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Dan Iorga , John Wickerson , Senior Member, IEEE, and Alastair F. Donaldson , Member, IEEE

Abstract—Memory models allow reasoning about the correct-
ness of multithreaded programs. Constructing and using such
models is facilitated by simulators that reveal which behaviours
of a given program are allowed. While extensive work has been
done on simulating axiomatic memory models, there has been less
work on simulation of operational models. Operational models
are often considered more intuitive than axiomatic models, but
are challenging to simulate due to the vast number of paths
through the model’s transition system. Observing that a similar
path-explosion problem is tackled by program analysis tools, we
investigate the idea of reducing the decision problem of “whether
a given memory model allows a given behaviour” to the decision
problem of “whether a given C program is safe”, which can be
handled by a variety of off-the-shelf tools. We report on our
experience using multiple program analysis tools for C for this
purpose—a model checker (CBMC), a symbolic execution tool
(KLEE), and three coverage-guided fuzzers (libFuzzer, Centipede
and AFL++)—presenting two case-studies. First, we evaluate
the performance and scalability of these tools in the context of
the x86 memory model, showing that fuzzers offer performance
competitive with that of RMEM, a state-of-the-art bespoke
memory model simulator. Second, we study a more complex,
recently developed memory model for hybrid CPU/FPGA devices
for which no bespoke simulator is available. We highlight how
different encoding strategies can aid the various tools and show
how our approach allows us to simulate the CPU/FPGA model
twice as deeply as in prior work, leading to us finding and
fixing several infidelities in the model. We also experimented
with applying three analysis tools that won the “falsification”
category in the 2023 Annual Software Verification Competition
(SV-COMP). We found that these tools do not scale to our use
cases, motivating us to submit example C programs arising from
our work for inclusion in the set of SV-COMP benchmarks, so
that they can serve as challenge examples.

Index Terms—Operational semantics, model checking, fuzzing,
symbolic execution.

I. INTRODUCTION

W ITH the slowdown of Moore’s law [1], systems are
shifting towards more complex and heterogeneous
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architectures. In these heterogeneous systems, most
computational elements can concurrently access shared
memory. Therefore, to fully unlock all this computational
power, software engineers need to build concurrent software
that can correctly coordinate access to shared memory by
diverse components. Achieving such correct coordination
requires an accurate understanding of the system.

Memory models can aid in reasoning about these complex
systems since they can be used to explore guarantees regarding
the systems’ behaviours. However, developing accurate mem-
ory models for complex systems is challenging.

Memory models are specified according to two main
paradigms: operational and axiomatic. An operational model
is an abstract representation of the actual machine, described
by states that represent idealised components such as buffers
and queues, and the legal transitions between these states. On
multicore systems, there may be several available transitions
from any given state, and hence an exponential blow-up in the
number of paths to explore. On the other hand, an axiomatic
model defines relations between memory accesses to constrain
the allowed and disallowed behaviours. Simulation of axiomatic
models can be orders of magnitude faster than the simulation
of operational models [2], [3], but operational models are often
considered more intuitive and there is a great deal of recent
work that relies on operational models [4], [5]. The slower
simulation time associated with operational models, together
with the demand for operational simulators, motivates us to
focus on them, to investigate ways to reduce the engineering
effort required to obtain them in the first place, and to make
simulation more efficient.

An operational memory model takes as input a sequence
of instructions for each concurrent component of the system
and a description of a final state of interest. This input is
usually called a litmus test [6]. It then facilitates searching
for transitions of the system that might lead from an ini-
tial state to the final state of interest. A trace that leads to
the final state indicates that this behaviour is allowed; if no
such trace exists, it is disallowed. Non-determinism arises
due to the order in which the concurrent components issue
the instructions and due to the internals of the memory sys-
tem (such as flushing policies for buffers and caches). Once
a trace that reaches a state of interest has been found, the
programmer or memory-model engineer can use the simu-
lator to step through the trace in detail to understand its
behaviour better.
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Operational memory models are principally intended for use
by engineers who need to understand specific details of how a
memory model behaves. They thus need to scale to reasonably-
sized litmus tests. However, they are not intended for analysis
of full-blown software applications. The scope of our work is
thus intentionally limited to the scenario of litmus test analysis.

A state-of-the-art simulator for operational memory models
is RMEM [7], which has been used to simulate the memory
models of ARM [3], [8], Power [9], [10], [11], RISC-V [5]
and x86 [12]. Building a bespoke simulator such as RMEM
requires a lot of engineering effort: not only must the mem-
ory model of interest be encoded, but algorithms for efficient
reachability analysis must be implemented. For example, the
RMEM simulator is still actively being updated four years after
its initial release and already contains more than 60k lines of
OCaml code.

Reachability has been studied extensively in the context of
program analysis, and a range of off-the-shelf tools that attempt
to decide whether a program can reach a particular state are
available for several languages. This leads to the following idea:
instead of implementing a bespoke memory model simulator,
why not implement the logic of the memory model as a pro-
gram that takes a particular test scenario as input? Determining
whether the test scenario is allowed would then boil down to de-
termining whether a particular state of the program that encodes
the memory model is reachable when executed on an input
describing the scenario of interest, and off-the-shelf reachability
analysis tools for the language of interest could be leveraged to
answer this question. Subsequent detailed examination of traces
would then be possible by stepping through the simulator code
using a standard debugger.

As discussed above, an operational memory model only
needs to capture the concurrency semantics of individual in-
structions, because litmus tests typically comprise a number of
straight-line instruction sequences. This means our approach
does not require modelling a complete interpreter for an instruc-
tion set architecture or programming language (which would
be needed in order to perform analysis of complete software
applications, and is not the aim of our work).

We report on our experience putting this idea into practice,
using C as the implementation language. We focus on C not
out of any particular fondness for the language, but due to
the availability of a diverse range of C analysis tools. While
previous work has already created executable memory mod-
els by modifying tools such as Java PathFinder [13] or XSB
[14], the advantage of our approach is that we do not require
any modification to the tools and can easily plug in different
program analysis tools and take advantage of the strengths of
each one.

Our work is divided into two parts: (1) a study of the strengths
and weaknesses off three off-the-shelf C analysis tools and a
comparison with RMEM in the context of the well-known x86
memory model, and (2) an in-depth study of a much more recent
CPU/FPGA memory model, enabled by our use of off-the-
shelf tools.

A. First Part: x86 Case Study

In the first part of this article, we are interested in the follow-
ing top-level research questions:

RQ1 Can reducing the problem of memory model simula-
tion to the analysis of a C program yield performance
competitive with bespoke simulators?

RQ2 Of the variety of C analysis tools that we consider,
which are most effective for the memory model sim-
ulation approach that we propose?

We use the x86 memory model since it is simple and widely-
used. We investigate our idea of reducing to C and then leverag-
ing existing tools with respect to a number of diverse analysis
tools for C: a SAT-based model checker, CBMC [15]; a dynamic
symbolic execution engine, KLEE [16], and three coverage-
guided fuzzers, libFuzzer [17], Centipede [18] and AFL++ [19].
Of these, CBMC is a fully symbolic analyser, the coverage-
guided fuzzers are fully dynamic analysers, and KLEE mixes
symbolic and dynamic analysis.

An important property these tools have in common, which
makes them suitable for memory model simulation, is that
they are precise with respect to bug finding: they do not use
abstraction (as is employed by many static analysis tools), and
therefore they can identify inputs that are guaranteed to reach
particular program locations. A difference between the tools
is the extent to which they can perform exhaustive search of
the state space of a particular simulation scenario. Being based
on randomisation, the fuzzers cannot provide such guarantees.
However, because both KLEE and CBMC are systematic, they
can in principle perform exhaustive exploration of a simulation
scenario, provided that the C encoding of the memory model
avoids infinite paths.

The main finding from this first study is that coverage-guided
fuzzing is extremely effective at confirming allowed behaviours
for the litmus test configurations we consider, generally vastly
outperforming both model checking and symbolic execution.
This further supports the idea of using coverage-guided fuzzing
for search tasks by encoding such tasks as bug-finding prob-
lems; e.g., coverage-guided fuzzing was used successfully as a
means of showing satisfiability of floating-point SMT formulas
[20], by transforming a formula to a program that takes a val-
uation of the free variables of a formula as input, and contains
an error location that is reachable if and only if the valuation is
a satisfying assignment.

Furthermore, we find that the coverage-guided feature that
libFuzzer, Centipede and AFL offer is essential—we also
present results using a naïve fuzzer that is not guided by cov-
erage, which does not perform nearly as well as the coverage-
guided ones.

While specific optimisations can enable RMEM to scale bet-
ter than KLEE and CBMC, it is still outperformed by libFuzzer
and Centipede for larger thread counts. Furthermore, the out-
of-the-box tools do not require any extra engineering effort.

Despite the advantages of coverage-guided fuzzing, for
particularly complex litmus tests where an allowed behaviour
is exhibited by only a tiny fraction of paths, SAT-based model
checking is able to demonstrate that the behaviour is al-
lowed while exploration using coverage-guided fuzzing gets
lost. Furthermore, because symbolic execution and SAT-based
model checking are capable of exhaustive exploration—unlike
fuzzing—they can be used to demonstrate that certain memory
model behaviours are disallowed.
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B. Second Part: CPU/FPGA Case Study

We then apply our ideas to a memory model for which
no bespoke simulator exists: the X+F memory model that we
recently formalised [21]. This is the memory model of a system
that combines an Intel Xeon CPU with a field-programmable
gate array (FPGA). It poses challenges due to the complexity
of shared-memory interactions between CPU cores and FPGA
logic. Our original work gave a C encoding of this memory
model and used CBMC to validate it against a supposedly-
equivalent axiomatic memory model, but the evaluation was
restricted to small litmus tests due to scalability limitations of
CBMC. Given our finding from Part 1, that coverage-guided
fuzzing tools perform well for x86 litmus tests and that coverage
is an aiding factor, we ask the following research questions in
the context of the X+F model:

RQ3 How does the manner in which the memory model
and litmus test are encoded as a C program impact the
performance of the different tools?

RQ4 Can our approach allow more in-depth analysis of the
X+F memory model, allowing it to be better validated
against its axiomatic counterpart?

Thanks to the better scalability of coverage-guided fuzzing
compared with SAT-based model checking, we were able to
perform a substantially deeper analysis than in prior work. This
allowed us to find four infidelities in the X+F axiomatic memory
model. We have updated the model so that it now accounts for
additional ordering guarantees that had been overlooked in our
prior work.

In summary, our main contributions are:
• the idea of reducing the decision problem of “whether

a given operational model allows a given program be-
haviour” to the decision problem of “whether a given pro-
gram is safe”, and leveraging off-the-shelf tools to answer
this question,

• a report on our experience using a number of off-the-
shelf C program analysis tools to facilitate memory model
simulation, comparing them to a bespoke memory model
simulator,

• a case study leveraging the scalability of coverage-guided
fuzzing to allow deeper analysis of a hybrid CPU/FPGA
memory model, leading to the finding and fixing of four
infidelities in an axiomatic description of this memory
model, and

• insights into how a program encoding of a memory model
can be made to play to the strengths of a coverage-guided
fuzzing tool.

Our experience suggests that the manual effort associated
with writing a bespoke memory model simulator might be better
directed into encoding the memory model as a program in a
mainstream language for which an array of analysis tools is
available. This allows these tools to be leveraged for memory
model analysis, avoiding the need to implement state-space
exploration algorithms.

This article is structured as follows. In Section II we intro-
duce memory models and give an overview of our approach.
Section III addresses research questions RQ1 and RQ2. Sec-
tion IV addresses RQ3 and RQ4. We discuss related work in
Section V and conclude in Section VI.

Fig. 1. A pictorial representation of the x86 memory model. The store
buffers (SB) present in each core can cause weak memory behaviours. Each
core will first write to its store buffer before committing to main memory.

II. OVERVIEW OF OUR APPROACH

In this section, we provide background on weak mem-
ory models and litmus tests (Section II-A), show how the
x86 memory model can be encoded as a C program (Sec-
tion II-B), discuss the analysis tools considered in the article
(Section II-C), discuss different options for encoding litmus
tests (Section II-D) and illustrate how program analysis tools
can be used to simulate memory models (Section II-E).

A. Background on Memory Models

Modern architectures do not implement sequential consis-
tency (SC) as defined by Lamport [22]. As a result, program-
mers cannot expect their programs to access memory in the
order in which loads and stores appear in their source code,
without additional synchronisation. Accessing main memory
has high latency, and optimisations are required to hide this
latency. Optimisations that cause weak memory effects are
present in all modern architectures. These weak memory effects
are only observable when multiple threads access the same data
in shared memory. The possible reorderings that can result from
this are often quite subtle.

A memory model defines the memory-related behaviours
a system permits. As an example, let us consider the opera-
tional memory model of the x86 architecture [12], illustrated
in Fig. 1. Each core has its own store buffer. When a core
issues a write to memory, the write temporarily resides in
the store buffer, and all writes in a store buffer are bulk-
transferred to main memory periodically. When loading from
a location, a core will first check whether a write to that lo-
cation is pending in its store buffer. If so, it will return the
value associated with that write, thus avoiding the expensive
operation of reading from main memory. As a result, each
core has a different view of the system’s memory: a core
may be able to observe the writes that it has issued before
they can be observed by other cores. These different views
of main memory can lead to unintuitive behaviours, where
cores observe memory operations as having occurred in an
order that is not sequentially consistent: it does not corre-
spond to any interleaving of instructions executed by individual
threads. Programmers can recover sequential consistency with
the aid of special fence operations, which force store buffers
to be flushed so that writes become visible to all cores. Be-
cause fence operations are expensive, they should be used spar-
ingly.

Litmus tests are small concurrent programs designed to
reveal whether a specific memory model behaviour can occur.
A litmus test usually comprises a sequence of shared memory
write and read operations, followed by an assertion over the
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Fig. 2. Store buffering using two threads.

Listing 1. The structure of an
operation
1 struct Operation {
2 Opcode type;
3 int var;
4 int val;
5 };

Listing 2. The possible actions
1 enum Action {
2 CPU_THREAD,
3 FLUSH_BUFFER
4 };

Listing 3. The pseudocode of the mechanised x86 memory model.
1 int sim_steps = choose(SIMULATION_STEPS);
2 for (int i = 0; i < sim_steps; i++) {
3 // Can be one of the n threads in the system
4 int thread = choose(NUM_THREADS);
5 // Can be either CPU_THREAD or FLUSH_BUFFER
6 Action action = choose(NUM_ACTIONS);
7 switch (action) {
8 case CPU_THREAD:
9 if (!thread_ops[thread].empty()) {

10 Operation op = thread_ops[thread].pop();
11 if (op.type == WRITE) {
12 write_to_buffer(thread, op.var, op.val);
13 }
14 if (op.type == READ) {
15 read_buffer_or_memory(thread, op.var);
16 }
17 break;
18 }
19 case FLUSH_BUFFER:
20 if (!buffer[thread].empty()) {
21 flush_buffer(thread);
22 break;
23 }
24 }
25 }
26 check_litmus_test();

values that were observed by reads. A litmus test should be
executed many times on a processor of interest to gain con-
fidence as to whether or not the assertions associated with the
litmus test hold, because concurrent systems with weak memory
models are nondeterministic. Moreover, it is possible that some
weak behaviours only manifest when the system is under heavy
stress [23].

Specific litmus tests have been designed to characterise par-
ticular architectural features that might give rise to certain
weak behaviours. For example, in Fig. 2 the well-known store-
buffering litmus test is illustrated. These litmus tests can reveal
the write buffers of the x86 memory model seen in Fig. 1. The
test requires both writes to be buffered in order for the CPU
cores to observe the old values of variables x and y. If this
happens, the old values of the variables will be observed.

B. Reducing x86 Analysis to C Reachability

Our approach is to encode memory models using the C
programming language, and to leverage off-the-shelf C pro-
gram analysis tools for simulation. To make this idea con-
crete, in Listing 3 we sketch a C implementation of the x86

memory model. The intention is that this code handles all
the complexities of the concurrency semantics for x86, but
only supports very basic sequential semantics, handling sim-
ple sequences of loads, stores, and fence instructions, as are
found in litmus tests. In particular, our approach does not re-
quire implementing a full-blown interpreter for an instruction
set architecture.

The sequence of instructions describing the litmus test is
initialised in the thread_ops queue of C structures and List-
ing 1 shows the structure of a thread operation. Whenever a non-
deterministic value is required, we use the choose function.
This is only a placeholder function and will be replaced by the
corresponding API of a program analysis tool—a read from a
source of random data when using a fuzzer, and an operation to
generate a boolean decision on an unconstrained symbolic vari-
able in a symbolic analysis tool. We first use this function at the
beginning of the simulation, for the number of simulation steps
since we do not know many steps are required for each litmus
test. Afterwards, the main loop of the program should ensure
that this number of simulation steps are executed. At each loop
of the simulation, the choose function will be invoked again
to select the action that will be performed by a thread.
The possible actions that the system can make are declared
in Listing 2.

Each case-statement corresponds to an operational seman-
tic rule and is guarded by an if-statement that verifies if the
preconditions of the rule holds. If the CPU_THREAD action is
chosen, the simulator will first check if there are any thread
operations left for that specific thread, remove the next one from
the thread_ops queue and attempt to process it. If this is
a read operation, the x86 simulator will search for that value
in the thread buffer and if it does not find it there, will search
for it in main memory. Correspondingly, if the operation is a
write, the simulator will add this operation to the store buffer.
If a FLUSH_BUFFER action is chosen and the buffer is not
empty, the simulator will transfer the data from the buffer to
main memory.

It is possible to commit to an action (via the switch) be-
fore realising that its guard does not actually hold. In such a
case, nothing would happen on this iteration. At the end of
the execution, we check whether the program has reached the
state that the litmus test describes. By exploring all the possible
combinations of thread and action allowed values, the
simulation will explore all the possible outcomes, given the
thread_ops provided as input.

Generalisation We can generalise the structure of an oper-
ational model with the following general structure:

1) Define opcodes, operation structure and actions. Differ-
ent systems will have different operation types and will
perform different types of actions.

2) Initialise all memory model components. In our example,
this means having store buffers be initially empty. In
a more complex memory model there might be more
complex components such as pools or caches.

3) Initialising a per-thread queue of instructions. At this
point, the simulator should interface with the per-test
harness so that it can initialise the queue of instructions.
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4) Write the state machine as a loop. At each simulation
step, a decision will be made nondeterministically as to
whether the machine will consume user input or if one of
the components of the machine will perform a transition.
If the component has multiple choices (such as being
able to flush different elements), the choice between them
will be made nondeterministically. (The manner in which
nondeterminism is resolved in practice depends on the
tool that is used for analysis, as discussed above.)

5) Check if the assertion holds. Here the simulator should
again interface with the per-test harness so that it can
check if the re-orderings described by it occurred.

We are unlikely to have access to all the microarchitectural
features of the system. Therefore, we cannot know the exact size
of all the buffers in the model. However, we can choose sizes
for these buffers that are large enough to allow all reorderings
that the system is capable of performing, but no larger, so as
not to add any unnecessary burden on simulation. Even though
this kind of simulation is limited by its bounded nature, we can
empirically verify that the bounds are sufficiently large for our
litmus tests. We do this by adding assert statements within
our model that verify if the buffers ever reach their total capacity
and limit the paths available through the program.

Having described this general recipe for extending the model,
we show in Section IV how we can put it into practice
for modelling a more intricate model for a combined CPU/
FPGA system.

C. The Analysis Tools We Consider

Recall that our approach involves encoding the operational
semantics of a memory model as a nondeterministic C program,
where the nondeterminism accounts for thread interleavings,
and reordering in the memory subsystem. This program, com-
bined with an input describing the litmus test, is then suitable for
(a) exhaustive simulation, where a tool attempts (dynamically or
symbolically) to explore all possible paths through the program,
or (b) randomised simulation, where a tool repeatedly explores
paths, resolving nondeterminism via randomisation.

We now discuss the analysis tools that are considered later in
the article—CBMC, KLEE (which allow for exhaustive simu-
lation), and libFuzzer, Centipede and AFL++ (which allow for
randomised simulation).

1) CBMC: CBMC [15] is a bounded model checker for
C and C++ programs. Given an entry point function to the
program under analysis, and a maximum unwinding depth d for
program loops, CBMC constructs a logical formula asserting
that there exists an input to the entry point function that will
cause the program to fail with an error along at least one path,
requiring no more than d iterations of any individual loop.
This formula is discharged by a SAT or SMT solver (CBMC
uses MiniSat [24] by default). If the formula is satisfiable, the
satisfying assignment provides an input to the entry point that
will cause the program to fail. If the formula is unsatisfiable
this proves that there does not exist an input that can cause
the program to fail within the bounds of the unwinding depth
d; that is, the program is correct up to this bound, hence
the name bounded model checking. However, this bounded

guarantee says nothing about whether there exist inputs that
trigger deeper bugs.

CBMC also supports unwinding assertions, which assert
that no paths exceeding the loop bound d exist. If verification
succeeds when unwinding assertions are enabled, this shows
that (a) no bugs exist that can be revealed up to loop bound d,
and (b) no paths exist that exceed loop bound d. Together, these
constitute a proof of correctness.

Because CBMC is purely symbolic, yielding a single SAT
or SMT formula encoding all executions of a program up to a
certain depth, it can potentially scale poorly due to the formula
getting large, leading to long SAT/SMT solving times. On the
other hand, solving this big formula is all that needs to be done.
Since the formula that CBMC constructs encodes all paths
through the program up to the given depth, CBMC can be used
to verify conclusively that a given scenario is not possible for
execution traces below a certain length—or, when unwinding
assertions are used—for all traces. We chose CBMC as our
model checker because it is widely used, robust and practical
and is well suited for system-level modelling.

2) KLEE: KLEE [16] is a dynamic symbolic execution en-
gine for C and C++ programs built on top of the LLVM compiler
infrastructure. Like CBMC, KLEE operates on an entry point
function. The user can mark some of the data consumed by this
function as symbolic. KLEE maintains a set of paths that are un-
der exploration, maintaining for each path (a) the next program
instruction to be executed on the path, (b) concrete values for
all variable and memory locations that are not symbolic, and
(c) a set of constraints, called a path condition, restricting the
values of symbolic data.

The KLEE execution engine works by repeatedly selecting a
path from the set and progressing the path by executing a num-
ber of instructions. When the path reaches a decision point—
e.g. the guard of an if statement—KLEE uses an SMT solver
to assess which outcomes of the decision are feasible. It does
this by querying whether the path condition is feasible when
extended with the boolean guard of the decision, or the negation
of this guard. If only one side of the decision is feasible, KLEE
appends the boolean expression associated with the outcome of
the decision to the path’s path condition. If both are feasible,
KLEE forks the path so that in the future two different path
extensions will be considered: one that explores the “then”
side of the decision, with its path condition extended by the
guard of the decision; the other that explores the “else” side
of the decision, with path condition extended by the negation
of the guard.

When an assertion is encountered, or another “dangerous”
operation, such as division (which might be by zero) or an array
access (which might be out of bounds), KLEE uses the SMT
solver to query whether it is possible for the path condition to
be satisfied and or the assertion or dangerous operation to fail.
In cases where the SMT solver returns a satisfying assignment,
KLEE mines the assignment to yield concrete values for the
symbolic data consumed by the entry point function that will
lead to the error occurring.

KLEE uses a number of heuristics to decide how to ex-
plore the set of paths that it maintains, and makes use of a
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counter-example cache to aim to avoid issuing redundant SMT
queries [16].

KLEE has the potential to scale better than CBMC since solv-
ing formulas on a per-path basis might be easier than solving a
single large formula encoding all program paths. Like CBMC,
KLEE can verify that a scenario is not feasible if the associated
program has a finite number of paths (though the path explosion
problem means this is not always feasible in practice).

3) libFuzzer, AFL++ and Centipede: These tools are all
examples of mutation-based, coverage-guided fuzzers [25]. To
use tools of this kind, the developer writes a fuzz target: a
function that takes a sequence of bytes as input, and that should
use the sequence of bytes to invoke a function of the system
under test (SUT). For example, when fuzzing a compression
library, the sequence of bytes might be fed to a “decompress”
function as a candidate sequence of compressed bytes; when
testing a compiler the sequence might be treated as a string and
fed to the compiler front-end.

Mutation-based fuzzers work by starting with an initial set
of inputs (which can either be existing test cases, or default,
simple inputs such as a buffer of zeros or a randomly-initialised
buffer), and repeating the process of (1) mutating an input at
random (e.g. by deleting, inserting or shuffling some of the
bytes), and (2) feeding the mutated input to the fuzz target. The
hope is that mutated inputs may exercise the SUT in new and
potentially unexpected ways that might trigger bugs. Mutation-
based fuzzing focuses on triggering crash bugs, arising due to
violation of user-written assertions, or erroneous use of pro-
gramming language features (e.g. buffer overflows or division
by zero in C).

Coverage-guided mutation-based fuzzers (henceforth re-
ferred to simply as coverage-guided fuzzers) expand this idea
as follows. Before fuzzing commences, the SUT is compiled
in a manner that enables efficient coverage instrumentation, so
that the fuzzer can remember which statements and branches
of the SUT have already been exercised by previous inputs.
During fuzzing, the fuzzer maintains a corpus of “interesting”
inputs that should be considered for mutation. Initially this is
just the set of starting inputs described above. Fuzzing then
involves repeating the process of (1) selecting an input from
the corpus, (2) randomly mutating the input, (3) feeding the
mutated input to the fuzz target, and (4) if the input achieves
new code coverage, adding it to the corpus of interesting in-
puts so that it is considered for further mutation in the future.
This is a simple example of an evolutionary algorithm [26]:
mutation is used to evolve a corpus of inputs that exercise the
SUT increasingly thoroughly, with code coverage serving as
the fitness function. The hypothesis behind coverage-guided
mutation-based fuzzing is that inputs that cover new code have
a higher chance of detecting new crash bugs compared with
inputs that merely exercise already-covered code.

Due to the need to instrument the SUT with coverage in-
formation, coverage-guided fuzzing is often called grey-box
fuzzing [25].

AFL++ [27], based on the ground-breaking AFL fuzzer [19]
is an out-of-process coverage-guided fuzzer. The SUT must be
compiled in a special manner such that coverage of edges in

the control flow graph of the compiled code can be efficiently
tracked. The AFL++ driver then manages the coverage-guided
mutation-based fuzzing process, launching the SUT in a fresh
process for each test input; the use of separate processes is
why these fuzzers are termed “out-of-process”. AFL++ has
been used to find numerous security-critical defects [28]. We
experiment with AFL++ rather than its predecessor, AFL, be-
cause AFL++ aims to be “a superior fork to Google’s AFL—
more speed, more and better mutations, more and better instru-
mentation” [29], and unlike the original tool it is still actively
developed. The tools support a set of default, domain-agnostic
mutators that perform byte-level manipulation. They also pro-
vide support for user-supplied “custom mutators”, which we do
not consider in this work.

In contrast, libFuzzer [17] is an in-process coverage-guided
fuzzer: the fuzz driver is compiled and linked with the SUT,
so that the fuzzer and SUT run in the same process. This
leads to improved efficiency since it avoids the overhead of
continually launching processes. The downsides are that: when
a crash occurs, the entire fuzzer crashes, so that it is necessary
to invoke libFuzzer from a wrapper script that will continually
re-launch it upon a crash; global state initialised at program
load time will not be automatically reset when the fuzzer tries
successive inputs. The tool is embedded into the Clang/LLVM
compiler framework, performs code coverage and mutation in a
similar manner to AFL++, and provides a similar set of built-in
mutators as well as support for custom mutators. libFuzzer is the
main fuzzing engine used by Google’s ClusterFuzz project [30],
which has been used to find tens of thousands of bugs in large
software projects such as the Chromium web browser. It is also
deployed in OSS-Fuzz [31], a deployment of the ClusterFuzz
technology targeting open source projects.

Centipede [18] is a work-in-progress, out-of-process suc-
cessor of libFuzzer, designed to allow highly parallel fuzzing
that can be distributed across clusters of machines. This is
where the main innovations in Centipede lie; to our knowl-
edge the core fuzzing engine is based directly on libFuzzer.
For completeness, throughout the paper we present results for
Centipede in addition to libFuzzer, since libFuzzer is now in
maintenance mode.

Inter-operability between fuzzers The libFuzzer and Cen-
tipede tools are directly inter-operable: Centipede advertises
“Out-of-the-box support for libFuzzer-based fuzz targets” [18].
By default, AFL++ offers a different interface for writing fuzz
targets compared with libFuzzer and Centipede, but a sim-
ple adapter is available that allows AFL++ to be used with
libFuzzer-style fuzz targets [32]. As a result, once a libFuzzer-
style fuzz target has been written for an SUT, the SUT can
be tested using Centipede, AFL++ with either no or very
minimal effort.

Use of coverage-guided fuzzing in our work Coverage-
guided fuzzing is a completely dynamic technique, and al-
though coverage instrumentation records which statements and
branches have been exercised, fuzzing tools cannot perform
systematic exploration: they neither remember the complete
set of inputs that have been tried, nor the precise paths ex-
plored by inputs that are committed to the corpus. As a result,
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Listing 4. Encoding the litmus test to favour high coverage.
1 check_litmus_test(){
2 // Check if final state reached
3 if (writesExecuted < totalWrites) return 0;
4 if (readsExecuted < totalReads) return 0;
5

6 // Check if the expected order was reached
7 if (timeEvent[0] < timeEvent[1]) return 0;
8 ...
9 if (timeEvent[n-1] < timeEvent[n]) return 0;

10

11 // Assert if register values are as expected
12 assert(reg[0]==a && ... && reg[m]==z);
13 }

they can be used to find bugs but not to prove absence of
bugs. In the context of our work, this means that they have
the potential to show that a particular memory model-related
behaviour is allowed (by finding a witness), but they cannot
show that a behaviour is disallowed (which requires exhaus-
tive search).

Compared with CBMC and KLEE, being purely dynamic
coverage-guided fuzzing does not require potentially expensive
SAT queries, and can quickly execute the program with many
different inputs and monitor for potential errors, which has the
potential to rapidly yield counter-examples.

D. Designing the Per-Test Harness

Reasoning about a litmus test involves combining the model
with a test-specific harness. Each test-specific-harness will de-
scribe the sequence of operations for each concurrent com-
ponent of the system, check if the simulation has run for a
sufficient number of steps and if the reordering has been reached
and finally, assert whether a particular outcome is observable.

The choices of encoding the litmus test may affect the scala-
bility of the program analysis tool that is subsequently applied
to the resulting program. An essential dimension for consid-
eration here is branching: a piece of code that exhibits a lot of
branching can be well-suited for coverage-guided fuzzing. This
is because the branching will lead to various coverage targets,
which can help identify diverse program inputs. Previous work
[33] has already shown the effectiveness of increased branching
for coverage-guided fuzzing.

In contrast, additional branching may lead to path explosion
for symbolic tools if the branches rely on symbolic conditions.
We have experimented with adding “early exit” branches in our
post-condition checking in a manner that provides extra oppor-
tunities for coverage-guided feedback for the fuzzers but does
not hinder KLEE. By construction, at the late stage of execution
where these branches occur, KLEE will have already resolved
all nondeterminism associated with simulating the litmus test
of interest. Thus, while resolving this nondeterminism will
have led to KLEE forking many different paths, on a per-path
basis the additional branches occurring in the post-condition
checks resolve deterministically and do not contribute to further
path explosion.

Listing 4 shows an encoding designed to exhibit more
branching, while Listing 5 shows an encoding designed
to exhibit less branching. These encodings are merely two

Listing 5. Encoding the litmus test for fewer paths
1 check_litmus_test(){
2 // Check if final state reached
3 int reached = 1;
4 reached &= (writesExecuted == totalWrites);
5 reached &= (readsExecuted == totalReads);
6

7 // Check if the expected order was reached
8 int observed = 1;
9 observed &= (timeEvent[0] < timeEvent[1]);

10 ...
11 observed &= (timeEvent[n-1] < timeEvent[n]);
12

13 // Assert if register values are as expected
14 assert(reached & observed &
15 reg[0]==a & ... & reg[m]==z);
16 }

syntactically different methods for representing the same un-
derlying program semantics. The engineering effort required to
switch between them was minimal—we did not measure it, but
estimate that it was no more than an hour of work, including
the time taken to carefully check the changes that were made.

In both cases, a set of preconditions must ensure that the
program has executed enough simulation steps and correctly
models the test. Lines 2–4 in Listing 4 and lines 3–5 in List-
ing 5 check if the executed writes and reads (described by
the writesExecuted and readsExecuted variables) are
equal to the writes and reads in the litmus test (described by the
totalWrites and totalReads variables). More complex
models might require additional checks, such as verifying that
buffers are empty. Furthermore, lines 6–9 in Listing 4 and
lines 7–11 in Listing 5 ensure that the events in the litmus
test, (recorded in the timeEvent array) have occurred in the
expected order. The first encoding will immediately return when
one of these preconditions is not met, while the second encoding
will set the reached and observed variables to record the status
of all preconditions.

Whenever a read operation is performed, its results are stored
in the reg array. Assertions over this array can then be used to
check whether the values observed by loads correspond to the
values expected by the litmus test. While Listing 4 will simply
assert on the values observed in the registers, Listing 5 will
only assert if the reached and observed variables have been set
accordingly. Recall that the short-circuiting && operation will
only evaluate its second operand if the first one is true, while
the & operator will evaluate all terms regardless. As a result, the
use of && in Listing 4 leads to additional branching points and
thus more code to be potentially covered, while the use of & in
Listing 5 leads to fewer branching points and less code to be
potentially covered.

We expect some tools to favour different encoding types
and explore these options in Section IV-C by automatically
generating litmus tests using the two alternative options.

E. Using C Analysis Tools to Simulate Memory Models

The choose function from Listing 3 shows all the points in
the C program where non-determinism needs to be explored
by the program analyser. To allow this, we need to furnish the
analyser with a means of exploring this non-determinism. Here,
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Listing 6. The CBMC adaptation of the x86 memory model
1 // Non-deterministic number of simulation steps
2 int sim_steps = nondet_int();
3 for (int i = 0; i < sim_steps; i++) {
4 // Non-deterministic thread choice
5 int thread = nondet_thread(NUM_THREADS);
6 // Non-deterministic action choice
7 Action action = nondet_action(NUM_ACTIONS);
8 switch (action) {
9 case CPU_THREAD:

10 assume(!thread_ops[thread].empty());
11 Operation op = thread_ops[thread].pop();
12 if (op.type == WRITE) {
13 write_to_buffer(thread, op.var, op.val);
14 }
15 if (op.type == READ) {
16 read_buffer_or_memory(thread, op.var);
17 }
18 break;
19 case FLUSH_BUFFER:
20 assume(!buffer[thread].empty());
21 flush_buffer(thread);
22 break;
23 }
24 }
25 check_litmus_test();

Listing 7. The KLEE adaptation of the x86 memory model
1 // Make number of simulation steps symbolic
2 klee_make_symbolic(sim_steps, sizeof(sim_steps));
3 for (int i = 0; i < sim_steps; i++) {
4 // Make current thread symbolic
5 klee_make_symbolic(thread, sizeof(thread));
6 // Make current action symbolic
7 klee_make_symbolic(action, sizeof(action));
8 switch (action) {
9 case CPU_THREAD:

10 if (thread_ops[thread].empty())
11 klee_silent_exit();
12 Operation op = thread_ops[thread].pop();
13 if (op.type == WRITE) {
14 write_to_buffer(thread, op.var, op.val);
15 }
16 if (op.type == READ) {
17 read_buffer_or_memory(thread, op.var);
18 }
19 break;
20 case FLUSH_BUFFER:
21 if (buffer[thread].empty())
22 klee_silent_exit();
23 flush_buffer(thread);
24 break;
25 }
26 }
27 check_litmus_test();

we describe the peculiarities of each approach and how the
model needs to adjust for each specific tool.

Listings 6 to 8 are instantiations of the pseudocode of List-
ing 3 showing how the nondeterminism is modelled using
CBMC, KLEE and the fuzzer tools, respectively. Our practical
implementation uses preprocessor macros to allow these code
variants to co-exist as one piece of source code, for ease of
maintenance. Adapting the code to each tool required us to
understand the features offered by the tools and to have some
knowledge of how the tools work. However, the code adapta-
tions themselves were very straightforward; we did not measure
the engineering time required, but we estimate that it was less
than three hours in total.

CBMC-based Validation CBMC will symbolically unwind
the main simulation loop up to a certain loop-unwind depth,
which is given as a parameter to the program. Since the litmus
test will be encoded with a finite amount of operations and
the model will not include “no-op” transitions, we know that
the model will eventually reach its final state where no more
transitions can be taken. However, the final state may never be
reached if the unwind depth is not sufficiently high enough.
We can place assert statements to empirically verify if certain
intermediate states have been reached. Furthermore, we in-
voke CBMC with the --unwinding-assertions option,
whereby it checks that unwinding the program further does not
lead to any more states being explored. In this mode, CBMC can
prove that the program under test is free from assertion failures:
if an insufficiently large unwinding depth for loops is used then
an “unwinding assertion” fails, indicating that a higher bound
is required for the proof to succeed. This only works because
we have modelled our program to contain a final state and thus
have avoided infinite loops. When using CBMC for memory
model analysis, we use per-litmus test information to estimate a
suitable unwinding depth, and use a script to iteratively increase
this until it is deep enough.

The operational semantic rule triggered at each point in the
simulation is chosen non-deterministically. The premises of the
operational rules are implemented using assume statements.
The query that CBMC sends to the SAT/SMT solver includes
constraints ensuring that any paths on which the guards of
assume statements are not met are deemed infeasible. This
ensures that the premises of a rule must be met for the rule to
trigger.

CBMC for x86: Recall the code snippet from Listing 3
and note the updates in Listing 6 required for CBMC. The
CBMC version of this model utilises a nondet_int() state-
ment to allow the simulation to execute a nondeterministic num-
ber of steps. Furthermore, thread and action are similarly
chosen non-deterministically by corresponding statements. To
guarantee that the premises of semantic rules are satisfied, as-
sume statements are used. The final assert statement verifies
if the reordering has been detected.

KLEE-based Validation KLEE can be configured to exit
when it encounters a specific type of error and record the
test case required to reach it. Given our use case, we con-
figure it to exit when an assertion failure is encountered. We
utilise the klee_make_symbolic() command to mark the
variables where we require non-determinism. KLEE will try
different values of these variables to increase code coverage.
We kill paths with unsatisfied premises by marking them with
klee_silent_exit(). Similar to CBMC, KLEE is capa-
ble of exhaustive exploration provided that all paths are finite.
Since our program has a final state, this is guaranteed.

In contrast with CBMC, KLEE utilises coverage information
and, therefore, will prioritise generating test cases for paths that
cover new code. This prioritisation means that KLEE has the
potential to uncover paths that lead to assertion failures faster
and terminate sooner. This means that the program transforma-
tion defined in Section II-B has the potential to aid the execution
of the KLEE based simulation.
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Listing 8. Adaptation of the x86 memory model suitable for libFuzzer,
Centipede and AFL++

1 extern "C" int LLVMFuzzerTestOneInput(
2 const uint8_t *data, size_t size) {
3 // Additional checks to determine if
4 // size is not too small
5 action_list = data[MAX_ACTIONS];
6 thread_list = *data + MAX_ACTIONS;
7 for (int i = 0; i < MAX_ACTIONS; i++){
8 int thread =
9 thread_list[thread_index++] % THREAD_COUNT;

10 Action action =
11 action_list[action_index++] % ACTION_COUNT;
12 switch (action){
13 case CPU_THREAD:
14 if (thread_ops[thread].empty()) continue()

;
15 Operation op = thread_ops[thread].pop();
16 if (op.type == WRITE) {
17 write_to_buffer(thread, op.var, op.val);
18 }
19 if (op.type == READ) {
20 read_buffer_or_memory(thread, op.var);
21 }
22 break;
23 case FLUSH_BUFFER:
24 if (buffer[thread].empty()) continue();
25 flush_buffer(thread);
26 break;
27 }
28 }
29 check_litmus_test();

KLEE for x86: Recall the code snippet from Listing 3 and
note the updates in Listing 7 required for KLEE. The thread
and action variables are declared symbolic and chosen at
each simulation step. If the premises of the semantics are not
met, the simulation exits using klee_silent_exit(). Af-
ter the end of each simulation, the conditions that check if the
assertion holds are verified.

Fuzzer-based Validation Basic knowledge of the fuzzers
is required to understand the appropriate compile flags and
input format. Among the fuzzers that we investigate, libFuzzer
and Centipede operate with in-process arrays of bytes, whereas
AFL++ typically takes input as a command-line argument.
As explained earlier, we opted to utilise a driver that enables
AFL++ to receive inputs in the same manner as libFuzzer and
Centipede. We achieved this by employing a straightforward
wrapper from the Chromium project. [32]. The array of bytes
is then processed to drive the model.

Fuzzers for x86: Recall the code snippet from Listing 3
and note the updates in Listing 8 required for the fuzzers. The
fuzzers provide as input to the system an array called data and
its size. We partition the data array into two arrays: one that
keeps the list of actions and one that keeps the list of threads. We
add an assertion to check that the number of actions and threads
is sufficiently large enough for our system. We use simple if-
statements to verify if the premises of an action are valid.

III. FIRST CASE STUDY: X86

We now present and discuss our first case-study, relating
our results to research questions RQ1 and RQ2 identified in
Section I. By implementing the x86 memory model according
to the outline presented in Section II-B, and using the CBMC,

TABLE I
A COMPARISON OF THE TOOLS AVAILABLE, THEIR UNDERLYING

TECHNIQUE, MEMORY MODEL IMPLEMENTATION, POTENTIAL TO

VALIDATE DISALLOWED BEHAVIOURS AND THEIR UTILISATION OF

COVERAGE INFORMATION

Tool Technique Model Exhaustive Coverage
RMEM [7] enumeration Lem � ✗
RMEM [7] random Lem ✗ ✗
Naïve fuzzing C ✗ ✗
CBMC [15] SAT C � ✗
KLEE [16] SAT C � ✗
libFuzzer [17] fuzzing C ✗ �
Centipede [18] fuzzing C ✗ �
AFL++ [27] fuzzing C ✗ �

KLEE, libFuzzer, Centipede and AFL++ tools described in
Section II-E, we can determine their viability in uncovering
weak behaviours and their effectiveness relative to a state-of-
the-art simulator.

A. Experimental Setup

We run our experiments on an Intel Xeon CPU E5-2640 with
32GB RAM, under Ubuntu 20.04. We use RMEM version 0.1,
CBMC version 5.11 and KLEE version 2.3. The fuzzers utilised
are AFL++ version 4.07, the libFuzzer deployed with clang 12
and Centipede version 1.0.0. The SAT engine used by KLEE
is STP version 2.3.3 and the one used by CBMC is MiniSat
version 2.2.1. In pilot experiments with different solvers we
observed slight differences in execution times but not significant
enough to impact the comparisons between the tools. For this
reason, for each tool, we use the default solver.

As KLEE has many configuration options, we asked the
KLEE development team for advice on a configuration that was
likely to be suitable for our setting. They advised configuring
KLEE to use depth-first-search since our litmus tests have a
finite search space and also advised enabling non-forking mode
since the SAT expression handling does not dominate the ex-
ecution. Similarly, for RMEM, the developers advised us to
enable the option that enable the eager taking of transitions.
RMEM needs more documentation to clarify why this option
is not enabled by default and the possible cost of utilising it. For
completeness, we include results with and without this option
enabled.

Table I summarises the tools that we experiment with, along-
side some of their characteristics. We start our experiments by
exploring the strengths of RMEM which can be considered the
state-of-the-art tool at the moment and implements the memory
model in a custom semantics language called Lem [34]. RMEM
can run in either exhaustive mode or random mode but can only
prove that a behaviour is disallowed when run in exhaustive
mode. Unfortunately, RMEM does not stop when it uncovers
the behaviour of interest, as do all the other tools at our disposal.
This means that RMEM does not report that a behaviour is
allowed until it has finished exhaustive exploration, and we
found that it was not trivial to temporarily modify the tool to
change this.

As a sanity check, for our C models, we first utilise a naïve
fuzzer, which randomly explores paths through the program’s
execution, similar to how the random version of RMEM does.



IORGA et al.: SIMULATING OPERATIONAL MEMORY MODELS USING OFF-THE-SHELF PROGRAM ANALYSIS TOOLS 5093

Fig. 3. Store buffering and load buffering for n threads.

Afterwards, we focus on the off-the-shelf CBMC, KLEE, lib-
Fuzzer, Centipede and AFL++ tools. All tools have the potential
to uncover allowed behaviours, but only RMEM, CBMC and
KLEE can prove that a behaviour is not possible (because
they consider all executions). The coverage-guided fuzzers and
KLEE use coverage information to guide their search.

To benchmark our approach, we use litmus tests that gen-
eralise to any number of threads. In Fig. 3, we present the
generalisation of two such tests. In Fig. 3(a) we have the al-
lowed store-buffering litmus test while in Fig. 3(b) we have
the disallowed load-buffering litmus test. These tests enable us
to vary the number of threads and observe how the different
simulators handle them.

B. Determining the Viability of Our Approach

Given the C implementation of the x86 model, the set of
program analysis tools and the litmus test, we can recall and
answer our first research question:

RQ1 Can reducing the problem of memory model simula-
tion to the analysis of a C program yield competitive
performance compared with bespoke simulators?

We take each litmus test for different numbers of threads
and try to determine if the reordering they describe is possible
using all the tools at our disposal. We run each test/simulator
combination ten times and create a box plot of the uncovered
executions. We set a timeout of 2 hours per execution. Fig. 4
shows the time in seconds required to uncover the reorderings
of the store buffering litmus test and Fig. 5 shows the time re-
quired to prove that the load-buffering effect is not possible. As
mentioned in Table I, some tools cannot be used for exhaustive
exploration and therefore Fig. 5 does not include results for
these tools.

Recall from Section III-A that RMEM has many possible
options that we can optionally enable during simulation. Out
of all these options, the developers have advised to explore the
option that makes the simulator “eagerly take transitions that do
not affect observable states”. This option indeed has the highest
impact on performance.

For the allowed store-buffering experiments, the naïve fuzzer
was only able to uncover executions for the trivial case of two
threads and performed poorly in all other cases. RMEM was
able to handle all the test cases we have provided and fared
significantly better in the exhaustive mode but only when the

option to eagerly take transitions was enabled. KLEE unfortu-
nately timed out for larger executions, and while CBMC was
able to handle all of them, it was at a significant performance
overhead. libFuzzer was the fastest tool we have explored, with
Centipede showing similar but slightly slower performance, and
AFL++ exhibiting slower performance still, and higher runtime
variance, yet still being able confirm allowed behaviours in the
store buffering litmus test with 5 threads. We expect that the
slower performance of Centipede and AFL is in part due to
them working out-of-process, while libFuzzer is in-process (see
Section II.C.3).

In contrast, the naïve fuzzer does not perform well at all,
only scaling to a 2-threaded litmus test. This highlights the
importance of the coverage feedback signal that the coverage-
guided fuzzers exploit.

For the disallowed load-buffering case, the choice of tools is
significantly lower, and only the optimised version of RMEM
and CBMC were able to uncover the executions. While RMEM
does scale better than CBMC in such cases, recall that it was
developed over four years and already contains more than 60k
lines of OCaml code, while the C implementations that we feed
to the off-the-shelf simulators have less than 2k lines of C code.

Finding from RQ1. For confirming executions, off-the-shelf
tools show real promise, while for showing that executions
are not allowed, our results show that off-the-shelf tools are
capable only for tests with small thread counts. However, this
is only when specific optimisations are enabled in RMEM,
and engineering those optimisations is likely a non-trivial
investment.

C. Comparing the Tools

Having seen that our approach of leveraging off-the-shelf
tools can be used to simulate operational memory models, we
move to RQ2, which can be subdivided as follows:

RQ2 Of the variety of C analysis tools that we consider,
which are most effective for the memory model sim-
ulation approach that we propose?
(a) How is performance influenced by the test case

size under simulation?
(b) How is performance influenced by whether the

behaviour associated with the test-case is allowed
according to the memory model?

Regarding RQ2a, the small litmus tests that feature only
two threads are solved by all techniques. However, the more
heavyweight SAT-based analysis performed by CBMC puts
it as a disadvantage, due to the overhead of solving a SAT
query reflecting a fully-unwound program. However, we can
observe that the simpler methods are not always capable of
uncovering the complex executions involving more threads. The
naïve fuzzer is not able to handle tests featuring more than
two threads, and KLEE does not scale to the five-threaded
case. In this set of experiments, the only tools that are not
significantly affected by the size of the litmus test are libFuzzer
and Centipede. However, we show in Section IV-D that the
execution time associated with coverage-guided fuzzing does
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Fig. 4. Analysis times for an allowed litmus test (store buffering) using all tools.

increase when we apply it to a more complex memory model
with larger associated litmus tests.

Finding from RQ2a. While it makes little difference which
analysis tool we deploy for small litmus tests, that is no longer
the case for larger ones. Out of all the off-the-shelf tools we
have explored, it is advisable to use libFuzzer or CBMC.
While libFuzzer has been shown to be extremely effective
at discovering allowed executions, unlike CBMC it cannot
show that executions are disallowed. In a context where the
allowed/disallowed status of a litmus test is not known and
there is no bespoke simulator, running both techniques in
parallel would be advisable.

Since not all tools can prove that a behaviour is not allowed,
we can only answer RQ2b for the ones that do. The tools have
to consider all execution paths, and as a result, they require
more time to do so. Having to explore all paths means that
coverage information does not help. If we consider only off-
the-shelf tools, CBMC is the best choice.

Finding from RQ2b. Although a heavyweight solution for
simple test cases, the SAT-based approach of CBMC pays
off for larger, more complex test cases when behaviours are
disallowed.

D. Comparison With Recent SV-COMP Winners

As discussed in Section II-C, we selected CBMC, KLEE
and a variety of coverage-guided fuzzing tools as they rep-
resent a range of approaches from fully symbolic (CBMC),
through mixed dynamic/symbolic (KLEE), to fully dynamic
(the fuzzers). However, many other analysis tools for C pro-
grams exist and could be tried. In particular, the Competition
on Software Verification (SV-COMP) [35] provides a source of
many analysers that target C.

To experiment with this, we selected the three winners
of the “Falsification Overall” category at SV-COMP 2013
[36]. This represents tools that excel at bug-finding, and thus
might be effective at confirming allowed memory model be-
haviours in our context. The relevant tools are Bubaak [37]
(winner), PeSCo-CPA [38] (runner up) and CPAchecker [39]
(third place). Bubaak is a portfolio verifier that runs several
program analyses in parallel and uses runtime monitoring to
coordinate them. CPAchecker is a verifier based on the notion
of configurable program analysis: it features several different
analysis modes (including bounded model checking and predi-
cate analysis) implemented within a common framework. The
PeSCo-CPA tool is based on CPAchecker and uses heuris-
tics to predict which sequential combination of CPAchecker
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Fig. 5. Analysis times for a disallowed litmus test (load buffering) using those tools that are capable of exhaustive search.

configurations is likely to work best for the verification task at
hand, and then attempts verification using the chosen sequence
of configurations.

We used the versions of these tools provided with the artifact
accompanying the SV-COMP 2023 report [40], and we liaised
with the SV-COMP organisers to check that we were executing
the tools in the same manner as they were executed when
participating in the competition. We ran experiments using the
platform described in Section III-A.

Before applying these tools, we adapted our test harness to
use SV-COMP built-in functions and recommended approaches
for modelling “assert” and “assume” statements, as well as
non-deterministic choice. The required changes were mini-
mal, being similar in scale to the adaptations shown in List-
ings 6 to 8 and for CBMC, KLEE and the coverage-guided
fuzzers, respectively.

We applied the SV-COMP winners to the store-buffering
litmus tests, using a timeout of 2 hours. The results for Bubaak
are shown in Fig. 7: notice that it was not able to solve the
5-threaded version of the store buffering test within the time-
out period. Performance for PeSCo-CPA and CPAchecker was
worse still: these tools did not manage to process even the 2-
threaded store buffering litmus test within 2 hours.

We also tried these SV-COMP “Falsification Overall” win-
ners on litmus tests associated with the X+F memory model
that we discuss in Section IV. We found that none of the
tools—including Bubaak—were able to successfully analyse
any litmus tests demonstrating allowed behaviour.

In response to our findings, the SV-COMP organisers en-
couraged us to submit example programs from our study for
including in the SV-COMP benchmark suite, so that they can
serve as challenge examples for C analysis tools. We have
opened a merge request contributing a number of benchmarks,
which has been approved by the SV-COMP maintainers and
merged [41].

IV. SECOND CASE STUDY: A CPU/FPGA MEMORY MODEL

We now describe our experience applying the approach we
present in this paper to our previous work, where we have

developed a more complex model for a hybrid CPU/FPGA
system. Memory models for which there are no bespoke simu-
lators, such as RMEM are the primary use-cases for which we
envision our work. After introducing the system (Section IV-A)
we present our experimental setup (Section IV-B), our analysis
of the impact of the test harness (Section IV-C), scalability
assessment (Section IV-D), and conclude by discussing the
infidelities in the X+F model that we found and fixed thanks
to our approach (Section IV-E).

A. The X+F Memory Model

A recent trend in heterogeneous systems is to combine a
multicore CPU with a field-programmable gate array (FPGA).
These hybrid CPU/FPGA systems are of particular inter-
est because the FPGA can be customised for a specific
computationally-intensive sub-task, while the overall applica-
tion is coordinated by the general-purpose CPU. We focus on
the Xeon+FPGA (X+F) memory model that we proposed in
prior work [21], and that was originally analysed using only
CBMC for a small number of memory operations.

The memory model is illustrated graphically in Fig. 6. Con-
ceptually, the FPGA is a separate thread that runs alongside the
CPU threads. In contrast to CPU threads, which issue atomic
reads, writes and fences, the FPGA breaks these operations
down into requests and responses. For instance, to write to
memory the FPGA issues a write request, containing the loca-
tion and value to be written. Later, if the FPGA receives a write
response this guarantees that the write request has entered the
FPGA’s memory subsystem but does not guarantee that it has
been committed to main memory. A fence request can be issued
to indicate that writes should be propagated to main memory,
and this propagation is only guaranteed to have occurred when
a corresponding fence response is received.

The FPGA’s memory subsystem is composed of request
pools, upstream buffers and downstream buffers as shown in
Fig. 6. Requests and responses have to travel through all these
components when travelling between the FPGA thread and the
main memory.
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Fig. 6. A pictorial representation of the X+F memory model.

Fig. 7. Analysis times for an allowed litmus test (store buffering) using the
Bubaak tool.

We can implement the C model of the X+F system by ex-
tending the code of the x86 system from Section II. Extending
it involves adding opcodes for the FPGA thread, channel iden-
tifiers to the structure in Listing 1, and actions to the enumer-
ation in Listing 2. The actions should correspond to the FPGA
thread, request pools, upstream buffers and downstream buffers.
Each of these elements has a separate data structure that takes
into account its ordering guarantees (e.g. FIFO order for the
upstream buffer).

Furthermore, in our previous work, we provided an axiomatic
model for the X+F system and implemented it in Alloy. We can
leverage Alloy to generate allowed and disallowed executions
of different sizes that can be converted to the format our opera-
tional model can process. The size of the litmus test is described
by the number of events it contains and these events repre-
sent different operations of the CPU or FPGA. Furthermore,
the axiomatic model can also be configured to generate non-
trivial disallowed executions where every event is ‘critical’ [42].
This means that removing any single event from the execution
makes the execution become allowed. We can use this system
to create benchmarks of different sizes and complexity for the
operational simulators.

B. Experimental Setup

We reuse the same configuration described in Section III.
We generate allowed executions of different sizes from the
axiomatic model and run them on the operational model.
Since a large number of executions can potentially be gen-
erated, we limit our exploration only to the non-trivial dis-
allowed executions. We can then create a set of non-trivial
allowed executions by removing fence operations from these
disallowed executions.

C. Impact of Test Harness

We start by adapting the test generator to enable the alter-
native options described in Section II-D. These options involve
encoding the litmus test for more coverage points (Listing 4)
or fewer program paths (Listing 5). The alternative versions of
the litmus test can be sent to the different tools to evaluate their

impact on performance. We generate traces with events ranging
from 6 up to 9. We recall our research question:

RQ3 How does the manner in which the memory model
and litmus test are encoded as a C program impact the
performance of the different tools?

Fig. 8 shows how the encoding affects the tools. The graphs
show the percentage of executions uncovered in a certain
amount of time. We have set a limit of 2000 seconds for each
execution and run them using the different encodings and tools.

We can see that libFuzzer and Centipede, and to a lesser
extent AFL++, take advantage of the coverage points provided
by the first encoding of the litmus tests. Furthermore, these
results corroborate the results of Section III where we have seen
the poor performance of the naïve fuzzer. This result highlights
the importance of coverage in fuzzing tools in uncovering the
transitions that expose the behaviour needed by the litmus test.

KLEE is not significantly affected by the encoding. At the
point in the program where we add branching, KLEE will
have resolved all non-determinism that can affect them. These
branches are resolved deterministically and do not contribute
to further path explosion on a per-path basis. Furthermore, we
have also empirically confirmed that other variations of this
encoding that did not affect the execution time of KLEE.

CBMC similarly is not significantly impacted by the en-
coding utilised and the size of the formula does not signifi-
cantly change.

Regardless of the choice of encoding, for KLEE and CBMC
we observe a “staircase” pattern in execution time. This pattern
results from the different number of events in the executions. All
the tests with the same event count have a similar solving time,
and each vertical jump in the staircase corresponds to moving
to a new batch of tests that have more events.

Finding from RQ3. The coverage-guided fuzzers benefit
from the extra coverage points added to the litmus tests.
KLEE is unaffected: it does not suffer from additional path
explosion because all non-determinism has already been re-
solved before reaching the branches. Similarly, CBMC is un-
affected because the encoding does not substantially change
the size and complexity of the formula that it solves.

D. Scaling up Simulation

Section IV-C shows that encoding the litmus tests for higher
coverage benefits all of the coverage-guided fuzzing tools, and
has no noticeable performance impact on KLEE or CBMC. We
thus adopt this encoding in experiments where we explore the
scalability of the tools. We recall our research question:
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Fig. 8. The percentage of executions uncovered in a certain amount of time using the two encodings for the litmus tests.

Fig. 9. The percentage of executions uncovered under a certain amount of time using different tools. All tools were able to uncover the allowed executions
in (a). However, when scaling the number of events in (b) this was no longer the case: out of 350 executions, libFuzzer uncovered 335 executions, AFL++
uncovered 323, Centipede uncovered 199, CBMC uncovered 202, and KLEE uncovered only 189.

RQ4 Can our approach allow more in-depth analysis of the
X+F memory model, allowing it to be better validated
against its axiomatic counterpart?

Recall from Section IV-A, that Alloy allows us to generate
executions of different sizes. We start with small executions,
with a small number of operations per thread, that should
not challenge any of the simulators. Therefore, we limit each
execution to a maximum of five events, which allows us to
generate a total number of 2481 allowed executions. To ensure
that the tools do not hang, we limit the total execution time
to 500 seconds. After verifying that the performance of the
tools translates to this model, we generate executions with more
operations to evaluate scalability. We generate 50 executions for
each thread size from 6 up to 16 operations, summing up to 350
executions. We also increase the timeout from 500 seconds to
2000 seconds.

Fig. 9 shows the percentage of executions that could be
shown to be allowed after a certain amount of time. Fig. 9(a)
shows the results for a small number of events (maximum
5 events). In this case, all tools were able to find the path
through the program that led to the reordering required by all

2481 executions. However, this is no longer the case when
scaling the number of events: Fig. 9(b) shows results for
executions containing up to 16 events. Out of 350 executions,
libFuzzer uncovered 335 executions, AFL++ uncovered 323
executions, Centipede uncovered 199, CBMC uncovered 202,
and KLEE uncovered only 189. Recall that these executions
were generated from the X+F axiomatic memory model, and
thus they are all expected to be valid executions. Thus the
number of executions that each tool was unable to verify
represents a likely limitation of the tool.

The libFuzzer and Centipede tools significantly outperform
CBMC and KLEE, managing to uncover the path that leads
to the reorderings faster than the other tools. The performance
of AFL++ lies between that of the other two fuzzers and
KLEE. The time required by CBMC depends on the test size
and explains the staircase pattern that we see in both fig-
ures. However, despite its slow execution, CBMC did not get
stuck like the fuzzers and KLEE sometimes did, and was the
only tool that could uncover some of the more challenging
executions. It can thus be considered the slowest yet most
reliable tool.
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Our strategy for fast model evaluation. We can as-
sume that every given set of test-cases will be composed of
challenging and easy executions. Our experiments show that
coverage-guided fuzzers can quickly confirm that simple exe-
cutions are allowed but fails with some of the more challenging
ones. On the other hand, CBMC is able to confirm that all
the executions we considered in our experiments were allowed,
if the increased simulation time is accepted, but requires a
significant amount of time to do so. We can therefore come
up with a strategy where for any given set of executions, we
first run e.g. libFuzzer to uncover the easy ones and only utilise
CBMC for the more challenging ones. We discuss in Section
IV-E how this technique has allowed us to fix some infidelities
in the model.

Finding from RQ4. Deploying both coverage-guided
fuzzing and CBMC enables feasible exploration of the model
for a considerably higher number of events.

Tool limitation. For some executions, KLEE is very fast,
while for others, it does not terminate within 24 hours. We sent
sample test cases to the developers, and they informed us that
these cases revealed a limitation of the tool. KLEE compares
each new query with previous solved ones to reduce execution
time. However, some executions create large expressions that
KLEE is unable to evaluate, so it gets stuck. The developers
are currently working on a fix.

E. Fixing the CPU/FPGA Model

In our prior work, we only used CBMC and were limited
by how many litmus tests we could run. By adding coverage-
guided fuzzers to our arsenal of tools, we can simulate with
much higher throughput by only using CBMC as a fallback or
as a sanity check for the rare cases where we find something
unexpected. We do not strictly need to use CBMC, but it serves
as means of cross-checking the results of the fuzzers.

In our experiments, almost all the allowed executions were
proven so by the fuzzer. We switched to CBMC for a second
option for the ambiguous tests. When not even CBMC could
find a path through the program that leads to the required
reordering, we manually inspected the executions. We realised
that these reorderings were impossible and that the axiomatic
and operational models do not perfectly match. This mismatch
led us to some infidelities in the original model that we were
able to fix.

As a result of this work, four axioms in our original
work have been modified. We list the complete set of cor-
rected axioms in Fig. 10. All of the relations mentioned
in the axioms have the same definitions as in our prior
work [21], with the additional definition of fencepair as
fenceonepair∪fenceallpair. It is beyond the scope
of this article to properly explain all the definitions used in the
axioms, so we refer the interested reader to our prior work [21].
Below, we outline the effect of our changes.

The OBSERVE-SAME-CHANNEL axiom was originally an ir-
reflexivity axiom that prevented writes from different threads

Fig. 10. The revised axioms of the X+F memory model, with modifications
highlighted.

from being observed out-of-order on the same channel. It
has now been extended to disallow this behaviour for reads
and fences, not merely for writes. The FENCE-RESPONSE and
FENCE-BLOCK axioms were present in our original article;
they describe the orderings that fences enforce on the execu-
tions. These axioms have been extended to take into account
how fences can block additional writes from propagating. The
WRITE-ORDER axiom is a new axiom, added to ensure that
multiple writes to the same location on the FPGA are propa-
gated in order.

V. RELATED WORK

Operational memory models have been proposed for widely
used memory models including x86 [12], [43], POWER [9],
ARM [3], [4] and RISC-V [5], and model checkers have been
widely used to simulate them. For instance, Alglave et al. [44]
showed how to transform the problem of verification under a
weak memory model into the problem of verification under
SC, by transforming each memory access in the program so
that it explicitly manipulates a buffer rather than main memory
directly. The verification-under-SC problem can then be han-
dled by an off-the-shelf model checker; Alglave et al. [44] use
CBMC, while Still and Barnat [45] use DIVINE. In both cases,
the approach differs from ours because it relies on the design
of program transformations that correspond to specific mem-
ory models (x86, PSO, RMO, and POWER), while we show
how to encode the transition system of an arbitrary memory
model directly in C. This makes our approach more suitable
for a memory model that is still in active development, whose
transition system may still be in flux, and which is not yet
sufficiently well understood to be confidently translated into
equivalent program transformations. Besides, it is not clear how
some of the more complicated memory models, like the X+F
model we considered, can be recast as program transformations;
indeed, Lahav and Vafeiadis [46] have shown that some mem-
ory models, notably ARM’s, cannot be explained solely using
program transformations.

Program transformations are popular to help fuzzing tools
find more bugs. For instance, previous work [47] has proposed
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semantics-changing transformations that remove checks that
fuzzing is struggling to get past. Armstrong et al. [33] proposed
LLVM passes that increase code coverage. While these tech-
niques can be applied to general programs, in our case, program
transformations only help when applied to the encoding of the
litmus test.

RMEM [7] is a bespoke simulator for a variety of opera-
tional memory models [3], [4], [48]. It is widely used, but in-
volves a substantial amount of engineering effort to implement
the desired algorithms for exploring the models (e.g. randomly,
exhaustively, or in a user-guided fashion). In our approach, we
outsource the exploration task to a range of off-the-shelf tools
instead. Murphi is another simulator for operational semantics
that has been used to explore GPU memory models [49] and
also to verify heterogeneous cache coherency protocols [50],
but again, it lacks the generality of our approach because it
only supports the exploration algorithms that are hardcoded
into it.

Axiomatic memory models are an alternative way of rep-
resenting memory models, with numerous memory models im-
plemented in the CAT language for the herd simulator [2].
Alloy is an open-source language and analyser for software
modelling that has been used to simulate memory models [51].
CDSChecker [52] is a model-checker for C++ programs that
uses several techniques to minimise the number of behaviours
that need exploring. GenMC [53] is a stateless model checker
that can efficiently verify C++ programs. Dartagnan [54] is
another model checker that can accept any axiomatic memory
model that is specified in the CAT language. Recent work by
Ponce de León et al. [55] and by Fan et al. [56] has cast
memory-model consistency axioms as a theory that can be
deployed by SMT solvers. While axiomatic memory model
simulators, such as all of those mentioned above, are gener-
ally faster than those for operational models, they lack some
intuitive features such as providing execution paths that the
user can step through in order to witness the reordering. It is
possible in principle to convert operational models into equiv-
alent axiomatic models, and thereby obtain fast simulation for
operational models, but the process is difficult. For instance,
Pulte et al. [3] developed operational and axiomatic versions
of the Arm memory model, and proved them equivalent, but
this was a substantial manual effort and not necessarily ap-
propriate for a prototype model such as X+F. (On the other
hand, converting axiomatic models into equivalent operational
models is more straightforward, and progress has recently be-
ing made towards performing that conversion automatically by
Godbole et al. [57].)

The idea of problem reduction to a C program has
been explored in other domains; for instance, Verilator [58] is
a popular open-source Verilog simulator that works by trans-
lating a Verilog design into a C program that can then be
executed or otherwise analysed [59]. As discussed in Section I,
coverage-guided fuzzing has been used as a model-exploration
technique in domains where formal verification or symbolic
reasoning techniques do not scale well, such as demon-
strating the satisfiability of SMT formulas for floating-point
arithmetic [20].

The trinity of CBMC, KLEE and libFuzzer have been previ-
ously shown by Priya et al. [60] to complement each other and
uncover bugs in different applications.

VI. CONCLUSION

We have investigated how operational memory models can
be simulated by reducing the decision problem of “whether a
given operational model allows a given program behaviour” to
the decision problem of “whether a given C program is safe”,
which can be handled by a variety of off-the-shelf tools. This
has allowed us to evaluate five such tools: a model checker
(CBMC), a symbolic analysis tool (KLEE) and three coverage-
guided fuzzers (libFuzzer, Centipede and AFL++), comparing
them to a bespoke simulator (RMEM).

The key take-away from our experience is that we highly
recommend that researchers and engineers interested in opera-
tional memory model simulation consider our “reduction to C”
approach, because it lifts the burden of having to implement
a variety of analysis algorithms in a bespoke tool. Our expe-
rience is that coverage-guided fuzzing, and the libFuzzer tool
in particular, shine when it comes to fast analysis of allowed
behaviours. By experimenting with three different coverage-
guided fuzzers—libFuzzer, Centipede and AFL++, all of which
yield good results, we provide evidence that coverage-guided
fuzzing in general (rather than one tool in particular) may be a
good fit for this problem domain.

The symbolic CBMC tool is effective at exhaustive explo-
ration of reasonably large litmus tests. Our second case study,
on a CPU/FPGA memory model, showcases the value of our
approach by enabling several discrepancies in an axiomatic
description of this memory model to be found and fixed.

A potential concern regarding our findings about fuzzing
is whether this finding is future-proof: as fuzzer developers,
who are primarily focused on security issues, make changes to
their tools, might these changes have a negative effect on tool
effectiveness in our domain? We believe this is unlikely, since
to detect vulnerabilities a tool must excel at driving execution
towards all parts of the program under test (since it is not known,
a priori, where vulnerabilities may lie). By encoding memory
model analysis as a reachability problem, our approach should
benefit from advances in fuzzing technology.

Our experiments with various verification tools that per-
formed well in the “Falsification Overall” category of the SV-
COMP 2023 competition showed that these tools do not scale to
our benchmarks. In response to this we have submitted example
benchmark programs to the SV-COMP benchmark suite, so that
they can be used as challenge examples for verification tools
in the future.

The SV-COMP verification tools are attractive for our pur-
pose as they can be directly applied to C programs. It could also
be interesting to look at applying other model checking tools,
such as the SPIN model checker [61]. However, SPIN has its
own input language, Promela, so leveraging SPIN would re-
quire encoding our memory models in this specialised language,
which would be contrary to our aim of leveraging off-the-shelf
tools for C. While there has been work on extracting Promela
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models from C programs [62] or translating C programs into
Promela [63], these approaches are not currently maintained,
and are not “push button”: they require customisation of the
extracted or generated code due to the large semantic gap be-
tween C and Promela. Many other model checking tools that
have their own custom input language would be hard to apply
in our domain for the same reason.
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