regard themselves as
programmers, R and MATLAB are probably the most widely used, with appli-
cations including data science and machine learning. We also class the query
language dialect PL/SQL as domain-oriented.

We do not have a feeling for whether Go—ranked top 20 by both RedMonk
and TIOBE—is rising or declining. Our impression is that it plays a useful role
in implementing server software, a niche that it may continue to capably occupy
without becoming mainstream. The same might be said of several languages
not ranked in Table 1: Erlang, which occupies an important distributed systems
niche for which it is widely respected; Fortran, often the language of choice for
scientists; VHDL and Verilog in processor design; and OpenCL and CUDA in
the parallel programming world, for example.

Of the remaining languages listed in Table 1, CSS is not a full-blown pro-
gramming language, and “Shell” and “Assembly language” span a multitude of
shell scripting and assembly languages for different platforms, which we do not
attempt to categorise. (As an aside, we are doubtful regarding the high rank of
“Assembly language” in the TIOBE ranking.)

5 The elephants in the room

Given the rich array of programming languages that have evolved over the past
half century, and in general the successful manner in which languages have
emerged or evolved to cope with technological change, we note three strange
facts: that C remains an extremely popular language despite its shortcomings
(Section 5.1), that dynamically typed languages are among the most popular
programming languages despite decades of advances in static type systems (Sec-
tion 5.2), and that despite the rise of multi-core processing, support for paral-
lelism is patchwork across today’s languages (Section 5.3).

At first sight these conflict with our ‘selection of the fittest’ thesis, and indeed
perhaps we are even slightly embarrassed as computer scientists as to the state
of the real world. We return this issue in Section 6 where we discuss the role of
time, and inertia, in evolution.

5.1 The popularity of C

Legacy aside, our view is that C has two main strengths as a language: its core
features are simple, and it offers high performance. The price for performance
is that virtually no reliability or security guarantees are provided. An erroneous
C program can behave in unpredictable ways, and can be vulnerable to attack.
Some of the most famous software vulnerabilities of recent years, including the
Heartbleed bug,28 arise from basic errors in C programs, and a great deal of
28 http://heartbleed.com/

21

effort still goes into writing and deploying “sanitiser” tools to find defects in C
code, such as AddressSanitizer and MemorySanitizer from Google.29 Further,
despite having a simple core, the semantics of C are far from simple when one
considers the host of undefined and implementation-defined behaviours described
in the language specification. Indeed, decades since the language’s inception, top
programming language conferences are still accepting papers that attempt to
rigorously define the semantics of C [15, 29], and recent programming models
for multi-core and graphics processors, such as OpenCL and Metal, have based
their accelerator programming languages on C.

Given that the majority of code written today does not need to perform
optimally, and given the advances in techniques such as just-in-time compilation
that in many cases allow managed languages to achieve performance comparable
to that of C, we ask: why does C remain so popular, and will this trend continue?

A major reason for C’s longevity is that it is used to develop all major
operating systems and many supporting tools. It is also typically the language
of choice for embedded programming, partly due to the language’s small memory
footprint, and also because C is usually the first language for which a compiler
targeting a new instruction set becomes available (the latter motivated by the
fact that such a compiler is required to compile an operating system for the
new target platform). Beyond compilers, the language is also well supported by
tools, such as debuggers, linkers, profilers and sanitisers, which can influence a
language’s selection for use.

Kell points out various fundamental merits to systems programming that C
brings, beyond it simply being a de-facto standard [18]. He argues that “the very
‘unsafety’ of C is based on an unfortunate conflation of the language itself with
how it is implemented”, and makes a compelling case that a safe implementation
of C, with sufficiently high performance for the needs of systems programming,
is possible. He also argues that a key property of C that many higher-level
languages sacrifice is its ability to facilitate communication with ‘alien’ system
components (including both hardware devices and code from other programming
languages). This flexibility in communication owes to the ability to linking to-
gether object files that respect the same application binary interface, in C’s use
of memory as a uniform abstraction for communication. Kell concludes: “C is far
from sacred, and I look forward to its replacements—but they must not forget
the importance of communicating with aliens.”

In short, no other current language approaches the fitness of C (when mea-
sured along with its symbiotic tool-ecosystem) for the systems-programming
niche.

5.2 The rise of dynamically typed languages

Static type systems have the ability to weed out large classes of programmer-
induced defects ahead of time. In addition, as discussed in Section 3.1, static

29 https://github.com/google/sanitizers

22

types facilitate automated refactoring—key to agile development processes—
and enable advanced compiler optimisations that can improve performance. Yet
many of today’s most popular languages, including JavaScript, PHP, Ruby and
Python, do not feature static types, or make static types optional (and unusual
in practice).

In the case of JavaScript, we argue that its prevalence is driven by the web as a
programming platform, and web browsers as a dominant execution environment.
As the only language supported by all browsers, in a sense, JavaScript is to
browsers what C is to Unix. JavaScript has also seen broad uptake in server-side
development of recent times, with the Node.js platform. A major driver for this
is developer mindshare. Many developers already know JavaScript because of
previous work in the browser, so having a server environment where they can
code in the language they already know lets them transfer many of their existing
skills without having to learn Python, Ruby or PHP. In evolutionary terms, while
no language per se is favoured in the server-side world, the additional fitness of
JavaScript with its symbiote “programmer experience” has enabled it to colonise
this niche.

One reason for the popularity of dynamic languages in general is that they
tend to come with excellent library support, providing just the right methods
to offer a desired service. Representing structured data without a schema in
statically typed languages is generally more challenging (e.g. what types to use),
but recent work by Petricek et al. on inferring shapes for F# type providers is
promising [34].

A more fundamental reason may be “beginner-friendliness”. It is easy to get
some code up and running to power a web page using JavaScript; writing a simple
utility in Python is usually more straightforward than would be the case in C
(where one would need to battle with string manipulation), or in Java (where
one would need to decide which classes to create).

The importance of beginner-friendliness should not be underestimated. Many
people writing software these days are not trained computer scientists or software
engineers. As coding becomes a skill required for a large number of different
jobs, we have more and more programmers, but they may not have the time or
inclination to learn the intricacies of a complex languages—they just want to
get something done. Currently Python (supported by technologies like iPython
Notebooks) is popular with scientists and others just wanting to get going quickly
on some fairly simple computational task. This category of programmers seems
likely only to grow in the future, and as such the world will accumulate growing
amounts of fairly simple software, in languages that are comparatively easy for
non-specialists to work with.

The danger, historically exemplified by Facebook’s use of PHP, is that a sys-
tem that starts as a simple program in a dynamically typed language may grow
beyond practical maintainability. We question the extent to which dynamically
typed languages are suitable for building large-scale infrastructure that needs to
be maintained and refactored over many years by a changing team. Facebook’s
Hack language, which extends PHP with types in a manner that permits an

23

untyped code base to be incrementally typed, is one example where a valuable
code base without static types is being migrated to a typed form to enable faster
defect detection and better readability and maintenance.30 We also see similar
trends in the JavaScript world, for example in the TypeScript31 and Flow32

initiatives from Microsoft and Facebook respectively.
We can summarise that various features of dynamic languages—rapid proto-

typing, beginner-friendliness, avoidance of intellectually sound but challenging
type systems—adds to the fitness of such languages in niches that appreciate
these properties over others.

5.3 The patchwork support for parallelism

As discussed in Section 2.7 under “Parallelism and the rise of multi-core”, the last
decade has seen a wealth of research papers and industrial programming models
to aid in writing parallel code, itself building on a long history of focused work
by the (previously niche) parallel programming community. Yet it seems that,
from a general purpose programmer’s perspective, progress has been limited.
There are a wide range of language features to support parallelism at different
levels of abstraction (see Section 2.7 for examples), but even a single abstraction
level there are many competing choices, both between and within languages.
But despite, and perhaps because of all this choice, it is far from clear to a
programmer without parallelism expertise, which language and mechanism to
choose when wishing to accelerate a particular application.

A seemingly reasonable programmer strategy might be to invoke parallel ver-
sions of operations wherever it is safe to do so, e.g. defaulting to a ParallelStream
over a Stream in Java unless the parallel version is unsafe, and leave it to the
run-time system to decide when to actually employ parallelism.33 This strategy
is analogous to other strategies that are often followed during software develop-
ment, such as favouring the most general type for a function argument, making
data immutable when possible, and limiting the visibility of module internals un-
less higher visibility is required. However, this “use parallelism wherever it would
be safe” approach is, at present, naïve, and usually leads to reduced performance
for reasons of task granularity and memory hierarchy effects when running mul-
tiple small threads. This demonstrates that we have a long way to go before
parallel programming becomes truly mainstream.

Currently it often seems that the many language concurrency primitives are
each fittest for a given niche, with no unifying model.

30 https://code.facebook.com/posts/264544830379293/hack-a-new-
programming-language-for-hhvm/

31 https://github.com/Microsoft/TypeScript
32 https://github.com/facebook/flow
33 Determining whether parallel execution is safe might be left to the programmer, as

in the case of parallel streams in Java, or might be facilitated by tool support or
guaranteed by language semantics (e.g. due to language purity).

24

6 The next 7000 programming languages

Is the evolutionary theory wrong? The previous section observed three situations
where languages have counter-fitness aspects (genes). We observe that this is not
unexpected; time and inertia are also important in translating evolutionary fit-
ness to niche occupancy. Even if a species, or language, becomes less fit than
a competitor, its present dominance may still cause it to produces more seeds
in total than the fitter, but less dominant, competitor—even if these seeds in-
dividually are less likely to thrive. Thus changes in fitness (e.g. an upgrading of
the important of security affecting our perceived fitness of C) are likely only to
change the second derivative of percentage niche-occupancy. Incidentally, recent
evidence seems to suggest that dinosaurs were in relative decline to mammals for
around 50 million years before the Chicxulub asteroid impact which completed
the task [39]. We simultaneously argue that Section 5 does correctly reflect niche
occupancy today, and at the same time, in this section propose predictions of
future niche occupancy based on current notions of fitness.

Emboldened by Landin’s success, we now make some predictions—starting
with the ‘elephants in the room’ of the previous section.

6.1 A replacement for C/C++?

The short answer to “What will replace C/C++ in the light of its unsafe fea-
tures?” appears to be “Nothing in the short term”. One explanation for this is
that the C family of languages is so intimately bound to all major operating
systems that its replacement is unthinkable in the short term. One pragmatic
reason beyond simple inertia is that much of the system software tool chain
(compilers, debuggers, linkers, etc.) either directly targets C or is designed to be
most easily used in conjunction with a C software stack. The investment required
to re-target this tool chain is so vast that there is a strong economic argument
to continue using C.

Taking the idea of evolutionary inertia above, the nearest botanical analogue
is perhaps “How long would it take for giant redwoods (sequoia) to be supplanted
by a locally fitter competitor species?”, answered by “rather longer than it takes
moss to colonise a damp lawn”.

That having been said, there are innovations quietly chipping away at the
current “we’ll just have to put up with the insecurities of C/C++”.

One direction is languages such as Rust, that offer better safety guarantees
through types, as well the safe subset of C++ mentioned in Section 3.2.

Another direction is the concept of Unikernel (or ‘library OS’) exemplified
by MirageOS.34 MirageOS is coded in the managed functional-style language
OCaml and exploits its powerful module system. Experiments show that the
additional cost of a managed language (5–10% for low-level drivers) is mitigated
by the reduced need for context-switching to protect against pointer-arithmetic
in unsafe languages [26]. Could the Linux kernel be similarly re-coded? Can the
34 https://github.com/mirage

25

immediate performance penalty be compensated by more flexible and high-level
structuring mechanisms?

A second thrust is “let’s make C secure”. At first this seems impossible be-
cause of pointer arithmetic. But using additional storage to represent pointer
metadata (e.g. base, limit and offset) at run time can give a pointer-safe C im-
plementation; this can be achieved via fat pointers, which change the pointer
representation itself and thus break compatibility with code that does not use
fat pointers [19, 44],35 or via compile-time instrumentation methods that do not
change the representation of pointers and thus facilitate integration with un-
instrumented code [16, 37, 32]. Either way, dynamic bounds checking reduces the
attack surface in that buffer overflows and the like can no longer be exploited
to enable arbitrary code execution—in short the result is no worse (but no bet-
ter than) NullPointerException in Java. Recent work abstracts fat pointers
to capabilities and does this checking in hardware: the Cheri project, e.g. [6],
has a whole C tool-chain replacement (from FPGA-based hardware to compilers
and debuggers) for a hardware-agnostic capability extension instantiated in a
MIPS-like instruction set. The run-time cost of this appears in the order of 1%.
Intel’s MPX36 (Memory Protection Extensions) has a similar aim, but relative
performance data for whole operating systems on MPX is not yet available. As
discussed in Section 5.1, Kell also makes a compelling argument that a safe and
relatively performant implementation of C may be feasible [18].

6.2 From dynamic to static types, to verified software

We envisage that gradual typing [1, 43, 46] will become increasingly prominent
in future languages, whereby static types can be incrementally added to an oth-
erwise dynamically typed program, so that full static typing is enabled once
enough types are present, with type inference algorithms still allowing types to
be omitted to some degree. This captures the “beginner-friendliness” and flexibil-
ity of dynamic types, but facilitates a gradual transition towards the guarantees
that static types provide. Ideas along these lines are explored by Facebook’s
Hack language, as discussed in Section 5.2. Takikawa et al. recently studied the
performance of gradual typing in the context of Racket, with current results sug-
gesting that work is needed to reduce the overhead of crossing a typed/untyped
boundary at run time, and that performance tended to dip as static types were
introduced to programs, unless they were introduced everywhere [45]. Still, it
seems that such performance issues can be solved via a combination of advanced
type inference and different implementation choices, and furthermore types con-
fer many advantages besides performance, especially in relation to refactoring.

A gradual-typing spectrum provides increased benefits as developers invest in
writing more type annotations. As developers devote more time to writing richer

35 A subtlety is that the C standard currently requires pointers to occupy no more
space than the integer type intptr_t. So often fat pointers need to use indirection
or bit-level packing techniques which are both expensive in software.

36 https://en.wikipedia.org/wiki/Intel_MPX

26

specifications they reap the benefits of stronger static and dynamic analysis and
verification. We can see this approach as part of a bigger picture of confidence
of correctness, given the many pressures to create more reliable software. Types
are merely one example of techniques to perform checks on correctness. In ad-
dition to such static analysis, we see the rise of dynamic checks and executable
specifications, from the automated tests that support test-driven development
and agile methods to formally verified software.

We see a unified whole, where types, tests and specifications are complemen-
tary, and can be developed before, during or after the software system (a form of
‘gradual verification’). As the system evolves, the degree of correctness checking
demanded can evolve too, and we foresee developments that make transitioning
along this spectrum a natural progression over the life of a system. A docu-
mented example of formal correctness requirements being added to a system
post-hoc is the Pentium 4 floating-point multiplier [17] (40,000 lines of HDL);
co-development of software and specifications are visible in the CompCert [23]
and CakeML [21] verified compiler projects.

6.3 Increased fragmentation of parallelism support

We would like to optimistically predict that revolutions in programming lan-
guage, compiler and run-time system technology will resolve the situation of
patchwork support for parallelism discussed in Section 5.3. However, we fear
that this is wishful thinking, and that balkanisation may actually increase.

If a programmer is working in a very limited domain and does not require
flexibility for their application to evolve, they may benefit from a domain-
oriented language, such as MATLAB or Julia, for which there is good potential
for automatic parallelism—exploiting domain properties and the lack of hard-
to-parallelise language features—even if this has not been achieved yet. So by
using programming at higher levels of abstraction, thereby trading against lan-
guage flexibility, good and predictable parallel performance is possible. But if
a programmer does require the flexibility offered by more general languages
then the situation becomes more difficult and other trade-offs emerge. A func-
tional language may eliminate the problems of aliasing that make imperative and
object-oriented languages hard to parallelise, but performance is at the mercy
of decisions made by the compiler and run-time system, which can be hard to
control in a declarative setting and yet may need to be controlled to avoid brittle
performance changes as software evolves. A high-level object-oriented language
like Java provides features unrelated to parallelism for high-productivity pro-
gramming, and various libraries catering for parallelism at a relatively high level
of abstraction. But it can still be difficult to achieve high and predictable per-
formance without breaking this abstraction layer, or resorting to otherwise poor
software engineering practices that sacrifice modularity and compositionality. Of
course, there are lower-level languages such as OpenCL that enable fine-grained
performance tuning, but lead to software that is hard to maintain and evolve.

Our prediction is that in domains where exploiting parallelism is essential—
e.g. machine learning, computer vision, graph processing—communities will set-

27

tle on de-facto standard domain-specific languages and libraries that are a good
fit for the task at hand. These approaches will in turn be implemented on top
of lower-level languages and libraries providing access to underlying hardware
and implemented in languages such as OpenCL. We see the greatest potential
for parallelism support in higher-level general-purpose languages to be for dis-
tributed processing, where work can be partitioned at a sufficiently coarse level of
granularity to allow run-time systems to make decisions on parallel deployment
dynamically, without sacrificing parallel speedup in the process.

6.4 Error resilience

As systems grow, and become more distributed, then structured approaches to
error resilience (coping with transient and permanent errors) will become more
important. Section 3.2 explored the Erlang fail-fast model (fail on unexpected
situations and expect your owner to fix things up) along with the suggestion that
functional-style idempotence is more likely to be fruitful in highly distributed
systems than classical imperative-style checkpoint and rollback.

6.5 Supporting better software engineering practices

We foresee a closer integration between languages and the tools that support
them. Rather than being developed separately, languages and tools will be de-
veloped as one in symbiosis. At the time of writing we are beginning to see a move
(back) towards tools being created together with languages. With languages like
Kotlin, we see an example of the requirement to provide excellent tool support
for working with a language being a primary driver for decisions in the design
of the language itself.

Programs and software systems will continue to grow in size, and with this
we foresee a change in how developers work with programs, a move away from
treating programs as text to be edited, and towards graphs to be transformed.
We may no longer edit individual lines of code, but encode and apply transfor-
mations, either in the form of refactorings (building on those currently supported
by sophisticated IDEs for Java and C#) or by writing code that writes (or ed-
its) code, such as those being developed by Atomist.37 This brings to mind the
possibility of code being synthesised from a specification using AI techniques,
which we discuss further in Section 6.6.

Software systems will continue to grow and so we foresee more explicit lan-
guage features for describing modular structures and componentisation. Java 9’s
module system is a good start in this direction, but it does not yet address the
issues of versioned, and independently developed, software components. Modu-
larity helps humans—whose brains sadly have not increased in computational
power at the same rate as the machines that we manufacture—to comprehend,
manage and change these large systems by thinking at appropriate levels of
abstraction. Alternatively, instead of enriching languages with more powerful
37 https://www.atomist.com/

28

features, we can imagine a state where more developers get their work done
with simple languages supported by good tools. Although a code base written
in a more sophisticated language may be smaller, it may also be more difficult
to work with if the developer tools are less powerful. We foresee the speed of
evolution of tooling exceeding that of the languages they support, with the re-
sult that developers may well be able to get more done because they have better
tools, rather than because they have better building blocks.

6.6 Program synthesis and AI

We predict strong potential for advances in artificial intelligence methods to
reduce the human effort associated with programming. In the near future one
can imagine routine learning being regularly deployed to provide smart auto-
completion and refactoring, learning from data on programmer habits collected
from users of a particular IDE. This might go further: automating those laborious
program overhauls that often take hours or days to complete, but during which
one can feel to be in auto-pilot mode. Nevertheless, making such semantics-aware
transformations would appear to go well beyond the pattern-recognition tasks
at which machine learning has been shown to excel. It seems apparent that there
is scope for effective program synthesis in suitably restricted domains, such as
the development of standard device drivers [38]. The prospect of synthesising
a correct implementation of a non-trivial class, given a precise definition of its
interfaces and a set of unit tests that it should pass, seems within reach in the
foreseeable future: recent work on synthesising programs from input-output ex-
amples shows promise [2] and has gained widespread media attention.38 However,
we regard software development in general as a creative process that stretches
human ingenuity to its limits, and thus do not predict general breakthroughs
here unless human-level AI is achieved.

6.7 A non-prediction

In discussing the three elephants in the room of Section 5 we might hope for,
although we do not explicitly predict it, general purpose languages with a unified
concurrency model, which are type-safe, offer a flexible balance between static
and dynamic typing, along with suitability for low-level programming. Indeed
we might hope for a single universal language which is suitable for all niches, as
has been a recurring hope since Landin’s time.

However, the evolutionary model does not predict this. It does predict that
if a language is fitter for multiple niches then it will eventually colonise both.
It says nothing about the existence of such a language, and past attempts to
create universal languages do not add encouragement.

38 https://www.newscientist.com/article/mg23331144-500-ai-learns-to-
write-its-own-code-by-stealing-from-other-programs/

29

Some final words

While we hope to have provided some updated discussion and predictions follow-
ing Landin’s work half a century ago, these can only reflect the present structure
of languages and evolution is ongoing. We wonder what a follow-up article in
another 50 years would say.

Acknowledgements

We are grateful to Sophia Drossopoulou, Stephen Kell, Tom Stuart, Joost-Pieter
Katoen, Flemming Nielson and Bernhard Steffen for their useful feedback on an
earlier draft of this work.

Alastair Donaldson was supported by an EPSRC Early Career Fellowship
(EP/N026314/1).

References

1. Anderson, C., Drossopoulou, S.: BabyJ: from object based to class based pro-
gramming via types. Electr. Notes Theor. Comput. Sci. 82(7), 53–81 (2003),
https://doi.org/10.1016/S1571-0661(04)80802-8

2. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder:
Learning to write programs. CoRR abs/1611.01989 (2016), http://arxiv.org/
abs/1611.01989

3. Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (2002)

4. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change (2nd
Edition). Addison-Wesley Professional (2004)

5. Brauer, W. (ed.): Gesellschaft für Informatik e.V., 3. Jahrestagung, Hamburg,
Deutschland, 8.-10. Oktober 1973, Lecture Notes in Computer Science, vol. 1.
Springer (1973)

6. Chisnall, D., Rothwell, C., Watson, R.N., Woodruff, J., Vadera, M., Moore, S.W.,
Roe, M., Davis, B., Neumann, P.G.: Beyond the PDP-11: Architectural support
for a memory-safe C abstract machine. SIGARCH Comput. Archit. News 43(1),
117–130 (Mar 2015), http://doi.acm.org/10.1145/2786763.2694367

7. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Odersky, M., Wadler, P. (eds.) Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming (ICFP ’00),
Montreal, Canada, September 18-21, 2000. pp. 268–279. ACM (2000), http://doi.
acm.org/10.1145/351240.351266

8. Dean, J., Ghemawat, S.: Mapreduce: a flexible data processing tool. Commun.
ACM 53(1), 72–77 (2010), http://doi.acm.org/10.1145/1629175.1629198

9. Foster, N., Greenberg, M., Pierce, B.C.: Types considered harmful (2008), invited
talk at Mathematical Foundations of Programming Semantics (MFPS), http://
www.cis.upenn.edu/~bcpierce/papers/harmful-mfps.pdf

10. Fowler, M., Beck, K.: Refactoring: Improving the Design of Existing Code. Object
Technology Series, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (1999)

30

11. Gabriel, R.P.: Lisp: Good news, bad news, how to win big (1991), https://www.
dreamsongs.com/WIB.html

12. Gabriel, R.P.: Patterns of Software: Tales from the Software Community. Oxford
University Press, Inc., New York, NY, USA (1996)

13. Gabriel, R.P., White, J.L., Bobrow, D.G.: Clos: Integrating object-oriented and
functional programming. Commun. ACM 34(9), 29–38 (Sep 1991), http://doi.
acm.org/10.1145/114669.114671

14. Garner, S.: Reducing the cognitive load on novice programmers. In: Barker, P.,
Rebelsky, S. (eds.) Proceedings of EdMedia: World Conference on Educational
Media and Technology 2002. pp. 578–583. ERIC (2002)

15. Hathhorn, C., Ellison, C., Rosu, G.: Defining the undefinedness of C. In: Grove,
D., Blackburn, S. (eds.) Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Portland, OR, USA, June
15-17, 2015. pp. 336–345. ACM (2015), http://doi.acm.org/10.1145/2737924.
2737979

16. Jones, R.W.M., Kelly, P.H.J.: Backwards-compatible bounds checking for arrays
and pointers in C programs. In: AADEBUG. pp. 13–26 (1997), http://www.ep.
liu.se/ecp/article.asp?issue=001&article=002

17. Kaivola, R., Narasimhan, N.: Formal verification of the pentium R©4 floating-point
multiplier. In: Proceedings of the Conference on Design, Automation and Test in
Europe. pp. 20–27. DATE ’02, IEEE Computer Society, Washington, DC, USA
(2002), http://dl.acm.org/citation.cfm?id=882452.874523

18. Kell, S.: Some were meant for C: the endurance of an unmanageable language. In:
Torlak, E., van der Storm, T., Biddle, R. (eds.) Proceedings of the 2017 ACM SIG-
PLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward! 2017, Vancouver, BC, Canada, October
23 - 27, 2017. pp. 229–245. ACM (2017), http://doi.acm.org/10.1145/3133850.
3133867

19. Kendall, A.S.C.: Bcc: Runtime checking for C programs. In: USENIX Summer
Conference. pp. 5–16. USENIX (1983)

20. Kennedy, K., Koelbel, C., Zima, H.P.: The rise and fall of High Performance For-
tran: an historical object lesson. In: Ryder, B.G., Hailpern, B. (eds.) Proceed-
ings of the Third ACM SIGPLAN History of Programming Languages Conference
(HOPL-III), San Diego, California, USA, 9-10 June 2007. pp. 1–22. ACM (2007),
http://doi.acm.org/10.1145/1238844.1238851

21. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified imple-
mentation of ML. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014. pp. 179–192. ACM (2014),
http://doi.acm.org/10.1145/2535838.2535841

22. Landin, P.J.: The next 700 programming languages. Commun. ACM 9(3), 157–166
(1966), http://doi.acm.org/10.1145/365230.365257

23. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009), http://doi.acm.org/10.1145/1538788.1538814

24. Lopes, C.V., Maj, P., Martins, P., Saini, V., Yang, D., Zitny, J., Sajnani, H., Vitek,
J.: Déjàvu: a map of code duplicates on github. PACMPL 1(OOPSLA), 84:1–84:28
(2017), http://doi.acm.org/10.1145/3133908

25. Mackinnon, T., Freeman, S., Craig, P.: Endo-testing: Unit testing with mock ob-
jects. In: Succi, G., Marchesi, M. (eds.) Extreme Programming Examined, pp.
287–301. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2001),
http://dl.acm.org/citation.cfm?id=377517.377534

31

26. Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh, B., Gazagnaire, T.,
Smith, S., Hand, S., Crowcroft, J.: Unikernels: Library operating systems for the
cloud. In: Proceedings of the Eighteenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems. pp. 461–472.
ASPLOS ’13, ACM, New York, NY, USA (2013), http://doi.acm.org/10.1145/
2451116.2451167

27. Marlow, S.: Parallel and Concurrent Programming in Haskell. O’Reilly (2013)
28. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with

SPARK. Cambridge University Press (2015)
29. Memarian, K., Matthiesen, J., Lingard, J., Nienhuis, K., Chisnall, D., Watson,

R.N.M., Sewell, P.: Into the depths of C: elaborating the de facto standards. In:
Krintz, C., Berger, E. (eds.) Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2016, Santa Barbara,
CA, USA, June 13-17, 2016. pp. 1–15. ACM (2016), http://doi.acm.org/10.
1145/2908080.2908081

30. Mitchell, J.C.: Concepts in Programming Languages. Cambridge University Press
(October 2002)

31. Murray, D.G., Schwarzkopf, M., Smowton, C., Smith, S., Madhavapeddy, A., Hand,
S.: CIEL: A universal execution engine for distributed data-flow computing. In:
Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation. pp. 113–126. NSDI’11, USENIX Association, Berkeley, CA, USA
(2011), http://dl.acm.org/citation.cfm?id=1972457.1972470

32. Nagarakatte, S., Zhao, J., Martin, M.M.K., Zdancewic, S.: SoftBound: highly com-
patible and complete spatial memory safety for C. In: Hind, M., Diwan, A. (eds.)
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. pp.
245–258. ACM (2009), http://doi.acm.org/10.1145/1542476.1542504

33. Perez, F., Granger, B.E., Hunter, J.D.: Python: An ecosystem for scientific com-
puting. Computing in Science and Engg. 13(2), 13–21 (Mar 2011), http://dx.doi.
org/10.1109/MCSE.2010.119

34. Petricek, T., Guerra, G., Syme, D.: Types from data: Making structured data first-
class citizens in F#. In: Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 477–490. PLDI ’16, ACM,
New York, NY, USA (2016), http://doi.acm.org/10.1145/2908080.2908115

35. Ritchie, D.: The development of the C language. In: Lee, J.A.N., Sammet, J.E.
(eds.) History of Programming Languages Conference (HOPL-II), Preprints, Cam-
bridge, Massachusetts, USA, April 20-23, 1993. pp. 201–208. ACM (1993), http:
//doi.acm.org/10.1145/154766.155580

36. Ruby, S., Copeland, D.B., Thomas, D.: Agile Web Development with Rails 5.1.
Pragmatic Bookshelf (2017)

37. Ruwase, O., Lam, M.S.: A practical dynamic buffer overflow detector. In: Proceed-
ings of the Network and Distributed System Security Symposium, NDSS 2004, San
Diego, California, USA. The Internet Society (2004), http://www.isoc.org/isoc/
conferences/ndss/04/proceedings/Papers/Ruwase.pdf

38. Ryzhyk, L., Walker, A., Keys, J., Legg, A., Raghunath, A., Stumm, M.,
Vij, M.: User-guided device driver synthesis. In: Flinn, J., Levy, H. (eds.)
11th USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’14, Broomfield, CO, USA, October 6-8, 2014. pp. 661–676. USENIX
Association (2014), https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/ryzhyk

32

39. Sakamoto, M., Benton, M., Venditti, C.: Dinosaurs in decline tens of millions of
years before their final extinction. Proceedings of the National Academy of Sciences
113(18), 5036–5040 (5 2016)

40. Schäfer, M.: Refactoring tools for dynamic languages. In: Proceedings of the Fifth
Workshop on Refactoring Tools. pp. 59–62. WRT ’12, ACM, New York, NY, USA
(2012), http://doi.acm.org/10.1145/2328876.2328885

41. Seibel, P.: Coders at Work. Apress, Berkeley, CA, USA, 1st edn. (2009)
42. Severance, C.: Javascript: Designing a language in 10 days. Computer 45, 7–8

(2012)
43. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Proceedings of

the Scheme and Functional Programming Workshop. pp. 81–92 (2006)
44. Steffen, J.L.: Adding run-time checking to the portable C compiler. Softw., Pract.

Exper. 22(4), 305–348 (1992), https://doi.org/10.1002/spe.4380220403
45. Takikawa, A., Feltey, D., Greenman, B., New, M.S., Vitek, J., Felleisen, M.: Is

sound gradual typing dead? In: Bodík, R., Majumdar, R. (eds.) Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. pp. 456–
468. ACM (2016), http://doi.acm.org/10.1145/2837614.2837630

46. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: from scripts to pro-
grams. In: Tarr, P.L., Cook, W.R. (eds.) Companion to the 21th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2006, October 22-26, 2006, Portland, Oregon, USA. pp.
964–974. ACM (2006), http://doi.acm.org/10.1145/1176617.1176755

47. Ungar, D., Chambers, C., Chang, B.W., Hölzle, U.: Organizing programs without
classes. Lisp Symb. Comput. 4(3), 223–242 (Jul 1991), http://dx.doi.org/10.
1007/BF01806107

33

