
60

Taking Back Control in an Intermediate Representation for
GPU Computing

VASILEIOS KLIMIS, Imperial College London, UK

JACK CLARK, Imperial College London, UK

ALAN BAKER, Google, Canada
DAVID NETO, Google, Canada
JOHN WICKERSON, Imperial College London, UK

ALASTAIR F. DONALDSON, Imperial College London, UK and Google, UK

We describe our experiences successfully applying lightweight formal methods to substantially improve
and reformulate an important part of Standard Portable Intermediate Representation (SPIR-V), an industry-
standard language for GPU computing. The formal model that we present has allowed us to (1) identify
several ambiguities and needless complexities in the way that structured control flow was defined in the SPIR-V
specification; (2) interact with the authors of the SPIR-V specification to rectify these problems; (3) validate
the developer tools and conformance test suites that support the SPIR-V language by cross-checking them
against our formal model, improving the tools, test suites, and our models in the process; and (4) develop a
novel method for fuzzing SPIR-V compilers to detect miscompilation bugs that leverages our formal model.
The latest release of the SPIR-V specification incorporates the revised set of control-flow definitions that have
arisen from our work. Furthermore, our novel compiler-fuzzing technique has led to the discovery of twenty
distinct, previously unknown bugs in SPIR-V compilers from Google, the Khronos Group, Intel, and Mozilla.
Our work showcases the practical impact that formal modelling and analysis techniques can have on the
design and implementation of industry-standard programming languages.

CCS Concepts: • Software and its engineering → General programming languages; • Social and
professional topics→ History of programming languages.

Additional Key Words and Phrases: shader/kernel language compilers, control flow, GPUs, SPIR-V, fuzz testing

ACM Reference Format:

Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson. 2023. Taking
Back Control in an Intermediate Representation for GPU Computing. Proc. ACM Program. Lang. 7, POPL,
Article 60 (January 2023), 30 pages. https://doi.org/10.1145/3571253

1 INTRODUCTION

When it comes to control flow, two conventional options for the designer of an imperative language
or intermediate representation (IR) are unstructured control flow, which consists of labelled instruc-
tions and goto statements, and structured control flow, consisting of block-structured constructs such
as if-statements and while-loops. Unstructured control flow affords maximal freedom of expression,
but imposing some structure can allow compilers more scope for optimisation.

Authors’ addresses: Vasileios Klimis, Department of Electrical and Electronic Engineering, Imperial College London, UK,

v.klimis@imperial.ac.uk; Jack Clark, Department of Computing, Imperial College London, UK, jack.clark1@imperial.ac.uk;

Alan Baker, Google, Canada, alanbaker@google.com; David Neto, Google, Canada, dneto@google.com; John Wickerson,

Department of Electrical and Electronic Engineering, Imperial College London, UK, j.wickerson@imperial.ac.uk; Alastair F.

Donaldson, Department of Computing, Imperial College London, UK and Google, UK, alastair.donaldson@imperial.ac.uk.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART60

https://doi.org/10.1145/3571253

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-3173-8636
HTTPS://ORCID.ORG/0000-0003-3886-7657
HTTPS://ORCID.ORG/0000-0002-0178-1983
HTTPS://ORCID.ORG/0000-0003-4326-5896
HTTPS://ORCID.ORG/0000-0001-6735-5533
HTTPS://ORCID.ORG/0000-0002-7448-7961
https://doi.org/10.1145/3571253
https://orcid.org/0000-0002-3173-8636
https://orcid.org/0000-0003-3886-7657
https://orcid.org/0000-0002-0178-1983
https://orcid.org/0000-0003-4326-5896
https://orcid.org/0000-0001-6735-5533
https://orcid.org/0000-0002-7448-7961
https://orcid.org/0000-0002-7448-7961
https://doi.org/10.1145/3571253

60:2 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

This tension is particularly interesting in the context of GPU programming. GPUs offer a single
program, multiple data (SPMD) concurrency model that provides useful heterogeneity between
threads: it allows different threads to access different data elements and to follow different control-
flow paths through the same program code. In return for these benefits, GPU programmers, and
tools that generate GPU code, must respect certain control flow-related properties. For instance, in
current GPU programming models, barriers used to synchronise threads must be placed such that
when any thread executes a barrier, all threads must execute the same barrier, otherwise behaviour
is undefined (usually resulting in an execution hang).1 Furthermore, many GPUs feature lock-step
execution, where threads are subdivided into subgroups that share a program counter. Execution of
conditional code is computationally expensive when not all threads in a subgroup follow the same
path, and compilers for GPU languages can generate more efficient GPU machine code if they can
transform the program to increase convergence, or exploit guarantees of convergence provided by
the programmer.

In short, control flow in GPU programming languages is a complicated business. This has led to
the development of IRs for GPU compilers with peculiar requirements on control flow. One of the
most widely used of these IRs is SPIR-V [Khronos Group 2022a],2 an open standardmaintained by the
Khronos Group. SPIR-V is the GPU programming language associated with the Vulkan 3D graphics
API [Khronos Group 2022j], which is deployed to billions of Android devices worldwide and is also
available as standard on Windows and Linux systems. It is also one of the kernel programming
languages supported by the industry-standard OpenCL programming model [Khronos Group
2022e]. From a distance, SPIR-V resembles LLVM IR [LLVM Compiler Infrastructure 2022]: SPIR-V
programs are written as a list of labelled basic blocks of instructions, with gotos to jump between
them. But SPIR-V also has several distinctive features related to control flow. For example, (1) each
diverging branch must be annotated with the label of a basic block at which control flow merges
again, and (2) each loop must be annotated with the labels of two basic blocks, one heading a
special łcontinue constructž, executed at the end of each iteration, and another at which control
flow merges after execution leaves the loop. Associated with these annotations are a set of rules
governing their correct usage, and thus the allowed form of control flow structures (we discuss
several of these rules later in the paper). Conformance to these rules can be mechanically checked
by spirv-val, a validator for SPIR-V provided the Khronos Group [Khronos Group 2022i].
The SPIR-V specification refers to these annotations as structured control flow. The full SPIR-V

specification also supports arbitrary unstructured control flow that does not require the use of
annotations. However, VulkanÐthe main context in which SPIR-V is used in practiceÐrequires
structured control flow annotations to be used throughout a SPIR-V program [Khronos Group
2022j, Appendix A]. In the rest of the article we focus on this subset of SPIR-V where all control
flow is structured, and henceforth drop łstructuredž and simply talk about łcontrol flowž.

The aims of these annotations are threefold: (1) to afford SPIR-V most of the expressivity benefits
associated with unstructured control flow, yet (2) to allow communication of high-level program
structure when compiling from higher-level languages into SPIR-V, and (3) to equip downstream
compilers that translate SPIR-V into GPU-specific machine code with information on where the
control flow of threads diverges and merges, relieving them of significant control-flow analysis
burden. Compilers that process SPIR-V are free to assume that input programs obey the rules
that govern correct use of these annotations, and can thus leverage the annotations to generate
architecture-specific control-flow instructions. For example, Intel Ice Lake GPUs feature a brc

1More precisely, this rule applies only if the threads are in the same workgroup.
2SPIR-V stands for Standard Portable Intermediate Representation; the V distinguishes it from an earlier representation,

SPIR [Khronos Group 2014], and does not stand for anything.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

Taking Back Control in an Intermediate Representation for GPU Computing 60:3

(branch converging) instruction, with an operand that łshould reference the instruction where
all [threads] are expected to come togetherž [Intel 2020, p. 237], and a break instruction with an
operand that łshould be the offset to the end of the inner most conditional or loop blockž [Intel
2020, p. 241]. Other GPU architectures differ in details, but architectural support for control flow is
common.
Unfortunately, prior to our work, the semantics of these control flow annotations, as set out

in the SPIR-V specification, suffered from problems of complexity, ambiguity, inconsistency with
associated tooling, and in some cases failure to meet the intent of the language designers. Owing
to these problems (of which we give examples in Section 3), developers have had a hard time
working with the SPIR-V format. For example, Dzmitry Malyshau, while working as a developer at
Mozilla, devoted a section of his łHorrors of SPIR-Vž blog post to criticising the language’s łhead
scratchingž approach to control flow [Malyshau 2021]; Jason Ekstrand, developer at Collabora,
who has contributed significantly to the Mesa 3D graphics stack and Intel’s open-source driver,
comments in an article about Mesa’s intermediate representation that łthe only thing that has
been a challenge has been dealing with SPIR-V’s less than obvious structure rulesž [Ekstrand
2022]; and Sean Baxter, author of the Circle C++ compiler (which can target GPU architectures)
expressed confusion about various control flow rules on a Khronos Group forum [Baxter 2020],
and subsequently tweeted sarcastically: łTargeting SPIR-V is super easy and the structurization
requirements totally won’t make you want to throw yourself off a cliffž [Baxter 2021].3

Our work. Over several months, we studied the SPIR-V specification and its associated control-
flow-related problems in detail. It became clear that the overall intent of the language designers
was simple and reasonableÐto provide a framework for allowing features of high-level language
constructs to be encoded in an otherwise unstructured IR, and to enforce various restrictions on
how these constructs should interact (e.g. prohibiting arbitrary branching between constructs).
However, putting these ideas into practice via a set of definitions and rules had proved to be
challenging due to the relative difficulty of working at the level of control-flow graphs (CFGs)
compared with high-level program syntax, and the numerous possibilities for unanticipated and
undesirable interactions between rules. With the aim of rectifying this situation, we set out to
create a mechanised formal model of SPIR-V control flow capable of: (1) determining whether or
not a given SPIR-V CFG is valid, and (2) generating examples of valid and invalid SPIR-V CFGs.
In this article, we report on our experience designing and implementing such a formal model

using the Alloy modelling language and tool [Jackson 2019], iteratively refining the model in
collaboration with SPIR-V language experts to fix problems of ambiguity, complexity, inconsistency,
and mismatched intent. Cross-checking our model against other SPIR-V references along the way
led to us finding and fixing problems in: (1) various SPIR-V conformance test suites, (2) spirv-val,
a validation tool for SPIR-V programs [Khronos Group 2022i], and (3) (early versions of) our model
itself, as depicted in Fig. 1. Once we had converged upon a mature model that agreed with the
(improved) conformance tests and validator, and that we also felt was elegant, we proposed a
revision of the SPIR-V specification in which we substantially rewrote the control flow definitions
and rules to match our formal model. The Khronos Group reviewed and accepted our changes,
publishing them in the recent SPIR-V 1.6 revision 2 specification [Khronos Group 2022a].
Our work contributes the following key ideas:

Key idea 1: Structural dominance. Fixing the fundamental problems associated with SPIR-V control
flow required introducing a new concept into the language that we call structural dominance,

3In these quotations, łstructure rulesž and łstructurization requirementsž refer to rules governing correct usage of SPIR-V’s

control flow annotations, which we discuss in detail later in the article.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

60:4 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

Formal

SPIR-V
Alloy Model

Informal

SPIR-V

Interesting
valid and
invalid CFGs

Best-effort initial
interpretation

Update
specification

Fix flaws in model
identified by tests

Cross-check

against te
st s

uites

Automatically

generate

Consu
lt w

ith

exp
erts

Fix validator

Consult with experts/
Fix ill-formed tests

Conformance
Test Suites

Cross-check
against
validator

Fig. 1. The virtuous cycle of validating the SPIR-V formal model

described in detail in Section 4. Structural dominance is a very simple idea and seems pleasingly
obvious with hindsight, but it was our formal modelling work that led us to the idea and aided
us in working it out in full. The expert reader wishing to get a quick sense of what structural
dominance is can look ahead to page 6. Prior to our work, SPIR-V control flow constructs were
designed in terms of dominators and post dominators in CFGs, considering only ‘branch’ edges that
correspond to the transfer of control between blocks (Fig. 2c). The key idea of structural dominance
is to consider CFGs to be annotated with additional ‘merge’ and ‘continue’ edges (Fig. 2d) and then
to include those edges when calculating dominance and post dominance relations. Armed with
structural dominance, it is possible to re-formulate SPIR-V’s control flow definitions and rules in a
simpler, more elegant form that better achieves the intent of the language designers.

Key idea 2: Test generation via CFG fleshing. Because our formal model can be used to generate
interesting SPIR-V CFGs, we have also leveraged it to obtain a novel method for compiler fuzzing:
we take a generated SPIR-V CFG and flesh it into an executable program that is equipped, by
construction, with a strong test oracle. We have applied this fuzzing technique to six industrial-
strength SPIR-V compilers and translators, leading to the discovery and reporting of twenty distinct
bugs, fourteen of which have already been fixed. The bugs include eight miscompilation bugs and
twelve compiler or translator crashes.

Contributions. In summary, our main conceptual contributions are:

• the notion of structural dominance, the key concept that has allowed SPIR-V control-flow to
be defined clearly and concisely for the first time and that is at the heart of the fundamental
changes to SPIR-V that arose from our modelling efforts; and

• control-flow graph fleshing, a novel technique for compiler fuzzing that synthesises oracle-
equipped test cases from CFG skeletons generated by our formal model;

while our main impact arising contributions are:

• a large case study showing the value of applying formal techniques from the programming
languages domain to an industry-standard intermediate representation, including how we set

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

Taking Back Control in an Intermediate Representation for GPU Computing 60:5

up a virtuous cycle of continuous improvement between our model, the SPIR-V specification,
and validation tooling and conformance tests for the language;

• a substantial rewrite of the sections of the SPIR-V specification related to control flow, which
has been incorporated into the latest public release of the specification;

• a reworking of the spirv-val validator (which previously had to attempt to validate programs
in the context of an ambiguous language), bringing it in line with our reformulation of SPIR-V
control flow, as well as corresponding changes to SPIR-V conformance test suites

• the use of control-flow graph fleshing to discover twenty distinct, previously unknown bugs
in SPIR-V shader compilers from Intel, Google, the Khronos Group, and Mozilla.

We hope that the impact of this work will inspire other programming languages researchers to
undertake analogous case studies in other application domains.

Outline. We provide necessary background on the SPIR-V intermediate representation and its
control flow features (Section 2). Via a number of examples, we explain the problems with the way
in which control flow in SPIR-V was defined in the SPIR-V specification prior to our work (Section 3).
We then explain how we have reformulated the SPIR-V specification to fix these problems, via
a new concept called structural dominance (Section 4). This concept arose thanks to our formal
modelling effort; we describe the model and the process of applying it in practice (Section 5). We
then show how we were able to further leverage our formal model by using it as the basis of a novel
compiler fuzzing technique which has led to the discovery of numerous new bugs in tools that
process SPIR-V (Section 6). After a discussion of related work (Section 7) we present our conclusions
and ideas for future work (Section 8).

Artifact and source code. We have made available an artifact that provides the version of the
formal model and tooling associated with this paper [Klimis et al. 2022a]. A repository containing
the latest version of our model, the code for our tooling, and a set of issues giving insight into the
iterative approach we followed in designing our model, is also available [Klimis et al. 2022b].

2 OVERVIEW OF SPIR-V AND ITS CONTROL FLOW

The SPIR-V language is an intermediate representation whose purpose, like LLVM IR, is to avoid
the need for every GPU vendor to write their own compiler for each high-level language. This is a
pressing problem due to the proliferation of GPU architectures from a diverse range of vendors
and the high-level languages that aim to target them, such as the OpenGL Shading Language
(GLSL) [Khronos Group 2019], Microsoft’s High-Level Shading Language (HLSL) [Microsoft 2019],
the OpenCL C kernel programming language [Khronos Group 2022e] and the WebGPU shading
language [W3C 2022]. Instead, each vendor implements a SPIR-V compiler, and a small number
of GPU-agnostic, industry-standard tools, such as glslang from the Khronos Group [Khronos
Group 2022b], clspv from Google [Google 2022c], tint from Google [Google 2022f], and naga

from Mozilla [Rust Graphics Mages 2022] are invoked to translate from high-level languages into
SPIR-V. At present, SPIR-V is principally tied to the Vulkan programming model [Khronos Group
2022j], but can also be used with OpenCL [Khronos Group 2022e] and OpenGL [Segal and Akeley
2022]. Furthermore, several projects implement other graphics APIs, such as OpenGL, DirectX and
WebGPU, on top of Vulkan [Google 2022b,d; Rebohle 2022].

The SPIR-V specification is maintained and published by the Khronos Group, who also provide a
number of tools for working with the format, including spirv-opt, a SPIR-V-to-SPIR-V optimiser
that implements several target-agnostic compiler optimisations, and spirv-val, a static validator
that aims to determine whether a given SPIR-V module obeys the rules of the language (including
its control flow rules) [Khronos Group 2022i].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

60:6 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

void main() {

int x = 0, i = 0; // %1

while(i < 100) { // %2

if (i < 50) // %3

x += 2; // %4

else

x += 4; // %5

// %6

i++; // %7

} // %8

}

(a) A simple OpenGL shader

%1

%2
merge: %8

continue: %7

%3
merge: %6

%4 %5

%6

%7%8

(c) Its CFG, with loop/selec-
tion headers annotated with
merge/continue targets

%1

%2

%3

%4 %5

%6

%7%8

(d) The same CFG with ex-
plicit edges for merge ()
and continue () targets

%44 = OpFunction %42 None %43

%1 = OpLabel
%48 = OpVariable %47 Function

%10 = OpVariable %47 Function

OpStore %48 %9

OpStore %10 %9

OpBranch %2

%2 = OpLabel
%16 = OpLoad %46 %10

%19 = OpSLessThan %18 %16 %17

OpLoopMerge %8 %7 None

OpBranchConditional %19 %3 %8

%3 = OpLabel
%20 = OpLoad %46 %10

%22 = OpSLessThan %18 %20 %21

OpSelectionMerge %6 None

OpBranchConditional %22 %4 %5

%4 = OpLabel
%26 = OpLoad %46 %48

%27 = OpIAdd %46 %26 %25

OpStore %48 %27

OpBranch %6

%5 = OpLabel
%30 = OpLoad %46 %48

%31 = OpIAdd %46 %30 %29

OpStore %48 %31

OpBranch %6

%6 = OpLabel

OpBranch %7

%7 = OpLabel
%32 = OpLoad %46 %10

%34 = OpIAdd %46 %32 %33

OpStore %10 %34

OpBranch %2

%8 = OpLabel
OpReturn
OpFunctionEnd

(b) A possible SPIR-V representation; instruc-
tions unrelated to control flow are greyed out

Fig. 2. Compiling a simple OpenGL shader into SPIR-V

2.1 SPIR-V by Example

We introduce SPIR-V by showing how it can represent the high-level program of Fig. 2a. This
program is expressed in the OpenGL shading language (GLSL) [Khronos Group 2019], which we
use for examples throughout the article as it can illustrate all the necessary control flow constructs
that we discuss, whilst retaining the C-like syntax that will be familiar to most readers.
A SPIR-V program comprises:

• a sequence of administrative instructions related to issues such as the memory model the
program uses, and whether it represents a graphics shader or a compute kernel;

• a sequence of instructions declaring types, constants, and global variables; and
• a series of function definitions, where each function is described via a list of parameters and
a series of basic blocks.

The program of Fig. 2a features a loop with a conditional statement inside its body. Fig. 2b
illustrates the SPIR-V code that might be emitted by a translator that compiles the program of
Fig. 2a into SPIR-V. We are only concerned with SPIR-V’s control flow constructs in this article,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

Taking Back Control in an Intermediate Representation for GPU Computing 60:7

and so restrict attention to the control flow between basic blocks of a single function. We thus omit
from Fig. 2b all instructions outside the function definition and grey out instructions that are not
directly related to control flow. We have annotated Fig. 2a to indicate in which basic block of Fig. 2b
the SPIR-V code associated with each high-level language statement resides.

SPIR-V is a static single assignment (SSA) representation, so that each value in a SPIR-V program
has a unique identifier expressed in the form %v where v is a positive integer. Each block starts with
a label instruction of the form %𝑏 = OpLabel, where integer 𝑏 gives the block a unique identifier.
This is followed by zero or more instructions that perform memory accesses and computation. A
block ends with a terminator instruction. The terminators relevant to this article are:

• OpReturn, causing control to return to the function’s caller (optionally returning a value);
• OpBranch %𝑐 , causing control to transfer unconditionally to block 𝑐;
• OpBranchConditional %𝑣 %𝑐 %𝑑 , causing control to transfer conditionally to block 𝑐 if the
Boolean value associated with id 𝑣 is true, and to 𝑑 otherwise.

SPIR-V supports five different kinds of structured control-flow constructs: selection, loop, continue,
switch and case constructs. For ease of presentation, we do not discuss switch and case constructs
in this paper. They are handled in full by our formal model, which did lead to us finding and fixing
several issues related to the way these constructs were defined, but the problems and associated
fixes were not conceptually interesting, and the details of these constructs are rather involved.
As discussed in Section 1, when targeting SPIR-V from a high-level language, a code generator

can embed information about source-level structures in the (otherwise unstructured) SPIR-V
code. Intuitively, selection constructs can be used to model if-then-else constructs from high-level
languages, as well as short-circuit evaluation of operators such as &&. Loop and continue constructs
support translation of loops. As we discuss below, a continue construct captures that part of the
loop that is executed at the end of each iteration.
Selection and loop constructs each start with a basic block, the header block, that includes a

special merge instruction. There are two types of merge instructions, OpSelectionMerge %m, and
OpLoopMerge %m %c, which signal the start of a selection construct or loop construct respectively.4 A
merge instruction allows control flow to diverge after the header block but declares the intent to
reconverge at block %m, called the merge block.5 For a loop header it also specifies that at the end of
each loop iteration a single-entry-single-exit region of blocksÐthe loop’s continue constructÐwill
be executed, and block %c, the continue target of the loop, indicates the entry block of the continue
construct. The SPIR-V specification requires that the entry block of a function is not a loop header.

In Fig. 2b, block %3 is a selection header because it contains an OpSelectionMerge instruction; its
merge block is block %6. Block %2 is a loop header because it contains an OpLoopMerge instruction;
the merge block and continue construct for this loop header are blocks %8 and %7, respectively.

Fig. 2c shows the blocks of Fig. 2b arranged as a CFG, where, e.g., the OpBranch %6 instruction at
the end of block %4 in Fig. 2b gives rise to the edge 4 → 6 and the OpBranchConditional ... %4 %5

at the end of block %3 gives rise to the edges 3 → 4 and 3 → 5. In Fig. 2c we have annotated the
loop and selection header blocks, %2 and %3, with their associated merge blocks and (in the case of
the loop header) continue target.

The CFG of Fig. 2d shows the same information in a different way: instead of annotating header
blocks with merge/continue information, we use special merge and continue edges. A merge edge
ℎ 𝑚 indicates that𝑚 is the merge block for header block ℎ. A continue edge ℎ 𝑐 indicates

4Merge instructions also feature an additional łselection controlž argument that we ignore here since it is unrelated to

control flow semantics.
5As we shall see, control is allowed to bypass the merge block in a limited set of scenarios: by returning from the function,

breaking from an enclosing loop, or continuing to the next iteration of an enclosing loop.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

60:8 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

that 𝑐 is the continue target for loop header block ℎ. Henceforth we shall use CFGs augmented
with merge and continue edges when discussing SPIR-V examples. We emphasise that these edges
do not indicate how flow of control can transfer between blocksÐe.g. the merge edge 3 6 in
Fig. 2d does not mean that control can flow directly from block 3 to block 6.

2.2 Definitions of SPIR-V Control Flow Constructs

Having described the conceptual notions of SPIR-V control flow constructs by example, we now
turn to the definitions of these constructs that are provided in the SPIR-V specification.
We present definitions that have remained essentially unchanged since the original SPIR-V 1.0

specification [Khronos Group 2017]. These definitions are simple and intuitive, and work well for
straightforward examples such as the illustrative example of Section 2.1. However, as we show in
Section 3, the simple intuitive definitions are problematic for more complex examples. In more
recent versions of the SPIR-V specification they have been extended with additional conditions and
caveats in an effort to remedy this. In what follows, we quote definitions from SPIR-V 1.6 revision
1 (1.6r1), the specification version prior to our changes, but omit the caveats and side conditions
alluded to above, which we discuss in Section 3. This allows us to present the original spirit of
SPIR-V control flow, but using the style and terminology of the more recent specification version
makes it easier to show how we have reformulated the specification when we discuss our changes
in Section 4.

Control flow constructs in SPIR-V are defined in terms of dominance and post dominance relations,
which are standard in the compilers literature (see e.g. [Aho et al. 2007, p. 656 and p. 728]):

Dominate: A block 𝐴 dominates a block 𝐵, where 𝐴 and 𝐵 are in the same function, if every
path from the function’s entry point to block 𝐵 includes block 𝐴. 𝐴 strictly dominates 𝐵 only if
𝐴 dominates 𝐵 and 𝐴 and 𝐵 are different blocks.

Post Dominate: A block 𝐵 post dominates a block 𝐴, where 𝐴 and 𝐵 are in the same function, if
every path from 𝐴 to a function-return instruction goes through block 𝐵.

[SPIR-V 1.6r1, ğ2.2.5]

A selection construct is then defined in terms of the dominance relation:

a selection construct: includes the blocks dominated by a selection header, while excluding
blocks dominated by the selection construct’s merge block [SPIR-V 1.6r1, ğ2.11]

Applying this definition to Fig. 2d, we see that the blocks {3, 4, 5} form a selection construct
headed by block 3: block 3 is a selection header with block 6 as its merge block (due to the
OpSelectionMerge instruction in the block; see Fig. 2b); block 3 dominates blocks {3, 4, 5, 6, 7};
block 6 dominates blocks {6, 7}; and the difference between these sets of dominators is {3, 4, 5}.
With respect to Fig. 2a, this is intuitive: the selection construct corresponds to the if statement.

Before defining loops, SPIR-V 1.6r1 defines the notions of back edge and back-edge block:

Back Edge: A branch is a back edge if there is a depth-first search starting at the entry block
of the CFG where the branch branches to one of its ancestors.6A back-edge block is a block
containing such a branch instruction. [SPIR-V 1.6r1, ğ2.2.5]

For example, edge 7 → 2 in Fig. 2d is a back edge, and thus block 7 is a back-edge block.
SPIR-V partitions the blocks that make up a loop into a continue constructÐa single-entry single-

exit region that must be executed each time control returns to the head of the loop at the end of an

6This is what is usually called a retreating edge in the compilers literature [Aho et al. 2007, p. 661], with back edge usually

involving the extra condition that the head of the edge dominates its tail [Aho et al. 2007, p. 662]. However, SPIR-V CFGs

are reducible, meaning that these definitions coincide [Aho et al. 2007, pp. 662ś664].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

Taking Back Control in an Intermediate Representation for GPU Computing 60:9

iteration, and a loop construct, which comprises the main body of the loop. One motivation for this
partitioning is to ease syntax-directed translation of the łincrementž expression in a C-style for

loop (which feature in most high-level graphics shading languages), which must be executed each
time the loop iterates, whether due to the end of the loop body being reached or an early continue

statement being executed. This expression is often simple, e.g. i++ in a typical counting loop, but in
general it may invoke functions that perform non-trivial computation which the compiler may
choose to inline. To cater for this, a SPIR-V continue construct is thus a region of blocks.

a continue construct: includes the blocks dominated by an OpLoopMerge Continue Target and
post dominated by the corresponding loop’s back-edge block

a loop construct: includes the blocks dominated by a loop header, while excluding both that
header’s continue construct and the blocks dominated by the loop’s merge block

[SPIR-V 1.6r1, ğ2.11]7

In our running example, block 7 of Fig. 2d forms a single-block continue construct. This is
because: 7 is both the continue target operand of the OpLoopMerge instruction in Fig. 2b, and the
back-edge block for the loop header associated with this OpLoopMerge instruction; 7 is the only
block dominated by 7; and 7 is the only block post dominated by 7.
The loop construct headed by block 2 is then defined as the set of blocks {2, 3, 4, 5, 6}, because:

the header block 2 dominates the set {2, 3, 4, 5, 6, 7, 8}; block 7 is excluded from this set as it forms
the continue construct associated with the loop; and block 8 is excluded, being the loop header’s
merge block (and in fact the only block dominated by the loop header’s merge block).

3 PROBLEMSWITH SPIR-V CONTROL FLOW

We now illustrate a number of problems related to control flow definitions and rules that we
identified when studying the SPIR-V specification and comparing its requirements with the rules
checked by spirv-val. Most of the examples are presented via a GLSL source program and a
corresponding SPIR-V CFG, with statements in the GLSL source annotated to indicate the associated
SPIR-V basic block. The spirv-val results reported in this section are with respect to version
v2020.1 of the toolÐa stable release that precedes the improvements that we made during this work.

The problems discussed in Section 3.1 and Section 3.2 were known to members of the community
for some time, and we discuss language that was added to the SPIR-V specification in an attempt to
remedy them. We discovered the remaining problems via our formal modelling work, and do not
know to what extent practitioners interested in SPIR-V were aware of these particular problematic
examples.
Several of the problems that we discuss relate to definitions in the SPIR-V specification being

unintuitive due to mismatches between (a) the basic blocks that a compiler from a high level
langauge to SPIR-V would emit when performing syntax-directed translation of a high level
language construct, and (b) the set of blocks that comprise a SPIR-V structured control flow
construct according to the definitions in the specification. This matters in practice for two main
reasons. First, it has led to cases where the SPIR-V validator deviates from the specification in the
direction of what would be achieved bymore intuitive definitions (we give an example in Section 3.3).
Second, it has the potential to prevent compiler-writers taking advantage of structured control
flow information to implement optimisations, since the non-intuitive sets of blocks that comprise
structured control flow constructs do not correspond to coherent CFG subgraphs that can be
meaningfully optimised.

7The full SPIR-V 1.6r1 definition adds a non-intuitive extra constraint compared with the original SPIR-V 1.0 definition,

which we discuss in Section 3.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

60:10 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

%1

%2

%3

%4 %5

%6%7

void main() {

int i = 0; // %1

do { // %2

if (i > 50) { // %3

break;

} else {

// no-op // %4

}

i++; // %5

}

while(i < 100); // %6

// %7

}

Fig. 3. A loop with an early break

%1

%2

%3

%4

%5%6

void main() {

for (int i = 0; // %1

i < 100; // %2

i++) { // %5

if (i > 50) // %3

continue;

i++; // %4

} // %6

}

Fig. 4. A loop with an early continue

3.1 First Problem: ‘Selection Construct’ Ill-Defined in Presence of Early Breaks

The GLSL program of Fig. 3 features a loop with an early break statement; the CFG associated
with a reasonable syntax-directed translation to SPIR-V is also shown. The CFG features a loop
construct headed by block 2 and a selection construct headed by block 3, corresponding to the
do...while loop and if statement of Fig. 3, respectively. Recall that the non-solid edges indicate
the merge blocks and (in the case of loops) continue targets associated with header blocks and do
not represent control flow paths, e.g. control cannot transfer directly from block 2 to block 7.
Intuitively, the selection construct headed by block 3 corresponds to the if statement of Fig. 3,

and thus we would expect this selection construct to comprise the set of blocks {3, 4}. However, if
we apply the definition of ‘selection construct’ from Section 2.2 we find that the blocks dominated
by the header 3 is the set {3, 4, 5, 6, 7}, and the blocks dominated by merge block 5 is the set {5, 6}.
Thus according to the definition, the selection construct headed at 3 comprises blocks {3, 4, 7}.
This is intuitively wrong: block 7, which is associated with the end of the program, should not

be considered part of the set of blocks that model the if statement of Fig. 3. The problem is that
the edge 3 → 7, associated with the early break from the loop, leads to the selection header 3
dominating the loop merge block 7.
In an attempt to fix the definition to cater for examples such as this, the following caveat was

added to the specification, which applies to all control flow constructs including selection constructs:

Furthermore, these structured control-flow constructs are additionally defined to exclude all
outer constructs’ continue constructs and exclude all blocks dominated by all outer constructs’
merge blocks. [SPIR-V 1.6r1, ğ2.11]

With respect to the CFG of Fig. 3, this could be interpreted as eliminating block 7 from the
selection construct, because 7 is the merge block of a loop that contains the selection construct.
However, this caveat is far from satisfactory. First, it makes the definition of a construct rather

complex and unwieldy. Secondly, in its current form, the caveat makes the definition of a control
flow construct circular: the caveat forms part of the definition of the blocks that comprise a construct,
and yet is defined in terms of the blocks that comprise constructs. Thirdly, the specification does
not define what is meant by ‘outer construct’. Finally, while it would likely be possible to precisely
define ‘outer construct’ and avoid circularity via an inductive definition, this would make the
definitions of control flow constructs even more complex.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

Taking Back Control in an Intermediate Representation for GPU Computing 60:11

%1

%2

%4 %3

void main() {

// %1

do {

... // %2

} while(false); // %3

// %4

}

Fig. 5. The łdo while falsež idiom

%1

%2 %3

%4

%5 %6

%7

void main() {

if (...) // %1

return; // %2

else

return; // %3

// unreachable

if (...) // %4

... // %5

else

... // %6

// %7

}

Fig. 6. A program that naturally compiles
to a SPIR-V program with an unreachable
control-flow subgraph

3.2 Second Problem: ‘Selection Construct’ Ill-Defined in Presence of Early Continues

The GLSL program of Fig. 4 features a loop with an early continue statement. The figure includes a
potential associated CFG. Intuitively, we would like the selection construct headed by block 3 to
comprise just block 3. However, according to the initial definition of a selection construct (see the
first quotation in Section 3.1), the selection construct comprises the set of blocks {3, 4, 5} dominated
by the selection header 3, minus the singleton set {4} of blocks dominated by the associated merge
block. The result is the set {3, 5}. In particular, the loop’s continue target, block 5, is considered
part of the selection construct according to the initial definition, which is undesirable.
As in Section 3.1, the caveat that was subsequently added to SPIR-V, about constructs being

defined to exclude certain blocks associated with outer constructs, could be interpreted as rectifying
this problem, but again the caveat is complex and not clearly defined.

3.3 Third Problem: Back-Edge Rules Fail for Loops with Unreachable Continue Targets

The program of Fig. 5 illustrates the łdo while falsež idiom, which is commonly used in C-like
languages to allow preprocessor macros that span multiple lines to be invoked as seemingly
stand-alone statements [Gennaro 2015, p. 45]. The CFG of Fig. 5 is associated with a reasonable
syntax-directed translation of this idiom. The body of the loop is represented by block 2, which
unconditionally branches to block 4, the loop’s merge block. The loop’s continue target, block 3, is
unreachable (due to the false condition), so the edge 3 → 2, representing continuing to the next
loop iteration, can never be traversed.
The SPIR-V specification states the following rule about loop headers and back edges:

all CFG back edges must branch to a loop header, with each loop header having exactly one
back edge branching to it [SPIR-V 1.6r1, ğ2.11]

The CFG of Fig. 5 is invalid according to this rule: edge 3 → 2 is conceptually the back edge for
the loop, but is not a back edge according to the definition in the specification (see Section 2.2)
since the edge is not reachable from the entry block of the CFG. Hence the loop header block 2 has
no back edges branching to it. Nevertheless, the SPIR-V code for this example is deemed valid by
spirv-val. We discussed this example with the SPIR-V language designers and they advised that

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

60:12 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

%1

%2 %3%4

%5

%6 %7%8 %9

%10

Fig. 7. Unusual CFG featuring
cyclic merge relationships

%1

%2 %3 %4 %5 %6

%7

void main() {

// %1

while(true) { // %2

do { // %3

...

} while (...); // %4

// %5

... // %6

} // %7

}

Fig. 8. A program that leads to a CFG with no paths to exit blocks

it is indeed desirable for examples such as this to be considered valid, to allow for straightforward
syntax-directed translations from high-level languages to SPIR-V.

3.4 Fourth Problem: Unreachable Constructs

Before our changes, the SPIR-V specification was somewhat complicated by caveats related to
unreachable blocks, e.g.:

each header block must strictly dominate its merge block, unless the merge block is unreachable
in the CFG [SPIR-V 1.6r1, ğ2.11]

This caveat is surprising since every block in a CFG vacuously dominates every unreachable
block: a given block appears on all paths from the CFG’s entry block to an unreachable block
because the set of such paths is empty. It is not clear what the ‘unless the merge block is unreachable’
clause is meant to achieve.
Vacuous dominance relationships also highlight a number of problems with definitions of

constructs in SPIR-V 1.6r1.
In the program of Fig. 6, both branches of the first if statement end with return so that the

following if statement is unreachable. This is made clear in the corresponding CFG. The SPIR-V
specification allows this example, spirv-val agrees that it is valid, and we confirmed with SPIR-V
experts that it is desirable to allow such examples (to support simple syntax-directed translators).
Intuitively, we would like the selection construct headed at 4 to comprise the set of blocks {4, 5, 6}
corresponding to the second if statement in Fig. 6. But according to the definition of selection
construct given in Section 2.2 this selection construct contains no blocks. Every unreachable block
vacuously dominates every unreachable block, so the selection construct headed at 4 comprises all
blocks dominated by 4Ðall of the unreachable blocksÐminus all blocks dominated by 7Ðalso all of
the unreachable blocks, yielding an empty set.
Things get murkier still when we consider less intuitive CFGs featuring unreachable blocks.

Fig. 7 features a strange subgraph, unreachable via control flow edges, with two selection header
blocks, 5 and 10, each of which has the other as its merge block. Intuitively such an example should
be invalid, because SPIR-V structured control flow constructs are supposed to model control flow
constructs in high-level languages that may be nested or sequenced but that cannot have a cyclic
relationship. However, SPIR-V 1.6r1 appears to allow this CFG. The requirement łeach header
block must strictly dominate its merge block, unless the merge block is unreachable in the CFGž

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

Taking Back Control in an Intermediate Representation for GPU Computing 60:13

is doubly-satisfied for blocks 5 and 10 because (a) the blocks strictly dominate one another in a
vacuous manner, and (b) the blocks are both unreachable in the CFG.

Despite the fact that the specification appears to allow it, the example is rejected by spirv-val,
but with the following rather misleading error (misleading because 8 → 5 is not a back edge):

error: line 22: Back -edges (8 -> 5) can only be formed between a block and a loop header.

We discussed this example with SPIR-V experts, who agreed that if the specification is supposed
to be unambiguous about the validity of CFGs such as that of Fig. 6, it needs to be unambiguous
about the validity rules for arbitrary CFGs featuring unreachable blocks.

3.5 Fifth Problem: Syntactically Infinite Loops

The GLSL program and associated CFG of Fig. 8 features an infinite outer loop that contains another
loop. Due to the infinite outer loop, all paths starting at the entry block of the CFG are infinite; the
outer loop’s merge block, block 7, is not reachable. In this sense the loop is syntactically infinite.

According to the definition of post dominance (see Section 2.2), if there are no paths from a block
𝐵 to a block that exits the CFG then every block in the CFG post dominates 𝐵.

Looking at the loop headed at block 3 in Fig. 8, intuitively we would like the continue construct
for this loop to comprise the block 4, as this is both the continue target and back-edge block for the
loop header. However, according to the definition of ‘continue construct’ in the original SPIR-V
specification (see Section 2.2), the construct comprises those blocks that are both dominated by
the continue target and post dominated by the back-edge blockÐi.e., both dominated and post
dominated by block 4. Now, block 4 dominates the set of blocks {4, 5, 6}, and 4 post dominates each
of these blocks because none of the blocks lie on a path that reaches a CFG exit block. This means
the continue construct is defined to be {4, 5, 6}, which is not intuitive.

The caveat that was added to SPIR-V mandating that a construct should exclude blocks dominated
by the merge blocks of outer loops, as well as the continue constructs of outer loops, might be
interpreted to eliminate block 6 from this set, as it is the continue construct of the outer loop headed
at block 2. However, block 5 is the merge block of the loop construct headed at block 3, and because
loop constructs and continue constructs are defined to be disjoint, this loop construct is not defined
to enclose the continue construct headed at 4, so the caveat does not get rid of block 5.

Perhaps in response to examples such as this, the definition of a continue construct was extended
with an extra condition, which we highlight in bold:

a continue construct: includes the blocks dominated by an OpLoopMerge Continue Target and post
dominated by the corresponding loop’s back-edge block, while excluding blocks dominated

by that loop’s merge block [SPIR-V 1.6r1, ğ2.11]

For the CFG of Fig. 8 this extra condition does get rid of block 5, yielding {4} as the continue
construct, as desired. However, while not too onerous, we argue that this additional condition is
unintuitive and inelegant.

3.6 Sixth Problem: Ill-Formed Exit Rules

The SPIR-V language designers wished to limit the scenarios under which a control flow edge could
leave a structured control flow construct, for example limiting łloop breakž edges so that they can
only break from the innermost loop construct.
The specification had attempted to encode these rules by defining concepts such as łbreak

blockž and łcontinue blockž to refer to blocks that branch to merge blocks and continue targets,
respectively, and then mandating rules such as:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

60:14 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

• a break block is valid only for the innermost loop it is nested inside of
• a continue block is valid only for the innermost loop it is nested inside of

[SPIR-V 1.6r1, ğ2.11]

However, the formulation of such exit rules was fundamentally difficult because of the ambiguities
surrounding the definitions of structured control flow constructs that we have showcased in this
section. We also identified a number of technical problems with the definitions and rules. For
example, it is permissible for a loop header to serve as its own continue target, but this means that
a predecessor of the loop header from which the loop is entered is regarded as a continue block.

4 FIXING THESE PROBLEMSWITH STRUCTURAL DOMINANCE

We now describe structural dominance, our proposal for modifying the control flow definitions and
rules of the SPIR-V language, which has been adopted in the latest revision of the specification. We
motivate the idea and provide an intuitive overview (Section 4.1) before describing our changes
to the specification in detail (Section 4.2). We then explain how these changes rectify each of the
problems discussed in Section 3 (Section 4.3), at the expense of a small amount of backwards-
incompatibility that was deemed acceptable by the SPIR-V language designers (Section 4.4). We also
briefly discuss design choices related to how the specification should handle łwholly unreachablež
blocks (Section 4.5).

4.1 Structural Dominance: Motivation and Intuition

A common theme associated with the problematic examples studied in Section 3 is unwanted
dominance relationships between blocks. In the CFG of Fig. 3 (Section 3.1) it is the fact that block
3 dominates block 7 that leads to 7 being erroneously incorporated into the selection construct
headed by 3 unless additional conditions are imposedÐthis dominance relationship arises due to
the early break edge 3 → 7. Likewise, in Fig. 4 (Section 3.2), the continue target 5 becomes an
unwanted element of the selection construct headed at 3 (without additional conditions) due to the
early continue edge 3 → 5.
Another root cause of the problems discussed in Section 3 is lack of reachability. The loop

construct headed at block 2 in Fig. 5 (Section 3.3) has no back edge due to block 3Ðthe loop’s
continue targetÐbeing unreachable. In Fig. 7 (Section 3.4), the cyclic merge relationship between
blocks 5 and 10 is allowed to hold due to these blocks being unreachable.

Furthermore, there is interplay between dominance-related issues and reachability-related issues.
In Fig. 6 (Section 3.4), the selection construct headed by block 4 is empty due to mutual domination
between unreachable blocks; and in Fig. 8 (Section 3.5), the mutual post dominance relationship
between blocks that complicates the definition of ‘continue construct’ is due to the CFG’s exit block
being unreachable.
Our key observation is that in all these examples, the unwanted dominance and/or lack of

reachabilitywould go away if ‘merge’ and ‘continue’ relationships between blockswere incorporated
into the definitions of reachability, dominance and post dominance.
As a concrete illustration, consider the łearly breakž example of Fig. 3 (Section 3.1), which

features a selection construct inside a loop. Using the regular notion of dominance, the header of
the selection construct (block 3) dominates the loop’s merge block (block 7), however, the selection
construct’s merge block (block 5) does not. Defining the blocks of a selection construct as the blocks
dominated by the header block minus the blocks dominated by the merge block thus leads to 7
being erroneously included. However, if we included the merge edges 2 7 and 3 5 and the
continue edge 2 6 in the dominance calculation then 3 would no longer dominate 7, due to the
path 1 → 2 7 that reaches 7 from the entry block of the CFG without going through 3.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

Taking Back Control in an Intermediate Representation for GPU Computing 60:15

4.2 Structural Dominance: Definitions and Rules

Wenow describe structural dominance in detail by presenting the engineer-focused prose definitions
and rules that have been accepted into the SPIR-V 1.6 specification as a result of our work [Khronos
Group 2022g]. These definitions and rules arose as a result of formally modelling rules from
earlier SPIR-V specification versions, discussing them with experts and validating them against
conformance test suites and external tools, and then translating them back into prose matching the
general style of the SPIR-V specification. We discuss our formal modelling efforts in Section 5.
Before our changes, SPIR-V did not explicitly define the notion of a branch edge between basic

blocksÐbeing the only kind of edge of interest it was obvious from context what łbranchž meant.
As our changes introduce merge and continue edges, we define all three:

Branch Edge: There is a branch edge from block 𝐴 to block 𝐵 if the terminator of 𝐴 is a branch
instruction and 𝐵 is one of the target blocks for the branch instruction.

Merge Edge: There is a merge edge from block 𝐴 to block 𝐵 if 𝐴 contains a merge instruction
and 𝐵 is the merge block of this merge instruction.

Continue Edge: There is a continue edge from block 𝐴 to block 𝐵 if 𝐴 is a loop header and 𝐵 is
the Continue Target of the loop header’s OpLoopMerge instruction. [SPIR-V 1.6r2, ğ2.2.5]

We then introduce the term łstructured control-flow edgež as a catch-all to refer to any of the
above kinds of edge, and the notion of a sequence of contiguous structured control-flow edges as a
łstructured control-flow pathž:

Structured Control-Flow Edge: There is a structured control-flow edge from block 𝐴 to block 𝐵 if
there is a branch edge, merge edge, or continue edge from 𝐴 to 𝐵.

Structured Control-Flow Path: A sequence of blocks 𝐵0, 𝐵1, . . . , 𝐵𝑛 where for each 0 ≤ 𝑖 < 𝑛 there
is a structured control-flow edge from 𝐵𝑖 to 𝐵𝑖+1. This forms a structured control-flow path from
𝐵0 to 𝐵𝑛 .

Structurally Reachable: A block 𝐵 is structurally reachable if there exists a structured control-flow
path from the entry block of the function containing 𝐵 to 𝐵. [SPIR-V 1.6r2, ğ2.2.5]

For example, 1 → 2 → 6 → 7 is not a regular control flow path in the CFG of Fig. 3, but
1 → 2 6 → 7 is a structured control-flow path, involving a combination of branch edges (→)
and continue edges ().

We can then define notions of structural dominance and structural post dominance. These exactly
mirror the definitions of regular dominance and post dominance (see Section 2.2), with łpathž
(which in the old definitions referred to a regular control flow path) replaced with łstructured
control-flow pathž:

Structurally Dominate: A block 𝐴 structurally dominates a block 𝐵, where 𝐴 and 𝐵 are in the
same function, if every structured control-flow path from the function’s entry block to block 𝐵
includes block 𝐴. 𝐴 strictly structurally dominates 𝐵 if 𝐴 structurally dominates 𝐵 and 𝐴 and 𝐵
are different blocks.

Structurally Post Dominate: A block 𝐵 structurally post dominates a block 𝐴, where 𝐴 and 𝐵 are
in the same function, if every structured control-flow path from 𝐴 to a function termination
instruction includes block 𝐵. [SPIR-V 1.6r2, ğ2.2.5]

To illustrate these concepts, consider the CFG of Fig. 3 again. Block 3 dominates block 7 because
every regular control-flow path from the CFG’s entry block to 7 starts with the prefix 1 → 2 → 3

of branch edges. But 3 does not structurally dominate 7 due to the structured control flow path
1 → 2 7 comprised of branch and merge edges.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

60:16 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

Relationship between regular dominance and structural dominance. For blocks 𝐴 and
𝐵 in a SPIR-V CFG, if 𝐴 structurally dominates 𝐵, i.e. every structured control-flow path
from the function’s entry block to block 𝐵 includes block 𝐴, then in particular every regular

control-flow path from the function’s entry block to block 𝐵 includes block 𝐴, since a regular
control-flow path is a special case of a structured control flow path, hence𝐴 dominates 𝐵. Thus
‘𝐴 structurally dominates 𝐵’ implies ‘𝐴 dominates 𝐵’.

By a similar argument, ‘𝐵 structurally post dominates 𝐴’ implies ‘𝐵 post dominates 𝐴’.
Our changes to the SPIR-V specification mean that the definition of regular post dominance

is no longer required, and it has been removed. The definition of regular dominance is still
required, because the SSA form used by SPIR-V instructions requires every use of an id to
be dominated by the definition of the id (with the exception of uses that occur in SSA phi
instructions).

We also adapt the notion of łback edgež so that it is defined over structured control-flow edges,
rather than merely branch edges:

Back Edge: A branch edge that branches to one of its ancestors in a depth-first search over
structured control-flow edges starting at the function’s entry block. [SPIR-V 1.6r2, ğ2.2.5]

Note that a back edge must still be a branch edge, because the notion of back edge relates to
execution of a loop, and only branch edges describe how control can transfer between blocks at
runtime. However, the depth-first search that identifies a back edge can involve all three edge types.

The definition of łback-edge blockž is unchanged (see Section 2.2), but its meaning is different as
it refers to this new notion of back edge.
Armed with these definitions, we simplified rules and definitions associated with structured

control flow as follows. First, we were able to remove caveats about unreachability from rules that
govern dominance relationships between header blocks, merge blocks and continue targets (text
that we added is shown in bold; text that we removed is struck through):8

each header block must strictly structurally dominate its merge block, unless the merge block
is unreachable in the CFG [SPIR-V 1.6r2, ğ2.11.1]

and later in the same section:

for a given loop header, its OpLoopMerge Continue Target, and corresponding back-edge block:

• the loop header must structurally dominate the Continue Target, unless the Continue
Target is unreachable in the CFG

• the Continue Target must structurally dominate the back-edge block
• the back-edge block must structurally post dominate the Continue Target

[SPIR-V 1.6r2, ğ2.11.1]

Secondly, we were able to give simpler, clearer definitions of selection, continue and loop
constructs (again, we use bold for added text and removed text is struck through):

• a selection construct: the blocks structurally dominated by a selection header, while
excluding blocks structurally dominated by the selection header’s merge block

• a continue construct: the blocks that are both structurally dominated by an OpLoopMerge

Continue Target and structurally post dominated by the corresponding loop’s back-edge
block while excluding blocks dominated by that loop’s merge block

8Our changes also incorporate some minor wording changes to improve clarity; we do not highlight these changes in order

to focus attention on the more fundamental changes.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

Taking Back Control in an Intermediate Representation for GPU Computing 60:17

• a loop construct: the blocks structurally dominated by a loop header, excluding both
the loop header’s continue construct and the blocks structurally dominated by the loop
header’s merge block

Furthermore, these structured control-flow constructs are additionally defined to exclude all
outer constructs’ continue constructs and exclude all blocks dominated by all outer constructs’
merge blocks. [SPIR-V 1.6r2, ğ2.11.2]

The major advantage of our revised definitions is that they are unambiguous and non-circular.
Removing the final caveatÐthe source of circularityÐalso makes the rules more concise and elegant,
and thus easier to work with and reason about.
In Section 5 we discuss how we have worked to bring the SPIR-V validator and conformance

tests in line with these new definitions and rules, by cross-checking them against our formal model.

4.3 Structural Dominance Applied to Problematic Examples

In Section 4.1 we already discussed how structural dominance solves the problem discussed in
Section 3.1 associated with a loop break appearing in a selection construct. We briefly discuss how
our changes fix the other problems of Section 3 in an elegant manner.

Well defined selection constructs featuring early loop continues. Recall the problem of Section 3.2,
where unwieldy caveats were required to avoid the continue construct of a loop becoming part of a
selection construct inside the loop body. Structural dominance avoids the need for such caveats:
there is always a continue edge from a loop header to its continue target, so the loop header is the
only block in a loop construct that can structurally dominate the loop’s continue target (assuming
that the loop header is structurally reachable).

Back edges in loops with unreachable continue constructs. The problem identified by the CFG
of Fig. 5 (Section 3.3) is that with the old SPIR-V definitions, the loop headed at block 2 had no
associated back edge. With our new definitions, branch edge 3 → 2Ðwhich we would conceptually
like to be the back edgeÐis indeed a back edge, because it is a retreating edge in the structured
control flow path 1 → 2 3 → 2 that starts from the CFG’s entry block.

Unreachable constructs are not empty, and cyclic merge relationships are not allowed. In Section 3.4
we discussed the problem of mutual dominance between unreachable blocks. This led to the CFG of
Fig. 6 having a selection construct that is technically empty, and to the strange CFG of Fig. 7 being
deemed valid. Structural dominance solves both of these issues. In Fig. 6, the selection construct
headed by block 4 is now defined to be the block structurally dominated by the header block 4, i.e.
the set {4, 5, 6, 7}, minus the blocks structurally dominated by the merge block 7, i.e. the set {7},
yielding the set {4, 5, 6}, which matches our intuition based on the block labels presented in the
source code of Fig. 6. Turning to Fig. 7, this example is now deemed invalid, because header block
10 does not structurally dominate its merge block 5.

There is always a structured path to an exit block. The CFG of Fig. 8 (Section 3.5) was problematic
due to there being no regular control flow path from certain blocks to an exit block. Such blocks are
vacuously post dominated by all blocks in the CFG. With structural post dominance, there is always
a structured path from a structurally reachable block to an exit block. This is because cycles can
only be achieved via loop constructs, a loop construct must have an associated header block, that
header block must feature a merge block that is not part of the cycle, and thus the merge edge from
loop header to merge block provides a way out of the cycle. With respect to Fig. 8, the continue
construct for the loop headed by block 3 comprises the set of blocks {4} as desired, because 4 is

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

60:18 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

%1 %2 . . . %3 %4
%1 %2 . . . %3 %4

%5

Fig. 9. A now-invalid control-flow idiom that spirv-opt would generate (left), and how to rectify it (right)

the only block that is both structurally dominated by the loop’s continue target (block 4) and post
dominated by the loop’s back-edge block (also block 4).

Unambiguous exit rules. Thanks to our new, unambiguous definitions of control flow constructs,
we were able to articulate a precise set of rules dictating when it is acceptable for a branch edge
to leave a construct, replacing the problematic existing exit rules that we briefly discussed in
Section 3.6. We present three of these rules for illustration:

if a branch edge from block 𝐴 to block 𝐵 exits the structured control-flow construct 𝑆 , then the
exit must correspond to one of the following:

• Breaking from a selection construct: 𝑆 is a selection construct, 𝑆 is the innermost structured
control-flow construct containing 𝐴, and 𝐵 is the merge block for 𝑆

• Breaking from the innermost loop: 𝑆 is the innermost loop construct containing 𝐴, and 𝐵
is the merge block for 𝑆

• Entering the innermost loop’s continue construct: 𝑆 is the innermost loop construct
containing 𝐴, and 𝐵 is the continue target for 𝑆 [SPIR-V 1.6r2, ğ2.11.3]

The choice of rules was based on discussion with the SPIR-V language designers. The key point
is that our improved definitions of constructs now make it possible to articulate such rules.

4.4 Backwards Incompatibility

We encountered two CFG idioms where our changes to SPIR-V control flow are not backwards-
compatible. Both are related to the requirement that (since our changes) a loop’s back-edge block
should (structurally) post dominate its associated continue target. Intensive automated analysis
using our Alloy model of structural dominance (see Section 5) gives us a high degree of confidence
that backwards incompatibility is limited to these cases.
Fig. 9 illustrates two CFGs where in each case the blob labelled ł. . . ž is meant to denote an

arbitrary sub-CFG that does not itself contain an exit block. Prior to our work, the inlining pass
of spirv-opt, the SPIR-V optimiser, would sometimes yield CFGs with the form of the left CFG
in Fig. 9. Consider loop header 2, which is its own continue target and has associated back-edge
block 3. The old SPIR-V rules required 3 to post dominate 2, which it does. Our new rules require
3 to structurally post dominate 2, which it does not: the merge edge 2 4 means that there is a
structural path from 2 to an exit block that does not pass through 3.

The language designers agreed that it was acceptable to regard programs of this form as invalid.
We contributed a change to the optimiser’s inlining pass that avoids the problem by adding an empty
intermediate block as the loop’s continue target, as illustrated by the right CFG in Fig. 9, which
features the additional block 5. We also fixed a number of test cases in SPIR-V-related test suites
that suffered from this issue because their associated code had been passed through spirv-opt.
The other idiom we found is rather complex and contrived: it involves a loop whose continue

construct contains a loop that in turn contains a selection construct with an unreachable merge
block. The unreachable merge block leads to the selection construct of the outer loop failing to

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

Taking Back Control in an Intermediate Representation for GPU Computing 60:19

Block

branch : seq Block

EntryBlock HeaderBlock

merge : one Block

LoopHeader

continue : one Block

SelectionHeader

where:

LoopHeader ∪ SelectionHeader = HeaderBlock

LoopHeader ∩ SelectionHeader = ∅

HeaderBlock ⊆ Block

EntryBlock ⊆ Block \ LoopHeader

|EntryBlock| = 1

Fig. 10. Hierarchy of Alloy signatures that represent types of block (with denoting inheritance), together
with some constraints on their relationships

meet the property that its back-edge block must post dominate its continue target. We have not
encountered a real-world SPIR-V program where this backwards incompatibility matters, and the
language designers agreed it was acceptable for this contrived example to become invalid.

4.5 Structurally Unreachable Blocks

Unlike the use cases in Section 3 involving blocks that are unreachable by regular control flow yet
still structurally reachable, there are no compelling uses cases for structurally unreachable blocks.
We discussed with the language designers whether to simply ban such blocks. In the end it was
agreed to allow them but have the specification place no restrictions on structurally unreachable
control flow constructs so they can in effect be ignored.

5 THE DESIGN AND APPLICATION OF OUR FORMAL MODEL

We now describe how we have formalised SPIR-V control flow using the Alloy modelling lan-
guage [Jackson 2019], and used the Alloy Analyzer to put that model to use in two ways: generating
CFGs that probe the corner cases of the model, and testing whether a given CFG is valid.
Alloy has three features that make it a good fit for our context. First, it allows the definition of

directed graphs with customisable vertex types (called ‘signatures’) and edge labels. This is an ideal
match for CFGs, which are, of course, graphs. Second, it allows constraints to be defined on those
graphs, via a language that combines first-order logic and Tarski’s relation algebra [Tarski 1941].
We use this feature to concisely capture validity constraints on CFGs. Third, it allows a subtyping
hierarchy to be defined among the vertex signatures. We use this feature to capture hierarchical
relationships in the CFG, such as: some blocks in the CFG are header blocks, and some header
blocks are loop header blocks.
Figure 10 shows how we have captured the hierarchy of different types of CFG blocks using

Alloy signatures. All vertices of type Block have outgoing branch edges to an ordered sequence
of Blocks (the branch targets of that block). HeaderBlock is a subtype of Block; blocks of this
type have an outgoing merge edge to exactly one Block (the merge target). LoopHeader and
SelectionHeader are two subtypes of HeaderBlock; blocks of the former type have a continue
edge to exactly one Block (the continue target). As can be seen in the additional constraints on the
right-hand side of the figure, every HeaderBlock is either a LoopHeader or a SelectionHeader
but not both. Finally, EntryBlock is a further subtype of Block, and as can be seen from the last
two constraints on the right-hand side, there is exactly one EntryBlock per CFG and it cannot be
a LoopHeader (as discussed in Section 2.1, this is forbidden in SPIR-V).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

60:20 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

pred LoopHeaderStructurallyDominatesContinueTarget

{

let StructurallyReachableBlock = EntryBlock . *(branch.elems + merge + continue) |

StructurallyReachableBlock < : continue in structurallyDominates

}

Fig. 11. Capturing one of the validity constraints on CFGs as an Alloy predicate

Fig. 11 illustrates one of our model’s 26 predicates that capture CFG validity constraints, all of
which must hold for a CFG to be deemed valid. This predicate encodes the requirement that every
(structurally reachable) loop header in the CFG must structurally dominate its continue target
(see Section 4.2). It works in two steps. On the first line, it defines the set of structurally reachable
blocks as those that can be reached by starting at the EntryBlock and then taking zero or more
steps, each of which is either a branch,9 merge, or continue. On the second line, the predicate
constructs the set of pairs of blocks (𝐴, 𝐵) where there is a continue edge from 𝐴 to 𝐵 and 𝐴 is in
the set of structurally reachable blocks (the <: syntax restricts the domain of a binary relation).
The predicate requires that this set is a subset of (‘in’) the structural dominance relation; that is,
that 𝐴 structurally dominates 𝐵.
Having set up this system of constraints, we can synthesise CFGs that witness them by fixing

upper bounds on the number of vertices per signature and then invoking the Alloy Analyzer. The
Analyzer works by reducing the constraint-solving problem to a Boolean satisfiability problem
and then invoking an off-the-shelf SAT solver. We can, for instance, ask the Analyzer to generate
CFGs (up to a given size) that satisfy all 26 of the validity predicates. We can also negate one of the
validity predicates and re-run the Analyzer to generate CFGs that are invalid, but are nonetheless
close to the valid/invalid boundary.

5.1 From SPIR-V to Alloy and Back

To enable validation of the CFGs of SPIR-V programs using our Alloy model we have written a
translation tool, spirv-to-alloy, that takes a binary SPIR-V module and turns it into a format
ready for analysis with Alloy. Fig. 12a shows the SPIR-V function from Fig. 2a in a form Alloy
can process. Conversely, when the Alloy Analyzer yields an example CFG from our model, it
is useful to be able to turn this into a SPIR-V program that exhibits the CFG, to assess whether
spirv-val agrees with our model on the validity of the CFG. For this purpose we have implemented
alloy-to-spirv, which takes as input an Alloy-generated example (in the form of an XML file),
and yields a corresponding SPIR-V program. The SPIR-V program is rather meaningless because it
does not compute anything: it merely contains the label, branch and merge instructions needed
to syntactically express the CFG of interest (with true used when a Boolean value is required in a
conditional branch instruction). Nevertheless, it is meaningful to ask spirv-val whether such a
program obeys the rules of the language. In Section 6 we discuss strategies for fleshing out such
skeletal programs into meaningful test cases.

5.2 Putting the Model into Practice

In Section 4 we gave an overview of our łfinished productž: a revised set of control flow definitions
and rules based on our new concept of structural dominance. However, this solution was far from
obvious to us initially. We arrived at it via an iterative process summarised by Fig. 1 (Section 1).

9Technical detail: branch.elems converts the ordered sequence of branch targets into an unordered set.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

Taking Back Control in an Intermediate Representation for GPU Computing 60:21

1 module simple_shader

2 open AlloyModel/StructuralDominanceCFG as validCFG

3 pred sampleCFG {

4 some disj b1,b2,b3,b4,b5,b6,b7,b8,b9 : Block {

5 EntryBlock = b1

6 HeaderBlock = b2 + b4

7 LoopHeader = b2

8 SwitchBlock = none

9 branch = (b1 -> (0 -> b2))

10 + (b2 -> (0 -> b3))

11 + (b3 -> ((0 -> b4) + (1 -> b9)))

12 + (b4 -> ((0 -> b5) + (1 -> b6)))

13 + (b5 -> (0 -> b7))

14 + (b6 -> (0 -> b7))

15 + (b7 -> (0 -> b8))

16 + (b8 -> (0 -> b2))

17 merge = (b2 -> b9)

18 + (b4 -> b7)

19 continue = (b2 -> b8)

20 }

21 }

22 run { sampleCFG ∧ validCFG/Valid } for 9 Block

(a) The input module to Alloy (b) Predicate is consistent

Fig. 12. A SPIR-V Function in Alloy and the generated instance

We first designed a best-effort Alloy model based on a careful reading of the specification and
discussion with SPIR-V experts. We then proceeded to cross-validate our model against two sources
of truth about SPIR-V: the spirv-val validator, and a number of conformance test suites.

We extracted 340 distinct SPIR-V CFGs from the Vulkan Conformance Test Suite (CTS) [Khronos
Group 2022c], 243 distinct CFGs from an open source repository of SPIR-V control flow exam-
ples [David Neto 2022], and 134 distinct CFGs from the spirv-val test suite [Khronos Group
2022i], using spirv-to-alloy to allow feeding these inputs to our model. The spirv-val test
suite yielded a mixture of CFGs that purported to be valid and invalid, while the CFGs from the
other sources all purported to be valid. For each extracted CFG, we used the Alloy Analyser to
check whether our model agreed with the CFG’s claimed validity. We discussed mismatches with
SPIR-V experts and proposed fixes to the relevant test suite or our model, accordingly.
To cross-check against spirv-val, we used the Alloy Analyzer to generate a large number of

CFGs of interesting shapes and varying sizes, imposing all of our model’s constraints to generate
valid CFGs, and negating selected constraints to generate invalid (but almost-valid) CFGs. We used
alloy-to-spirv to convert these into skeletal SPIR-V programs and cross-checked the validity of
each example as claimed by our model against spirv-val’s verdict. In the case of mismatches, we
either fixed spirv-val or refined our model, guided by discussions with experts.

We iterated these two forms of cross-checking until we reached a point where (a) our model, the
test suites and spirv-val were all in agreement, and (b) we and the SPIR-V language designers
were satisfied with the simplicity, elegance and intuitive nature of the definitions and rules we had
formulated. We then rewrote the relevant sections of the SPIR-V specification based on our formal
model (but using precise English rather than mathematics), and worked with the Khronos Group
to get these changes incorporated into the 1.6r2 release of the language specification.

During this journey of model construction and refinement we tracked numerous issues that arose
along the way via our GitHub repository [Klimis et al. 2022b]. The issues related to the modelling
process have the modelling label. While they are not organised systematically, they may still be

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

60:22 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

initially:

outi = 0

out = {_,_,_,_}

diri = 0

dir = {0,1}

%1

out[outi++] = 1;

goto %2

%2

out[outi++] = 2

if dir[diri++] goto %3

else goto %12

%12

out[outi++] = 12

if dir[diri++] goto %13

else goto %3

%13

out[outi++] = 13

return

%3%4

%5

%6

%7

%8

%9

%10

%11
expect: out == {1,2,12,13}

Fig. 13. Example of a fleshed CFG. The original CFG comprises blocks %1 through %13. The path chosen for
fleshing is marked (). The code added to the blocks to force execution to follow that path is highlighted.

interesting for a reader wishing to gain insight into how we worked through the details of various
intricate examples.

6 FUZZING SPIR-V COMPILERS VIA CONTROL-FLOW GRAPH FLESHING

We leverage our formal model of SPIR-V control flow to obtain a novel method for compiler fuzzing,
which we call fleshing. We report on results of a pilot study that shows that straightforward fleshing
is effective, finding twenty distinct new bugs in six SPIR-V commercial compilers and translators.
The bugs we found include eight miscompilations and twelve compiler or translator crashes, plus
two crashes in a related downstream compiler.
Fleshing is a three-stage process that involves:

(1) producing a valid SPIR-V CFG skeleton,
(2) choosing a random path through the CFG, and fleshing out the CFG with instructions that

force this path to be taken and record the path actually taken at runtime, and
(3) augmenting the program with a test oracle asserting that the path recorded at runtime exactly

matches the expected path.

We detail our fleshing approach (Section 6.1) and present the results of our pilot study (Section 6.2).

6.1 Control Flow Graph Fleshing

The aim of fleshing is to produce an executable test case for which we have a strong oracle that can
detect miscompilation errors, and such that the test case is small enough to be easy for a human
developer to understand, so that they can use it for debugging. Fig. 13 shows an example of a
fleshed test case that was able to find a miscompilation bug in the Intel Mesa driver [Intel 2022].
The first stage of fleshing is to produce a valid SPIR-V CFG skeleton. We use two methods to

obtain skeleton CFGs: (1) we use the Alloy Analyzer to produce an example CFG via our formal
model, and then use alloy-to-spirv to turn this into a skeletal SPIR-V program exhibiting this
CFG, and (2) we mine CFGs from the Vulkan Conformance Test Suite (CTS) [Khronos Group 2022c]
test cases, validating them against our formal model to ensure that they are valid. It would also
be possible to write a random generator of SPIR-V CFGs, however, since our Alloy model already
gives us a mechanism to produce interesting, valid SPIR-V CFGs, we did not implement this.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

Taking Back Control in an Intermediate Representation for GPU Computing 60:23

The second stage of fleshing takes as input a valid SPIR-V CFG and chooses a particular path
through the CFG that the fleshed program must follow. By default this produces a single path that
will be executed by a single thread. We also provide an option whereby multiple threads each
follow a distinct path. The path is chosen by performing a random traversal of the CFG’s branch
edges until an exit block is reached, or a given maximum path length is exceeded. In the latter
case, the path is extended to reach an exit block via the shortest route possible. Our algorithm
pre-computes those blocks that cannot reach a CFG exit node via branch edges and excludes them
from consideration. In the example in Fig. 13, the chosen path is marked ().

In the third and final stage, we add flesh to the bones of our skeletal SPIR-V CFG to turn it into
an executable test case. This involves adding instrumentation to force the program to follow the
path chosen in the previous step, and to record the actual path taken via a program output. The
actual path can then be compared with the expected path once the program has been executed. To
achieve this, a directions array, dir, is created to store the control-flow decisions that will be made
when executing each block that terminates with a conditional instruction. Since blocks may be
visited multiple times, dir may contain multiple entries, so we use an index variable, diri, to select
a potentially different direction on each visit, incrementing it after each visit. In the example in
Fig. 13, dir is configured with {0,1} so that the path takes the ‘false’ branch from block %2 and
then the ‘true’ branch from block %12. An output array out and associated index outi are used to
track the path taken at runtime. Whenever a block is visited, the block’s integer ID is written to the
output array at index outi after which the index is incremented. The compiler must preserve stores
to the output array, because the array is in memory that will become visible to the host CPU. Thus
if the program is compiled correctly, the full path taken will always be recorded. This forms the
basis for our test oracle, as we know both the expected path and the actual path taken at runtime.
In Fig. 13, which exposed a bug in the Intel Mesa driver, we found that the compiled code led to the
out array not containing the expected values {1,2,12,13}; in fact it was not written to at all.

Our fleshed programs can then be used to (a) find bugs in SPIR-V compilers inside vendor-specific
drivers, and (b) find bugs in cross compilation tools that turn SPIR-V into other formats. Because the
size of a fleshed test case is proportional to the size of the fleshed CFG, and due to the simple nature
of the instrumentation that we propose, fleshed test cases that expose bugs are straightforward for
developers to comprehend and thus provide a good starting point for debugging.
For direct execution on a device, we wrap the fleshed program in AmberScript [Google 2022a]

code which handles the scaffolding of executing SPIR-V code and comparing the output array
to the expected path. With this approach, we can detect both crashes and miscompilations: mis-
compilations are found when there is a mismatch between the IDs in the output array and the
expected path IDs, or if a timeout is exceeded, indicating an erroneous infinite loop or GPU hang.
For cross-compilation, our fleshed programs are output as pure SPIR-V assembly which is fed to
both SPIRV-Cross [Khronos Group 2022h] and naga [Rust Graphics Mages 2022] to produce code
in a range of target languages such as HLSL [Microsoft 2019], GLSL [Khronos Group 2019] and
the Metal Shading Language (MSL) [Apple 2022]. For each target language, we run the resulting
code through its native downstream toolchain: glslangValidator for GLSL, the DirectX Shader
Compiler for HLSL and Apple’s shader validator for MSL. If a program is rejected by one of the
downstream tools it indicates a likely translation error which can be investigated. We can also
detect crashes in the downstream tools, but currently not miscompilations as this would require
engineering test scaffolding for each target language.

Using phi instructions. Basic fleshing uses memory loads and stores tomaintain the index variables
associated with the direction and output arrays. Since the SPIR-V specification requires programs

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

60:24 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

Table 1. Number of bugs found by each test set for every compiler and translator tested.

Compilers Translators

Test set Number of test cases Mesa SwiftShader MoltenVK NVIDIA SPIRV-Cross Naga

Basic CTS 5,668 2 0 0 0 0 2

Basic Alloy 536,601 7 3 0 0 3 0

Phi CTS 34,751 1 0 0 0 0 0

Phi Alloy 310,540 0 0 0 0 2 0

to be in SSA form, it is relatively easy to replace these load and store instructions with SSA phi
instructions, allowing fleshing to exercise a different aspect of SPIR-V compilation.

Multiple independent paths. We also provide a mode where instead of fleshing code that forces one
thread to follow a particular path, a number of distinct threads are forced to explore an independent
path each, in parallel. We support an arbitrary number of threads spread across an arbitrary number
of workgroups, although in practice the maximum number is limited by the limits of the execution
platform. Whilst compatible with phi instructions, we do not include them in this mode.

6.2 Evaluation

To evaluate the effectiveness of our fuzzer, we conducted a basic fuzzing campaign. We focused our
effort on six SPIR-V compilers and translators. Using the output of the SPIR-V translators, we were
also able to test for crash bugs in three high-level language compilers for HLSL, GLSL, and MSL.

Method. We started our fuzzing campaign by generating two sets of CFG skeletons that we used
throughout. The first set of 400 skeletons was generated by scraping the Vulkan CTS for valid CFGs
and turning them into skeletons ready for fleshing. The second set of skeleton CFGs were generated
from our Alloy model and consisted of 2499 skeletons that ranged widely in size. We generated this
set by running the Alloy analyzer on several variants of our model, each augmented with a different
set of additional constraints on the allowed form of CFGs. These additional constraints include:
preventing Alloy from lazily building long branch-less patterns by adding a constraint ensuring
that there does not exist blocks 𝐴, 𝐵, 𝐶 such that 𝐵 is 𝐴’s only structural successor and 𝐶 is 𝐵’s
only structural successor; enforcing that if there is a branch edge from block 𝐴 to block 𝐵 then at
least one of 𝐴 or 𝐵 must be a header block, merge block or continue target (focusing attention on
structures that make maximal use of structured control flow annotations); imposing the constraint
that there should not exist two selection constructs with the same number of blocks, with similar
constraints for loop and switch constructs (to increase diversity in the kinds of structures that are
generated); and imposing constraints that require some nesting between constructs to be present.

Once we had generated the skeletons, we began fleshing. For each of the fleshing modes (basic,
phi and independent paths), we generated two sets of test cases by invoking our fleshing tool on
the Vulkan CTS skeletons and the Alloy skeletons, respectively. This led to a total of six test sets of
varying size. To avoid needlessly executing duplicate test cases, we removed test cases within the
same test set that both followed exactly the path and exhibited the same set of features.

Test Setup. The CFGs were generated by Alloy Analyzer 5.1.0, using MiniSat as its SAT solver,
running on a MacBook Pro i7-1068NG7 with 32GB RAM and Intel(R) Iris(TM) Plus Graphics.
MoltenVK 1.1.10 was tested on the same machine, as were the naga and SPIRV-Cross to MSL
translators. Mesa, SwiftShader and the remaining SPIRV-Cross and naga translator configurations
were tested on a laptop running Ubuntu 20.04 with an i7-1165G7 CPU, 16GB RAM and Intel(R) Xe
Graphics (TGL GT2). To test the NVIDIA driver, we used a machine with an Intel Xeon E5-2640

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

Taking Back Control in an Intermediate Representation for GPU Computing 60:25

Table 2. Number of bugs found by category in compilers and translators.

Compilers Translators

Bug Type Mesa SwiftShader MoltenVK NVIDIA SPIRV-Cross Naga

Crash 6 1 0 0 3 2

Miscompilation 4 2 0 0 2 0

Table 3. CFGs found by Alloy
in 4-hour periods.

Number of blocks

8 10 12 14

CFGs 178,588 97,522 3,052 21

v3 CPU, 32GB RAM and an NVIDIA GTX 980 GPU. The compiler/translator versions tested were
SwiftShader [Google 2022e] (commit d15c4248); Mesa version 22.0.1 and merge request 17922 (Basic
test sets), version 22.1.0 (phi test sets) and version 22.1.2 (independent paths test sets); NVIDIA
Linux driver version 510.47.03; MoltenVK [Khronos Group 2022d] version 1.1.10; naga (commit
b3d5e6d8); and finally SPIRV-Cross (commit 6ae7ddb9).

Results. Overall, our campaign was effective, finding twenty new bugs in the six SPIR-V compilers
and translators tested, as well as two crash bugs in Microsoft’s DirectX Shader Compiler [Microsoft
2022]. We manually examined all bugs before reporting them to ensure they were all distinct. Table 1
shows the distinct bugs found by each test set, listing test sets in increasing order of sophistication,
with later test sets having more features and/or a larger number of test cases than earlier test sets.
Since many test sets were capable of finding the same bug, we assign each bug to the simplest test
set that could find it. The independent paths test sets found many bugs that earlier test sets had
already discovered, but did not find any distinct bugs, so we exclude them from Table 1. The test
sets generated from our Alloy model found three times as many distinct bugs (15) as the test sets
from the Vulkan CTS (5), demonstrating the value of the Alloy model for producing new test cases.
Table 2 provides a breakdown of the type of bugs found for each SPIR-V compiler and translator.

For both the SPIR-V compilers and translators, we classify bugs into two groups: (1) miscompi-
lations, which occur when the code produced by the compiler or translator produced the wrong
result, either due to a mismatch in the expected path taken or by entering an infinite loop, and
(2) crashes, which encompass all other bugs, which include but are not limited to crashes in the
compilers themselves, and translators producing invalid code that is rejected by the target language
compiler.

We found miscompilation and crash bugs in both the Mesa and SwiftShader compilers, as well as
in the SPIRV-Cross translator. We found only crash bugs in naga, however, these crash bugs were
triggered by over 95% of test cases, limiting our ability to find deeper bugs. We did not find any
bugs in the MoltenVK and NVIDIA compilers. However, MoltenVK uses SPIRV-Cross as a SPIR-V
front-end, so we were able to find the miscompilation bugs in SPIRV-Cross by virtue of testing
MoltenVK, and these bugs would impact MoltenVK users. As well as testing the release versions of
the various compilers and translators, we also worked closely with a member of the Intel Mesa
team to test a new version of their SPIR-V control flow handling implementation. As a result, we
found five bugs in the new implementation (including both crash and miscompilation bugs) before
release. We believe this demonstrates the value of integrating our fuzzer as part of an ongoing
development process. We reported all twenty of the bugs found and fourteen of them have been
fixed, with a further three bugs confirmed.

Throughput. The throughput of our fuzzing is limited by the execution speed of the underlying
platform. We use the Independent Paths test set (658, 388 test cases) to characterise the throughput
of the execution platforms, as it was at least as expensive to execute as the other test sets. The
execution times ranged from just over ten hours on the fastest platform (Mesa) to over thirty-nine
hours on the slowest (NVIDIA). We believe this is due to the overhead of copying the direction and

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

60:26 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

output buffers to and from dedicated GPU memory. It took our fleshing tool just over three hours
(on the Ubuntu laptop described above) to generate the Independent Paths test set, demonstrating
that the fleshing stage is not the bottleneck in the process.

Table 3 shows how the number of blocks in a CFG affects the throughput of the CFG generation
process. We measured the number of CFGs of a given size that could be generated in 4-hour periods,
using block counts of eight, ten, twelve, and fourteen respectively. It is clear that the number of
blocks in a CFG greatly affects the CFG generation throughput, which is not surprising given Alloy
uses a SAT solver under the hood.

This highlights a trade-off in the fuzzing pipeline, where it is possible to generate a large number
of small CFGs, which even with a small number of fleshed test cases will saturate the execution
stage, or to use a small number of large CFGs and flesh them more thoroughly generating many
more test cases per CFG. Our experience is that it is the static structural features of a CFG that are
more likely to trigger a bug ś for example, having nested loops with break and continue statements.
We found that the vast majority of bugs could be triggered by many of the test cases for a particular
CFG, suggesting that it is more important to explore a wider range of different CFGs than fleshing
an individual CFG more thoroughly.

7 RELATED WORK

Model-based test generation using Alloy. Ours is the latest in a long line of research that has used
the Alloy Analyzer to generate test cases from models written in the Alloy modelling language.
The subjects of prior work have ranged from inter-app communication protocols for Android [Jing
et al. 2012] to functional requirements of embedded systems [Wang et al. 2022], and several authors
have used Alloy to generate conformance tests from axiomatisations of memory models [Iorga
et al. 2021; Lustig et al. 2017; Raad et al. 2020, 2019; Wickerson et al. 2017]. We have found Alloy
generally well suited to our needs, but one inherent limitation is that its verification results are
bounded, in our context meaning that only CFGs up to a given size can be considered. To move to
unbounded verification, it may be possible to attach a theorem-proving backend to Alloy [Macedo
and Cunha 2012] or to port our models to the Ivy verification system [Padon et al. 2016].

Extended control-flow graphs. Our modelling efforts have been based around an extended form
of CFG ś CFGs augmented with ‘merge’ and ‘continue’ edges. Control-flow graphs have been
extended before, in different ways and with different aims; for instance, Ball and Horwitz [1993]
extended CFGs by modifying how jumps are handled so that techniques for program slicing can
cope with arbitrary control flow, and CFGs extended with edges that represent data-flow are widely
used in high-level synthesis [Amellal and Kaminska 1993].

Related compiler-fuzzing techniques. Our fleshing approach generates łself-checkingž test pro-
grams: programs that, although randomly generated, come equipped with oracles related to what
should be computed. Other compiler fuzzers that produce self-checking test cases include Orange
3 [Nagai et al. 2014] and YARPGen [Livinskii et al. 2020], which generate C/C++ programs. Fleshing
is more restricted than these approaches because it is only concerned with control flow. However,
both Orange 3 and YARPGen have limited or no support for loops, while fleshing is specifically
designed to produce test cases with interesting control flow, including complex use of loops.
Differential and metamorphic compiler-testing techniques have been successful in a range

of domains over the last decade or so (see e.g. [Le et al. 2014; Yang et al. 2011] and a recent
survey [Chen et al. 2020]). This includes work on testing GPU compilers for OpenCL [Lidbury et al.
2015], OpenGL [Donaldson et al. 2017] and SPIR-V [Donaldson et al. 2021]. We have not undertaken
a detailed comparison with our fleshing approach and the spirv-fuzz tool of Donaldson et al.
[2021], but we note that fleshing is much simpler than the involvedmetamorphic approach employed

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

Taking Back Control in an Intermediate Representation for GPU Computing 60:27

by spirv-fuzz, so that even if there is overlap in the bugs the tools can find, there is merit to being
able to find bugs using a simpler technique.
Our proposal for CFG fleshing bears some conceptual resemblance to the ‘skeletal program

enumeration’ (SPE) [Zhang et al. 2017] program generation technique. In SPE, an outer loop
generates ‘syntactic structures’ (programs with all identifiers replaced by ‘holes’) and then an inner
loop fills in those structures with various collections of identifiers. By comparison, we have an outer
loop that generates CFGs, and then an inner loop that fills in those graphs with various concrete
instructions. A key difference between the approaches is that fleshing can find miscompilation
bugs because it produces well defined test cases with strong oracles. In contrast, SPE makes no
guarantees about the semantic validity of the programs that are generated. In particular, they may
trigger dynamic undefined behaviour, which means that although they are effective at finding
compiler crashes, they are not suitable for assessing whether a compiler produced correct code.

Formalisation of GPU programming features. We have focused on formalising structured control
flow in a GPU programming language. Other GPU language features have been formalised in prior
work, e.g. memory operations [Alglave et al. 2015; Batty et al. 2016; Gaster et al. 2015; Lustig et al.
2019], forward-progress guarantees [Sorensen et al. 2021], and lock-step execution [Betts et al. 2012;
Collingbourne et al. 2013; Habermaier and Knapp 2012], and many of these formalisation efforts
have, like our work, led to clarifications and corrections being made to the original specifications.

8 CONCLUSIONS AND FUTURE WORK

We have presented a success story in applying lightweight formal methods to improve the design
of an industrial language for GPU computing. Thanks to our formal modelling work, we developed
the notion of structural dominance, which has proved key to rectifying a number of problems in the
SPIR-V intermediate representation related to control flow. Our model was instrumental in settling
on a precise set of replacements for the problematic definitions and rules in earlier versions of the
specification, and our changes have been incorporated into the latest public release.
Other aspects of SPIR-V could benefit from formalisation efforts, e.g. its memory model. More

generally, we believe there is broad scope for applying similar modelling and cross-checking
techniques to bring clarity to difficult features of other programming languages and intermediate
representations. With respect to CFG fleshing, we plan to explore more advanced fleshing strategies
for SPIR-V that integrate features such as execution barriers that are known to have complex
interactions with control flow. We are also interested in investigating the effectiveness of our
fleshing idea as a means for finding bugs in compilers for other CFG-based representations.

DATA AVAILABILITY STATEMENT

All tooling and experimental data created/used for this research are openly available for reproduc-
tion, reuse, and scrutiny at [Klimis et al. 2022a].

ACKNOWLEDGEMENTS

We are grateful to Pinghi Yu, Chengsong Tan and the anonymous POPL 2023 reviewers for valuable
feedback on an earlier draft of this work. This work was supported by the IRIS EPSRC Programme
Grant (EP/R006865/1).

REFERENCES

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2007. Compilers, Principles, Techniques & Tools, Second

Edition. Pearson.

Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl, Tyler Sorensen,

and John Wickerson. 2015. GPU Concurrency: Weak Behaviours and Programming Assumptions. In Proceedings of the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

60:28 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS

2015, Istanbul, Turkey, March 14-18, 2015, Özcan Özturk, Kemal Ebcioglu, and Sandhya Dwarkadas (Eds.). ACM, 577ś591.

https://doi.org/10.1145/2694344.2694391

Said Amellal and Bozena Kaminska. 1993. Scheduling of a Control and Data Flow Graph. In 1993 IEEE International

Symposium on Circuits and Systems, ISCAS 1993, Chicago, Illinois, USA, May 3-6, 1993. IEEE, 1666ś1669.

Apple. 2022. Metal Shading Language. https://developer.apple.com/metal/, last accessed 2022-07-04.

Thomas Ball and Susan Horwitz. 1993. Slicing Programs with Arbitrary Control-flow. In Automated and Algorithmic

Debugging, First International Workshop, AADEBUG’93, Linköping, Sweden, May 3-5, 1993, Proceedings (Lecture Notes in

Computer Science, Vol. 749), Peter Fritszon (Ed.). Springer, 206ś222. https://doi.org/10.1007/BFb0019410

Mark Batty, Alastair F. Donaldson, and John Wickerson. 2016. Overhauling SC atomics in C11 and OpenCL. In Proceedings

of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,

FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 634ś648. https://doi.org/10.1145/

2837614.2837637

Sean Baxter. 2020. Khronos Group forum post: Clarify meaning of merge block. https://community.khronos.org/t/clarify-

meaning-of-merge-block/106006

Sean Baxter. 2021. Tweet about SPIR-V control flow. https://twitter.com/seanbax/status/1348780718797807622

Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, and Paul Thomson. 2012. GPUVerify: a verifier for GPU

kernels. In Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,

and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, Gary T. Leavens andMatthew B.

Dwyer (Eds.). ACM, 113ś132. https://doi.org/10.1145/2384616.2384625

Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and Lu Zhang. 2020. A Survey of

Compiler Testing. ACM Comput. Surv. 53, 1 (2020), 4:1ś4:36. https://doi.org/10.1145/3363562

Peter Collingbourne, Alastair F. Donaldson, Jeroen Ketema, and Shaz Qadeer. 2013. Interleaving and Lock-Step Semantics

for Analysis and Verification of GPU Kernels. In Programming Languages and Systems - 22nd European Symposium on

Programming, ESOP 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,

Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa

Gardner (Eds.). Springer, 270ś289. https://doi.org/10.1007/978-3-642-37036-6_16

David Neto. 2022. SPIR-V samples for WebGPU. https://github.com/dneto0/spirv-samples, last accessed 2022-07-04.

Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017. Automated testing of graphics shader

compilers. PACMPL 1, OOPSLA (2017), 93:1ś93:29. https://doi.org/10.1145/3133917

Alastair F. Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, André Perez Maselco, and Antoni Karpinski. 2021.

Test-case reduction and deduplication almost for free with transformation-based compiler testing. In PLDI ’21: 42nd ACM

SIGPLAN International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June

20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 1017ś1032. https://doi.org/10.1145/3453483.3454092

Jason Ekstrand. 2022. In defense of NIR. https://www.jlekstrand.net/jason/blog/2022/01/in-defense-of-nir/

Benedict R. Gaster, Derek Hower, and Lee W. Howes. 2015. HRF-Relaxed: Adapting HRF to the Complexities of Industrial

Heterogeneous Memory Models. ACM Trans. Archit. Code Optim. 12, 1 (2015), 7:1ś7:26. https://doi.org/10.1145/2701618

Davide Di Gennaro. 2015. Advanced Metaprogramming in Classic C++. Apress.

Google. 2022a. Amber Repository. https://github.com/google/amber, last accessed 2022-07-04.

Google. 2022b. ANGLE - Almost Native Graphics Layer Engine. https://chromium.googlesource.com/angle/angle, last

accessed 2022-07-07.

Google. 2022c. The clspv project. https://github.com/google/clspv, last accessed 2022-06-30.

Google. 2022d. Dawn, a WebGPU implementation. https://dawn.googlesource.com/dawn, last accessed 2022-07-07.

Google. 2022e. SwiftShader, CPU-based Vulkan Implementation. https://swiftshader.googlesource.com/SwiftShader, last

accessed 2022-07-07.

Google. 2022f. The Tint project. https://dawn.googlesource.com/tint, last accessed 2022-06-30.

Axel Habermaier and Alexander Knapp. 2012. On the Correctness of the SIMT Execution Model of GPUs. In Programming

Languages and Systems - 21st European Symposium on Programming, ESOP 2012, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings (Lecture

Notes in Computer Science, Vol. 7211), Helmut Seidl (Ed.). Springer, 316ś335. https://doi.org/10.1007/978-3-642-28869-2_16

Intel. 2020. Intel Iris Plus Graphics and UHD Graphics Open Source, Programmer’s Reference Manual For the 2019 10th

Generation Intel Core Processors based on the łIce Lakež Platform, Volume 2a. https://01.org/sites/default/files/

documentation/intel-gfx-prm-osrc-icllp-vol02a-commandreference-instructions_2.pdf, last accessed 2022-07-06.

Intel. 2022. Mesa 3D Graphics Stack Repository. https://gitlab.freedesktop.org/mesa/mesa, last accessed 2022-07-06.

Dan Iorga, Alastair F. Donaldson, Tyler Sorensen, and John Wickerson. 2021. The semantics of shared memory in Intel

CPU/FPGA systems. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1ś28. https://doi.org/10.1145/3485497

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

https://doi.org/10.1145/2694344.2694391
https://developer.apple.com/metal/
https://doi.org/10.1007/BFb0019410
https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1145/2837614.2837637
https://community.khronos.org/t/clarify-meaning-of-merge-block/106006
https://community.khronos.org/t/clarify-meaning-of-merge-block/106006
https://twitter.com/seanbax/status/1348780718797807622
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/3363562
https://doi.org/10.1007/978-3-642-37036-6_16
https://github.com/dneto0/spirv-samples
https://doi.org/10.1145/3133917
https://doi.org/10.1145/3453483.3454092
https://www.jlekstrand.net/jason/blog/2022/01/in-defense-of-nir/
https://doi.org/10.1145/2701618
https://github.com/google/amber
https://chromium.googlesource.com/angle/angle
https://github.com/google/clspv
https://dawn.googlesource.com/dawn
https://swiftshader.googlesource.com/SwiftShader
https://dawn.googlesource.com/tint
https://doi.org/10.1007/978-3-642-28869-2_16
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-icllp-vol02a-commandreference-instructions_2.pdf
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-icllp-vol02a-commandreference-instructions_2.pdf
https://gitlab.freedesktop.org/mesa/mesa
https://doi.org/10.1145/3485497

Taking Back Control in an Intermediate Representation for GPU Computing 60:29

Daniel Jackson. 2019. Alloy: a language and tool for exploring software designs. Commun. ACM 62, 9 (2019), 66ś76.

https://doi.org/10.1145/3338843

Yiming Jing, Gail-Joon Ahn, and Hongxin Hu. 2012. Model-Based Conformance Testing for Android. In Advances in

Information and Computer Security - 7th International Workshop on Security, IWSEC 2012, Fukuoka, Japan, November

7-9, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7631), Goichiro Hanaoka and Toshihiro Yamauchi (Eds.).

Springer, 1ś18. https://doi.org/10.1007/978-3-642-34117-5_1

Khronos Group. 2014. SPIR Specification, Version 1.2. https://www.khronos.org/registry/SPIR/specs/spir_spec-1.2.pdf, last

accessed 2022-06-30.

Khronos Group. 2017. SPIR-V Specification, Version 1.0, Revision 12. https://www.khronos.org/registry/SPIR-V/specs/1.0/

SPIRV.html

Khronos Group. 2019. The OpenGL Shading Language Version 4.60.7. https://www.khronos.org/registry/OpenGL/specs/gl/

GLSLangSpec.4.60.pdf, last accessed 2022-06-30.

Khronos Group. 2022a. A complete registry of all official SPIR-V specifications. https://www.khronos.org/registry/SPIR-V/

Khronos Group. 2022b. glslang GitHub repository. https://github.com/KhronosGroup/glslang, last accessed 2022-06-30.

Khronos Group. 2022c. Khronos Vulkan, OpenGL, and OpenGL ES conformance tests. https://github.com/KhronosGroup/VK-

GL-CTS, last accessed 2022-07-02.

Khronos Group. 2022d. MoltenVK, a Vulkan Portability Implementation. https://github.com/KhronosGroup/MoltenVK, last

accessed 2022-07-07.

Khronos Group. 2022e. OpenCL-Docs. https://github.com/KhronosGroup/OpenCL-Docs, last accessed 2022-06-30.

Khronos Group. 2022f. SPIR-V Specification, Version 1.6, Revision 1, Unified. https://web.archive.org/web/20220613184046/

https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.pdf Also cited as SPIR-V 1.6r1.

Khronos Group. 2022g. SPIR-V Specification, Version 1.6, Revision 2, Unified. https://www.khronos.org/registry/SPIR-

V/specs/unified1/SPIRV.html Also cited as SPIR-V 1.6r2.

Khronos Group. 2022h. SPIRV-Cross Repository. https://github.com/KhronosGroup/SPIRV-Crosss, last accessed 2022-07-04.

Khronos Group. 2022i. SPIRV-Tools Repository, including spirv-opt and spirv-val. https://github.com/KhronosGroup/SPIRV-

Tools, last accessed 2022-06-30.

Khronos Group. 2022j. Vulkan 1.3 - A Specification (with all registered Vulkan extensions). https://www.khronos.org/

registry/vulkan/specs/1.3-extensions/html/vkspec.html, last accessed 2022-07-05.

Vasileos Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson. 2022a. Artifact for łTaking

Back Control in an Intermediate Representation for GPU Computingž, POPL 2023. https://doi.org/10.5281/zenodo.7152484

Vasileios Klimis, Jack Clark, John Wickerson, and Alastair F. Donaldson. 2022b. Repository containing SPIR-V control flow

Alloy model and fuzzer. https://github.com/mc-imperial/spirv-control-flow

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equivalence modulo inputs. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11,

2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 216ś226. https://doi.org/10.1145/2594291.2594334

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson. 2015. Many-core compiler fuzzing. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR,

USA, June 15-17, 2015, David Grove and Steve Blackburn (Eds.). ACM, 65ś76. https://doi.org/10.1145/2737924.2737986

Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing for C and C++ compilers with YARPGen. Proc.

ACM Program. Lang. 4, OOPSLA (2020), 196:1ś196:25. https://doi.org/10.1145/3428264

LLVM Compiler Infrastructure. 2022. LLVM Language Reference Manual. https://llvm.org/docs/LangRef.html, last accessed

2022-07-06.

Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. 2019. A Formal Analysis of the NVIDIA PTXMemory Consistency

Model. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, Iris Bahar, Maurice Herlihy, Emmett Witchel,

and Alvin R. Lebeck (Eds.). ACM, 257ś270. https://doi.org/10.1145/3297858.3304043

Daniel Lustig, Andrew Wright, Alexandros Papakonstantinou, and Olivier Giroux. 2017. Automated Synthesis of Compre-

hensive Memory Model Litmus Test Suites. In Proceedings of the Twenty-Second International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017, Yunji Chen,

Olivier Temam, and John Carter (Eds.). ACM, 661ś675. https://doi.org/10.1145/3037697.3037723

Nuno Macedo and Alcino Cunha. 2012. Automatic Unbounded Verification of Alloy Specifications with Prover9. CoRR

abs/1209.5773 (2012), 17 pages. arXiv:1209.5773 http://arxiv.org/abs/1209.5773

Dzmitry Malyshau. 2021. Horrors of SPIR-V. http://kvark.github.io/spirv/2021/05/01/spirv-horrors.html

Microsoft. 2019. Reference for HLSL. https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-

reference, last accessed 2022-06-30.

Microsoft. 2022. DirectX Shader Compiler Repository. https://github.com/microsoft/DirectXShaderCompiler, last accessed

2022-07-06.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

https://doi.org/10.1145/3338843
https://doi.org/10.1007/978-3-642-34117-5_1
https://www.khronos.org/registry/SPIR/specs/spir_spec-1.2.pdf
https://www.khronos.org/registry/SPIR-V/specs/1.0/SPIRV.html
https://www.khronos.org/registry/SPIR-V/specs/1.0/SPIRV.html
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://www.khronos.org/registry/SPIR-V/
https://github.com/KhronosGroup/glslang
https://github.com/KhronosGroup/VK-GL-CTS
https://github.com/KhronosGroup/VK-GL-CTS
https://github.com/KhronosGroup/MoltenVK
https://github.com/KhronosGroup/OpenCL-Docs
https://web.archive.org/web/20220613184046/https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.pdf
https://web.archive.org/web/20220613184046/https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.pdf
https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html
https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html
https://github.com/KhronosGroup/SPIRV-Crosss
https://github.com/KhronosGroup/SPIRV-Tools
https://github.com/KhronosGroup/SPIRV-Tools
https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html
https://doi.org/10.5281/zenodo.7152484
https://github.com/mc-imperial/spirv-control-flow
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/3428264
https://llvm.org/docs/LangRef.html
https://doi.org/10.1145/3297858.3304043
https://doi.org/10.1145/3037697.3037723
https://arxiv.org/abs/1209.5773
http://arxiv.org/abs/1209.5773
http://kvark.github.io/spirv/2021/05/01/spirv-horrors.html
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-reference
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-reference
https://github.com/microsoft/DirectXShaderCompiler

60:30 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F. Donaldson

Eriko Nagai, Atsushi Hashimoto, and Nagisa Ishiura. 2014. Reinforcing Random Testing of Arithmetic Optimization of

C Compilers by Scaling up Size and Number of Expressions. IPSJ Trans. Syst. LSI Des. Methodol. 7 (2014), 91ś100.

https://doi.org/10.2197/ipsjtsldm.7.91

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by

interactive generalization. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, Chandra Krintz and Emery D. Berger (Eds.). ACM,

614ś630. https://doi.org/10.1145/2908080.2908118

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2020. Persistency semantics of the Intel-x86 architecture.

Proc. ACM Program. Lang. 4, POPL (2020), 11:1ś11:31. https://doi.org/10.1145/3371079

Azalea Raad, John Wickerson, and Viktor Vafeiadis. 2019. Weak persistency semantics from the ground up: formalising the

persistency semantics of ARMv8 and transactional models. Proc. ACM Program. Lang. 3, OOPSLA (2019), 135:1ś135:27.

https://doi.org/10.1145/3360561

Philip Rebohle. 2022. DXVK. https://github.com/doitsujin/dxvk/, last accessed 2022-07-07.

Rust Graphics Mages. 2022. The Naga project. https://github.com/gfx-rs/naga, last accessed 2022-06-30.

Mark Segal and Kurt Akeley. 2022. OpenGL 4.6 Core Profile. https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.

core.pdf, last accessed 2022-07-07.

Tyler Sorensen, Lucas F. Salvador, Harmit Raval, Hugues Evrard, John Wickerson, Margaret Martonosi, and Alastair F.

Donaldson. 2021. Specifying and testing GPU workgroup progress models. Proc. ACM Program. Lang. 5, OOPSLA (2021),

1ś30. https://doi.org/10.1145/3485508

Alfred Tarski. 1941. On the Calculus of Relations. J. Symb. Log. 6, 3 (1941), 73ś89. https://doi.org/10.2307/2268577

W3C. 2022. WebGPU Shading Language W3C Working Draft. https://www.w3.org/TR/WGSL/, last accessed 2022-06-30.

Chunhui Wang, Fabrizio Pastore, Arda Goknil, and Lionel C. Briand. 2022. Automatic Generation of Acceptance Test

Cases From Use Case Specifications: An NLP-Based Approach. IEEE Trans. Software Eng. 48, 2 (2022), 585ś616. https:

//doi.org/10.1109/TSE.2020.2998503

John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. 2017. Automatically comparing memory

consistency models. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,

POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 190ś204. https:

//doi.org/10.1145/3009837.3009838

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In Proceedings

of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, San Jose, CA,

USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 283ś294. https://doi.org/10.1145/1993498.1993532

Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal program enumeration for rigorous compiler testing. In

Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,

Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 347ś361. https://doi.org/10.1145/

3062341.3062379

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 60. Publication date: January 2023.

https://doi.org/10.2197/ipsjtsldm.7.91
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://github.com/doitsujin/dxvk/
https://github.com/gfx-rs/naga
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://doi.org/10.1145/3485508
https://doi.org/10.2307/2268577
https://www.w3.org/TR/WGSL/
https://doi.org/10.1109/TSE.2020.2998503
https://doi.org/10.1109/TSE.2020.2998503
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3062341.3062379
https://doi.org/10.1145/3062341.3062379

	Abstract
	1 Introduction
	2 Overview of SPIR-V and its Control Flow
	2.1 SPIR-V by Example
	2.2 Definitions of SPIR-V Control Flow Constructs

	3 Problems with SPIR-V Control Flow
	3.1 First Problem: `Selection Construct' Ill-Defined in Presence of Early Breaks
	3.2 Second Problem: `Selection Construct' Ill-Defined in Presence of Early Continues
	3.3 Third Problem: Back-Edge Rules Fail for Loops with Unreachable Continue Targets
	3.4 Fourth Problem: Unreachable Constructs
	3.5 Fifth Problem: Syntactically Infinite Loops
	3.6 Sixth Problem: Ill-Formed Exit Rules

	4 Fixing these Problems with Structural Dominance
	4.1 Structural Dominance: Motivation and Intuition
	4.2 Structural Dominance: Definitions and Rules
	4.3 Structural Dominance Applied to Problematic Examples
	4.4 Backwards Incompatibility
	4.5 Structurally Unreachable Blocks

	5 The Design and Application of our Formal Model
	5.1 From SPIR-V to Alloy and Back
	5.2 Putting the Model into Practice

	6 Fuzzing SPIR-V Compilers via Control-Flow Graph Fleshing
	6.1 Control Flow Graph Fleshing
	6.2 Evaluation

	7 Related Work
	8 Conclusions and Future Work
	References

