
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

CSMITHEDGE: More Effective Compiler Testing by
Handling Undefined Behaviour Less Conservatively

Karine Even-Mendoza · Cristian Cadar ·
Alastair F. Donaldson

Received: date / Accepted: date

Abstract Compiler fuzzing techniques require a means of generating programs that
are free from undefined behaviour (UB) to reliably reveal miscompilation bugs. Exist-
ing program generators such as CSMITH achieve UB-freedom by heavily restricting
the form of generated programs. The idiomatic nature of the resulting programs risks
limiting the test coverage they can offer, and thus the compiler bugs they can discover.

We investigate the idea of adapting existing fuzzers to be less restrictive concern-
ing UB, in the practical setting of C compiler testing via a new tool, CSMITHEDGE,
which extends CSMITH. CSMITHEDGE probabilistically weakens the constraints used
to enforce UB-freedom, thus generated programs are no longer guaranteed to be UB-
free. It then employs several off-the-shelf UB detection tools and a novel dynamic
analysis to (a) detect cases where the generated program exhibits UB and (b) de-
termine where CSMITH has been too conservative in its use of safe math wrappers
that guarantee UB-freedom for arithmetic operations, removing the use of redundant
ones. The resulting UB-free programs can be used to test for miscompilation bugs
via differential testing. The non-UB-free programs can still be used to check that the
compiler under test does not crash or hang.

Our experiments on recent versions of GCC, LLVM and the Microsoft Visual
Studio Compiler show that CSMITHEDGE was able to discover 7 previously unknown
miscompilation bugs (5 already fixed in response to our reports) that could not be

Karine Even-Mendoza
Imperial College London, Department of Computing, London, UK
ORCiD: 0000-0002-3099-1189
E-mail: k.even-mendoza@imperial.ac.uk

Cristian Cadar
Imperial College London, Department of Computing, London, UK
ORCiD: 0000-0002-3599-7264
E-mail: c.cadar@imperial.ac.uk

Alastair F. Donaldson
Imperial College London, Department of Computing, London, UK
ORCiD: 0000-0002-7448-7961
E-mail: alastair.donaldson@imperial.ac.uk

found via intensive testing using CSMITH, and 2 compiler-hang bugs that were fixed
independently shortly before we considered reporting them.

Keywords Compilers, fuzzing, Csmith, GCC, LLVM, MSVC

Declarations

Funding. This project has received funding from the UK Engineering and Physical
Sciences Research Council through grants EP/R011605/1 and EP/R006865/1, and
from the European Research Council under the European Union’s Horizon 2020 re-
search and innovation program (grant agreement 819141).

Conflicts of interest/Competing interests. Not applicable.

Availability of data and material. Not applicable.

Code availability. The code for this work can be found at [26] tag EMSE2021.

1 Introduction

The critical role of compilers, which underpin practically all deployed software, has
led to a lot of interest in techniques for automated compiler testing, with a surge
of interest in this topic over the last decade (see [7] for a recent survey). In partic-
ular, compiler fuzzers have proven successful at finding bugs in mature compilers
via randomised testing [13, 22, 35, 38, 41, 45, 56]. A popular method for finding mis-
compilation bugs—where a compiler silently generates wrong code—is differential
testing [30, 42]. Employed by tools such as CSMITH [56] and YARPGEN [39], this
involves comparing the result obtained by running a program after compilation by
distinct compilers or by a single compiler at different optimisation levels, with result
mismatches indicating bugs. This avoids the oracle problem [4]: it flags up differ-
ences in results that are expected to be the same, yet does not require knowing which
(if any) result is correct.

Dealing with the oracle problem in this manner when testing C and C++ compil-
ers relies on a source of programs that are free from undefined behaviour (UB). Ex-
amples of UB in C include using uninitialised variables, accessing invalid pointers,
overflow of signed integer arithmetic operations, division by zero, and unsequenced
accesses to variables [33]. A program that exhibits UB has arbitrary semantics, so
optimising compilers are permitted to assume that input programs are free from un-
defined behaviour (UB-free) and optimise them based on that assumption. In prac-
tice, compilers do take advantage of UB to generate efficient code [55] (we give an
example in §2.1), thus when a program triggers UB, the results of cross-checking the
program’s results between multiple compilers or optimisation levels are meaningless:
the program can legitimately yield any result when executed.

To counter this, compiler fuzzers go to great lengths to generate UB-free pro-
grams. For instance, the CSMITH program generator [56] guards every instance of a
signed arithmetic operation with an overflow check that only performs the operation

2

if overflow will not occur, and uses conservative static analysis during generation
to ensure that pointer arguments to functions always refer to valid data so that they
can be dereferenced without error. The problem with such strategies is that generated
programs have a restricted, idiomatic form, which can limit the extent to which they
exercise the compiler under test. For example, certain peephole optimisations may
be inapplicable if every arithmetic operation is enclosed in a conservative check for
potential UB.

After a sufficiently long testing campaign, the idiomatic form of the programs
generated by a particular compiler fuzzer leads to the compilers under test becoming
“immune” to the fuzzer: the compiler bugs that remain either cannot be triggered
by the kinds of programs the fuzzer generates, or can be triggered only with very
low probability. For example, John Regehr, one of the authors of CSMITH, tweeted
during July 2019: “I hadn’t run Csmith for a while and it turns out LLVM is now
amazingly resistant to it, ran a million tests overnight without finding a crash or
miscompile” [46].

A heavyweight solution to this immunity problem is to write a brand new fuzzer,
and indeed the recent YARPGEN [39] was able to find a large number of bugs in
mainstream compilers that could not be found by CSMITH. But writing an entirely
new compiler fuzzer is a large undertaking, and the compilers under test may soon
become immune to the new fuzzer (as has reportedly happened with YARPGEN and
LLVM [3]).

Our contribution. In this work we are interested in whether a compiler’s appar-
ent immunity to a particular fuzzer might be lessened via coercing the fuzzer into
generating more diverse programs by having it be less conservative about UB. We
investigate the following research question:

Can a program generator that conservatively enforces UB-freedom be made less con-
servative such that:

a) it can still be used as a source of programs for differential testing, and
b) the resulting programs lead to more thorough compiler testing, in terms of bugs

found and code covered in the compiler code base?

We present a new open-source tool, CSMITHEDGE [1], an extension of CSMITH.
CSMITHEDGE employs three steps to make generated programs less restricted, which
are summarised in Figure 1a.

First, it probabilistically relaxes some of the generation-time static analyses that
CSMITH uses to ensure UB-freedom. Relaxing these analyses makes them unsound,
such that generated programs might actually trigger the UB that the analyses aimed
to avoid.

Second, CSMITHEDGE runs each generated program using a collection of off-
the-shelf UB detection tools that either show that the program does exhibit UB, or
establish with high confidence that it is UB-free; we have manually tuned the range
of probabilities associated with relaxation so that the rate of programs that trigger UB
is not too high.

3

Relaxed
Generator

 UB Detector

Crash
Testing

Relax
Arithmetic
Checks

program

program
with UB

UB-free
program

Relaxation
Probabilities

not
detecteddetected

 UB-free
program

crash

Reporting
Bugs

Differential/
Crash Testing

crash or mismatch

(a) CSMITHEDGE conceptual approach

Relax
Arithmetic
Checks

 UB Detector
not detected

mismatch

program

Relaxed Generator Relaxation
Probabilities

program

Differential/
Crash Testing

crash
Reporting

Bugs

(b) CSMITHEDGE lazy approach

Fig. 1: Program generation with relaxed methods during and post code generation.

Third, if the program is judged to be UB-free, CSMITHEDGE uses a novel yet
simple dynamic analysis to identify cases where safety checks for UB on arithmetic
operations inserted by CSMITH are redundant, and removes these checks.

The resulting relaxed, UB-free program can then be used to test a set of compil-
ers for miscompilation bugs via cross-checking. If, during the second step, the UB
detection tools show that the generated program exhibits UB, it cannot be used for
miscompilation testing, but can still be used to test the compilers of interest to find
programs that lead to crashes or hangs.

To avoid consistently incurring the high overhead associated with UB detection,
we apply a lazy approach in practice. That is, postpone UB detection to the differ-
ential testing phase, and only perform UB detection on programs that trigger a result
mismatch between the compilers under test. We summarise the process with the lazy
approach in Figure 1b and discuss it in detail in §3.3.

Our approach aims to improve compiler testing by increasing the size of the space
of test cases that can be generated. By relaxing UB-related compile-time generation
constraints, CSMITHEDGE can generate test cases that are not in the vocabulary of
regular CSMITH. This is in contrast to methods that improve the diversity of gen-
erated tests by changing the manner in which the test generator is configured, such
as through swarm testing [31] (a technique that CSMITHEDGE also incorporates, as
discussed in §3.4), or based on historical information [8]. Such methods leave the
set of potential test cases unchanged, but may dramatically change the probabilities
associated with particular test cases being generated.

Summary of experimental findings. We present a large experimental evaluation
applying CSMITHEDGE to two recent versions of the GCC and LLVM compilers,

4

both of which have been extremely well tested by several compiler fuzzing tools for
many years.

To answer the part a) of our research question, we measured the rate of gen-
erated programs that could be used for differential testing. On a standard machine,
CSMITHEDGE generated around 105.09 programs per hour using the flow in Fig-
ure 1a.1 With the optimised lazy flow of Figure 1b, CSMITHEDGE generated 215.21
programs per hour (in this case, any terminating program that is either UB-free or
triggers the same behaviours across compilers is counted). By comparison, regular
CSMITH achieved 345.75 programs per hour: the degradation in performance for
CSMITHEDGE comes from the overhead of running UB detection tools and the fact
that a portion of programs turn out to contain UB. Overall, checking whether pro-
grams terminate is the dominating factor regardless of whether CSMITH or CSMITHEDGE
is used, and in the case of CSMITHEDGE, when a program does turn out to trigger
UB this is often quickly detected by a UB detection tool.

Therefore, the answer to part a) of our research question—whether relaxing re-
strictions on generated programs can yield a source of programs for differential test-
ing programs—is yes, but with a 1.61 × runtime overhead with the tool’s default
configuration (i.e. using the lazy approach of Figure 1b with a 50 s timeout).

We have found CSMITHEDGE to be effective in finding bugs, providing a posi-
tive answer to part b) of our research question. We found and reported 7 previously-
unknown miscompilation bugs (5 in GCC, 1 in LLVM, and 1 in MSVC, the Microsoft
Visual Studio Compiler), of which 5 have already been fixed in response to our re-
ports. We also discovered 2 GCC hang bugs that turned out to have been indepen-
dently discovered and fixed shortly before we considered reporting them, and several
bugs in the older versions of the GCC and LLVM compilers. We also tested these
compilers thoroughly with regular CSMITH and did not find any miscompilations,
crashes or hangs, which provides evidence both that these compilers have become
somewhat immune to the kinds of bugs that regular CSMITH can expose, and that
the strategies employed by CSMITHEDGE are effective in extending the bug-finding
power of CSMITH. We also measured the coverage of the GCC and LLVM code bases
achieved during fuzzing campaigns using regular CSMITH and CSMITHEDGE, find-
ing that CSMITHEDGE achieves a modest improvement in coverage for both compil-
ers, providing further evidence that being less conservative about undefined behaviour
can lead to more thorough testing.

Paper structure. After discussing necessary background (§2), we describe the design
and implementation of CSMITHEDGE, which involves two distinct parts—relaxing
generation-time restrictions, and eliminating redundant safety checks post-generation
(§3). We present our large experimental campaign, providing details of a selection of
the bugs that we found in GCC, LLVM and MSVC, as well as discussing coverage re-
sults (§4). After discussing threats to validity (§5) and related work (§6) we conclude
with a discussion of future directions (§7).

1 This includes the time taken to check whether each program terminates within a 50 s time limit. The
evaluation was done on a single virtual machine running Ubuntu 18.04 LTS x86 64 with two virtual CPU
cores (2 Sockets, 1 Core) and 8 GB RAM.

5

2 Background

We provide background on the CSMITH program generator, which CSMITHEDGE ex-
tends, focusing on how CSMITH ensures that generated programs are UB-free (§2.1),
and on the tools that CSMITHEDGE employs to detect the UB that might be intro-
duced by relaxing generation-time restrictions (§2.2). We also briefly discuss the C-
REDUCE tool that we use for test case reduction (§2.3).

2.1 CSMITH and UB Avoidance

To illustrate why differential testing requires a source of UB-free programs, consider
the following C example:

void foo(int32_t x) {

if (x*x < 0) printf("Overflow !\n");

}

Someone not well-acquainted with UB in C might expect the function to print
Overflow! when invoked with a value of x whose square cannot be represented by a
32-bit integer, since integer arithmetic has wraparound semantics on all mainstream
computer architectures.

When foo is invoked with x=1,000,000, we find that the message Overflow!

gets printed if the program has been compiled without optimisations using e.g. GCC
7.5.0 or LLVM 11 (targeting an x86 processor). However, no message is printed if
optimisation level -O2 or higher is used with these compilers. This is because the
input x=1,000,000 triggers signed arithmetic overflow, which is UB. The optimising
compiler can assume that no UB is triggered, and so may reason that the square of
x cannot be negative and optimise away the entire conditional statement. (In fact, re-
cent versions of GCC perform this optimisation even at -O0). This demonstrates that
cross-checking a program across multiple compilers is meaningless if the program
exhibits UB.

We now provide some details on how CSMITH [10,56] generates deterministic C
programs that are free from UB. CSMITH generates a program in a top-down fashion
based on the C language grammar. Global variables can have a wide variety of types,
including randomly-generated structure and union types, as well as nested pointers. A
program contains a series of randomly-generated functions, whose arguments and re-
turn type may be based on the structures and unions the tool has generated. Functions
have a set of local variables of various types, and their bodies manipulate both local
and global variables. The statements involved are often complex, involving pointers
with multiple levels of indirection, nested structures and multi-dimensional arrays.

A CSMITH program takes no input, and on termination prints a single value ob-
tained by hashing the final values of the program’s global variables. Each CSMITH–
generated program thus has a single path; this is an important property that we take
advantage of in our approach for identifying redundant arithmetic checks (§3.2).

CSMITH achieves UB-freedom via a combination of generation-time restrictions
and runtime checks.

6

Generation-time restrictions. CSMITH forces all variables to be initialised before
use: scalars are initialised to random values and pointers to the addresses of suitable
in-scope variables. Arrays are initialised via for loops right after their declaration or
when declared via curly braces. When generating goto statements, CSMITH forbids
a goto from jumping over initialisation code by limiting the possible locations of
labels, and by discarding bad goto statements via a static analysis on the source and
destination locations.

To ensure that programs do not index arrays out of bounds, CSMITH keeps track
of the sizes of arrays. Array accesses via randomly-generated constant indices that
respect the bounds of an array can thus be generated anywhere the array is in scope.
For non-constant accesses, CSMITH generates for loops whose index variables iter-
ate from a lower bound to an upper bound using a fixed stride. In such loops it exploits
the combination of knowledge about the sizes of arrays and ranges of index variables
to generate non-constant but in-bounds array accesses based on suitable loop index
variables.

By forcing all pointers to be initialised to the addresses of existing program vari-
ables, and because it does not generate pointer arithmetic, CSMITH avoids the possi-
bility of null or invalid pointers being dereferenced. The problem of the addresses of
local variables escaping into global variables is avoided via a whole-program pointer
analysis. When CSMITH detects that it has generated code that will lead to escap-
ing pointers, it backtracks and generates a different code fragment instead. CSMITH
contains options that allow it to generate programs that include null and dangling
pointers with low probability—these options were introduced to allow CSMITH to be
used for testing static analysers [12] and would usually be disabled during compiler
testing; however, we make use of these options in our approach.

CSMITH applies effect analysis to avoid generating code with read/write and
write/write conflicts between two sequence points. This analysis avoids the gener-
ation of an expression such as a[i++] = i, which would trigger UB if executed
because it writes to i via sub-expression i++ and reads from i via the sub-expression
i on the right-hand side of =, with no sequence point determining an order for the
accesses to i on either side of the = operator. Each variable, including unions and
arrays but without distinguishing between different members or offsets, is placed by
CSMITH either on a READ list or on a WRITE list to ensure an object cannot be
modified more than once between two sequence points. CSMITH decides before gen-
erating code which variables are on the READ or WRITE list. This avoids read/write
and write/write conflicts between sequence points, including those related to unspec-
ified order of evaluation of function arguments.

By studying the CSMITH source code we also noticed that the tool explicitly pre-
vents the address of a formal parameter of a function f being passed as an actual
parameter to a function invoked by f . The reason for this restriction is not docu-
mented, but we do not believe it is explicitly related to UB. We found that removing
the restriction has a negative impact on the time associated with static analysis, sig-
nificantly increasing the overall time taken by CSMITH to generate programs, so it
seems likely that the restriction is in place for performance reasons. As discussed in
§3, we relax this restriction with low probability, in order to generate more diverse
programs without making generation too slow.

7

Runtime checks. Freedom from arithmetic-related UB is achieved through runtime
arithmetic checks encoded via safe math wrappers. Instead of directly issuing an
integer arithmetic expression a◦b (for some operator ◦), CSMITH invokes a safe math
wrapper for the operation. The wrapper returns a◦b if there would be no associated
UB, and otherwise returns some safe value (in practice, the value a). More formally,
a safe math wrapper for an operation a◦b has the form:

unsafe(a,b,◦) ? a : a◦b

where unsafe(a,b,◦) is an unsafe check that returns true if and only if the operation
a◦b would trigger UB.

CSMITH offers safe math wrappers in the form of functions, e.g. (for unsigned
integer division):

uint32_t safe_div(uint32_t X, uint32_t Y) {

return (Y == 0 ? X : (X / Y));

}

and macros, e.g. (again for unsigned integer division, and simplified for readability):

#define uint32_t safe_div(_X , _Y) \

({ uint32_t X = (_X); uint32_t Y = (_Y); \

Y == 0 ? X : X / Y;})

The user of CSMITH can decide which to use by including an appropriate header
file. The function and macro forms of these wrappers are intended to be semantically
equivalent. However, they may change the kinds of optimisations that the compiler
under test performs. For example, the presence of many simple functions will fre-
quently exercise the compiler’s function inliner, but the compiler may decide not to
inline all such function calls, which may inhibit optimisation opportunities that inlin-
ing would enable and will be possible when macros are used. Our understanding from
talking to the CSMITH developers is that functions (the default) are preferred because
they are simpler to maintain. This is evident from the relative simplicity of the func-
tion version above; the macro version requires a great deal of care to be taken related
to casting. During our evaluation we found and fixed some discrepancies between the
function and macro wrappers [23, 24].

2.2 UB Detection

Our CSMITHEDGE tool relaxes the analyses that CSMITH uses to ensure UB-freedom,
and thus risks generating programs that exhibit UB. These must be detected, as they
cannot be used for miscompilation testing. The following program analysers are em-
ployed for this purpose; their role in our solution is summarised in Table 1, which we
discuss in §3.1.

AddressSanitizer (ASAN) [50] is a dynamic analysis tool that uses a shadow
memory approach to detect invalid memory accesses, such as buffer overflows (heap,
stack, and globals), and use-after-free, use-after-scope and use-after-return accesses.
It has a typical overhead of 2× [2].

8

MemorySanitizer (MSAN) [51] is also a dynamic analysis tool based on shadow
memory which can detect uninitialised memory accesses. It has a typical overhead of
3× [43].

UndefinedBehaviorSanitizer (UBSAN) [53] is a dynamic analysis tool that can
detect a variety of undefined behaviour, such as use of a misaligned or null pointer,
out-of-bounds array indexing (if the bound can be statically determined), signed in-
teger and floating-point types overflow, code that performs pointer arithmetic that
overflows, and integer division by zero. We have found it to cause a typical slow-
down of 2-3×.

FRAMA-C [11] is a static source-code analyser for C programs with several avail-
able algorithms (plugins). In particular, the tool has an Evolved Value Analysis (Eva)
plugin, which applies abstract interpretation techniques to compute variation domains
for variables to analyse program variable values [16]. Eva reports possible undefined
behaviour, such as the use of uninitialised addresses, dangling pointer dereferences,
out-of-bounds index accesses, and signed integer overflow. The fact that a CSMITH
program has a single path means that this analysis is as precise as a dynamic analysis:
FRAMA-C effectively acts as an interpreter that performs rigorous semantic checks.
We have found it to cause a typical slowdown of 28×.

FRAMA-C has a relatively high overhead, and yet the overhead of CSMITHEDGE
overall is much lower. This is related to the way we perform the UB detection: using
the tools with the lower overhead first, before applying heavier tools, and terminating
as soon as UB is detected in the generated program.

All of the analysis tools that we use have the potential to report either false posi-
tives or false negatives in principle. However, in practice we have found that they are
mainly precise when applied to programs generated by CSMITHEDGE; we discuss
some exceptions in §3.

2.3 Test Case Reduction

A CSMITH- or CSMITHEDGE-generated program is typically large and complex. As
a result, a generated program that triggers a miscompilation bug is not directly useful
for reporting the bug; a test case reducer is needed to shrink the program down to a
much smaller version that still triggers the bug. In our experiments, we use the C-
REDUCE tool for this purpose [47]. C-REDUCE takes a C program and the path to an
“interestingness test” script. The user of C-REDUCE must write this script to encode
the property with respect to which they want their program to be reduced: the script
should return 0 if and only if a given program is deemed “interesting.”

For reducing a miscompilation bug observed via a mismatch between compilers A
and B, we use an interestingness test that (a) compiles and executes the program using
each of the analysis tools described in §2.2, returning “not interesting” if any of them
flags up a UB, then (b) compares the results obtained by running the program after
compilation using compilers A and B, returning “interesting” if and only if the results
differ. It is important to check for UB-freedom at every stage of the reduction process:
even if the original program was UB-free, C-REDUCE may apply transformations that

9

introduce UB. In §3.3 we discuss a lazy approach to detecting UB that we also use to
optimise the interestingness test during reduction.

For compiler crash bugs the interestingness test is simpler. Suppose we wish to
reduce a bug where the compiler crashes with a particular error message or stack
trace. We first write a regular expression characterising the output associated with the
crash. The interestingness test is then set up so that “interesting” is returned if and
only if the compiler under test crashes, and the compiler output matches the regular
expression. Test case reduction is not effective in reducing programs that cause a
compiler to hang since test case reduction involves invoking the compiler a large
number of times, and detecting a hang requires using a large timeout.

3 Design and Implementation

The operation of CSMITHEDGE is summarised by the diagram of Figure 1a. First,
an adapted version of CSMITH is invoked to generate a program; CSMITH is adapted
so that some of the generation-time restrictions discussed in §2.1 are relaxed. This
means that the generated program may be less restricted than a program that CSMITH
typically generates, but also that it might trigger UB.

To detect possible UB, a validation stage invokes the analysis tools described
in §2.2. The tools that are used depends on the specific analyses that CSMITHEDGE
chose to relax. If a program is found to contain UB then it cannot be used for differ-
ential testing to detect miscompilations, though it can still be used to test compilers
for crash and hang bugs. Programs that do not terminate within a given time bound
(50 s by default) are also rejected during validation.

A program validated as UB-free and terminating will still contain a large number
of safe math checks—the conservative checks that CSMITH inserts to ensure free-
dom from arithmetic UB (see §2.1). A novel dynamic analysis is used to determine
which of these checks are needed and which are redundant; the redundant checks are
removed to make the program even less constrained and thus more diverse than the
kinds of program regular CSMITH can generate. The resulting program is then used
for differential testing with the aim of detecting miscompilations.

As noted in §2.2, the analysis tools used during validation can in principle ex-
hibit false positives and false negatives. False positives would lead to the rejection of
programs produced by CSMITHEDGE that are actually valid; this might reduce the
effectiveness of CSMITHEDGE by lowering the rate at which it can generate usable
programs. False negatives could lead to programs that do exhibit UB being erro-
neously used for miscompilation testing, leading to compiler bug reports that turn
out to be false alarms. In practice we have not found the precision of these analysers
to be a major issue: our results (§4) show that CSMITHEDGE generates programs
that pass validation at a high enough rate that it is useful for finding compiler bugs.
By using a combination of analysis tools we encountered false alarm compiler bug
reports extremely rarely: during our large experimental campaign we manually ex-
amined many instances of potential miscompilations flagged by CSMITHEDGE and
only encountered one example of a program that actually triggered UB (this had been

10

Table 1: The CSMITH generation-time restrictions that CSMITHEDGE relaxes, to-
gether with the analysis tools that are used to detect the UB that might therefore arise,
and the lower and upper bounds on the probabilities with which these relaxations are
applied, both for crash testing and miscompilation testing.

Bounds [Rl ,Ru] for:
Relaxation UB detected by (in the order used) Crash Miscomp.
Null dereferences UBSAN [0,1] [0,1]
Dangling pointer dereferences ASAN, FRAMA-C [0,1] [0,1]
Variable initialisation MSAN, FRAMA-C [0,1] [0,0.35]
Locations associated with “goto” ASAN, MSAN, FRAMA-C [0,1] [0,1]
Array bounds ASAN, MSAN, UBSAN, FRAMA-C [0,1] [0,0.25]
Passing the addresses of parameters N/A [0,1] [0,0.5]
Read/write and write/write conflicts Always rejected for miscomp. testing [0,1] [0,0]

missed by FRAMA-C because, for performance reasons, we invoke FRAMA-C with
a bound on the number of iterations of a loop that it will analyse).

We now discuss details related to relaxing generation-time constraints (§3.1) and
detecting and removing redundant arithmetic checks (§3.2), and explain some fur-
ther implementation details including an optimised version of the flow depicted in
Figure 1a that leads to higher performance (§3.3).

3.1 Relaxing Generation-time Restrictions

CSMITH’s generation-time restrictions are a key component of its guarantee that gen-
erated programs are UB-free (see §2.1), but they limit the form of the programs that
are generated. These analyses and restrictions are all conservative: they may prevent
the generation of code that would actually be UB-free. For example, much of the
code that CSMITH generates will turn out to be dynamically unreachable—previous
work on equivalence modulo inputs testing reported that on average 29% of lines in
a CSMITH-generated program turn out to be unexecuted at runtime [35]. However,
CSMITH does not know at generation-time whether the code it is generating will be
reachable, thus it conservatively avoids generating code that would trigger UB if it
were to be executed. Note that generating diverse non-idiomatic dead code is use-
ful. This is because the compiler usually does not know at compile time whether the
code will be dead or not. While compiling the dead code, some compiler optimisa-
tions may operate at the boundary of reachable and dead code and—if implemented
incorrectly—may change the results computed by reachable code.

CSMITHEDGE probabilistically relaxes these restrictions in order to generate more
diverse programs, using the UB-detection tools of §2.2 to identify any resulting pro-
grams that exhibit UB so that such programs are not used for miscompilation testing.

Table 1 summarises the generation-time restrictions that CSMITHEDGE relaxes,
and the analysis tools that are used to detect the corresponding UB that might result.
The table also indicates the probabilities with which relaxations are applied, which
we explain further in §3.4. We try to use the faster analysis tools first so that if they
detect UB the slower ones are skipped. The order we use is ASAN, MSAN, UB-

11

SAN, FRAMA-C (though a particular analysis tool is only invoked if a relaxation that
demands the use of that tool has been applied). This order means employing the ex-
pensive FRAMA-C tool last. We acknowledge that this order might not be optimal,
since the optimal order is not just a function of analysis tool speed, but also of how
likely each analyser is to identify UB in generated programs in practice. We revisit
this matter during our evaluation in §4.2.

In deciding which UB avoidance methods to relax, we were guided by (a) whether
there is already a flag in CSMITH that enables the relaxation, or, if there is no such
flag, (b) how tractable it was to implement the relaxation in the (complex) CSMITH
code base without adversely affecting the rest of the tool. In some cases we found
that introducing a relaxation would break invariants within the CSMITH and lead to
assertion failures; we persevered with relaxations where it proved relatively easy to
work around such problems. For example, weakening the effect analysis to allow
read/write and write/write conflicts can lead to the failure of assertions that check
that there are no such conflicts (an invariant that regular CSMITH maintains). We
weakened the conditions of such assertions to ensure that they would not fail for
conflicts introduced as a result of our relaxations.

Following the approach of swarm testing [31], each time CSMITHEDGE is in-
voked it chooses at random whether to enable each relaxation, so that only a subset
of all possible relaxations is enabled during generation of a single test. For an enabled
relaxation, the probability with which it will be applied is also chosen at random to
be within a particular interval that we have customised for each relaxation.

We now discuss each relaxation in turn.

Null pointer dereferences. We allow the generation of reads and writes from a
pointer that might turn out to be null. We use CSMITH’s option for testing static
analysers [12] which allows null pointer dereferencing with a given input probability.
Allowing dereferencing null pointers in code can lead to UB; however, it shall not
trigger a UB in dead code (this is because dead code can never be executed and there-
fore cannot lead to any behaviour, including undefined one). We detect null pointer
dereferences in reachable code via UBSAN, which outputs a runtime error whenever
a program tries to dereference or write to a null pointer address.

Dangling pointer dereferences. We allow dereferencing of pointers that may no
longer refer to allocated memory with a given input probability. We use some of
CSMITH’s options to test static analysers [12] that allow dereferencing dangling
pointers similarly to the null pointers option above but disable the option that gen-
erates a return statement with a dead pointer. Initially, we tried generating code with
this option but received many return statements with dangling pointer dereferences;
we could have lowered the probability, but this would have had a general effect on the
dangling pointer dereferences instances in a program, making them unlikely to ap-
pear. As with null pointer dereferences, code that would dereference dangling point-
ers only leads to UB if it is actually executed. We detect dangling pointer dereferences
in reachable statements via ASAN and FRAMA-C (this is part of their broader capa-
bility to detect use-after-free problems in general); we use FRAMA-C to detect local
variables that escape the scope of their function, which may lead to access of a local
object out of its scope.

12

Variable initialisation. We leave global and local variables uninitialised2 (including
arrays and unions), with a given input probability. We relax the original constraints in
CSMITH that force initialisation of each variable: CSMITHEDGE removes the assign-
ment associated with a variable’s declaration according to the input probability. This
does not always lead to UB—e.g. a statement that initialises the variable before it is
used might be generated, or the variable might appear in dead code. When UB does
arise, we detect the lack of initialisation in reachable code via MSAN and FRAMA-C.

Locations associated with goto. A goto statement can, with some input probability,
jump to any label in the current context (all function’s blocks) and the label’s location
is not restricted in the current context by CSMITHEDGE. As a result, backward and
forward jumps can then skip over the initialisation of variables, which triggers UB if
one of those uninitialised variables is read. For example, a CSMITHEDGE-generated
program can now contain this block:

static int a = 1;

static void func() {

for (int i = 3; i > 0; i--) {

if (a)

goto lbl_forward; // jump over b’s initialisation

}

...

int b = 3; // the goto will skip this statement

lbl_forward:

a += b;

}

In this example, the execution of the program jumps over the initialisation of b and
uses it without initialising it. Similarly, a backwards jump can circumvent variable
initialisation code. However, not all goto jumps generated by CSMITHEDGE lead to
this scenario, as it is possible that the code after the label never uses the uninitialised
variable or it can be assigned with a new value later on; in these cases, no UB is
triggered. Like the relaxation of variable initialisation, we detect the lack of initiali-
sation in reachable code after a goto jump via MSAN and FRAMA-C and null pointer
dereferences with ASAN (in case we skipped an array or a pointer initialisation).

Array bounds. CSMITHEDGE allows generation of slightly more complex array in-
dex expressions compared to CSMITH: in addition to integer constants, an array in-
dex expression can be a binary operator with a mixture of variables and constants as
operands. With some input probability, we generate a constant or a binary operator
expression without checking if it is within the array’s bounds. Hence, CSMITHEDGE
generates more interesting expressions for array accesses than CSMITH; for example,
CSMITHEDGE can generate this program:

static int a[1][2][1] = {{{1} ,{2}}};

void main ()

{

static int b = 4UL;

int *c;

2 In C, global variables are initialised to zero if no explicit initialiser is given. However, removing ex-
plicit initialisers is still a potentially interesting deviation from what CSMITH does, since CSMITH always
explicitly initialises every global.

13

c = a[(b%1)][b -3][3*5];

}

Some of the index expressions, such as 3∗5 in the program above, can trigger an array
out-of-bounds access; any such expression in reachable code triggers UB. We use all
four tools to detect UB related to out-of-bounds array accesses: while FRAMA-C can
detect all such issues in principle, the sanitisers can each detect a subset of issues and
incur significantly lower overhead than FRAMA-C, thus it makes sense to try them
first.

Passing the addresses of parameters. As discussed in §2.1, CSMITH does not allow
the address of a parameter to the enclosing function to be passed as an argument to a
function call and this appears to be for performance reasons rather than due to UB-
avoidance. To increase diversity of generated programs, we allow a parameter to take
an argument’s address by ignoring this restriction with a very low probability when
constructing an expression for a function call parameter. By using a low probability
we were able to avoid performance concerns. The “N/A” entry in the second column
of Table 1 indicates that no analysis was required in relation to this change, as we did
not observe generated-code where the relaxation leads to additional UB.

Read/write and write/write conflicts. We weaken the effect analysis in CSMITH
so that read/write and write/write conflicts are allowed with some low probability.
We found that this change would frequently introduce undefined or unspecified be-
haviour, e.g. due to the order in which function call arguments are evaluated becom-
ing important (an unspecified behaviour in C), or due to unsequenced races akin to the
illustrative example presented in §2.1. Furthermore, none of the UB-detectors used in
this work are capable of detecting such issues.3 We thus opted to keep this relaxation
as an option for CSMITHEDGE, but to regard a generated program as automatically
invalid if it uses the option, so that the program can only be used for crash/hang test-
ing; this is indicated by the “Always rejected” entry in the second column of Table 1,
and the probability range [0,0] associated with miscompilation testing.

3.2 Relaxing Arithmetic Checks

Recall from §2.1 that CSMITH uses safe math wrappers to eliminate potential UB
arising from arithmetic operations. The price for this is that arithmetic operators that
are potentially UB-prone never appear in a CSMITH-generated program in a raw
form. They are always enclosed in a safe wrapper, as the third argument to a con-
ditional (ternary) operator of the form “e1 ?e2 : e3”. As the conditional operator may
introduce control flow (due to short-circuit evaluation), the rather prescriptive pro-
gram format arising from this blanket use of conditionals may bias the optimisations
that a compiler applies to CSMITH-generated programs, possibly reducing the extent
to which CSMITH can find bugs in other optimisations.

An arithmetic check in a CSMITH-generated program is redundant if the program
is still free from UB after removing the check. We use a simple yet effective dynamic

3 We believe that the CompCert compiler [37] may have support for detecting sensitivity to argument
evaluation order, but we have not yet integrated CompCert with CSMITHEDGE.

14

analysis to successfully identify redundant arithmetic checks in a generated program
that has passed validation. Our analysis temporarily instruments every arithmetic
check so that it will emit a warning if it turned out to be truly necessary. To achieve
this, the ith occurrence of a safe math wrapper of the form unsafe(a,b,◦) ? a : a◦b
is replaced with:

unsafe(a,b,◦) ? WARN(i),a : a◦b.

If executed, WARN(i) prints a message indicating that the ith safe math wrapper was
genuinely required—i.e. UB would have been triggered had it not been present. The
semantics of the C comma operator means that in the case where WARN(i) is executed,
the entire ternary expression evaluates to a, just as it would if WARN(i) were not
present.

Because a CSMITH program takes no input and thus exhibits a single execution
path, running the transformed program once immediately reveals the subset of arith-
metic checks that are actually needed. We then prune all but these checks from the
original program. This yields a program that is still free from UB, because all the
necessary safe math wrappers are in place, but that may have significantly fewer safe
math wrappers overall, because all the redundant ones are gone, meaning that its use
of arithmetic is correspondingly less constrained.

As an example, consider the following contrived program, which is similar in
spirit to (though much smaller than) a program that CSMITH might generate, where
safe lshift, safe add, safe div and safe mul are safe math wrappers for the
signed integer operators <<, +, / and *, respectively:

int main() {

int s = 5;

int t = 2147483646;

s = safe_lshift(s, 14); // (i) redundant

for (int k = 8; k >= -8; k--) {

s = safe_add(s, k); // (ii) redundant

t = safe_div(t, k); // (iii) necessary

}

t = safe_mul(safe_mul(s, t), s); // (iv) inner redundant ,

// outer necessary

printf(hash(s,t));

}

Our approach identifies the wrappers at locations (i) and (ii) to be redundant. The
wrapper at (iii) is identified to be necessary (because the divisor k passes through 0).
The inner wrapper at location (iv) is confirmed to be redundant, because s and t are
small enough that their product does not overflow, but multiplying this product again
by s would lead to overflow so that the outer wrapper at (iv) is flagged as necessary.

Specifically, execution of this program with our modification lists two locations
with UB: the safe div call in the loop (for the iteration when k is 0) and the outer
safe mul call after the loop (when attempting to compute 81920 ∗ 81920; s and t’s
value on exiting the loop are 81920 and 1, and hence 81920 is the result of the inner
multiplication in (iv)). These two safe math wrappers are thus kept, and all others are
removed (e.g. location (ii) becomes s = s + k;).

15

3.3 An Optimisation: Lazy UB Checks

We first implemented CSMITHEDGE to follow the flow of Figure 1a, which we be-
lieve remains the best way to explain conceptually how the tool works. We found that
the overhead of validating each and every generated program was high.

However, when searching for miscompilations, a generated program that does not
lead to a result mismatch between the compilers under test is uninteresting, regard-
less of whether it is UB-free. This observation leads to the following optimisation,
which we call lazy UB checks. After generating a program in a relaxed fashion, we
compile the program with one of the compilers under test and run it using a timeout.
If the program exceeds the timeout then we discard it as possibly non-terminating
and move on, just as we would do if testing using regular CSMITH. If the program
terminates, we invoke the remaining compilers under test and look for result mis-
matches. If no mismatches are observed then we also discard the program. Only if a
mismatch between the compilers under test is observed do we actually invoke valida-
tion to determine whether the program is UB-free. This optimisation is summarised
in Figure 1b.

This optimisation avoids the overhead associated with running the analysis tools
used during validation unless it appears to be genuinely worthwhile to run them. Even
though UB often does lead to a deviation in results between compilers, there is also
a good chance that the compilers under test might exhibit the same behaviour for
certain UB, or that some instances of UB might not lead to effects that propagate to
the output of the program.

The optimisation has diminishing returns as the number of compilers simulta-
neously under test increases, since with a large number of compilers the time taken
compiling and running the generated program multiple times may exceed the time
spent during validation. However, when performing differential testing of a pair of
compilers (the most common case in practice), we have found the optimisation to be
effective, as we show via experiments in §4.2.

3.4 Implementation Details

We have implemented our approach in a prototype tool called CSMITHEDGE, as a
set of bash scripts and additional C/C++ code on top of CSMITH [27], and available
at [26].

The changes we applied on top of CSMITH were: adding a set of parameters to
control the probabilities of relaxing each of the methods in §3.1; a mechanism for
randomly relaxing the constraints themselves during the code generation; and code
for processing and storing the information needed to relax these methods (e.g. to
avoid backtracking if a statement we relaxed can lead to UB according to CSMITH
analysis).

Functions vs. Macros. Recall from §2.1 that safe math wrappers are available as ei-
ther functions or macros. Normally a user of CSMITH would specify that one or other
of these wrapper forms should be used universally. In CSMITHEDGE we add a third
option, whereby both function and macro wrappers are available. In this mode, each

16

wrapper is randomly instantiated either in its function or macro form. When gener-
ating a program, the tool chooses with equal probability whether to use functions
universally, macros universally, or a random mixture of functions and macros.

Randomisation during Test Case Generation in CSMITHEDGE. CSMITHEDGE
consumes a configuration file with one line per relaxation.

For a relaxation R in Table 1, the file either says:

– R is disabled, or
– R is enabled with probability range [Rl ,Ru]

When CSMITHEDGE is invoked, for each enabled relaxation R, the tool chooses
with 50% probability whether it is enabled for the current run. If the relaxation is
chosen to be enabled, CSMITHEDGE chooses a specific probability, Rs, randomly
from the range [Rl ,Ru]. Having chosen Rs, every time there is an opportunity to apply
the relaxation during the current test case generation, CSMITHEDGE does so with
probability Rs.

For crash testing, all relaxations are enabled, and the bounds Rl and Ru, are
always 0 and 1, respectively, as shown in Table 1.

For miscompilation testing, read/write relaxations are disabled, all other relax-
ations are enabled, and the bounds Rl and Ru are shown in Table 1. The bounds were
obtained by manual experimentation, to find a good balance between adventurous
programs and undefined behaviour.

On each run, CSMITHEDGE also chooses randomly whether to use functions,
macros or a mixture of both for safe math wrappers.

We refer to the combination of the seed with which CSMITH’s internal ran-
dom number generation should be initialised, the manner in which safe math wrap-
pers should be implemented, and the specific set of relaxation probabilities, Rs, as
CSMITHEDGE’s seed. An example of a CSMITHEDGE seed is:

1621474906,2,0.8,0,0,0,0.3,0,0.

This generates a program using 1621474906 as the seed for CSMITH’s random
number generator, uses a mix of functions and macros for safe math wrappers,4 al-
lowing null pointer dereferences with a probability of 80% and array out of bound
access with a probability of 30%, and disabling all other relaxations.

Our approach of trying a variety of configurations via different CSMITHEDGE
seeds is an example of swarm testing [31].

4 Evaluation

We evaluate CSMITHEDGE based on its ability to find compiler bugs which standard
CSMITH does not find (§4.1), the throughput of fuzzing and rate at which relaxations
are applied (§4.2), and its ability to increase code coverage of the compiler under test
(§4.3).

4 The second component of a seed is either 0, 1 or 2 indicating whether functions, macros or a mixture
should be used.

17

We evaluated CSMITHEDGE using a number of virtual machines running Ubuntu
18.04 LTS x86 64, each with two virtual CPU cores (2 Sockets, 1 Core) and 8 GB
RAM. Each virtualisation host had two Intel Xeon CPU E5-2690 v3 CPUs (2.6GHz,
12 cores / 24 threads per CPU).

We imposed a timeout of 150 s for generating a program with the relaxed gen-
erator, 300 s for compiling the program, 50 s for a native execution of the program
(remember that CSMITH-generated programs are not guaranteed to terminate in gen-
eral), 600 s for each of the sanitisers, and 300 s for FRAMA-C.

We tested the most recent versions of the popular GCC and LLVM compilers at
the time we conducted our experiments: GCC 10 and 11 and LLVM 10 and 11.

4.1 Compiler Bugs

Throughout our development of CSMITHEDGE, over a period of six months, we reg-
ularly ran CSMITH and CSMITHEDGE to find bugs in latest stable versions of GCC
and LLVM. We also conducted a small evaluation on a Windows platform to test the
Microsoft Visual Studio Compiler (MSVC). Discrepancies between Windows and
Linux meant that it was difficult to run our approach natively on Windows, but we
copied a set of UB-free programs pre-generated by CSMITH and CSMITHEDGE to a
Windows machine and used them to conduct a 24-hour testing run.

To find compiler crashes and hangs on Linux, we compiled each concrete pro-
gram with GCC and LLVM using each of the standard -O0, -O1, -O2, -O3, and -Os

optimisation levels. We flag a program as potentially triggering a hang bug if it is
compiled successfully in general, but leads to a timeout for a particular compiler and
optimisation level (with our 300 s time limit); we confirm the hang before considering
reporting the bug by checking that compilation does not terminate even after several
hours. To find miscompilations on Linux, we compiled each concrete program with
GCC and LLVM using each of the standard -O0 and -O2 levels with the differential
testing approach sketched in Figure 1b.

We tested MSVC using a randomly-chosen subset of UB-free programs arising
from our Linux testing campaign. For both crashes and miscompilations we used the
/Od (no optimisations) and /O2 (maximise speed) optimisation settings. We used a
Windows build of LLVM as a reference compiler for miscompilation testing.

We found and reported seven compiler bugs in GCC 10, GCC 11, LLVM 10,
and MSVC 19.28.29915, which caused the generation of wrong code: three com-
piler bugs with P2 normal importance in GCC 10 [17, 18] and in GCC 11 [19] in
the tree-optimisation component, a bug with P3 normal importance in GCC 11 in the
tree-optimisation component [21], a bug with P2 normal importance in GCC 11 in
the middle-end component [20], a bug in LLVM 10 in the scalar optimisations com-
ponent [40], and a bug in MSVC 19.28.29915 in an optimisation of out-of-order exe-
cution of instructions [54]. We also found two compiler hang bugs in GCC 10, which
were independently fixed in the mainline before we got a chance to report them.
Finally, we found evidence of several older miscompilation bugs affecting various
versions of GCC from 7 through 10 and various versions of LLVM from 6 through
11. The details of all the bugs we found and investigated using CSMITHEDGE are

18

Table 2: Compiler bugs in GCC, LLVM and MSVC found only by CSMITHEDGE
(and not by CSMITH), with a note on the relaxation necessary to trigger the bugs.

#Bug Compiler component Affected compilers Kind Relaxations Status

1 Tree Optimisation
GCC 10.0.1, 9.2.1,
8.3.0 Miscompilation

Arith checks
as macros Fixed

2 Tree Optimisation
GCC 10.0.1, 9.2.1,
8.4.0, 7.5.0 Miscompilation

Arith checks
as macros Fixed

2 Tree Optimisation
GCC 10.0.1, 9.2.1,
8.4.0, 7.5.0 Miscompilation

Arith checks
as macros Fixed

3 Tree Optimisation
GCC 11.0.0, 10.2.0,
9.3.0, 8.4.0, 7.5.0,
6.4.0, 4.8

Miscompilation
Arith checks
as macros Fixed

4 Middle-end GCC 11.0.0, 10.2.0 Miscompilation
Arith checks
as macros Fixed

5 Tree Optimisation GCC 11.0.0 Miscompilation
Arith checks
as macros Fixed

6 Scalar Optimisations
LLVM 6.0, 10.0.0,
11.0.0, 12.0.0, 13.0.0 Miscompilation

Arith checks
as macros Fixed

7 - GCC 10.1.0 Compiler Hang

Null deref.,
variable init.,
goto, and
array bounds

Independ-
ently fixed

8 - GCC 10.1.0 Compiler Hang

Dangling ptr. deref.,
variable init.,
R/W and W/W
conflicts, and
array bounds

Independ-
ently fixed

9
Code motion
optimisation

MSVC
19.28.29915 Miscompilation

Null deref.,
array bounds Confirmed

available at [25]. We did not find any bugs with CSMITH in any of the compilers
during our evaluation.5

Table 2 gives an overview of the new bugs found, showing the compiler com-
ponent affected, the kind of bug (miscompilation or hang), the relaxations that were
applied when the bug was found, and the status of our bug report. For all the bugs we
found that involved the safe math relaxation, safe math wrappers needed to be imple-
mented as macros for the bug to trigger. However, for bugs that did not require this
relaxation, the choice of implementing safe math wrappers as functions or macros
had no impact.

During our testing campaign we prioritised investing manual effort into reducing
and investigating bugs in the latest versions of GCC and LLVM. However, we con-
ducted long-running background experiments using slightly older versions of these
compilers, and the data from these experiments identified a number of execution re-
sult mismatches that did not trigger using the most recent compiler versions. It is
possible that these mismatches are due to UB: although we have found the sanitizer

5 We reproduced several test cases that were CSMITH-generated programs with a reachable, side-effect-
free infinite loop. These programs either exceeded the time limit or terminated with a segmentation fault.
We investigated one example that led to a segmentation fault in detail, and confirmed that this was due to
the UB associated with the infinite loop and not due to a compiler bug.

19

tools used in our experiments to be adequate for our purposes, as discussed in §2.2,
they are not perfect. However, under the assumption that these mismatches do corre-
spond to historic miscompilation bugs, we performed some analysis to estimate the
number of distinct historic miscompilations. Inspired by the “correcting commits”
metric of [6], we obtained results for each program triggering a mismatch for a range
of compiler versions, starting with LLVM-6 and GCC-7. We assume that two test
programs trigger the same miscompilation in a compiler if they trigger the mismatch
for exactly the same versions of the compiler, and at identical optimization levels.

Using this approach, we identified:

– One program that led to a mismatch for LLVM versions 6–11 at all optimization
levels higher than -O0

– One program that led to a mismatch for GCC versions 7–9 at all optimisation
levels higher than -O0

– Six programs that led to a mismatch for GCC versions 7–9 at all optimisation
levels including -O0

– One program that led to a mismatch for LLVM versions 6–10 at all optimization
levels higher than -O0, except that the mismatch does not trigger with -O1 for
LLVM version 10 (but does still trigger at the other optimization levels)

We estimate that these programs characterise four separate historic miscompila-
tion bugs, but manual investigation would be required to confirm this.

It is important to emphasise is that none of the bugs we discovered in recent
compiler versions, nor the historic bugs for which we have tentative evidence of dis-
covery, were found by regular CSMITH. In fact, our work has been motivated by the
fact that compiler fuzzing techniques like CSMITH—while having found hundreds
of compiler bugs in the past—have now largely saturated [3, 46], and more diverse
programs, less idiomatic in their form, are needed. Our bug finding results show that
it is possible to increase diversity and find additional bugs without having to resort
to building a brand new fuzzing tool, with the associated manual effort that would be
involved.

We now discuss three of the new bugs that we found using CSMITHEDGE.

GCC bug: missed short-circuiting during folding [19]. In a short-circuiting oper-
ation, if the first operand is sufficient to determine the overall result, then the second
operand should not be evaluated, in case it commits side effects or exhibits UB. GCC
had a bug that violated this rule, as shown in the following code snippet which repre-
sents the core of the generated program:

int main() {

const long ONE = 1L;

long y = 0L;

long x = ((long) (ONE || (y = 1L)) % 8L);

printf("x = %ld, y = %ld\n", x, y);

}

This code should print y = 0, but prints y = 1 with the buggy GCC versions, which
generates code that incorrectly executes the y = 1L assignment.

20

This bug was promptly fixed by the developers with a patch in gcc/fold-const.c
for GCC 11. The bug was only found by CSMITHEDGE when implementing arith-
metic checks as macros and relaxing arithmetic checks.

LLVM bug: incorrectly lifting a modulo computation outside an if statement [40].
The compiler created a constant expression that was not safe to speculatively evaluate
and incorrectly lifted the computation outside its block. This can lead to a miscompi-
lation as shown by the following example, which contains the core of the generated
program that exposes the bug:

static long r = 0;

static long *m[1] = {&r};

static int i = 1;

static int *pi = &i;

int main() {

unsigned x = 0;

if (i) { // Evaluates to true

++x; // Afterwards x == 1

int test = pi == (int*) 1;

}

printf("x = %d\n", x); // Afterwards x == 1

if (!x) { // Evaluates to false

i = 7UL % (m[0] == (long*) 1); // Unreachable

}

}

The buggy LLVM version at -O2 generates code that is incorrect: on execution it
throws a “floating point exception” instead of printing “x = 1”. This happens because
the unreachable statement containing a modulo by 0 is incorrectly lifted and executed.

This bug, which was fixed by the developers, seems related to the IRBuilder files
in LLVM 10. Again, this bug was only found by CSMITHEDGE when implementing
arithmetic checks as macros and relaxing arithmetic checks.

MSVC bug: incorrectly moving an unreachable invalid array access into reach-
able code [54]. In the following program, the compiler incorrectly lifted an out-of-
bounds array access to location A[13218][231] before the if-statement. This led to a
miscompilation of the following code with /O2 optimisation level in MSVC version
19.28.29915 for x64 architecture on a Windows machine.

static int32_t a = 1L;

static int32_t b = 0;

static int64_t c = 0L;

static int64_t * volatile d = &c;

int main (int argc , char* argv [])

{

for (b = 0; b >= 0; b--)

{

// Always true , so the loop is broken on its first

// iteration

if (a) {

printf("breaking\n");

break;

}

// Unreachable , since the loop is already broken

21

uint16_t A[1][2];

int j;

for (j = 0; j < 2; j++)

A[0][j] = 0;

// This access would be out of bounds , but it is

// unreachable

A[13218][231] && *d;

}

printf("done\n");

return 0;

}

The MSVC buggy version at /O2 generates code that terminates abnormally with
exit code -1073741819 instead of printing “breaking”, “done” and returning 0 since
the if(a) condition is always true. We performed a manual investigation of this
miscompilation, comparing assembly code generated at /O2 between the buggy and
non-buggy compilers. We found that the access to array A in the last line of the for

loop is erroneously computed before checking whether a is true (that is, before the
conditional jump of if(a)).

We reported this code to Visual Studio Developer Community, and it was con-
firmed by a software engineer from the “Machine-Independent Codegen” Team.

This bug was only found using CSMITHEDGE, and not regular CSMITH, because
it relies on the generation of code that risks accessing arrays out of bounds, which
CSMITH does not generate.

4.2 Throughput and Relaxation Rate

As discussed in §3.4, the most natural way to apply CSMITHEDGE is as described
in Figure 1a. However, this results in a significant decrease in performance since the
expensive UB detectors (sanitizers and FRAMA-C) are invoked on every program.
Instead, by executing the UB detectors only when (i) we know the program termi-
nates (similar to CSMITH), and (ii) a mismatch between compilers is detected during
differential testing, our lazy UB checks mode can significantly improve performance
when searching for compiler bugs (i.e. the flow of Figure 1b). We performed our
bug-finding campaign using the lazy approach and a 50 s timeout (the CSMITHEDGE
default). We now present a comparison of the default settings against CSMITH and
the conceptual approach of CSMITHEDGE for a selection of timeouts.

Throughput of Program Generation during Differential Testing. To quantify the per-
formance difference between the standard and lazy UB checks modes, as well as how
they compare with CSMITH, we ran an evaluation on a single virtual machine, mea-
suring the throughput of CSMITH, and of CSMITHEDGE with and without lazy UB
checks, running each configuration for 24 hours. We measured the throughput of tests
comparing the behaviours of LLVM 10 and GCC 10 with -O2. We ran the tools in
miscompilation mode for this experiment and hence relaxing read-write and write-
write conflicts was disabled. We repeated the whole set of experiments presented in
this section 10 times to obtain more accurate results. Accordingly, the results in the
tables below are an average of these repeated experiments.

22

Table 3: Programs generated per hour by CSMITH and CSMITHEDGE without and
with lazy UB checks.

Timeout value #programs Csmith CsmithEdge CsmithEdge-Lazy

Generated 877.54 291.22 543.39
Timed-out 108.34 29.15 51.60

Crash 0.00 75.10 139.10Invalid Sanitisers 0.00 40.57 19.58
10 s

Usable 769.20 146.39 333.10

Generated 394.55 212.28 351.28
Timed-out 48.80 21.30 32.85

Crash 0.00 55.09 90.40Invalid Sanitisers 0.00 30.80 12.82
50 s

Usable 345.75 105.09 215.21

Generated 202.24 154.48 220.19
Timed-out 25.04 15.59 20.51

Crash 0.00 40.25 56.32Invalid Sanitisers 0.00 21.87 8.05
120 s

Usable 177.20 76.78 135.30

We now explain the conditions under which we deemed each tool configuration
to have generated a usable test program during our experiments.

– CSMITH: Because CSMITH generates UB-free programs by construction, we re-
garded a generated program as usable if it did not time out on execution after
compilation with LLVM.6

– CSMITHEDGE without lazy UB checks: We regarded a generated program as
usable if it did not crash or time out during the dynamic analysis (§3.2) or UB
detection stages, and was reported to be UB-free by the UB-detection stage.

– CSMITHEDGE with lazy UB checks: We regarded a generated program as usable
if (1) it did not crash or time out during the dynamic analysis (§3.2) stage, (2)
it did not time out on execution after compilation with LLVM (since we used
the LLVM sanitizers, we chose LLVM for timeout detection for consistency),
and (3) either the program led to identical results after compilation and execution
using the two compilers under test, or a result mismatch was detected but the
program was subsequently found to be UB-free by the UB-detection stage.

Table 3 presents the average throughput of usable programs per hour for CSMITH,
and CSMITHEDGE without and with lazy UB checks, respectively. Recall that in all
cases, the generated program is executed at least once with a timeout to confirm
that it terminates. A large portion of program generation time is due to timeouts in
practice, and this will vary according to the timeout that is used. Using too short a
timeout leads to discarding programs that would eventually terminate and that might
be useful for bug finding, while using too high a timeout reduces the throughput of
testing. We show data for three timeout values: 10 s, 50 s (the default value used in
our bug-hunting experiments) and 120 s.

6 We chose LLVM over GCC because, as discussed below, we sometimes detect timeouts during the
UB detection phase for other tool configurations, and most of the UB detectors are LLVM-based sanitisers.

23

The Generated rows in Table 3 show the average rate of programs generated
during a one-hour period. The generated programs are categorised into programs that
time out, invalid programs and usable programs.

A program is in the timed-out category if it exceeded the time limit during the
arithmetic check relaxation, UB detection, or miscompilation testing. During UB de-
tection, we applied different time-out settings for the sanitizers, taking into account
their overhead (see the beginning of §4 for these values).

A program is in the invalid category if it is not suitable for differential testing.
Invalid programs are detected in two different ways: if the program crashes during
execution (Invalid - Crash in the table) and if a sanitizer or FRAMA-C detects an
error (Invalid - Sanitizers in the table). By construction, CSMITH does not generate
invalid programs.7

A program is in the usable category if it is suitable for differential testing; that is,
it is UB-free and did not time out.

The rate of programs that time out is around 12% for CSMITH, around 10% for
CSMITHEDGE without lazy checks, and around 9% for CSMITHEDGE with lazy
checks. One possible explanation for the lower rate in CSMITHEDGE is that many
of the programs CSMITHEDGE generates are invalid and quickly crash at runtime,
e.g. due to a division by zero. We examined the logs of these experiments and found
that majority of the invalid tests failed before reaching the validation stage (e.g.
due to a segmentation fault arising during relaxation of safe math arithmetic oper-
ators): around 64% for CSMITHEDGE without lazy checks and around 87.5% for
CSMITHEDGE with lazy checks.

Looking at the programs marked as invalid, we can observe that a program was
relatively rarely rejected due to UB detected by sanitizers or FRAMA-C. For exam-
ple, with a 50 s timeout, we generated on average 212.28 programs per hour with
CSMITHEDGE, out of which 85.89 per hour were invalid but only 30.80 per hour were
rejected by either the sanitizer or FRAMA-C. We did not consider any further optimi-
sation on the order of invoking the sanitizer and FRAMA-C, as in practice, it has little
effect on the performance of CSMITHEDGE with the lazy checks. However, it might
be useful to obtain such order when disabling the lazy checks in CSMITHEDGE.

For each tool configuration and timeout value, the usable column in Table 3 shows
the average rate of programs suitable for differential testing that could be generated
during a one-hour period. Note that the results for CSMITH and CSMITHEDGE are
compiler-independent: the resulting programs could be subsequently used for differ-
ential testing of other C compilers. The results for CSMITHEDGE-Lazy are tied to
the pair of compilers under test, because it may be that programs on which these
compilers agree actually exhibit UB.

Results for the version of CSMITHEDGE without lazy UB checks tell us the rate
of UB-free programs (the usable row of Table 3 under CSMITHEDGE statistics). For
example with a 50 s timeout: 105.09 programs were found to be UB-free (and thus
could be used both for finding compiler crashes/hangs and miscompilations), 85.89
programs had UB detected by either the sanitisers or FRAMA-C or failed during safe

7 Actually CSMITH can generate programs with UB arising from side-effect free infinite loops, but this
happens very rarely.

24

Table 4: Average time spent on test generation, test execution, and UB detection by
CSMITH and CSMITHEDGE without and with lazy UB checks.

Csmith CsmithEdge CsmithEdge-LazyT/O
value Gen. Exec. Gen. Exec. UB det. Gen. Exec. UB det.

10 s 2.107 s 1.997 s 3.761 s 0.396 s 8.308 s 3.752 s 0.550 s 2.296 s
50 s 2.148 s 6.976 s 7.513 s 0.401 s 9.291 s 7.428 s 0.586 s 2.211 s

120 s 2.138 s 15.660 s 13.941 s 0.398 s 9.249 s 13.754 s 0.596 s 1.973 s

math arithmetic operators relaxation (and thus could only be used to find compiler
crashes/hangs), and 21.30 programs hit the timeout (and hence may also contain UB
and have to be discarded if used for finding miscompilations). In practice, with the
lazy UB checks, CSMITHEDGE invoked these checks at a much lower rate, hence
was able to generate more programs (Table 3, Usable columns of CSMITHEDGE vs.
CSMITHEDGE-Lazy) and confirmed fewer programs as triggering UB after those
found to exhibit a resulting mismatch (Table 3, CSMITHEDGE-Lazy’s invalid rate).

By comparing the rates at which valid programs are generated for different time-
out values (Table 3), it appears that a 10 s timeout (or shorter) might be a more
suitable default timeout value. However, there is a hard-to-evaluate trade-off between
throughput and test thoroughness. A modest number of highly complex test programs,
each containing many intricate fragments of code, might have higher potential to ex-
pose miscompilation bugs compared with a larger number of more straightforward
programs. Using too low a timeout value risks missing information on potential mis-
compilations arising from larger, more intricate programs if they are skipped due to
taking too long to terminate.

Table 4 presents the exact split of time spent on test generation, execution, and
external tools to check UB-freedom for CSMITH and CSMITHEDGE without and with
lazy checks. We show data for three timeout values, similarly to Table 3. The Gen.,
Exec., and UB det. columns present the average time in seconds spent on test gener-
ation, execution and (for CSMITHEDGE only) validation of a test case, respectively.

Because program generation using CSMITH is purely static, the time associated
with generation is independent from the execution timeout value used. This is not the
case for CSMITHEDGE and CSMITHEDGE-Lazy, because the safe math relaxation
involves running each program as part of generation. This means that generation time
increases as larger timeout values are used.

Notice that for CSMITHEDGE the amount of time spent executing a compiled pro-
gram during differential testing is very small and relatively insensitive to the timeout
value. This is because all timeouts are detected earlier: only programs that terminate
within the timeout limit are considered for differential testing. Consequently, fewer
programs have been executed with CSMITHEDGE than with CSMITHEDGE-Lazy (be-
tween 40−60 % fewer depending on the timeout value), which led to different aver-
age execution times between CSMITHEDGE and CSMITHEDGE-Lazy.

Comparing the “UB det.” columns for CSMITHEDGE and CSMITHEDGE-Lazy,
we can see that the lazy optimisation results in significantly less time spent perform-
ing UB detection.

25

The average generation and validation times across different timeout values are
relatively high compared with CSMITH, when only a pair of compilers are cross-
checked during differential testing, due to the time spent invoking analysis tools. If a
larger number of compilers, or compilers at different optimisation levels, are cross-
checked, the proportion of time spent running UB analysers will be less, since more
time will be spent compiling and executing programs for differential testing. The
overhead of CSMITHEDGE could also be decreased by using lower timeout values
for the UB analysis tools, the trade-off being that more programs would be skipped
due to these analysis tools timing out.

Throughput of Generating Programs for Crash Testing. All CSMITHEDGE-generated
programs are valid for crash testing since the compiler has to process programs with-
out crashing or hanging during compilation regardless of the presence of UB. There-
fore, we were also interested in the rate of raw generation. We measured the rate
of generating programs per hour for CSMITH and CSMITHEDGE on a single virtual
machine for 24 hours. On average, CSMITHEDGE generates 1639 programs per hour
(relaxed program generator, without discarding programs that hit timeout and UB
detection), while CSMITH generates 1698 programs per hour (program generator,
without discarding programs that hit timeout). Note that when using CSMITHEDGE
for crash testing, we do not compile and run generated programs, and therefore we
do not perform relaxation of arithmetic checks. This also contributes to the high rate
of generated programs, because the overhead of running the program to identify re-
dundant arithmetic checks is removed.

Rate of Relaxations. The rate at which we applied relaxations was determined by an
array of per-relaxation probabilities, described in §3.1. A high probability of applying
a relaxation is likely to result in the majority of generated programs exhibiting UB.
On the other hand, a low probability might lead to no relaxations being applied, in
which case the program CSMITHEDGE generates will be identical to the program
that CSMITH would have generated. CSMITHEDGE generated programs that differed
from what CSMITH would have generated 84% of the time. The rate of programs
out of all uniquely generated programs by CSMITHEDGE that tested to be UB-free
is 40%.8 This rate excludes the relaxation of arithmetic checks, which can still be
applied to achieve diversity even when CSMITHEDGE initially generates a program
identical to that which CSMITH would have generated.

4.3 Coverage of Compiler Codebases

We used 135K distinct seeds to generate CSMITHEDGE and CSMITH programs for
coverage measurements. Measuring coverage requires compiling the compiler code-
bases without optimisations and instrumenting them with GCOV, both of which in-
troduce large overheads.

8 Note that for this experiment, the timeout settings had no effect. This is because we were only inter-
ested in the differences between the programs without actually running them.

26

0 50000 100000 150000

216000

218000

220000

222000

224000

226000

228000

230000

232000

234000

236000

238000

240000

242000

#programs

L
in

e
C

o
v

e
ra

g
e

Csmith
Relax-Arith

Relax-Gen

CsmithEdge

(a) GCC 10.2.1

0 50000 100000 150000

138000

140000

142000

144000

146000

148000

150000

152000

154000

156000

#programs

L
in

e
C

o
v

e
ra

g
e

Csmith
Relax-Arith

Relax-Gen

CsmithEdge

(b) LLVM 11.0.0

Fig. 2: Line coverage by the four different generation methods. The number of lines
covered by a single CSMITH program is around 150K for GCC and 100K for LLVM.

Furthermore, we want to measure the impact of the various CSMITHEDGE com-
ponents, so for each seed, we perform multiple runs. In particular, our evaluation
compares four different systems: CSMITH, CSMITHEDGE, and two intermediate ver-
sions of CSMITHEDGE:

– RELAX-GEN: CSMITHEDGE with only the generation-time relaxations of §3.1
enabled.

– RELAX-ARITH: CSMITHEDGE with only the relaxations of arithmetic checks
of §3.2 enabled.

As discussed in §3.2, the safe math wrappers can be instantiated via functions
or macros. For each CSMITHEDGE-generated program, we configured the tool to
choose at random between instantiating all safe math wrappers via functions, all safe
math wrappers via macros, or using a randomised mixture of functions and macros.
For consistency, we configured CSMITH and the two variations of CSMITHEDGE
(RELAX-GEN and RELAX-ARITH) to do the same when generating programs for
our coverage experiments. To investigate whether the choice of representation for
safe math macros impacted much on coverage results, we repeated the experiments
described in this section twice: once forcing all tools to use function wrappers exclu-
sively, and again forcing all tools to use macro wrappers exclusively. The results that
we obtained were very similar in all cases, so we omitted the associated graphs.

During the evaluation described in this section (including the investigation above),
we used a fixed set of seeds when generating the 135K programs with each of the
four systems (taking the data relevant to each system); for example, if the seed for
CSMITHEDGE was 1621474906,2,0.8,0,0,0,0.3,0,0 (see §3.4), then the seed
for RELAX-GEN was the same, and the one for CSMITH was 1621474906.

We measured the line coverage achieved on recent versions of the GCC and
LLVM compilers: GCC-10.2.1 and LLVM-11.0.0, using each of the 135K pro-
grams generated by the four systems.

Figures 2a and 2b (best viewed in colour) report the cumulative coverage achieved
by the four systems in the GCC and LLVM codebases respectively. We measured

27

coverage every 2,500 programs. We used the GCOV-based tool gfauto [29] to
aggregate results from all machines and generate the coverage results in a human-
readable format.

Figure 2a shows that the largest line coverage in GCC was achieved by CSMITHE
DGE and the second-largest by RELAX-ARITH. After compilation of 135K programs,
CSMITHEDGE covered around 4.4K, 3.6K and 0.4K more lines than CSMITH, RELAX-
GEN, and RELAX-ARITH, respectively. Figure 2b shows that the largest line coverage
in LLVM was also achieved by CSMITHEDGE, but the difference with CSMITH is
less pronounced in this case, at only 0.5K extra lines.

Even when the difference in overall coverage is small, the systems cover different
sets of lines. To demonstrate this, Figures 3a and 3b present two Venn diagrams of
the lines covered after compiling all 135K programs in each set. Each segment of
the Venn diagram shows the number of lines covered by the tools associated with
the intersection; e.g. 581 lines of GCC 10.2.1 were covered by tests generated by
CSMITH, RELAX-GEN RELAX-ARITH (but not CSMITHEDGE) in Figure 3a.

Figures 3c and 3d present two Venn diagrams of the lines covered by CSMITHEDGE
and CSMITH. We can see that while CSMITHEDGE covered more lines of code than
CSMITH, each system covers lines that the other does not. This is somewhat expected,
as the restrictions in CSMITH are likely to exercise different parts of the compiler, and
these restrictions are added by CSMITHEDGE with a smaller probability.

Figures 3e and 3f present two Venn diagrams of the lines covered by the three ver-
sions of CSMITHEDGE. These show that the generation-time and arithmetic check
relaxations are complementary: in GCC, RELAX-GEN and RELAX-ARITH covers
approximately 3K and 6.1K lines that the other version did not; while in LLVM,
the numbers are 2.2K and 1.7K. It is also interesting to notice that RELAX-ARITH
and RELAX-GEN cover lines of code which are not covered by CSMITHEDGE. Of
course, CSMITHEDGE is able to eventually cover all the lines of code covered by
its subcomponents. However, given a fixed time budget, configurations using only
certain relaxations can be more effective. This is why we incorporated swarm test-
ing [31] into CSMITHEDGE: during a long testing campaign, tests will be generated
using many diverse configurations (§3.4).

Investigation of additionally-covered code for GCC Recall from Figure 2a that (in
contrast to the results for LLVM in Figure 2b), CSMITHEDGE provides a modest,
but clearly visible, improvement in coverage over CSMITH with respect to the GCC
code base, and that most of this improvement appears to come from our method of
relaxing arithmetic checks (see §3.2).

We undertook some manual investigation to gain some insights into specific com-
ponents of the compiler that are covered by CSMITHEDGE but not by CSMITH. New
coverage is achieved by CSMITHEDGE in more than 120 files and it was not feasi-
ble to investigate these manually. To limit our investigation we identified those files
for which at least 50 new lines of code were covered by CSMITHEDGE compared
with CSMITH. There were 12 such files and we manually inspected the differences
between them.

Two files where CSMITHEDGE achieved very substantial additional coverage
are generic-match.c and gimple-match.c. These files are generated by GCC’s

28

(a) GCC 10.2.1 (b) LLVM 11.0.0

(c) GCC 10.2.1 (d) LLVM 11.0.0

(e) GCC 10.2.1 (f) LLVM 11.0.0

Fig. 3: Venn diagrams comparing the line coverage achieved by the four systems after
each generates 135K programs.

genmatch program from pattern matching rules written in a domain-specific lan-
guage, and they implement optimisations that rewrite expressions. Example rewrites
covered by CSMITHEDGE but not CSMITH include (from generic-match.c):

– x % C→ x & (C - 1), if x and C are positive

29

– -1 / x < y→ __builtin_mul_overflow(x, y), for unsigned x and y (the
original expression checks whether x * y would overflow, which can be replaced
with a built-in check)

– x + (x & 1)→ (x + 1) & ~1

– x * C == y * C→ x == y, for integral types with undefined overflow, when
C 6= 0

and (from gimple-match.c):

– (x & (-y)) / y→ x >> log2(y), where y is a power of two
– ~(~x >> y)→ x >> y

– (~x & y) | x→ x | y

– min(x, y) < z→ x < z || y < z

The vast majority of the new coverage achieved in these files is due to safe math
relaxations—most of the coverage is achieved by RELAX-ARITH, and only some of
it by RELAX-GEN. This is intuitive: CSMITH’s default approach of guarding every
potentially unsafe operation with a safe math wrapper means that many expression
forms will never occur in generated programs, an issue that our safe math relaxation
alleviates somewhat. For similar reasons, CSMITHEDGE achieves substantial addi-
tional coverage in fold-const.c and gimple-fold.c compared with CSMITH;
these are also parts of GCC that perform expression simplification.

We found that CSMITHEDGE was able to cover a “loop versioning” transforma-
tion not exercised by CSMITH. According to comments in the GCC source code:

This transformation given a condition and a loop, creates if (condition)

loop copy1 else loop copy2 , where loop copy1 is the loop trans-
formed in one way, and loop copy2 is the loop transformed in another way
(or unchanged). COND EXPR may be a run time test for things that were not re-
solved by static analysis (overlapping ranges (anti-aliasing), alignment, etc.).

where COND EXPR, mentioned in the above description, is a parameter to the trans-
formation. Interestingly this transformation is covered by RELAX-GEN but not by
RELAX-ARITH, indicating that it arises due to the generation-time relaxations that
CSMITHEDGE employs. Code associated with the transformation spans three source
files:

– tree-loop-distribution.c contains the analysis for determining whether a
loop versioning transformation can be performed;

– tree-data-ref.c contains logic for determining the pointer aliasing tests that
need to be performed at runtime to decide which version of a loop to run (our un-
derstanding is that this logic contributes to the COND EXPR parameter mentioned
above);

– cfgloopmanip.c contains the code for applying the loop versioning transforma-
tion, once it has been deemed to be safe.

Another file with substantial new coverage exercised by RELAX-GEN but not
RELAX-ARITH is gimple-ssa-store-merging.c. Our relaxations of generation-
time checks lead to the exercising of additional code paths for determining when it is
acceptable to merge store operations.

30

We have not determined which of our generation-time relaxations account for the
loop versioning optimisation being triggered, and for the additional coverage related
to merging of store operations. It would be possible to investigate by performing a
search for specific tests that trigger this coverage, checking which relaxations were
used in generating those tests, and identifying the relaxations common to all such
tests.

The above discussion accounts for 8 of the 12 source files in which we identi-
fied non-trivial additional coverage. We found it harder to understand the code being
exercised in the remaining files:

– gimple-ssa-strength-reduction.c: It appears that extra code paths are ex-
ercised related to determining when strength reduction (replacing an expensive
operation in a loop with a cheaper one) can be applied, but that the new code
paths do not lead to additional strength reduction being triggered: deeper precon-
dition checks for strength reduction are performed, but ultimately they still return
false

– i386.md: This is a machine description file for the IA-32 and x86-64 architec-
tures. The new coverage in this large file is sparse and sporadic, and hard to un-
derstand.

– insn-recog.c: This is an auto-generated file, in which coverage is again spo-
radic and hard to understand.

– internal-fn.c: This file contains various internal GCC helper functions. The
new coverage is related to handling of overflow. Our hypothesis is that, with fewer
safe math wrappers that would explicitly check for overflow, CSMITHEDGE gen-
erates programs for which more compile-time overflow checking is required.

5 Threats to Validity

Internal validity. Faults in CSMITHEDGE can lead to (1) detecting what appear to be
miscompilation bugs with code that actually turns out to trigger UB, and (2) discard-
ing valid programs. We now comment on some steps we have taken to thoroughly
test CSMITHEDGE to minimise the chances of such bugs undermining our work.
We carefully tested CSMITHEDGE by examining the rate of non-UB-free detected
programs while considering the number of applied relaxations and different lines be-
tween CSMITHEDGE-generated and Csmith-generated programs.9 For example, we
investigated such pairs with few modifications or with modifications in unreachable
code. In addition, we generated large sets of programs with a single relaxation and
checked that the UB detection tool that was supposed to identify the UB this relax-
ation can cause was the only tool terminating reporting an error and did so consis-
tently. We also investigated relaxations where more than half of the generated pro-
grams failed the UB validator. Last, we cross-checked programs with mismatched
results with different compilers or optimisations with its compilation warnings to

9 Our implementation used randomisation but avoided using the very same mechanism used by
CSMITH; hence the randomisation related to the UB relaxation part did not directly affect the rest of
the random decisions. As a result, a pair of programs with the same seeds produced by CSMITH and
CSMITHEDGE were usually identical except for the parts in the code affected by the relaxation.

31

identify undefined and unspecified behaviours, which the UB detection tools used in
this work cannot detect (e.g. reading a field in a union that was not the last one to be
written to). Employing such careful testing throughout the project allowed us to fix a
number of bugs in CSMITHEDGE during its development, increasing our confidence
in the final results we have gathered.

We remark on the steps we have taken to ensure a fair evaluation between CSMITH
and CSMITHEDGE. During the evaluation of CSMITHEDGE, we used virtual ma-
chines with the same specifications and compiler builds to evaluate the four systems.
To account for differences in the priority with which different VMs are given access
to underlying resources of the compute cluster, we randomly shuffled execution tasks
between VMs. Thus our overall results for CSMITH vs. CSMITHEDGE should not
be biased by resource allocation issues. Furthermore, when measuring coverage, we
used the same parameters for test case generation with CSMITH and CSMITHEDGE
(except for the additional relaxation options CSMITHEDGE takes, as discussed in §3.4
and §4.3); for all experiments, we applied the swarm testing technique when choos-
ing relaxation options for each run of CSMITHEDGE. We regularly ran CSMITH and
CSMITHEDGE to find bugs with few optimisation levels; we did not find any bugs
during the evaluation in the tested compilers. The reported bugs on Table 2 were
confirmed, not marked as duplicated and mostly fixed promptly. We measured the
program generation and differential testing rate over a relatively long period of 24
hours and repeated the differential testing rate experiments 10 times to ensure we
measured the actual CSMITHEDGE’s performance. We adopt part of the guidelines
in [34] when possible and relevant. Since the motivation of this work is the immunity
compilers gained with time to existing fuzzers, we did not evaluate our tool against
old buggy compilers (which did not yet reach that point).

Construct validity. We depend on UB detection tools (sanitisers and static analysers)
to decide whether programs are free from UB. This solution uses well-tested existing
tools but can have false results: false-positive results can impair the ability to generate
diverse code, and false-negative results may lead to a practically unusable approach.
In the evaluation, we suggested two experiments to evaluate the effect of false results
on (1) the rate of generating valid programs for differential testing (false-negative re-
sults) and (2) generating diverse test cases (false-positive results). The evaluation in
§4.2 suggested a 1.61 × overhead, and §4.3 presented a significant additional cover-
age (thousands of lines) with CSMITHEDGE comparing to CSMITH. We evaluate the
additional line coverage with 135K programs; however, when observing the line cov-
erage in Figure 2a, we think it is worth considering repeating the analysis for GCC
with a larger population because the graph does not show the saturation effect.

External validity and transferability. In this work, we investigated the idea of adapt-
ing existing fuzzers to be less restrictive with respect to UB, and tested our hypotheses
for C compilers by extending the CSMITH tool. Due to limited human resources, we
did not exercise other fuzzers and programming languages. Our concrete results are
thus restricted to this setting. We argue that C is a suitable choice of language be-
cause it is widely used in the development of critical code, and because the language
features many sources of UB. We chose CSMITH because it generates C programs, is

32

open source with an active community, and because it has been used extensively to
test mainstream compilers to the extent that such compilers are largely immune to the
tool. This provided a good setting in which to assess whether additional bugs could be
found via our technique. With additional engineering, the approach presented in this
work could be applied to other C/C++ test program generators, as well as to program
mutators (e.g. to eliminate “bad” mutations every n pulses). Transferring our ideas to
other programming languages that feature UB would require suitable sanitisers and
static analysers capable of detecting the relevant UB.

Conclusion validity. The bug reports in this article were all bugs that regular CSMITH
did not find, in both recent and slightly older compiler versions. To understand how
these reports relate to our changes, we examined the additional coverage that CSMITH-
EDGE has gained compared to CSMITH. According to Figures 2a and 2b, with 135K
test cases, it was an addition of 3.2% and 1.56% to the line coverage in GCC and
LLVM, respectively. The results make it clear that large parts of these compiler code
bases remain uncovered despite our extensions. For example, parts of the code bases
that deal with C++ (or other language), or with back ends for different processor ar-
chitectures, will not be covered by our approach, so bugs in such components are
out of scope. Because we do not know the extent to which bugs remain in GCC and
LLVM we cannot assess the criticality of the new bugs found by our approach com-
pared with additional not-yet-discovered bugs.

During our six-month bug-finding campaign, we did not find any bugs in recent
release versions of GCC and LLVM (including those reported in Table 2, and the
slightly older compiler versions on which we performed additional testing) using
CSMITH. This suggests that these compilers are now largely immunite to CSMITH.

6 Related Work

A preliminary sketch of some of the ideas in this paper, including a prototype of
CSMITHEDGE, appeared in a new idea paper [15].

Compiler fuzzing has a rich history, starting with techniques focusing on lan-
guages such as COBOL [48], PL/I [32], and FORTRAN [5]. More recently the C
programming languages has received a lot of attention [35,36,39,44,45,52,56], with
many bugs reported in popular compilers such as GCC and Clang/LLVM. See [7] for
a recent survey of the field.

These fuzzers fall into two main categories: those that generate programs from
scratch [39, 44, 56], which are typically used to cross-check multiple compilers, and
those that apply transformations to generate equivalent programs [13, 14, 35, 36, 45,
52], allowing the behaviour of a single compiler to be cross-checked against multi-
ple equivalent programs (a form of metamorphic testing [9, 49]). Fuzzers in the first
category ensure UB-freedom during program generation. We have already discussed
at length the kind of restrictions CSMITH imposes to ensure UB-freedom, and other
fuzzers from this category similarly take measures to enforce UB-freedom: for in-
stance, the YARPGEN [39] tool accurately detects and avoids undefined behaviour
by tracking variable types, alignments and value ranges during program generation.

33

Fuzzers from the second category rely on a starting set of UB-free programs (which
are often obtained by using fuzzers from the first category) and a set of transforma-
tions that preserve UB-freedom. For instance, EMI [35] creates new programs by
randomly deleting program statements that are not executed by a certain input (and
then compares the original program with the reduced one on that particular input).

As discussed in the §2, CSMITHEDGE uses two existing options from CSMITH
that relax certain UB-free constraints, namely those for ensuring absence of null and
dangling pointer dereferences. However, these options were introduced to enable test-
ing of static analysers [12, 28], and cannot be reliably used to find miscompilations
without the extra measures described in this paper.

The problem of improving diversity during randomised testing has also been
approached by adapting the manner in which a test case generator is configured,
rather than fundamentally changing the way the generator works. The swarm test-
ing technique [31] and HiCOND [8] have improved the performance of compiler
testing by aiming to produce diverse fuzzing tool test configurations. Although we
use the swarm testing technique to choose relaxation options for each invocation of
CSMITHEDGE, the main contribution of this work lies in the way we deal with UB.
We increase the approach’s expressiveness by postponing the decision to discard code
that might exhibit UB to the post-generation phase and applying dynamic techniques.
This enlarges the vocabulary of our test case generation tool, making it possible to
generate programs that were previously out of scope. In contrast, swarm testing and
HiCOND aim to improve the way generation configurations are chosen, but are still
stuck with the expressiveness of the original technique.

Marcozzi et al. [41] study how compiler bugs found by fuzzers such as CSMITH
compare with compiler bugs reported manually and find that they appear to have a
similar impact, which motivates further work on compiler fuzzing.

7 Conclusions and Future Work

We have presented the design and implementation of CSMITHEDGE, and presented
a large experimental campaign which shows that, by relaxing the constraints on un-
defined behaviour imposed by CSMITH, CSMITHEDGE can find previously unknown
miscompilation bugs in GCC and LLVM that regular CSMITH does not detect. Our
coverage results also demonstrate the extra thoroughness afforded by testing using
CSMITHEDGE.

Practical avenues for taking CSMITHEDGE forward include investigating sani-
tiser support for detecting undefined and unspecified behaviour arising from read-
write and write-write conflicts, and applying the tool to additional C compilers (e.g.
commercial compilers from Intel and Microsoft, extending the limited amount of test-
ing of the Microsoft Visual Studio Compiler reported here). With appropriate sanitiser
support for the OPENCL programming model it would also be possible to apply the
techniques in CSMITHEDGE to the CLSMITH compiler fuzzing tool [38]—an exten-
sion of CSMITH that targets OPENCL. It would also be interesting to apply similar
ideas to other compiler fuzzing tools, such as YARPGEN [39], to see whether relax-
ing their enforcement of UB-freedom can enable discovery of more bugs. Finally, the

34

additional relaxations we have implemented in CSMITHEDGE might prove comple-
mentary to the existing flags for allowing null and invalid pointers, in the context of
testing static analysis tools.

Acknowledgements

We would like to thank John Regehr for answering our questions about Csmith, Paul
Thomson for his guidance in using gfauto for coverage analysis, and Michaël Mar-
cozzi for sharing data, assisting with gcov and proofreading the text. We are also
grateful to the anonymous reviewers for their very detailed feedback which helped us
to improve the paper substantially.

References

1. CSMITHEDGE: https://srg.doc.ic.ac.uk/projects/CsmithEdge/ (Date Accessed Febru-
ary 24, 2022)

2. Address Sanitizer. https://clang.llvm.org/docs/AddressSanitizer.html (2012)
3. Babokin, D.: Comment on running one million Yarpgen programs. https://twitter.com/

DmitryBabokin/status/1134907976085516290 (Date Accessed February 24, 2022)
4. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in software testing: A

survey. IEEE Transactions on Software Engineering (TSE) 41(5) (2015)
5. Burgess, C., Saidi, M.: The automatic generation of test cases for optimizing Fortran compilers. In-

formation and Software Technology (IST) 38, 111 – 119 (1996)
6. Chen, J., Hu, W., Hao, D., Xiong, Y., Zhang, H., Zhang, L., Xie, B.: An empirical comparison of

compiler testing techniques. In: Proc. of the 38th International Conference on Software Engineering
(ICSE’16) (2016)

7. Chen, J., Patra, J., Pradel, M., Xiong, Y., Zhang, H., Hao, D., Zhang, L.: A survey of compiler testing.
ACM Computing Surveys 53(1), 4:1–4:36 (2020)

8. Chen, J., Wang, G., Hao, D., Xiong, Y., Zhang, H., Zhang, L.: History-guided configuration diversifi-
cation for compiler test-program generation. In: Proc. of the 34th IEEE International Conference on
Automated Software Engineering (ASE’19), pp. 305–316 (2019)

9. Chen, T., Cheung, S., Yiu, S.: Metamorphic testing: a new approach for generating next test cases.
Tech. Rep. HKUST-CS98-01, Hong Kong University of Science and Technology (1998)

10. Csmith Homepage: https://embed.cs.utah.edu/csmith/ (Date Accessed February 24, 2022)
11. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C. In: Proc. of

the 10th International Conference on Software Engineering and Formal Methods (SEFM’12) (2012)
12. Cuoq, P., Monate, B., Pacalet, A., Prevosto, V., Regehr, J., Yakobowski, B., Yang, X.: Testing static

analyzers with randomly generated programs. In: Proc. of the 4th International Conference on NASA
Formal Methods (NFM’12) (2012)

13. Donaldson, A.F., Evrard, H., Lascu, A., Thomson, P.: Automated testing of graphics shader compilers.
In: Proc. of the ACM on Programming Languages (OOPSLA’17) (2017)

14. Donaldson, A.F., Thomson, P., Teliman, V., Milizia, S., Maselco, A.P., Karpinski, A.: Test-case re-
duction and deduplication almost for free with transformation-based compiler testing. In: Proc. of the
Conference on Programing Language Design and Implementation (PLDI’21) (2021)

15. Even-Mendoza, K., Cadar, C., Donaldson, A.: Closer to the edge: Testing compilers more thoroughly
by being less conservative about undefined behaviour. In: Proc. of the 35th IEEE International Confer-
ence on Automated Software Engineering, New Ideas and Emerging Results (ASE NIER’20) (2020)

16. Frama-C EVA plugin. https://frama-c.com/fc-plugins/eva.html
17. GCC Bugzilla: Bug 93744. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93744 (Date

Accessed February 24, 2022)
18. GCC Bugzilla: Bug 94809. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94809 (Date

Accessed February 24, 2022)

35

https://srg.doc.ic.ac.uk/projects/CsmithEdge/
https://clang.llvm.org/docs/AddressSanitizer.html
https://twitter.com/DmitryBabokin/status/1134907976085516290
https://twitter.com/DmitryBabokin/status/1134907976085516290
https://embed.cs.utah.edu/csmith/
https://frama-c.com/fc-plugins/eva.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93744
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94809

19. GCC Bugzilla: Bug 96369. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96369 (Date
Accessed February 24, 2022)

20. GCC Bugzilla: Bug 96549. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96549 (Date
Accessed February 24, 2022)

21. GCC Bugzilla: Bug 96760. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96760 (Date
Accessed February 24, 2022)

22. GitHub: Git repository of Yarpgen. https://github.com/intel/yarpgen (2018)
23. GitHub: Csmith pull request 86. https://github.com/csmith-project/csmith/pull/86

(Date Accessed February 24, 2022)
24. GitHub: Csmith pull request 88. https://github.com/csmith-project/csmith/pull/88

(Date Accessed February 24, 2022)
25. GitHub: CSMITHEDGE bugs details. https://github.com/karineek/CsmithEdge/tree/

master/results/bugs (Date Accessed February 24, 2022)
26. GitHub: CSMITHEDGE repository. https://github.com/karineek/CsmithEdge.git (Date

Accessed February 24, 2022)
27. GitHub: Git repository of Csmith. https://github.com/csmith-project/csmith.git (Date

Accessed February 24, 2022)
28. GitHub: Git repository of Csmith, commit 7e33250, Csmith’s options for test-

ing static analyzers. https://github.com/csmith-project/csmith/commit/

7e3325060b56cc5813b8701087b5206fb394c047 (Date Accessed February 24, 2022)
29. GitHub: Git repository of gfauto. https://github.com/google/graphicsfuzz.git (Date Ac-

cessed February 24, 2022)
30. Groce, A., Holzmann, G.J., Joshi, R.: Randomized differential testing as a prelude to formal verifica-

tion. In: Proc. of the 29th International Conference on Software Engineering (ICSE’07), pp. 621–631.
IEEE Computer Society (2007)

31. Groce, A., Zhang, C., Eide, E., Chen, Y., Regehr, J.: Swarm testing. In: Proc. of the International
Symposium on Software Testing and Analysis (ISSTA’12), pp. 78–88 (2012)

32. Hanford, K.: Automatic generation of test cases. IBM Systems Journal 9, 242–257 (1970)
33. International Organization for Standardization: ISO/IEC 9899:2018: Programming Languages—C

(2018)
34. Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing. In: Proc. of the 24th

ACM Conference on Computer and Communications Security (CCS’18), p. 2123–2138 (2018)
35. Le, V., Afshari, M., Su, Z.: Compiler validation via equivalence modulo inputs. In: Proc. of the

Conference on Programing Language Design and Implementation (PLDI’14) (2014)
36. Le, V., Sun, C., Su, Z.: Finding deep compiler bugs via guided stochastic program mutation. In: Proc.

of the 30th Annual Conference on Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA’15) (2015)

37. Leroy, X.: Formal verification of a realistic compiler. Communications of the Association for Com-
puting Machinery (CACM) 52(7), 107–115 (2009)

38. Lidbury, C., Lascu, A., Chong, N., Donaldson, A.F.: Many-core compiler fuzzing. In: Proc. of the
Conference on Programing Language Design and Implementation (PLDI’15) (2015)

39. Livinskii, V., Babokin, D., Regehr, J.: Random testing for C and C++ compilers with YARPGen. In:
Proc. of the ACM on Programming Languages (OOPSLA’20), vol. 4, pp. 196:1–196:25 (2020)

40. LLVM Bugzilla: Bug 47578. https://bugs.llvm.org/show_bug.cgi?id=47578 (Date Ac-
cessed February 24, 2022)

41. Marcozzi, M., Tang, Q., Donaldson, A., Cadar, C.: Compiler fuzzing: How much does it matter? In:
Proc. of the ACM on Programming Languages (OOPSLA’19) (2019)

42. McKeeman, W.M.: Differential testing for software. Digital Technical Journal 10, 100–107 (1998)
43. Memory Sanitizer. https://clang.llvm.org/docs/MemorySanitizer.html (2015)
44. Nagai, E., Hashimoto, A., Ishiura, N.: Reinforcing random testing of arithmetic optimization of C

compilers by scaling up size and number of expressions. IPSJ Transactions on System LSI Design
Methodology 7, 91–100 (2014)

45. Nakamura, K., Ishiura, N.: Random testing of C compilers based on test program generation by equiv-
alence transformation. In: 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)
(2016)

46. Regehr, J.: Comment on running one million Csmith programs. https://twitter.com/

johnregehr/status/1134866965028196352 (Date Accessed February 24, 2022)
47. Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., Yang, X.: Test-case reduction for C compiler bugs.

In: Proc. of the Conference on Programing Language Design and Implementation (PLDI’12) (2012)

36

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96369
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96549
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96760
https://github.com/intel/yarpgen
https://github.com/csmith-project/csmith/pull/86
https://github.com/csmith-project/csmith/pull/88
https://github.com/karineek/CsmithEdge/tree/master/results/bugs
https://github.com/karineek/CsmithEdge/tree/master/results/bugs
https://github.com/karineek/CsmithEdge.git
https://github.com/csmith-project/csmith.git
https://github.com/csmith-project/csmith/commit/7e3325060b56cc5813b8701087b5206fb394c047
https://github.com/csmith-project/csmith/commit/7e3325060b56cc5813b8701087b5206fb394c047
https://github.com/google/graphicsfuzz.git
https://bugs.llvm.org/show_bug.cgi?id=47578
https://clang.llvm.org/docs/MemorySanitizer.html
https://twitter.com/johnregehr/status/1134866965028196352
https://twitter.com/johnregehr/status/1134866965028196352

48. Sauder, R.L.: A general test data generator for COBOL. In: Proc. of the 1962 Spring Joint Computer
Conference (AIEE-IRE’62 Spring) (1962)

49. Segura, S., Fraser, G., Sanchez, A., Ruiz-Cortés, A.: A survey on metamorphic testing (2016)
50. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: A fast address sanity

checker. In: Proc. of the 2012 USENIX Annual Technical Conference (USENIX ATC’12) (2012)
51. Stepanov, E., Serebryany, K.: MemorySanitizer: fast detector of uninitialized memory use in C++. In:

Proc. of the International Symposium on Code Generation and Optimization (CGO’15) (2015)
52. Sun, C., Le, V., Su, Z.: Finding compiler bugs via live code mutation. In: Proc. of the 31st Annual

Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA’16)
(2016)

53. Undefined Behavior Sanitizer. https://clang.llvm.org/docs/

UndefinedBehaviorSanitizer.html (2017)
54. Visual Studio Developer Community: Bug 1485361: Msvc miscompiles program with unreach-

able out of bounds access at /o2. https://developercommunity.visualstudio.com/t/msvc-
miscompiles-program-with-unreachable-out-of-b/1485361 (Date Accessed February 24,
2022)

55. Wang, X., Zeldovich, N., Kaashoek, F., Solar-Lezama, A.: Towards optimization-safe systems: Ana-
lyzing the impact of undefined behavior. In: Proc. of the 24th ACM Symposium on Operating Systems
Principles (SOSP’13) (2013)

56. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C compilers. In: Proc. of
the Conference on Programing Language Design and Implementation (PLDI’11) (2011)

37

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://developercommunity.visualstudio.com/t/msvc-miscompiles-program-with-unreachable-out-of-b/1485361
https://developercommunity.visualstudio.com/t/msvc-miscompiles-program-with-unreachable-out-of-b/1485361

	Introduction
	Background
	Design and Implementation
	Evaluation
	Threats to Validity
	Related Work
	Conclusions and Future Work

