
Model Checking Futexes

Hugues Evrard1[0009−0001−7956−0371] and
Alastair F. Donaldson2[0000−0002−7448−7961]

1 Google, France, hevrard@google.com
2 Imperial College London, UK, alastair.donaldson@imperial.ac.uk

Abstract. The futex Linux system call enables implementing performant inter-
thread synchronisation primitives, such as mutexes and condition variables. How-
ever, the futex system call is notoriously tricky to use correctly. In this case
study, we use the Spin model checker to verify safety properties of a number of
futex-based mutex and condition variable implementations. We show how model
checking is able to detect bugs that affected real-world implementations, and con-
firm current implementations are correct. The Promela models we have developed
are available as open source, and may be useful as teaching material for classes
that cover futex-based synchronisation primitives, and as a template on how to
perform formal verification on new synchronisation primitive designs.

Keywords: futex · mutual exclusion · condition variables · model checking ·
Promela/Spin

1 Introduction

The futex system call was introduced to the Linux kernel in the early 2000s in order to
support efficient synchronisation primitives [9]. The name “futex” is derived from “fast
userspace mutex”, because one of the most important use cases for the futex system call
is the efficient implementation of mutexes, striking a balance between OS semaphores,
whose manipulation always involves a system call even when contention is low, and
spinlocks, which operate entirely in userspace but may lead to high CPU usage when
contention is high.

When used in a careful and clever manner, futexes can enable efficient inter-thread
and inter-process synchronisation. However, futexes are also notoriously tricky to use
correctly. According to Drepper, in his aptly-titled paper “Futexes are Tricky” [7], a
package authored by one of the inventors of the futex system call, containing user-
level code demonstrating its use, turned out to be incorrect. Drepper describes why
an early mutex implementation suffers from correctness problems, and presents two
alternative implementations, arguing their correctness informally. In an article on futex-
based condition variables [6], Denis-Courmont describes a number of flawed proposals
for implementing condition variables, and a proposal that is argued to be correct under
reasonable practical assumptions.

A limitation of these expositions of futex-based synchronisation primitives is that
they are based on informal descriptions of how code snippets might behave in a con-
current context. The reader may not fully understand the (often subtle) arguments for

2 H. Evrard and A.F. Donaldson

(in)correctness, and even if they do, it may be hard for them to imagine the conse-
quences of alternative implementation choices.

In this case study, we investigate the use of the Promela language and Spin model
checker [13] to express and analyse various proposals from [7] and [6] for futex-based
mutexes and condition variables, respectively. Due to the ability of model checking to
produce counterexamples, our Promela models of incorrect implementations lead to
step-by-step traces that illustrate bug-triggering thread interleavings. This facility also
aids in understanding why certain details of correct implementations are important,
because one can change those details and inspect the counterexamples that arise as a
result. In particular, we show that model checking can detect bugs that affected real-
world implementations of mutexes and that it can confirm bugs in both naive and real-
world implementations of condition variables. We also show that model checking aids
in understanding the importance of certain intricacies of a futex-based mutex design.

The Promela models we have developed are available as open source, together with
instructions on how to use Spin to analyse them [8]. We envisage that they may be useful
as teaching material in classes that cover futex-based synchronisation primitives. In fact,
our investigation into the application of model checking to this problem was inspired by
the experience of one of the authors teaching about futex-based mutexes on a course at
Imperial College London, and being dissatisfied with his informal correctness-related
explanations. We also hope that our models will serve as a template on how to perform
formal verification on new synchronisation primitive designs.

The rest of the paper is organised as follows. In Section 2 we provide necessary
background on the futex system call. We explain how we have modelled this system
call in Promela, to enable the modelling of synchronisation primitives that use it, in
Section 3. Our Promela models of mutexes and condition variables rely on the mod-
elling of various integer atomic operations, including operations that may overflow;
we discuss these in Section 4. In Section 5 we work through examples of futex-based
mutex implementations from Drepper’s paper [7], explaining how we have modelled
each mutex variant using Promela and presenting insights into our analysis of these
models using Spin. In Section 6 we turn to condition variables, working through some
implementation proposals from Denis-Courmont’s article [6]. We discuss related work
in Section 7 and conclude with a discussion of future directions in Section 8.

Throughout the paper we assume the reader is familiar with Promela and with basic
operation of the Spin model checker. See [13] for a definitive reference.

2 The Futex System Call

The word futex is often used to designate three things: (1) a 32-bit addressable value
also called the futex word, (2) the futex system call, and (3) mutex implementations
based on the futex system call. In this section, we are concerned with (1) and (2), while
(3) is discussed in Section 5.

Generally speaking, the futex system call enables threads to block depending on
the value of a given memory word—the futex word—or to wake up threads that are

Model Checking Futexes 3

waiting in a queue associated with a futex word. In practice, a futex system call has the
following form:3

1 long syscall(SYS_futex,
2 uint32_t *addr, // pointer to the futex word
3 int futex_op, // operation: FUTEX_WAIT, FUTEX_WAKE, ...
4 uint32_t val, // plain value argument
5 ...); // extra arguments for other operations

It is multiplexed via its futex_op argument, which refers to one of various op-
erations. In this case study, we focus on the two basic operations: FUTEX_WAIT and
FUTEX_WAKE, where only the addr and val arguments are relevant.

FUTEX_WAIT: the calling thread blocks and goes to sleep only if the value of the
futex word addressed by addr is equal to the plain value argument val. This opera-
tion is atomic with respect to the futex word, which is typically in memory shared be-
tween threads. Similar to compare-and-exchange instructions on atomics, this call has
a compare-and-block semantics: loading the futex word’s value, comparing it to val,
and blocking happen atomically and are totally ordered with respect to other concurrent
operations on the futex word.

FUTEX_WAKE: the calling thread wakes threads waiting on the futex identified by
addr. It wakes val threads, or the amount of threads waiting on addr, whichever is
smaller. There is no guarantee on which threads are woken up, or in which order threads
are woken up.

The name “futex” is derived from fast and userspace because futex-based synchro-
nisation primitive implementations (such as implementations of mutexes) typically try
first to synchronise using userspace atomic operations on a shared futex word, and only
resort to futex system calls in case of contention. We see this pattern in the mutex im-
plementations in Section 5.

3 Modelling the Futex System Call Variants

We model futexes in Promela as a Futex type, and two inline macros futex_wait
and futex_wake to represent these variants of the general system call. Before covering
these in detail, some general remarks about our modelling approach. To keep the state
vector size under control, we use byte values virtually everywhere we would use int
values in C: this is without loss of generality since, in our examples with a handful
of threads, all interesting values are within [0, 255]. Threads are mapped to Promela’s
proctype and are identified by their _pid builtin variable. The total number of threads
is a global constant that we use to dimension arrays. It is defined by a preprocessor
macro, NUM_THREADS, so that it can be easily changed when invoking Spin (e.g. spin
-DNUM_THREADS=5 ...):

1 #ifndef NUM_THREADS
2 #define NUM_THREADS 2
3 #endif // NUM_THREADS

Now, on to futexes: the Futex type contains a futex word, the list of threads that
are waiting on this futex, and a counter of currently waiting threads:

3 https://man7.org/linux/man-pages/man2/futex.2.html

https://man7.org/linux/man-pages/man2/futex.2.html

4 H. Evrard and A.F. Donaldson

1 typedef Futex {
2 byte word; // Futex word
3 bool wait[NUM_THREADS]; // Wait list: array of bool indexed by thread IDs,
4 // thread T is waiting iff wait[T] is true
5 byte num_waiting; // Number of threads currently waiting
6 }

The wait list is modelled via an array indexed by thread IDs: this will prove con-
venient to wake up sleeping threads in a non-deterministic order. In a C program, each
futex is identified by the address of its futex word; here each futex is identified by a
variable of type Futex which is in global scope so that all threads can refer to it.

The futex_wait inline macro models the FUTEX_WAIT operation:

1 inline futex_wait(futex, val) {
2 if
3 :: d_step {
4 futex.word == val ->
5 printf("T%d futex_wait, value match: %d; sleep\n",
6 _pid, futex.word);
7 assert(!futex.wait[_pid]); // The thread must not be sleeping already
8 futex.wait[_pid] = true;
9 futex.num_waiting++;

10 }
11 d_step { !futex.wait[_pid] -> printf("T%d has woken\n", _pid); }
12 :: d_step {
13 else -> printf("T%d futex_wait, value mismatch: %d vs. %d; do not sleep\n",
14 _pid, futex.word, val);
15 }
16 fi
17 }

It takes as argument a variable of type Futex, and a plain value to compare to
the futex word. If they are equal, the thread goes to sleep: we set its entry in the wait
list, and increment the counter of waiting threads. An assertion checks that only non-
sleeping threads may go to sleep. Then, the thread blocks until its wait list entry is set
to false. If the value argument differs from the futex word, then the thread continues
without blocking. Log messages prefixed by the ID of the executing thread are printed
to ease the understanding of counterexamples.

The atomic compare-and-block semantics is achieved with the first d_step (line 3):
this is a better choice than atomic, since all the statements in a d_step are treated as
a single state change by Spin, thus reducing the search depth. It is safe to use d_step
over atomic here since all contained statements are deterministic, there is no jump in
or out the d_step scope, and there is no blocking statement in the middle of the scope.
The d_step blocks at lines 11 and 12 guarantee that logging prints values related to the
state in which a thread is woken up, or in which a value mismatch occurs, respectively
(to avoid confusion due to log messages from other threads being interleaved).

The futex_wake inline macro models the FUTEX_WAKE operation:

1 inline futex_wake(futex, num_to_wake) {
2 atomic {
3 assert(!futex.wait[_pid]); // The waker must not be asleep
4 byte num_woken = 0;
5 do
6 :: num_woken == num_to_wake || futex.num_waiting == 0 ->
7 break
8 :: else ->
9 if

Model Checking Futexes 5

10 :: futex.wait[0] -> futex.wait[0] = false; printf("T%d wakes T0\n", _pid)
11 :: futex.wait[1] -> futex.wait[1] = false; printf("T%d wakes T1\n", _pid)
12 #if NUM_THREADS > 2
13 :: futex.wait[2] -> futex.wait[2] = false; printf("T%d wakes T2\n", _pid)
14 #endif
15 #if NUM_THREADS > 3
16 :: futex.wait[3] -> futex.wait[3] = false; printf("T%d wakes T3\n", _pid)
17 #endif
18 #if NUM_THREADS > 4
19 :: futex.wait[4] -> futex.wait[4] = false; printf("T%d wakes T4\n", _pid)
20 #endif
21 #if NUM_THREADS > 5
22 #error "NUM_THREADS > 5, add more if branches in futex_wake"
23 #endif
24 fi
25 futex.num_waiting--;
26 num_woken++;
27 od
28 printf("T%d woke up %d thread(s)\n", _pid, num_woken);
29 num_woken = 0; // Reset to avoid state space explosion
30 }
31 }

The num_to_wake argument indicates the number of threads to wake up, the local
variable num_woken counts how many threads have been woken so far. Note that we
cannot eliminate num_woken and instead decrement num_to_wake until it reaches zero
since the macro argument num_to_wake may be a literal value, e.g. in a call such as
futex_wake(futex, 1). We enter a loop that wakes one thread per iteration, until
the desired number of threads have been woken or there are no more threads to wake.
When waking a thread, we use a nondeterministic if to pick one of the sleeping threads,
which is then woken up by setting its entry in the futex wait list array to false.

The whole macro body is contained in an atomic scope to prevent concurrent ac-
cesses to the futex internals. This time, d_step cannot be used due to the nondetermin-
istic order in which threads are woken. At the end of the atomic scope, num_woken
is reset to zero. This is vital to reduce state-space explosion: it prevents Spin from re-
garding otherwise identical states that differ only in the final value of num_woken as
distinct, which would lead to Spin continuing its exhaustive search from each such state.

Relying on the non-deterministic selection of enabled if branches requires exactly
NUM_THREADS branches: we use the C preprocessor to achieve this, supporting here up
to five threads, with it being easy to support more threads by adding further if branches.
For a really arbitrary number of threads, one could easily script the generation of these
branches. We opt for the C preprocessor to keep the Promela code self-contained.

4 Modelling Atomic Operations and Overflow

The mutex and condition variable implementations rely on standard C/C++ atomic oper-
ations that we model in Promela. Atomic compare-and-exchange, cmpxchg, compares
the value at a location with an expected value: if they match, the location is set to a
desired value; otherwise it is left unchanged. Either way, the original location value
is returned, here via a result parameter:

1 inline cmpxchg(location, expected, desired, result) { d_step {
2 result = location; location = (location == expected -> desired : location)
3 }}

6 H. Evrard and A.F. Donaldson

Atomic fetch-and-increment, fetch_inc, returns the current value of a location
before incrementing it. To limit both state space explosion and counterexample length,
we model overflow and wrapping on byte values with a tighter upper bound set to the
total number of threads plus one, represented a constant, MAX_BYTE_VALUE. This is
without loss of generality, since C/C++ atomic integers also wrap upon overflow. We
define the inc macro to handle overflow, and use d_step to make fetch_inc atomic:

1 #define MAX_BYTE_VALUE (NUM_THREADS + 1)
2 #define inc(a) (a == MAX_BYTE_VALUE -> 0 : a + 1)
3 inline fetch_inc(location, result) {
4 d_step { result = location; location = inc(location) }
5 }

In a similar fashion, we define a decmacro that handles underflow, and a fetch_dec
macro for atomic fetch-and-decrement. Some of the Promela models discussed later

also make direct use of the inc macro when performing an increment in a local expres-
sion, rather than operating on a futex word.

5 Model Checking Futex-based Mutexes

We describe the usage scenario and properties for mutexes to which model checking
is applied (Section 5.1), then the modelling and verification of the two main mutex
implementations from [7] (Section 5.2, Section 5.3).

5.1 Model Checking Harness and Properties

We use the following harness to enable model checking of various futex-based mutex
implementations:

1 byte num_threads_in_cs; // Number of threads in the critical section (CS)
2

3 active [NUM_THREADS] proctype Thread() {
4 do
5 :: lock();
6 num_threads_in_cs++;
7 num_threads_in_cs--;
8 unlock();
9 :: printf("T%d is done\n", _pid) -> break

10 od
11 }
12

13 ltl safe_cs { [](num_threads_in_cs <= 1) } // Never more than one thread in CS

It uses an active proctype to launch NUM_THREADS threads, each of which uses
the lock() and unlock() inline macros to repeatedly lock and unlock a shared mu-
tex. Separate versions of these macros are provided for each mutex implementation
discussed below. The macros assume that a global variable of type Futex is available.
Global variable num_threads_in_cs, initialised to 0 by default, is used to record
when threads enter and leave the critical section.

We consider model checking of two safety properties: (1) freedom from invalid end
states (a built-in feature of Spin), which confirms that it is not possible for a thread to
become blocked in a call to futex_wait when all other threads have terminated, and

Model Checking Futexes 7

(2) mutual exclusion, captured by the “safe critical section” linear temporal logic (LTL)
property, safe_cs, which checks that the number of threads in the critical section never
exceeds one.

5.2 Incorrect Futex-based Mutex

The following shows C++ code for a subtly incorrect futex-based mutex, adapted from [7,
§4]. The futex word is the 32-bit atomic integer field futex_word. The intention is that
the mutex is free if and only if futex_word has value 0.

1 class Mutex {
2 public:
3 Mutex() : futex_word(0) {}
4 void lock() {
5 uint32_t old_value;
6 while ((old_value = futex_word.fetch_add(1)) != 0)
7 futex_wait(&futex_word, old_value + 1);
8 }
9 void unlock() {

10 futex_word.store(0);
11 futex_wake(&futex_word, 1);
12 }
13

14 private:
15 atomic<uint32_t> futex_word;
16 };

A thread attempts to lock the mutex by incrementing futex_word via a fetch_add
, storing the previous value of the futex word in the local variable old_value. If this
value is 0 then the thread has locked the mutex, by changing futex_word from 0 to 1,
and can return from lock. Otherwise, the thread calls futex_wait with old_value

+ 1: if no other thread modifies the futex word in between the call to fetch_add and
the call to futex_wait, this value will match the futex word and the thread will go to
sleep until the lock becomes free. If another thread modifies the futex word before the
call to futex_wait, then this call will not put the first thread to sleep so that the thread
will immediately attempt to acquire the mutex again via another fetch_add.

Unlocking the mutex is simpler: futex_word is set to 0, and futex_wake is called
so that one of the threads waiting on futex_word, if any, will be woken.

Drepper discusses a correctness issue triggered by an overflow of the futex word.
Suppose several threads are contending to try to lock an already locked mutex. It is
possible that while a given contending thread T1 is between the calls to fetch_add

and futex_wait, another contending thread T2 calls fetch_add and modifies the
futex word, such that T1 will not go to sleep and will itself call fetch_add again,
preventing T2 from going to sleep. This can go on until the futex word wraps back to
0, in which case a contending thread might believe it can successfully lock the mutex.

This mutex design is modelled in Promela by the following inline macros:

1 inline lock() {
2 byte old_value;
3 do
4 :: atomic {
5 fetch_inc(futex.word, old_value);
6 if
7 :: old_value == 0 -> printf("T%d locks mutex\n", _pid); break
8 :: else -> printf("T%d lock fail, old_value: %d\n", _pid, old_value);

8 H. Evrard and A.F. Donaldson

9 fi
10 }
11 futex_wait(futex, inc(old_value))
12 od
13 }
14

15 inline unlock() {
16 d_step { futex.word = 0; printf("T%d unlocks mutex\n", _pid); }
17 futex_wake(futex, 1);
18 }

Here, we make use of atomic and d_step blocks to (a) ensure that print state-
ments are executed atomically with the actions that they aim to document, and (b) limit
state explosion by allowing interleavings only between operations that have inter-thread
visibility: calls to futex_wait/futex_wake, and statements that manipulate the futex
word. For example, it is vital that there is an interleaving point between fetch_inc

at line 5 and futex_wait at line 11. However, there is no value in considering thread
interleavings between the fetch_inc and the if..fi that immediately follows. These
only involve a thread manipulating its local state. An interleaving point will cause need-
less state-space explosion which we have found Spin’s partial order reduction does not
completely alleviate.

With two threads, Spin quickly verifies the safe_cs property and confirms that all
end states are valid. This is expected: the bug described above requires a race between
multiple contending threads when the mutex is already held by a further thread. With
three threads, Spin quickly reports a counterexample (minimised using Spin’s iterative
shortening algorithm) with the following messages:

T0 locks mutex
T1 lock fail, old_value: 1
T2 lock fail, old_value: 2
T1 futex_wait, value mismatch: 3 vs. 2; do not sleep
T1 lock fail, old_value: 3
T2 futex_wait, value mismatch: 4 vs. 3; do not sleep
T2 lock fail, old_value: 4
T1 futex_wait, value mismatch: 0 vs. 4; do not sleep
T1 locks mutex

assertion num_threads_in_cs <= 1 violated

This nicely illustrates
the problem where threads
T1 and T2 repeatedly pre-
vent one another from
sleeping by each incre-
menting the futex word
before the other can call
futex_wake; “value mis-
match: 0 vs. 4” shows the
futex word wrapping from
4 to 0.

The “no invalid end
states” property also fails,
though with a longer coun-

terexample. Here is a summary of the problem. Suppose that T0 holds the lock. T1 and
T2 then get into a race, incrementing the futex word until T1 observed the word’s old
value to be 3 and T2 observed the word’s old value to be 4, so that the word’s current
value is 0 (T2 having caused it to wrap-around). T1 is poised to call futex_wait(4),
and T2 is poised to call futex_wait(0), but neither have done so yet.

At this point, T0 unlocks the mutex by setting the futex word to 0, wakes up no
threads, and terminates. T1 calls futex_wait(4), which immediately returns due to
a value mismatch; T1 tries and succeeds to lock the mutex, then immediately releases
it, waking up no threads, and terminates. T2 finally calls futex_wait(0), and by now

Model Checking Futexes 9

the futex word value is 0, so T2 goes to sleep with no chance of being woken since all
other threads have terminated.

As explained in [7], this problem affected real code. It is great that model checking
can quickly expose it, with a clear counterexample.

5.3 Correct Futex-based Mutex

Drepper goes on to present the following more intricate mutex implementation com-
pared with that of Section 5.2, which is claimed to be correct [7, §5]:

1 class Mutex {
2 public:
3 Mutex() : futex_word(0) {}
4 void lock() {
5 uint32_t old_value;
6 if ((old_value = cmpxchg(futex_word, 0, 1)) != 0)
7 do {
8 if (old_value == 2 || cmpxchg(futex_word, 1, 2) != 0)
9 futex_wait(&futex_word, 2);

10 } while ((old_value = cmpxchg(futex_word, 0, 2)) != 0);
11 }
12 void unlock() {
13 if (futex_word.fetch_sub(1) != 1) {
14 futex_word.store(0);
15 futex_wake(&futex_word, 1);
16 }
17 }
18

19 private:
20 atomic<uint32_t> futex_word;
21 };

We use waiters to refer to threads that are asleep due to having called futex_wait.
In this implementation, the futex word can take on one of three values. A value of 0
means that the mutex is free, while values 1 and 2 mean that some thread, say T, holds
the mutex. If the futex word is 1, a state referred as “locked, no waiters”, then when
T unlocks the mutex, T is not obliged to wake up any waiters. In contrast, if the futex
word is 2, a state referred as “locked, waiters”, then when T unlocks the mutex, T must
call futex_wake to request that one waiter be woken.

In lock, a thread T first tries to lock the mutex by changing the value of the futex
word from 0 to 1 via a cmpxchg at line 6. If T succeeds in doing this then it has locked
the mutex and can return. In this case, we say that the thread has locked the mutex on
the fast path.

Otherwise, T must contend for the mutex on the slow path, via the loop headed at
line 7. The thread considers calling futex_wait to go to sleep and be notified when
the mutex becomes free. Before this, at line 8, T checks whether the previous value of
the futex word was already 2 (“locked, waiters”). If not, the previous value must have
been 1 (“locked, no waiters”), so T attempts to change the value from 1 to 2 via another
cmpxchg. Normally T will then call futex_wait at line line 9, but if the cmpxchg

returns a previous value of 0 this indicates that the mutex has suddenly become free, in
which case there is no point calling futex_wait; instead, T should try again to lock
the mutex.

Once T returns from futex_wait, or if T decided not to perform this call due to
observing the mutex to be free, it performs another cmpxchg to try to lock the mutex

10 H. Evrard and A.F. Donaldson

at line 10. In contrast to line 6, here T attempts to change the futex word from 0 to 2 to
record the fact that T had to contend for the mutex and so there may be some waiters.
T leaves the loop only when the cmpxchg at line 10 returns 0: we say that T has locked
the mutex on the slow path.

The unlock function is simpler: the futex word is atomically decremented and its
old value is inspected (line 13). If the old value is 1, “locked, no waiters”, then the
futex word is now 0 so the mutex is properly unlocked, and the thread has no obligation
to wake up waiters, so can return from unlock. Otherwise the old value must have
been 2, “locked, waiters”, so the thread must set the futex word to 0 (line 14) and call
futex_wake to wake up one waiter, if any (line 15).

This mutex design is difficult to understand, and it is unlikely that a reader will
gain a full understanding from a best-effort prose explanation such as the above, or the
explanation given by Drepper [7]. Particularly subtle is the fact that the futex word can
have value 1, “locked, no waiters”, despite the fact that there are waiters, and conversely
the mutex word can have value 2, “locked, waiters” even though there are no waiters.
Reasoning informally that this mutex implementation is correct is difficult, hence why
we decided to model it formally. Here are the Promela lock and unlock macros for
this mutex implementation:

1 inline lock() {
2 byte old_value;
3 atomic {
4 cmpxchg(futex.word, 0, 1, old_value);
5 if
6 :: old_value == 0 -> printf("T%d locks mutex on fast path\n", _pid);
7 goto acquired_mutex
8 :: else -> printf("T%d fails to lock mutex on fast path\n", _pid)
9 fi

10 }
11 do
12 :: atomic {
13 if
14 :: old_value == 2
15 :: else -> assert(old_value == 1);
16 cmpxchg(futex.word, 1, 2, old_value)
17 if
18 :: old_value == 0 -> goto retry
19 :: else
20 fi
21 fi
22 }
23 futex_wait(futex, 2)
24 retry:
25 atomic {
26 cmpxchg(futex.word, 0, 2, old_value)
27 if
28 :: old_value == 0 -> printf("T%d locks mutex on slow path\n", _pid);
29 goto acquired_mutex
30 :: else -> printf("T%d fails to lock mutex on slow path\n", _pid)
31 fi
32 }
33 od
34 acquired_mutex:
35 }
36

37 inline unlock() {
38 byte old_value;
39 d_step {
40 fetch_dec(futex.word, old_value);

Model Checking Futexes 11

41 printf("T%d decrements futex word from %d to %d\n", _pid, old_value, futex.
word);

42 }
43 if
44 :: d_step { old_value == 2 -> futex.word = 0; old_value = 0 }
45 futex_wake(futex, 1)
46 :: d_step { old_value == 1 -> old_value = 0 }
47 fi
48 }

As with the Promela code of Section 5.2 we use print statements for counterexample
readability and use atomic and d_step so that threads only interleave after issuing
visible operations. The Promela is a fairly straightforward reflection of the original C++,
but the differences in the structured control flow constructs offered by the language led
to us making use of Promela’s goto.

#Threads #States Time (s)
2 370 0.00
3 13058 0.01
4 356992 0.27
5 8680310 10.76

Table 1. State space sizes and times for
Drepper’s correct mutex.

Checking correctness Spin is able to rapidly ver-
ify the safe_cs property, as well as freedom
from invalid end states (see Section 5.1) for our
model of this mutex implementation for up to
five threads. The results for checking safe_cs

are summarised in Table 1, checking invalid end
states leads to the same number of states and sim-
ilar times, so they are omitted. Results were ob-
tained using Spin version 6.5.2 on an AMD EPYC
workstation running Linux 5.19, with C code gen-
erated by Spin compiled using GCC 12.2.0. The
times shown are averages taken over 10 runs, and
overall we observed a variance of less than 7%.

Understanding bugs in incorrect variants Having a formal, checkable model makes it
easy to experiment with the intricacies of this futex-based mutex implementation and
understand why they are needed. We give two examples of changes to the mutex im-
plementation that compromise its correctness in ways that might not seem immediately
obvious. For each, we show that model checking quickly produces short, illuminating
counterexample traces.

Bug 1: incorrect simplification. On line 8 of the C++ code on page 9, the condi-
tions under which a thread calls futex_wait are rather complex and, as discussed by
Drepper [7], some of this intricacy is for purposes of optimisation. One might wonder
whether, from a correctness point of view, it would suffice for a thread that just failed
to lock the mutex to set the futex word to 2 (“locked, waiters”), and call futex_wait
in an attempt to go to sleep. This would amount to replacing lines 8 and 9 of the C++
code with:

futex_word.store(2);
futex_wait(&futex_word, 2);

This change does not lead to violations of the safe_cs property, but does lead
to the possibility of lost waiters. Making corresponding adjustments to lock() in our

12 H. Evrard and A.F. Donaldson

Promela model (including adding a print statement to log the storing of 2 to futex_word
by a thread), Spin quickly produces the following counterexample when invoked on a

2-threaded configuration:

T0 locks mutex on fast path
T1 fails to lock mutex on fast path
T0 decrements futex word from 1 to 0
T0 is done
T1 sets futex.val to 2
T1 futex_wait, value match: 2; sleep

The problem is that between T1 ob-
serving the mutex to be unavailable and
setting the futex word to 2, T0 unlocks
the mutex, waking up no waiters, because
there are none yet, and terminates. T1 then
sets the futex word to 2, goes to sleep and
is never woken.

Bug 2: incorrect cmpxchg. On line 10 of
the C++ code on page 9, when a thread at-
tempts to lock the mutex on the slow path

it tries to change the value of the futex word from 0 to 2, in contrast to the fast path,
where a value change from 0 to 1 is attempted (line 6). A reasonable question is: is it
essential that the slow path changes the futex word to 2? Adapting the lock() imple-
mentation in Promela so that the slow path changes the futex word to 1 instead of 2,
and applying Spin to a two-threaded configuration leads to successful verification. But
with three threads, although safe_cs still successfully verifies, Spin quickly reports a
counterexample demonstrating an invalid end state:

T0 locks mutex on fast path
T1 fails to lock mutex on fast path
T1 futex_wait, value match: 2; sleep
T2 fails to lock mutex on fast path
T2 futex_wait, value match: 2; sleep
T0 decrements futex word from 2 to 1
T0 wakes T2
T0 woke up 1 thread(s)
T0 is done
T2 has woken
T2 locks mutex on slow path
T2 decrements futex word from 1 to 0
T2 is done

The counterexample illustrates a situa-
tion where threads T1 and T2 go to sleep
due to T0 holding the mutex. When the
mutex becomes free, T0 wakes up T2, and
T0 terminates. T2 then succeeds in locking
the mutex on the slow path, but does not
set the futex word to 2 in the process. As
a result, when T2 unlocks the mutex it is
not obliged to wake up any waiters, so T1
remains asleep. T2 then terminates, so that
T1 becomes a “lost waiter”.

This concrete example sheds light on
why it is essential that the cmpxchg used
to lock the mutex on the slow path changes
the futex word to the “locked, waiters”
state: this ensures that if there are addi-

tional waiters, the thread that succeeds in locking the mutex on the slow path is guar-
anteed to wake up one of them. Here model checking facilitates experimenting with
design variations, and quickly produces counterexamples that clearly illustrate defects.

6 Model Checking Futex-based Condition Variables

Condition variables (cv) synchronise threads via three operations: cv_wait, cv_signal
and cv_broadcast. The cv_wait operation takes a locked mutex as an argument.

It atomically unlocks the mutex and puts the calling thread to sleep. Once the thread

Model Checking Futexes 13

is woken up, it locks the mutex again before returning. The cv_signal operation
wakes up one thread chosen non-deterministically among the sleeping ones, while
cv_broadcast, which we ignore hereafter for the sake of conciseness, wakes up all
sleeping threads.

The cv_wait operation is atomic in the sense that by the time another thread locks
the mutex, the first thread is in the list of threads sleeping on the condition variable.
In particular, consider a pair of threads T0 and T1; first T0 holds the mutex and calls
cv_wait, then T1 locks the mutex and calls cv_signal: the signal from T1 cannot be
lost, i.e. it must wake up T0.

6.1 Model Checking Harness and Properties

Like for lock and unlock in Section 5, our harness makes use of to-be-defined macros
cv_wait and cv_signal, and is designed to have threads loop on calling these two
operations while always being able to reach termination. In terms of verification, here
we pay special attention to make sure the harness can enable catching lost signal bugs
by checking freedom from invalid end states.

First, condition variables are used in association with a mutex whose internals are
irrelevant, so we define a simple mutex Promela implementation where a mutex is a
global boolean variable, the default value of which is false. Locking involves blocking
until its value is false before atomically setting it to true, while unlocking simply
involves setting it back to false:

1 bool mutex;
2 inline mutex_lock() { d_step { !mutex -> mutex = true } }
3 inline mutex_unlock() { mutex = false }

The harness consists of a condition variable used by a single signaller thread and
one or more waiter threads. The waiters call cv_wait an arbitrary number of times
before terminating. The signaller calls cv_signal until all waiters are done, then it
terminates. In order to catch lost signal bugs, we also make sure the signaller has an
execution path where cv_signal is called only the necessary number of times to match
calls to cv_wait, but no more.

To model all this, we start with a constant representing the number of waiters, and a
couple of global variables to count the minimum number of signals that are needed and
how many threads have terminated, before declaring the waiter threads:

1 #define NUM_WAITERS (NUM_THREADS - 1)
2 byte num_signals_req; // Number of signals required
3 byte num_done; // Number of terminated waiter threads
4

5 active[NUM_WAITERS] proctype Waiter() {
6 do
7 :: mutex_lock() ->
8 num_signals_req++;
9 printf("T%d calls cv_wait()\n", _pid);

10 cv_wait();
11 printf("T%d returns from cv_wait()\n", _pid);
12 mutex_unlock()
13 :: break
14 od
15 num_done++;
16 }

14 H. Evrard and A.F. Donaldson

Each waiter loops on either locking the mutex, incrementing num_signals_req,
calling cv_wait and then unlocking the mutex; or exiting the loop and incrementing
num_done before terminating. Thus, each waiter may do an arbitrary number of calls
to cv_wait before terminating.

The signaller thread is slightly more complex:

1 active proctype Signaller() {
2 do
3 :: num_signals_req > 0 ->
4 mutex_lock();
5 printf("T%d must signal, num_signals_req=%d\n", _pid, num_signals_req);
6 cv_signal();
7 num_signals_req--;
8 mutex_unlock()
9 :: else ->

10 if
11 :: true ->
12 mutex_lock();
13 printf("T%d signals without need\n", _pid);
14 cv_signal();
15 num_signals_req = (num_signals_req > 0 -> num_signals_req - 1 : 0);
16 mutex_unlock()
17 :: true -> printf("T%d won’t signal until needed\n", _pid);
18 if
19 :: num_signals_req > 0 -> assert(num_done < NUM_WAITERS)
20 :: num_done == NUM_WAITERS -> assert(num_signals_req == 0); break
21 fi
22 fi
23 od
24 }

It loops on either detecting that a signal is required (line 3), in which case it locks
the mutex, signals, decrements num_signals_req and unlocks the mutex (lines 4–8);
or it sees that no signal is required (line 9). In this case, it non-deterministically decides
to either call cv_signal even though there is no apparent need for it (lines 12–16), or
to block until either a signal is needed (line 19), or all waiters are done in which case
it breaks out of the loop to terminate (line 20). The if branches starting with true

(lines 11 and 17) model the “internal” decision of the signaller. In particular, once it has
decided to block, it must not signal again unless it detects the need for a signal.

On the one hand, this harness enables the signaller to produce an arbitrary number of
signals, even if no waiter is currently waiting for a signal. On the other hand—and this
is crucial to detect lost signal bugs—when the signaller sees that no signal is needed,
it may decide to stop signalling until either a signal is needed, or all waiters are done.
This ensures that each call to cv_wait is matched by at least one call to cv_signal,
but potentially no more than the strictly needed number of signals. In the execution path
where there is only one signal per wait, if any signal is lost this will lead to a scenario
where (a) some waiter is stuck in the cv_wait call at line 10, and (b) the signaller is
blocked at line 19 because no signals are currently required. Thus the lost signal will
lead to the model checker reporting an invalid end state.

The rest of this section covers a couple of futex-based implementations of cv_wait
and cv_signal, as presented in [6]. Each implementation requires a single futex,

which is always declared as a global variable named futex.

Model Checking Futexes 15

6.2 Take 1: Naive and Incorrect

We start with a naive approach, from the “Simple but very wrong” section in [6]:

1 class CondVar {
2 public:
3 CondVar() : futex_word(0) {}
4 void cv_wait(mutex &m) {
5 m.unlock();
6 futex_wait(&futex_word, 0);
7 m.lock();
8 }
9 void cv_signal() { futex_wake(&futex_word, 1); }

10

11 private:
12 atomic<uint32_t> futex_word;
13 };

The cv_wait operation unlocks the mutex before calling futex_wait with a plain
value of 0 (the initial value of the futex word) to put the thread to sleep. Upon wak-
ing up, it locks the mutex again before returning. The cv_signal operation just calls
futex_wake to wake up one of the sleeping threads.

This is modelled in Promela using the following macros:

1 inline cv_wait() {
2 mutex_unlock();
3 futex_wait(futex, 0);
4 mutex_lock();
5 }
6

7 inline cv_signal() { futex_wake(futex, 1) }

Invoking Spin on the harness with this version leads to an invalid end state error.
Spin produces a counterexample that illustrates the issue: after the mutex is unlocked
in cv_wait (line 2), the signaller thread might call cv_signal and thus futex_wake
before the waiter calls futex_wait (line 3); the signal is lost. In this case, if the

signaller decides to block until another signal is needed, then the waiter thread has no
chance to be woken up: the system is in deadlock.

6.3 Take 2: Bionic, Unlikely yet Possible Deadlock

Our second take, dubbed “Sequence counter, close but no cigar” in [6], mimics An-
droid’s Bionic libc [1] approach to implement condition variables, where cv_signal

increments the futex word to avoid deadlocks seen in take 1:

1 class CondVar {
2 public:
3 CondVar() : futex_word(0) {}
4 void cv_wait(mutex &m) {
5 uint32_t old_value = futex_word;
6 m.unlock();
7 futex_wait(&futex_word, old_value);
8 m.lock();
9 }

10 void cv_signal() {
11 futex_word.fetch_add(1);
12 futex_wake(&futex_word, 1);
13 }
14

16 H. Evrard and A.F. Donaldson

15 private:
16 atomic<uint32_t> futex_word;
17 };

In cv_wait, the value of the futex word is saved in old_value before releasing the
mutex, then futex_wait is called with old_value. In cv_signal, the futex word is
incremented by 1, with a possible overflow, before calling futex_wake. This avoids
the deadlock situation encountered in Section 6.2: if cv_signal is executed between
unlocking the mutex (line 6) and calling futex_wait (line 7) in cv_wait, the futex
word value will be different from the value used in the call to futex_wait which thus
will not block.

This is modelled in Promela using the following macros:

1 inline cv_wait() {
2 byte val = futex.word;
3 mutex_unlock();
4 futex_wait(futex, val);
5 mutex_lock();
6 }
7

8 inline cv_signal() {
9 futex.word = inc(futex.word);

10 futex_wake(futex, 1);
11 }

However, Spin still reports a possible deadlock: if between lines 3 and 4, cv_signal
is called enough times to overflow the futex word and bring it back to the old_value

saved in line 2, then the call to futex_wait does block, and we reach a deadlock. This
issue is documented in Bionic, with an acknowledgement that it would be extremely un-
likely to arise in practice: with a 32-bit futex word, we would need exactly 232 calls to
cv_signal in a row, while cv_wait is between lines 3 and 4, to trigger the deadlock.

Such issues are hard to foresee at design time. Model checking is valuable in illus-
trating rare risks of deadlocks, and evaluating their acceptability in practice.

7 Related Work

There is a significant literature on formal verification of inter-process communica-
tion primitives. Bogunovic et al. verified mutual exclusion algorithms with SMV [4],
with an analysis of liveness and fairness. Mateescu and Serwe analysed 27 different
shared-memory mutual exclusion protocols with CADP for both correctness and per-
formance [15,16]. Bar-David and Taubenfeld used model checking techniques to au-
tomatically discover mutual exclusion algorithms [2]. More recently, Kokologiannakis
and Vafeiadis developed a specific dynamic partial order reduction (DPOR) technique
to better handle the barrier synchronisation primitive [14]. In terms of using model
checking for education, Hamberg and Vaandrager wrote about their experience using
UPPAAL in a course on operating systems [12].

We are not aware of formal verification of futex-based synchronisation primitives.
Futexes are primarily a Linux system call [10,11]. Besides the two reference publica-
tions from Franke et al. [9] and Drepper [7], Benderski wrote a good introduction on
the topic [3]. Note that the futex system call itself has suffered from bugs that affected
userspace applications, such as the Java VM [17].

Model Checking Futexes 17

8 Future Directions

We have presented a case study of modelling a series of futex-based implementations
of mutexes and condition variables in Promela, and using Spin to verify safety proper-
ties. An immediate extension would be to consider fairness to enable verifying liveness
properties, like the absence of starvation. We can also explore additional futex-based
synchronisation primitives, for instance barriers.

To create an educational resource that would require little model checking exper-
tise, we can think of doing verification directly on C implementation by using a C
model checker, like CBMC [5]. We can even envision extracting C models from vari-
ous C standard library implementations (e.g. glibc), to verify designs actually used in
widespread libraries. Finally, it would be interesting to verify the implementation of the
futex system call implementation itself in the Linux kernel and other OSes that have
adopted futexes (e.g. OpenBSD).

18 H. Evrard and A.F. Donaldson

References

1. Android: Bionic C library, pthread_cond implementation (2023), https://android.
googlesource.com/platform/bionic/+/refs/tags/android-13.0.0_r24/libc/bionic/pthread_
cond.cpp, last accessed 2023-01-10

2. Bar-David, Y., Taubenfeld, G.: Automatic discovery of mutual exclusion algorithms. In:
Fich, F.E. (ed.) Distributed Computing, 17th International Conference, DISC 2003, Sorrento,
Italy, October 1-3, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2848, pp.
136–150. Springer (2003). https://doi.org/10.1007/978-3-540-39989-6_10, https://doi.org/
10.1007/978-3-540-39989-6_10

3. Benderski, E.: Basics of futexes (2018), https://eli.thegreenplace.net/2018/
basics-of-futexes/, last accessed 2023-01-10

4. Bogunovic, N., Pek, E.: Verification of mutual exclusion algorithms with smv system. In:
The IEEE Region 8 EUROCON 2003. Computer as a Tool. vol. 2, pp. 21–25. IEEE (2003)

5. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K.,
Podelski, A. (eds.) Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2004). Lecture Notes in Computer Science, vol. 2988, pp. 168–176. Springer (2004)

6. Denis-Courmont, R.: Condition variable with futex (2020), https://www.remlab.net/op/
futex-condvar.shtml, last accessed 2023-01-10

7. Drepper, U.: Futexes are tricky (2011), https://www.akkadia.org/drepper/futex.pdf, last ac-
cessed 2023-01-10

8. Evrard, H., Donaldson, A.: Model checking futexes: Code examples (2022), https://github.
com/mc-imperial/modelcheckingfutexes, last accessed 2022-01-16

9. Franke, H., Russell, R., Kirkwood, M.: Fuss, futexes and furwocks: Fast userlevel locking
in Linux. In: Ottawa Linux Symposium 2002. pp. 479–495 (2002), https://www.kernel.org/
doc/ols/2002/ols2002-pages-479-495.pdf, last accessed 2022-01-10

10. Futex manual page section 2 (system calls) (2023), https://man7.org/linux/man-pages/man2/
futex.2.html, last accessed 2023-01-16

11. Futex manual page section 7 (miscellaneous) (2023), https://man7.org/linux/man-pages/
man7/futex.7.html, last accessed 2023-01-16

12. Hamberg, R., Vaandrager, F.: Using model checkers in an introductory course on operating
systems. ACM SIGOPS Operating Systems Review 42(6), 101–111 (2008)

13. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley
Professional, 1st edn. (2011)

14. Kokologiannakis, M., Vafeiadis, V.: Bam: Efficient model checking for barriers. In: Interna-
tional Conference on Networked Systems. pp. 223–239. Springer (2021)

15. Mateescu, R., Serwe, W.: A study of shared-memory mutual exclusion protocols using cadp.
In: International Workshop on Formal Methods for Industrial Critical Systems. pp. 180–197.
Springer (2010)

16. Mateescu, R., Serwe, W.: Model checking and performance evaluation with CADP illus-
trated on shared-memory mutual exclusion protocols. Sci. Comput. Program. 78(7), 843–861
(2013). https://doi.org/10.1016/j.scico.2012.01.003, https://hal.inria.fr/hal-00671321/en

17. Mechanical sympathy email group, discussion titled linux futex_wait() bug (2015), https:
//groups.google.com/g/mechanical-sympathy/c/QbmpZxp6C64, last accessed 2023-01-16

https://android.googlesource.com/platform/bionic/+/refs/tags/android-13.0.0_r24/libc/bionic/pthread_cond.cpp
https://android.googlesource.com/platform/bionic/+/refs/tags/android-13.0.0_r24/libc/bionic/pthread_cond.cpp
https://android.googlesource.com/platform/bionic/+/refs/tags/android-13.0.0_r24/libc/bionic/pthread_cond.cpp
https://doi.org/10.1007/978-3-540-39989-6_10
https://doi.org/10.1007/978-3-540-39989-6_10
https://doi.org/10.1007/978-3-540-39989-6_10
https://doi.org/10.1007/978-3-540-39989-6_10
https://eli.thegreenplace.net/2018/basics-of-futexes/
https://eli.thegreenplace.net/2018/basics-of-futexes/
https://www.remlab.net/op/futex-condvar.shtml
https://www.remlab.net/op/futex-condvar.shtml
https://www.akkadia.org/drepper/futex.pdf
https://github.com/mc-imperial/modelcheckingfutexes
https://github.com/mc-imperial/modelcheckingfutexes
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
https://man7.org/linux/man-pages/man2/futex.2.html
https://man7.org/linux/man-pages/man2/futex.2.html
https://man7.org/linux/man-pages/man7/futex.7.html
https://man7.org/linux/man-pages/man7/futex.7.html
https://doi.org/10.1016/j.scico.2012.01.003
https://doi.org/10.1016/j.scico.2012.01.003
https://hal.inria.fr/hal-00671321/en
https://groups.google.com/g/mechanical-sympathy/c/QbmpZxp6C64
https://groups.google.com/g/mechanical-sympathy/c/QbmpZxp6C64

	Model Checking Futexes

