
Sparse Record and Replay with Controlled Scheduling
Christopher Lidbury
Department of Computing
Imperial College London

London, UK
christopher.lidbury10@imperial.ac.uk

Alastair F. Donaldson
Department of Computing
Imperial College London

London, UK
alastair.donaldson@imperial.ac.uk

Abstract
Modern applications include many sources of nondetermin-
ism, e.g. due to concurrency, signals, and system calls that
interact with the external environment. Finding and repro-
ducing bugs in the presence of this nondeterminism has
been the subject of much prior work in three main areas: (1)
controlled concurrency-testing, where a custom scheduler
replaces the OS scheduler to find subtle bugs; (2) record and
replay, where sources of nondeterminism are captured and
logged so that a failing execution can be replayed for debug-
ging purposes; and (3) dynamic analysis for the detection
of data races. We present a dynamic analysis tool for C++
applications, tsan11rec, which brings these strands of work
together by integrating controlled concurrency testing and
record and replay into the tsan11 framework for C++11 data
race detection. Our novel twist on record and replay is a
sparse approach, where the sources of nondeterminism to
record can be configured per application. We show that our
approach is effective at finding subtle concurrency bugs in
small applications; is competitive in terms of performance
with the state-of-the-art record and replay tool rr on larger
applications; succeeds (due to our sparse approach) in replay-
ing the I/O-intensive Zandronum and QuakeSpasm video
games, which are out of scope for rr; but (due to limitations
of our sparse approach) cannot faithfully replay applications
where memory layout nondeterminism significantly affects
application behaviour.

CCS Concepts • Software and its engineering → Soft-
ware testing anddebugging;Concurrent programming struc-
tures.

Keywords record and replay, controlled concurrency test-
ing, data race detection, concurrency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00
https://doi.org/10.1145/3314221.3314635

ACM Reference Format:
Christopher Lidbury and Alastair F. Donaldson. 2019. Sparse Record
and Replay with Controlled Scheduling. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA.
ACM,NewYork, NY, USA, 18 pages. https://doi.org/10.1145/3314221.
3314635

1 Introduction
Controlled concurrency testing has proven successful in find-
ing subtle bugs in concurrent programs, by exploring a di-
verse set of schedules (see e.g. [33, 62, 64, 78, 87]). However,
such techniques are known to be limited by the assumption
that the thread scheduler is the only source of nondeter-
minism. For example, in an empirical study of systematic
scheduling algorithms, many benchmark programs, such as
Apache’s httpd, had to be excluded due to their reliance on
external factors such as the network [78].
In contrast, record and replay tools aim to capture the

external factors that affect the behaviour of a system as
the system runs, so that an execution can be faithfully re-
played (see e.g. [47, 53, 57, 66]). The degree to which replay
is faithful varies, but many systems aim to be extremely thor-
ough by monitoring, intercepting and facilitating replay of
virtually all sources of nondeterminism. Unlike controlled
concurrency testing, these tools typically leave threads to be
scheduled by the regular OS scheduler, recording whatever
schedule results. This is fine if a bug happens to be triggered,
but does not support systematic or controlled-randomized
exploration of thread schedules to find subtle bugs. Faith-
ful record and replay is also difficult from an engineering
perspective, often requiring surgical changes to the OS or
underlying hardware, and demanding high resource usage
due to the many details that must be kept track of.

Our aim in this work is to lift controlled concurrency test-
ing so that it can be applied to larger and more realistic
settings, by drawing on ideas from record and replay, sacri-
ficing faithfulness in order to keep overhead low. To do this,
we take a sparse approach: we assume the relevant sources
of nondeterminism affecting an application come from (a)
the thread scheduler (including the handling of signals), and
(b) input from the network, peripherals such as keyboard
and mouse, and well-understood system calls that can be
configured for particular applications of interest. We present

576

https://doi.org/10.1145/3314221.3314635
https://doi.org/10.1145/3314221.3314635
https://doi.org/10.1145/3314221.3314635

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Christopher Lidbury and Alastair F. Donaldson

a record and replay mechanism that captures minimal infor-
mation about these sources of nondeterminism that suffice
to enable efficient controlled concurrency testing for a range
of applications. The advantage of this is that execution is
efficient and recording overhead is low. The price is that
the tool cannot handle systems whose behaviour is influ-
enced significantly by other sources of nondeterminism (e.g.
memory layout) without programmer intervention.
We have implemented our approach as a tool, tsan11rec,

driven by the following objectives: to maximise the extent to
which the concurrency semantics of the system under test
can be explored, in order to find subtle bugs; to integrate
the tool with state-of-the-art data race detection, capturing
an important class of concurrency bugs; and to preserve as
much parallelism in the system under test as possible for
efficient record and replay. While race detection, controlled
concurrency testing and record-and-replay are all valuable
techniques in isolation, their combination is potentially ex-
tremely valuable to allow the finding of races (thanks to race
detection) that arise under rare thread schedules (thanks to
controlled concurrency testing) such that the thread sched-
ule and environmental factors leading to the race can be
replayed for debugging (thanks to record-and-replay).

We present a large experimental evaluation showing that
tsan11rec is effective at reliably finding and replaying weak
memory-related bugs on a set of benchmarks previously used
to evaluate the CDSchecker concurrency testing tool [64],
and competitive in terms of performance with the state-of-
the-art rr record and replay tool [66] on a number of larger
applications, such as Apache httpd, PARSEC benchmarks
and Pbzip. In particular, for programs that rely heavily on
parallelism our tool often out-performs rr since our approach
allows threads to run in parallel as much as possible, rather
than being sequentialized. In some cases sparsity turns out
to be key to enabling record and replay. For example, closed-
source proprietary device drivers make it very difficult to
intercept and control all nondeterminism arising in the exe-
cution of video games. To find and reproduce bugs related
e.g. to game/display communication it would be necessary
to control this nondeterminism. However, the nondetermin-
ism typically has no impact on core game logic. To find
and replay game logic bugs it is thus profitable to sparsely
ignore game/display communication when recording, and
allow this communication to proceed freely during replay.
We demonstrate this by applying tsan11rec to the SDL-based
video games Zandronum and QuakeSpasm, both of which
are out of scope for rr due to communication between the
game and the OpenGL interface, through ioctl, that rr is un-
able to record and replay. We show that we are able to record
and replay a historical Zandronum bug related to an error
in client-server communication when the game is played in
internet multi-player mode.
After recapping necessary background (§2), we present

our contributions via the following paper structure:

void T1() {

nax = 1;

x.store(1, std::memory_order_release); // A

y.store(1, std::memory_order_release); // B

}

void T2() {

if (y.load(std::memory_order_relaxed) == 1 && // C

x.load(std::memory_order_relaxed) == 0) // D

x.store(2, std::memory_order_relaxed);

}

void T3() {

if (x.load(std::memory_order_acquire) > 0) // E

print(nax);

}

Figure 1. A racy C++11 program using atomic operations

Controlled scheduling (§3) We detail our scheduling ap-
proach, which enables exploration of the concurrency se-
mantics of the original program by allowing a context switch
after every visible operation, splitting up high-level opera-
tions into multiple irreducible visible operations. By building
on top of tsan11 [52], race detection is seamlessly integrated.
We preserve the parallelism as much as possible by only
sequentializing visible operations; invisible regions of code
in different threads can run in parallel.

Sparse record and replay (§4) We describe our sparse ap-
proach to record and replay, focusing on the interplay be-
tween controlled scheduling and record and replay, and in
particular discuss how the granularity at which nondeter-
minism is captured and recorded can be adapted on a per
application basis.

Experimental evaluation (§5) We present a large evalu-
ation applying tsan11rec to concurrency benchmarks, the
Apache httpd, PARSEC and Pbzip applications and bench-
marks, and the Zandronum and QuakeSpasm games. Our
evaluation includes comparisons with rr.

2 Background
We provide relevant background on controlled scheduling,
record and replay, and the tsan and tsan11 race detectors.

Controlled scheduling Controlled scheduling techniques
(sometimes referred to as stateless model checking) override
the system scheduler in order to perform schedule-space
exploration for an application, e.g. systematically or in a
controlled randomized fashion [33, 62, 64, 78, 87]. Exploring
interesting schedules can reveal subtle bugs that the system
scheduler would trigger with low probability, and having
control over which schedules are explored is important for
replay of bug-inducing schedules.

Scheduling decisions are made at scheduling points, which
correspond to visible operations: a visible operation is an
operation performed by a thread that may influence the
behaviour of other threads. As an example, consider the
program fragment shown in Figure 1. A controlled scheduler

577

Sparse Record and Replay with Controlled Scheduling PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

void sig_handler() {

quit.store(1);

}

void Listener() {

while (!quit.load()) {

int res = poll(&server_fds, 1, 100);

if (res == 0) continue;
CHECK(res > 0 && server_fds.revents == 1 && "poll error");

char *buf = new char[100];
recv(server_fd.fd, buf, 100, 0);

std::unique_lock<std::mutex> lck (mtx);

requests.push(buf);

}

}

void Responder() {

while (!quit.load()) {

std::unique_lock<std::mutex> lck (mtx);

if (requests.size() == 0) continue;
char *buf = requests.front();

requests.pop();

lck.unlock();

Process(buf);

send(server_fd.fd, buf, 100, 0);

delete[] buf;

}

}

Figure 2. Generic client for processing and returning re-
quests sent from some server.

will begin by choosing (via some choice strategy) which of
the visible operations A, C or E to schedule first. If it chooses
A, then at the next scheduling point the choice is between B,
C and E, etc. The non-atomic increments of nax and nay are
invisible operations, and do not constitute scheduling points.

Record and replay The ability to record and replay has
many useful applications, notably allowing consist reproduc-
tion of bugs in nondeterministic programs. In general, record-
ing and replaying involves identifying relevant sources of
nondeterminism, and enforcing the same resolution of this
nondeterminism during replay as was observed while record-
ing. The granularity at which nondeterminism is controlled
varies between approaches. To see how useful record and
replay is, consider the example program shown in Figure 2.
The program receives buffers from a server, processes them,
and then sends them back. But what happens if the connec-
tion fails or we get a “poll error”? The ability to capture
an execution that shows an error by connecting to a real
server, and then repeatedly replay the executionwithout hav-
ing to connect to a real server, allows us to reliably explore
the cause of the error. This is particularly useful for larger
programs that utilise complicated communication protocols,
and have time consuming setups or hard to find bugs.

In general, a program can have many such sources of non-
determinism. Aside from the thread interleaving and value
of atomic reads, other sources include interaction with the

file system, system calls, certain libc functions (e.g. the con-
ditions under which malloc can fail are not deterministic),
instructions that query the state of the CPU (such as the
x86 RDTSC for reading the processor’s time-stamp counter),
or in some cases even the value of pointers (e.g. iterating
through an ordered container of pointers).
The choice of what nondeterminism to record, and the

method of recording and replaying, is a substantial area of
research. In this paper we compare our approach with the
current state-of-the-art tool, rr [65], which achieves perfor-
mance overheads compared with native execution of as low
as 1.5× for some applications, as well as low storage over-
heads. It generally enforces a priority-based first come first
served strategy for scheduling, with each thread given a time
slice before yielding. Execution is sequentialized so that only
one thread runs at a time. We present a detailed discussion
of other approaches to record and replay in §6.

C++11 dynamic race detection We present our work in
the context of C/C++, though our approach to controlled
scheduling and record and replay is conceptually more gen-
eral. The C/C++11 standards define threads, atomics and
various constructs for inter-thread communication, together
with a description of a memory model that defines how op-
erations are ordered across threads, when synchronisation
occurs, and what values may be read from memory [7].
Working with low level atomics and other inter-thread

constructs can be very difficult, and their misuse frequently
leads to buggy concurrent programs. ThreadSanitizer (tsan)
is an efficient dynamic race analysis tool aimed at C++ pro-
grams [74]. The tool performs compile-time instrumentation
of the source program, in which all (atomic and non-atomic)
accesses to potentially shared locations, as well as fence op-
erations, are instrumented with calls into a statically linked
run-time library. In general all visible operations, including
most libc functions and system calls, are instrumented. This
library implements a vector clock algorithm for tracking the
happens-before relation [28, 48], using shadow memory to
keep track of accesses to all locations. Requiring a simple
compiler flag to be activated, tsan is very easy to use. It
is also fast, with runtime overheads of around 10× to 12×
(competitive performance, given the nature of the analysis),
although memory overhead can be high.

C++11 features such as atomics and threads are accepted
by tsan, but the standard tool ignores most of the semantics
of the C++11 memory model. A recent extension, tsan11, has
added semantics for a large fragment of the C++11 memory
model, allowing it to find races arising due to weak memory
behaviours that regular tsan would miss [52]. As an example,
consider again the program of Figure 1. For the conditional
in thread T2 to pass, both the stores A and B in T1 must
have happened, but an earlier value of x must be read. The
end result is that the print in T 3 will be racy as the the load
in T3 now reads the value stored in T2. This cannot occur

578

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Christopher Lidbury and Alastair F. Donaldson

under sequential consistency, but can occur under C++11
semantics; the race is detected by tsan11 but not tsan.

Amajor limitation of tsan and tsan11 is that the executions
explored by the tool are at the mercy of the OS scheduler.
Bugs that require unusual interleavings to trigger almost
never manifest. The tsan11rec tool presented in this work
builds on tsan11, combining the strengths of the tsan ap-
proach with controlled scheduling and record and replay
to allow the detection and reproduction of bugs that would
be unlikely to be discovered, and harder still to repeatedly
reproduce, using the OS scheduler alone.

3 Scheduling
Recall that one of our main aims in the design of tsan11rec
is to combine controlled scheduling with record and replay
in a manner that directly incorporates state-of-the-art race
detection. We now describe the mechanics of the scheduler;
in particular, how the scheduler builds on and interacts with
the existing tsan11 instrumentation library, and how the
scheduler handles nondeterminism. The mechanics of the
scheduler will be important for describing the design of our
record and replay facilities in §4.

Rather than using an overarching scheduler thread, details
of scheduling decisions are stored in a designated piece of
shared state. The threads interact indirectly via this shared
state using a protocol, to cooperatively determine when they
should be scheduled. The protocol builds on the tsan11 li-
brary, and has been designed so that new scheduling strate-
gies can be easily added. We focus on two strategies in this
work: random and queue. With the random strategy, the next
thread to schedule is chosen at random at each scheduling
point, via a pseudo-random number generator (PRNG) ini-
tialized with some fixed initial seed. This provides controlled
random scheduling similar to that described in [78]. With
the queue strategy, threads are scheduled in a first-come-
first-served manner.

3.1 Protocol Details
Recall from §2 that the tsan tool and its tsan11 extension
performs compile-time instrumentation of the low-level visi-
ble operations, including atomic operations and system calls
(syscalls). Each time such an operation is reached, control
jumps into a tsan library function. Execution of some of these
library functions may be sequentialized, but threads execut-
ing outside these library functions—i.e. executing invisible
operations—are free to run in parallel.
Our tsan11rec tool essentially acts as an additional layer

of interception on top of the existing tsan11 instrumenta-
tion. On reaching a visible operation, a thread jumps into
a tsan11 library function, e.g. __tsan_atomic_load4 for a
4-byte atomic load, which will additionally call tsan11rec
functions that interact with the scheduler logic to determine
when the thread can proceed.

Figure 3. Sequentialized critical sections and parallel in-
visible operations. Blue wavy arrows represent scheduler-
imposed ordering; black arrows represent program order.

Communication with the tsan11rec instrumentation layer
uses a protocol based on two functions, Wait() and Tick():

Wait() – Block this thread until the scheduler activates it.
Tick() – Choose a thread to activate.

A thread enters Wait() right before it executes a visible op-
eration. Depending on the scheduling strategy used, the state
of the scheduler may need to be updated when Wait is called:
the queue strategy requires the thread to enqueue itself; the
random strategy requires no action. If the thread already
happens to be the next thread due for scheduling, Wait()
returns without blocking. A thread enters Tick() once it
has completed a visible operation. By executing Tick(), the
thread applies the scheduling strategy (random or queue) to
choose the next thread to be scheduled and update the sched-
uler state to reflect this. In the case of the queue strategy this
involves incrementing the current queue position; for the
random strategy this involves choosing the next thread id at
random. When the thread returns from the Tick() function
it is free to continue performing invisible operations unhin-
dered until it reaches the next visible operation, where it will
enter Wait(). This allows for parallelism between threads,
as sections of invisible code are unordered. Multiple invisible
operations that can execute in parallel are illustrated in Fig-
ure 3. Not that, with the random strategy, a thread does not
have to reach Wait() to be in the list of schedulable threads.
The combination of a visible operation and associated

scheduling-related code, wrapped in a Wait() and Tick()
pair, is called a critical section.

3.2 Special Cases
The approach described in §3.1 of wrapping the tsan instru-
mentation for a visible operation in a critical section works
directly for most visible operations. We now discuss a num-
ber of operations that require extra attention to detail, mainly
because their semantics necessitate specific updates to the
scheduler state, or because they cannot be represented as a
simple critical section.

579

Sparse Record and Replay with Controlled Scheduling PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Calls to functions whose names begin with intercept_
are already inserted by tsan11 to instrument visible opera-
tions. We have modified the implementations of these func-
tions to accommodate our instrumentation.

Thread management Thread creation, deletion and join-
ing are all treated as visible operations. This is because they
must update the state of the scheduler, and as such will af-
fect the scheduling of threads going forward. To handle this,
we introduce three scheduler functions: ThreadNew(tid),
ThreadJoin(tid) and ThreadDelete().

The ThreadNew and ThreadJoin functions are added dur-
ing instrumentation of thread creation and joining primitives.
The ThreadNew(tid) function, called by the parent of the
newly created thread, enables the new thread within the
scheduler. The ThreadJoin(tid) function will block itself
until thread tid has finished, and as such must instead dis-
able itself in the scheduler, and also mark itself as waiting
on tid. On completion, a thread calls ThreadDelete, which
involves (a) enabling the parent thread if it is waiting for this
thread to finish, and (b) disabling itself in the scheduler. All
three operations are wrapped in a Wait() and Tick() pair.

Mutexes The mutex operations trylock, lock and unlock are
all visible and require instrumentation. Trylock can simply be
wrapped in a Wait() and Tick() pair as for regular visible
operations. Unlock is similar to thread deletion in that it
must also re-enable threads that were blocked waiting on
the mutex, although in this case we only need to re-enable
one of the blocked threads; the thread that is chosen depends
on whether the queue or random strategy is being used.
Mutex lock poses an interesting issue in that a thread at-

tempting to acquire a mutex will block if the lock operation
fails. To account for this, we modified the instrumented ver-
sion of mutex lock to be as shown in Figure 4. This changes it
to a trylock loop, with a critical section associated with each
attempt at locking. Note that this is the native trylock, not
the instrumented version. The MutexLockFail(m) function
is similar to ThreadJoin: a thread calling this function dis-
ables itself from the scheduler and informs the scheduler that
it is waiting on m. The thread will then reenter Wait, but as it
is disabled it will block until it is re-enabled and then sched-
uled to run. The MutexUnlock(m) function is called when a
thread releases a mutex, and will re-enable one thread that
is disabled due to waiting on m.

There is no Wait nor Tick inside MutexLockFail(m) nor
MutexUnlock(m). Another thread can acquire the mutex be-
tween a thread being re-enabled and it attempting the trylock.
This is OK: the thread will simply block itself again.

Condition variables Condition variables allow control
over when certain threads will wake up and try to acquire
a mutex. When a thread initially acquires a mutex, it may
check a condition required for it to proceed, and if it fails,
release the mutex and block itself via the condition variable.

int intercept_mutex_lock(void *m) {

int res = EBUSY;

while (res == EBUSY) {

Wait();

res = trylock(m); // native version of trylock

if (res == EBUSY) {

MutexLockFail(m);

}

Tick();

}

return res;

}

Figure 4. Instrumented mutex lock.

This thread will only wake up and try to reacquire the mutex
when another thread notifies it via the condition variable.
The conditional is checked via the conditional wait function;
waking up one or all of the waiting threads is performed via
the signal and broadcast functions, respectively.
The conditional wait accepts a timer, determining the

length of time after which the thread unblocks itself. This
timer represents a physical time. This is in contrast to the
scheduler’s ticker, which represents a logical time. This dif-
ference between physical and logical means that from the
perspective of the scheduler, the conditional’s wakeup timer
is nondeterministic. Semantically speaking, a thread can
wake up from the timer and acquire the conditional’s mutex
before another thread can, even if the associated time is very
long. We choose to handle this by not disabling the thread if
it calls a conditional wait with a timer. Despite not being dis-
abled when timed, a thread can still eat a conditional signal,
and so should still mark itself as waiting on the conditional
in the scheduler.

For the three conditional functions we provide correspond-
ing CondWait(m, t), CondSignal(m) and CondBroadcast(m)
scheduler functions. CondSignal(m) and CondBroadcast(m)
simply wake up one thread and all threads waiting on m re-
spectively. The interaction between the instrumentation and
the scheduler for conditional signal and broadcast is sim-
ple, with the instrumentation simply calling the scheduler
function in a Wait() and Tick() pair.

Conditional wait is a little more involved, and details are
shown in Figure 5. Between the Wait and the Tick, a thread
informs the scheduler that it is performing a conditional wait,
via CondWait. This informs the scheduler that the thread is
either blocked waiting for a signal, or performing a timed
conditional wait, so that while not blocked it can nevertheless
eat a signal. The thread then releases the mutex, informing
the scheduler via the MutexUnlock scheduler function de-
scribed earlier that this has been done. Finally, the thread en-
ters the intercepted version of mutex_lock, described above.
Because this starts with a Wait, in the case of an untimed
signal, the thread will block until it is re-enabled by a condi-
tional signal or broadcast. By using distinct critical sections
to separate a thread marking itself as being blocked on a

580

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Christopher Lidbury and Alastair F. Donaldson

void intercept_cond_wait(void *m, bool timed) {

Wait();

CondWait(m, timed);

mutex_unlock();

MutexUnlock(m);

Tick();

intercept_mutex_lock();

}

Figure 5. Instrumented conditional wait.

signal, and attempting to reacquire the mutex, we allow the
possibility for another thread to be scheduled in between,
possibly acquiring the mutex.
Once a thread has reacquired the mutex, it will typically

recheck the condition it was originally waiting on. If it is
not satisfied, it will call cond_wait again. This is where
the risk of deadlock comes in, as if it was the only thread
signaled and it reenters intercept_cond_wait, it will not
signal other threads first, and all threads that are blocked
by the conditional will remain blocked. We want preserve
any potential deadlocks in the underlying program, and so
do not limit this from happening; we are also careful not to
introduce new deadlocks.

Signals We briefly describe our treatment of signals and
signal handlers, noting that these are distinct from the signals
associated with conditional wait operations described above.
We focus on asynchronous signals, which can be received
by processes at any time, and thus contribute an additional
source of nondeterminism. This is distinct from synchronous
signals, e.g. SIGSEGV, which are raised by the thread as and
when certain operations are performed. Unlike in the case of
e.g. a memory load operation, which has a designated pro-
gram point that can be intercepted to facilitate interaction
with the scheduler, a signal can arrive at any time. The stan-
dard also specifies a signal function, that binds a handler
function to a specific signal.
Scheduling with signals is handled by simply marking

the entrance to the signal handler, and the aforementioned
signal function, as visible operations. From a scheduling
perspective, besides the arrival of a signal, signals are not a
problem. Recording and replaying signals is where things
become difficult, which we discuss in §4.3.

3.3 Liveness
While the scheduler strives to ensure that all possible pro-
gram behaviours can be explored in principle, in practice,
depending on the strategy, this can lead to massive slow-
downs in particular cases. For example, suppose a thread is
scheduled and undertakes a vast number of invisible oper-
ations, or calls a sleep function for some duration, before
finally issuing a visible operation. If all other threads end up
blocked waiting to perform visible operations and the sched-
uler doesn’t give them a chance to run, the performance of

the program may be drastically impacted. This can become
particularly problematic when dealing with programs that
rely on responsiveness, such as real-time applications.

To cope with this, we slightly reduce the scheduler’s abil-
ity to explore any possible schedule by having the scheduler
force a reschedule in such cases. By forcing a reschedule
after n milliseconds, the probability of exploring a schedule
whereby a thread performs two visible operations consec-
utively separated by more than n milliseconds is greatly
reduced. Conveniently for us, tsan has a background thread,
which we configure to call our Reschedule() function every
n milliseconds, for some given n. Because the Reschedule()
function relies on physical time, it introduces nondetermin-
ism into the scheduler.

4 Record and Replay
We now discuss the record and replay mechanism we have
implemented, with the aim of answering the following ques-
tions: What do we mean by “recording” an execution and
then replaying said execution later? How do we formalise a
recording? What makes replaying an execution valid? What
should we record and what should we not record?

When a program executes, certain visible operations will
lead to nondeterminism. Recording an execution therefore
means capturing information about these visible operations
in a form that can be used to reproduce the execution during
replay. We call this captured information the demo file, or
demo for short. We also refer to an execution that is replay-
ing a demo as a replay, and that the replay is synchronised,
unless something has gone wrong with the replay such that
execution has diverged from what was recorded, in which
case we say it is desynchronised.
This leaves us with the question of what it means for

a replay to desynchronise. A demo is defined as a series
of constraints arising from the recorded execution, which
the replay is required to satisfy. The tool will attempt to
enforce these constraints on the program during replay, and
as long as it can, the replay is deemed to be synchronised.
If at any point the tool is unable to enforce a constraint on
the program, we say the replay has hard desynchronised, in
which case the tool will abort. In some cases, the replay
may abide by the constraints, but appear to diverge from
the recorded execution, for example, by producing console
output in a different order. We call this soft desynchronisation.
To illustrate an extreme case of this, the empty demo is
trivially synchronised for any replay, but will lead to soft
desynchronisation practically everywhere unless the system
under test is highly deterministic.

The record and replay mechanism is built into the sched-
uler we discussed in §3. In cases where a nondeterministic
choice needs to be made that is unrelated to scheduling (and
so not handled by the queue nor random strategy) a PRNG
is used, seeded by two calls to rdtsc().

581

Sparse Record and Replay with Controlled Scheduling PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

For the most part, tsan11rec avoids the need for user an-
notation, however, there are some cases where they are un-
avoidable; this is shown in §5.4.

4.1 Motivating Example
To help lay out the reasoning and technical explanation given
in the rest of this section, we start off with an example pro-
gram. The program fragment in Figure 2 (already discussed
briefly in §2) shows a simple client that repeatedly receives a
char buffer from a server, applies a transformation to it, then
sends it back. We discuss the behaviours of the application
that need to be recorded in order to enable faithful replay,
vs. those features that need not be recorded.

What to record The obvious case here is the interleaving
of threads. Recording this will ensure that the order of oper-
ations to the atomic locations quit and mtx, and the order of
the syscalls used throughout will be the same during replay.
Other operations are invisible, and thus will not affect other
threads or introduce nondeterminism.
System calls that interact with the environment can be

seen as inputs to the program, which in this case determines
how many requests to handle and the contents of each re-
quest. For example, poll informs us on whether there is data
to be read from the server, and thus needs to be recorded, as
do the system calls recv and send.
The signal handler in this example is used to trigger the

end of the program. The arrival of the signal is asynchronous,
and comes from outside the program. During replay the tool
will need to ensure that the same signal arrives at the same
point in logical time.

What to ignore The first, and likely most contentious ele-
ment, is the layout of memory. This will of course depend on
the program in question, but in this example, and most of the
programs we encounter, the position of objects in memory
will have no effect on the rest of the program. If the request
queue was instead an ordered set of char pointers, then it
would matter, as the pointer values will determine the order
in which requests are considered during iteration.

4.2 Interleaving
As explained in §4.1, the ordering of visible operations must
be preserved during replay. We describe how the random
and queue strategies store ordering-related information.

To recap the strategies described in §3: the random sched-
uler chooses which thread to allow to run the next visible
operation randomly after each visible operation has com-
pleted, while the queue scheduler is first come first serve for
whichever threads attempts to perform a visible operation.

For the random strategy, the entire thread interleaving is
encapsulated in the PRNG. Therefore, no information besides
the two seeds used for the PRNG is required.

For the queue strategy, the ordering during record depends
on the order in which threads happen to reach Wait(), which

depends on physical timing. To encode the order so that it
can be enforced during replay, a file called QUEUE is used.
This file records (a) a map specifying, for each thread id, the
first tick at which the thread should be scheduled, and (b)
an ordered list of ticks to be consumed by threads each time
they leave a critical section—the tick that a thread consumes
on leaving a critical section informs the thread as to the next
tick at which it is to be scheduled. Run-length encoding is
used to efficiently record the case where a thread is scheduled
multiple times in succession.

There is clearly a trade-off between these strategies.Where
the random strategy stores no data, the queue strategy may
need to store data on every visible operation. The queue
strategy will be much faster however, as it is unlikely to be
blocked in Wait() unless another thread is already critical.

4.3 Signals
We discussed signals briefly in §3.2, but deferred discussion
to this section as most of the difficulties are in attempting to
replay them. Synchronous signals are ignored (e.g. SIGSEGV,
SIGPIPE) as these should reoccur at the same point in the
execution without the help of our tool. To clarify, it is en-
tering the signal handler that is the visible operation. When
inside the signal handler, a thread cannot interact with the
rest of the process except though atomic operations, which
are themselves visible. From this, we can say that it does
not matter at which point between a Tick() and following
Wait() pair that the signal handler is entered.

In tsan11rec, any asynchronous signal that arrived during
recording becomes a synchronous signal upon replay. When
a thread receives a signal, it records the value of the tick
seen during the most recent Tick(), along with the signal
value in a file called SIGNAL. For example, consider the case
in Figure 2 where the Responder thread, T2, has just per-
formed the atomic load on tick 5, but has not yet attempted
to acquire the lock. It receives the signal and performs a
Wait() and Tick() so that it can enter the signal handler.
The SIGNAL file will therefore have the line “2 5 15”, in-
dicating that thread T2 receives signal 15 at tick 5. During
replay, when the Responder thread calls Tick() during tick
5, it will raise signal 15 itself at the end of Tick(). It does
not matter at which precise point between Tick() and the
following Wait() that the signal arrived at during recording;
it will float to the end of Tick() as shown in Figure 6.

4.4 System Calls
As discussed in §3.2, system calls are a significant source of
nondeterminism in an application. To ensure that relevant
properties of an application are preserved during replay, we
need to record the results of relevant system calls. This is a
fundamental challenge that any record-and-replay system
must face, and state-of-the-art tools such as rr [66] aim to
be as comprehensive as possible in the system calls they
support, so that they can be applied directly to a wide range

582

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Christopher Lidbury and Alastair F. Donaldson

Figure 6. Signals are replayed immediately after the preced-
ing tick.

of applications. In contrast, the idea behind our sparse ap-
proach to identify a minimal subset of system calls such that
recording these system calls suffices to enable faithful replay
of particular applications of interest. At a high level, we ap-
proached this by incrementally adding support for system
calls based on a trial-and-error process of first using strace
to understand the full set of system calls issued by an appli-
cation, and then repeatedly attempting to record and replay
the application with tsan11rec, incrementally adding support
for additional system calls through analysis of the sources of
replay failures. We emphasise that this process did require
quite some manual effort, and would need to be iterated
further to handle applications with significantly different
system call requirements compared to our case studies.

The term syscall is a bit of a misnomer, as both tsan and the
instrumentation detailed in this paper will instead intercept
the glibc wrappers around the syscalls, instead of the syscall
directly. These glibc functions are much easier to use on
behalf of the programmer, as they will take care of system
specific details, pushing the arguments onto the stack and
interpreting the results returned by the kernel. We still use
syscall throughout, as it is in the underlying syscall where
the nondeterministic behaviours occur.
Each syscall takes a variable number of user-allocated

buffers and fills them with the appropriate data, before set-
ting errno and returning some value. As these are sources
of nondeterminism, the return value, errno and any appro-
priate buffers will be compressed and stored in a demo file
called SYSCALL. During replay the actual data returned will
be overwritten by the data in SYSCALL. Only the interaction
with the SYSCALL file is part of the critical section, which
reduces contention in the scheduler.

As an example, consider the Listener thread in Figure 2
performing the poll and recv syscalls in succession. The re-
turn value, error number and two elements in the server_fds
structure must be stored for poll; the return value, error
number and contents of the buffer must be stored for recv.
These will be treated as character buffers and have a simple
run length encoding applied.

One of the difficulties that arises from adding a syscall is
the knock-on effect it can have with respect to other syscalls.
Consider, for example, the syscalls that interact with the
filesystem, create, open, read, etc. If you intercept open,

on the assumption that you may not have a valid file de-
scriptor during replay where you did during record, you will
then have to intercept every syscall that works with that
file descriptor. What starts out as a single interception be-
comes potentially hundreds of intercepted syscalls. There is
a delicate balance to be struck between those syscalls that
need to be recorded to make important execution features
deterministic during replay, vs. those syscalls that are bet-
ter left un-recorded because (a) determinism of replay does
not depend on them being recorded, and (b) recording them
leads to a snowball effect where many other syscalls must
also be recorded to avoid desynchronisation.

We have added syscall support to tsan11rec in a demand-
driven manner by using strace to identify important calls
for key applications of interest. The current set of syscalls
supported includes read, write, recvmsg, recv, sendmsg,
accept, accept4, clock_gettime, ioctl, select and bind.
These have allowed us to get a significant number of appli-
cations up and running, including the applications studied
in our evaluation, modulo a few workarounds (detailed in
§5); these applications issue many additional system calls
that we have found it unnecessary to record—unnecessary
in the sense that simply re-issuing the system call during re-
play has no observable effect on the application’s behaviour.
Sometimes whether a call must be recorded depends on the
file descriptors that the call receives. For instance, for all of
our case studies it never proves necessary to record read
and write calls whose file descriptors correspond to files
in the file system, but it is necessary to record these calls
if the associated file descriptors are associated with pipes
used for inter-process communication. Rather than this set of
syscalls being a starting point towards full syscall coverage,
our view is that efficient record and replay that preserves par-
allelism can benefit from selective syscall recording, based
on application-specific knowledge, and we envision the tool
supporting a core set of essential syscalls, and being con-
figurable with support for further syscalls to suit particular
record and replay scenarios. For example, to handle a pro-
gram such as htop would require instrumentation of the
interaction with the /proc filesystem, but doing this in the
general case would be wasteful, and maybe even harmful if
future calls depended on this interaction.

4.5 Asynchronous Events
Asynchronous events are specific events that do not fit in
with any of the other categories discussed. An important
characteristic is that they are not wrapped in a Wait() and
Tick(), either because it was infeasible to do so during
recording, or because it would create a lot of unnecessary
overhead. These events still need to be replayed to ensure
the replay remains synchronised. Currently there are two
types of events: Reschedule and Signal_wakeup.

The reschedule event was discussed in §3.3. It is necessary
to include this to ensure that the PRNG will be called the

583

Sparse Record and Replay with Controlled Scheduling PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Figure 7. Right shows how reschedules are floated above
the Tick().

same number of times in each critical section. To see why
the signal wakeup event is necessary, consider again a signal
being received in the context of the example of Figure 2.
This time, suppose the Responder thread receives the signal
while it is disabled trying to acquire the lock. Assume that
the thread disabled itself on tick 10, the signal arrives and
the thread re-enables itself during tick 12, and then enters
the signal handler on tick 14. It is not OK for the thread to
simply not disable itself on tick 10 during replay, as the pool
of enabled threads for the scheduler to choose from during
ticks 10 and 11 is different between recording and replaying,
which will affect the choice the scheduler will make.

As with signals, all asynchronous events are replayed
synchronously, with all events that occur between a Tick()
and the following Wait() floating up to the previous Tick().
This is shown in Figure 7. These events are stored in the
ASYNC file.

5 Evaluation
To evaluate the controlled scheduling abilities of tsan11rec,
we compare the strategies on the CDSchecker benchmark
suite (§5.1). We then use larger applications to compare
tsan11rec with rr [66]. Of the few record-and-replay tools
that are publicly available, we chose to compare with rr be-
cause (a) it represents the state-of-the-art, (b) it is similar to
tsan11rec in terms of the kinds of applications it aims to sup-
port. We consider programs that bring challenges related to
networking, signals, I/O and real-time constraints: Apache’s
httpd web server (§5.2), the PARSEC benchmarks and pbzip
(§5.3), and two first-person shooter games built on the SDL
library (§5.4). The SDL case studies showcase applications
that tsan11rec can handle that are out of scope for rr, due
to communication between the game and the OpenGL in-
terface. In contrast, we also discuss practical limitations of
tsan11rec that rr does not face related to the SQLite database
application and Firefox’s SpiderMonkey (§5.5).

Throughout, we describe howwe evolved the sparse record-
ing facilities of tsan11rec, and many practical challenges we
faced along the way; our experience is that such challenges,
which seem fundamental to record and replay, are typically
described only briefly if at all in the literature. We hope our
exposition will be valuable to other researchers.

Common experimental setup All experiments were run
under Ubuntu 14.04 LTS on an Intel i7-4770 8x3.40GHz plat-
form with 16GB RAM. The tsan11 and tsan11rec tools were
built on top of clang revision 286384. The version of rr used
is 5.1.0. As a key goal of our work is to apply race detection
to record and replay with controlled concurrency testing,
most of the testing is done with race detection enabled, even
when using rr. We still show times for rr without race detec-
tion for reference. We use native, rr, tsan11, tsan11+rr and
tsan11rec to refer to a program running without instrumen-
tation, under rr, with tsan11 instrumentation, under rr with
tsan11 instrumentation, and under tsan11rec, respectively.

5.1 CDSchecker Litmus Tests
Overview The small programs (roughly 100 LOC each)
used in prior work to evaluate CDSchecker [64] are useful to
assess whether tsan11rec’s controlled scheduling improves
on tsan11’s ability to find races (including races related to
weak memory). As these programs are closed, the scheduler
and memory model are the sources of nondeterminism.

Experimental setup The experiments are run in the fol-
lowing four modes: tsan11, where tsan11 (which does not
use controlled concurrency testing) finds races; tsan11 + rr,
where tsan11 finds races with rr recording; and tsan11rec
rnd and tsan11rec queue, where tsan11rec finds races using
the random and queue strategies, respectively. We measure
the runtime of each tool on each benchmark, averaged over
1000 runs, reporting standard deviation and remarking on
the coefficient of variation (CV)—the ratio of the standard
deviation and mean.

Results and discussion Table 1 summarises the results.
The Time columns show mean execution times, with stan-
dard deviation. Because these are short-running tests, whose
behaviour depends intimately on themanner inwhich threads
interleave, the variance across runs is fairly high, with the
CV usually exceeding 1, with the exception of the longer-
running results for rr, for which the CV is always less than 1
and usually less than 0.5. Rate columns show the percentage
of all executions that exposed a data race.

Comparing the tsan11rec rnd results with the tsan11 and
tsan11rec queue results, we see that randomized controlled
schedulingmeans tsan11rec findsmore races across all bench-
marks except chase-lev-deque and dekker-fences. This is
because tsan11 runs at the mercy of the OS scheduler, which
tends to explore similar schedules on repeated runs, and in
these small programs typically causes the main thread to
run to completion before other threads are scheduled. The
price for this is higher runtime, e.g. mcs-lock and ms-queue
suffer slow-downs of around 2× compared with tsan11; we
attribute this to the total ordering of visible operations im-
posed by tsan11rec. The rr results show huge increases due
to a constant overhead applied to all programs. But as rr is

584

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Christopher Lidbury and Alastair F. Donaldson

Table 1. Comparison over CDSchecker benchmarks between tsan + rr, tsan11 and tsan11rec with controlled random and
queue scheduling. Each benchmark was executed 1000 times in each mode. The “Time” columns shows the mean execution
time (ms) and standard deviation (in parentheses). The “Rate” column shows the percentage of runs that exhibited data races.

tsan11 + rr tsan11 tsan11rec rnd tsan11rec queue
Test Time Rate Time Rate Time Rate Time Rate

barrier 590 (14.45) 0.0% 8 (9.14) 0.0% 4 (5.23) 37.5% 6 (4.99) 0.0%
chase-lev-deque 579 (166.69) 0.5% 0 (1.94) 5.9% 1 (3.07) 0.2% 2 (3.78) 0.0%
dekker-fences 1776 (1208.54) 49.9% 2 (4.02) 50.3% 4 (4.83) 38.7% 3 (4.46) 52.8%
linuxrwlocks 579 (126.45) 0.3% 2 (4.18) 0.1% 4 (4.93) 62.4% 3 (4.50) 0.0%
mcs-lock 574 (13.71) 0.0% 3 (4.45) 0.0% 5 (5.23) 77.0% 3 (4.47) 0.1%
mpmc-queue 574 (13.71) 0.0% 3 (4.49) 0.0% 5 (5.00) 60.5% 3 (4.46) 0.0%
ms-queue 3093 (100.19) 100.0% 91 (64.13) 100.0% 93 (80.68) 100.0% 52 (62.60) 100.0%

designed for larger applications, this overhead will usually
become insignificant in more realistic examples.

We examined a trace from chase-lev-deque to understand
why tsan11rec rnd detects fewer races than tsan11. We found
that from the creation of thread 2 to the point of the race,
thread 1 must perform 29 operations before thread 2 per-
forms just 4 operations in order for the race to manifest. The
probability of this happening under uniform random sched-
uling is very low. We were able to coerce a race report out
of the program by moving the creation of thread 2 to later in
the program. This shows that different scheduling strategies
will affect how effective we are at finding data races, and
that probabilistic concurrency testing (PCT) can be effective
at prying out concurrency bugs [12].

5.2 httpd
Overview Apache’s httpd [3] is a widely-used modular
http server that makes heavy use of concurrency to han-
dle many simultaneous connections. For record and replay
it is of further interest due to its dependence on external
network input. We were able to handle httpd by capturing
the system calls described in §4.4, with one workaround:
the accept system call, which listens for incoming connec-
tions, relies on epoll_wait to listen for events. This returns
user-allocated pointers, file descriptors, and other data in
a union with no easy way of knowing the active member,
something which tsan11rec cannot currently handle. We
worked around this by using httpd’s option to switch to a
simpler but slightly less efficient syscall, poll, which instead
simply listens to file descriptors; the results presented here
employ this workaround. A strength of rr is that it can han-
dle httpd without this workaround, due to its non-sparse
record and replay mechanism.

Experimental setup We tested httpd version 2.4.28 in single-
process-multiple-thread mode using ab, an Apache-provided
program for server stress testing. We sent 10,000 queries
across 10 concurrent threads to an httpd server for each
of the setups shown in Table 2, averaging results over 10
runs. We report on standard deviation and again remark on

the CV. In the table, rnd and queue refer to configurations
of tsan11rec, and the presence or absence + rec indicates
whether recording was enabled.

Results and discussion The results are shown in Table 2.
The columns under Race reports show regular results with
race reporting enabled; the data under No reports shows re-
sults where race-checking-capable tools do perform race
checking behind the scenes, but do not actually emit race
reports. We make this distinction because tsan11 detects
so many races that the overhead of generating reports no-
ticeably affects performance; results when fewer races are
detected are more representative of the performance one
would expect using a future version of httpd in which many
races are fixed. The Throughput columns indicate the mean
number of queries the server responds to per second. The
Rate column is the mean number of race reports generated
(only relevant for tsan11-based configurations). For each,
standard deviation is shown in parentheses. Variance, as
measured by CV, is low: below 0.8 in all cases and usually
less than 0.5. The Overhead columns indicate how much
slower performance is compared with native execution.
Without reporting, tsan11 already incurs a 3× overhead

compared to native. Comparing results for native with rnd
and rnd+rec, we find that adding controlled random sched-
uling increase this overhead massively, to between 79–89×
depending on whether recording is enabled. This is in the
same ball park as the overhead associated with rr: 61× with-
out race checking and 160×with tsan11 instrumentation (but
still with the actual reporting of races disabled). In contrast,
when our queue strategy is used, the overhead compared
with native drops to 9× and 21× with recording disabled vs.
enabled. We attribute the gap between rr/rnd and queue to
httpd’s heavy reliance on parallelism and frequent use of
shared mutexes. This parallelism is removed by rr because
the tool sequentializes the execution of threads, while our
random scheduler only allows the thread that it has chosen
to be scheduled next to execute a visible operation, even if
many other threads are ready to execute visible operations.

585

Sparse Record and Replay with Controlled Scheduling PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 2. Comparison of throughput and race rate between native, tsan11, rr and tsan11rec for Apache’s httpd. Results are
averaged over 10 runs. “Throughput” shows mean throughput in queries per second, “Rate” is the number of races detected
per run (where relevant). Standard deviations are shown (in parentheses). Overhead is computed relative to native throughput.

Race reports No reports
Setup Throughput Overhead Rate Throughput Overhead

Native N/A N/A N/A 28895 (4622.56) 1×
rr N/A N/A N/A 475 (6.08) 61×
tsan11 3687 (294.28) 8× 113 (19.85) 9824 (1432.01) 3×
tsan11 + rr 86 (63.20) 336× 34 (16.80) 181 (46.37) 160×
rnd 141 (8.92) 205× 162 (38.78) 367 (33.26) 79×
queue 818 (310.33) 35× 381 (73.62) 3261 (843.67) 9×
rnd + rec 142 (11.85) 203× 155 (31.03) 326 (38.94) 89×
queue + rec 513 (85.34) 56× 360 (64.28) 1387 (249.61) 21×

In contrast, the queue strategy allows threads to perform visi-
ble operations largely on demand. Turning to the results with
race reporting enabled, we see that the queue strategy has
the highest race detection rate, improving on uncontrolled
tsan11. All other race detecting configurations lower the race
detection rate; we believe this is because rr and rnd reduce
the number of queries being responded to concurrently.

Comparing demo file sizes when recording is enabled, the
tsan11rec demo files are around 48MB for both strategies,
dropping to 4.8MB when only 1000 queries are issued, sug-
gesting that demo file size increases linearly with the number
of requests at a rate of around 4.8KB per request. This could
be reduced further with a more aggressive compression strat-
egy, but would likely increase the time overhead. The demo
file for rr is significantly smaller: 6.6MB for 10,000 queries,
which goes down to 3.9MB with 1000 queries, implying a
rate of around 0.3KB per request plus a constant 3.6MB.

5.3 PARSEC and pbzip
Overview Wenext turn to the PARSEC benchmark suite [11]
and pbzip application [68], both widely used for evaluating
concurrency analysis tools. For PARSEC, we consider the
benchmarks used to evaluate iReplayer [53], however, three
of these would not work on our system (dedup and swaptions
do not compile, and canneal crashes).

Experimental setup Each PARSEC (version 3.0) bench-
mark was run with the ‘simlarge’ test size shipped with the
benchmarks, using 4 threads. Pbzip (version 2-1.1.13) was
used to compress a 400MB file with 4 threads. We ran each
benchmark 10 times per tool configuration and report av-
erage runtimes. We report on standard deviation and again
remark on the CV. A small number of races were discovered
for some benchmarks, and the race detecting tools largely
agreed on the number of races; we do not detail these further.

Results and discussion Table 3 shows the average time
taken to run each benchmark with each tool configuration,
with standard deviation. Variance, as measured by CV, is

reasonably low (CV is always below 1). For the tsan11rec re-
sults, + rec indicates whether recording was enabled. Table 4
is computed from the data of Table 3, and reports the over-
head associated with running using each tool configuration
compared with native execution.
With the exception of bodytrack and fluidanimate, the

overhead tsan11rec brings over that of tsan11 is small, and for
all benchmarks whether recording is enabled or notmakes lit-
tle difference. However, the overhead associated with tsan11
+ rr (i.e., running tsan11-instrumented code under rr) is signif-
icant compared with the tsan11 overhead alone, despite the
fact that running under rr without race detection is generally
efficient. Interestingly, rr without race detection performs
less well on blackscholes compared with the tsan11rec con-
figurations. Digging into this, we found that the benchmark
distributes work between threads at the start of execution
and then lets threads runwith little interaction. This high par-
allelism/low communication execution plays to the strengths
of tsan11rec, where invisible operations are left to run in par-
allel, but is bad for rr, which forces sequentialization across
all operations.

5.4 SDL-based Games
Overview Simple DirectMedia Layer (SDL) is a library that
consolidates input, graphics and various other forms of I/O
under a single interface [75], and is typically used for games.
OnUbuntu 16.04, SDL communicateswith X11 for I/O, pulseau-
dio for sound andOpenGL for display.We investigated record
and replay for two SDL-based games: Zandronum [73], a
multi-player Doom port (≈400kLOC), and QuakeSpasm [71]
(≈88kLOC), a port of Quake. While these games support cus-
tom record and replay by logging high level commands, by
working at the threading and system call level tsan11rec can
facilitate record and replay of bugs that rely on low-level
interactions to manifest. We discuss below successful record
and replay of a bug in Zandronum that arises due to commu-
nication of game data between the game client and server,
which is not present in the game’s native replay.

586

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Christopher Lidbury and Alastair F. Donaldson

Table 3. Execution times (s) for tool configurations across the pbzip and PARSEC benchmarks, averaged across 10 runs.
Standard deviation is shown (in parentheses).

tsan11rec
Program native tsan11 rr tsan11 + rr rnd queue rnd + rec queue + rec
pbzip 9.2 (0.31) 11.7 (0.49) 66.4 (3.11) 77.2 (1.87) 18.1 (0.30) 12.3 (0.66) 18.2 (0.30) 12.9 (1.29)
blackscholes 0.4 (0.03) 0.8 (0.07) 1.0 (0.01) 2.0 (0.00) 0.7 (0.07) 0.7 (0.06) 0.7 (0.07) 0.7 (0.07)
fluidanimate 0.8 (0.04) 16.0 (1.27) 2.1 (0.01) 38.5 (0.49) 46.4 (3.39) 39.0 (2.67) 50.4 (2.09) 39.8 (1.96)
streamcluster 1.7 (0.19) 38.8 (4.41) 113.3 (3.13) 181.1 (1.79) 103.0 (0.59) 48.5 (2.69) 102.8 (0.18) 41.6 (2.61)
bodytrack 0.5 (0.02) 7.2 (0.36) 3.8 (0.94) 32.7 (0.94) 50.0 (0.40) 7.3 (0.33) 50.0 (0.78) 7.8 (0.23)
ferret 1.2 (0.07) 14.0 (0.86) 8.7 (0.44) 81.5 (2.20) 16.4 (0.66) 14.6 (0.60) 16.7 (0.71) 14.5 (0.37)

Table 4.Overhead compared with native execution for tool configurations across the pbzip and PARSEC benchmarks, computed
from the results of Table 3.

tsan11rec
Program native tsan11 rr tsan11 + rr rnd queue rnd + rec queue + rec
pbzip 1.0× 1.3× 7.2× 8.4× 2.0× 1.3× 2.0× 1.4×
blackscholes 1.0× 2.0× 2.7× 5.3× 1.9× 1.9× 1.9× 1.8×
fluidanimate 1.0× 20.3× 2.7× 48.9× 59.0× 49.7× 64.2× 50.6×
streamcluster 1.0× 22.4× 65.4× 104.5× 59.5× 28.0× 59.3× 24.0×
bodytrack 1.0× 13.5× 7.2× 61.4× 93.8× 13.8× 93.9× 14.7×
ferret 1.0× 11.9× 7.4× 69.5× 14.0× 12.5× 14.3× 12.4×

Our initial attempts to replay these SDL-based games
failed due to communication between the application and
the closed and proprietary NVIDIA OpenGL module on our
experimental platform via ioctl syscalls.Weworked around
this by ignoring ioctl during recording, and letting it run
natively during replay. This works because communication
with the display driver has no effect on the game logic. Dis-
play interaction led to further problems with initialization of
the input module. We resorted to adapting the scheduler to
let the application run uninstrumented until SDL module ini-
tialization had completed, adding a custom scheduler hook
to allow the application and scheduler to synchronize related
to this. These problems are not specific to our approach or
tool—indeed rr cannot handle these SDL-based games for
similar reasons—but are rather a fundamental limitation of
recording and replaying applications that make heavy use
of I/O. To handle such applications, one either needs to fully
mock out I/O components, requiring a tremendous engi-
neering effort, or carefully determine those components that
should not be instrumented and specify this via annotations.
With these workarounds we were able to handle both

games such that gameplay is displayed on screen during re-
play; gameplay would not be visible if the I/O subsystem had
been mocked out, and visibility might be useful in debugging
problems that manifest as visual artifacts.

Experimental setup Measuring game performance in a
way that allows us to compare the overhead of our sched-
uling strategies is non-trivial. The only metric we have is
the frame-rate (fps)—the number of frames drawn to the
screen per second. QuakeSpasm and Zandronum are capped

at 60 fps, and will try to maintain this frame-rate, dipping if
they cannot keep up. If the frame-rate is reduced too much,
the games become unplayable. As a best-effort evaluation
mechanism, we report on whether the games are playable
under various tool combinations. Additionally, we found that
it was possible to remove the frame cap for Quakespasm,
so we report ball-park figures for the overheads of various
tool configurations when playing this game un-capped. (We
could not find a way to reliably remove the frame cap for
Zandronum.) As mentioned previously, we do not compare
with rr, as it cannot record or replay the games. We used Zan-
dronum revision 10013:dd3c3b57023f updated to use SDL2,
QuakeSpasm version 0.93.0, and SDL version 2.0.5.

Results anddiscussion With the random tsan11rec sched-
uler, Zandronum was unplayable even with recording dis-
abled: the frame-rate dropped to below 1 fps. This is due to
the random scheduler starving the main thread by frequently
scheduling other less critical threads (e.g. the audio thread).
In contrast, the queue scheduler could maintain the full 60
fps with recording enabled; for 100 seconds of play the demo
size grew to just under 8MB, of which 6.5MB was for syscalls.

To test tsan11rec’s ability to replay network communica-
tion, we found a previously fixed Zandronum bug [88] that
relies on an error in this communication to manifest. This
bug involves incorrect game state information being sent
from the server to the client during a map change. We repli-
cated the bug with a server and two clients, one of which
was recording. After about 12 minutes the bug appeared
and resulted in a demo file of 43MB. We then replayed the
demo and the bug appeared as expected. This demonstrates

587

Sparse Record and Replay with Controlled Scheduling PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

that our tool can be used to accurately capture and facilitate
replay of bugs in large networked applications.
For QuakeSpasm, we found that it was possible to play

the game without dropping below 60 fps using tsan11 and all
tsan11rec configurations. To further investigate the overhead
of each tool configuration on this case study, we removed
the fps cap, then played the game 5 times per tool configu-
ration, for 90 seconds per play, enabling a mode where the
game’s fps is periodically appended to a file. We made a best
effort to play the game in a similar manner on each run, but
inevitably there will still be high variation in game activity
between plays. Indicative results are shown in Table 5. The
rnd and queue configurations refer to tsan11rec with the ran-
dom and queue strategies, respectively, and with recording
disabled, while the “+ rec” tool configurations are similar
but with recording enabled. The “Overhead” column shows
the overhead observed compared with native execution. The
take-away from these results is that the instrumentation
overhead for both tsan11 and tsan11rec is surprisingly mod-
est (generally less than 2×), and that the additional overhead
associated with enabling recording in tsan11rec is low.

5.5 Limitations: SQLite and SpiderMonkey
A downside of our sparse approach to record and replay is
that different applications may have incompatible require-
ments regarding what should be recorded and what must
not be recorded. For example, recording memory layout and
attempting to enforce the same layout on replay would not
only slow down the SDL games (see §5.4) to the point of
being unplayable, but would also cause problems related to
communication with the display driver. Yet, the behaviour of
some programs will depend on the memory layout, such as
iterating over an ordered C++ container that holds pointers.
In particular, we experimented with applying tsan11rec

to the SQLite database management library [76] and to Spi-
derMonkey, Firefox’s JavaScript management engine [60].
While tsan11rec was applicable for controlled scheduling
of these applications, we found that replay would rapidly
desynchronise due to memory layout nondeterminism caus-
ing conditionals that rely on the values of pointers to evaluate
differently during replay. Tools such as rr can handle these
programs reliably by enforcing the same memory layout.
This is a trade-off: the non-sparse approach of rr can lead
to higher overheads, as demonstrated in §5.2 and §5.3. An
alternative to adapting the record-and-replay tool so that
it always enforces memory layout determinism would be
to adapt the application of interest so that default memory
allocation is replaced with a deterministic memory allocator.

6 Related Work
Controlled scheduling A large amount of work has gone
into the use of scheduling strategies as a form of state space
exploration (e.g. [29, 30, 61, 62, 78, 87]) and on techniques

aimed at reducing the size of the state space, such as dynamic
partial-order reduction [31, 89]). A particularly notable con-
trolled scheduling tool, in terms of successful practical ap-
plication, is Microsoft’s CHESS [62], which aims to system-
atically explore all interleavings of a test scenario. Similar
to our approach, each visible instruction has an associated
custom wrapper that intercepts the real instruction, calling
into the CHESS scheduler.
Schedule bounding techniques, notably preemption- and

delay-bounding [26, 61], have been shown to be successful in
prioritising the order in which thread schedules are explored
during controlled concurrency testing. They prioritise ex-
ploring schedules that exhibit small numbers of preemptions
between threads, in line with empirical evidence that bugs
rarely require large numbers of preemptions in order to man-
ifest [56]. Combining such techniques with the tsan11rec
algorithm is an appealing idea in principle, but is hindered
by the assumption that the program under test takes a fixed
input and that the scheduler is the only source of nonde-
terminism. This assumption allows running the program
again and again trying different schedules. In the context
of tsan11rec, which can be used to record and replay ap-
plications where the environment presents other forms of
nondeterminism, the manner in which the program interacts
with its environment is captured with respect to a particular
thread schedule, and other thread schedules might involve
completely different environmental interactions. We believe
a more promising approach would be to bring ideas from the
probabilistic concurrency testing (PCT) algorithm [12] to the
tsan11rec setting, to introduce a degree of skewing to our
random strategy so that it explores more diverse schedules.

Record and replay Record and replay has been a signifi-
cant area of research, with many tools being created to facil-
itate it [2, 9, 19, 24, 32, 36, 39, 40, 43–45, 47, 50, 53, 54, 57, 57,
65–67, 72, 79, 81]. The general premise behind them is simi-
lar: identify order nondeterminism and input nondeterminism,
and create techniques to capture them while recording and
control them during replay.
Various tools extend the OS in some way or require spe-

cific hardware [2, 6, 9, 19, 20, 24, 47, 50, 79, 81]. This has the
benefit of giving the tool access to much more of the system,
such as memory pages and process information. For exam-
ple, Scribe [47] will directly modify the system scheduler,
instead of coercing it, and achieves slowdowns as low as
1.05×. However, this severely hits the usability of the tool,
as it requires the user to deploy a modified OS.

Other tools reside entirely in user space [10, 15, 32, 34, 43–
45, 49, 51, 53, 54, 57, 66, 67, 72, 80, 84], and trade performance
for usability. This is the category that tsan11rec falls into.
Ease of use is particularly important in persuading users to
adopt the tool, rr [66] in particular allows the user to record
a program by simply passing the binary to rr as a parameter,

588

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Christopher Lidbury and Alastair F. Donaldson

Table 5. Indicative frames per second (fps) result captured by playing Quakespasm for 90 seconds five times per tool
configuration, and capturing the fps reports recorded by the game. Frame-rate results are reported for the minimum, maximum,
median and mean case, as well as the 25th and 75th quartiles.

Min 25th Median 75th Max Mean Overhead
Native 291 369 400 428 502 400.4 1.0×
tsan11 125 193 225 275 431 233.8 1.7×
rnd 128 205 238 281 421 247.1 1.6×
queue 84 188 233 273 435 233.3 1.7×
rnd + rec 113 178 212 253 366 216.8 1.8×
queue + rec 86 161 185 227 348 193.0 2.1×

and as such has become the definitive tool for record and re-
play. We have performed an extensive comparison with rr in
§5, and note that while rr outclasses tsan11rec in some appli-
cations, and can handle applications that are out of scope for
tsan11rec (see §5.5), rr shows significantly higher overhead
compared with tsan11rec for a number of applications that
rely on a high degree of parallelism for performance. Further,
our sparse approach, with suitable workarounds, enables
record and replay for graphical applications (the SDL-based
games of §5.4) that rr cannot currently handle.
Because it builds on tsan11, which itself uses compiler

instrumentation and a modified libcxx, tsan11rec shares sim-
ilarities with tools that depend on language implementation
or library-level support [1, 13, 13, 18, 36, 58]. Notable exam-
ples here include R2 [36] and IntelliTrace [58].
Whole system replay aims to record all system nonde-

terminism [14, 19, 22, 24, 25, 27, 53, 77]. Among these, the
recent iReplayer tool [53] performs record and replay in-situ,
avoiding many of the problems (e.g. memory layout issues)
that otherwise come from running the record and replay
executions under different processes.

Some tools focus on the order-nondeterminism, allowing
them to retain their parallelism and thus reducing the over-
head of multi-threaded application [25, 42, 59, 63, 70, 86].
Castor [57] will provide each thread with its own buffer
for storing information, and serialize them at a later time.
tsan11rec also fits into this category, as it will both preserver
parallelism of invisible operations and apply a scheduling
strategy to resolve this nondeterminism.

An alternative to recording a program’s nondeterminism
is to remove it, making some or all aspects of the program
deterministic [5, 8, 16, 17, 21, 55]. For example, Dthreads [55]
ensures that memory accesses are deterministic on each
execution. Such approaches can have a significant probe
problem by removing the behaviour necessary for certain
bugs to manifest, in return for avoiding the performance
overhead associated with handling order-nondeterminism.

Multi-version execution Multi-version (or multi-variant)
execution (MVE) is a method for concurrently running mul-
tiple processes that are expected to behave in a semantically
similar manner [41, 46, 69, 82, 83]. MVE can be used to detect

security vulnerabilities in applications: if a variant diverges,
this could indicate that an attacker has modified the process
in some way [46, 82, 83]. It can also be used for running dif-
ferent analyses on identical processes, that would not work
when run together on the same process, such as the clang
sanitizers [69]. Most MVE systems hinge on a special moni-
tor thread that controls the generation an maintenance of
a number of variants. Keeping the variants in sync with re-
spect to nondeterministic behaviours presents many of the
same problems that are associated with record and replay.

7 Conclusion
We have presented tsan11rec, which brings together con-
trolled scheduling, record and replay and dynamic data race
detection for the dynamic analysis of C/C++11 applications.
Our experimental evaluation demonstrates that the tool is
in many cases competitive in terms of performance with
rr, a state-of-the-art record and replay tool, in some cases
out-performing rr due to tsan11rec’s ability to preserve par-
allelism in applications under test to a high degree. We have
also shown that our tool is capable of recording and replaying
SDL-based video games, by exploiting our sparse approach
to avoid recording aspects of game/display communication
that are fundamentally hard to control. The flip side of our
sparse approach is that by limiting what is recorded, our
tool desynchronises on uncontrolled forms of nondetermin-
ism, such as that related to memory layout; by capturing
this form of nondeterminism tools such as rr do not suffer
from this problem. Two exciting avenues for future work
include investigating a spectrum of recording granularities
to bridge the gap between our sparse approach and stricter
approaches in a configurable manner, and to investigate
bug detection using a richer range of scheduling strategies,
including schedule bounding [26, 61, 62] and probabilistic
concurrency testing [12].

Acknowledgments
This work was supported by a PhD studentship funded by
GCHQ, and EPSRC projects EP/N026314/1 and EP/R006865/1.

589

Sparse Record and Replay with Controlled Scheduling PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

References
[1] Bowen Alpern, Jong-Deok Choi, Ton Ngo, Manu Sridharan, and

John M. Vlissides. 2001. A Perturbation-Free Replay Platform for
Cross-Optimized Multithreaded Applications. In Proceedings of the
15th International Parallel & Distributed Processing Symposium (IPDPS-
01), San Francisco, CA, USA, April 23-27, 2001. IEEE Computer Society,
23. https://doi.org/10.1109/IPDPS.2001.924957

[2] GautamAltekar and Ion Stoica. 2009. ODR: output-deterministic replay
for multicore debugging. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA,
October 11-14, 2009, Jeanna Neefe Matthews and Thomas E. Anderson
(Eds.). ACM, 193–206. https://doi.org/10.1145/1629575.1629594

[3] Apache Software Foundation. 2018. Apache httpd. https://httpd.
apache.org/dev/devnotes.html

[4] Remzi H. Arpaci-Dusseau and Brad Chen (Eds.). 2010. 9th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2010, October 4-6, 2010, Vancouver, BC, Canada, Proceedings. USENIX
Association. http://www.usenix.org/event/osdi10/tech/full_papers/
osdi10_proceedings.pdf

[5] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. 2010. Ef-
ficient System-Enforced Deterministic Parallelism, See [4], 193–206.
http://www.usenix.org/events/osdi10/tech/full_papers/Aviram.pdf

[6] David F. Bacon and Seth Copen Goldstein. 1991. Hardware-assisted Re-
play of Multiprocessor Programs. In Proceedings of the 1991 ACM/ONR
Workshop on Parallel and Distributed Debugging (PADD ’91). ACM,
New York, NY, USA, 194–206. https://doi.org/10.1145/122759.122777

[7] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and TjarkWeber.
2011. Mathematizing C++ concurrency. In POPL. 55–66.

[8] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan
Grossman. 2010. CoreDet: a compiler and runtime system for deter-
ministic multithreaded execution, See [38], 53–64. https://doi.org/10.
1145/1736020.1736029

[9] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble. 2010.
Deterministic Process Groups in dOS, See [4], 177–191. http://www.
usenix.org/events/osdi10/tech/full_papers/Bergan.pdf

[10] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards,
Ron Murray, Milenko Drinić, Darek Mihočka, and Joe Chau. 2006.
Framework for Instruction-level Tracing and Analysis of Program Ex-
ecutions. In Proceedings of the 2Nd International Conference on Virtual
Execution Environments (VEE ’06). ACM, New York, NY, USA, 154–163.
https://doi.org/10.1145/1134760.1220164

[11] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC benchmark suite: characterization and architectural im-
plications. In 17th International Conference on Parallel Architecture and
Compilation Techniques, PACT 2008, Toronto, Ontario, Canada, October
25-29, 2008, Andreas Moshovos, David Tarditi, and Kunle Olukotun
(Eds.). ACM, 72–81. https://doi.org/10.1145/1454115.1454128

[12] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and San-
tosh Nagarakatte. 2010. A randomized scheduler with probabilistic
guarantees of finding bugs, See [38], 167–178. https://doi.org/10.1145/
1736020.1736040

[13] Brian Burg, Richard Bailey, Andrew J. Ko, and Michael D. Ernst. 2013.
Interactive record/replay for web application debugging. In The 26th
Annual ACM Symposium on User Interface Software and Technology,
UIST’13, St. Andrews, United Kingdom, October 8-11, 2013, Shahram
Izadi, Aaron J. Quigley, Ivan Poupyrev, and Takeo Igarashi (Eds.). ACM,
473–484. https://doi.org/10.1145/2501988.2502050

[14] Anton Burtsev, David Johnson, Mike Hibler, Eric Eide, and John Regehr.
2016. Abstractions for Practical Virtual Machine Replay. In Proceedings
of the 12th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, Atlanta, GA, USA, April 2-3, 2016, Vishakha
Gupta-Cledat, Donald E. Porter, and Vivek Sarkar (Eds.). ACM, 93–106.
https://doi.org/10.1145/2892242.2892257

[15] M. E. Chastain. 1999. MEC. (January 1999). https://lwn.net/1999/0121/
a/mec.html

[16] Heming Cui, Jirí Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu,
Junfeng Yang, Garth A. Gibson, and Randal E. Bryant. 2013. Parrot:
a practical runtime for deterministic, stable, and reliable threads. In
ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, USA, November 3-6, 2013, Michael Kaminsky and Mike
Dahlin (Eds.). ACM, 388–405. https://doi.org/10.1145/2517349.2522735

[17] Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo, and Junfeng
Yang. 2011. Efficient deterministic multithreading through schedule
relaxation, See [85], 337–351. https://doi.org/10.1145/2043556.2043588

[18] P. Deva. 2018. Chronon. (2018). http://chrononsystems.com/blog/
design-and-architecture-ofthe-chronon-record-0

[19] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and
Peter M. Chen. 2014. Eidetic Systems. In 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’14, Broomfield,
CO, USA, October 6-8, 2014., Jason Flinn and Hank Levy (Eds.). USENIX
Association, 525–540. https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/devecsery

[20] Joseph Devietti, Brandon Lucia, Luis Ceze, andMark Oskin. 2009. DMP:
deterministic shared memory multiprocessing. In Proceedings of the
14th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2009, Washington, DC, USA,
March 7-11, 2009, Mary Lou Soffa and Mary Jane Irwin (Eds.). ACM,
85–96. https://doi.org/10.1145/1508244.1508255

[21] Joseph Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan Gross-
man. 2011. RCDC: a relaxed consistency deterministic computer, See
[37], 67–78. https://doi.org/10.1145/1950365.1950376

[22] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and
Ryan Whelan. 2015. Repeatable Reverse Engineering with PANDA.
In Proceedings of the 5th Program Protection and Reverse Engineering
Workshop (PPREW-5). ACM, New York, NY, USA, Article 4, 11 pages.
https://doi.org/10.1145/2843859.2843867

[23] Richard Draves and Robbert van Renesse (Eds.). 2008. 8th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI 2008,
December 8-10, 2008, San Diego, California, USA, Proceedings. USENIX
Association. https://www.usenix.org/publications/proceedings/?f[0]
=im_group_audience%3A73

[24] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Bas-
rai, and Peter M. Chen. 2002. ReVirt: Enabling Intrusion Analysis
Through Virtual-Machine Logging and Replay. In 5th Symposium on
Operating System Design and Implementation (OSDI 2002), Boston, Mas-
sachusetts, USA, December 9-11, 2002, David E. Culler and Peter Dr-
uschel (Eds.). USENIX Association. http://www.usenix.org/events/
osdi02/tech/dunlap.html

[25] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and
Peter M. Chen. 2008. Execution replay of multiprocessor virtual ma-
chines. In Proceedings of the 4th International Conference on Virtual
Execution Environments, VEE 2008, Seattle, WA, USA, March 5-7, 2008,
David Gregg, Vikram S. Adve, and Brian N. Bershad (Eds.). ACM,
121–130. https://doi.org/10.1145/1346256.1346273

[26] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. 2011. Delay-
bounded scheduling. In Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.).
ACM, 411–422. https://doi.org/10.1145/1926385.1926432

[27] Jakob Engblom, Daniel Aarno, and Bengt Werner. 2010. Full-System
Simulation from Embedded to High-Performance Systems. Springer US,
Boston, MA, 25–45. https://doi.org/10.1007/978-1-4419-6175-4_3

[28] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: efficient
and precise dynamic race detection. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, Michael Hind and
Amer Diwan (Eds.). ACM, 121–133. https://doi.org/10.1145/1542476.

590

https://doi.org/10.1109/IPDPS.2001.924957
https://doi.org/10.1145/1629575.1629594
https://httpd.apache.org/dev/devnotes.html
https://httpd.apache.org/dev/devnotes.html
http://www.usenix.org/event/osdi10/tech/full_papers/osdi10_proceedings.pdf
http://www.usenix.org/event/osdi10/tech/full_papers/osdi10_proceedings.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Aviram.pdf
https://doi.org/10.1145/122759.122777
https://doi.org/10.1145/1736020.1736029
https://doi.org/10.1145/1736020.1736029
http://www.usenix.org/events/osdi10/tech/full_papers/Bergan.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Bergan.pdf
https://doi.org/10.1145/1134760.1220164
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1736020.1736040
https://doi.org/10.1145/1736020.1736040
https://doi.org/10.1145/2501988.2502050
https://doi.org/10.1145/2892242.2892257
https://lwn.net/1999/0121/a/mec.html
https://lwn.net/1999/0121/a/mec.html
https://doi.org/10.1145/2517349.2522735
https://doi.org/10.1145/2043556.2043588
http://chrononsystems.com/blog/design-and-architecture-ofthe-chronon-record-0
http://chrononsystems.com/blog/design-and-architecture-ofthe-chronon-record-0
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/devecsery
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/devecsery
https://doi.org/10.1145/1508244.1508255
https://doi.org/10.1145/1950365.1950376
https://doi.org/10.1145/2843859.2843867
https://www.usenix.org/publications/proceedings/?f[0]=im_group_audience%3A73
https://www.usenix.org/publications/proceedings/?f[0]=im_group_audience%3A73
http://www.usenix.org/events/osdi02/tech/dunlap.html
http://www.usenix.org/events/osdi02/tech/dunlap.html
https://doi.org/10.1145/1346256.1346273
https://doi.org/10.1145/1926385.1926432
https://doi.org/10.1007/978-1-4419-6175-4_3
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/1542476.1542490

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Christopher Lidbury and Alastair F. Donaldson

1542490
[29] Cormac Flanagan and Stephen N. Freund. 2010. Adversarial memory

for detecting destructive races. In Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2010, Toronto, Ontario, Canada, June 5-10, 2010, Benjamin G. Zorn
and Alexander Aiken (Eds.). ACM, 244–254. https://doi.org/10.1145/
1806596.1806625

[30] Cormac Flanagan and Stephen N. Freund. 2010. The RoadRunner
dynamic analysis framework for concurrent programs. In Proceedings
of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, PASTE’10, Toronto, Ontario, Canada,
June 5-6, 2010, Sorin Lerner and Atanas Rountev (Eds.). ACM, 1–8.
https://doi.org/10.1145/1806672.1806674

[31] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order
reduction for model checking software. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2005, Long Beach, California, USA, January 12-14, 2005, Jens
Palsberg and Martín Abadi (Eds.). ACM, 110–121. https://doi.org/10.
1145/1040305.1040315

[32] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. 2006.
Replay Debugging for Distributed Applications (Awarded Best Paper!).
In Proceedings of the 2006 USENIX Annual Technical Conference, Boston,
MA, USA, May 30 - June 3, 2006, Atul Adya and Erich M. Nahum (Eds.).
USENIX, 289–300. http://www.usenix.org/events/usenix06/tech/geels.
html

[33] Patrice Godefroid. 2005. Software Model Checking: The VeriSoft
Approach. Formal Methods in System Design 26, 2 (2005), 77–101.
https://doi.org/10.1007/s10703-005-1489-x

[34] C. Gottbrath. 2008. Reverse debugging with the TotalView debugger.
(May 2008).

[35] David Grove and Steve Blackburn (Eds.). 2015. Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, Portland, OR, USA, June 15-17, 2015. ACM. http:
//dl.acm.org/citation.cfm?id=2737924

[36] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu,
M. Frans Kaashoek, and Zheng Zhang. 2008. R2: An Application-Level
Kernel for Record and Replay, See [23], 193–208. http://www.usenix.
org/events/osdi08/tech/full_papers/guo/guo.pdf

[37] Rajiv Gupta and Todd C. Mowry (Eds.). 2011. Proceedings of the 16th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2011, Newport Beach, CA,
USA, March 5-11, 2011. ACM.

[38] James C. Hoe and Vikram S. Adve (Eds.). 2010. Proceedings of the 15th
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2010, Pittsburgh, Pennsylvania,
USA, March 13-17, 2010. ACM.

[39] Nima Honarmand and Josep Torrellas. 2014. RelaxReplay: record
and replay for relaxed-consistency multiprocessors. In Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’14, Salt Lake City, UT, USA, March 1-5, 2014, Rajeev Balasubramonian,
Al Davis, and Sarita V. Adve (Eds.). ACM, 223–238. https://doi.org/10.
1145/2541940.2541979

[40] Nima Honarmand and Josep Torrellas. 2014. Replay debugging: Lever-
aging record and replay for program debugging. In ACM/IEEE 41st
International Symposium on Computer Architecture, ISCA 2014, Min-
neapolis, MN, USA, June 14-18, 2014. IEEE Computer Society, 455–456.
https://doi.org/10.1109/ISCA.2014.6853229

[41] Petr Hosek and Cristian Cadar. 2015. VARAN the Unbelievable: An
Efficient N-version Execution Framework. In Proceedings of the Twenti-
eth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, Istanbul, Turkey, March
14-18, 2015, Özcan Özturk, Kemal Ebcioglu, and Sandhya Dwarkadas
(Eds.). ACM, 339–353. https://doi.org/10.1145/2694344.2694390

[42] Derek Hower and Mark D. Hill. 2008. Rerun: Exploiting Episodes for
Lightweight Memory Race Recording. In 35th International Symposium
on Computer Architecture (ISCA 2008), June 21-25, 2008, Beijing, China.
265–276. https://doi.org/10.1109/ISCA.2008.26

[43] Jeff Huang, Peng Liu, and Charles Zhang. 2010. LEAP: lightweight
deterministic multi-processor replay of concurrent java programs.
In Proceedings of the 18th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2010, Santa Fe, NM, USA, November
7-11, 2010, Gruia-Catalin Roman and André van der Hoek (Eds.). ACM,
207–216. https://doi.org/10.1145/1882291.1882323

[44] Jeff Huang, Charles Zhang, and Julian Dolby. 2013. CLAP: recording
local executions to reproduce concurrency failures. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’13, Seattle, WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cor-
mac Flanagan (Eds.). ACM, 141–152. https://doi.org/10.1145/2462156.
2462167

[45] Shiyou Huang, Bowen Cai, and Jeff Huang. 2017. Towards Production-
Run Heisenbugs Reproduction on Commercial Hardware. In 2017
USENIX Annual Technical Conference, USENIX ATC 2017, Santa Clara,
CA, USA, July 12-14, 2017. 403–415. https://www.usenix.org/
conference/atc17/technical-sessions/presentation/huang

[46] Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2016. Secure and
Efficient Multi-Variant Execution Using Hardware-Assisted Process
Virtualization. In 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2016, Toulouse, France, June
28 - July 1, 2016. IEEE Computer Society, 431–442. https://doi.org/10.
1109/DSN.2016.46

[47] Oren Laadan, Nicolas Viennot, and Jason Nieh. 2010. Transparent,
lightweight application execution replay on commodity multiproces-
sor operating systems. In SIGMETRICS 2010, Proceedings of the 2010
ACM SIGMETRICS International Conference on Measurement and Mod-
eling of Computer Systems, New York, New York, USA, 14-18 June 2010,
Vishal Misra, Paul Barford, and Mark S. Squillante (Eds.). ACM, 155–
166. https://doi.org/10.1145/1811039.1811057

[48] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in
a Distributed System. Commun. ACM 21, 7 (1978), 558–565. https:
//doi.org/10.1145/359545.359563

[49] Dongyoon Lee, Peter M. Chen, Jason Flinn, and Satish Narayanasamy.
2012. Chimera: hybrid program analysis for determinism. In ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’12, Beijing, China - June 11 - 16, 2012, Jan Vitek, Haibo Lin,
and Frank Tip (Eds.). ACM, 463–474. https://doi.org/10.1145/2254064.
2254119

[50] Dongyoon Lee, Benjamin Wester, Kaushik Veeraraghavan, Satish
Narayanasamy, Peter M. Chen, and Jason Flinn. 2010. Respec: efficient
online multiprocessor replayvia speculation and external determinism,
See [38], 77–90. https://doi.org/10.1145/1736020.1736031

[51] Kyu Hyung Lee, Dohyeong Kim, and Xiangyu Zhang. 2014.
Infrastructure-Free Logging and Replay of Concurrent Execution
on Multiple Cores. In ECOOP 2014 - Object-Oriented Programming
- 28th European Conference, Uppsala, Sweden, July 28 - August 1,
2014. Proceedings (Lecture Notes in Computer Science), Richard E.
Jones (Ed.), Vol. 8586. Springer, 232–256. https://doi.org/10.1007/
978-3-662-44202-9_10

[52] Christopher Lidbury and Alastair F. Donaldson. 2017. Dynamic race
detection for C++11. In Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.).
ACM, 443–457. https://doi.org/10.1145/3009837

[53] Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping Liu.
2018. iReplayer: in-situ and identical record-and-replay for multi-
threaded applications. In Proceedings of the 39th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2018,

591

https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/1806596.1806625
https://doi.org/10.1145/1806596.1806625
https://doi.org/10.1145/1806672.1806674
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/1040305.1040315
http://www.usenix.org/events/usenix06/tech/geels.html
http://www.usenix.org/events/usenix06/tech/geels.html
https://doi.org/10.1007/s10703-005-1489-x
http://dl.acm.org/citation.cfm?id=2737924
http://dl.acm.org/citation.cfm?id=2737924
http://www.usenix.org/events/osdi08/tech/full_papers/guo/guo.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/guo/guo.pdf
https://doi.org/10.1145/2541940.2541979
https://doi.org/10.1145/2541940.2541979
https://doi.org/10.1109/ISCA.2014.6853229
https://doi.org/10.1145/2694344.2694390
https://doi.org/10.1109/ISCA.2008.26
https://doi.org/10.1145/1882291.1882323
https://doi.org/10.1145/2462156.2462167
https://doi.org/10.1145/2462156.2462167
https://www.usenix.org/conference/atc17/technical-sessions/presentation/huang
https://www.usenix.org/conference/atc17/technical-sessions/presentation/huang
https://doi.org/10.1109/DSN.2016.46
https://doi.org/10.1109/DSN.2016.46
https://doi.org/10.1145/1811039.1811057
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/2254064.2254119
https://doi.org/10.1145/2254064.2254119
https://doi.org/10.1145/1736020.1736031
https://doi.org/10.1007/978-3-662-44202-9_10
https://doi.org/10.1007/978-3-662-44202-9_10
https://doi.org/10.1145/3009837

Sparse Record and Replay with Controlled Scheduling PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Philadelphia, PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Gross-
man (Eds.). ACM, 344–358. https://doi.org/10.1145/3192366.3192380

[54] Peng Liu, Xiangyu Zhang, Omer Tripp, and Yunhui Zheng. 2015. Light:
replay via tightly bounded recording, See [35], 55–64. https://doi.org/
10.1145/2737924.2738001

[55] Tongping Liu, Charlie Curtsinger, and EmeryD. Berger. 2011. Dthreads:
efficient deterministic multithreading, See [85], 327–336. https://doi.
org/10.1145/2043556.2043587

[56] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learn-
ing from mistakes: a comprehensive study on real world concurrency
bug characteristics. In Proceedings of the 13th International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS 2008, Seattle, WA, USA, March 1-5, 2008,
Susan J. Eggers and James R. Larus (Eds.). ACM, 329–339. https:
//doi.org/10.1145/1346281.1346323

[57] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David Mazières,
and Mendel Rosenblum. 2017. Towards Practical Default-On Multi-
Core Record/Replay. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017, Yunji
Chen, Olivier Temam, and John Carter (Eds.). ACM, 693–708. https:
//doi.org/10.1145/3037697.3037751

[58] Microsoft. 2018. Understanding IntelliTrace part I: What the @#$% is
IntelliTrace? (2018). https://blogs.msdn.microsoft.com/zainnab/2013/
02/12/understanding-intellitrace-part-i-what-the-is-intellitrace

[59] Pablo Montesinos, Luis Ceze, and Josep Torrellas. 2008. DeLorean:
Recording and Deterministically Replaying Shared-Memory Multi-
processor Execution Effciently. In 35th International Symposium on
Computer Architecture (ISCA 2008), June 21-25, 2008, Beijing, China.
289–300. https://doi.org/10.1109/ISCA.2008.36

[60] Mozilla. 2018. SpiderMonkey. https://developer.mozilla.org/en-US/
docs/Mozilla/Projects/SpiderMonkey

[61] MadanlalMusuvathi and Shaz Qadeer. 2007. Iterative context bounding
for systematic testing of multithreaded programs. In Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10-13, 2007, Jeanne
Ferrante and Kathryn S. McKinley (Eds.). ACM, 446–455. https://doi.
org/10.1145/1250734.1250785

[62] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pi-
ramanayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Find-
ing and Reproducing Heisenbugs in Concurrent Programs, See
[23], 267–280. http://www.usenix.org/events/osdi08/tech/full_papers/
musuvathi/musuvathi.pdf

[63] Satish Narayanasamy, Gilles Pokam, and Brad Calder. 2005. BugNet:
Continuously Recording Program Execution for Deterministic Replay
Debugging. In 32st International Symposium on Computer Architecture
(ISCA 2005), 4-8 June 2005, Madison, Wisconsin, USA. IEEE Computer
Society, 284–295. https://doi.org/10.1109/ISCA.2005.16

[64] Brian Norris and Brian Demsky. 2013. CDSchecker: checking concur-
rent data structures written with C/C++ atomics. In Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2013, part of
SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013. 131–150.

[65] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll,
and Nimrod Partush. 2016. Lightweight User-Space Record And Replay.
CoRR abs/1610.02144 (2016). arXiv:1610.02144 http://arxiv.org/abs/
1610.02144

[66] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll,
and Nimrod Partush. 2017. Engineering Record and Replay for Deploy-
ability. In 2017 USENIX Annual Technical Conference, USENIX ATC 2017,
Santa Clara, CA, USA, July 12-14, 2017. 377–389. https://www.usenix.
org/conference/atc17/technical-sessions/presentation/ocallahan

[67] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and
James Cownie. 2010. PinPlay: a framework for deterministic replay

and reproducible analysis of parallel programs. In Proceedings of the
CGO 2010, The 8th International Symposium on Code Generation and
Optimization, Toronto, Ontario, Canada, April 24-28, 2010, Andreas
Moshovos, J. Gregory Steffan, Kim M. Hazelwood, and David R. Kaeli
(Eds.). ACM, 2–11. https://doi.org/10.1145/1772954.1772958

[68] pbzip2 development team. 2018. pbzip2. https://launchpad.net/pbzip2
[69] Luís Pina, Anastasios Andronidis, and Cristian Cadar. 2018. FreeDA:

deploying incompatible stock dynamic analyses in production via
multi-version execution. In Proceedings of the 15th ACM International
Conference on Computing Frontiers, CF 2018, Ischia, Italy, May 08-10,
2018, David R. Kaeli and Miquel Pericàs (Eds.). ACM, 1–10. https:
//doi.org/10.1145/3203217.3203237

[70] Gilles Pokam, Klaus Danne, Cristiano Pereira, Rolf Kassa, Tim Kranich,
Shiliang Hu, Justin Emile Gottschlich, Nima Honarmand, Nathan Daut-
enhahn, Samuel T. King, and Josep Torrellas. 2013. QuickRec: proto-
typing an intel architecture extension for record and replay of mul-
tithreaded programs. In The 40th Annual International Symposium
on Computer Architecture, ISCA’13, Tel-Aviv, Israel, June 23-27, 2013,
Avi Mendelson (Ed.). ACM, 643–654. https://doi.org/10.1145/2485922.
2485977

[71] QuakeSpasm. 2018. QuakeSpasm: An engine for iD software’s Quake.
http://quakespasm.sourceforge.net/

[72] Yasushi Saito. 2005. Jockey: a user-space library for record-replay
debugging. In Proceedings of the Sixth International Workshop on Auto-
mated Debugging, AADEBUG 2005, Monterey, California, USA, Septem-
ber 19-21, 2005, Clinton Jeffery, Jong-Deok Choi, and Raimondas Lence-
vicius (Eds.). ACM, 69–76. https://doi.org/10.1145/1085130.1085139

[73] Torr Samaho. 2018. Zandronum. https://zandronum.com/
[74] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSani-

tizer: Data Race Detection in Practice. In WBIA. 62–71.
[75] Simple DirectMedia Layer. 2018. SDL 2.0 library. https://www.libsdl.

org/download-2.0.php
[76] SQLite. 2018. SQLite 3.24.0. https://sqlite.org/releaselog/3_24_0.html
[77] Deepa Srinivasan and Xuxian Jiang. 2012. Time-Traveling Forensic

Analysis of VM-Based High-Interaction Honeypots. In Security and Pri-
vacy in Communication Networks, Muttukrishnan Rajarajan, Fred Piper,
Haining Wang, and George Kesidis (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 209–226.

[78] Paul Thomson, Alastair F. Donaldson, and Adam Betts. 2014. Concur-
rency testing using schedule bounding: an empirical study. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’14, Orlando, FL, USA, February 15-19, 2014, José E. Moreira and
James R. Larus (Eds.). ACM, 15–28. https://doi.org/10.1145/2555243.
2555260

[79] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and
Yuanyuan Zhou. 2007. Triage: diagnosing production run failures
at the user’s site. In Proceedings of the 21st ACM Symposium on Oper-
ating Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA,
October 14-17, 2007, Thomas C. Bressoud and M. Frans Kaashoek (Eds.).
ACM, 131–144. https://doi.org/10.1145/1294261.1294275

[80] Undo. 2018. Reversible debugging tools for C/C++ on Linux & Android.
(2018). http://undo-software.com

[81] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica
Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. 2011.
DoublePlay: parallelizing sequential logging and replay, See [37], 15–
26. https://doi.org/10.1145/1950365.1950370

[82] Stijn Volckaert, Bart Coppens, Bjorn De Sutter, Koen De Bosschere,
Per Larsen, and Michael Franz. 2017. Taming Parallelism in a Multi-
Variant Execution Environment. In Proceedings of the Twelfth European
Conference on Computer Systems, EuroSys 2017, Belgrade, Serbia, April
23-26, 2017, Gustavo Alonso, Ricardo Bianchini, and Marko Vukolic
(Eds.). ACM, 270–285. https://doi.org/10.1145/3064176.3064178

[83] Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Home-
scu, Per Larsen, Bjorn De Sutter, and Michael Franz. 2016. Secure

592

https://doi.org/10.1145/3192366.3192380
https://doi.org/10.1145/2737924.2738001
https://doi.org/10.1145/2737924.2738001
https://doi.org/10.1145/2043556.2043587
https://doi.org/10.1145/2043556.2043587
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/3037697.3037751
https://doi.org/10.1145/3037697.3037751
https://blogs.msdn.microsoft.com/zainnab/2013/02/12/understanding-intellitrace-part-i-what-the-is-intellitrace
https://blogs.msdn.microsoft.com/zainnab/2013/02/12/understanding-intellitrace-part-i-what-the-is-intellitrace
https://doi.org/10.1109/ISCA.2008.36
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
http://www.usenix.org/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
https://doi.org/10.1109/ISCA.2005.16
http://arxiv.org/abs/1610.02144
http://arxiv.org/abs/1610.02144
http://arxiv.org/abs/1610.02144
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://doi.org/10.1145/1772954.1772958
https://launchpad.net/pbzip2
https://doi.org/10.1145/3203217.3203237
https://doi.org/10.1145/3203217.3203237
https://doi.org/10.1145/2485922.2485977
https://doi.org/10.1145/2485922.2485977
http://quakespasm.sourceforge.net/
https://doi.org/10.1145/1085130.1085139
https://zandronum.com/
https://www.libsdl.org/download-2.0.php
https://www.libsdl.org/download-2.0.php
https://sqlite.org/releaselog/3_24_0.html
https://doi.org/10.1145/2555243.2555260
https://doi.org/10.1145/2555243.2555260
https://doi.org/10.1145/1294261.1294275
http://undo-software.com
https://doi.org/10.1145/1950365.1950370
https://doi.org/10.1145/3064176.3064178

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Christopher Lidbury and Alastair F. Donaldson

and Efficient Application Monitoring and Replication. In 2016 USENIX
Annual Technical Conference, USENIX ATC 2016, Denver, CO, USA, June
22-24, 2016., Ajay Gulati and Hakim Weatherspoon (Eds.). USENIX
Association, 167–179. https://www.usenix.org/conference/atc16/
technical-sessions/presentation/volckaert

[84] YanWang, Harish Patil, Cristiano Pereira, Gregory Lueck, Rajiv Gupta,
and Iulian Neamtiu. 2014. DrDebug: Deterministic Replay based Cyclic
Debugging with Dynamic Slicing. In 12th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO 2014,
Orlando, FL, USA, February 15-19, 2014, David R. Kaeli and TippMoseley
(Eds.). ACM, 98. https://doi.org/10.1145/2544137.2544152

[85] Ted Wobber and Peter Druschel (Eds.). 2011. Proceedings of the 23rd
ACM Symposium on Operating Systems Principles 2011, SOSP 2011,
Cascais, Portugal, October 23-26, 2011. ACM. https://doi.org/10.1145/
2043556

[86] Min Xu, Rastislav Bodík, and Mark D. Hill. 2003. A "Flight Data
Recorder" for Enabling Full-System Multiprocessor Deterministic

Replay. In 30th International Symposium on Computer Architecture
(ISCA 2003), 9-11 June 2003, San Diego, California, USA, Allan Got-
tlieb and Kai Li (Eds.). IEEE Computer Society, 122–133. https:
//doi.org/10.1109/ISCA.2003.1206994

[87] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. 2012.
Maple: a coverage-driven testing tool for multithreaded programs. In
Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, Gary T.
Leavens and Matthew B. Dwyer (Eds.). ACM, 485–502. https://doi.
org/10.1145/2384616.2384651

[88] Zandronum. 2015. Zandronum bug tracker. https://zandronum.com/
tracker/view.php?id=2380 Bug 0002380.

[89] Naling Zhang, Markus Kusano, and ChaoWang. 2015. Dynamic partial
order reduction for relaxed memory models, See [35], 250–259. https:
//doi.org/10.1145/2737924.2737956

593

https://www.usenix.org/conference/atc16/technical-sessions/presentation/volckaert
https://www.usenix.org/conference/atc16/technical-sessions/presentation/volckaert
https://doi.org/10.1145/2544137.2544152
https://doi.org/10.1145/2043556
https://doi.org/10.1145/2043556
https://doi.org/10.1109/ISCA.2003.1206994
https://doi.org/10.1109/ISCA.2003.1206994
https://doi.org/10.1145/2384616.2384651
https://doi.org/10.1145/2384616.2384651
https://zandronum.com/tracker/view.php?id=2380
https://zandronum.com/tracker/view.php?id=2380
https://doi.org/10.1145/2737924.2737956
https://doi.org/10.1145/2737924.2737956

	Abstract
	1 Introduction
	2 Background
	3 Scheduling
	3.1 Protocol Details
	3.2 Special Cases
	3.3 Liveness

	4 Record and Replay
	4.1 Motivating Example
	4.2 Interleaving
	4.3 Signals
	4.4 System Calls
	4.5 Asynchronous Events

	5 Evaluation
	5.1 CDSchecker Litmus Tests
	5.2 httpd
	5.3 PARSEC and pbzip
	5.4 SDL-based Games
	5.5 Limitations: SQLite and SpiderMonkey

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

