
Imperial College London

Department of Computing

Practical systematic concurrency testing

for concurrent and distributed software

Paul Thomson

October 2016

Supervised by Alastair F. Donaldson

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London

Declaration

This thesis and the work it presents are my own except where otherwise acknowledged.

Paul Thomson

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to

copy, distribute or transmit the thesis on the condition that they attribute it, that they

do not use it for commercial purposes and that they do not alter, transform or build upon

it. For any reuse or redistribution, researchers must make clear to others the licence terms

of this work.

2

Abstract

Systematic concurrency testing (SCT) is a promising solution to finding and reproducing

concurrency bugs. The program under test is repeatedly executed such that a particular

schedule is explored on each execution. Numerous techniques have been proposed to make

SCT scalable. Despite this, we have identified the following open problems: (1) There

is a major lack of comparison and empirical evaluation of SCT techniques; (2) There is

a need for better reduction techniques that go beyond the current theoretical limits; (3)

The feasibility of applying SCT in practice is unclear, particularly for distributed systems.

This thesis makes the following contributions to the field of SCT:

� An independent, reproducible empirical study of existing SCT techniques over 49

buggy concurrent software benchmarks. Surprisingly, we found that the “näıve” con-

trolled random scheduler performs well, finding more bugs than preemption bound-

ing. We report the results for all techniques. We discuss the benchmarks and

challenges faced in applying SCT.

� The lazy happens-before relation (lazy HBR), which provides reduction beyond partial-

order reduction for programs that use mutexes. Our evaluation over 79 publicly

available benchmarks shows both a large potential and large practical improvement

from exploiting the lazy HBR.

� A description of how to create an SCT tool in practice, with a focus on subtle-yet-

important details that are typically not discussed in prior work.

� A case study where we apply SCT in the context of distributed systems written for

Azure Service Fabric (Fabric). We introduce our Adara actors framework for writing

portable, statically-typed actors. We describe our model of Fabric and evaluate it

on a system containing 15 bugs, showing that our Fabric model includes enough

behaviours/asynchrony to expose these subtle pitfalls.

3

Acknowledgements

First and foremost, I would like to thank my supervisor, Alastair F. Donaldson, for his

constant support and enthusiasm over the years. He introduced to me to software verifica-

tion and testing. He has taught me so much. His pet peeves have become my pet peeves!

I consider him an excellent role model, mentor, and friend.

I thank Cristian Cadar and Paul H. J. Kelly for their support and kindness, particularly

towards the beginning of my PhD. I thank Shaz Qadeer and Madan Musuvathi for their

positive comments and feedback over the years; I would probably not even know about

systematic concurrency testing if it wasn’t for their seminal work in this field. I thank

Akash Lal and Shaz Qadeer (again) for hosting my MSR internships; the former internship

laid the foundations of Chapter 6.

From the Multicore Programming Group, I thank Pantazis Deligiannis for being a good

friend and for his work on P#; our collaborations have led to many further opportunities

for me. I thank Adam Betts and Nathan Chong (the other “founding” members) for being

good friends, and, of course, the later members too: Jeroen Ketema, Daniel Liew, Ethel

Bardsley, John Wickerson, Tyler Sorensen, Andrei Lascu, and Christopher Lidbury.

I thank the EPSRC for funding my PhD via an EPSRC DTA studentship. I relied on

the Imperial College High Performance Computing service;1 the HPC cluster was critical

to performing studies on this scale.

I thank my parents for everything they have given me, and Tor for her love and support.

1https://www.imperial.ac.uk/admin-services/ict/self-service/research-support/hpc/hpc-

service-support/service/

4

https://www.imperial.ac.uk/admin-services/ict/self-service/research-support/hpc/hpc-service-support/service/
https://www.imperial.ac.uk/admin-services/ict/self-service/research-support/hpc/hpc-service-support/service/

Contents

1 Introduction 12

1.1 Contribution . 13

1.2 Work published during the PhD . 14

2 Background 16

2.1 Systematic concurrency testing . 16

2.2 Concurrent program model . 21

2.2.1 States . 21

2.2.2 Transitions . 21

2.2.3 Schedules . 24

2.2.4 Shared objects . 24

2.3 Common visible operations . 25

3 Empirical Study 27

3.1 Motivation . 28

3.2 The techniques . 29

3.2.1 Unbounded depth-first search (DFS) 29

3.2.2 Iterative preemption bounding . 30

3.2.3 Iterative delay bounding . 33

3.2.4 Controlled random scheduling . 35

3.2.5 Probabilistic Concurrency Testing 35

3.2.6 Upper bounds on number of terminal schedules and probabilistic

guarantees . 36

3.3 Maple . 37

3.4 Benchmark Collection . 40

3.4.1 Details of benchmark suites . 41

3.4.2 Effort required to apply SCT . 43

3.5 Research questions . 46

3.6 Experimental Method . 47

5

3.7 Experimental Results . 51

3.7.1 Venn diagrams . 52

3.7.2 Cumulative plots . 53

3.7.3 Results tables . 56

3.7.4 Benchmark Properties . 58

3.7.5 Techniques In Detail . 59

3.8 Main findings . 68

3.9 Related work . 74

3.10 Conclusion . 75

4 The lazy happens-before relation 76

4.1 Motivation . 77

4.1.1 The lazy HBR: an illustrative example 78

4.2 Background . 79

4.3 The lazy HBR . 84

4.4 Lazy DPOR . 88

4.4.1 Dynamic partial-order reduction (DPOR) 89

4.4.2 From DPOR to lazy DPOR . 90

4.4.3 Lazy DPOR algorithm . 92

4.5 JESS: an SCT tool for Java programs . 95

4.6 Experimental Evaluation . 96

4.6.1 Potential reduction offered by lazy HBR 98

4.6.2 Comparing lazy and regular HBR caching 100

4.6.3 Lazy vs. regular DPOR . 101

4.7 Related work . 104

4.8 Conclusion . 106

5 Implementing an SCT tool 107

5.1 Overview of the tool . 107

5.1.1 Creating a concurrency test case . 107

5.1.2 Creating a test harness . 110

5.1.3 Performing offline JDK instrumentation 111

5.1.4 Running the test harness . 111

5.2 Instrumenting Java programs . 115

5.2.1 The advantages of dynamic bytecode instrumentation 116

5.2.2 Use of the ASM library, Java agents and our ClassManager 117

6

5.2.3 Instrumenting Java code and standard libraries via method doubling 118

5.2.4 Shadow fields, shadow arrays and shadow objects 120

5.2.5 Issues and techniques . 121

5.2.6 Limitations . 125

5.3 Implementing systematic concurrency testing for Java 125

5.3.1 Executor and ExecutionManager . 126

5.3.2 ThreadData objects and thread serialisation 126

5.3.3 The schedule method . 127

5.3.4 Scheduling strategy . 130

5.3.5 Schedule example: enter monitor . 132

5.4 Advanced SCT details . 133

5.4.1 Unified synchronisation operations 135

5.4.2 Transitions as ops . 136

5.4.3 Efficient vector clock operations . 137

5.4.4 Op class . 143

5.4.5 Implementing barriers using read and write ops 146

5.5 Related work . 148

5.6 Conclusion . 150

6 Case study: applying SCT to Azure Service Fabric distributed systems151

6.1 Introduction to Azure Service Fabric . 152

6.1.1 The Fabric API . 155

6.2 Actor programming using P# . 156

6.3 P# Fabric model . 159

6.3.1 Approach . 159

6.3.2 Architecture . 161

6.3.3 Replication example . 162

6.3.4 Test harness . 165

6.3.5 P# services . 166

6.4 Adara actors . 167

6.4.1 Motivation . 168

6.4.2 Adara actors . 169

6.4.3 Code generation for actor proxies . 172

6.5 Fabric model V2 . 174

6.5.1 Replication version 2 . 176

7

6.6 Experiments . 178

6.6.1 Test system . 179

6.6.2 Random schedulers . 181

6.6.3 Results . 184

6.6.4 Main findings . 188

6.7 Related work . 190

6.8 Conclusion . 190

7 Conclusions and future work 191

7.1 Contributions . 191

7.2 Future work . 192

Bibliography 195

8

List of Tables

3.1 An overview of the benchmark suites used in the study. 40

3.2 Benchmarks where bug-finding is arguably trivial. 58

3.3 Experimental results for SCT using iterative preemption bounding (IPB),

iterative delay bounding (IDB) and unbounded depth-first search (DFS). . 69

3.4 Experimental results for randomisation techniques—the controlled random

scheduler and PCT for each d ∈ {1, 2, 3}—and the Maple algorithm. 70

4.1 Benchmark summary. 97

6.1 Experimental SCT results for our Fabric test system. 184

9

List of Figures

3.1 Simple multithreaded program. 32

3.2 Adversarial delay-bounding example. 34

3.3 Venn diagrams showing number of benchmarks in which the bugs were

found with the various techniques. 52

3.4 Cumulative plot, showing, for each SCT technique, the number of bugs

found after x schedules over all the benchmarks. 54

3.5 For PCT d=3 and Rand, compares the number of bugs found after x sched-

ules as in Figure 3.4 with the average behaviour of the techniques. 55

3.6 Comparison of IPB and IDB. 60

3.7 Comparison of IPB and IDB. 61

3.8 Shows, for the stringbuff-jdk1.4 and parsec benchmarks, the number

of buggy schedules explored by Rand, and PCT for each value of d ∈ {1, 2, 3}. 64

3.9 Shows, for the chess and radbench benchmarks, the number of buggy

schedules explored by Rand, and PCT for each value of d ∈ {1, 2, 3}. 65

4.1 A simple multithreaded program and several schedules. 78

4.2 Four (unrelated) terminal schedules that we considered when designing lazy

DPOR. 89

4.3 Several terminal schedules that demonstrate potential issues for lazy DPOR. 93

4.4 The number of terminal HBRs and terminal lazy HBRs explored by the

first 100,000 terminal schedules of DPOR. 99

4.5 The number of terminal lazy HBRs explored by the first 100,000 terminal

schedules of lazy HBR caching and HBR caching. 100

4.6 Number of terminal lazy HBRs (id) and terminal schedules (square) ex-

plored for each benchmark by the first 100,000 terminal schedules of regular

and lazy DPOR. 101

4.7 Number of lazy HBRs (id) explored and deci-seconds taken (square) for

each benchmark with regular and lazy DPOR. 103

10

5.1 A diagram showing how our JESS tool instruments code offline and at run-

time. 115

5.2 Examples of the stack from the DFS scheduling strategy. 131

5.3 An example schedule showing the vector clock of each operation. 138

6.1 A diagram showing replication in Fabric. 153

6.2 A diagram showing state copying in Fabric. 153

6.3 A class diagram of our C# Fabric shopping list service class. 155

6.4 A class diagram of Fabric’s IStateReplicator interface. 156

6.5 A diagram showing the design of the P# Fabric model. 160

6.6 A diagram showing the first stage of replication in our Fabric model. 162

6.7 A diagram showing the second stage of replication in our Fabric model. . . 164

6.8 A diagram showing the third stage of replication in our Fabric model. . . . 165

6.9 The assembly dependency diagram for our Adara actors framework and our

Fabric model V2. 172

6.10 A diagram showing the design of our Fabric model V2. 175

6.11 A diagram showing stage one and two of replication in version 2 of our

Fabric model. 177

11

1 Introduction

The age of ever increasing clock speeds is over and we have entered the multicore revolu-

tion [SL05]. In order to benefit from the growing importance of multicore and distributed

systems, programs must be concurrent. Unfortunately, concurrent programming is hard;

unexpected interactions between concurrent threads can lead to concurrency bugs—bugs

that may or may not occur depending on the thread schedule. Traditional testing tech-

niques are ineffective at finding and reproducing concurrency bugs due to this nondeter-

minism [KLVU10].

One successful approach for finding and reproducing concurrency bugs is systematic

concurrency testing (SCT) [God97, MQB+08, YCG08, EQR11] which is the focus of

this thesis. The technique involves repeatedly executing a concurrent program with

fixed inputs, forcing a particular schedule to be explored on each execution. The ap-

proach is appealing as the analysis is highly automatic, has no false-positives, and sup-

ports reproduction of bugs by replaying the bug-inducing schedule. The straightfor-

ward approach is to use a depth-first search (DFS) to exhaustively explore all sched-

ules. However, this does not scale to large programs as the number of schedules is

exponential in the number of execution steps, and a partial exploration does not pro-

vide any useful coverage guarantees. Thus, researchers have proposed a number of al-

ternative approaches to reduce the number of schedules that need to be explored dur-

ing SCT, such as schedule bounding [MQ07b, EQR11], partial-order reduction (POR)

techniques [God96, FG05, MQ07a, AAJS14], and heuristic/randomisation-based tech-

niques [BKMN10, NBMM12, YNPP12].

Despite the successful work in this area, we have identified three important open prob-

lems which we address in this thesis:

1. There is a major lack of comparison and empirical evaluation of current SCT tech-

niques, particularly in terms of how the techniques compare with each other at

finding the same concurrency bugs. Baseline techniques used in prior work [MQ07b,

BKMN10] include a straightforward depth-first search and (non-systematic) perturb-

ing of the OS scheduler, which fails to address how other SCT techniques compare.

Much work in this area also uses a set of proprietary concurrent benchmarks that

12

are not publicly available; thus, despite the apparent significance of previous find-

ings, the claims made have not been independently validated on a different set of

benchmarks. In Chapter 3, we address this by presenting a large empirical study

of existing SCT techniques on a set of 49 buggy concurrent software benchmarks

drawn from public code bases.

2. There is a real need for better reduction techniques that reduce the schedule-space

by going beyond what is possible when using POR [God96]; although POR has clear

benefits, there are still certain sets of equivalent schedules that it cannot reduce.

In Chapter 4, we introduce the lazy happens-before relation that achieves significant

reduction (beyond POR) for programs that use mutexes.

3. The challenges of applying SCT in practice are not entirely clear as they are not

discussed in detail in prior work. In particular, distributed systems typically remain

out-of-reach. The fundamental steps to create an SCT tool are also not discussed in

depth. We attempt to address this as follows. In Chapter 3, we describe the issues

encountered when trying to apply SCT during our empirical study. In Chapter 5,

we describe the implementation of a novel Java SCT tool, including both high-level

details that are widely-applicable to any such tool and low-level details that are

specific to Java. In Chapter 6, we describe a large case study where we apply SCT

in the context of distributed systems—arguably one of the most challenging settings

in which to apply SCT.

1.1 Contribution

In Chapter 2, we introduce systematic concurrency testing and then formally define our

concurrent program model. We continue with the four main contributions of this thesis:

� Chapter 3 describes our empirical study of existing SCT techniques. We gathered

49 buggy concurrent software benchmarks, drawn from public code bases, which we

call SCTBench. We applied a modified version of an existing concurrency testing

tool to SCTBench, comparing five SCT techniques in terms of their bug finding abil-

ity: depth-first search, preemption bounding, delay bounding, a controlled random

scheduler, and probabilistic concurrency testing (PCT). Surprisingly, we found that

the “näıve” controlled random scheduler, which randomly chooses one thread to ex-

ecute at each scheduling point, performs well, finding more bugs than preemption

bounding. We report the results for all techniques. We discuss the benchmarks and

13

the challenges we faced in applying SCT. We have made SCTBench and our tools

publicly available for reproducibility and use in future work.

� Chapter 4 describes our lazy happens-before relation, which provides reduction be-

yond partial-order reduction for programs that use mutexes. We prove that schedules

with identical lazy HBRs reach the same state and present two reduction techniques

backed by the approach: lazy HBR caching and lazy dynamic partial-order reduc-

tion. We implemented these methods in JESS, our new SCT tool for Java programs,

and present an evaluation over 79 publicly available benchmarks. Our evaluation

shows both a large potential and large practical improvement from exploiting the

lazy HBR.

� Chapter 5 describes how to create an SCT tool in practice based on our experience

building JESS, including both high-level details that are widely-applicable to any

such tool and low-level details that are specific to our setting (Java programs), with

a focus on subtle-yet-important details that are not discussed in prior work. As a

part of this, we present our race detection algorithm that we believe is more efficient

than prior work.

� Chapter 6 describes our case study where we apply SCT in the context of distributed

systems, arguably the most challenging scenario for SCT. We target systems writ-

ten for Azure Service Fabric (Fabric) [Fam15] by creating a model of Fabric. We

introduce Adara actors, our framework for writing portable, statically-typed actors,

which we use in our model. We evaluate our model on a system containing 11 real

bugs, plus 4 injected bugs that we believe are representative of subtle mistakes that

developers are likely to make when using Fabric. We found 14 of the 15 bugs us-

ing SCT, including all of the injected bugs, showing that our Fabric model includes

enough behaviours/asynchrony to expose these subtle pitfalls.

1.2 Work published during the PhD

Chapter 3 was originally published as a PPoPP paper [TDB14] that won best student

paper award and was then invited to a special issue of the ACM Transactions on Parallel

Computing journal [TDB16]. The lazy happens-before relation, included in Chapter 4,

was described in a PPoPP short paper [TD15]. Aspects of the actor-based case study of

Chapter 6 were described in a FAST paper [DMT+16]. The author contributed to earlier

SCT experiments for the P# actor-based framework (used initially in Chapter 6) in a

14

PLDI paper [DDK+15]. The author also contributed to two further papers on data race

analysis for GPU kernels [BCD+12, BCD+15]; this work helped inform the ideas in this

thesis, but is not included here.

15

2 Background

In this chapter we introduce systematic concurrency testing (§2.1), including common

terminology and techniques, before describing our model of a concurrent program (§2.2)

which abstracts away programming language specifics and is assumed in the remaining

chapters. We finally describe some common operations (§2.3) as examples to give context

to the model.

2.1 Systematic concurrency testing

Systematic concurrency testing (SCT) [God97, MQB+08, YCG08, EQR11], also known as

stateless model checking [God97], is a technique for finding and reproducing concurrency

bugs. It tests a target program (or procedure) that, typically, must terminate in finite

time and be deterministic modulo scheduling nondeterminism.1 The program is executed

repeatedly and a precise schedule (interleaving of operations) is forced each time. This

process continues until all schedules have been explored, some resource budget (typically

time or number of schedules) is reached, or some coverage requirement has been met.

Unlike traditional stateful model checking [CE81, QS82], the system under test does not

need to be modelled in a modelling language; instead, the original program is executed.

Furthermore, the states of the program do not need to be captured (capturing the state

of an unmodified program can be nontrivial). The approach is appealing as the analysis is

highly automatic, has no false-positives, and supports reproduction of bugs by replaying

the bug-inducing schedule. Other techniques, such as perturbing the OS scheduler by

inserting calls to sleep (possibly with randomisation) or other similar functions [EFN+02,

PLZ09, YNPP12] do not provide precise control over the schedule that is executed, bug

reproducibility, nor coverage guarantees.

1In this thesis, we frequently simplify the presentation by assuming the target program terminates in
finite time, has no inputs (e.g. by choosing fixed values for all inputs), and is sequentially consistent [Lam79].
These assumptions are not required in general for SCT and typically do not prevent its application in
practice. We revisit these assumptions throughout this section.

16

History SCT was pioneered by Godefroid’s VeriSoft tool [God97]. Musuvathi et al. later

created the CHESS tool [MQ07b, MQ08, MQB+08] which supported SCT of C/C++ and

C# programs on Microsoft Windows. The work on CHESS introduced several new SCT

techniques such as preemption bounding [MQ07b] and delay bounding [EQR11] which

we describe below. Numerous SCT research has been conducted since [YCG08, CBM10,

WSG11, YNPP12, CMM13, AAJS14].

Depth-first search SCT traditionally performs a depth-first search (DFS) of the schedule-

space and SCT tools like CHESS still support this baseline approach. More advanced

techniques like preemption bounding and dynamic partial-order reduction are also still

based on a DFS. The key advantage of a DFS is that it efficiently ensures that a different

schedule is explored on each execution, resulting in an eventual exhaustive search of the

considered schedule-space; unexplored schedule prefixes can be efficiently stored in a stack

data structure. Exploring schedules exhaustively without using a DFS is challenging due

to the space required for storing unexplored parts of the schedule-tree [CBM10]. As is

common in prior work, in this thesis we assume that the state-space is acyclic and thus

all schedules are finite. This can be enforced (in a pragmatic but unsound manner) using

a per-schedule time limit. Prior work has shown that cyclic state-spaces can be explored

exhaustively using SCT in practice [MQ08], as long as the programmer calls a recognised

yield function to indicate when a thread is not making progress; we use a similar technique

in this thesis (see §3.3 and §6.6.2).

Controlling execution via instrumentation Controlling the schedule can be achieved

by instrumenting the program so that threads are blocked by the SCT tool before each

operation; execution is serialised so that only one thread executes at a time and the choice

of which thread to execute next is controlled by the SCT tool. Thus, SCT is typically

applied without making changes to the OS scheduler. We cover details of implementing

an SCT tool in Chapter 5.

Common terminology SCT tools interleave threads at their visible operations [God97]—

such as reading from or writing to a global variable or locking a mutex. We formalise this

in §2.2. Researchers refer to a thread executing a single visible operation as a step, a tran-

sition, an event, or simply an operation. Threads are typically blocked immediately before

each visible operation by the SCT tool at which point a thread is chosen to be released;

these points are called scheduling points [MQ07b]. The simplest way of representing a

schedule is as a list of thread identifiers (thread ids), such that each thread is executed

17

in sequence from the start of the program/procedure for one step. Thus, the schedule

〈T1 ,T1 ,T2 〉 represents executing thread 1 for two steps, followed by thread 2 for one

step. Since the target program is deterministic (modulo schedule nondeterminism), the

same schedule will always reach the same program state. We formalise schedules in §2.2.

Concurrency bugs In this thesis (and as is often the case in SCT research), we consider

bugs to be safety property violations, such as deadlocks, assertion failures, crashes, and

uncaught exceptions. In particular, we rely on assertions already present in the target

program or we may add assertions to check specific properties. Concurrency bugs are

bugs that may or may not occur depending on the schedule; if a particular bug occurs on

every possible schedule then we do not consider it a concurrency bug. In Chapter 6, we

encounter some simple liveness bugs where the target program enters an infinite loop; we

detect these simply by enforcing a step limit. We do not encounter more complex liveness

bugs in this thesis.

SCT vs. controlled scheduling We note that the meaning of systematic concurrency

testing is not well-defined; systematic can be synonymous with never executing a schedule

more than once, leading to an exhaustive exploration (or, at least, an exhaustive explo-

ration of all considered schedules), or it can simply mean controlling precisely which sched-

ules will be executed resulting in a deterministic exploration that might repeat schedules

and does not necessarily “complete”. In both cases, the program must be deterministic

and the scheduling decisions are controlled. In this thesis, we assume the latter definition

which means more techniques are regarded as SCT. For example, using a random sched-

uler that randomly picks a thread and allows it to execute for one step can be still be

regarded as SCT. Perturbing the OS scheduler via random calls to sleep is not SCT as

the process is nondeterministic.

Nondeterminism due to inputs and data races In this thesis, we fix the inputs

(e.g. command line arguments, input parameters) of all programs or procedures that we

test. However, it is possible to consider different inputs or even enumerate all inputs,

although it is likely infeasible to explore all inputs in a reasonable time limit. As in prior

work [God97, FG05, YNPP12], in this thesis we assume sequential consistency [Lam79]

by only considering interleavings of operations from different threads as if executing on a

single-core processor, where a write by a thread is immediately visible to all other threads.

18

Thus, we do not consider the effects of data races2 when executing under relaxed memory

models (e.g. [SSO+10]). This assumption is not always as limiting as it may seem; devel-

opers often write their programs to be data race free (and free from explicit weak memory

operations in languages like C++11), relying on synchronisation primitives that ensure

sequentially consistent behaviour. In these cases, it is only necessary to consider inter-

leavings of synchronising operations, like locking a mutex,3 to be able to to find all safety

property violations [God97]. Furthermore, it is possible to use a data race detector [FF09]

during SCT, ensuring that the approach is sound for programs that contain data races,

as long as detected data races are regarded as bugs; the resulting behaviours from racy

executions are not explored, but these executions are all regarded as buggy anyway since

they contain data races. We discuss how we handle data races in our empirical study in

§3.6 and discuss some work that handles data races under relaxed memory models in §7.2.

SCT techniques Exploring all schedules of a program is typically infeasible as the num-

ber of schedules is exponential in the number of steps in an execution. Thus, researchers

have proposed several different SCT techniques to try to minimise the number of schedules

executed before a bug is found. We describe several key techniques that we consider in

this thesis:

� Schedule bounding techniques [MQ07b, EQR11] perform a bounded DFS: pre-

emption bounding [MQ07b] restricts the DFS to only schedules with fewer than c

preemptive context switches; delay bounding considers only schedules with fewer

than c deviations (delays) from an otherwise deterministic scheduler. The intuition

is that many concurrency bugs only require a few preemptive context switches at the

right places in order to manifest and so will be exposed within reasonable time. In

contrast, an unbounded DFS will require an infeasible amount of time to complete

and will mostly explore context switches at deep locations (due to the depth-first

search order) before timing out. Of course, bugs that require more than c preemp-

tions (or delays) in order to manifest will be missed, so full coverage is sacrificed.

Schedule bounding has two additional benefits, regardless of bug finding ability.

First, it produces simple counterexamples; a schedule with a small number of pre-

emptions is likely to be easy to understand. This property has been used in trace

simplification [JS10, HZ11]. Secondly, schedule bounding provides a bounded cover-

2We define a data race as two threads accessing the same shared memory location concurrently (i.e.
without intervening synchronisation between the two threads), where at least one of the accesses is a write.

3Of course, an operation like locking a mutex is often implemented using weak memory operations,
but we abstract these low-level details and instead treat such operations as atomic.

19

age guarantee; given a preemption bound of c, if all schedules within the preemption

bound are explored and free from bugs, then any remaining bugs must require at

least c + 1 preemptions. A guarantee of this kind provides some indication of the

necessary complexity and probability of occurrence of any bugs that might remain.

The bound can be increased iteratively so that a superset of schedules is explored

on each iteration and all schedules will be explored in the limit. Thus, iterative

schedule bounding determines an order in which to explore all schedules, with the

hope that many concurrency bugs will be exposed more quickly than when using an

unbounded depth-first search. We formalise and evaluate preemption bounding and

delay bounding in our empirical study in Chapter 3.

� Partial-order reduction (POR) techniques [God96, FG05, MQ07a, AAJS14]

avoid execution of a certain class of provably redundant schedules that reach the

same state. In POR [God96], the total-order of a schedule (i.e. a list of operations)

is weakened to become a partial-order, yielding an equivalence class of schedules that

all reach the same state. Only schedules that have different partial-orders need to be

executed. Dynamic partial-order reduction (DPOR) [FG05] uses POR to perform

a DFS that skips many schedules but still ensures full coverage—all bugs will be

found if the search completes. Despite the increased efficiency of DPOR over a

straightforward DFS, schedule explosion can still occur and so the search may not

complete within a reasonable time or resource limit. Furthermore, DPOR provides

no useful coverage guarantees if it does not complete. Thus, for an incomplete search,

DPOR inherits the problems of an unbounded DFS (it will be biased towards deep

context switches), albeit much more efficient. We introduce POR and DPOR in more

detail, as well as our new reduction technique that goes beyond POR for programs

with mutexes, in Chapter 4.

� Randomisation- and heuristic-based techniques [BKMN10, NBMM12, YNPP12]

explore schedules using specially designed heuristics or randomisation. Typically,

they do not record which schedules have been explored (they do not use a depth-

first search) and so cannot aim to explore the entire schedule-space. Probabilistic

concurrency testing (PCT) [BKMN10] is a well-known randomisation-based tech-

nique that uses randomisation and a priority-based scheduler that cannot guarantee

exploration of all schedules; however, it is claimed to find bugs quickly and even

provides a probabilistic guarantee of finding bugs. We describe and evaluate PCT in

our empirical study in Chapter 3.

20

2.2 Concurrent program model

We now introduce our concurrent program model P , a labelled state transition system

that abstracts away from programming language specifics, but note that the techniques

described in this thesis are applicable to real concurrent programs written in languages

such as C++ and Java. We use our model to describe SCT algorithms in an unambiguous

manner. Our model is based on Flanagan and Godefroid’s model [FG05].

2.2.1 States

Let State be the set of all states. A state s = (ss, tss) of the system is a tuple where

ss ∈ SharedState is the shared state and tss : Tid → ThreadState is the thread state of

every thread (a mapping from each thread id to a thread state). Thus, we assume the

following disjoint finite sets (types):

� Tid: The set of all thread identifiers (thread ids). We assume the program consists

of a finite number of threads, where each thread has a unique thread id.

� SharedState: The set of all shared states. The shared state part of a state represents

the global variables, heap, mutexes, condition variables, and any other state that

can be accessed by multiple threads.

� ThreadState: The set of all thread states. The thread state of each thread represents

the thread’s private data, such as its instruction pointer, local variables, stack, reg-

isters, etc. In languages like C++, local variables can be shared between threads;

thus, in this case, such variables are typically considered to be part of the shared

state, unless it can be shown that their addresses are never passed to other threads.

Given a function such as tss, let tss[a 7→ b] yield a function that is identical to tss except

that tss(a) = b.

2.2.2 Transitions

With each thread id tid ∈ Tid and thread state ts ∈ ThreadState, we associate a unique

transition ttid ,ts : SharedState ⇀ SharedState × ThreadState. Thus, a transition ttid ,ts is a

partial function that defines how thread tid in thread state ts mutates its thread state and

the shared state when executed. A transition corresponds to a thread executing one visible

operation [God97] (an operation that accesses the shared state) followed by a finite number

of invisible operations (that access only the thread state) up until immediately before the

21

next visible operation. We clarify this with an example below. Considering interleavings

of invisible operations is unnecessary when checking safety property violations, such as

deadlocks and assertion failures [God97]. A transition that is not defined for a particular

shared state corresponds to a thread that is blocked e.g. because it is waiting for a mutex

to be released. Let Transition be the set of all transitions. The state transition relation

δ ⊆ State × Transition × State defines the labelled transitions between states. We write

s
t−→ s′ to indicate that (s, t, s′) ∈ δ. The transition relation δ is defined by the following

rule:

tss(tid) = ts ttid ,ts(ss) is defined ttid ,ts(ss) = (ss ′, ts ′) tss ′ = tss[tid 7→ ts ′]

(ss, tss)
ttid,ts−−−→ (ss ′, tss ′)

Thus, given a state s = (ss, tss), every thread id is mapped to a thread state in tss,

and for every (tid , ts) entry in tss, there is a corresponding transition ttid ,ts which, if

defined for ss, yields a state transition. Also note that a state transition only updates

the thread state of the corresponding thread as well as the shared state; all other thread

states are unchanged (and thus, so are the corresponding transitions for other threads).

For convenience, let next(s) denote the corresponding transitions for state s (based on

individual thread states—there will be one for every thread id, even if the thread is blocked)

and let enabled(s) denote the subset of these that are actually defined for the state (based

on the shared state component). Formally:

next((ss, tss)) = {ttid ,ts | tss(tid) = ts}

enabled((ss, tss)) = {ttid ,ts | tss(tid) = ts ∧ ttid ,ts(ss) is defined}

Given a transition ttid ,ts let thread(ttid ,ts) = tid yield the thread id of the transition. We

say that a transition t (and thread thread(t)) is enabled in state s iff t ∈ enabled(s). If

enabled(s) = ∅ then there are no transitions from this state and we say that s is a deadlock

state or terminal state.

For convenience, let enabledThreads(s) denote the enabled threads in s. Formally:

enabledThreads(s) = {tid | ∃t. t ∈ enabled(s) ∧ thread(t) = tid}

We will occasionally use object-oriented style dot-notation to apply functions that take

22

one argument. For example, we could write the previous definition as:

s.enabledThreads = {tid | ∃t. t ∈ s.enabled ∧ t.thread = tid}

We will also use dot-notation to access tuple components via the symbols from the original

definitions. For example, given a state s, we can access the shared state via s.ss and the

thread states via s.tss.

Transition example. As described above, a transition corresponds to a thread execut-

ing one visible operation (an operation that accesses the shared state) followed by a finite

number of invisible operations (that access only the thread state), up until immediately

before the next visible operation. Say thread tid is in thread state ts such that it is about

to execute the following statements:

1 i = g1;

2 if(i == 0) {

3 j = 1;

4 } else {

5 j = 2;

6 g1 = 1;

7 }

8 g2 = 3;

9 // ... [more statements]

Assume that g1 and g2 are global variables (part of the shared state) while i and j are local

variables (part of the thread state). The transition ttid ,ts represents all possible behaviours

for tid from thread state ts until the next visible operation. The transition also yields

the next transition for this thread (and there may be several possible next transitions

depending on the shared state parameter that the transition is applied to). Thus, the

transition ttid ,ts captures the fact that tid ’s instruction pointer is at line 1 as well as the

values of i and j (as these are represented in the thread state ts). Reading the value

of g1 from the shared state (into local variable i) is the visible operation of transition

ttid ,ts . Which invisible operations follow depends on the value read from g1. Similarly,

the next transition will either be one that first executes (as its visible operation) line 6

or line 8, depending on the the value read from g1. As explained, the execution of one

visible operation and multiple invisible operations is collapsed into a single transition, as

this is sufficient for finding all safety property violations, such as deadlocks and assertion

failures [God97].

23

Labelled transition system The overall semantics of a concurrent program can be

defined as a labelled transition system, P = (State,Transition, δ, s0), where State is the set

of all states, Transition is the set of all thread transition functions, δ is the set of labelled

state transitions and s0 is the initial state of the system.

2.2.3 Schedules

A schedule can be represented as a list of transitions S = 〈t1, t2, . . . , tk〉 such that there

exist states s0, s1, . . . , sk, where s0 is the initial state and s0
t1−→ s1 . . .

tk−→ sk. In other

words, a schedule is a path through the transition system. In our model, we assume

that all schedules are finite. This is a reasonable assumption because we consider target

programs that test some concurrency scenario and then terminate; we do not attempt to

reason about infinite schedules. We also assume that a transition cannot appear multiple

times in a schedule, which implies that thread states are not repeated. This simplifies the

presentation and can be enforced by assuming that each thread state stores the number

of operations it has executed so far in a local variable. Let state(S) denote sk, the state

reached by executing S from the initial state. If state(S) is a terminal state, then S is a

terminal schedule.

We use the following definitions for lists. Let S = 〈t1, . . . , tk〉 be a list. We define:

� dom(S) = {1, . . . , k}.

� last(S) = tk (the last element of the list).

� |S| = k (the length of the list).

� S(i) = ti, for i ∈ dom(S) (the ith element of the list).

� S[i : j] to be the sub-list of S from the ith to the jth element (inclusive): S[i : j] =

〈S(i), S(i + 1), . . . , S(j − 1), S(j)〉, where S[i : j] is defined to be 〈〉 if j < i. Any

elements in the resulting list that are not defined are omitted; e.g. S[−1 : 0] = 〈〉.

� S · S′ to be the concatenation of S with a second list S′ = 〈t′1, . . . , t′l〉. Thus,

S · S′ = 〈t1, . . . , tk, t′1, . . . , t′l〉.

Given a list S = w · 〈a, b〉 · u, we say that the elements a and b are adjacent in S.

2.2.4 Shared objects

Our model currently keeps the shared state abstract. However, it can be useful and

intuitive to view the shared state as a map from shared objects to values, so that a shared

24

state is a function: ss : Object→ Value. Thus, we refine our model by introducing:

� Object: The set of all shared objects. A shared object represents an individual global

variable (or perhaps the address of an individual byte in the heap), mutex, condition

variable, or any other shared data structure that is accessed by a visible operation.

� Value: The set of all values that shared objects can have, such as all 8-bit bit vectors

for shared bytes, and boolean values true and false for boolean variables.

We assume that each transition ttid ,ts only accesses a single shared object o; let obj (ttid ,ts)

denote this shared object. A transition becomes a partial function that takes a single value

and yields a value and thread state: ttid ,ts ∈ Value⇀ Value×ThreadState. The transition

relation δ is then defined by the following rule:

tss(tid) = ts o = obj (ttid ,ts) v = ss(o)

ttid ,ts(v) is defined ttid ,ts(v) = (v′, ts ′) ss ′ = ss[o 7→ v′] tss ′ = tss[tid 7→ ts ′]

(ss, tss)
ttid,ts−−−→ (ss ′, tss ′)

Thus, a transition is defined depending on the value of its accessed shared object and the

transition can only update the value of its accessed shared object as well as the thread state

of the corresponding thread. Assuming a single shared object that represents the entire

shared state is equivalent to our original model. Furthermore, in Chapter 4, we introduce

the notion of independent transitions; note that transitions can still be independent even

if they access the same shared object. Thus, we henceforth assume this refined model

without loss of generality.

2.3 Common visible operations

Our model abstracts away the different types of visible operations, such as locking a mutex,

writing to a shared variable, etc. However, it is useful to consider some common visible

operations that are typically assumed in practice and the shared objects that they access.

Furthermore, we demonstrate how to simulate thread creation and termination in our

model. We henceforth use operation to mean visible operation, unless otherwise stated.

Some common operations are:

� start: We typically assume that every thread’s first visible operation is a start

operation that accesses a shared object that represents the thread itself. We do

not require thread creation in our model; instead, we assume that a thread tid is

25

initially blocked on its start operation until some other thread “creates” thread

tid by updating the thread object of tid so that thread tid is now enabled and can

execute its start operation. Thus, the start operation does not have any effect,

other than providing an initial visible operation for every thread. We typically

assume that there is one initially enabled thread and, thus, its start operation does

not block.

� create: When executed by a thread, a create operation accesses a shared object

that represents some other thread tid . The operation represents “creating” thread

tid , as described above, such that thread tid ’s initial start operation is no longer

blocked.

� end: We typically assume that threads can “terminate”. When a thread tid termi-

nates, it executes the end operation that accesses a shared object that represents

the thread tid itself. We then assume the thread blocks forever on a second end

operation that again accesses the thread itself. Thus, the thread cannot execute any

further operations.

� join: When executed by a thread, a join operation accesses a shared object that

represents some other thread tid . The operation blocks iff thread tid has not yet

terminated by executing its first end operation. Thus, we assume that the first

end operation updates the value of the shared object for thread tid such that join

operations that access thread tid no longer block.

� read: A read operation reads the value of a shared variable. Thus, the shared

variable’s value is not changed.

� write: A write operation updates the value of a shared variable.

� lock: A lock operation accesses a mutex. We can let the value of a mutex be ⊥
iff no thread owns the mutex or thread id tid ∈ Tid iff thread tid owns the mutex.

A lock executed by thread tid blocks if the mutex value is not ⊥. Otherwise, the

value is ⊥ and so the operation is enabled and updates the mutex state to tid .

� unlock: An unlock operation unlocks a mutex. We assume that a thread tid must

only ever try to unlock a mutex that it owns (i.e. that has state tid). Doing otherwise

could be treated as an invalid program or could be assumed to be a bug in the

program such that further exploration is unnecessary. Thus, we assume that an

unlock operation executed by thread tid is enabled iff the mutex state is tid and

updates the state of the mutex to ⊥.

26

3 Empirical Study

In this chapter, we present an independent empirical study of SCT techniques. This

is motivated by the lack of comparison and independent empirical evaluation of SCT

techniques prior to our work. We gathered 49 buggy concurrent software benchmarks from

public code bases which we call SCTBench. We applied a modified version of an existing

concurrency testing tool, called Maple, to SCTBench, testing five SCT techniques: depth-

first search (DFS), iterative preemption bounding (IPB), iterative delay bounding (IDB),

a controlled random scheduler, and probabilistic concurrency testing (PCT).

We attempted to answer several research questions, including:

� Which technique performs the best in terms of bug finding ability?

� Does PCT beat the other techniques as in previous work?

� How effective are the two main schedule bounding techniques, preemption bounding

and delay bounding, at finding bugs?

� What challenges are associated with applying concurrency testing techniques to ex-

isting code?

� Can we classify certain benchmarks as trivial or non-trivial?

Our main findings are:

� PCT (with parameter d=3) was the most effective technique in terms of bug finding;

it found all the bugs found by the other techniques, plus an additional three, and it

missed only one bug.

� Surprisingly, the “näıve” controlled random scheduler, which randomly chooses one

thread to execute at each scheduling point, performed well, finding more bugs than

preemption bounding and just two fewer bugs than delay bounding. In particular,

random scheduling performed better than preemption bounding and delay bound-

ing on the work stealing queue benchmark which was originally used to evaluate

preemption bounding and delay bounding.

27

� Delay bounding was superior to preemption bounding and schedule bounding was

superior to an unbounded DFS, as in prior work.

� The majority of bugs in SCTBench can be exposed using a small schedule bound

(1-2), supporting previous claims, although one benchmark requires 5 preemptions.

� The need to remove nondeterminism and control all synchronisation (as is required

for SCT) can be nontrivial. There were 8 distinct programs that could not easily

be included in out study, such as those that perform network and inter-process

communication.

� Some of the benchmarks used in prior work are arguably trivial. We report vari-

ous properties about the benchmarks tested, such as the fact that the bugs in 18

benchmarks were exposed 50% of the time when using random scheduling. We note

that future work should not use the benchmarks that we classify as trivial when

presenting new techniques, other than as a minimum baseline.

To make our study reproducible, we provide the 49 benchmarks (SCTBench), our scripts,

and the modified version of Maple used in our experiments, online:

https://github.com/mc-imperial/sctbench

We believe SCTBench will be valuable for future work on concurrency testing in general

and SCT in particular. Our results are given in terms of number of schedules, not time,

which allows them to be easily compared with other work and tools.

Relation to published work The core material of this chapter was published in our

conference paper [TDB14] and journal paper [TDB16].

3.1 Motivation

Prior work suggests that schedule bounding techniques (introduced in §2.1), like preemp-

tion bounding [MQ07b] and delay bounding [EQR11], are effective techniques for finding

concurrency bugs [MQ07b, EQR11]. The evaluation of these techniques has focused on

a particular set of C# and C++ programs that target the Microsoft Windows operating

system, most of which are not publicly available. Furthermore, this prior work typically

uses an unbounded DFS as a baseline but does not consider other straightforward SCT

techniques, such as a controlled random scheduler that randomly chooses a thread to

28

https://github.com/mc-imperial/sctbench

execute after each step.1 The PCT algorithm [BKMN10] is another technique that has

been shown to find bugs in large applications such as Mozilla Firefox and Internet Ex-

plorer [BKMN10]; these applications were not made to be deterministic but we note that

PCT can be used as an SCT technique when applied to deterministic programs. However,

a thorough comparison of PCT with other SCT techniques has not been conducted.2 We

believe that these exciting and important claims about the effectiveness of SCT techniques

would benefit from further scrutiny using a wider range of publicly available benchmarks.

To this end, we present an independent, reproducible empirical study of SCT techniques.

We have put together SCTBench, a set of 49 publicly available benchmarks gathered from a

combination of stand-alone multithreaded test cases and test cases drawn from 13 distinct

applications and libraries. These are benchmarks that have been used in previous work

to evaluate concurrency testing tools (although mostly not in the context of SCT), with

a few additions, which we have made amenable to SCT. We use an extended version of

Maple [YNPP12], an open source concurrency testing tool, to test the benchmarks.

3.2 The techniques

In this section, we describe each technique that we evaluate: an unbounded DFS, iterative

preemption bounding, iterative delay bounding, PCT and controlled random scheduling.

We also discuss upper bounds of the DFS-based techniques in terms of the number of

terminal schedules and describe the probabilistic guarantee given by the PCT algorithm.

3.2.1 Unbounded depth-first search (DFS)

SCT is typically implemented using an unbounded DFS so that the remaining schedules

that need to be explored can be efficiently stored using a stack data structure, where the

maximum height of the stack is equal to the number of steps (transitions) in the longest

schedule.

The DFS algorithm can be represented as the recursive procedure in Algorithm 1. Thus,

note that the schedule-space can conceptually be represented as a prefix-tree, where each

node is a schedule and the branches of a node are the enabled transitions at the scheduling

point. Recall that we are performing a dynamic analysis and so the schedule tree is not

known a priori; it is discovered on-the-fly. In other words, the use of state(S) corresponds

1We note that [MQ07b] plots the state (partial-order) coverage of preemption bounding against a
technique called “random” on a single benchmark, but the details of this and the bug finding ability are
not mentioned.

2We note that [BKMN10] compares PCT against the use of random sleeps, but not against controlled
random scheduling. PCT is also compared against preemption bounding, but only on two benchmarks.

29

Algorithm 1 Unbounded DFS algorithm (DFS).

1: procedure Explore(S)
2: for each t ∈ enabled(state(S))
3: Explore(S · 〈t〉)
4: end procedure

to forcing the schedule S on the program under test so that the enabled threads can be

inspected. After exploring the first terminal schedule, the search then backtracks to the

most recent scheduling point; the next schedule is explored by executing the program from

the start, replaying the previous schedule up to the most recent scheduling point, schedul-

ing the next enabled thread and then continuing to schedule threads until termination

once again. Algorithm 1 does not specify the order in which enabled transitions should

be explored from each state. In our implementation in Maple §3.3, we explore enabled

transitions in thread creation order, starting with the most recently executing thread and

wrapping in a round-robin fashion. For example, if the last transition of a schedule S was

from thread 3, then the order in which threads will be explored (if enabled) from state(S)

is [3, 4, . . . , n, 1, 2] (assuming n threads). We cover the implementation of an SCT tool in

more detail in Chapter 5.

When the search completes, all terminal schedules (and all terminate states) have been

explored. A key downside to this baseline approach is that the number of schedules

increases exponentially with the length of the program (the number of transitions in a

terminal schedule). Thus, exploring all schedules is usually infeasible. If the search does

not complete, there is no coverage guarantee. Furthermore, since the search order is depth-

first, an incomplete search is likely to favour exploring many different preemptions at deep

scheduling points (i.e. towards the end of the execution). This can mean that schedules

with earlier preemptions are not considered. Thus, bugs that require early preemptions

will be missed.

3.2.2 Iterative preemption bounding

Preemption bounding [MQ07b] uses a DFS but bounds the number of preemptive context

switches in a schedule. A context switch occurs in a schedule when control switches from

one thread to another. Formally, given a schedule S, transition S(i) is a context switch if

and only if:

i > 1 and S(i).thread 6= S(i− 1).thread

30

Algorithm 2 Preemption bounding algorithm.

1: procedure Explore(S)
2: for each t ∈ enabled(state(S))
3: if PC(S · 〈t〉) ≤ c
4: Explore(S · 〈t〉)
5: end procedure

A preemptive context switch (a preemption) is a context switch away from a thread that

was enabled (and thus was preempted from continuing). Consider a context switch S(i).

Let s = state(S[1 : i−1]) be the state that is reached immediately after transition S(i−1)

and before transition S(i). Transition S(i) is a preemption iff S(i−1).thread is enabled in

s. In other words, the schedule could have continued with S(i− 1).thread , but S(i).thread

was executed instead.

We define the preemption count PC of a schedule recursively. A schedule of length zero

or one has no preemptions. Otherwise:

PC(S · 〈t〉) =


PC(S) + 1 if last(S).thread 6= t.thread

∧ last(S).thread ∈ state(S).enabledThreads

PC(S) otherwise

With a preemption bound of c, any schedule S with PC(S) > c will not be explored.

Algorithm 2 shows the preemption bounding algorithm as a recursive procedure; the re-

cursive call is only made if the schedule has a preemption count that is less than or equal

to the preemption bound c. Note that for given any schedule S, there must exist a transi-

tion t in state(S).enabled that can be explored without increasing the preemption count,

unless state(S) is a terminal state.

The idea behind preemption bounding is that it greatly reduces the number of schedules,

but still allows many bugs to be found [MQ07b, MQB+08, EQR11]. The intuition is that

many bugs only require a few preemptions at at the right places in order to manifest. In

contrast, an unbounded search is unlikely to complete within feasible time, as described

above. Thus, using a low preemption bound increases the chance of exploring all schedules

within the preemption bound, without exceeding the time or schedule limit, which will

include exploring preemptions at various depths.

Example 1. Consider Figure 3.1, which shows a simple multithreaded program. Thread

T0 launches three threads concurrently and is then disabled. All variables are initially zero

and threads execute until there are no statements left. We refer to the visible operations of

31

T0
a) create(T1,T2,T3)

T1
b)
c)

x=1

y=1

T2
d) z=1

T3
e) assert(x==y)

Figure 3.1: Simple multithreaded program.

Algorithm 3 Iterative preemption bounding algorithm.

1: procedure IPB
2: c = 0
3: repeat
4: Explore(〈〉) . Preemption bounding procedure from Algorithm 2
5: c = c+ 1
6: until Explore did not skip any schedules
7: end procedure

each thread via the statement labels (a, b, c, etc.) and we (temporarily) represent schedules

as a list of labels.

An example of a schedule with zero preemptions is 〈a, b, c, e, d〉. Note that, for example,

e is not a preemption in this particular schedule because T1 has no more statements and

so is considered disabled after c. A schedule that causes the assertion e to be violated is

〈a, b, e〉; this schedule has one preemption at operation e. The bug will not be found with

a preemption bound of zero, but will be found with any greater bound.

Instead of picking a preemption bound, it is possible to perform iterative preemption

bounding, where the preemption bound is initially set to zero and incremented after each

search completes. Iterative preemption bounding is shown in Algorithm 3, which calls Ex-

plore from Algorithm 2. The process repeats until the preemption bound was increased

enough to allow all schedules to be explored or until the time limit is reached. There-

fore, iterative preemption bounding essentially defines a partial-order in which to explore

schedules: schedule S will be explored before schedule S′ if PC(S) < PC(S′). Thus, iter-

ative preemption bounding is a heuristic that prioritises schedules with a low preemption

count, aiming to expose buggy schedules before the time or schedule limit is reached. Note

that iterative preemption bounding will repeat schedules after the first call to Explore

because each call will search for all schedules with at most c preemptions. Thus, the first

call will explore schedules with 0 preemptions, the second will explore schedules with 0–1

preemptions, the third will explore schedules with 0–2 preemptions, etc.

32

3.2.3 Iterative delay bounding

Delay bounding bounds the number of delays (deviations from a deterministic scheduler)

in a schedule. A delay conceptually corresponds to blocking the thread that would be

chosen by the scheduler at a scheduling point, which forces the next thread to be chosen

instead. The blocked thread is then immediately re-enabled. As such, delay bounding

requires an underlying deterministic scheduler. In the remainder of this thesis we assume

that delay bounding is applied in the context of a non-preemptive round-robin scheduler

that considers threads in thread creation order, starting with the most recently executing

thread. We assume this instantiation of delay bounding because it has been used in

previous work [EQR11] and is straightforward to explain and implement.

The following is a definition of the delay count of a schedule assuming the non-preemptive

round-robin scheduler. Assume that each thread id is a non-negative integer, numbered

in order of creation; the initial thread has id 0, and the last thread created has id

N − 1. For two thread ids x, y ∈ {0, . . . , N − 1}, let distance(x, y) be the unique integer

d ∈ {0, . . . , N − 1} such that (x + d) mod N = y. Intuitively, this is the “round-robin

distance” from x to y. For example, given four thread ids {0, 1, 2, 3}, distance(1, 0) is 3.

For a schedule S and thread id tid , let delays(S, tid) yield the number of delays required

to schedule thread tid at the state reached by S:

delays(S, tid) = |{ x : 0 ≤ x < distance(last(S).thread , tid)) ∧
(last(S).thread + x) mod N ∈ state(S).enabledThreads }|

This is the number of enabled threads that are skipped when moving from last(S).thread

to tid . For example, let last(S).thread = 3, state(S).enabledThreads = {0, 2, 3, 4} and

N = 5. Then, delays(S, 2) = 3 because in order to execute thread 2, threads 3, 4 and 0

are skipped (but not thread 1, because it is disabled).

We define the delay count DC of a schedule recursively. A schedule of length zero or

one has no delays. Otherwise:

DC(S · 〈t〉) = DC(S) + delays(S, t.thread)

With a delay bound of c, any schedule S with DC(S) > c will not be explored. The algo-

rithm for delay bounding is identical to algorithm for preemption bounding (Algorithm 2),

except that the preemption count PC is replaced with the delay count DC. As in pre-

emption bounding, note that for given any schedule S, there must exist a transition t in

state(S).enabled that can be explored without increasing the delay count, unless state(S)

33

T0
a) create(T1 ,T2 ,T3)

T1
b)
c)

x=1

y=1

T2
f)
g)

x=1

y=1

T3
e) assert(x==y)

Figure 3.2: Adversarial delay-bounding example.

is a terminal state.

The intuition behind delay bounding is similar to that of preemption bounding; that

is, many bugs can be found with only a few preemptions or delays [MQ07b, MQB+08,

EQR11]. The extra idea behind delay bounding is that it often also does not matter which

thread is switched to after a preemption; thus, allowing only the next enabled thread

without spending additional delays reduces the number of schedules more than preemption

bounding, while still allowing many bugs to be found. Indeed, given all schedules of a

program, the subset with at most c delays is a subset of the schedules with at most c

preemptions. Thus, delay bounding always reduces the number of schedules by at least as

much as preemption bounding.

Example 2. Consider Figure 3.1 once more. Assume thread creation order 〈T0, T1, T2, T3〉.
The assertion can also fail via: 〈a, b, d, e〉, with one delay/preemption at d. However, a

preemption bound of one yields 11 terminal schedules, while a delay bound of one yields

only 4 (assume that an assertion failure is a terminal state).

Now consider Figure 3.2, which is a modified version of the program where the state-

ments of T2 have been replaced with the same statements as T1, which we label as f) and

g). Now, the assertion cannot fail with a delay bound of one because two delays must occur

so that T1 and T2 do not execute all their statements. For example, 〈a, b, e〉 exposes the

bug, but executing e uses two delays. However, this schedule only has one preemption, so

the assertion can still fail under a preemption bound of one.

Adding an additional n threads between T1 and T3 (in the creation order) with the same

statements as T1 will require n additional delays to expose the bug, while still only one

preemption will be needed. Empirical evidence [EQR11] suggests that adversarial examples

like this are not common in practice. Our results (§3.7) also support this.

As with preemption bounding, it is possible to perform iterative delay bounding, where

the delay bound is initially set to zero and incremented after each search completes.

The algorithm for iterative delay bounding is identical to Algorithm 3, except Explore

must be a delay bounded search. As with iterative preemption bounding, iterative delay

bounding will repeat schedules after the first call to Explore.

34

3.2.4 Controlled random scheduling

A controlled random scheduler uses randomisation to determine the schedule that is ex-

plored. At each scheduling point, one transition is randomly chosen from the set of enabled

transitions using a uniform distribution. Unlike schedule fuzzing, where random sleeps

are used to perturb the OS scheduler [BAEFU06], the random scheduler fully controls

scheduling nondeterminism. As with any SCT technique, the executed schedule can easily

be recorded and replayed (because schedule nondeterminism is controlled). However, no

information is saved for subsequent executions. Thus, it is possible that the same schedule

will be explored multiple times. The search cannot “complete”, even for programs with

a small number of schedules. Additionally, a random scheduler can be used on programs

that exhibit nondeterminism beyond scheduler nondeterminism, although schedule replay

would be unreliable. In this thesis, we consider only deterministic programs.

3.2.5 Probabilistic Concurrency Testing

The PCT algorithm [BKMN10] uses a randomised priority-based scheduler such that the

highest priority enabled thread is scheduled at each scheduling point. A bounded number

of priority change points are inserted at random depths in the execution which change the

currently executing thread’s priority to a low value. Importantly, the random depths of

the change points are chosen in advance, uniformly over the estimated number of steps

(transitions) of a schedule. This is in contrast to random scheduling, where a random

choice is made at every step.

More formally, the algorithm is described in [BKMN10] as follows. Given a program

with at most n threads and at most k steps (in a single terminal schedule), choose a

bound d. Note that it is necessary to have estimates for n and k; these can be obtained

by performing several profiling runs, which we discuss further in §3.6. The algorithm then

performs the following for each execution of a single schedule:

1. Randomly assign each of the n threads a distinct initial priority value from {d, d+

1, . . . , d+n}. The lower priority values {1, . . . , d−1} are reserved for priority change

points.

2. Randomly pick integers k1, . . . , kd−1 from {1, . . . , k}. These will be the priority

change points.

3. Schedule threads strictly according to their priorities; never schedule a thread if

a higher priority thread is enabled. In other words, from a state s, execute the

35

transition t from s.enabled iff there does not exist t′ in s.enabled such that t.thread

has a lower priority than t′.thread . After executing the ki-th step (1 ≤ i < d), change

the priority of the thread that executed the step to i.

Example 3. Once again, consider the program in Figure 3.2. For this program, the

number of threads is n = 4 and the number of steps is k = 6. One way for the bug to occur

is for statement e to occur after b but before c. This is possible with one priority change

point, so let d = 2. Assume the initial random thread priorities chosen are:

{T0 7→ 5, T1 7→ 4, T3 7→ 3, T2 7→ 2}.

Assume the random priority change point chosen is k1 = 2. Thus, the schedule that will

be explored is: 〈a, b, e〉, which causes the assertion to fail. Statement a is executed because

T0 has the highest priority. T0 then becomes disabled, so T1 becomes the highest priority

thread that is enabled and b is executed. At this point, step 2 was just executed; thus, the

priority change point is triggered and T1’s priority is lowered to 1. T3 becomes the highest

priority thread that is enabled and so e is executed.

The work on PCT also introduces the idea of a bug depth metric—not to be confused

with the depth (number of steps) of a schedule. The bug depth is defined as the minimum

set of ordering constraints between instructions from different threads that are sufficient

to trigger the bug [BKMN10]. Assuming a bug with bug depth d, the probability of the

PCT algorithm detecting the bug on a single execution is 1/nkd−1 (inverse exponential in

d).

As with random scheduling (and unlike DFS-based approaches), no information is saved

for subsequent executions, so the search cannot “complete” and the technique can be used

on programs with nondeterminism. Similar to schedule bounding, the intuition behind

PCT is that many concurrency bugs typically require certain orderings between only a

few instructions in order to manifest [MQ07b, MQB+08, EQR11, LPSZ08].

3.2.6 Upper bounds on number of terminal schedules and probabilistic

guarantees

Upper-bounds for the number of terminal schedules produced by the above DFS techniques

are described in [MQ07b, EQR11]. In summary, assume at most n threads and at most

k steps in each thread. Of those k, at most b steps block (cause the executing thread to

become disabled) and i steps do not block. The upper bound for an unbounded DFS is

exponential in n and k, and thus infeasible for programs with a large number of steps.

36

With a scheduling bound of c, the upper bound for preemption bounding is exponential in

c (a small value), n (often, but not necessarily, a small value) and b (usually much smaller

than k). Crucially, it is no longer exponential in k. The upper bound for delay bounding

is exponential only in c (a small value). Thus, delay bounding performs well (in terms of

number of terminal schedules) even when programs create a large number of threads.

As explained above, PCT gives a probabilistic guarantee: assuming a bug with bug

depth d, the probability of finding the bug with PCT on a single execution is 1/nkd−1

(inverse exponential in d).

3.3 Maple

We chose to use a modified version of the Maple tool [YNPP12] to conduct our study.

Maple is a concurrency testing tool framework for pthread [LB98] programs. It uses the

dynamic instrumentation library, PIN [L+05], to test binaries without the need for recom-

pilation. One of the modules, systematic, is a re-implementation of the CHESS [MQB+08]

algorithm for preemption bounding. The main reason for using Maple, instead of CHESS,

is that Maple targets pthread programs. This allows us to test a wide variety of open

source multithreaded benchmarks and programs. Previous evaluations [MQ07b, MQB+08,

EQR11] focus on C# programs and C++ programs that target the Microsoft Windows

operating system, most of which are not publicly available. In addition, CHESS requires

re-linking the program with a test function that can be executed repeatedly; creating this

type of test harness requires resetting the global state (e.g. resetting the value of global

variables) and joining any remaining threads, which can be non-trivial. In contrast, Maple

can test native binaries out-of-the-box, by restarting the program for each terminal sched-

ule that is explored. A downside of this approach is that it is slower. Checking for data

races is also supported by Maple; as discussed later in §3.6, this is important for identify-

ing visible operations. The public version of CHESS can only interleave memory accesses

in native code if the user adds special function calls before each access.3 We now discuss

further implementation details.

Depth-first search As explained in §2.1, SCT techniques often use a DFS in order to

efficiently store the remaining unexplored schedules using a stack data structure. The type

of DFS determines the order in which schedules are explored—recall from §3.2.1 that the

schedule space can be represented as a prefix-tree, where each node is a schedule and the

3See “Why does wchess not support /detectraces?” at http://social.msdn.microsoft.com/Forums/

en-us/home?forum=chess

37

http://social.msdn.microsoft.com/Forums/en-us/home?forum=chess
http://social.msdn.microsoft.com/Forums/en-us/home?forum=chess

branches of a node are the enabled transitions at the state reached by the schedule. In

our study, we use a left-recursive DFS where child branches (transitions) are ordered by

thread ids in thread creation order, starting with the most recently executing thread and

wrapping in a round-robin fashion. Thus, the initial execution explores the non-preemptive

round-robin schedule; this is the same for all techniques that use a DFS: unbounded DFS,

iterative preemption bounding and iterative delay bounding. We discuss the impact of

using a DFS on our study in §3.6.

Preemption bounding Maple already included support for preemption bounding, us-

ing the underlying DFS approach.

Delay bounding We modified Maple to add support for delay bounding, following a

similar design to preemption bounding. At each scheduling point, Maple conceptually

constructs several schedules consisting of the current schedule concatenated with an en-

abled transition t. If executing t will cause the delay bound to be exceeded (as explained

in §3.2.3), the schedule is not considered.

Controlled random scheduling Maple already included a controlled random scheduler

(although this was not used in prior work [YNPP12]). As explained in §3.2.4, at each

scheduling point, one transition is randomly chosen from the set of enabled transitions

using a uniform distribution; that transition is then scheduled for one step.

PCT algorithm Prior to our modifications, Maple already included a version of PCT

implemented using Linux scheduler priorities [YNPP12]. By changing settings of the

Linux scheduler, it is apparently possible to implement strict priorities, as required for

PCT. However, in order to ensure that we are using an implementation that is identical

to the one described in the original PCT paper [BKMN10], we re-implemented PCT

within the SCT framework of Maple; as such, our implementation is very similar to the

pseudocode from the PCT paper. This also makes the comparison fair, as all techniques are

implemented on the same framework (except for the Maple algorithm). Another reason

this was necessary was so that we could run the experiments on our cluster (see §3.7),

where it is not possible to change the settings of the Linux scheduler.

Modelling of blocking operations All the techniques used in our study are imple-

mented in Maple’s SCT framework (except the Maple algorithm). Immediately before

each visible operation (e.g. pthread function or shared memory access), the set of enabled

38

transitions is determined; if the operation that a thread is about to execute will block,

then the thread is considered to be disabled. In this case, control is returned to Maple’s

scheduler and the thread is marked as disabled. Similarly, when an operation enables

other threads, the threads must be marked as enabled at the next scheduling point. We

did not add heuristics for automatically detecting when threads become enabled/disabled

(e.g. [NBMM12]). Thus, all potentially blocking operations must be implemented/mod-

elled in Maple.

Maple algorithm The Maple tool uses a non-SCT technique by default, which we

refer to as the Maple algorithm [YNPP12]. This algorithm performs several profiling

runs, where the schedule is not controlled, recording patterns of inter-thread dependen-

cies through shared-memory accesses. From the recorded patterns, it predicts possible

alternative interleavings that may be feasible, which are referred to as interleaving idioms.

It then performs active runs, influencing thread scheduling to attempt to force untested

interleaving idioms, until none remain or they are all deemed infeasible (using heuristics).

Unlike SCT, Maple does not serialise execution. Though non-SCT techniques are gener-

ally beyond the scope of this work, we test the Maple algorithm in our study since it is

readily available in the tool.

Busy-wait loops A busy-wait loop (or spin loop) is a loop that repeatedly checks

whether another thread has written to a shared variable before exiting the loop. These

must be handled specially in SCT because the presence of such a loop means there is

an infinite length schedule where the looping thread is never preempted. To handle this,

we manually inserted a call to yield in every busy-wait loop. We also modified Maple so

that, during a DFS, a preemption was forced at every yield operation, without increasing

the preemption or delay count. This is unsound, as such operations do not guarantee a

preemption to another thread in practice and certain bugs may require a yield to not be

preempted. Prior work provides a sound solution using thread priorities [MQ08], as long

as yield statements are added appropriately. However, due to its simplicity and efficiency,

and the fact that we are already testing multiple different scheduling algorithms, we used

the simpler unsound approach in this study. Furthermore, for benchmarks that use busy-

wait loops, forcing a preemption at yield always allows the bug to manifest and guarantees

termination (based on our understanding of the benchmarks). All such bugs were indeed

found by schedule bounding in our study (except the bug in misc.safestack, which was

not found by any technique).

Busy-wait loops must also be handled specially in PCT. In the original PCT pa-

39

Benchmark set Benchmark types # used # skipped

CB Test cases for real applications 3 17 networked applications.

CHESS Test cases for several versions of a work
stealing queue

4 0

CS Small test cases and some small programs 29 24 were non-buggy.

Inspect Small test cases and some small programs 1 28 were non-buggy.

Miscellaneous Test case for lock-free stack and a debug-
ging library test case

2 0

PARSEC Parallel workloads 4 29 were non-buggy.

RADBenchmark Tests cases for real applications 3 5 Chromium browser; 4 net-
working; 3 (see text).

SPLASH-2 Parallel workloads 3 9 (see text).

Table 3.1: An overview of the benchmark suites used in the study.

per [BKMN10], the authors state that their implementation uses heuristics to identify

threads that are not making progress and lowers their priorities with a small probability.

In our implementation, we change the priority of the current thread to the lowest possible

priority immediately after it executes a yield operation.

3.4 Benchmark Collection

We have collected a wide range of pthread benchmarks from previous work and other

sources. We have ensured that all benchmarks are deterministic (modulo scheduling non-

determinism) and that all potentially blocking functions are modelled in Maple (or replaced

with simpler primitives that are modelled in Maple). Thus, our benchmarks are amenable

to SCT and work with Maple’s SCT framework. As a result, some benchmarks that use

network communication, inter-process communication, less common synchronisation etc.,

were skipped, as getting these benchmark to work would require significant engineering

effort.

Table 3.1 summarises the benchmark suites (with duplicates removed), indicating where

it was necessary to skip benchmarks. “Non-buggy” means there were no existing bugs

documented and we did not find any during our examination of the benchmark. We now

provide details of the benchmark suites (§3.4.1) and challenges of the application of SCT

identified through our benchmark gathering exercise (§3.4.2).

40

3.4.1 Details of benchmark suites

Concurrency Bugs (CB) Benchmarks [YN09] Includes buggy versions of programs

such as aget (a file downloader) and pbzip2 (a file compression tool). We modified aget,

modelling certain network functions to return data from a file and to call its interrupt

handler asynchronously. Many benchmarks were skipped due to the use of networking,

multiple processes and signals (apache, memcached, MySQL).

CHESS [MQB+08] A set of test cases for a work stealing queue, originally imple-

mented for the Cilk multithreaded programming system [FLR98] under Windows. The

WorkStealQueue (WSQ) benchmark has been used frequently to evaluate concurrency test-

ing tools [MQ08, MQB+08, MQ07b, MQ07a, BKMN10, NBMM12]. We manually trans-

lated the benchmarks to use pthreads and C++11 atomics; a heap corruption error oc-

curred when running two of the tests natively (without Maple). We fixed this issue and

SCT revealed a bug that is much rarer, which we use in the study.

Concurrency Software (CS) Benchmarks [CF11] Examples used to evaluate the

ESBMC tool [CF11], including small multithreaded algorithm test cases (e.g. bank account

transfer, circular buffer, dining philosophers, queue, stack), a file system benchmark and

a test case for a Bluetooth driver. These tests included unconstrained inputs. None of the

bugs are input dependent, so we selected reasonable concrete values. We had to remove

or define various ESBMC-specific functions to get the benchmarks to compile.

Inspect Benchmarks [YCG08] Used to evaluate the INSPECT concurrency testing

tool. We skipped the swarm isort64 benchmark, which did not terminate after five min-

utes when performing data race detection (see §3.6). There were no documented bugs,

and testing all benchmarks revealed a bug in only one benchmark, qsort mt, which we

include in the study.

Miscellaneous We encountered two individual test cases, which we include in the study.

The safestack test case, which was posted to the CHESS forums4 by Dmitry Vyukov, is

a lock-free stack designed to work on weak-memory models. The bug exposed by the test

case also manifests under sequential consistency, so it should be detectable by existing

SCT tools. Vyukov states that the bug requires at least three threads and at least five

4See “Bug with a context switch bound 5” at http://social.msdn.microsoft.com/Forums/en-US/

home?forum=chess

41

http://social.msdn.microsoft.com/Forums/en-US/home?forum=chess
http://social.msdn.microsoft.com/Forums/en-US/home?forum=chess

preemptions. Previous work reported a bug that requires three preemptions [EQR11],

which was the first bug found by CHESS that required that many preemptions.

The ctrace test case, obtained from the authors of [KZC12], exposes a bug in the ctrace

multithreaded debugging library.

PARSEC 2.0 Benchmarks [Bie11] A collection of multithreaded programs from

many different areas. We used ferret (content similarity search) and streamcluster

(online clustering of an input stream), as these contain known bugs. We created three

versions of streamcluster, each containing a distinct bug. One of these is from an older

version of the benchmark and another was a previously unknown bug which we discov-

ered during our study (see Memory safety in §3.4.2). We configured the streamcluster

benchmarks to use non-spinning synchronisation and added a check for incorrect output.

All benchmarks use the “test” input values (the smallest) with two threads, except for

streamcluster2, where the bug requires three threads.

RADBenchmark [JPPS11] Consists of 15 tests that expose bugs in several applica-

tions. The 3 benchmarks we use test parts of Mozilla SpiderMonkey (the Firefox JavaScript

engine) and the Mozilla Netscape Portable Runtime Thread Package, which are suitable

for SCT. We skipped 9 benchmarks due to use of networking and multiple processes. Sev-

eral tested the Chromium browser; the use of a GUI leads to nondeterminism that cannot

be controlled or modelled by any SCT tools we know of. We skipped 3 benchmarks

which behave unexpectedly when running under Maple’s SCT framework. We reduced

the thread counts and parameter values of stress tests, as is appropriate for SCT (see

Stress tests in §3.4.2). Compared to the original version of this study [TDB14], we com-

piled the RADBench benchmarks with different compiler flags so that certain provided

libraries are statically linked; Maple works with both dynamically and statically linked

libraries, but we wanted to ensure that the same libraries are used when we uploaded the

benchmarks to machines in our cluster.

SPLASH-2 [W+95] Three of these benchmarks have been used in previous work [PLZ09,

BKMN10]. SPLASH-2 requires a set of macros to be provided; the bugs are caused by

a set that fail to include the “wait for threads to terminate” macro. Thus, all the bugs

are similar. For this reason, we just use the three benchmarks from previous work, even

though the macros are likely to cause issues in the other benchmarks. We added assertions

to check that all threads have terminated as expected. We reduced the values of input

parameters, such as the number of particles in barnes and the size of the matrix in lu, so

42

the tests could run without exhausting memory (due to Maple’s data race detector). Re-

ducing parameters as much as possible is appropriate for SCT (see Stress tests in §3.4.2);

we discuss this further in §3.7.

3.4.2 Effort required to apply SCT

We restrict our benchmarks to those where we can apply SCT so that we can apply all

techniques to all benchmarks (recall that random scheduling and PCT can be applied to

nondeterministic programs). We encountered a range of issues when trying to apply SCT

to the benchmarks, which we now discuss.

Environment modelling When applying SCT, system calls that interact with the en-

vironment, and hence can give nondeterministic results, must be modelled or fixed to

return deterministic values. Similarly, depending on the framework being used, functions

that can cause threads to become enabled or disabled must be handled specially, as they

affect scheduling decisions. This includes the forking of additional processes, which re-

quires both modelling and engineering effort to make the testing tool work across different

processes. For the above reasons, a large number of benchmarks in the CB and RAD-

Benchmark suites had to be skipped because they involve testing servers, using several

processes and network communication. Modelling network communication and testing

multiple processes are both non-trivial tasks. We believe the difficultly of controlling non-

determinism and synchronisation is a key issue in applying SCT to existing code bases.

However, note that non-SCT techniques can handle programs with nondeterminism and

unmodelled synchronisation, depending on how the techniques are implemented; for ex-

ample, controlled random scheduling does not require deterministic programs (although

bug replay will be unreliable) and blocking synchronisation functions can be detected

approximately (on-the-fly) using heuristics [NBMM12].

Isolated concurrency testing An alternative to creating an environment model that

can be reused is to create isolated tests that test one component against one-off “mock”

versions of any dependent components. In this way, any nondeterminism in the mock

components can be fixed. This is similar to unit testing but with multiple threads. Un-

fortunately, we found that many programs are not designed in a way that makes this

easy. An example is the Apache httpd web server. The server module that we inspected

had many dependencies on other parts of the server and called system functions directly,

making it difficult to create an isolated test case. Apache developers test the server as a

43

whole; network packets are sent to the server by a script running in a separate process.

Note that it is also difficult to apply (sequential) unit testing to such software.

Many applications in the CB benchmarks use global variables and function-static vari-

ables that are scattered throughout several source files. These would need to be handled

carefully with SCT tools that require a repeatable function to test, such as CHESS, in

which the state must be reset when the function returns. This is not a problem for Maple,

which restarts the test program for every schedule explored.

Stress tests Some of the benchmarks we obtained were stress tests, such as those in

RADBench. These benchmarks create a large number of threads that undertake a signif-

icant amount of computation to increase the chance of exploring an unlikely interleaving

under the OS scheduler. Increasing the amount of work is often achieved by increasing

the size of the inputs or making threads execute work in a loop. In the context of SCT,

this is extremely inefficient and unnecessary; instead, the number of threads and other

parameters should be reduced as much as possible, as SCT ensures that many interleav-

ings will be explored. Artificially increasing the thread count and parameters to make

the benchmark “harder” is not representative of how one should use SCT for bug-finding.

Thus, we chose the minimum thread counts and parameters when converting stress tests

and CPU performance benchmarks; for example, the PARSEC benchmarks accept “num-

ber of threads” (t) and “input size” parameters, which we set to “two threads” and “test

size” (the smallest input size option), respectively. However, note that many benchmarks

still create more than t threads; for example, the ferret benchmark creates a pipeline

of threads where each stage in the pipeline contains t threads. In practice, one may also

increase the thread count and other parameters iteratively, in case there exist bugs that

depend on higher thread counts or parameter values. However, prior work suggests that

most concurrency bugs only require certain orderings between a small number of threads

(typically two) [LPSZ08]. There was one instance where we knew we had to increase the

thread count above the minimum for the bug to manifest; for the streamcluster2 bench-

mark from the PARSEC benchmark suite, we changed the “number of threads” parameter,

t, from two to three.

Memory safety We found that certain concurrency bugs manifest as out-of-bounds

memory accesses, which do not always cause a crash. We implemented an out-of-bounds

memory access detector on top of Maple, which allowed us to detect a previously un-

known bug in the PARSEC streamcluster3 benchmark. Unfortunately, detecting out-

of-bound memory accesses is a non-trivial problem and our implementation had many

44

false-positives where memory allocation was missed or where libraries access bookkeeping

information that lies outside of malloced regions. Furthermore, the extra instrumentation

code caused a slow-down of up to 8x; Maple’s existing information on allocated memory

was not designed to be speed-efficient. We disabled the out-of-bound access detector in

our experiments, but we note that a production quality concurrency testing tool would re-

quire an efficient method for detecting out-of-bound accesses to automatically identify this

important class of bug. We manually added assertions to detect the (previously unknown)

out-of-bounds access in streamcluster3 and the (previously known) out-of-bounds ac-

cess in fsbench bad in the CS benchmarks. Out-of-bounds accesses to synchronisation

objects, such as mutexes, are still automatically detected; this was used to detect the bug

in pbzip2 from the CS benchmarks.

Data races We found that 30 of the 49 benchmarks contained data races. There are

many compelling arguments against the tolerance of data races [Boe11], and according

to the C++11 standard, if it is possible for a program execution to lead to a data race,

the behaviour of the program for this execution is undefined. Nevertheless, at the level of

program binaries, data races do not result in undefined behaviour and many data races

are not regarded as bugs by software developers. Treating data races as errors would

be too easy for benchmarking purposes, as they hide the more challenging bugs that the

benchmarks capture. A particular pattern we noticed was that data races often occur on

flags used in ad-hoc busy-wait synchronisation, where one thread keeps reading a variable

until the value changes. At the C++ level, the “benign” races could be rectified through

the use of C++11 relaxed atomics, the “busy-waits” could be formalised using C++11

acquire/release atomics, and synchronisation operations could be added to eliminate the

buggy cases. However, telling the difference between benign and buggy data races is non-

trivial in practice [KZC12, N+07]. We explain how we treat data races in our study in

§3.6.

Output checking The bugs in the benchmarks CB.aget and parsec.streamcluster2,

lead to incorrect output, as documented in the bug descriptions. Thus, we added extra

code to read the output file and trigger an assertion failure when incorrect; the output

checking code for the CB.aget was provided as a separate program, which we added to the

benchmark. Several of the PARSEC and SPLASH benchmarks do not verify their output,

greatly limiting their utility as test cases.

45

Busy-wait loops As explained in §3.3, several benchmarks use busy-wait loops. As

explained, we added a call to yield in every busy-wait loop and modified Maple to react

appropriately.

3.5 Research questions

Our aim was to use SCTBench to empirically compare the following techniques: an un-

bounded depth-first search, iterative preemption bounding, iterative delay bounding, PCT,

and controlled random scheduling, to answer the following research questions (RQs):

RQ1 Which technique performs the best in terms of bug finding ability?

RQ2 Does PCT beat the other techniques as in prior work [BKMN10]?

RQ3 How effective is the controlled random scheduler (a näıve technique that is rarely

tested in prior work) in comparison to the other techniques?

RQ4 Does delay bounding beat preemption bounding, as in prior work [EQR11], and do

both schedule bounding techniques beat a straightforward unbounded depth-first

search, as in prior work [MQ07b, EQR11]?

RQ5 How many bugs can be found with a small number of preemptions/delays, and can

we find non-synthetic examples of concurrency bugs that require more than three

preemptions (the largest number of preemptions required to expose a bug in previous

work [EQR11])?

RQ6 How easy is it to apply SCT to various existing code bases in practice?

RQ7 Can we classify certain benchmarks exhibiting defects as highly trivial or non-trivial,

based on the ease or difficulty with which the techniques we study are able to expose

defects?

We answer RQ1–RQ5 quantitatively by investigating the number of bugs found by

each technique within a schedule limit, showing how these numbers vary as the schedule

limit is increased. We answer RQ6 qualitatively, based on our experience collecting and

modifying benchmarks during the construction of SCTBench. To answer RQ7, we identify

a number of properties of benchmarks that indicate when bug-finding is trivial, and report

on the extent to which SCTBench examples exhibit these trivial properties. We also report

on benchmarks that appear to present a challenge for SCT techniques, based on the fact

46

that associated defects were missed by several (or, in one case, all) of the techniques we

study.

3.6 Experimental Method

Our experimental evaluation aims to compare unbounded depth-first search (DFS), it-

erative preemption bounding (IPB), iterative delay bounding (IDB), controlled random

scheduling (Rand) and probabilistic concurrency testing (PCT). We also test the default

Maple algorithm (MapleAlg). Bugs are deadlocks, crashes, assertion failures and incorrect

output. Each benchmark contains a single concurrency bug.5

For each SCT technique, we use a limit of 100,000 terminal schedules to enable a full

experimental run over our large set of benchmarks to complete on a cluster within one

month. There are two exceptions: for the chess.IWSQWS and chess.SWSQ benchmarks

(see Table 3.3 and 3.4) we use a terminal schedule limit of 10,000; for these longer-running

benchmarks, evaluation with the higher schedule limit exceeded our one month time re-

striction. We henceforth assume use “schedule” to refer to “terminal schedule” for brevity.

We chose to use a schedule limit instead of a time limit because there are many factors

and potential optimisation opportunities that can affect the time needed for a benchmark

to complete; we believe that the time variance for the different techniques (for execution of

a single schedule of a given benchmark) is negligible, assuming reasonably optimised im-

plementations. Furthermore, the cluster we have access to shares its machines with other

jobs, making accurate time measurement difficult. In contrast, the number of schedules

explored cannot be improved upon, without changing key aspects of the search algorithms

themselves. By measuring the number of schedules, our results can potentially be com-

pared with other algorithms and future work that use different implementations with

different overheads.

Each benchmark goes through the following phases:

Data Race Detection Phase When detecting safety property violations using a tech-

nique that ensures full coverage (like an unbounded DFS), it is sound to only consider

scheduling points before each synchronisation operation, such as locking a mutex, and

not memory accesses, as long as execution aborts with an error as soon as a data race

is detected [MQB+08]. Thus, if there are data races, an error will be reported; if there

5In fact, we assume each benchmark contains a single concurrency bug; a schedule that finds a deadlock,
crash, assertion failure or incorrect output is deemed to have found the underlying bug in the benchmark,
even though, for example, a different schedule may trigger a different assertion to fail.

47

are no data races and the search completes, then the program is free from safety property

violations (such as assertion failures and deadlocks). This greatly reduces the number of

schedules that need to be considered as memory accesses are not regarded as scheduling

points. However, treating data races as errors is not practical for this study (see §3.4.2).

Thus, as in previous work [YNPP12], we circumvent this issue by performing dynamic

data race detection to identify a subset of load and store instructions that are known

to participate in data races. We treat these instructions as visible operations during

concurrency testing by inserting scheduling points before them. For each benchmark, we

execute Maple in its data race detection mode ten times, without controlling the schedule.

Note that data race detection is nondeterministic, since the schedule is not controlled.

Each racy instruction (stored as an offset in the binary) is treated as a visible operation in

subsequent phases. We also tried detecting data races during concurrency testing, but this

caused an additional slow-down of up to 8x, as Maple’s data race detector is not optimised

for this scenario.

Thus, the techniques explore the sequentially consistent outcomes of a subset of the

possible data races for a concurrent program. Bugs found by this method are real (there

are no false-positives), but bugs that depend on relaxed memory effects or data races not

identified during the dynamic data race detection phase will be missed. We do not believe

these missed bugs threaten the validity of our comparison, since the same information

about data races is used by all of the techniques (excluding the Maple algorithm); the set

of racy instructions could be considered as part of the benchmark.

An alternative to under-approximation would be to use static analysis to over-approximate

the set of racy instructions. We did not try this, but speculate that imprecision of static

analysis would lead to many instructions being promoted to visible operations, causing

schedule explosion.

Note that the data races detected and used in our experiments are different from those

in our original study [TDB14] because the data race detection phase is nondeterministic.

Depth-First Search (DFS) Phase We next perform SCT using a DFS, with no sched-

ule bounding and a limit of 100,000 terminal schedules.

Iterative Preemption Bounding (IPB) Phase We next perform SCT on the bench-

mark using iterative preemption bounding. By repeatedly executing the program, restart-

ing after each execution, we first explore all schedules that have zero preemptions, followed

by all schedules that have precisely one preemption, etc., until either the limit of 100,000

schedules is reached, all schedules have been explored or a bug is found. If a bug is found,

48

the search does not terminate immediately; the remaining schedules within the current

preemption bound are explored (for our set of benchmarks, it was always possible to

complete this exploration without exceeding the schedule limit). This allows us to check

whether non-buggy schedules could exceed the schedule limit when an underlying search

strategy other than our DFS approach is used (see §3.3).

In practice, all SCT tools that we are aware of do not perform iterative preemption

bounding in this manner. Instead, with a preemption bound of c, it is necessary to

explore all schedules with c or fewer preemptions due to the use of a DFS. Thus, itera-

tive preemption bounding will explore all schedules with 0 preemptions, followed by all

schedules with 0–1 preemptions (redundantly re-exploring schedules with 0 preemptions),

followed by all schedules with 0–2 preemptions (redundantly re-exploring schedules with

0–1 preemptions), etc. In our study, we simulate an optimised version of preemption

bounding that does not redundantly re-explore schedules with fewer than c preemptions.

We achieve this simply by ignoring previously explored, and thus redundant, schedules

when processing our log files. We chose to do this because it might be possible to imple-

ment such an algorithm in practice and we did not want to unfairly penalise the technique

due to the specific implementation that we used. In particular, we note work that uses

compressed schedules to store the unexplored schedule-tree [CBM10].

Iterative Delay Bounding (IDB) Phase This phase is identical to the previous,

except delay bounding is used instead of preemption bounding.

Random scheduler (Rand) Phase We run each benchmark 100,000 times using

Maple’s controlled random scheduler mode. This allows us to compare the other tech-

niques against a näıve controlled scheduler. Recall that the random scheduler may re-

explore schedules.

Probabilistic Concurrency Testing (PCT) Phase Recall that PCT requires pa-

rameters n (maximum number of threads), k (maximum number of execution steps) and d

(the “bug depth”, which controls the number of priority change points that will be chosen).

In order to experiment with PCT using varying values for d, it was necessary to obtain

reasonable estimates for n and k. We obtained these estimates for each benchmark as fol-

lows. First, we used results related to SCTBench obtained in prior work to provide initial

estimates for n and k—see Table 3, column “# threads” and “# max scheduling points”

in [TDB14]. Using these initial estimates we executed 1,000 schedules of the benchmark

using PCT with d=3. We chose d=3 as we believed that this would increase the amount

49

of interleaving, potentially increasing the chance of observing different execution lengths.

During these executions we recorded the maximum observed number of threads and the

maximum observed number of steps; we start counting steps from when the initial thread

first launches a second thread. We used these values for n and k, respectively, in our

experiments6.

Unlike the other bounded techniques, there is no obvious way to perform iterative PCT.

In order to provide a thorough evaluation of PCT, we experimented with each d in {1, 2, 3},
using PCT to run each benchmark for 100,000 executions for each value of d. We present

each version of PCT (parameterised with a value for d) as a separate technique.

Maple Algorithm (MapleAlg) Phase We test each benchmark using the Maple al-

gorithm. This algorithm terminates based on its own heuristics; we enforced a time limit

of 24 hours per benchmark, although execution only took this long due to a livelock bug

in the Maple tool.

Notes on DFS and POR As discussed in §4.5, the SCT techniques we evaluate are

built on top of Maple’s default DFS strategy. Although DFS is just one possible search

strategy, and different strategies could give different results, we argue that this is not

important in our study. First, if the DFS biases the search for certain benchmarks, then all

DFS techniques are likely to benefit or suffer equally from this. Second, iterative schedule

bounding explores all schedules with c preemptions/delays before any schedule with c+ 1

preemptions/delays. This means that when the first schedule with c+1 preemptions/delays

is considered, exactly the same set of schedules, regardless of search strategy, will have

been explored so far. Thus, if a bug is revealed at bound c then, by exploring all schedules

with bound c (as described above), we can determine the worst case number of schedules

that might have to be explored to find a bug, accounting for an adversarial search strategy.

We do not attempt to study the various POR techniques [MQB+08, MQ07a, FG05,

AAJS14] in this study. This is because (a) our principle aim was to validate the findings

of prior works on schedule bounding, most of which do not incorporate full POR (and in-

deed, the relationship between POR and schedule bounding is complex [CMM13, MQ07a,

HF11]), (b) we already include a large number of techniques, and (c) as noted above,

Maple’s data race detector is not well-optimised and thus infeasible for use during SCT;

the information stored for data race detection is similar to that needed for POR tech-

6We note that, in hindsight, this may be an unrealistic approach to obtaining the parameters. A better
approach would be as follows: (1) Choose any values for n and k. (2) Execute PCT for e.g. 1,000 schedules,
recording the maximum observed number of threads and steps. (3) Update n and k based on what was
observed. (4) Repeat the process to refine the values for n and k.

50

niques such as DPOR, and so performing POR was deemed infeasible without significant

engineering effort. We consider POR in Chapter 4.

Notes on randomisation The controlled random scheduler and PCT techniques both

use a random number generator. Given one of these techniques, a seed (used to initialise

the random number generator) and a benchmark, the (single) schedule executed by the

technique for the benchmark is deterministic. Unlike the DFS techniques, the random

techniques have no implied order between schedules: two different seeds result in two

independent schedules that can be tested in parallel.

Our method for testing the controlled random scheduler and PCT techniques was as

follows. We used a fixed initial seed to generate a single list of 100,000 seeds using a random

number generator; we used these same seeds for all benchmarks and for all randomised

techniques to produce 100,000 schedules in each case.

For a given benchmark, we can use the number of buggy schedules out of 100,000 (i.e.

the proportion of buggy schedules) to compare the random-based techniques; although

this is dependent on the initial seed, as the schedule limit is increased, we would expect

this to become stable. We can also use the number of schedules before the bug is found.

However, this is very dependent on the initial seed and a technique may “get lucky” for

some benchmarks. Thus, we can instead consider the “average number of schedules needed

to expose a bug”, calculated using: 100,000 / “number of buggy schedules”; this shows

how many schedules are likely to be needed on average before a bug is found. As the

schedule limit is increased, we would expect this number to become stable and, thus, be

independent of the initial seed.

3.7 Experimental Results

We conducted our experiments on a Linux cluster, with Red Hat Enterprise Linux Server

release 6.4, an x86 64 architecture and gcc 4.7.2. Our modified version of Maple is based

on the last commit from 2012.7 The benchmarks, scripts and the modified version of

Maple used in our experiments can be obtained from:

https://github.com/mc-imperial/sctbench.

Throughout this section, we use RQ1–RQ7 to indicate that an observation relates to

one of the research questions posed in §3.5. When we refer to x buggy schedules, we

mean the x schedules executed by a particular technique that found the bug in a given

7http://github.com/jieyu/maple commit at Sept 24, 2012

51

https://github.com/mc-imperial/sctbench
http://github.com/jieyu/maple

0 7
5

0

0 0

33

IPB IDB

DFS

4

(a) DFS-based.

0 0
5

0

0 2

41

PCT d=2 PCT d=3

Rand

1

(b) Randomisation.

0 0
0

3

2 0

43

IDB Rand

PCT d=3

1

(c) DFS-based vs.
randomisation.

0 1
18

0

0 1

28

PCT d=2 PCT d=3

MapleAlg

1

(d) MapleAlg.

Figure 3.3: Venn diagrams showing number of benchmarks in which the bugs were found
with the various techniques.

benchmark. When we refer to x bugs being found by a technique, we mean that the

technique found a bug in x of the benchmarks.

For RQ6, we refer the reader to §3.4.2, where we discuss the difficultly of applying SCT

to the benchmarks.

3.7.1 Venn diagrams

The Venn diagrams in Figure 3.3 give a concise summary of the bug-finding ability of the

techniques in terms of number of bugs found in SCTBench within the schedule limit.

Figure 3.3a summarises the bugs found by the DFS-based techniques. In relation to

RQ4, the figure shows that IPB was superior to DFS, finding all 33 bugs found by DFS,

plus an additional 5. The figure also shows, also in relation to RQ4, that IDB found all

38 bugs found by IPB, plus an additional 7. The bugs in 4 benchmarks were missed by

all DFS-based techniques; we discuss this further below.

Figure 3.3b shows the bugs found by the randomisation techniques, PCT and Rand.

We show the results for PCT with d=2 and d=3 because PCT found the most bugs when

using these values for d. The results show that PCT d=3 performed the best in terms

of number of bugs found within the schedule limit, finding 48 bugs, including all those

found by the other techniques (see Figure 3.3c and 3.3d also). Thus, in answer to RQ1

and RQ2, the results show that PCT d=3 is the most capable technique at finding bugs

in SCTBench; this concurs with findings of prior work in which PCT found bugs faster

than IPB [BKMN10].

Figure 3.3c shows the bugs found by the superior schedule bounding technique (IDB),

the random scheduler (Rand) and PCT with d=3 (the most successful configuration of

PCT). Note that the bugs in 43 benchmarks were found by both IDB and Rand, and IDB

found just 2 additional bugs that were missed by Rand. Although not shown in these

diagrams, Rand also found all the bugs found by IPB, plus an additional 5. Thus, in

52

answer to RQ3, Rand performed better than IPB in terms of number of bugs found and

was not far behind IDB. Furthermore, Rand found the bugs in fewer schedules than IDB

for 21 of the benchmarks. A similar observation can be made about IPB and Rand. Thus,

Rand was often faster at finding bugs than schedule bounding. We discuss the surprising

results for Rand below.

Figure 3.3d shows the bugs found by MapleAlg vs. PCT d=2 and PCT d=3. Maple

found 29 of the 49 bugs (all of which were also found by PCT d=3) and missed 19 bugs

that were found by PCT d=3.

The bug in misc.safestack was missed by all techniques; we discuss this in more detail

below.

3.7.2 Cumulative plots

The graphs in Figures 3.4 and 3.5 give an alternative summary of the techniques.

Figure 3.4 is a cumulative plot showing the number of bugs found (y-axis) after x

schedules (x-axis) for each technique over all the benchmarks. Each line represents a

technique and is labelled by the name of the technique and the number of bugs found by

the technique within the schedule limit. If a given technique has a point at coordinate

(x, y) then there were y benchmarks for which the technique was able to expose a bug

using x schedules or fewer, i.e. for which “number of schedules to first bug” is less than

or equal to x. This plot shows the number of bugs that would be found by the techniques

using schedule limits lower than 100,000. For example, with our schedule limit of 100,000,

IDB and Rand found 45 and 43 bugs, respectively; with a schedule limit of 1,000, they

would have found 40 and 42 bugs, respectively.

As explained in §3.6, the Rand and PCT results are specific to the random seeds used

during our experiments. Thus, in Figure 3.5, we present results using the average number

of schedules needed to expose a bug, which is given by: 100,000 / “number of buggy

schedules”. Figure 3.5 is similar to Figure 3.4, but includes only PCT d=3 and Rand

(otherwise, the graph is overcrowded). The additional dashed lines show the average

behaviour of the techniques.

Observe that, in Figure 3.4, the ordering of the techniques by number of bugs found

remains fairly consistent for schedule limits above 1,000, the exception being IDB and

Rand, with IDB overtaking Rand in terms of bug-finding ability at 2990 schedules. In

Figure 3.5, the same is true when considering the average behaviour of the techniques.

Thus, the number of bugs found by the techniques within our schedule limit is, for the most

part, an accurate reflection of the bug finding ability of the techniques on our benchmarks.

53

0 1 10 100 1000 10000 100000
terminal schedules

0

10

20

30

40

#
bu

gs
fo

un
d

IPB (38)

Rand (43)
IDB (45)

DFS (33)

PCT d=1 (24)

PCT d=2 (46)
PCT d=3 (48)

Figure 3.4: Cumulative plot, showing, for each SCT technique, the number of bugs found
after x schedules over all the benchmarks. The plot is intended to be viewed
in colour.

54

0 1 10 100 1000 10000 100000
terminal schedules

0

10

20

30

40

#
bu

gs
fo

un
d

Rand (43)

PCT d=3 (48)

Figure 3.5: For PCT d=3 and Rand, compares the number of bugs found after x schedules
as in Figure 3.4 (solid lines) with the average behaviour of the techniques
(dashed lines). The plot is intended to be viewed in colour.

55

Our results show that PCT d=3 almost invariably finds more bugs than the other

techniques, unless the schedule limit is extremely low. Thus, our findings for RQ1 and

RQ2 apply for a range of schedule limits. One exception is that Rand overtook PCT

d=3 at 100 schedules, but in the average case (Figure 3.5), PCT d=3 is still consistently

above Rand when the schedule limit is 20 or higher. Regarding RQ4, the findings that

IDB found more bugs than IPB and that IPB found more bugs than DFS both hold for

schedule limits of 50 or higher; the difference in bugs found between these techniques

increased with the schedule limit. Similarly, for RQ3, Rand beat IPB for all schedule

limits up to and including 100,000, showing that this finding is not simply due to our

choice of schedule limit. In the average case, Rand beat IPB for for all schedule limits

of 10 or greater, indicating that for non-trivial limits this finding is independent of our

choice of initial random seed. Rand was also ahead of IDB in terms of bugs found between

schedule limits 1–1,000, giving further evidence for RQ3 that Rand performed well. In

fact, Rand found 27 bugs in the first 2 schedules and was ahead of all other techniques

by at least 6 bugs; Figure 3.5 shows that this is not the case on average, but after 10

schedules, both Rand and averaged Rand found 32 bugs, which is the same as PCT d=3

(and more than all other techniques). The fact that Rand finds many of the bugs so quickly

is evidence of the trivial nature of some of the benchmarks (RQ7), which we discuss in

§3.7.4.

Regarding the average behaviour of PCT d=3 and Rand (Figure 3.5), both techniques

still performed well and our main conclusions do not change. We can see that Rand was

slightly “lucky” between 10–1,000 schedules compared to the average case and was slightly

“unlucky” at finding the bug after 10,000 schedules.

3.7.3 Results tables

The full set of experimental data gathered for our benchmarks is shown in Tables 3.3

and 3.4. As explained in §3.6, we focus on the number of schedules explored rather than

time taken for analysis. The execution time for one schedule of a single benchmark varied

between 1–10 seconds depending on the benchmark. The longest time taken to perform ten

data race detection runs for a single benchmark was five minutes, but data race detection

was significantly faster in most cases. Data race detection could be made more efficient

using an optimised, state-of-the-art method. Because data race analysis results are shared

between all techniques (except MapleAlg), the time for data race analysis is not relevant

when comparing these methods.

For each benchmark, # max threads and # max enabled threads show the total number

56

of threads launched and the maximum number of threads simultaneously enabled at any

scheduling point, respectively. The # max steps column shows the maximum number

of scheduling points (visible operations) k observed from when the initial thread first

launches a second thread. As explained in §3.6, these numbers were obtained by running

1000 executions of PCT on the benchmarks.

Results for DFS-based techniques In Table 3.3, the smallest preemption or delay

bound required to find the bug for a benchmark, or the bound reached (but not fully

explored) if the schedule limit was hit, is indicated by bound ; # schedules to first bug

shows the number of schedules that were explored up to and including the detection of a

bug for the first time; # schedules shows the total number of schedules that were explored;

new schedules shows how many of these schedules have exactly bound preemptions (for

IPB) or delays (for IDB); # buggy schedules shows how many of the total schedules

explored exhibited the bug. As explained in §3.6, when a bug is found during IPB or IDB,

we continue to explore all buggy and non-buggy schedules within the preemption or delay

bound; the schedule limit was never exceeded while doing this. An L entry denotes 100,000

(the schedule limit discussed in §3.6). When no bugs were found, the bug-related columns

contain 7. We indicate by % buggy, the percentage of schedules that were buggy out of

the total number of schedules explored during DFS. We prefix the percentage with a ‘*’

when the schedule limit was reached, in which case the percentage applies to all explored

schedules, not the total number of possible schedules.

Results for randomisation techniques For the Rand and PCT techniques in Table 3.4,

the # schedules column is omitted, as it is always 100,000 (although, as explained in §3.6,

the chess.IWSQWS and chess.SWSQ benchmarks use a lower schedule limit of 10,000).

This is because these techniques do not maintain a history of explored schedules and thus

there is no notion of the search terminating. The # schedules to first bug column shows

the number of schedules that were explored up to and including the detection of a bug for

the first time. The # buggy schedules column shows how many of the 100,000 schedules

exhibited a bug. For each value of d that we used for PCT and for each benchmark, we

estimate the worst case (smallest) number of buggy schedules that we should find given a

bug of depth d, parameters n and k from the benchmark, and our schedule limit of 100,000.

This estimate is shown under est. worst case # buggy in Table 3.4, and is calculated by

computing the worst-case probability that an execution using PCT will expose a depth-d

bug (using the formula 1/nkd−1 discussed in §3.2.5) and multiplying this probability by

100,000 (the schedule limit). Of course, the estimate for each d is only relevant if the bug

57

Property # benchmarks

Bug was found with a delay bound of 0 13
Total number of schedules < 100,000 18
> 50% of random terminal schedules were buggy 18
Every random terminal schedule was buggy 8

Table 3.2: Benchmarks where bug-finding is arguably trivial.

associated with a benchmark can in fact manifest with depth d.

Results for MapleAlg For the Maple algorithm, we report whether the bug was found

(the found? column in Table 3.4), the total number of (not necessarily distinct) schedules

explored, as chosen by the algorithm’s heuristics, and the total time in seconds for the

algorithm to complete. Benchmarks 32, 33 and 34 caused Maple to livelock, so the 24

hour time limit was exceeded. We indicate this with ‘-’.

3.7.4 Benchmark Properties

The # max threads and # max steps columns from the results tables can be used to

estimate the total number of schedules, which may shed light on the complexity of a given

benchmark. With at most n enabled threads and at most k steps, there are at most

nk terminal schedules. On the other hand, if most of the schedules are buggy then the

number of schedules is not necessarily a good indication of bug complexity. For example,

CS.din phil2 sat has a relatively high number of schedules, but since 87% of them are

buggy (see the DFS results in Table 3.3), this bug is trivial to find. Of course, the majority

of benchmarks cannot be explored exhaustively, and estimating the percentage of buggy

schedules from the partial DFS results is problematic because DFS is biased towards

exploring deep context switches.

To answer RQ7, we present Table 3.2 which provides some further insight into the com-

plexity of the benchmarks, using properties derived from Tables 3.3 and 3.4. Bugs found

with a delay bound of zero (13 cases) will always be found on the initial schedule for IPB,

IDB and DFS, as they all initially execute the same schedule. Any technique based on

this same DFS will also find the bug immediately. We argue that the bugs in question

are trivial since the schedule includes minimal interleaving (there are no preemptions).

Benchmarks with fewer than 100,000 schedules total (as measured by unbounded DFS,

which is exhaustive) will always be exhaustively explored (and so the bug will be found)

by all DFS-based techniques (18 cases). Techniques can still be compared on how quickly

they find the bugs in such benchmarks. Note that the two chess benchmarks that were ex-

58

plored using a schedule limit of 10,000 do not have fewer than 100,000 schedules. Bugs that

were exposed more than 50% of the time when using the random scheduler could arguably

be classified as “easy-to-find” (18 cases). Among these, bugs that were exposed 100% of

the time when using the random scheduler (8 cases) are almost certainly trivial to detect;

indeed, Tables 3.3 and 3.4 show that all of these benchmarks were buggy for all schedules

explored by all techniques. For 5 of these benchmarks, DFS was exhaustive, showing that

these bugs are not even schedule-dependent. Note that the CS.din phil7 sat benchmark

contains fewer schedules than the smaller versions of this benchmark and has 100% buggy

schedules according to DFS. This is because CS.din phil7 sat contains an additional,

unintentional bug introduced by the original authors of the benchmark; when we con-

verted the benchmark to use (non-recursive) pthread mutexes, the bug causes additional

deadlocks. We did not fix this additional bug and instead used the benchmark as it was

found.

Regarding RQ7: in our view the relatively trivial nature of some of the bugs exhibited

by our benchmarks has not been made clear in prior work that studies these examples

(prior to the conference version of this work [TDB14]). The controlled random scheduler

can detect many of the bugs with a high probability. We regard these easy-to-find bugs as

having value only in providing a minimum baseline for any respectable concurrency testing

technique. Failure to detect these bugs would constitute a major flaw in a technique;

detecting them does not constitute a major achievement.

3.7.5 Techniques In Detail

IPB vs. IDB Figure 3.6 compares IPB and IDB by plotting data from the following

columns in Table 3.3: # schedules to first bug (as a cross) and # schedules (as a square).

All benchmarks are shown for which at least one of the techniques found a bug. A

benchmark is depicted as a line connecting a cross and a square. Each square is labelled

with its benchmark id from Table 3.3. Where the bug was not found by one of the

techniques, this is indicated with a cross at 100,000 (the schedule limit discussed in §3.6).

However, as described in §3.6, benchmarks 33 and 34 used a schedule limit of 10,000

and so the crosses for these benchmarks on the line y =10,000 indicate that IPB hit the

schedule limit without finding the bug. The cross indicates which technique was faster

at finding the bug; crosses below/above the diagonal indicate that IPB/IDB was faster.

The square indicates how many schedules exist with a bound less than or equal to the

bound that found the bug. For example, when exploring benchmark 30 with IPB, the first

buggy schedule is found after 243 schedules. This schedule involves one preemption, so the

59

1 100 1000 10000 100000
terminal schedules (IDB)

1

100

1000

10000

100000

#
te

rm
in

al
sc

he
du

le
s

(IP
B

)

0
12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
21

22

23

24

2526

27

29

30

31 32

33 3435

36

37

39

40

41

42

43
44

45

46

47
48

Figure 3.6: Comparison of IPB and IDB, showing the number of schedules to the first bug
(cross) connected to the total number of schedules (square), up to the bound
that found the bug. Squares are labelled with the benchmark id.

60

1 100 1000 10000 100000
terminal schedules (IDB)

1

100

1000

10000

100000

#
te

rm
in

al
sc

he
du

le
s

(IP
B

)

0
12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
21

22

23

24

2526

27

29

30

31 32

33 3435

36

37

39

40

41

42

43
44

45

46

47
48

Figure 3.7: Comparison of IPB and IDB, showing total number of non-buggy schedules
(cross) connected to the total number of schedules (square), up to the bound
that found the bug. Squares are labelled with the benchmark id.

61

search continues until all 856 schedules with at most one preemption have been explored

(bound at which the bug was found). Since the search terminated before reaching the

schedule limit, we know that the bug would be found within the first 856 schedules even

if we were using an underlying search strategy other than our DFS. Notice that a number

of benchmarks appear at (x, 100,000), with x <100,000: this is where IPB failed to find a

bug and IDB succeeded (except for benchmarks 33 and 34, as explained above).

The bug-finding ability of the techniques in Figure 3.6 is tied to the underlying DFS.

It is possible that this might cause one of the techniques to “get lucky” and find a bug

quickly, while another search order could lead to many additional non-buggy schedules

being considered before a bug is found. To avoid this implementation-dependent bias, in

Figure 3.7 we consider the worst-case bug-finding ability. For each benchmark, a cross

plots, for IDB and IPB, the total number of non-buggy schedules within the bound that

exposed the bug. This corresponds to the difference between the # schedules and #

buggy schedules columns presented in Table 3.3, and represents the worst-case number of

schedules that might have to be explored to find a bug, given an unlucky choice of search

ordering. The squares are the same as in Figure 3.6.

Overall, IDB finds all bugs found by IPB, plus an additional seven. Regarding RQ4:

in Figure 3.6, most crosses fall on or above the diagonal, showing that IDB was as fast or

faster than IPB in terms of number of schedules to the first bug. The same is mostly true

for the squares, showing that IDB generally leads to a smaller total number of schedules

than IPB (up to the bound at which the bug was found). In the worst case (Figure 3.7),

some crosses fall under the line, but most are still very close, or represent a small number

of schedules (less than 100) where the difference between the techniques is negligible. An

outlier is benchmark 42 where, in the worst case, IPB requires 3 schedules to find the bug,

while IDB requires 1356 schedules. Table 3.3 shows that the bug does not require any

preemptions, but requires at least one delay; this difference greatly increases the number

of schedules for IDB. We believe this can be explained as follows. First, there must be a

small number of blocking operations, leading to a very small number of schedules with a

preemption bound of zero. Second, the bug in question requires that when two particular

threads are started and reach a particular barrier, the “master” thread (the thread that

was created before the other) does not leave the barrier first. With zero preemptions, the

non-master thread can be chosen at the first blocking operation (as any enabled thread

can be chosen). With zero delays, only the master thread can be chosen, as one delay is

required to skip over the master thread. Thus, this is an example where IDB performs

worse than IPB. Nevertheless, IDB is still able to find the bug within the schedule limit.

The CS.reorder X bad benchmark (where X is the number of threads launched – see

62

Table 3.3) is the adversarial delay bounding example given in Figure 3.2 in §3.2.3; the

smallest delay bound required for the bug to manifest is incremented as the thread count

is incremented. However, IDB still performs better than IPB, as the number of schedules

in IPB increases exponentially with the thread count. Furthermore, this is a synthetic

benchmark for which the bug is found quickly by both techniques with a low thread

count.

Effectiveness of SCT In answer to RQ3, we have shown above that Rand is surpris-

ingly effective, finding more bugs than IPB and almost as many as IDB. The cumulative

plots in Figure 3.4 and 3.5 show that these findings apply on average and for various

schedule limits. A possible intuition for this is as follows. If a bug can be exposed with

just one preemption, say, then there may be many scheduling points at which the pre-

emption can occur so that the bug can be exposed. Furthermore, there may be a number

of “unexpected” operations in other threads that will cause the bug to trigger (e.g. writ-

ing to a variable that the preempted thread is about to access). Any schedule where (a)

the preemption occurs in a suitable place, and (b) additional preemptions do not prevent

the bug from occurring, will also expose the bug. There may be many such schedules

and thus a good chance of exposing the bug through random scheduling. More generally,

one might suggest that if a bug can be exposed with a small delay or preemption count,

there may be a high probability that a randomly selected schedule will expose the bug. A

counter-example is the bug in the parsec.ferret benchmark, which is missed by Rand

but found by IDB. The bug requires a thread to be preempted early in the execution and

not rescheduled until other threads have completed their tasks. Since Rand is very likely

to reschedule the thread, it is not effective at finding this bug. For IDB, only one delay

is required, but, as seen in Table 3.3, only one buggy schedule was found; thus, the delay

must occur at a specific scheduling point for the bug to manifest.

The CHESS benchmarks test several versions of a work stealing queue. They were used

for evaluation in the introduction of preemption bounding [MQ07b] and thus were used

to show the effectiveness of preemption bounding as a bug finding technique. DFS fails

to find the bug in chess.WSQ, while IPB succeeds (as in prior work). The remaining

CHESS benchmarks are more complex (lock-free) versions of chess.WSQ, which were also

used in prior work. IPB and DFS fail to find the bugs in these benchmarks, while IDB

is successful (which is relevant to RQ4). However, Rand is able to find all the bugs in

these benchmarks (like IDB) and it also finds them in fewer schedules than IDB and IPB

(which is highly relevant to RQ3). The prior work that introduced these techniques did

not compare against a random scheduler in terms of bug finding ability.

63

1

10

100

1000

10000

100000

#
bu

gg
y

te
rm

in
al

sc
he

du
le

s

CB.
stringbuff-jdk1.4

ra
nd d=
1

d=
2

d=
3

parsec.
ferret

ra
nd d=
1

d=
2

d=
3

parsec.
streamcluster

ra
nd d=
1

d=
2

d=
3

parsec.
streamcluster2

ra
nd d=
1

d=
2

d=
3

parsec.
streamcluster3

ra
nd d=
1

d=
2

d=
3

Figure 3.8: Shows, for the stringbuff-jdk1.4 and parsec benchmarks, the number of
buggy schedules explored by Rand, and PCT for each value of d ∈ {1, 2, 3}.
Each technique explored 100,000 schedules.

Effectiveness of Probabilistic Concurrency Testing Figure 3.8 and Figure 3.9 com-

pare the effectiveness of Rand and PCT for each value of d ∈ {1, 2, 3} at finding bugs for

a subset of benchmarks; the subset is not representative of all the benchmarks—we focus

on benchmarks for which the probabilistic results are notable and worthy of discussion.

The bars show the number of buggy terminal schedules exposed by the techniques within

100,000 schedules (except for chess.IWSQWS and chess.SWSQ, which use a schedule limit

of 10,000). The graphs use a log scale for the y-axis. Regarding RQ2 and RQ3, it is

interesting to see that Rand is often similar and sometimes better than PCT in terms

of number of buggy schedules found. As explained above, we conjecture that in these

cases, there are probably many places at which preemptions can occur to allow the bug

to manifest and many opportunities for an unexpected operation in a different thread to

occur after the preemption. Nevertheless, PCT with d=3 finds all the bugs that Rand

finds, plus an additional four, as shown in Figure 3.3b.

Recall that the PCT algorithm inserts d−1 priority change points (see §3.2.5). Looking

at CB.stringbuffer-jdk1.4 in Figure 3.8, we can see that this bug was found by both

Rand and PCT d=3. Looking at Table 3.3, this benchmark only has 2 threads and around

10 execution steps, but the bug requires at least 2 preemptions or delays to occur. Note

that, in the PCT algorithm, a lower priority thread T1 can enable a higher priority thread

T2, in which case T2 will preempt T1, without the need for a priority change point.

Nevertheless, for this benchmark, it seems likely at least two priority change points are

needed for the bug to occur, which would explain why PCT did not find the bug with

d < 3. Interestingly, Rand is more effective at finding this bug than PCT. The bug

requires a preemption away from thread 1 and then a preemption away from thread 2 so

64

1

10

100

1000

10000

100000

#
bu

gg
y

te
rm

in
al

sc
he

du
le

s

chess.
IWSQ

ra
nd d=
1

d=
2

d=
3

chess.
IWSQWS

ra
nd d=
1

d=
2

d=
3

chess.
SWSQ

ra
nd d=
1

d=
2

d=
3

chess.
WSQ

ra
nd d=
1

d=
2

d=
3

radbench.
bug1

ra
nd d=
1

d=
2

d=
3

radbench.
bug2

ra
nd d=
1

d=
2

d=
3

radbench.
bug6

ra
nd d=
1

d=
2

d=
3

Figure 3.9: Shows, for the chess and radbench benchmarks, the number of buggy sched-
ules explored by Rand, and PCT for each value of d ∈ {1, 2, 3}. Each technique
explored 100,000 schedules (except for chess.IWSQWS and chess.SWSQ, which
use a schedule limit of 10,000).

that execution of thread 1 continues. Unfortunately, due to the way in which PCT lowers

priorities, the second priority change point may not change the priority ordering between

the two threads—it depends on the priorities assigned to the priority change points. For

example, assume d = 3 and an initial priority mapping of {T2 → 3, T1 → 4}, so that

T1 has the highest priority. Let the first priority change point change T1’s priority to 1,

giving a priority mapping of {T1 → 1, T2 → 3} and making T2 the new highest priority

thread. Let the second priority change point change T2’s priority to 2, giving a priority

mapping of {T1 → 1, T2 → 2}. The second change point does not change the relative

priority ordering between the threads. We speculate that this is the reason why PCT is less

effective. This possibly highlights a weakness of the PCT algorithm; on the other hand,

PCT was designed carefully to ensure the probabilistic guarantee described in §3.2.5, so

“fixing” this issue while maintaining the guarantee may be non-trivial.

Similar observations can be made about the other benchmarks in Figure 3.8 and Figure 3.9

by cross-referencing with Table 3.3; if a bug requires c preemptions or delays, then the

bug will usually not be found by PCT with d−1 < c (fewer than c priority change points).

We stress that this is not the case in general; an exception is the bug in chess.WSQ, which

requires 2 preemptions, but was found by PCT d=2 (only 1 priority change point). Thus,

this is an example where a lower priority thread unblocks a higher priority thread, result-

ing in a preemption. We speculate that this is because the benchmark involves blocking

locks (the other CHESS benchmarks use spin locks). Similarly, radbench.bug2 requires

3 preemptions, but was found with PCT d=3 (2 priority change points).

For many of the benchmarks shown in Figure 3.8 and Figure 3.9, increasing d makes

65

PCT more effective at finding bugs; this suggests that these bugs require certain change

points at the right places, but additional change points are unlikely to prevent the bug

from occurring. A good example is parsec.ferret which, as explained above, requires a

thread to be preempted early in the execution and not rescheduled until other threads have

completed their tasks. Unlike Rand, PCT is ideally suited to exposing this bug; once the

required thread has its priority lowered, it will only be scheduled instead of other enabled

threads if all other enabled threads also have their priorities lowered; this benchmark has,

on average, 4 enabled threads. Thus, as long as d < 5, increasing d simply increases the

chance of one of the priority change points occurring at the right place.

The radbench.bug1 benchmark was found by IDB, PCT d=2 and PCT d=3; very few

buggy schedules were found by PCT. The bug requires a thread to be preempted after

destroying a hash table and a second thread to access the hash table, causing a crash;

this explains why the bug requires only one delay and why PCT was able to find it with

at least one priority change point. It is likely that the large number of scheduling points

is what pushes this bug out of reach of the other techniques. PCT d=3 found 7 buggy

schedules in radbench.bug2; the description of this bug is less clear [JPPS11]. This bug

and the bug in CB.stringbuffer-jdk1.4 are the only ones found by PCT that appear

to require d=3 (i.e. 2 priority change points).

PCT d=2 and PCT d=3 were the only techniques to find the bugs in CS.twostage 100 bad,

CS.reorder 10 bad and CS.reorder 20 bad. However, these benchmarks have identical

counterparts with lower thread counts. Recall that, when performing SCT, the thread

count should be decreased as much as possible while still capturing an interesting con-

currency scenario. Thus, these benchmarks are perhaps not realistic test cases for SCT.

Furthermore, IDB found the bugs in the versions of these benchmarks with lower thread

counts, plus all the other bugs that were found by PCT d=3. If we ignore these “high

thread count” benchmarks, then IDB and PCT found the same number of bugs within

the schedule limit; thus, it could be argued that IDB performed similarly to PCT, which

is relevant to RQ1 and RQ2. Nevertheless, PCT found these bugs directly, without the

thread count having to be reduced, which is an interesting result.

As explained above, the CS.reorder X bad benchmark (where X is the number of

threads launched) are versions of the adversarial delay bounding example given in Figure 3.2

in §3.2.3. One priority change point at the right place (and a particular permutation of

initial thread priorities) is sufficient for PCT to expose this bug. Thus, PCT manages to

find the bug even when the number of threads is doubled (compare CS.reorder 10 bad

and CS.reorder 20 bad in Table 3.4). This is in contrast to DFS-based techniques, where

increasing the thread count increases the number of schedules explored before the first bug,

66

until the point where the bug is not found within the schedule limit (see Table 3.3).

Recall that, for each value of d that we used with PCT and for each benchmark, we

estimated the worst case (smallest) number of buggy schedules that we should find given a

bug of depth d, parameters n and k from the benchmark, and our schedule limit of 100,000

(see §3.2.5 and §3.7.3). The estimate for each d is only relevant if the bug associated with

a benchmark can in fact manifest with depth d. These estimates can be see in Table 3.4.

The minimum value of d for which PCT found a bug provides an upper bound on the

bug depth; the actual bug depth may be smaller. Assuming that the minimum value of

d for which PCT found a bug is, in fact, the depth of the bug, it can be seen that PCT

always found many more schedules than the estimated number for that bug. For example,

consider chess.IWSQ in Table 3.4. It is likely that this bug has depth d=2, since PCT d=1

was not able to find the bug. Assuming this, the estimated worst case number of buggy

schedules that we should find (in the PCT d=2 column) is less than 1, yet the actual

number of buggy schedules found was 4,829. In fact, for d=2 and d=3 the majority of the

benchmarks had a worst case estimate of less than 1 schedule, suggesting that the bugs

should not be found within our schedule limit (yet, most bugs were found). Our results

agree with the original evaluation of PCT [BKMN10], which showed that the number of

buggy schedules found in practice is usually much greater than the smallest number of

buggy schedules predicted by the formula.

Comparison with the default Maple algorithm As shown in Figure 3.3d, MapleAlg

missed 20 bugs overall, 19 of which were found by other techniques. This includes bench-

marks like CS.bluetooth driver bad and CS.circular buffer bad, which were quickly

found by most other techniques. Maple livelocked on the CHESS benchmarks; this is

presumably a bug in the tool that could be fixed. MapleAlg attempts to force certain

patterns of inter-thread accesses (or interleaving idioms) that might lead to concurrency

bugs. It is possible that some of the bugs it misses require interleaving idioms that are

not included in MapleAlg.

Small schedule bounds To answer RQ5, we note that schedule bounding exposed 45

of the 49 bugs, and 44 of these require a preemption bound of two or less (note that, if a bug

can be found with a delay bound of c, then it can also be found with a preemption bound

of c, although not necessarily within the schedule limit when using IPB). Furthermore,

42 of these were found using a delay bound of two or less. Thus, a large majority of the

bugs in SCTBench can be found with a small preemption or delay bound. This supports

previous claims that many bugs can be exposed using a small number of preemptions or

67

delays [MQ07b, MQB+08, EQR11].

The DFS-based techniques missed the bugs in CS.reorder 10 bad, CS.reorder 20 bad

and CS.twostage 100 bad, which, as explained above, are duplicates of other benchmarks

but with higher thread counts. The CS.reorder X bad benchmark is the adversarial delay

bounding example given in Figure 3.2 in §3.2.3. Thus, these benchmarks require a delay

bound of one less than X (where X is the number of threads). However, it is not clear

whether such a scenario is likely to occur in real multithreaded programs.

The bug in radbench.bug2 requires three preemptions or delays to occur (see Table 3.3).

The benchmark is a test case for the SpiderMonkey JavaScript engine in Firefox. A bug

requiring three preemptions and delays has been reported before in [EQR11] and this was

the first time CHESS had found such a bug. Note that we reduced the number of threads

in radbench.bug2 from six to two; thus, IPB and IDB explore exactly the same schedules.

Nevertheless, two threads is enough to expose the bug.

The bug in misc.safestack was missed by all techniques and reportedly requires five

preemptions and three threads. Given this information, we tried running PCT with d = 6

for 100,000 executions, but the bug did not occur. We reproduced the bug using Relacy8,

a weak memory data race detector that performs either preemption bounding or controlled

random scheduling for C++ programs that use C++ atomics. The bug was found using

the random scheduling mode after 75,058 schedules. It is unclear why Maple’s random

scheduler did not find the bug. It is possible that the number of scheduling points with

Maple is higher, as Relacy only inserts scheduling points before atomic operations.

SPLASH-2 benchmarks As explained in §3.4.1, we reduced the input values in the

SPLASH-2 benchmarks; this resulted in fewer scheduling points and allowed our data

race detector to complete, without exhausting memory. Due to these changes, the results

are not directly comparable with other experiments that use the SPLASH-2 benchmarks

(unless parameters are similarly reduced). However, the bugs are found by all DFS-based

techniques after just two schedules; this would be the same, regardless of parameter values.

Therefore, the # schedules to first bug data for the DFS-based techniques are comparable

to other techniques.

3.8 Main findings

We now summarise the main findings of our study, which relate to the research questions

posed in §3.5. The conclusions we draw of course only relate to the 49 benchmarks in

8http://www.1024cores.net/home/relacy-race-detector

68

http://www.1024cores.net/home/relacy-race-detector

id name IPB IDB DFS

#
m

a
x

th
re

ad
s

(n
)

#
m

a
x

en
a
b

le
d

th
re

ad
s

#
m

a
x

st
ep

s
(k

)

b
ou

n
d

#
sc

h
ed

u
le

s
to

fi
rs

t
b

u
g

#
sc

h
ed

u
le

s

#
n

ew
sc

h
ed

u
le

s

#
b

u
gg

y
sc

h
ed

u
le

s

b
ou

n
d

#
sc

h
ed

u
le

s
to

fi
rs

t
b

u
g

#
sc

h
ed

u
le

s

#
n

ew
sc

h
ed

u
le

s

#
b

u
gg

y
sc

h
ed

u
le

s

#
sc

h
ed

u
le

s
to

fi
rs

t
b

u
g

#
sc

h
ed

u
le

s

#
b

u
gg

y
sc

h
ed

u
le

s

%
b

u
gg

y

0 CB.aget-bug2 4 3 24 0 1 10 10 4 0 1 1 1 1 1 46486 29513 63%
1 CB.pbzip2-0.9.4 4 4 54 0 2 12 12 4 1 2 31 30 13 2 L 68226 *68%
2 CB.stringbuffer-jdk1.4 2 2 10 2 9 13 8 1 2 9 13 8 1 7 24 1 4%
3 CS.account bad 4 3 8 0 3 6 6 2 1 3 5 4 1 3 28 4 14%
4 CS.arithmetic prog bad 3 2 20 0 1 4 4 4 0 1 1 1 1 1 19680 19680 100%
5 CS.bluetooth driver bad 2 2 13 1 6 7 6 1 1 6 7 6 1 36 177 10 5%
6 CS.carter01 bad 5 3 19 1 9 19 16 2 1 8 12 11 1 8 1708 49 2%
7 CS.circular buffer bad 3 2 31 1 23 35 32 12 2 25 79 56 36 20 3991 2043 51%
8 CS.deadlock01 bad 3 2 11 1 9 12 9 2 1 7 9 8 1 10 46 3 6%
9 CS.din phil2 sat 3 2 21 0 1 3 3 3 0 1 1 1 1 1 5336 4686 87%
10 CS.din phil3 sat 4 3 32 0 1 13 13 13 0 1 1 1 1 1 L 85542 *85%
11 CS.din phil4 sat 5 4 43 0 1 73 73 73 0 1 1 1 1 1 L 86231 *86%
12 CS.din phil5 sat 6 5 39 0 1 501 501 501 0 1 1 1 1 1 L L *100%
13 CS.din phil6 sat 7 6 49 0 1 4051 4051 4051 0 1 1 1 1 1 L L *100%
14 CS.din phil7 sat 8 7 59 0 1 7 7 7 0 1 1 1 1 1 924 924 100%
15 CS.fsbench bad 28 27 155 0 1 1 1 1 0 1 1 1 1 1 L L *100%
16 CS.lazy01 bad 4 3 11 0 1 13 13 6 0 1 1 1 1 1 118 81 68%
17 CS.phase01 bad 3 2 11 0 1 2 2 2 0 1 1 1 1 1 17 17 100%
18 CS.queue bad 3 2 83 1 98 100 97 2 2 63 482 420 326 43 L 59036 *59%
19 CS.reorder 10 bad 11 10 40 0 7 L L 0 5 7 L 38129 0 7 L 0 *0%
20 CS.reorder 20 bad 21 20 89 0 7 L L 0 4 7 L 21023 0 7 L 0 *0%
21 CS.reorder 3 bad 4 3 12 1 43 74 61 2 2 25 45 35 3 126 2494 23 <1%
22 CS.reorder 4 bad 5 4 16 1 359 774 701 3 3 205 417 330 7 6409 L 86 *<1%
23 CS.reorder 5 bad 6 5 20 1 3378 8483 7982 4 4 1513 3681 2843 15 7 L 0 *0%
24 CS.stack bad 3 2 43 1 23 50 47 9 1 22 32 31 9 22 L 6361 *6%
25 CS.sync01 bad 3 2 9 0 1 2 2 2 0 1 1 1 1 1 6 6 100%
26 CS.sync02 bad 3 2 18 0 1 2 2 2 0 1 1 1 1 1 88 88 100%
27 CS.token ring bad 5 4 11 0 8 24 24 4 2 10 29 22 3 8 280 57 20%
28 CS.twostage 100 bad 101 100 792 0 7 L L 0 2 7 L 99304 0 7 L 0 *0%
29 CS.twostage bad 3 2 11 1 9 10 7 1 1 7 9 8 1 13 87 3 3%
30 CS.wronglock 3 bad 5 4 25 1 243 856 783 66 1 15 22 21 2 3233 L 3006 *3%
31 CS.wronglock bad 9 8 49 0 7 L L 0 1 31 42 41 2 7 L 0 *0%
32 chess.IWSQ 3 3 169 1 7 L 99997 0 2 2990 4378 4264 192 7 L 0 *0%
33 chess.IWSQWS 3 1 660 1 7 10000 9997 0 1 219 471 470 1 7 10000 0 *0%
34 chess.SWSQ 3 1 2406 1 7 10000 9997 0 1 773 1698 1697 1 7 10000 0 *0%
35 chess.WSQ 3 3 161 2 2814 8852 8626 640 2 801 2048 1974 192 7 L 0 *0%
36 inspect.qsort mt 3 3 81 1 31 88 84 2 1 19 28 27 1 75861 L 2127 *2%
37 misc.ctrace-test 3 2 22 1 4 20 19 12 1 4 20 19 12 4 20 12 60%
38 misc.safestack 4 3 117 1 7 L 99987 0 3 7 L 95958 0 7 L 0 *0%
39 parsec.ferret 11 11 24453 0 7 L L 0 1 51 4575 4574 1 7 L 0 *0%
40 parsec.streamcluster 5 2 1373 1 7951 16072 16066 19 1 1336 1372 1371 10 7 L 0 *0%
41 parsec.streamcluster2 7 3 4177 0 7 L L 0 1 4153 4175 4174 20 7 L 0 *0%
42 parsec.streamcluster3 5 2 1373 0 2 6 6 4 1 2 1359 1358 4 2 L 60785 *60%
43 radbench.bug1 4 3 21889 1 7 L 99962 0 1 616 14206 14205 1 7 L 0 *0%
44 radbench.bug2 2 2 171 3 59354 72704 69895 48 3 59354 72704 69895 48 7 L 0 *0%
45 radbench.bug6 3 3 101 1 84 168 165 3 1 60 86 85 3 7 L 0 *0%
46 splash2.barnes 2 2 4449 1 2 4378 4377 326 1 2 4378 4377 326 2 L 23504 *23%
47 splash2.fft 2 2 152 1 2 134 133 61 1 2 134 133 61 2 L 75434 *75%
48 splash2.lu 2 2 140 1 2 105 104 49 1 2 105 104 49 2 L 49887 *49%

Table 3.3: Experimental results for SCT using iterative preemption bounding (IPB), iter-
ative delay bounding (IDB) and unbounded depth-first search (DFS). Entries
marked ‘L’ indicate 100,000, our schedule limit. A ‘7’ indicates that no bug
was found. A percentage prefixed with ‘*’ does not apply to all schedules, only
those that were explored via DFS before the schedule limit was reached.

69

id name Rand PCT d=1 PCT d=2 PCT d=3 MapleAlg

#
m

a
x

th
re

a
d

s
(n

)

#
m

a
x

en
ab

le
d

th
re

ad
s

#
m

ax
st

ep
s

(k
)

#
sc

h
ed

u
le

s
to

fi
rs

t
b

u
g

#
b

u
g
gy

sc
h

ed
u

le
s

#
sc

h
ed

u
le

s
to

fi
rs

t
b

u
g

#
b

u
g
gy

sc
h

ed
u

le
s

es
t.

w
o
rs

t
ca

se
#

b
u

gg
y

#
sc

h
ed

u
le

s
to

fi
rs

t
b

u
g

#
b

u
g
gy

sc
h

ed
u

le
s

es
t.

w
or

st
ca

se
#

b
u

gg
y

#
sc

h
ed

u
le

s
to

fi
rs

t
b

u
g

#
b

u
g
gy

sc
h

ed
u

le
s

es
t.

w
o
rs

t
ca

se
#

b
u

gg
y

fo
u

n
d

?

#
sc

h
ed

u
le

s

to
ta

l
ti

m
e

(s
ec

on
d

s)

0 CB.aget-bug2 4 3 24 4 48591 7 25053 43 7 40313 1 5 46938 <1 3 17 37
1 CB.pbzip2-0.9.4 4 4 54 1 41771 1 16466 8 1 22971 <1 5 27385 <1 3 4 20
2 CB.stringbuffer-jdk1.4 2 2 10 23 6308 7 0 500 7 0 50 1 1979 5 3 9 7
3 CS.account bad 4 3 8 8 11912 5 25060 390 5 21936 48 5 19527 6 3 20 12
4 CS.arithmetic prog bad 3 2 20 1 L 1 L 83 1 L 4 1 L <1 3 1 1
5 CS.bluetooth driver bad 2 2 13 8 6436 7 0 295 11 3871 22 11 5968 1 7 11 7
6 CS.carter01 bad 5 3 19 1 46877 7 0 55 9 16028 2 3 29243 <1 3 6 5
7 CS.circular buffer bad 3 2 31 1 91146 7 0 34 1 12818 1 1 28763 <1 7 17 12
8 CS.deadlock01 bad 3 2 11 1 37405 7 0 275 15 9020 25 15 17234 2 7 7 5
9 CS.din phil2 sat 3 2 21 1 96860 1 L 75 2 95337 3 2 93558 <1 3 1 1
10 CS.din phil3 sat 4 3 32 1 92850 1 L 24 1 93792 <1 1 90207 <1 3 1 1
11 CS.din phil4 sat 5 4 43 1 88754 1 L 10 1 93040 <1 1 88414 <1 3 1 1
12 CS.din phil5 sat 6 5 39 1 L 1 L 10 1 L <1 1 L <1 3 1 1
13 CS.din phil6 sat 7 6 49 1 L 1 L 5 1 L <1 1 L <1 3 1 1
14 CS.din phil7 sat 8 7 59 1 L 1 L 3 1 L <1 1 L <1 3 1 1
15 CS.fsbench bad 28 27 155 1 L 1 L <1 1 L <1 1 L <1 3 1 1
16 CS.lazy01 bad 4 3 11 2 60626 1 49847 206 1 53343 18 1 56197 1 3 1 1
17 CS.phase01 bad 3 2 11 1 L 1 L 275 1 L 25 1 L 2 3 1 1
18 CS.queue bad 3 2 83 1 99986 7 0 4 38 818 <1 6 14046 <1 3 2 1
19 CS.reorder 10 bad 11 10 40 7 0 7 0 5 439 89 <1 439 135 <1 7 11 7
20 CS.reorder 20 bad 21 20 89 7 0 7 0 <1 219 131 <1 219 224 <1 7 11 7
21 CS.reorder 3 bad 4 3 12 39 2498 7 0 173 168 2653 14 115 4559 1 7 10 7
22 CS.reorder 4 bad 5 4 16 68 726 7 0 78 86 1257 4 7 2053 <1 7 11 8
23 CS.reorder 5 bad 6 5 20 68 202 7 0 41 7 688 2 7 1057 <1 7 11 7
24 CS.stack bad 3 2 43 2 60949 7 0 18 2 27680 <1 2 40159 <1 7 10 8
25 CS.sync01 bad 3 2 9 1 L 1 L 411 1 L 45 1 L 5 3 1 1
26 CS.sync02 bad 3 2 18 1 L 1 L 102 1 L 5 1 L <1 3 1 1
27 CS.token ring bad 5 4 11 9 13004 44 8238 165 11 13655 15 11 16908 1 3 5 4
28 CS.twostage 100 bad 101 100 792 7 0 7 0 <1 10548 5 <1 10548 6 <1 7 11 9
29 CS.twostage bad 3 2 11 15 7848 7 0 275 15 12097 25 15 19840 2 3 8 5
30 CS.wronglock 3 bad 5 4 25 1 31302 7 0 32 13 6442 1 4 11107 <1 3 6 4
31 CS.wronglock bad 9 8 49 1 32534 7 0 4 29 3636 <1 24 6693 <1 3 6 4
32 chess.IWSQ 3 3 169 19 133 7 0 1 61 4829 <1 24 8069 <1 7 7 -
33 chess.IWSQWS 3 1 660 3 1538 7 0 <1 584 8 <1 616 19 <1 7 9 -
34 chess.SWSQ 3 1 2406 15 88 7 0 <1 1109 2 <1 612 11 <1 7 7 -
35 chess.WSQ 3 3 161 392 106 7 0 1 61 4993 <1 24 8357 <1 7 12 12
36 inspect.qsort mt 3 3 81 72 1024 7 0 5 109 1271 <1 109 2346 <1 7 142 102
37 misc.ctrace-test 3 2 22 1 24487 2193 7 68 5 27307 3 5 33607 <1 3 1 1
38 misc.safestack 4 3 117 7 0 7 0 1 7 0 <1 7 0 <1 7 23 16
39 parsec.ferret 11 11 24453 7 0 3 39389 <1 3 63027 <1 3 69745 <1 3 27 205
40 parsec.streamcluster 5 2 1373 1 68746 1 49831 <1 1 50194 <1 1 50428 <1 3 1 2
41 parsec.streamcluster2 7 3 4177 21 12514 2 50135 <1 2 50096 <1 2 50075 <1 7 24 149
42 parsec.streamcluster3 5 2 1373 2 34448 1 50081 <1 1 50081 <1 1 50081 <1 3 1 1
43 radbench.bug1 4 3 21889 7 0 7 0 <1 3084 8 <1 79190 1 <1 7 583 13811
44 radbench.bug2 2 2 171 27071 9 7 0 1 7 0 <1 1813 54 <1 7 239 950
45 radbench.bug6 3 3 101 1 30211 7 0 3 15 4543 <1 15 7675 <1 7 11 10
46 splash2.barnes 2 2 4449 2 49933 2 49967 <1 2 49967 <1 2 49967 <1 3 1 1
47 splash2.fft 2 2 152 2 62188 2 49967 2 2 50007 <1 2 50017 <1 3 2 2
48 splash2.lu 2 2 140 1 97329 2 49967 2 2 53574 <1 2 56605 <1 3 2 3

Table 3.4: Experimental results for randomisation techniques—the controlled random
scheduler (Rand) and PCT for each d ∈ {1, 2, 3}—and the Maple algorithm
(MapleAlg). Entries marked ‘L’ indicate 100,000, our schedule limit. A ‘7’
indicates that no bug was found. In the MapleAlg results, ‘-’ indicates that the
Maple tool timed out after 24 hours.

70

SCTBench, but this does include publicly available benchmarks used in prior work to

evaluate concurrency testing tools. We refer to the Venn diagrams of Figure 3.3 and the

cumulative graphs in Figure 3.4 and 3.5 from §3.7. Recall that these diagrams provide

an overview of our results in terms of the bug-finding ability of the techniques we study:

iterative preemption bounding (IPB), iterative delay bounding (IDB), depth-first search

with no schedule bound (DFS), three parameterised versions of probabilistic concurrency

testing (PCT d = n, for n ∈ {1, 2, 3}) and a controlled random scheduler (Rand). Recall

that, for each controlled technique evaluated, a limit of 100,000 schedules per benchmark

was used, except for the CHESS benchmarks where (as explained in §3.6) a lower limit

was used.

RQ1, RQ2: PCT d=3 performed best. With a limit of 100,000 schedules, PCT

d=3 found bugs in 48 of the 49 benchmarks—more than any other technique—including

all 45 bugs found by IDB, the next best non-PCT technique in terms of number of bugs

found. For lower schedule limits, PCT d=3 still found the most bugs, except for very low

schedules limits (<10). This concurs with the findings of prior work, in which PCT found

bugs faster than IPB [BKMN10]. However, we note that the three bugs missed by IDB

(but found by PCT d=3) are in benchmarks with high thread counts and IDB was able

to find these bugs within the schedule limit when the thread count was reduced.

RQ3: Controlled random scheduling performed better than IPB and compa-

rably with IDB. Because it is so straightforward, our assumption prior to this study

was that use of a controlled random scheduler for bug-finding would not be effective. We

initially investigated this method merely because it provides a simple baseline that more

sophisticated techniques should surely improve upon (and because this was suggested by

a reviewer of the conference version of this work [TDB14]). The effectiveness of controlled

random scheduling for bug finding is not addressed in prior work; the papers that intro-

duced preemption bounding [MQ07b] and delay bounding [EQR11] only include DFS or

preemption bounding as a baseline for finding bugs (see Footnote 1, p. 29). Our findings,

summarised in Figure 3.3c, contradict our assumption: with a schedule limit of 100,000,

Rand found 43 bugs, more than IPB (38) and DFS (33), and found all but 2 of the bugs

found by IDB (45). Furthermore, as shown in Figure 3.4, the results are similar when lower

schedule limits are considered: for schedule limits between 10 and 1000, Rand finds up to

6 more bugs than IDB. We also note that Rand found the bugs in the 4 versions of the

CHESS work stealing queue benchmark (ids 32–35) after only a small number of schedules

(392 in the worst case), thus performing better than IPB (which missed 3 of the bugs) and

IDB. Yet, when IPB was introduced, this benchmark was used to demonstrate/evaluate

71

its bug finding ability [MQ07b]. This raises two important questions: Does IPB actually

aid in bug finding, compared to more näıve approaches? Are the benchmarks used to

evaluate concurrency testing tools (captured by SCTBench) representative of real-world

concurrency bugs? Our findings indicate that the answer to at least one of these ques-

tions must be “no”. Nevertheless, schedule bounding still provides simple counterexample

traces and bounded coverage guarantees, which is not questioned by our findings.

RQ3, RQ7: Researchers should compare against controlled random scheduling.

Much prior work that introduced new techniques did not compare against a controlled

random scheduler. Many benchmarks contain defects that can be trivially found using a

controlled random scheduler. We stress that future work should use the controlled random

scheduler as a baseline, to give an accurate representation of the benchmarks used and

the improvement obtained by the new technique.

RQ4: IDB beats IPB. Schedule bounding beats DFS. With a schedule limit of

100,000, IDB found all of the 38 bugs that were found by IPB, plus an additional 7

(see Figure 3.3a). This is in line with experimental claims of prior work [EQR11]. A

straightforward DFS with no schedule bounding only exposed bugs in 33 benchmarks, all

of which were also found by IPB, as well as by IDB. This also validates prior work [MQ07b,

EQR11]. Results were similar in terms of number of bugs found at various lower schedule

limits (see Figure 3.4).

RQ5: Many bugs could be found using a small schedule bound. With a sched-

ule limit of 100,000, schedule bounding exposed each bug in 45 of the 49 benchmarks,

and 44 of these require a preemption bound of 2 or less. Thus, a large majority of the

bugs in SCTBench can be found with a small schedule bound. This supports previous

claims that in practice many bugs can be exposed using a small number of preemptions

or delays [MQ07b, MQB+08, EQR11]. It also adds weight to the argument that bounded

guarantees provided by schedule bounding are useful. However, we note that one bug

that was found by schedule bounding requires 3 preemptions and another is reported to

require a minimum of 5 preemptions. Also note that certain synthetic benchmarks (such

as reorder X bad and twostage X bad) are challenging for schedule bounding when the

number of threads parameter, X, is increased; as X is incremented, so is the number of

delays required for IDB to find the bug. However, it is not clear whether such a scenario

is likely to occur in real multithreaded programs.

RQ6: SCT techniques can be difficult to apply. There were 8 distinct pro-

grams (providing 26 potential test cases) that could not easily be included in our study,

as they use nondeterministic features or additional synchronisation that is not modelled

72

or controlled appropriately by most tools. This includes network communication, mul-

tiple processes, signals (other than pthread condition variables) and event libraries. It

is sometimes possible to apply randomisation or heuristic techniques, such as PCT and

random scheduling, to such benchmarks. However, this depends on how the techniques

are implemented.

Additionally, program modules were often difficult to test in isolation due to direct

dependencies on system functions and other program modules. Thus, creating isolated

tests suitable for concurrency testing (or even unit testing) may require significant effort,

especially for testers who are not familiar with the software under test.

RQ7: Trivial benchmarks. We argue that certain benchmarks used in prior work

are “trivial” (based on properties which we discuss in §3.7.4 and summarise in Table 3.2)

and cannot meaningfully be used to compare the performance of competing techniques.

Instead, they provide a minimum baseline for any respectable concurrency testing tech-

nique. For example, the bugs in 18 benchmarks were exposed 50% of the time when using

random scheduling; in 8 of these cases, the bugs were exposed 100% of the time.

RQ7: Non-trivial benchmarks. We believe most benchmarks from the CHESS,

PARSEC and RADBench suites, as well as the misc.safestack benchmark (see §3.4),

present a non-trivial challenge for concurrency testing tools. Furthermore, these represent

real bugs, not synthetic tests. Future work can use these challenging benchmarks to show

the improvement obtained over prior techniques. We also recommend that the research

community focus on increasing the corpus of non-trivial concurrency benchmarks that are

available for evaluation of analysis tools.

We also summarise several notable findings that do not directly relate to our research

questions:

Data races are common. Many (30) of the benchmarks we tested exhibited data races.

Although we did not analyse these data races in detail, to the best of our knowledge they

are not regarded as bugs by the relevant benchmark developers. Treating data races as

errors would hide the more challenging bugs that the benchmarks capture. Future work

that uses these benchmarks must take this into account. For the study, we explore the

interleavings arising from sequentially consistent outcomes of data races in order to expose

assertion failures, deadlocks, crashes or incorrect outputs.

Some bugs may be missed without additional checks. Some concurrency bugs

manifest as out-of-bounds memory accesses, which do not always cause a crash. Tools

need to check for these, otherwise bugs may be missed or manifest nondeterministically,

even when the required thread schedule is executed. Performing such checks reliably and

73

efficiently is non-trivial.

3.9 Related work

Background on SCT was discussed in §2.1. We now discuss similar prior work and other

relevant concurrency testing techniques.

A prior study created a benchmark suite of concurrent programs to evaluate the bug

detection capabilities of several tools and techniques [RM09]. Our 49 test programs are

drawn from 35 distinct bugs in pthread benchmarks written in C/C++, while the prior

study uses 12 distinct bugs in benchmarks written in both Java and C#.9 Thus, our

study is over a larger set of benchmarks, which are mostly distinct from the set used in

the prior study. Furthermore, 8 of our benchmarks are derived from open source desktop

libraries and applications and a further 7 are from parallel performance benchmark suites

(the PARSEC and SPLASH2 benchmarks). The C# benchmarks from the prior study are

standalone synthetic test cases. Our study is focused on comparing five SCT techniques

(or seven SCT techniques if the different parameter values for PCT are treated as distinct

techniques), implemented in the same SCT framework within the same tool, plus the Maple

algorithm. This allows us to compare the techniques fairly in a single tool (as opposed to

comparing several distinct tools that may implement the techniques in different manners),

because each technique operates on the same low level implementation, e.g. they use

the same notion of scheduling points. In contrast, the prior study tests six techniques

implemented over four tools.

We introduced POR [God96] in §2.1. POR reduces the number of schedules that need to

be explored soundly (i.e. without missing bugs, assuming the search completes). It relies

on the fact that schedules can be represented as a partial-order of operations, where each

partial-order reaches the same state. As explained in §3.6, Maple’s data race detector is

not optimised for use during SCT and the information stored for data race detection is

similar to that needed for POR techniques, such as DPOR. Thus, performing POR was

deemed infeasible without significant engineering effort. We consider POR techniques in

Chapter 4.

The parallel PCT algorithm [NBMM12] improves the PCT algorithm by allowing par-

allel execution of many threads, as opposed to always serialising execution. This provides

increased execution speed but maintains the probabilistic guarantee from PCT. We focus

9The companion website for the prior study shows 17 benchmarks that were translated to C#, although
only 12 were used in the published study; translation was necessary so that the benchmarks could be used
with CHESS.

74

on SCT techniques where the program is serialised; since we report the number of terminal

schedules, increased execution speed does not affect our results.

In addition to the Maple algorithm, there has been a wide-range of work on other

non-systematic approaches, including [EFN+02, Sen08, PLZ09]. Like parallel PCT, these

approaches are appealing as they allow parallel execution of many threads and can handle

complex synchronisation and nondeterminism.

Randomisation has been shown to be effective for search diversification in stateful model

checking, where it can be used to allow independent searches to occur in parallel for im-

proved coverage on multicore systems within a predefined time limit [HJG11]. In our study,

we use a schedule limit instead of a time limit; it is worth noting that PCT and controlled

random scheduling are both trivially parallelisable, and that DFS-based techniques can

also be parallelised with additional effort [SBGH12].

We do not consider relaxed memory models in this study; as in prior work [MQB+08,

YNPP12], we assume sequential consistency. Finding weak memory bugs would at least

require instrumenting memory accesses (similar to performing data race detection during

SCT), which would have been far too slow using Maple’s built-in support for this. Recent

work has shown an efficient approach for testing relaxed memory models with SCT using

DPOR [AAA+15, ZKW15].

Our study has briefly touched on dynamic data race detection issues. A discussion of

this wide area is out of scope here, but we refer to [FF09] for the state-of-the-art.

3.10 Conclusion

We have presented an independent empirical study on SCT techniques. In future work

we believe it would be fruitful to expand SCTBench through the addition of further non-

trivial benchmarks to enable larger studies to be conducted. We consider POR techniques

in Chapter 4. However, in future reproduction studies, it would be useful to include POR

techniques, including techniques such as bounded POR [CMM13].

75

4 The lazy happens-before relation

Exploring all terminal schedules/states of a program is usually infeasible. In Chapter 3,

we evaluated bounding and randomisation SCT techniques that alleviate this by aiming

to explore only a subset of schedules to find concurrency bugs quickly. However, these

techniques do not avoid redundant schedules that reach already-explored states. In this

chapter, we consider partial-order reduction (POR), which uses the happens-before rela-

tion (HBR) to avoid redundant schedules. POR techniques, such as dynamic partial-order

reduction (DPOR), can be used during SCT to soundly skip redundant schedules, guar-

anteeing that all terminal states will still be explored if the search completes. Thus, such

techniques aim to enumerate all terminal states efficiently. Motivated by the fact that

POR can be hampered by the use of mutexes, we present a new approach. The main

contributions of this chapter are:

� The lazy happens-before relation (lazy HBR) that can provide reduction beyond

what is possible with any POR technique for programs that use mutexes. We prove

that schedules with identical lazy HBRs are guaranteed to reach identical states.

� Lazy HBR caching—a sound technique that improves upon HBR caching for pro-

grams that use mutexes by using the lazy HBR.

� Lazy DPOR—an unsound technique that is inspired by DPOR and uses the lazy

HBR to attempt to enumerate terminal states more efficiently than DPOR for pro-

grams that use mutexes.

� An evaluation of the lazy HBR and our two techniques using JESS, our new SCT

tool for Java programs, over 79 publicly available benchmarks. Our evaluation shows

both a large potential and large practical improvement from exploiting the lazy HBR.

Mutex types We only consider (and our techniques only work with) exclusive locking; a

thread that locks a mutex owns it exclusively, unlike with reader-writer locks. Additionally,

our Java benchmarks only use well-nested, reentrant mutexes, but we do not believe our

techniques are limited to these cases.

76

Relation to published work The lazy HBR was briefly described and evaluated

in [TD15].

4.1 Motivation

Partial-order reduction (POR) [God96] can be applied during SCT to reduce the num-

ber of schedules explored, without sacrificing the guarantees provided by an exhaustive

exploration. POR was originally proposed as a static state-space reduction technique for

explicit-state model checkers, such as SPIN [Hol03]; the relevant insight is that a schedule

(a total-order of transitions) can be seen as a particular serialisation of the schedule’s

happens-before relation (HBR)—a partial-order over the transitions in the schedule. The

set of schedules that can be derived from the same HBR are all equivalent—they all reach

the same state. Thus, exploring all unique terminal HBRs (HBRs that reach a terminal

state) is sufficient to guarantee that all terminal states have been explored and thus that

all safety property violations have been detected.

Two methods for applying POR during systematic concurrency testing are happens-

before relation caching (HBR caching), used e.g. by CHESS [MQB+08], in which explo-

ration of a schedule ceases as soon as the HBR associated with the schedule matches a

previously seen HBR, and dynamic partial-order reduction (DPOR) [FG05], which detects

dependent operations on-the-fly during SCT and subsequently considers alternative or-

derings to explore distinct HBRs on demand. A potential issue with these methods is

that all interleavings of operations on the same mutex must be explored; these operations

are totally-ordered in the HBR. This is indeed necessary when operations protected by a

common mutex access and update shared data: different interleavings of these operations

may lead to different states. However, our hypothesis is that mutexes are often locked

conservatively so that protected operations actually access disjoint data in some scenar-

ios. This can occur, for example, if: threading is used to interleave tasks, without the goal

of increased performance; mutexes do not have high contention, and so coarse-grained

locking is used for simplicity; it is expensive, complicated, or impossible to check at run-

time if locking a mutex is required. A concrete example supporting our hypothesis is a

study showing that the Linux kernel has enough data independence between potentially

critical sections to benefit from certain “optimistic” concurrency optimisations [PHW07].

Furthermore, the study shows that these critical sections only access independent data

some of the time; thus, the locks cannot simply be removed.

A conservative locking discipline is arguably easier for programmers to understand than

an intricate discipline and thus may be attractive from a software engineering perspective.

77

(a)

T1
lock(m)
write(x)
unlock(m)

T2

lock(m)
write(y)
unlock(m)

T3

lock(m)
read(x)
unlock(m)

T4

lock(m)
read(x)
unlock(m)

(b)

T1
lock(m)
write(x)
unlock(m)

T2

lock(m)
write(y)
unlock(m)

T3

lock(m)
read(x)
unlock(m)

T4

lock(m)
read(x)
unlock(m)

(c)

T1

lock(m)
write(x)
unlock(m)

T2

lock(m)
write(y)
unlock(m)

T3
lock(m)
read(x)
write(y)
unlock(m)

T4

lock(m)
read(x)
unlock(m)

(d)

Figure 4.1: A simple multithreaded program (a), and several schedules (b-d). The ar-
rows indicate the HBR; (b) uses the traditional HBR while (c) and (d) use a
representation of our lazy HBR.

For example, guidance on device driver development recommends that, for simplicity, a

driver should enforce mutual exclusion between critical sections using a single lock wher-

ever possible [CRKH05]. However, this creates a problem when applying SCT techniques

to the resulting software because coarse use of mutexes mitigates the extent to which HBR

caching, DPOR, and other POR-based methods, can reduce schedule-explosion.

4.1.1 The lazy HBR: an illustrative example

We illustrate the lazy happens-before relation (lazy HBR) and the benefits it can bring

to SCT using the simple multithreaded program of Figure 4.1a (contrived for illustration

purposes). The function f will be executed in parallel by four threads, although note that

the lazy HBR can easily give improved reduction for programs with fewer threads. Each

thread will have a distinct integer tid parameter drawn from the set {1, 2, 3, 4}. Figure 4.1

(b), (c) and (d), give three examples of terminal schedules of this program; we show the

list of operations performed by each thread from top-to-bottom. We refer to a lock-unlock

region (a subsequence of operations by a thread that starts with a lock and ends with the

next unlock of the same mutex) as a critical section (or just section). Since every thread in

this program locks and unlocks the same mutex, there are 4! = 24 schedules (the number

of permutations of four sections). We include arrows that indicate a partial-order between

the critical sections; the partial-order is indicative of the HBR in (b) and the lazy HBR in

(c) and (d), although applying the relation to just the critical sections is a simplification.

The relation is transitive but edges that can be obtained via transitivity are omitted from

the figure. A pair of schedules are equivalent iff they have the same partial-order; thus

schedules that can be obtained by swapping adjacent unordered sections are equivalent.

Using the traditional happens-before relation (defined formally in §4.2) the sections in

this program are always totally-ordered, illustrated for one terminal schedule in Figure 4.1b.

78

Each of the 24 possible terminal schedules has a different partial-order, meaning that POR

cannot reduce the number of schedules that must be explored. In contrast, Figure 4.1c

shows (conceptually) the partial-order obtained from our novel lazy happens-before rela-

tion applied to the critical sections. The partial-order depends on the variables accessed

within the sections: a pair of sections is ordered iff they access a common variable and at

least one of the accesses is a write. T1’s section writes to x and thus is ordered before the

sections of T3 and T4, which both read from x. This captures the important fact that

T3 and T4 read a value that was written by T1. Executing, say, T3’s section before T1’s

would cause a different value of x to be read by T3, causing T3 to additionally write to

y, leading to a different state. This partial-order captures 8 schedules. For example, the

order of T3’s and T4’s sections can be swapped, respecting the partial-order, and the final

state of the variables will remain the same. Thus, 7 of these schedules do not need to be

explored. Figure 4.1d shows a schedule with a different partial-order according to our lazy

happens-before relation that captures 3 schedules. There is an additional arrow because,

for this schedule, T3’s section writes to y as well as reading from x. However, T4’s section

still only reads from x. Note that, even though f can access x and y in various ways, the

arrows are added dynamically based on the accesses in this particular schedule.

Thus, for this example, there are 24 partial-orders according to the happens-before re-

lation while there are only 11 partial-orders according to our lazy happens-before relation.

Any POR algorithm based on the HBR must explore at least 24 schedules even though

only 11 need to be explored.

4.2 Background

In this section we refine our concurrent program model and introduce dependencies, events,

the HBR, HBR equivalence, and HBR caching.

Concurrent program model We modify our concurrent program model P from §2.2

to separate mutex state from the rest of the shared state. A state is now a triple s =

(ss,mss, tss), where ss is the shared state (as before, modulo mutex states), tss is the

thread state of every thread (as before), and mss ∈ Mutex→ Tid∪{⊥} is the mutex state

of every mutex. As described in §2.3, we let the value of a mutex be ⊥ iff no thread owns

the mutex and thread id tid ∈ Tid iff thread tid owns the mutex. We insist that Mutex

and Object are disjoint sets. The shared object accessed by a transition can be from either

set.

We distinguish mutex transitions as being the only transitions that access the mutex

79

states. Given a transition ttid ,ts ∈ Transition, the transition is a mutex transition iff

obj (ttid ,ts) ∈ Mutex. A mutex transition ttid ,ts : (Tid ∪ {⊥}) ⇀ (Tid ∪ {⊥})× ThreadState

is a partial function that defines how to update a mutex in Mutex and also yields the next

thread state. Otherwise, ttid ,ts is a non-mutex transition that defines how to update an

object in Object and also yields the next thread state, as before. Thus, the transition

relation δ is defined by the following two rules:

obj (ttid ,ts) 6∈ Mutex

tss(tid) = ts o = obj (ttid ,ts) v = ss(o) ttid ,ts(v) is defined

ttid ,ts(v) = (v′, ts ′) ss ′ = ss[o 7→ v′] tss ′ = tss[tid 7→ ts ′]

(ss,mss, tss)
ttid,ts−−−→ (ss ′,mss, tss ′)

(Non-mutex transition)

obj (ttid ,ts) ∈ Mutex

tss(tid) = ts m = obj (ttid ,ts) v = mss(m) ttid ,ts(v) is defined

ttid ,ts(v) = (v′, ts ′) mss ′ = mss[m 7→ v′] tss ′ = tss[tid 7→ ts ′]

(ss,mss, tss)
ttid,ts−−−→ (ss,mss ′, tss ′)

(Mutex transition)

A mutex transition is either a lock transition or an unlock transition. We define lock and

unlock transitions the same way we described lock and unlock operations in §2.3. A lock

transition ttid ,ts(v) = (v′, ts ′) is defined iff v = ⊥. If it is defined then v′ = tid , which

corresponds to thread tid locking the mutex. Notice that there is only a single thread

state that can be reached after executing a lock transition (the transition is only defined

for one value of v). For an unlock transition, we assume that thread tid must only ever

try to unlock a mutex that it owns (i.e. that has state tid). Doing otherwise could be

treated as an invalid program or could be assumed to be a bug in the program such that

further exploration is unnecessary. Thus, we let an unlock transition ttid ,ts(v) = (v′, ts ′)

be defined iff v = tid . If it is defined then v′ = ⊥. As with lock transitions, notice that

there is only a single thread state that can be reached after executing an unlock transition.

Dependencies The notion of dependent transitions is central to POR methods: adjacent

independent transitions in a schedule can be swapped without changing the state reached.

We use the definition of a valid dependency relation from [FG05].

Definition 1 (Valid dependency relation). Let D ⊆ Transition × Transition be a binary,

reflexive and symmetric relation. D is a valid dependency relation iff for all pairs of

transitions (t1, t2), if (t1, t2) 6∈ D (they are independent) then both of the following hold

for all states s ∈ State:

80

1. if s
t1−→ s′, then t2 ∈ s.enabled iff t2 ∈ s′.enabled (independent transitions neither

enable nor disable each other)

2. if t1 and t2 are both in s.enabled, then there exist states s′, s′′, s′′′ such that s
t1−→

s′′
t2−→ s′ and s

t2−→ s′′′
t1−→ s′ (independent events commute)

A trivial valid dependency relation is one where all transitions are dependent with each

other: D = Transition × Transition. However, this is extremely conservative and gives no

potential for reduction. In practice, it is infeasible to precisely detect all independent

transitions to get the “perfect” dependency relation (as we do not actually build a model

of the state-space). Instead, it is common to define a dependency relation that lies between

perfect and trivial using certain properties of transitions. For example, in our JESS tool

(used in our experimental evaluation (§4.6) and described further in Chapter 5) we use

a common approach that is described explicitly in [CMM13]: a pair of transitions is in

D iff either: (a) they are from the same thread, or (b) they access the same shared

object and at least one is a write to the shared object. The concept of a shared object

was described in §2.2.4 and a transition is typically a write if it changes the value of its

accessed shared object. However, the techniques discussed work for any valid dependency

relation, although we assume a non-conditional dependency relation [God96, KP92] (i.e.

it is not influenced by the shared state or mutex state) and that all transitions from a

particular thread are dependent with each other, as in [FG05]. We henceforth assume

that D is some valid dependency relation. We also assume that transitions that access

different shared objects are independent (as this is trivially always the case); in particular,

we assume that mutex and non-mutex transitions are independent. Mutex transitions are

dependent with each other iff they access the same mutex.

Events When writing an SCT tool, we do not precisely capture shared states or thread

states. As such, it is not possible to store a schedule as a list of transitions, as each

transition corresponds to a thread state. Instead, we typically store information about

each transition in an event. Let an event be a tuple e = (e.tid , e.obj , e.type, e.pti). Given

a transition ttid ,ts , we define the event of the transition as:

event(ttid ,ts) = (tid , obj (ttid ,ts), type(ttid ,ts), pti(ttid ,ts))

where: tid is the thread of the transition, obj (ttid ,ts) is the shared object accessed by the

transition, and we define type(ttid ,ts) ∈ {lock , unlock , other} as the operation type of the

transition (lock for a lock transition, unlock for an unlock transition, and other for a non-

81

mutex transition), and we define pti(ttid ,ts) = i as the per-thread index of the transition,

which indicates that the transition is the ith transition of thread tid .

Thus, given a schedule as a list of transitions S = 〈t1, t2, . . . , tk〉, we now represent this

as a list of events: E = 〈e1, e2, . . . , ek〉, where event ei = event(ti). Let Event be the

set of all events. Let TransitionList(E) = S yield the list of executed transitions that

would be obtained if we executed the transition for each thread e1.tid , e2.tid , . . . , ek.tid

in sequence from the start of the program. Let state(E) = state(TransitionList(E)) be

the state reached after executing E. We consider the next events and enabled events

that correspond to the next transitions and enabled transitions of a state. Let next(E)

yield the set of next events from state(E) (one for each next transition, including disabled

transitions) and let enabled(E) yield the set of enabled events:

next(E) = {event(t) | t ∈ state(E).next}

enabled(E) = {event(t) | t ∈ state(E).enabled}

Thus we think of events being enabled or disabled in a state in the same way as transitions

and threads.

Dependent events Two different transitions can yield the same event; for example,

a transition ttid ,ts that locks a mutex m could yield event (tid ,m, lock , 3) but a different

transition ttid ,ts′ (with a different thread state) could yield the same event (although not in

the same schedule). We avoid losing potential reduction opportunities (due to being unable

to distinguish between distinct transitions) by defining a dependency relation for events

in the context of a schedule in terms of our valid dependency relation over transitions.

We stress that the use of events does not lead to a loss of reduction; it is instead the way

in which dependencies between events are defined that determines the extent of possible

reduction.1

Definition 2 (Schedule dependency relation). Given a schedule as a list of events E =

〈e1, e2, . . . , ek〉, let T = TransitionList(E). Let DE ⊆ Event× Event be a binary, reflexive

and symmetric relation defined as follows:

(E(i), E(j)) ∈ DE iff (T (i), T (j)) ∈ D

1In fact, defining the dependency relation over transitions, as we do, is already somewhat limited, as
it is not possible for a pair of transitions to only be dependent from certain states. See [AAJS14] for an
approach that avoids this limitation.

82

In other words, we say that E(i) and E(j) are dependent in E iff the corresponding

transitions are dependent. In JESS, this is approximated by inspecting the events.

The happens-before relation Given a schedule E, the happens-before relation →E

of E is a strict (irreflexive, transitive and asymmetric) partial-order over the set of events

in E (events in a schedule are guaranteed to be unique).

Definition 3 (Happens-before relation→E). We say that ei happens-before ej in schedule

E, and write ei →E ej iff ei occurs before ej in E and one of the following holds:

1. ei and ej are dependent in E, or

2. there exists an event e such that ei →E e and e→E ej (the relation is transitive).

The relation →E ⊆ Event × Event is called the happens-before relation for E. Observe

that →E is the transitive closure of the dependency relation of E (DE) intersected with

the total-order E.

HBR equivalence A schedule E is one particular linearisation of the partial-order

→E , and all other linearisations reach the same state. This is a well-known result, but

we present its proof since our development of the lazy HBR in §4.3 requires an analogous

proof.

Theorem 4.2.1 (HBR equivalence). Let E1 and E2 be schedules with identical HBRs.

That is, →E1=→E2. Then E1 and E2 lead to the same state: state(E1) = state(E2).

Proof. Because E1 and E2 have identical HBRs, it must be possible to transform E1 into

E2 by repeatedly swapping adjacent, unordered (and therefore independent) events. Thus,

it remains to show that swapping adjacent, independent events in a schedule preserves the

state that is reached.

Let E = v · 〈ei, ej〉 · w be a schedule, where ei and ej are independent events in E.

Consider state(v). We know that ei ∈ enabled(v). By rule 1 of a valid dependency

relation (Definition 1), and the fact that ei and ej are independent, we also have ej ∈
enabled(v). By rule 2 of a valid dependency relation the schedule v · 〈ej , ei〉 (with the

events swapped) must exist, and we must have state(v · 〈ei, ej〉) = state(v · 〈ej , ei〉). Thus,

state(v · 〈ei, ej〉 · w) = state(v · 〈ej , ei〉 · w).

83

Algorithm 4 HBR caching.

1: procedure Explore(E)
2: H = H ∪ {→E}
3: for each e ∈ enabled(E)
4: if →E·〈e〉 6∈ H
5: Explore(E · 〈e〉)
6: end procedure

HBR caching Exhaustive SCT may explore many distinct schedules that reach the

same state. This problem can be reduced by a simple form of POR called HBR

caching [MQ07a]2 whereby the HBR of every (not necessarily terminal) schedule explored

is stored in a set. If the HBR of the current schedule is in the set already then we have

already explored all terminal states reachable from this state and so exploration from the

current state ceases and the search backtracks.

We show HBR caching as a recursive procedure in Algorithm 4. The global set H stores

previously explored HBRs; the recursive call is only made for successor HBRs that are not

in H. Recall that returning from a recursive call to Explore corresponds to backtracking

which, in practice, requires restarting the target program from the start. Notice that we

can check whether each successor HBR is in H without having to make the recursive call.

Thus, the search actively avoids already-explored HBRs that are one step away which

avoids backtracking (i.e. restarting the target program) if there are other successor HBRs

that have not been explored. Note that in practice a set of HBR hashes are stored using

an incremental hash function (see §4.5).

One of the benefits of HBR caching is its simplicity and the fact that it can be soundly

combined with preemption bounding in a simple manner [MQ07b, MQ07a]; combining the

more sophisticated dynamic partial-order reduction method with preemption bounding

poses subtle challenges [CMM13].

4.3 The lazy HBR

In this section, we introduce our first main contribution of this chapter—the lazy HBR.

The intuition is that, in many cases, the order in which lock and unlock events are executed

does not affect the state that is reached. Our lazy HBR treats lock and unlock events as

independent, which can allow a pair of distinct HBRs to be detected as reaching equivalent

states. This reduction goes beyond what is possible with any POR technique because the

2In prior work the term happens-before graph caching is used [MQ07a].

84

dependency relation that we use is not valid. Despite this, we show that the lazy HBR is

still useful, as it yields a more accurate representation of a state (and thus closer estimates

for the number of states explored during SCT), and more efficient HBR caching.

Lazy happens-before We define the lazy dependency relation D′, based on D, in which

lock and unlock transitions from different threads are regarded as being independent :

Definition 4 (Lazy dependency relation D′). A pair of transitions (t1, t2) 6∈ D′ (they are

lazy independent) iff:

1. (t1, t2) 6∈ D, or

2. obj (t1) ∈ Mutex and obj (t2) ∈ Mutex and thread(t1) 6= thread(t2).

In other words, a pair of mutex transition from different threads are always lazy inde-

pendent. For non-mutex transitions, the valid dependency relation is used. Recall that

we already assume that a mutex transition will never be dependent with a non-mutex

transition.

Given a schedule E, we define the lazy schedule dependency relation D′E using D′, and

we define the lazy happens-before relation →′E using D′E .

Definition 5 (Lazy schedule dependency relation). Given a schedule E, the lazy schedule

dependency relation D′E is defined identically to DE (Definition 2) except that D′ is used

instead of D.

Definition 6 (Lazy happens-before relation→′E). Given a schedule E, the lazy happens-

before relation→′E is defined identically to→E (Definition 3) except that the lazy schedule

dependency relation D′E is used instead of DE.

Notice that swapping adjacent lazy independent events in a schedule may now lead to an

invalid schedule—a schedule that cannot actually be executed on our concurrent program

P because one of the events in the schedule will be disabled. For example, consider a

schedule E = w · 〈u, l〉 · v, where u is an unlock event that unlocks mutex m and l is a

lock event from a different thread that locks m. Clearly, event u enables event l and so

these are dependent. However, they are lazy independent. Swapping these events yields

an invalid schedule E′ = w · 〈l, u〉 · v because l 6∈ enabled(w).

Thus, D′ is an invalid dependency relation (i.e. it is not a valid dependency relation as

defined by Definition 1). Regardless, we prove the analogue of Theorem 4.2.1 for the lazy

happens-before relation, showing that two valid schedules with the same lazy HBR reach

the same state. We assume schedules are valid unless otherwise stated.

85

Theorem 4.3.1 (Lazy happens-before equivalence). Let E1 and E2 be schedules with

identical lazy HBRs. That is, →′E1
=→′E2

. Then E1 and E2 lead to the same state:

state(E1) = state(E2).

The challenge that prevents a proof of Theorem 4.3.1 analogous to the proof of Theo-

rem 4.2.1 is that D′ is not valid for P and so we cannot just consider a pair of adjacent

events. Our proof strategy is to consider an alternative transition system P ′ that provides

a more relaxed semantics than P . We will then relate P and P ′ in order to get the desired

result. Thus, assume that P ′ is identical to P except that lock and unlock transitions are

assumed to always be enabled and do not change the mutex state (they are no-ops). Given

a transition t, let πts(t) = {t(v).ts | v ∈ dom(t)} yield the set of all thread states that can

be reached via the transition; if t is a mutex transition then we know that there is always

precisely one thread state that can be reached and so πts(t) will result in a singleton thread

state. Thus, the updated inference rule for mutex transitions in P ′ is:

obj (ttid ,ts) ∈ Mutex

tss(tid) = ts

πts(ttid ,ts) = {ts ′} tss ′ = tss[tid 7→ ts ′]

(ss,mss, tss)
ttid,ts−−−→ (ss,mss, tss ′)

(Mutex transition in P’)

Thus, we can define P ′ using the same set of transitions (Transition) as in P .

Observe that the lazy dependency relation D′ is a valid dependency relation for P ′ as

lock and unlock transitions neither enable nor disable each other and, since they no longer

mutate the mutex state, lock and unlock transitions commute.

To distinguish between states of P and P ′ we use state ′(E) to denote the state reached

by a schedule E on P ′. For a state s of P or P ′, let πµ(s) = s.mss and π(σ,τ)(s) = (s.ss, s.τ)

project the mutex and non-mutex components of s, respectively.

Our proof of Theorem 4.3.1 uses the following lemmas:

Lemma 4.3.2. If E1 and E2 are schedules of P such that→′E1
=→′E2

then πµ(state(E1)) =

πµ(state(E2))).

Proof. The proof is by a straightforward counting argument on lock and unlock events.

Given→′E1
=→′E2

, we know that E1 and E2 contain the same events. Thus, for each mutex

m, E1 and E2 contain the same lock and unlock events that access m. Assuming x lock

events for mutex m, there must be x or x− 1 unlock events for mutex m. Case x unlock

events: mutex m has been locked and unlocked x times and so is mapped to ⊥ in both

πµ(state(E1)) and πµ(state(E2)). Case x − 1 unlock events: the extra lock event must

86

be from the same thread, tid , in both E1 and E2 because they contain the same events.

Thus, mutex m has been locked and unlocked x− 1 times and then locked one more time

by thread tid and so is mapped to tid in both πµ(state(E1)) and πµ(state(E2)).

Lemma 4.3.3. Let E be a schedule of P . It must the case that π(σ,τ)(state(E))

= π(σ,τ)(state ′(E)).

Proof. The proof is by structural induction on E. Base case: π(σ,τ)(state(〈〉))
= π(σ,τ)(state ′(〈〉)) trivially holds. Inductive step: Assuming π(σ,τ)(state(E′)) =

π(σ,τ)(state ′(E′)) we show that π(σ,τ)(state(E′ · 〈e〉)) = π(σ,τ)(state ′(E′ · 〈e〉)), by show-

ing that t, the corresponding transition of e for both P and P ′, updates the thread states

and shared state identically in both P and P ′. If t is a non-mutex transition, then note

that state(E′).ss(obj (t)) = state ′(E′).ss(obj (t)) due to our inductive hypothesis. Thus,

by considering the inference rule for non-mutex transitions (which is the same for both

P and P ′ and given in §4.2), we can see that t updates the thread states and shared

state identically in both P and P ′. If t is a mutex transition, then t does not update the

shared state and updates the thread state of thread(t) to only one possible thread state

(regardless of the mutex states reached after E′). Thus, t updates the thread states and

shared state identically in both P and P ′.

Lemma 4.3.4. Let E1 and E2 be schedules of P ′ with identical lazy HBRs. That is,

→′E1
=→′E2

. Then E1 and E2 lead to the same state in P ′: state ′(E1) = state ′(E2).

Proof. The proof is the same as that of Theorem 4.2.1 because D′ is a valid dependency

relation for P ′.

We are now in a position to prove Theorem 4.3.1.

Proof of Theorem 4.3.1. Let E1 and E2 be schedules of P such that →′E1
=→′E2

. We

must show that state(E1) = state(E2). From Lemma 4.3.2 we have πµ(state(E1)) =

πµ(state(E2)). It remains to show that π(σ,τ)(state(E1)) = π(σ,τ)(state(E2)). We have:

π(σ,τ)(state(E1)) = π(σ,τ)(state ′(E1)) (Lemma 4.3.3)

= π(σ,τ)(state ′(E2)) (Lemma 4.3.4)

= π(σ,τ)(state(E2)) (Lemma 4.3.3)

87

Lazy HBR caching An immediate consequence of Theorem 4.3.1 is that the HBR

caching technique discussed in §4.2 can be optimised to use the lazy HBR. We evaluate

the effectiveness of lazy HBR caching in §4.6.

Mutex-deadlock states We call a terminal state where at least one thread is blocked at

a lock operation a mutex-deadlock state; we describe an example later in §4.4.3. Note that

P ′ does not contain any mutex-deadlock states, even if P does, because mutex operations

do not block in P ′. Early in our investigation of the lazy HBR, we believed that this may

lead to cases where we cannot detect mutex-deadlock states in P if using the lazy HBR.

However, this issue does not apply when comparing lazy HBRs (like in lazy HBR caching).

In §4.4.3, we describe how this affects our lazy DPOR algorithm and how we handle this.

4.4 Lazy DPOR

We present our second main contribution of this chapter—the lazy dynamic partial-order

reduction (lazy DPOR) algorithm, which exploits the lazy HBR to explore unique states

more efficiently (in fewer schedules) than DPOR. Unlike DPOR, lazy DPOR is unsound

but instead provides efficient terminal state coverage beyond that which is possible when

using POR and, we believe, is unlikely to miss terminal states in most cases; we consider

several counter-examples. We recap the original DPOR algorithm (§4.4.1), motivate the

design of lazy DPOR using examples (§4.4.2), and then describe lazy DPOR in full (§4.4.3).

Lazy DPOR unsoundness We originally intended lazy DPOR to be a sound technique

except for programs that contain mutex-deadlock states. However, we did not achieve this

and so leave a sound extension (modulo mutex-deadlock) for future work. We believe

lazy DPOR is likely to explore all terminal states in many cases (except for programs

that contain mutex-deadlock states) and is still useful when thorough (but not necessarily

complete) terminal state coverage is desired, particularly in cases where enumerating all

terminal HBRs is infeasible (and so a sound, POR-based analysis is infeasible anyway).

Interestingly, we note in our experiments (§4.6.3) that lazy DPOR never missed a terminal

state that was explored via DPOR (except for the benchmarks where we detected potential

mutex-deadlock and for one other easily-detectable case, which we describe in §4.4.3); thus,

terminal state coverage was always greater than or equal to DPOR for our benchmarks

and schedule limit (except for detected incompatible benchmarks). We also note in §4.6.3

that lazy DPOR was able to explore more terminal states in less or equal time compared

to DPOR.

88

(a) (b) (c) (d)

Figure 4.2: Four (unrelated) terminal schedules that we considered when designing lazy
DPOR. The arrows indicate the lazy races.

4.4.1 Dynamic partial-order reduction (DPOR)

DPOR [FG05] attempts to avoid exploring equivalent terminal schedules using the HBR.

Intuitively, DPOR attempts to reverse pairs of dependent events in order to explore dif-

ferent terminal happens-before relations (and thus different terminal states). Given a

schedule E, we say that a pair of events from E race in E iff they are from different

threads and are directly related by the HBR:

Definition 7. A pair of events (e, e′) is a race in schedule E iff e→E e
′ and e.tid 6= e′.tid

and there does not exist e′′ in E such that e→E e
′′ and e′′ →E e

′.

Intuitively, given a race in a schedule, we can always swap adjacent, independent events

such that the racing events are adjacent. We can then try to swap the order of the racing

events to get to a different HBR and a different terminal state.

Algorithm 5 presents the DPOR algorithm, omitting some optimisations that are part

of the original [FG05] to simplify our presentation. The Explore procedure recursively

explores the state-space in a depth-first manner, backtracking at certain points to explore

alternative schedules. When Explore(E) returns, all terminal states reachable from

state(E) are guaranteed to have been explored. Explore is initially called on the empty

schedule 〈〉. Thus, when Explore(〈〉) returns, all terminal states will have been explored.

If no error states were encountered then the program is verified to be free from safety

property violations.

A set backtrack(E) is associated with each non-terminal schedule E that is explored. In

straightforward SCT without DPOR (§3.2.1), at each schedule E reached, every event e ∈
enabled(E) is “explored” by calling Execute recursively for each schedule E · 〈e〉. In the

DPOR algorithm, only the events in backtrack(E) are explored. At line 4, backtrack(E) is

initialised to contain a single arbitrary event from enabled(E) to force exploration towards

a terminal state. Then, at line 8, each event in backtrack(E) is explored via recursive

calls. Within a recursive call to Explore(E · w), for some list of events w, events may

89

Algorithm 5 DPOR algorithm.

1: procedure Explore(E)
2: AddBacktrack(E)
3: if ∃e ∈ state(E).enabled
4: backtrack(E) = {e}
5: let done = ∅
6: while ∃e′ ∈ (backtrack(E) \ done)
7: add e′ to done
8: Explore(E · 〈e′〉)
9: end procedure

10: procedure AddBacktrack(E)
11: for all en ∈ state(E).next
12: for all i ∈ dom(E) s.t. (E(i), en) races in E · 〈en〉
13: let E′ = E[1 : i− 1]
14: if ∃eb ∈ state(E′).enabled s.t. eb.tid = en.tid
15: add eb to backtrack(E′)
16: else
17: add all of state(E′).enabled to backtrack(E′)

18: end procedure

be added to backtrack(E) via the AddBacktrack procedure which is called at line 2.

AddBacktrack considers each event en in next(E) and finds every index i in dom(E)

such that E(i) races with en in the schedule E · 〈en〉. (Strictly, E · 〈en〉 may not be a valid

schedule because en may not be in enabled(E); the definition of a race (and therefore, the

happens-before relation, dependency relation, and TransitionList) is applied to the list

E · 〈en〉 in the obvious manner.) When such a race is found, E′ is defined (line 13) such

that state(E′) is the state from which E(i), the first event participating in the race, was

executed. One or more events are then added to backtrack(E′) to attempt to reverse the

race by forcing an alternative schedule in which E(i) occurs after en. There are several

different ways in which to add to the backtrack set; in both this paper and our tool, we

use the simpler variant from the original DPOR paper [FG05]. The algorithm attempts to

add an event from enabled(E′) that has the same tid as en. If such an event is not enabled,

then the algorithm conservatively adds all events from enabled(E′) to backtrack(E).

4.4.2 From DPOR to lazy DPOR

Our aim is to optimise DPOR to use the lazy HBR. However, simply modifying DPOR

to use lazy races (by interpreting Definition 7 w.r.t. the lazy HBR) does not work. Sup-

90

pose the schedule E of Figure 4.2a is the first terminal schedule to be explored. We use

write(x) and read(x) to indicate a write and read access, respectively, of the shared

variable (shared object) x. The arrows indicate lazy races. In Explore(E[1 : 4]), the

lazy race between event E(2) and the next event of T2 will be detected, so DPOR will

add events to backtrack(E[1 : 1])) to try to reverse the events involved. However, only T1

is enabled at state(E[1 : 1])) and its next event is already in the backtrack set. DPOR

will terminate without exploring the schedule in which T2 is the first to write to x. It is

not possible to reverse the events from state(E[1 : 1])) because T1 owns m and T2 cannot

execute until m is unlocked; to unlock m, T1 must execute, but T1’s next event is the

write to x.

A possible solution would be to consider the set of mutexes held by T1 at state(E[1 : 1]))

and the set of mutexes held by T2 at state(E[1 : 4])); if the intersection of these sets is

non-empty we will not be able to reverse the lazy race. We could consider “moving the

backtrack point” back one event at a time until the intersection is empty. Thus, we would

add to backtrack(〈〉) and the lazy race would be reversed. However, now assume that E

is the schedule given by Figure 4.2b. Adding to backtrack(E[1 : 1]) would not work (as

before), but the intersection of the set of mutexes held by T1 at state(E[1 : 1])) and the

set held by T2 at state(E[1 : 5])) is empty, and so our proposed solution would fail. We

could try to fix this by considering the set of mutexes held by T1 at state(E[1 : 1])) (as

before) and the set of mutexes locked (even if they are subsequently unlocked) within the

event subsequence E[2 : 5] (i.e. from the first event of the lazy race up to the second); the

intersection of these sets is {m} and we so could now move the backtrack point back to a

point where T1 does not own m. Thus, we would add to backtrack(〈〉) as before. However,

consider if E was given by Figure 4.2c. Now it is possible to reverse the lazy race by

adding to backtrack(E[1 : 1]) but our proposed solution would force us to backtrack at

backtrack(〈〉). Thus, it may seem like we only need to consider mutexes locked by T2. Now

assume E is given by Figure 4.2d. This is a similar schedule except we assume that T3’s

write to x only occurs if the write to y happens-before the read of y. Thus, we must add

to backtrack(〈〉) in order to reverse the race on the writes to x. This schedule illustrates

our final solution which is based on the idea that we must consider all mutexes locked that

lazy happen-before the second event in the race.

Let Held(E · 〈e〉), denote the set of mutexes owned by thread e.tid in the state reached

after executing E:

Held(E · 〈e〉) = {m ∈ Mutex | state(E).mss(m) = e.tid}

91

and Held(〈〉) = ∅. Now consider a schedule E · w and an event e that is a next event

for the state reached, i.e. e ∈ next(E · w) but e might not be in enabled(E · w). Let

Relevant(E,w, e) yield the set of mutexes locked by events in w where the lock events

must lazy happen-before e in E · w · 〈e〉:

Relevant(E,w, e) = {m ∈ Mutex | ∃i ∈ dom(E · w) ∧

i > |E| ∧

(E · w)(i).type = lock ∧

(E · w)(i).obj = m ∧

(E · w)(i)→′ E·w·〈e〉 e}.

Thus, our solution to reversing a lazy race (E(i), E(j)) is to identify the largest i′ ≤ i for

which:

� E(i).tid = E(i′).tid and

� Held(E[1 : i′]) ∩ Relevant(E[1 : i′], E[i′ + 1 : j − 1], E(j)) = ∅,

and add to backtrack(E[1 : i′ − 1]). For example, assume E is given by Figure 4.2d once

again. In Explore(E[1 : 7]), the lazy race between E(2) and the next event of T3 E(8)

is detected, so let i = 2 and j = 8. With i′ = 2, the above intersection is:

Held(E[1 : 2]) ∩ Relevant(E[1 : 2], E[3 : 7], E(8))

= {m} ∩ {m}

= {m}

Thus, we must let i′ = 1 to give Held(E[1 : 0]) = ∅. Thus, we add an event for T3 to

backtrack(〈〉) which will eventually lead to the race being reversed.

4.4.3 Lazy DPOR algorithm

Algorithm 6 shows our lazy DPOR algorithm. The Explore procedure is not shown;

it is the same as in DPOR (Algorithm 5), except that the call to AddBacktrack is

replaced with a call to AddBacktrack’. Referring to Algorithm 6, line 2 considers each

next event en of state(E). At line 3, each index i of E is considered such that E(i) races

with en according to the lazy happens-before relation. Line 4 finds the set I of suitable

values for i′, as described above; line 5 chooses the maximum value in I. The rest of the

procedure is the same as in DPOR.

92

Algorithm 6 Lazy DPOR algorithm.

1: procedure AddBacktrack’(E)
2: for all en ∈ state(E).next
3: for all i ∈ dom(E) s.t. (E(i), en) lazy races in E · 〈en〉
4: let I = {i′ ∈ dom(E) | i′ < i ∧ E(i′).tid = E(i).tid ∧

Held(E[1 : i′]) ∩ Relevant(E[1 : i′], E[i′ + 1 : |E|], en) = ∅}
5: let i′ = max(I)
6: let E′ = E[1 : (i′ − 1)]
7: if ∃eb ∈ state(E′).enabled s.t. eb.tid = en.tid
8: add eb to backtrack(E′)
9: else

10: add all of state(E′).enabled to backtrack(E′)

11: end procedure

(a) (b) (c) (d)

Figure 4.3: Several terminal schedules that demonstrate potential issues for lazy DPOR.
The arrows indicate the lazy races.

As discussed earlier, the lazy DPOR algorithm may miss terminal states, in particular

mutex-deadlock states. We now consider several issues with the lazy DPOR algorithm

that lead to unsoundness.

Issue 1 (Blocking operations inside critical sections). Consider a schedule E given by

Figure 4.3a. The lazy race can be reversed by adding to backtrack(E[1 : 1]). Now let

E be given by Figure 4.3b. Assume wait is some operation that blocks unless release is

executed. Lazy DPOR will try to reverse the lazy race on x by adding to backtrack(E[1 : 1])

but this will not work because T2 cannot unlock m from this state without first executing

T1’s release. Instead of trying to handle this, we simply detect operations that block

inside critical section; if we encounter such an operation we issue a warning so that the

user can either accept the unsoundness or switch to using regular DPOR. We note that

blocking while owning a mutex is typically avoided by programmers in practice as it can lead

to deadlock. In particular, note that a wait operation as found in Java programs unlocks

an associated mutex before blocking. Thus, a thread will only block inside a critical section

93

in this case if it also owns additional mutexes.

Issue 2 (Mutex-deadlock states). Consider Figure 4.3c. This terminal schedule has no

lazy races and so lazy DPOR will not explore any further schedules. However, deadlock

can occur if T1 locks m and then T2 locks n; at this point both threads then block forever

on their next lock operations. At noted earlier, we call a terminal state where at least one

thread is blocked at a lock operation a mutex-deadlock state. Lazy DPOR is very likely

to miss mutex-deadlock states. Furthermore, if lazy DPOR encounters a mutex-deadlock

state it may miss further terminal states as it will not try to reverse the lock operations.

We address the issue by conservatively detecting whether mutex-deadlock states are likely

to exist and, thus, warn the user if terminal states are likely to be missed because of

this. We construct a wait-for graph, a labelled directed graph, for each terminal schedule

explored. The graph is constructed according to insights from prior work [BH05]—we

use one of the most straightforward approaches, which we found to be effective for our

benchmarks (§4.6). The graph is initially empty for each schedule. A mutex m is added

to the graph when it is acquired by a thread i; for each mutex n that is already held by

thread i, an edge is added from n to m with label i. We define a may-deadlock cycle in

this graph as a path of the form m1
t1−→ m2

t2−→ . . .mk
tk−→ m1, where each thread label tj

for j ∈ 1, . . . , k is unique. If the wait-for graph of every terminal schedule of the program

contains no may-deadlock cycles, then mutex-deadlock cannot occur (although lazy DPOR

does not guarantee that all schedules will be explored). If a may-deadlock cycle is found,

we warn the user.

Issue 3 (Mutexes owned by other threads). Consider a schedule E given by Figure 4.3d.

Lazy DPOR will attempt to reverse the lazy race by adding to backtrack(E[1 : 2]). However,

it is not possible to execute T3’s write to x before T1’s from this state because T2 cannot

unlock t unless T1 executes and unlocks m, and T3 cannot execute until t is unlocked.

Thus, it seems that we would need to consider the regular HBR in this case. We currently

do not try to handle this issue and instead accept that lazy DPOR may miss terminal

states in certain scenarios. However, we claim that lazy DPOR is still a very efficient

approach for enumerating most terminal states and we surmise that it will often explore

all terminal states in practice. In our experimental evaluation, we observe that lazy DPOR

did not miss any terminal states that were explored by DPOR on our benchmarks (except

when Issue 1 or Issue 2 was detected).

As discussed earlier, a refinement of the lazy DPOR algorithm may be able to ensure

soundness given the assumption that there are no mutex-deadlock states but this will

require further investigation.

94

4.5 JESS: an SCT tool for Java programs

We have implemented an SCT tool for Java programs called JESS which includes lazy

and regular versions of HBR caching and DPOR. JESS is written in Java and uses Java

bytecode instrumentation (targeting Java 1.7) to control the thread schedule at each visible

operation. JESS performs a left-recursive depth-first search of the schedule-space; at

each “node” in the tree, the enabled operations (the branches) are in thread creation

order, starting (on the left) with the thread that executed most recently, wrapping in

a round-robin fashion. The shared state consists of all array elements and the fields of

all objects (matching ss in our model), and the mutexes that the JVM associates with

objects (matching mss in our model). The program counter, local variables and call stack

constitute the local state of each thread (matching tss in our model). We describe JESS

in more detail in Chapter 5. In this section, we briefly discuss important implementation

details related to HBRs and POR.

Sleep sets JESS incorporates the sleep sets reduction with both DPOR and lazy DPOR

to further reduce redundant schedules explored [God96]. Naively combining DPOR with

sleep sets is potentially unsound; an addendum [FG11] was released for the original DPOR

paper [FG05] describing a sound combination which we have implemented. The sleep sets

algorithm requires a valid dependency relation; thus, we use D (Definition 1) as the sleep-

sets dependency relation with both DPOR and lazy DPOR; as discussed in §4.3, the lazy

relation D′ (Definition 4) is not a valid dependency relation.

DPOR optimisation for mutex operations The DPOR algorithm can be optimised

by observing that it is not possible to reverse an unlock event and lock event on the

same mutex. When a lock event e2 races with an earlier unlock event e1 it is thus only

necessary to add a backtracking point to the preceding lock event of e1.tid that locks the

mutex e1.obj [FG05]. Our DPOR implementation incorporates this optimisation. The

optimisation does not apply to lazy DPOR.

Representing and recording HBRs as hashes We described the HBR as a partial-

order over the set of events in a schedule in §4.2. We store regular HBRs and lazy HBRs

efficiently using a method proposed in [MQ07a]. We classify all events as either write or

read events as briefly described in §4.2. Each event e is also extended with an additional

component e.numWrites which counts the number of write events that have occurred on

e.obj up to and including e. The per-thread index, e.pti , encodes the total-order over

95

events of a thread and the number of writes, e.numWrites encodes the order over events

on the same object. This means that the HBR of a schedule is implicitly and canonically

represented by the set of events in the schedule; we store a hash of this set to represent

the HBR, and implement HBR caching based on these hashes. Note that hash collisions

can lead to unsoundness. We describe this approach in more detail in §5.4.4.

During exploration, regardless of which algorithm is in use, we record both the HBR

and lazy HBR for every terminal schedule. We make use of this recorded data during our

evaluation (§4.6).

4.6 Experimental Evaluation

In this section, we evaluate:

� the potential reduction offered by the lazy HBR by showing the extent to

which distinct terminal HBRs have identical terminal lazy HBRs when running

DPOR (§4.6.1);

� HBR caching vs. lazy HBR caching, in terms of number of terminal lazy HBRs

explored vs. the number of schedules explored (§4.6.2);

� DPOR vs. lazy DPOR, in terms of number of terminal lazy HBRs explored vs. the

number of schedules explored and time taken (§4.6.3), with the caveat that lazy

DPOR is unsound in general.

We use a set of 79 publicly available benchmarks. Our full results table (including the

benchmark ids used in the graphs in this section), the JESS tool and our benchmarks are

available online:

https://github.com/mc-imperial/jtool-sct

Benchmarks Our multithreaded Java benchmarks are largely drawn from prior

works [FF09, FF13, CWY11, EP14, Sen08, PJ14, RM09, PL11b, PL11a]. For each bench-

mark, we require a target method with deterministic behaviour (given the same schedule).

Thus, any nondeterminism (from random numbers, time, user input, etc.) had to be fixed;

e.g. random number generators were given fixed seeds. For efficiency, we ensure that the

method can be executed repeatedly without restarting the JVM. To achieve this, we had

to manually modify most benchmarks, for instance, by adding code to reinitialise data

before each schedule. We also modified benchmarks to reduce the amount of memory

allocated, work performed and the number of threads created. Unlike in stress testing,

96

https://github.com/mc-imperial/jtool-sct

Suite #bench #unique #w/o mutexes #barriers #sp source
Spin14 8 4 0 2 127–883 [PJ14]
CCompar 41 24 0 0 24–439 [RM09]
JGF 11 8 8 5 45–40618 [SB01]
ASE11 5 5 0 0 457–1580 [PL11a]
Rhino 4 3 0 0 1480–3151 [B+07]
StringUtils 1 1 1 0 387 [Nit14]
Regression 9 9 1 1 14–40 -
Total: 79 54 10 8

Table 4.1: Benchmark summary.

this is generally the best approach when performing SCT; many of the benchmarks were

not designed with exhaustive testing in mind and the memory overhead for race detection

can be large.

Table 4.1 provides a summary of the benchmarks, which consist of several benchmark

suites. “#bench” denotes the number of benchmarks that we derived from each suite. In

some cases, we created an additional version of a benchmark by varying the parameters

(e.g. number of threads); “#unique” denotes the number of these that are truly distinct.

“#w/o mutexes” denotes the number of (not necessarily unique) benchmarks that do

not use mutexes. “#barriers” denotes the number of benchmarks that use barriers for

synchronisation. We would not expect our lazy approaches to provide benefit for “embar-

rassingly parallel” benchmarks that do not exhibit synchronisation or synchronise only via

barriers, but we still include such benchmarks. The “#sp” column shows the minimum

and maximum number of scheduling points associated with benchmarks in a suite. More

specifically, we count the number of scheduling points where more than one thread is en-

abled from the first schedule of each benchmark (which is the same for all techniques).

We provide this as a metric of the benchmark complexity. All benchmarks use at least

2 threads; most use 2–4 threads; repworkers-8t-8 had the largest thread count with 9

threads.

The “source” column indicates the source or prior work from which we obtained the

benchmark suite. The Spin14 suite contains several tests including a test for cache4j, a

multithreaded in-memory Java object cache. The CCompar suite, from a study of concur-

rency bug finding tools [RM09], includes a large number of benchmarks, such as elevator

(discrete-time elevator simulator), philo (dining philosophers simulation), alarmclock,

boundedbuffer and piper (producer-consumer airline simulator with a known deadlock

bug). The JGF (Java Grade Forum) suite includes multithreaded kernels and simu-

lations such as series (Fourier coefficient analysis), lufact (LU factorisation), crypt

97

(IDEA encryption), motecarlo (Monte Carlo simulation) and raytracer (3D ray tracer).

The ASE11 suite includes cocome (prototype trading system for supermarkets), credemo

(high-level prototype for a system providing WiFi at airports), daisy (simple file system

developed as a challenge for verification tools) and papabench (a model of on-board con-

trol software for an aerial vehicle). We created the Rhino suite, which tests the Rhino

JavaScript engine [B+07], using two tests from Rhino’s bug tracker and a third test con-

structed by us in which 2 or 4 threads access disjoint locations in a shared JavaScript

array. The StringUtils suite contains a single test case that we found online [Nit14]; the

class being tested is from the spymemcached3 project (a memcached4 client written in

Java). The Regression suite contains tests we used to guide the development of JESS.

We skipped one benchmark that requires Java 1.6 (recall that JESS targets Java 1.7) and

one benchmark whose memory requirements we could not reduce sufficiently for feasible

analysis.

Experimental setup We conducted our experiments on a Linux cluster, with Red Hat

Enterprise Linux Server release 6.4 and Oracle’s 64-bit JDK1.7.0 60 Java VM. We ran

each variation of SCT: lazy and non-lazy HBR caching, and lazy and non-lazy DPOR, on

each benchmark with a limit of 100,000 terminal schedules. In each case we recorded the

number of terminal schedules explored, the set of terminal lazy and regular HBRs explored,

and the total time associated with exploration. For lazy DPOR, we also recorded whether

we encountered a blocking operation inside a critical section (Issue 1) or detected the

potential of mutex-deadlock (Issue 2). As noted, we do not detect all cases where lazy

DPOR may miss terminal states (Issue 3). However, we compare the terminal lazy HBRs

to see if lazy DPOR missed any terminal states explored by DPOR within the schedule

limit. We henceforth assume that the number of schedules, HBRs, and lazy HBRs refers to

the number of terminal schedules, terminal HBRs, and terminal lazy HBRs, respectively.

4.6.1 Potential reduction offered by lazy HBR

To study the extent to which the lazy HBR can identify equivalent terminal states regarded

as distinct by the regular HBR we compare, for each benchmark, the set of terminal lazy

and regular HBRs explored by regular DPOR. For a given benchmark we have the following

inequality (modulo possible hash collisions when storing HBRs):

#states ≤ #lazy HBRs ≤ #HBRs ≤ #schedules ≤ 100,000

3http://code.google.com/p/spymemcached/
4http://memcached.org/

98

http://code.google.com/p/spymemcached/
http://memcached.org/

1 100 1000 10000 100000
#HBRs

1

100

1000

10000

100000
#l

az
y

H
B

R
s

1

2 3

4

5
6

7

8

9

10

11

12

13

14

1516

17

18

19

20 21

22

23

24

25

26

27

2829

30

31

32

33

34

35

36

37

38

39

40

41

42

434445

46

47

48

49

50

51

52

53

54

55

56

57

58

596061

62

63

64

65

66

67

68

69
70

71

72

73

74

75

76

77

78

79

Figure 4.4: The number of terminal HBRs and terminal lazy HBRs explored by the first
100,000 terminal schedules of DPOR.

If the difference between #lazy HBRs and #HBRs is large then, because #lazy HBRs is

a tighter upper bound for #states, significant benefit can be gained by exploiting the lazy

HBR.

Figure 4.4 plots our results using a log scale. Each point is a benchmark id; if an

id has coordinates (x, y) this means that regular DPOR explored x regular and y lazy

HBRs for the benchmark. A benchmark is underlined if DPOR hit the schedule limit, in

which case unexplored terminal states are likely to remain; otherwise all terminal states

were explored. By the above inequality a benchmark cannot lie above the diagonal; a

benchmark below the diagonal indicates that fewer lazy vs. regular HBRs were explored.

Increasing the schedule limit could cause underlined benchmarks to move, but they could

not move closer to the diagonal: any previously unseen lazy HBR is also a previously

unseen HBR. Of the 79 benchmarks, 46 lie on the diagonal; in 10 cases this is expected

as mutexes are not used (see Table 4.1). For the other 36 cases, equality between #lazy

HBRs and #HBRs suggests the benchmarks do not exhibit coarse-grained locking or that

the DPOR algorithm did not reveal any redundant HBRs before hitting the schedule limit.

There are 33 benchmarks below the diagonal: the lazy HBR could be exploited when

analysing these benchmarks. DPOR completed in 18 of these cases. Across the 33 bench-

marks below the diagonal, 80% of the unique HBRs explored were found to be redundant.

Further schedules could cause this percentage to decrease, but the number of redundant

99

1 100 1000 10000 100000
HBR caching (#lazy HBRs)

1

100

1000

10000

100000
La

zy
H

B
R

ca
ch

in
g

(#
la

zy
H

B
R

s)

1

2
3

4

56

7

8

9

10

11

12

13

14

1516

17

18

19

2021

22

23

24

25

26

27

2829

30

31

32

333435

36
37

38

39

40

41

42

434445

46

47

48

49

50

51

52
53

54

55

56

57

58

5960

62

63

64

65

66

67

68

69
70

71

72

73

74

75

76

77

78

79

Figure 4.5: The number of terminal lazy HBRs explored by the first 100,000 terminal
schedules of lazy HBR caching and HBR caching.

HBRs (910,007 total) would only increase or stay the same. For 17 benchmarks, the per-

centage of redundant HBRs was 70% or greater. If we ignore these extreme cases we still

find that 49% of the HBRs explored were redundant.

4.6.2 Comparing lazy and regular HBR caching

We evaluated lazy vs. regular HBR caching by comparing the number of lazy HBRs ex-

plored by both techniques within the schedule limit. Figure 4.5 plots our results using a

log scale. Each point is a benchmark id; an id at (x, y) indicates the number of lazy HBRs

explored by HBR caching and lazy HBR caching, respectively. We henceforth use states

to refer to lazy HBRs since (by the above inequality) they provide the closest estimate

available to the number of unique states explored. By the above inequality a benchmark

cannot lie below the diagonal—lazy HBR caching cannot explore fewer terminal states

than HBR caching. A benchmark above the diagonal indicates that lazy HBR caching

explored more terminal states than regular HBR caching within the schedule limit. We

predicted that at most 33 benchmarks could benefit from exploiting the lazy HBR. We

found that for 18 benchmarks lazy HBR caching explored more terminal states than regu-

lar HBR caching (i.e. there are 18 benchmarks above the diagonal). As expected, regular

HBR caching never explored more lazy HBRs. Across the 18 benchmarks that saw a

benefit, lazy HBR caching explored a total of 8,969 (84%) more terminal lazy HBRs than

100

1 100 1000 10000 100000
Regular DPOR

1

100

1000

10000

100000
La

zy
D

P
O

R

1

2
3

4

5
6

7

8

9

10

11

12

13

14

1516

17

18

19

2021

22

23

24

25

26 272829

30

31

32

33

34

35

36

37

38

39

40

41

42

434445

46

47

48

49

50 51

52

53

54

55

56

57 58

596061

62

63

64

65

66

67

68

69
70

71

72

73

74

75

76

77

78

79

n #lazy HBRs
#terminal schedules

Figure 4.6: Number of terminal lazy HBRs (id) and terminal schedules (square) explored
for each benchmark by the first 100,000 terminal schedules of regular and lazy
DPOR.

regular HBR caching.

4.6.3 Lazy vs. regular DPOR

Figure 4.6 compares lazy and regular DPOR based on the number of lazy HBRs and

schedules explored within the schedule limit, using a log scale. We again use states to

refer to lazy HBRs. Each benchmark is represented by its id connected to a square. A

benchmark id with coordinates (x, y) indicates that x vs. y states were explored by regular

vs. lazy DPOR. The id is underlined if lazy DPOR encountered a blocking operation within

a critical section or a may-deadlock cycle (see §4.4.3). A square at (x, y) indicates that

regular and lazy DPOR completed after x and y schedules, respectively, for the associated

benchmark.

A benchmark id above the diagonal shows that lazy DPOR managed to explore more

states than DPOR within the schedule limit. A square below the diagonal shows that

lazy DPOR completed within fewer schedules than regular DPOR. The benefit of lazy

DPOR is shown when the benchmark id is above the diagonal and/or when the square

is below the diagonal (more states explored by fewer schedules). Benefit was seen for 39

benchmarks; in these cases, lazy DPOR explored 344,161 (91%) more states than regular

DPOR. For example, consider benchmark 10 in Figure 4.6, a configuration of cache4j

101

from the Spin14 suite. Lazy DPOR explored more states than regular DPOR (4,248 vs.

1,144), and regular DPOR hit the schedule limit while lazy DPOR completed after 19,494

schedules.

Some benchmark ids, e.g. 19, 22, 14 and 5, appear on or close to the diagonal indicating

that both algorithms explored the same or a similar number of states. However, if there was

no schedule limit, all benchmark ids would appear on the diagonal because both techniques

will eventually explore all terminal states. The substantial benefit of lazy DPOR in these

cases is shown by the squares, which all lie significantly below the diagonal (recall that the

graph has a log scale). Again, lazy DPOR was able to complete on all of these benchmarks;

DPOR completed on only half of these and required many more schedules to do so.

For some underlined benchmark ids (e.g. 1, 33 and 51) we see that both algorithms

completed with regular DPOR exploring more states than lazy DPOR (the ids lie below

the diagonal). In these cases, lazy DPOR encountered a blocking operation within a

critical section or a may-deadlock cycle; as discussed in §4.4.3, lazy DPOR is very likely

to miss many states in these cases.

For a number of benchmarks, e.g. 12, 53, 77 and 31, neither DPOR nor lazy DPOR com-

pleted exploration. However, notice that lazy DPOR explored substantially more states

than DPOR within the schedule limit, indicated by the ids lying above the diagonal. We

believe these examples show a real benefit of lazy DPOR; complete terminal state coverage

is probably infeasible but lazy DPOR provides much greater terminal state coverage.

Missed states and DPOR-fallback We note that DPOR never explored a lazy HBR

hash that was not also explored by lazy DPOR except for the cases where lazy DPOR

encountered a blocking operation within a critical section or a may-deadlock cycle (see

§4.4.3). Of course, where lazy DPOR surpassed the number of states explored by DPOR,

lazy DPOR may have unsoundly skipped terminal states (that we cannot detect because

DPOR did not reach these states within the schedule limit). However, the fact that

lazy DPOR explored a superset of the terminal states explored by DPOR (except for

the detected exceptions) gives us confidence that lazy DPOR is an effective heuristic for

efficiently attempting to enumerate most terminal states.

We also note that a blocking operation within a critical section or a may-deadlock cycle

was always detected within just one or two schedules; thus, it would be possible to fallback

to DPOR in these cases with almost no overhead.

Lazy vs. regular DPOR: analysis time Figure 4.7 compares the analysis time asso-

ciated with regular and lazy DPOR. The reported times are not averaged over multiple

102

1 100 1000 10000 100000
Regular DPOR

1

100

1000

10000

100000
La

zy
D

P
O

R

1

2
3

4

5
6

7

8

9

10

11

12

13

14

1516

17

18

19

2021

22

23

24

25

26 272829

30

31

32

33

34

35

36

37

38

39

40

41

42

434445

46

47

48

49

50 51

52

53

54

55

56

57 58

596061

62

63

64

65

66

67

68

69
70

71

72

73

74

75

76

77

78

79

n #lazy HBRs
time in deci-seconds

Figure 4.7: Number of lazy HBRs (id) explored and deci-seconds taken (square) for each
benchmark with regular and lazy DPOR.

runs, and are subject to fluctuations due to multiple benchmarks running simultaneously

on individual nodes of our cluster; we preferred to optimise our compute resources towards

exploring large per-benchmark schedule counts. Still, due to the large number of schedules

per benchmark, it is likely that fluctuations are averaged out. Each benchmark is again

represented by its id connected to a square; a benchmark id at (x, y) indicates that x

and y lazy HBRs were explored by DPOR and lazy DPOR, respectively. A benchmark

id is underlined if lazy DPOR encountered a blocking operation within a critical section

or a may-deadlock cycle (see §4.4.3). A square at (x, y) indicates that DPOR and lazy

DPOR completed or hit the schedule limit within x and y deci-seconds, respectively. Thus

lazy DPOR was faster than DPOR for a benchmark if the associated square is below the

diagonal. The timing results show that, for the majority of benchmarks, lazy DPOR was

as fast or faster than DPOR. In the worst case, lazy DPOR took 28 seconds (4%) longer

than DPOR to hit the schedule limit (for the piper-6-3-2 benchmark with id 38). How-

ever, lazy DPOR explored over 30,000 (58%) more terminal lazy HBRs than DPOR for

this benchmark, suggesting that the additional analysis time is worthwhile. Furthermore,

since lazy DPOR explored different terminal lazy HBRs, it is difficult to compare the

algorithms fairly as many of the schedules explored by each may have been significantly

different. Per schedule, in the worst case, lazy DPOR was 20% slower than DPOR (for

the raxextendedenvfirst-1-3-3 benchmark). However, again, lazy DPOR explored over

103

50,000 (200%) more lazy HBRs than DPOR for this benchmark. Overall, we believe that

Figure 4.7 shows the benefits of lazy DPOR when considering the time taken with the

number of lazy HBRs explored.

Bug-finding Overall, bugs (uncaught exceptions or deadlock) were found in 25 bench-

marks by at least one of the techniques; DPOR found bugs in all these benchmarks,

while lazy DPOR missed bugs in 4 benchmarks where a blocking operation within a crit-

ical section or a may-deadlock cycle was encountered (see §4.4.3). However, as described

above, we could easily fall back to DPOR in these cases with almost no overhead. Exclud-

ing these cases, lazy DPOR found bugs using the same or fewer schedules than regular

DPOR, requiring fewer schedules in 13 cases.

4.7 Related work

Optimal DPOR [AAJS14] improves upon DPOR by guaranteeing that precisely one sched-

ule from for each HBR is explored (whereas DPOR may still redundantly explore some

schedules with the same HBR). In this chapter, we used the original, simpler DPOR al-

gorithm [FG05] and our lazy DPOR algorithm is also based on this. In future work, we

could compare lazy DPOR with optimal DPOR, and try to make a lazy version of optimal

DPOR. The improvement provided by the lazy HBR is orthogonal to optimal DPOR;

optimal DPOR explores the minimum number of schedules (one) for each schedule equiv-

alence class (HBR) while the lazy HBR is an alternative to the HBR that leads to larger

schedule equivalence classes. However, the lazy HBR cannot typically be used directly in

place of the HBR because the lazy HBR is based on an invalid dependency relation.

As explored in Chapter 3, schedule bounding techniques mitigate schedule-explosion

unsoundly by bounding the number of preemptions or delays in a schedule. Soundly

combining preemption bounding with DPOR (so that a preemption bounded DPOR search

is still guaranteed to explore all terminal states reachable within the preemption bound)

is nontrivial [CMM13]. Bounded DPOR [CMM13] achieves this. In future work, we

could combine schedule bounding techniques with lazy DPOR which might improve its

bug-finding capability.

A conditional valid dependency relation [GP93] can be used to get increased reduction

from POR techniques. However, this is also orthogonal to the lazy HBR and any improve-

ment to the HBR (such as using a conditional dependency relation) could likely be used

to improve the lazy HBR. The lazy HBR uses an invalid dependency relation to achieve

reduction of mutex operations that is not possible via any POR technique (including the

104

use of a conditional dependency relation).

The causally-precedes relation (CPR) [SES+12] is used to soundly detect data races

in a trace that cannot be detected when using the happens-before relation; re-orderings

of critical sections are considered (without having to execute them) such that all read

operations still read the same values as in the original execution. This is achieved via

an offline, polynomial-time datalogue analysis of the trace; a finite re-ordering window

can be used to make the analysis linear (but unsound). The authors note that they

have not discovered a way to implement an online version of their approach. Thus, the

intuition (that critical sections can sometimes be re-ordered) is similar to ours but both

the goal and approach are different; in particular, we do not use anything similar to a

datalogue analysis—we use an online analysis. In fact, calculating the lazy HBR hash

adds no overhead compared to computing the HBR hash (such as when performing lazy

HBR caching) and our lazy DPOR implementation uses vector clocks just like in DPOR;

using vector clocks to compute the CPR is currently unsolved, as noted by the authors.

The maximal causality reduction (MCR) [Hua15] is a reduction technique for SCT that

explores the state-space of a concurrent program with a provably minimal (optimal) num-

ber of schedules with respect to a maximal causal model (MCM). The MCM is extracted

from a schedule as a set of quantifier-free first-order formulae and captures the largest

possible set of equivalent executions that can be obtained from re-ordering events. Note

that the representation of a schedule is more detailed than in many SCT tools (such as

CHESS, Maple, and JESS); for example, read and write events include the values that

are accessed. An offline analysis using an SMT solver identifies alternative interleavings

that lead to different states. The approach goes beyond what is possible with POR (e.g.

even optimal DPOR), considers critical section re-orderings (like the lazy HBR), and (we

believe) will still detect mutex-deadlock (unlike lazy DPOR). Thus, this approach appears

to be the “truly optimal” reduction approach for SCT, surpassing both optimal DPOR

and lazy DPOR in a sound algorithm. On the other hand, the runtime overhead of exe-

cuting SMT queries can be high and is unpredictable in general; more evaluation would be

useful to determine whether this high overhead and greater reduction is typically worth-

while in comparison to the low overhead and smaller reduction associated with lazy DPOR

and optimal DPOR. The implementation of MCR is not currently available. We believe

that POR and the lazy HBR are still useful techniques when efficient, light-weight, online

analyses are desired.

A symbolic method efficiently represents all HBRs of a program up to some depth-

bound, allowing input nondeterminism and weak memory behaviours to be cap-

tured [AKT13]. However, unlike DPOR, this approach cannot handle deep schedules of

105

programs with large loop bounds, due to infeasibly large SMT queries. The MCR [Hua15]

has also been extended [HH16] to support the TSO and PSO memory models, again using

an SMT solver. Chronological traces [AAA+15] allow optimal DPOR to check programs

under the TSO and PSO weak memory models without using an SMT solver.

4.8 Conclusion

We have presented the lazy HBR that provides reduction beyond POR for programs that

use mutexes. We have shown the large potential reduction from using the lazy HBR

and the large practical improvement that lazy HBR caching and lazy DPOR can provide

benefit over their non-lazy counterparts, although we note that lazy DPOR is unsound in

general. In future work, it would be useful to investigate refining the lazy DPOR algorithm

so that it is sound for programs without mutex-deadlock states. It would also be useful

to consider optimal DPOR [AAJS14] and maximal causality reduction [Hua15].

106

5 Implementing an SCT tool

Despite the fact that researchers have produced many concurrency testing tools in recent

years, there is a lack of detailed material on how to create such tools. In this chapter, we

describe implementation details of JESS,1 our systematic concurrency testing tool for Java

programs (used to evaluate the lazy HBR in §4.6). We stress that this is not a description of

straightforward engineering. We focus on subtle technical issues that required innovative

solutions. Our contribution is to present these issues and our solutions in a cohesive

manner as a resource for future researchers. In §5.1, we provide an overview of how to

use JESS. In the remainder of the chapter, we present technical details of how JESS

works. In §5.2, we describe challenges associated with instrumenting Java programs.

In §5.3, we describe key details of creating an SCT tool. In §5.4, we cover some more

advanced implementation issues relating to partial-order reduction (POR), including our

race detection algorithm that we believe is more efficient than prior work. We discuss

related work in §5.5 and conclude in §5.6.

5.1 Overview of the tool

In this section, we show how to use JESS to perform systematic concurrency testing of a

Java program.

5.1.1 Creating a concurrency test case

Systematic concurrency testing typically requires writing a concurrency test case, sim-

ilar to a unit test but with multiple threads. For this purpose, JESS provides a

ConcurrencyTestCase interface with a single execute() method, as shown in Listing 5.1.

The execute method will be executed repeatedly by JESS and must be deterministic mod-

ulo schedule nondeterminism. Given a program or library, the approach taken to create

a concurrency test case can vary greatly. For example, given a simple compression tool

like pbzip2, a concurrency test case might test the entire program by calling the program

1The name JESS is a homage to CHESS [MQB+08], a systematic concurrency testing tool for C/C++
and C# programs. The J in JESS signifies that our tool is for Java programs.

107

1 package org.jtool.test;
2

3 public interface ConcurrencyTestCase
4 {
5 public void execute() throws Exception;
6 }

Listing 5.1: ConcurrencyTestCase interface.

entry point with appropriate command line arguments so that a small file is compressed

or decompressed using several threads. The test case could assert that the resulting file

matches the expected output. Given a complex server application, a concurrency test case

might test a component of the server in isolation, so as to avoid methods that perform

network communication, which most SCT tools (including JESS) will not be able to con-

trol; we discussed this and other common barriers to applying SCT in §3.4.2. A test case

for the server might create several threads that send messages to the component under

test (without using network communication) in order to ensure that all interleavings of

the messages are handled appropriately.

In this overview, we consider Mozilla’s Rhino, a JavaScript interpreter and compiler

written in Java. We will write a concurrency test case in which two Java threads are

interpreting JavaScript in parallel. This example is from the Rhino benchmark suite used

in the evaluation of our lazy happens-before relation in §4.6 and is based on a bug found

on Rhino’s bug tracker.

The test case class, TestRhinoBug1, is shown and described (via comments) in

Listing 5.2. If the result of executing thread1code is not 2.0 then a RuntimeException

is thrown (line 35). The constructor for TestRhinoBug1 includes the actual JavaScript

code and is shown in Listing 5.3. Our JavaScript program defines three global variables

x, f1 and f2. On line 4, x is defined to be an object with two fields, POSITIVE INFINITY

and NEGATIVE INFINITY, which both map to the value 2.0. On line 6, f1 is defined to

be a function that simply returns the value of x.NEGATIVE INFINITY. In our test case, f1

should always return 2.0 and this is the property that is checked on line 35 of Listing 5.2.

On line 10, f2 is defined to be a function that adds 16 additional fields to x. Note that,

in Rhino, accesses to disjoint fields on the same object from multiple threads are synchro-

nised using monitors such that f1 should always return 2.0. In our test case, f1 and f2

are executed concurrently in the main thread and in an additional thread respectively (see

lines 25–31 of Listing 5.2).

108

1 package rhinotest1.org.mozilla.test;
2

3 import org.jtool.test.ConcurrencyTestCase;
4 import rhinotest1.org.mozilla.javascript.Context;
5 import rhinotest1.org.mozilla.javascript.Scriptable;
6

7 public class TestRhinoBug1 implements ConcurrencyTestCase {
8 private final String globalDefinitions, thread1code, thread2code;
9

10 private static class OtherThread extends Thread { ... }
11

12 public TestRhinoBug1() { ... }
13

14 public void execute() throws Exception {
15 // Create the JavaScript context in which to execute code.
16 final Context cx = Context.enter();
17 // Use the interpreter mode.
18 cx.setOptimizationLevel(-1);
19 try {
20 // Get a standard scope in which to execute code.
21 final Scriptable scope = cx.initStandardObjects();
22 // Execute the globalDefinitions JavaScript code.
23 cx.evaluateString(scope, globalDefinitions, "init", 1, null);
24

25 // Create and launch a second thread that will execute thread2code.
26 OtherThread t2 = new OtherThread(scope, thread2code);
27 t2.start();
28 // In the current thread, execute thread1code and store the result.
29 final Object result = cx.evaluateString(scope, thread1code, "thread1", 1, null);
30 t2.join();
31 // Both threads have now finished executing JavaScript code.
32

33 // If the result is not 2.0 then an error occurred.
34 final double res = Context.toNumber(result);
35 if(res != 2.0) {
36 throw new RuntimeException("Unexpected result!");
37 } else {
38 System.out.println("SUCCESS!");
39 }
40

41 } finally {
42 Context.exit();
43 }
44 }

Listing 5.2: TestRhinoBug1 class—a concurrency test case for the Rhino JavaScript inter-
preter.

109

1 public TestRhinoBug1() {
2 // Defines x, f1 and f2.
3 globalDefinitions =
4 "var x = { POSITIVE_INFINITY : 2, NEGATIVE_INFINITY: 2 };"
5

6 + "var f1 = function() {"
7 + " return x.NEGATIVE_INFINITY; "
8 + "};"
9

10 + "var f2 = function() {"
11 + " for (var i = 0; i < 16; i++) "
12 + " { "
13 + " x[\"prop\" + i] = 1; "
14 + " }"
15 + "};";
16

17 // Thread 1 will evaluate f1();
18 thread1code = "f1();";
19

20 // Thread 2 will evaluate f2();
21 thread2code = "f2();";
22 }

Listing 5.3: Constructor for the TestRhinoBug1 class of Listing 5.2.

5.1.2 Creating a test harness

In order to execute the test case, it is necessary to create a test harness; this is the code

that will be executed as a Java application (or executed from a testing framework, such

as JUnit) and will execute the test case repeatedly using JESS. There is no provided test

harness or command line tool for executing test cases; thus, JESS could be described as

more of a concurrency testing library than a tool.

A test harness that executes the Rhino test case is shown in Listing 5.4. First, the

test case is created (line 10). As explained already, a test case should be deterministic

modulo scheduling nondeterminism. However, this is often difficult to achieve unless the

system under test has been designed with concurrency testing in mind. In particular, it is

common for certain static constants to be initialised lazily or for commonly-used objects to

be cached ; this can make test cases nondeterministic as the exact sequence of operations

performed by the execute method will vary depending on whether objects have been

initialised or cached. To alleviate this, we perform two warm up executions where the

test case is executed without the use of JESS (line 13); this is sufficient to make future

executions of the Rhino test case deterministic, although this is not guaranteed in general.

Without the warm up executions, JESS throws an exception during the second execution

110

because, when trying to replay a prefix of the first execution, it encounters a different

operation; thus, JESS detects this nondeterminism and throws an exception so that the

user is made aware of the issue.

To use JESS, we create an ExecutionManager, passing the test case to the construc-

tor (line 19), and we set the scheduling strategy to DFSStratagy (line 20), to perform

a straightforward depth-first search (see §3.2.1). We then execute the test case up to

16 times (we chose this number for illustration) under the control of JESS by calling

doExecution() in a loop (line 28). On line 29, we check whether an error occurred

and if so we output the execution count and the exception. If doExecution() throws a

NoMoreExecutionsException (which would be caught on line 35) then all schedules were

explored; this is determined by the given scheduling strategy. For example, if we had en-

abled (non-iterative) preemption bounding (see §3.2.2) then NoMoreExecutionsException

being thrown would indicate that all schedules were explored within the preemption bound.

Lines 39–43 show how we output the number of executions, number of terminal hashes

and the number of lazy terminal hashes (see Chapter 4 for an explanation of terminal

state hashes).

5.1.3 Performing offline JDK instrumentation

JESS works by performing dynamic Java bytecode instrumentation to automatically mon-

itor and control threads, which we describe in more detail in §5.2. It is necessary to

perform offline instrumentation of the JDK once before using JESS, by running the

JDKInstrumenter:

java -cp jtool-runtime.jar org.jtool.jdkinstr.JDKInstrumenter

The JDKInstrumenter will output rt instr.jar, the instrumented JDK, which is used

when running the test harness.

5.1.4 Running the test harness

We can now run the test harness:

java \

-Xbootclasspath/p:rt_instr.jar \

-javaagent:jtool-runtime.jar \

-cp rhino_src_1-1.jar \

MainHarness

111

1 import org.jtool.runtime.ExecutionManager;
2 import org.jtool.strategy.DFSStrategy;
3 import org.jtool.strategy.NoMoreExecutionsException;
4 import org.jtool.test.ConcurrencyTestCase;
5 import rhinotest1.org.mozilla.test.TestRhinoBug1;
6

7 public class MainHarness {
8

9 public static void main(final String[] args) throws InterruptedException {
10 final ConcurrencyTestCase testCase = new TestRhinoBug1();
11 System.out.println("Warm up executions:");
12 try {
13 testCase.execute(); testCase.execute();
14 } catch (Exception e) {
15 throw new RuntimeException(e);
16 }
17 System.out.println("Warm up done.");
18

19 final ExecutionManager em = new ExecutionManager(testCase);
20 em.setSchedulingStrategy(new DFSStrategy());
21

22 final int EXECUTION_LIMIT = 16;
23

24 System.out.println("Starting systematic concurrency testing:");
25 try {
26 int i = 0;
27 for (; i < EXECUTION_LIMIT; ++i) {
28 em.doExecution();
29 if(em.currentExecutor.errorOccurred != null) {
30 System.out.println(em.getNumExecutions() + ": "
31 + em.currentExecutor.errorOccurred);
32 }
33 }
34 System.out.println("Stopping after " + i + " executions.");
35 } catch (NoMoreExecutionsException e) {
36 System.out.println("Completed.");
37 }
38

39 System.out.println("Num executions: " + em.getNumExecutions());
40 System.out.println("Num normal terminal hashes: "
41 + em.getNumNormalTerminalHashes());
42 System.out.println("Num lazy terminal hashes : "
43 + em.getNumLazyTerminalHashes());
44 }
45 }

Listing 5.4: MainHarness class for executing the TestRhinoBug1.java test case.

112

The -Xbootclasspath/p:rt instr.jar parameter loads the instrumented JDK before

any other classes. The -javaagent:jtool-runtime.jar parameter allows JESS to per-

form dynamic bytecode instrumentation. The -cp rhino src 1-1.jar parameter ensures

the Rhino source code and test case (Listing 5.2) are on the class path, assuming these

classes are packaged into rhino src 1-1.jar. Finally, MainHarness is our test harness

class (Listing 5.4), which we assume is already on the class path. The output of running

the test harness is the following:

Warm up runs:

SUCCESS!

SUCCESS!

Warm up done.

Starting systematic concurrency testing:

SUCCESS!

SUCCESS!

SUCCESS!

SUCCESS!

SUCCESS!

SUCCESS!

SUCCESS!

SUCCESS!

SUCCESS!

SUCCESS!

SUCCESS!

SUCCESS!

SUCCESS!

SUCCESS!

SUCCESS!

SUCCESS!

Stopping after 16 executions.

Num executions: 16

Num normal terminal hashes: 1

Num lazy terminal hashes : 1

As indicated by the SUCCESS! messages, the 2 warm up executions pass successfully, as

do the 16 controlled executions. The Stopping after 16 executions message indicates

that there are more executions that were not explored. The number of lazy and non-

lazy terminal hashes indicates that only one terminal state was explored; thus, 15 of the

executions were redundant as they reach the same terminal state as the first execution.

See §4.5 for an explanation of lazy and non-lazy terminal hashes.

We can improve the testing by modifying line 20 of Listing 5.4 to the following:

em.setSchedulingStrategy(new DFSStrategy().setDpor(true).setSleepSets(true));

113

This enables sleep sets (see §4.5) and DPOR (see §4.4.1). Running the test harness again

gives the following output:

Warm up runs:

SUCCESS!

SUCCESS!

Warm up done.

Starting systematic concurrency testing:

SUCCESS!

2: java.lang.RuntimeException: Unexpected result!

3: java.lang.RuntimeException: Unexpected result!

4: java.lang.RuntimeException: Unexpected result!

5: java.lang.RuntimeException: Unexpected result!

6: java.lang.RuntimeException: Unexpected result!

7: java.lang.RuntimeException: Unexpected result!

8: java.lang.RuntimeException: Unexpected result!

9: java.lang.RuntimeException: Unexpected result!

10: java.lang.RuntimeException: Unexpected result!

11: java.lang.RuntimeException: Unexpected result!

12: java.lang.RuntimeException: Unexpected result!

SUCCESS!

SUCCESS!

SUCCESS!

Completed.

Num executions: 15

Num normal terminal hashes: 15

Num lazy terminal hashes : 15

The output shows that on executions 2–12 a RuntimeException was thrown; this is be-

cause thread1code did not return the expected result of 2.0 (see line 36 of Listing 5.2).

Thus, the bug was revealed on these executions. Also note the Completed message which

indicates that there are no more executions, even though only 15 executions were explored.

Since DPOR and sleep sets are sound reductions (see Chapter 4), the total number of ter-

minal hashes indicates that there are only 15 unique terminal states in this test case which

were all explored. Thus, all behaviours of this test case have been explored.

The bug demonstrated by this test case occurs because Rhino implements JavaScript

objects using a hash table that is resized when the 16th entry is added; a new map is

allocated and the elements are copied into the new map but there is a small window in

which the map appears to be empty. Thus, on certain interleavings, the main thread sees

x.NEGATIVE INFINITY as undefined (see line 7 of Listing 5.3).

114

Java standard
library class files

JESS Java agent

JESS runtime library

JESS offline instrumenter app

JESS instrumenter library

ClassManager class

input to
(offline)

Java standard
library class files
(instrumented)

outputs

Java process

intercepted by
(online) outputs (in-memory)

JESS instrumenter library

ClassManager class

Target program
Java class files

loaded before original
standard library classes
via command line flag

Java standard
library classes

(instrumented)

calls into

Target program
Java classes

(instrumented)

Figure 5.1: A diagram showing how our JESS tool instruments code offline and at run-
time. The Java standard library class files are instrumented offline and then
loaded via a command line flag. The target program class files are instrumented
online (i.e. at run-time). The instrumented code calls into the JESS runtime
library so that thread execution is controlled.

5.2 Instrumenting Java programs

In this section we describe many subtle issues involved in instrumenting Java code and

our innovative solutions as a resource for researchers. For context, an overview of how

instrumentation is performed when using JESS is given in Figure 5.1. We focus on general

issues relating to Java instrumentation and dynamic analysis. SCT-specific issues are

described in §5.3 and §5.4. We proceed as follows:

� §5.2.1: we motivate the project and approach by discussing the advantages of dy-

namic bytecode instrumentation and the advantages of targeting a high-level inter-

mediate representation (IR) like Java bytecode.

� §5.2.2: we introduce the ASM library [ELC02], Java agents, and our ClassManager

class; components like these are likely to be used in any Java bytecode instrumen-

tation project.

� §5.2.3: we introduce the method doubling technique which is crucial in allowing us to

instrument the Java standard library classes while keeping uninstrumented versions

available for our tool.

� §5.2.4: we describe how we maintain shadow fields, arrays and objects to store per-

field, per-array and per-object information, respectively.

115

� §5.2.5: we cover various issues encountered and techniques used when instrumenting

Java code using the method doubling approach.

� §5.2.6: we note some limitations of our approach.

5.2.1 The advantages of dynamic bytecode instrumentation

When writing a dynamic analysis tool, such as JESS or a dynamic data race detector,

it is necessary to decide whether to perform offline instrumentation (such as compile-

time instrumentation), dynamic instrumentation, or a combination of both. For example,

Google’s ThreadSantizier version 1 [SI09] performs dynamic instrumentation of binaries

using valgrind, which requires minimal user effort, while version 22 performs compile-time

instrumentation of the LLVM intermediate representation (IR), which greatly reduces run-

time overhead with increased user effort. In the context of Java programs, the differences

between offline and dynamic instrumentation are less significant; class files of the target

and its dependencies can typically be found and instrumented easily since the files must

be on the class path and the overhead of loading and JIT compiling class files is already

relatively high (compared to loading binaries), which makes the slowdown of dynamic

instrumentation less of a bottleneck. In JESS, we use dynamic bytecode instrumentation

where possible for ease-of-use as well as offline bytecode instrumentation where necessary.

Targeting a high-level IR like Java bytecode also has some advantages over targeting

lower-level representations like LLVM or x86. Java bytecode is a simple IR, arguably

simpler than than x86 and LLVM, which makes instrumentation more straightforward.

Analysing memory accesses is a common concern for dynamic analysis tools and is much

easier in the case of Java compared with languages like C++; heap regions are clearly

identifiable—they are either fields or array elements. An out-of-bounds memory access

will always cause an exception to be thrown, and local variables cannot be shared between

threads. In fact, heap accesses (i.e. field accesses and array accesses) have their own

instructions, distinct from those that manipulate local variables. In contrast, in x86,

catching out-of-bounds memory accesses is a nontrivial problem. We have also found

that most Java debuggers continue to work in the presence of bytecode instrumentation,

whereas debugging instrumented binaries is less straightforward. Finally, the existence

of the ASM library [ELC02] for instrumenting Java bytecode is an advantage; it is a

powerful tool that greatly simplifies interacting with Java bytecode and is used in the

Java ecosystem. For example, when using the Apache Maven Shade plugin for Maven

(a popular Java build tool), ASM is used to rewrite references to dependent class files

2https://github.com/google/sanitizers/wiki/ThreadSanitizerAlgorithm

116

https://github.com/google/sanitizers/wiki/ThreadSanitizerAlgorithm

in order to avoid conflicts. Thus, it is already used every day by Java developers when

building their Java applications.

5.2.2 Use of the ASM library, Java agents and our ClassManager

ASM [ELC02] is a Java library for manipulating Java bytecode. It can be used both online

(modifying or creating classes in memory) and offline (reading and writing class files on

disk). ASM provides two different APIs for instrumenting classes: the visitor API and the

tree API.

With the visitor API, user-defined visitors are used to manipulate and/or create classes

and methods. Note that the structure that is visited is the array of bytes that make

up a class, not a class hierarchy as in the traditional Visitor design pattern. Indeed, as

described in [ELC02], the visitor API intentionally avoids using an object representation of

the class for much better performance compared with alternative approaches. The visitor

API works as follows. The user defines a class that extends the ClassVisitor abstract

class, which includes methods like visitField and visitMethod. An instance of the

visitor is passed to a ClassReader, which reads a class and calls the relevant method of

the visitor upon reading a particular structure. For example, visitField is called when

a field is read. ClassWriter is a provided class visitor (it extends ClassVisitor) that

outputs the class file that is described by the calls to the various visit* methods. Thus,

passing a ClassWriter to a ClassReader will result in the ClassWriter outputting the

same class file with no changes. To manipulate a class, the developer writes many class

visitors that will wrap a ClassWriter (and each other), forming a chain of visitors; each

visitor (by default) delegates to the next. A user-defined visitor overrides certain visit*

methods to call different methods on the next visitor. For example, a visitor that overrides

visitField to do nothing will cause all fields to be removed, as the next visitor will never

receive any calls to visitField. The outer-most visitor is passed to a ClassReader in

order to get a modified version of the original class.

An important consequence of this design for tool authors is that at no point is the entire

class stored in memory. This makes it difficult to query arbitrary properties of a class,

such as whether a private field is unused, without visiting the entire class and creating

some object representation of the results. Indeed, from a performance perspective, a class

is ideally only read once, from start to finish, with the chained visitors performing their

manipulations in this single pass.

In contrast, the tree API of ASM (which is implemented using the visitor API) provides

an object representation of an entire class (via the ClassNode class), potentially resulting

117

in an object for every instruction in every method. Thus, it is heavy-weight but more

convenient for querying arbitrary information about a class.

In JESS, we use the visitor API where possible for increased run-time performance. Our

visitors occasionally need information about other classes (mainly the fields and super-

classes of a class) and thus use the tree API to read entire classes, skipping method bodies

to reduce the space and time overhead.

Java agents In Java, classes are loaded lazily. The Java platform provides a ser-

vice to allow classes to be dynamically instrumented as they are loaded via Java

agents. A Java agent is a JAR file with certain properties and allows us to register a

ClassFileTransformer object that will be invoked each time a class is loaded. As ex-

plained in §5.1.4, the Java agent is specified on the command line. The agent receives a

byte array for each class that is loaded. We use the ASM library to parse and modify the

byte arrays. When transformers first execute, certain classes are already loaded and so

cannot be modified or can only have method bodies modified (no fields or methods can

be added/removed). We discuss this further below.

ClassManager: accessing information about classes without reflection As ex-

plained above, while visiting a class, it is often useful to retrieve information about

the current class or some other class. Since the class in question may not be loaded

(since we instrument classes before they are loaded), it is not possible to use Java’s

reflection API (java.lang.reflect). Perhaps the strangest example of this is ASM’s

ClassWriter.getCommonSuperClass(...) method, which uses reflection despite the fact

that this approach is likely to fail due to classes not being loaded; we had to override this

method to use our reflection-free approach.

To solve this issue, we created the ClassManager class, a container that acquires and

caches information about classes when requested. We use ASM’s tree API to read the

entire class (but skipping method bodies) from which we obtain the set of superclasses

and the fields of the class and its superclasses. This allowed us to give each field of every

object a unique index which was useful in efficiently representing field read and write

operations (see §5.4.4). We store this information in a ClassInfo object.

5.2.3 Instrumenting Java code and standard libraries via method

doubling

When instrumenting Java code, instrumenting the standard library classes (e.g.

ArrayList) is desirable, otherwise this code cannot be monitored. For example, in JESS,

118

it is necessary to track shared memory accesses and ignoring standard classes would cause

many accesses, such as on collections like lists and sets, to be missed. Unfortunately, this

is nontrivial [FSS04, PSE07]. First, many standard classes are already loaded before Java

agents can execute; for certain classes, the JVM disallows instrumentation completely

and, for the remaining classes, only allows method bodies to be modified dynamically (so

adding/removing/modifying fields and method signatures is disallowed). Second, the Java

agent code and any methods that are called by the instrumentation typically call methods

in standard classes, which can lead to inadvertently monitoring tool code or even infinite

recursion where instrumented code calls into itself. Thus, it is desirable to keep an unin-

strumented version of the standard classes to be used by the tool. When creating JESS,

we realised that it is actually useful to keep an uninstrumented version of all code, not

just standard library classes: this allows us to execute warm up executions, as described

in §5.1.2, on completely uninstrumented code; we also wanted any static initialisers, which

may create objects and call non-static methods, to execute uninstrumented code. Thus, in

general we wanted to execute uninstrumented code by default and, only at certain points,

start executing the instrumented test case.

One approach we could have used to maintain instrumented and uninstrumented ver-

sions of code is the twin class hierarchy (TCH) approach [FSS04], which was originally

proposed as a solution to instrumenting standard library classes. In TCH, a renamed

copy of every class is created and instrumented. References to classes in instrumented

code are modified to refer to the instrumented versions. However, this approach presents

several problems that must be handled carefully, as explained in [FSS04]. One major issue

highlighted in [PSE07] is that native methods3 only work on the original class and it is

not clear how this can be worked around in general.

We instead use method doubling, based on the ideas presented in [PSE07]. A renamed

copy of every method is added to the target class and instrumented. For a method named

method, we add a copy of the method named method$instr and then apply our chain

of visitors to the new method’s body. References to methods in instrumented code are

modified to refer to the instrumented versions. An exception is native method copies,

which are replaced with non-native methods that simply call the original native method.

We perform offline instrumentation on the JDK classes and use dynamic instrumentation

for all other classes. This method doubling approach has relatively few issues that need

to be handled compared to TCH.

3Note that native methods can be used by developers to invoke functions written in lower-level lan-
guages like C/C++, but they are also used in standard library classes to access low-level features, such as
class loading, retrieving object hash codes, I/O, etc.

119

Doubling constructors In Java bytecode, a constructor is a method named <init>

with void return type. Creating a renamed copy is not possible as constructors must

be named <init>. To solve this, we overload each constructor with a copied, instru-

mented version, appending an additional parameter to the method signature of type

ConstrInstrMarker (a class that we define). We use this type to ensure the construc-

tor’s signature is unique. We change constructor invocations in instrumented code by (a)

adding the ConstrInstrMarker parameter to the signature and (b) pushing null onto

the JVM stack just before the invocation.

5.2.4 Shadow fields, shadow arrays and shadow objects

Prior work [PSE07] notes that per-object data needed by instrumentation can be stored

in a weak identity hash map4 so that the layout of fields in the original class is unchanged.

This works around the fact that changing the fields of some standard classes (such as

Object and String) causes the HotSpot JVM to crash because it makes assumptions

about the structure of these classes.

In JESS, we need per-object data for tracking objects that are used as monitors/locks

and we need per-field and per-array-element data for tracking reads and writes to shared

memory. Using one or more hash maps to store this data is undesirable: the slowdown is

significant due to the typically large number of field reads and writes. A convenient and ef-

ficient solution for storing per-object data would be to add a field to the java.lang.Object

class, referencing a shadow object for storing per-object data. Unfortunately, this causes

the HotSpot JVM to crash due to assumptions about the Object class. Thus, for per-

object data we are forced to use a weak identity hash map. We map each object to a

SyncObjectData object, which is used for storing synchronisation information.

For per-field data, we use a more efficient solution, similar to what is described in [FF10].

For each field named field, we create a shadow field named field$shadow with type

SyncObjectData in the same class. When a field is read from or written to, we add

instrumentation to initialise the shadow field if it is null, and call a callback, passing

in the SyncObjectData. We exclude certain classes when adding shadow fields, such as

java.lang.String, as this would cause JVM crashes because the HotSpot JVM makes

assumptions about the layout of the fields of these classes. Omitting these classes may be

an issue for certain dynamic analyses, as it will not be possible to track accesses to fields of

these classes. However, for JESS, this is sufficient because the classes are either immutable

4 The weak identity hash map uses the identity of its keys for hashing and equality testing, and maps
objects to their per-object data. The keys are weak references so that the objects can still be garbage
collected.

120

or only used internally by the JVM. Note that, in JESS, we also do not need to add shadow

fields for final (read-only) fields, as field read operations are always independent.

For per-array-element data, we were also forced to use an identity hash map because ar-

ray objects cannot contain fields. We map an array object to an array of SyncObjectData

of the same length. When an array is accessed, the array and offset are passed to a callback

that finds the corresponding SyncObjectData array in the hash map. Inspired by [FF10],

we added a basic cache in front of the identity hash map so a small number of the most

recently looked up arrays can be retrieved without looking in the hash map to improve

performance of the common case where code accesses many elements of the same array.

5.2.5 Issues and techniques

In this subsection, we cover various issues encountered and techniques used when instru-

menting Java code using the method doubling approach.

Instrumentation within constructors Throughout the development of JESS, we

came across several issues related to instrumenting constructors. For example, we in-

sert a callback inside every constructor to detect when objects are created; this allows us

to detect objects that are created from native code, which would not be possible if we

merely inserted callbacks before constructor invocation.5 However, the reference to the

object being constructed, this, cannot be passed to any method until after the call to

super; the JVM will reject bytecode that attempts this. Thus, we were forced to insert the

callback after the call to super. Identifying the INVOKESPECIAL bytecode instruction that

corresponds to the call to super is nontrivial. For example, if the call to super is of the

form super(new MyClass()); this will result in a NEW instruction to allocate an instance

of MyClass, an INVOKESPECIAL instruction to invoke the constructor of MyClass, and

then a second INVOKESPECIAL to invoke super. In general, dataflow analysis is required

to identify the call to super but this is not ideal when trying to implement a lightweight

visitor. We used a simple heuristic that we believe works reliably for bytecode generated

by the Java compiler. We keep track of the number INVOKESPECIAL instructions that

invoke <init> methods that are visited, minus the number of NEW instructions visited, in

a variable called invokeSpecialMinusNewCount. Thus, when we visit an INVOKESPECIAL

instruction that invokes <init> and invokeSpecialMinusNewCount is 0, then we assume

that this is the call to super, because there was not a previous NEW instruction (except

for those followed by an INVOKESPECIAL instruction).

5Note that we do not instrument the constructor of java.lang.Object as this causes JVM crashes, so
we do in fact add additional callbacks before java.lang.Object instances are created.

121

We also encountered an unexpected issue in instrumenting LinkedHashMap. One

of the constructors of LinkedHashMap invokes a particular super-constructor which in-

vokes a method init that is overridden in LinkedHashMap; this method accesses fields

of LinkedHashMap. Thus, before the invocation of super() returns, the fields of

LinkedHashMap are are accessed. At one point in development of JESS, we initialised

shadow fields of a class in every constructor, after the invocation of super. Thus, this

unexpected scenario led to uninitialised shadow fields being accessed. In §5.4.4, we explain

an optimisation that made it unnecessary to initialise shadow fields in this way, making

this a non-issue, but we note that this may be an issue for other tools.

Intercepting calls to JDK methods We commonly need to replace calls to cer-

tain JDK methods with calls to callbacks. For example, in JESS, we replace calls to

to Object.wait, Object.notify and Thread.join with calls to our own methods that

simulate these operations. Since we are already doubling methods, it may seem sensible

to simply replace the body of the instrumented method. However, key methods that we

needed to intercept, such as Object.wait and Object.notify, are in classes on which

we do not perform method doubling in order to avoid JVM crashes. Conveniently, these

methods are final, which means they cannot be overridden. Thus, we can trivially re-

place calls to these methods by finding all occurrences of the INVOKEVIRTUAL instructions

that match the method signature in question and replacing them with INVOKESTATIC

instructions that call a static callback method with the same signature as the replaced

method, except for an additional prepended parameter that receives the object on which

the method was original invoked. We note one potential pitfall: invocations of join (a

final method) on subclasses of Thread are expressed in the bytecode as a virtual invoca-

tion of SomeClass.join where SomeClass is the subclass of Thread. Thus, we could not

simply replace calls to Thread.join but instead had to consider all join methods (with

the matching signature) where the class referenced is a subclass of Thread (or Thread

itself). We use ClassManager to check if this condition holds and replace the call if so.

Instrumenting methods of java.lang.Object using method body doubling Al-

though we can avoid modifying final methods of Object, the virtual methods of Object

(hashCode, equals, clone and toString) are harder to handle. We cannot double these

methods because doing this would crash the JVM. Furthermore, there is no point in

doubling these methods in other classes because these instrumented versions will not

be overriding methods of Object and so bytecode that calls one of the methods, say

Object.hashCode$instr, will be rejected by the JVM because the method does not ex-

122

ist. Changing instrumented code to invoke Object.hashCode is also incorrect, because

this will invoke the uninstrumented method. To solve this, we introduce method body

doubling, an alternative to method doubling that is only used in overridden methods of

Object. For these methods, we revisit the method body a second time, adding a branch

at the start of the method body to jump to one of the two versions of the body. We in-

strument only the first version of the method body. The branch condition checks whether

the field java.lang.Thread.instrumented of the current thread is true; this is a field

that we add to the Thread class to keep track of whether the thread is executing instru-

mented code. The approach is demonstrated by the code in Listing 5.5 and Listing 5.6,

which shows an overridden hashCode method before method body doubling and the same

hashCode method after method body doubling, respectively.

1 @Override
2 public int hashCode() {
3 return this.a + this.b + this.c;
4 }

Listing 5.5: An overridden hashCode method before method body doubling.

1 @Override
2 public int hashCode() {
3 if(Thread.currentThread().instrumented) {
4 // instrumented version of method body
5 int temp;
6 Callbacks.fieldRead(this.a$shadow, ...);
7 Callbacks.fieldRead(this.b$shadow, ...);
8 temp = a + b;
9 Callbacks.fieldRead(this.c$shadow, ...);

10 temp = temp + c;
11 return temp;
12 } else {
13 return this.a + this.b + this.c;
14 }
15 }

Listing 5.6: The hashCode method from Listing 5.5 after method body doubling. Note
that the code in the instrumented body is only a representation.

The fact that this approach is needed is unfortunate; it is less elegant and less efficient

(due to the additional field access), but most importantly, it requires significant care to

make sure that the value of Thread.instrumented remains correct when entering and

leaving instrumented code. In particular, every callback invoked from instrumented code

has to set Thread.instrumented to false on entry and to true on return. Furthermore,

123

the JVM can start executing class loader code at various points and it was necessary to

update the Thread.instrumented at this time; we achieved this by instrumenting the

ClassLoader.loadClass method.

Synchronized blocks (monitors) In Java, every object can be used as a monitor; i.e.

a combination of a mutex and a condition variable. Java code uses synchronized blocks

to lock and unlock the monitor, which results in a pair of MONITORENTER and MONITOREXIT

instructions in bytecode. Calling wait on a monitor (i.e. an object) unlocks the monitor.

Calling notify on a monitor unblocks one thread that is waiting on the monitor (there

is no guarantee about which thread is chosen—see 17.2.2 Notification in [GJS+13]) which

will immediately try to relock the monitor. Calling notifyAll on a monitor unblocks all

threads that are waiting on the monitor and they will all try to lock the monitor. As with

any lock operation, there is no guarantee on the order in which threads will succeed in

locking the monitor; indeed, some other thread that did not call wait on the monitor may

preempt all waiter threads and acquire the lock first.

In JESS, we needed to control precisely which threads are awoken and when they lock

the monitor. Thus, we reimplemented wait, notify and notifyAll. Furthermore, since

MONITORENTER and MONITOREXIT pairs must be within the same method, we also had to

reimplement these operations, e.g. so that we could unlock a monitor within our imple-

mentation of wait. Finally, Java bytecode also has synchronized methods; one might

expect these to compile to ordinary methods that contain MONITORENTER and MONITOREXIT

instructions, but this is not the case. Thus, we used an additional visitor to transform all

synchronized static and instance methods into equivalent unsynchronized methods that

instead use MONITORENTER and MONITOREXIT instructions; this visitor comes before our

visitor that replaces MONITORENTER and MONITOREXIT instructions in the chain of visitors.

Intercepting thread start and controlling thread entry points via run-method-

renaming In JESS, we needed a callback from a parent thread that is starting a child

thread and a callback from the child thread before it starts executing. Furthermore, we

needed to control whether a child thread would start executing instrumented code.

In Java, for an existing parent thread to start a new child thread, the parent thread

calls Thread.start on the child thread object. Since Thread.start is a virtual method

and we don’t want to monitor its method overrides, we insert a callback in the body of

Thread.start$instr to gain control just before the thread is about to be started.

Ensuring that child threads start executing instrumented code is less straightforward.

The JVM starts executing the Thread.run method of the child thread object. Thus,

124

we could instrument the body of Thread.run to call a callback and then potentially

call Thread.run$instr to start executing instrumented code. However, Thread.run is a

virtual method and so may be overridden, in which case it would not get executed and we

would not intercept execution of the child thread. Thus, we could also instrument every

run method that overrides Thread.run. However, these methods (and even Thread.run)

are public methods and so are not necessarily only invoked as a thread entry point. Thus,

in the callback, we would somehow have to check whether the call is due to a thread

starting. We came up with an elegant and more straightforward solution. We rename

all run methods (with the same signature as Thread.run) to run$orig; calls to run are

also updated to call run$orig. Note that these run methods are also doubled, resulting

in additional methods named run$orig$instr. At this point, there are no run methods

(not even Thread.run); thus, the JVM would be unable to start threads. We then add

our own version of Thread.run which is guaranteed to be the only thread entry point.

Our Thread.run method calls run$orig or run$orig$instr, depending on the value of

the Thread.instrumented field of the current thread. We also call a callback just before

calling run$orig$instr. The Thread.instrumented field of the child thread is set to

true in the Thread.start$instr callback.

5.2.6 Limitations

Our approach for finding the invocation of super from within a constructor is a heuristic

and may not hold for all bytecode, such as bytecode that was generated from a language

other than Java. This could be solved using a dataflow analysis.

5.3 Implementing systematic concurrency testing for Java

In this section, we describe the design of the SCT components of JESS, which use the in-

strumentation described in the previous section. We believe the design elements described

could be applied to any SCT tool, not just to a Java tool. We proceed as follows:

� §5.3.1: we describe two key classes in the design of JESS, Executor and

ExecutionManager.

� §5.3.2: we describe how we store information about each thread using the

ThreadData class and how we use this to serialise execution.

� §5.3.3: we describe the schedule method which implements scheduling points.

125

� §5.3.4: we introduce the notion of a scheduling strategy which gives an algorithm

for how to explore the schedule-space. We describe the random and DFS scheduling

strategies, and give an example of how the DFS strategy explores the schedule-space.

� §5.3.5: we describe how to implement entering (locking) a monitor as an exam-

ple of how synchronisation operations are implemented using ThreadData and the

schedule method.

In §5.4, we cover more advanced features related to POR.

5.3.1 Executor and ExecutionManager

There are two key classes that implement SCT in JESS: Executor and ExecutionManager.

A fresh instance of Executor is created for each schedule. It stores all data needed for the

current schedule, such as the list of threads and the map of shadow objects and shadow

arrays. It contains public methods that are called from the instrumentation callbacks,

such as when a monitor is locked/unlocked, a field is accessed, etc. It also stores the

scheduling strategy, which is an object that implements the SchedulingStrategy interface

(see §5.3.4). The Executor class queries the scheduling strategy to ask which thread should

be scheduled at each scheduling point.

The ExecutionManager class is used by the test harness (see §5.1.2) to start perform-

ing SCT. It stores the ConcurrencyTestCase and allows controlled execution to occur

via the doExecution method, which invokes the instrumented run$instr method of the

ConcurrencyTestCase. It creates and stores the current Executor for each execution and

stores the set of execution hashes (see §4.5).

5.3.2 ThreadData objects and thread serialisation

As explained in §5.2.4, we use a weak identity hash map to map each Java object to a

SyncObjectData object; the hash map is necessary because we cannot modify the Object

class without crashing the JVM. This map is stored in a field of Executor. In a similar

fashion, we store a ThreadData object for each Java thread that has been started. We add

a threadData field to the Thread class to efficiently map each Thread to its corresponding

ThreadData object; a hash map in Executor is not needed, as we can modify the Thread

class without crashing the JVM. We also store the ThreadData objects in a list in Executor

because we wish to track the thread creation order and also efficiently access each thread

given a unique integer thread id that we assign, starting from 0.

126

Recall that, in SCT, execution is serialised so that only one thread executes at a time.

We call the only executing thread the active thread and ThreadData objects contain a

boolean flag called active which is true iff the corresponding thread is the active thread.

Furthermore, to achieve thread serialisation, the inactive threads will be blocked from

within a JESS callback. Note that the threads would not necessarily be blocked in the

original program. Thus, to track the enableness of a thread in the original program, each

ThreadData object contains a boolean flag called enabled which is true iff the corre-

sponding thread would be enabled in the original program. When a thread is “blocked”

(according to JESS), for example trying to lock a monitor that is already locked, we set

the enabled field of its ThreadData object to false. The thread continues to execute and

will eventually reach a scheduling point (see the schedule method described below) where

its enabled flag will be read; the thread will then be descheduled according to JESS (it

will be blocked and another thread will be released). The ThreadData object is used as a

monitor in conjunction with the active flag to allow a descheduled thread and a scheduled

thread to synchronise. This is described in more detail below. An example of entering a

monitor is described in §5.3.5.

5.3.3 The schedule method

The schedule method is integral to the design of JESS. The schedule method represents

a scheduling point (the start of a visible operation) and is invoked from within callbacks,

such as from a field access callback or a monitor enter callback. Thus, the schedule method

is the only place where the active thread can be descheduled so that another thread can

become active and continue executing. The parameters of the schedule method provide

information about the next visible operation. The idea of having a method that receives

information about the next visible operation and that represents a scheduling point was

inspired by the similar Controller::Schedule function in Maple [YNPP12] (as was the

meaning of enabled and active), although we did not base our implementation of the

method on any existing code.

A simplified version of the schedule method is shown in Listing 5.7. The method re-

ceives information about the current thread: its ThreadData object, the SyncObjectData

object that its next visible operation accesses (corresponding to e.g. a field or monitor) and

the operation type (OpType) of its next visible operation. The method updates the next

operation of the current thread (by modifying the ThreadData object on lines 8 and 9).

The details of the next sync object being accessed and the operation type are used in POR,

which is explained in Chapter 4 and §5.4; updating this now ensures that the scheduling

127

1 public final void schedule(final ThreadData currThreadData,
2 final SyncObjectData syncObject,
3 final OpType opType) {
4 final Op prevOp = currThreadData.getCurrOp();
5 final SyncObjectData prevOpSyncObjectData = currThreadData.currOpSyncObjectData;
6

7 // Set the next operation of the current thread.
8 currThreadData.currOpSyncObjectData = syncObject;
9 currThreadData.currOpType = opType;

10

11 // Query the scheduling strategy for the next thread id to schedule.
12 final int nextTid = strategy.getNextThread(
13 currThreadData,
14 syncObject,
15 opType,
16 threadList,
17 prevOp,
18 prevOpSyncObjectData);
19

20 // Handle the deadlock case.
21 if (nextTid == SchedulingStrategy.THREAD_ID_DEADLOCK) {
22 handleDeadlock();
23 return;
24 }
25

26 final ThreadData nextThreadData = threadList.get(nextTid);
27

28 // Release the chosen thread and then block current thread.
29 if (nextThreadData != currThreadData) {
30 currThreadData.active = false;
31 synchronized (nextThreadData) {
32 nextThreadData.active = true;
33 nextThreadData.notifyAll();
34 }
35 synchronized (currThreadData) {
36 while (!currThreadData.active) {
37 currThreadData.wait();
38 }
39 }
40 }
41 }

Listing 5.7: A simplified version of the schedule method, which implements a scheduling
point in JESS.

128

strategy can make use of the information. Next, the method queries the scheduling strat-

egy to get the next thread id that needs to be scheduled (line 12). Note that the next

thread id to be scheduled is a function of the state of the scheduling strategy, which can

persist between executions, as well as the parameters to getNextThread. We show the

implementation of the random scheduling strategy in §5.3.4. If no thread can be chosen

because all threads are disabled, the scheduling strategy returns THREAD ID DEADLOCK,

which is handled on line 21; we will not go into the details of this but, essentially, this

execution ends via all threads throwing an exception. Finally, the chosen thread is re-

leased and the current thread is blocked (lines 29–40). Note that if the chosen thread is

the current thread, then the method simply returns. Otherwise, the current thread is set

to inactive and the next thread is set to active. The current thread then waits until it

is made active (i.e. scheduled). Thus, this method shows how serialisation of threads is

achieved; each thread blocks itself and releases the next scheduled thread. We give an

example of using the schedule method below (§5.3.5).

Scheduling point for new thread. It is worth noting that a newly started thread

must immediately block until it is scheduled and this can only occur when the active

thread calls schedule. Thus, “thread start” is the thread’s first scheduling point, but the

thread cannot call schedule to achieve this, as schedule can only be called by the active

thread. Thus, a newly started thread must instead execute the code in the executedRun

method, shown in Listing 5.8, to block until it becomes active (line 7).

1 public final void executedRun() {
2 final Thread currThread = Thread.currentThread();
3 final ThreadData currThreadData = getThreadData(currThread);
4

5 synchronized (currThreadData) {
6 while (!currThreadData.active) {
7 currThreadData.wait();
8 }
9 }

10 }

Listing 5.8: A simplified version of the executedRun method, which is called by a newly
started thread.

As explained in §5.2.5, when the executedRun callback returns the thread will continue

executing its instrumented entry point. The ThreadData object of the newly started

thread is added to the thread list by the parent thread and the thread is also marked as

enabled. Thus, when the active thread reaches the next scheduling point, it may choose

129

to schedule the newly started thread. At this time, the newly started thread will become

active and the thread will either be unblocked from line 7 or the loop (at line 6) will not

be entered at all. Either way, the newly started thread does not continue executing until

it becomes active.

5.3.4 Scheduling strategy

The scheduling strategy is an object that determines which thread to schedule next. A

scheduling strategy must implement the SchedulingStrategy interface. The key method

of this interface is getNextThread, which is invoked from the schedule method (see line

12 of Listing 5.7), and returns the next thread id that should be scheduled. Recall that,

during SCT, we perform many executions, each of which must execute the target program

from the start. Thus, when performing a DFS of the schedule-space, we would expect two

successive executions to share a common prefix and so a DFS scheduling strategy object

must store information about the previous executions in order to replay the common

prefix. In contrast, a controlled random scheduling strategy does not need to store any

information about previous executions. The SchedulingStrategy interface contains one

other method, prepareForNextExecution, which is invoked before executing the next

schedule. A DFS strategy will implement prepareForNextExecution to prepare its stack

data structure for the next schedule, as we show below.

A random scheduling strategy A getNextThread method that implements the con-

trolled random scheduler algorithm described in §3.2.4 is shown in Listing 5.9. The method

starts by constructing a list of the enabled threads (line 11). If the list is empty, then

there are no enabled threads and we return THREAD ID DEADLOCK (line 19). Otherwise,

we choose a random thread from the list and return its thread id (line 24). Note that

this random strategy does not store any information about the previous scheduling points

or previous executions; the only state that is maintained across executions and across

invocations of getNextThread is the state of the random number generator (this.rng).

DFS example We describe our DFS scheduling strategy using an example. Note that

the DFS strategy object stores the unexplored schedules using a stack data structure.

Figure 5.2 shows the stack data structure at three different points for some program. At

each call to getNextThread, a list of enabled threads is created (similar to in the random

scheduling strategy); each entry in the list can be marked as selected and/or done. After

the first execution, the stack is in the state shown by (a). At line 3, thread 2 (t2) has

been created (or at least became enabled). At each call to getNextThreadId, the first

130

1 @Override
2 public int getNextThread(
3 final ThreadData currThreadData,
4 final SyncObjectData syncObject,
5 final OpType opType,
6 final List<ThreadData> threadList,
7 final Op prevOp,
8 final SyncObjectData prevOpSyncObjectData) {
9

10 // Create a list of the enabled threads.
11 final List<ThreadData> enabledThreadList = new ArrayList<>();
12 for(ThreadData td : threadList) {
13 if(td.enabled) {
14 enabledThreadList.add(td);
15 }
16 }
17

18 // No enabled threads => deadlock.
19 if(enabledThreadList.size() == 0) {
20 return SchedulingStrategy.THREAD_ID_DEADLOCK;
21 }
22

23 // Return a random enabled thread.
24 final int randomIndex = this.rng.nextInt(enabledThreadList.size());
25 final ThreadData nextThread = enabledThreadList.get(randomIndex);
26 return nextThread.threadId;
27 }

Listing 5.9: A simplified getNextThread method that implements a straightforward ran-
dom scheduling strategy.

1 [t1]
2 [t1]
3 [t1, t2]
4 [t2]
5 [t2]
6 [t1]
7 ->

(a)

1 ->[t1]
2 [t1]
3 [t1, t2]
4

5

6

7

(b)

1 [t1]
2 [t1]
3 [t1, t2]
4 [t2, t1]
5 [t1]
6 [t1]
7 ->

(c)

Figure 5.2: Examples of the stack from the DFS scheduling strategy. The stack grows
downwards and the arrow indicates the top of stack pointer. The stack ele-
ments are shown as lists of thread ids (t1 and t2); bold indicates that the entry
is selected while strikeout indicates that the entry is done. The stack is shown
at three points: (a) after completing the first execution; (b) after invoking
prepareForNextExecution after the first execution; and (c) after completing
the second execution.

131

thread id in the list of enabled threads was returned and so the corresponding entry

was selected and marked as done. Figure (b) shows the state of the stack after the call

to prepareForNextExecution which is called before starting another schedule. Notice

that entries have been popped until the top of stack contains an entry that is not done.

Furthermore, the previously selected entry in the top of stack is deselected. Finally, the top

of stack pointer is reset to the first entry; this pointer allows the entries on the stack to be

replayed. During the second execution, the selected entries will be chosen (replayed) until

the real top of stack is reached. Figure (c) shows the state of the stack after the second

execution; the new entries in the stack were observed when executing the previously seen

schedule prefix (lines 1–2), followed by the first previously unexplored thread (t2 on line

3), and then continuing with other unexplored transitions until reaching a terminal state.

Note that t2 is now the first entry (on line 4) because we order threads in thread creation

order, starting from the most recently executed thread and wrapping in a round-robin

fashion. The next call to prepareForNextExecution will pop the top two elements off

the stack and, in the next execution, t1 will be chosen at line 4.

5.3.5 Schedule example: enter monitor

We now describe the implementation of the onEnterMonitor method in Executor, which

implements entering (locking) a monitor. The onEnterMonitor method is shown in

Listing 5.10. The parameter o is the object/monitor that is being entered. We first

check whether o is null and, if so, throw an exception (line 2), to mimic the behaviour

of the ENTERMONITOR instruction. We obtain the QueueData object from o and store it in

oQueueDate (line 6). The QueueData class contains bookkeeping information for monitors;

the key pieces of bookkeeping information used are: the entry set (entrySet), which stores

threads that are trying to enter the monitor; the owner (owner), which stores the thread

that has entered (owns) the monitor; and recursiveEntered, which is used to implement

recursive monitors. We check if no other thread owns the monitor (line 8) and, if so, we

add the current thread to the entry set (line 10). This may seem counterintuitive since

we could instead immediately update the owner thread to the current thread. However,

we wish to ensure that there is a scheduling point immediately before the enter monitor

operation; conceptually, the enter monitor operation occurs after the call to schedule

(line 21). Thus, we add the current thread to the entry set so that, if the current thread

t is preempted by another thread u (during the call to schedule), then thread u can set

all threads in the entry set (including t) to be disabled (which occurs on line 34). If the

current thread owns the monitor (line 11), we increment oQueueData.recursiveEntered

132

and return. This implements Java’s recursive monitors; the owner thread of a monitor can

re-enter the monitor many times. The oQueueData.recursiveEntered field is a counter

that tracks how many times the owner thread has entered the monitor minus the number

of times the thread has exited the monitor, excluding the first enter and last exit. There

is no scheduling point on recursive enters and exits of a monitor; it is as if the operations

never occurred in terms of scheduling. If another thread, u, owns the monitor (line 15), we

add the current thread t to the entry set but also disable the current thread t. This ensures

that another thread will be scheduled at the call to schedule (line 21) which is what we

desire, since the current thread t cannot enter the monitor while thread u owns it. When

the owner thread, u, is scheduled and exits the monitor, u will re-enable thread t. We

then call schedule (line 21) which represents a scheduling point. When schedule returns,

the current thread is going to become the owner of the monitor. Thus, there are several

conditions that should hold, which we check using assertions (lines 23–26). Whenever any

call to schedule returns, the current thread should be marked as enabled (checked on

line 23). The entry set of the monitor should still contain the current thread (checked on

line 24); we remove the current thread in this method on line 31. The monitor must not

have an owner (checked on line 25). Finally, the oQueueData.recursiveEntered counter

must be 0 (checked on line 26); this must be true whenever the monitor does not have an

owner. We then set the owner of the monitor to the current thread (line 29), remove the

current thread from the entry set (line 31) and, finally, disable all threads in the entry set

(line 34).

5.4 Advanced SCT details

In this section, we describe SCT implementation details that relate to partial-order reduc-

tion (POR), including race detection and state-caching. We proceed as follows:

� §5.4.1: we motivate the approach of unifying all synchronisation operations as reads

and writes on synchronisation objects, which greatly simplifies the implementation

of POR techniques.

� §5.4.2: we describe how, in practice, transitions are represented as ops and how

the dependency relation and happens-before relation can be defined over ops. This

covers the prerequisite information to be able to describe our vector clock algorithms.

� §5.4.3: we describe our efficient vector clock algorithms for use with DPOR.

133

1 public final void onEnterMonitor(final Object o) {
2 if (o == null) { throw new NullPointerException(); }
3

4 final ThreadData currThreadData = getThreadData(Thread.currentThread());
5 final SyncObjectData oData = getSyncObjectData(o, OpType.ENTER_MONITOR);
6 final QueueData oQueueData = oData.getQueueData();
7

8 if (oQueueData.ownerThread == null) {
9 // No thread owns the monitor.

10 oQueueData.entrySet.add(currThreadData);
11 } else if (oQueueData.ownerThread == currThreadData) {
12 // The current thread owns the monitor.
13 oQueueData.recursiveEntered++;
14 return;
15 } else {
16 // Another thread owns the monitor.
17 oQueueData.entrySet.add(currThreadData);
18 currThreadData.enabled = false;
19 }
20

21 schedule(currThreadData, oData, OpType.ENTER_MONITOR);
22

23 assert currThreadData.enabled;
24 assert oQueueData.entrySet.contains(currThreadData);
25 assert oQueueData.ownerThread == null;
26 assert oQueueData.recursiveEntered == 0;
27

28 // Set the owner to be the current thread.
29 oQueueData.ownerThread = currThreadData;
30 // Remove the current thread from the entry set.
31 oQueueData.entrySet.remove(currThreadData);
32 // Disable all threads in the entry set.
33 for (final ThreadData td : oQueueData.entrySet) {
34 td.enabled = false;
35 }
36 }

Listing 5.10: The onEnterMonitor method which implements entering (i.e. locking) a
monitor.

134

� §5.4.4: we describe ops (the Op class) in full detail, including how we represent

thread and sync object ids, capture and hash the happens-before relation (HBR),

and handle global objects and field offsets.

� §5.4.5: we describe how we implement barriers that support the barrier wait opera-

tion using read and write ops. We use three different types of ops and an additional

barrier thread for each barrier.

5.4.1 Unified synchronisation operations

Various POR techniques require information about the HBR (see §4.2): sleep sets require

the dependency relation; DPOR requires race detection, which we achieve using vector

clocks; and HBR caching requires a concise representation of the entire HBR. This po-

tentially means that every visible operation (henceforth, op) needs to be handled in a

different way. In fact, each op could, in theory, need to be handled differently for each

technique. This can be avoided by classifying every op type (such as entering and exiting

a monitor, starting and joining a thread, barrier operations, memory read and writes, etc.)

as either a read or a write on a shared object (sync object). This approach was used in

CHESS [MQB+08] but we feel that some of the advantages were not emphasised or were

omitted entirely and, as such, could be missed by future researchers, hence we detail them

here. The advantages of the approach are as follows.

First, implementing/instrumenting additional synchronising operations is greatly sim-

plified, as it is mainly a case of expressing these operations in terms of reads and writes on

sync objects. Note that there is still some complexity in expressing which threads become

enabled/disabled. We describe how we implemented the barrier operation in §5.4.5. Sec-

ond, ops can conservatively be classified as writes to ensure soundness; POR techniques

will explore all interleavings of writes to the same sync object. At a later point, certain

ops can be reclassified as reads to gain a greater reduction. The two above advantages

were described in [MQB+08].

Third, the definitions of read and write operations can be exploited to achieve optimised

vector clock operations. We believe that state-of-the-art tools like CHESS do not take full

advantage of this. We believe our vector clock operations (described in §5.4.3) improve

upon the state-of-the-art in terms of space and time overhead. Vector clocks are essential

for performing efficient race detection, as needed for DPOR, and they need to be updated

after every op which is expensive and thus important to optimise.

Finally, the HBR relation of an execution (after every scheduling point) can be canoni-

cally represented as a set of ops without explicitly storing edges. Furthermore, an incre-

135

mental hash function can be used to efficiently maintain a hash of the HBR after every

op without maintaining an actual set and without requiring the use of vector clocks. This

allows for HBR caching, a form of state-caching, where every visited HBR hash is cached

to avoid redundant execution from already visited HBRs (see §4.2). Thus, as long as ops

are only implemented as reads and writes, HBR caching is very straightforward to imple-

ment. Yet, we believe that the simplicity and effectiveness of HBR may not be obvious

to researchers. HBR caching was used by CHESS [MQB+08] although hashing is not

mentioned in [MQB+08]; the hash-based approach is only described in a referenced tech-

nical report [MQ07a], where ops are introduced as reads and writes on variables, without

explaining that these are abstract concepts and not just shared memory accesses. Further-

more, the hash-based approach is introduced to work around the complex soundness issues

of combining partial-order reduction and preemption bounding. It may not be clear to

other researchers that the HBR hashes can be used more generally, such as for estimating

the number of states explored during concurrency testing. We describe the approach in

§5.4.4.

5.4.2 Transitions as ops

As described in §4.2 (where ops were called events), transitions are not stored in SCT

tools. Instead, a schedule:

E = 〈op1, op2, . . . , opk〉

is represented as a list of ops. The full representation of an op is revealed later in §5.4.4.

For now, we assume that an op contains at least the following elements:

op = (tid , obj , opType, pti)

where tid is the thread id, obj is the sync object being accessed (e.g. a monitor or shared

memory location), opType is the operation type (e.g. monitor enter, monitor exit, create

thread), and pti is the per-thread index which denotes that this is the pti -th op executed

by thread tid .

Each op type is classified as either a read or a write. Consequently, we refer to an op

as being either a read or write depending on its op type. Let IsWrite(op) be true iff op

is a write op. While shared memory reads and writes are classified as reads and writes,

respectively, an op that is a read/write is not necessarily a shared memory read/write;

we present our approach for implementing the barrier wait operation in §5.4.5 which uses

multiple read and write ops where the read ops update our barrier object.

136

In Definition 1, we gave the definition of a valid dependency relation D over transitions.

In practice, we define a dependency relation, over ops (Ops) as follows:

Definition 8 (A practical dependency relation). A pair of operations are dependent,

(op1, op2) ∈ D, iff either:

1. op1.tid = op2.tid, or

2. op1.obj = op2.obj ∧ (IsWrite(op1) ∨ IsWrite(op2))

In other words, a pair of ops are dependent iff they are from the same thread, or they

access the same sync object and at least one is a write. The happens-before relation→E is

defined over the ops in E according to Definition 3, using the above dependency relation.

5.4.3 Efficient vector clock operations

Vector clocks are used to encode the happens-before relation and perform efficient race

detection.6 A vector clock is a map from thread ids to clocks (integers), typically im-

plemented as a list of integers, 〈c1, . . . , cn〉, where ct stores the clock for thread t. In

traditional data race detection, a clock value ct represents the ctth op of thread t. In SCT,

we can instead follow the approach given in [FG05] and let ct be the global clock of an

op by thread t; that is, ct is the index of an op within the schedule, E. This allows us

to efficiently find the index of an op within E as needed for DPOR. Conceptually, each

op E(j) in a schedule is associated with a vector clock E(j).VC = 〈c1, . . . , cn〉, such that

thread t’s last op that happens-before E(j) is E(ct). Thus, the happens-before relation is

encoded in the vector clocks:

Definition 9 (Happens-before relation using vector clocks).

E(i)→E E(j) iff i ≤ E(j).VC(E(i).tid)

We also ensure that E(i).VC(E(i).tid) = i. Thus, the global clock of an op can always

be found in its vector clock at the position of the thread that executed the op and so

ops from the same thread will always be totally-ordered. Figure 5.3 shows an example

schedule with the vector clock of each op. Notice that the global clock of each op can be

found within its vector clock at the position of the thread that executed the op. Observe

that, according to Definition 9, E(1) and E(2) are unordered with each other and both

happen-before E(3), as required.

6Recall from §4.4.1 that we refer to pairs of ops from different threads that are directly-related in the
HBR as races; this differs from the traditional definition of a data race.

137

Figure 5.3: An example schedule showing the vector clock of each operation. The arrow
indicates the single race.

Note that Definition 9 technically makes the happens-before relation reflexive, which

contradicts our earlier definition (Definition 3) and implies that there are no races (ac-

cording to Definition 7). To solve this, we conceptually ignore the reflexive edges in the

HBR when detecting races.

Let:

join(V C1, V C2) = 〈max(VC1(1),VC2(1)),max(VC1(2),VC2(2)), . . . ,max(VC1(n),VC2(n))〉

denote the pointwise maximum of two vector clocks. Intuitively, we will obtain the vector

clock of some op, op, using the join of the vector clocks of previous ops that race with op.

In particular, note that, the pointwise maximum of op.VC and the vector clocks of all ops

that happen-before op is equal to op.VC.

In practice, it is not necessary to store a vector clock for each op. Instead, each thread t

is associated with a vector clock t.VC, which stores the vector clock of the last op of thread

t. Also, each sync object o is associated with a read vector clock, o.readVC, and a write

vector clock, o.writeVC. The read vector clock stores the pointwise maximum of the vector

clocks of all read ops that accessed o. The write vector clock stores the vector clock of the

most recent write op that accessed o; note that this is equivalent to storing the pointwise

maximum of the vector clocks of all write ops that accessed o because all writes to the

same object are totally-ordered in the HBR, but the former description leads to a simpler

and more efficient implementation. We describe how these two vector clocks are used in

the context of race detection by considering the different types of races. Let E(j) be an

operation in the execution E; we wish to find the set of global clocks of ops that race with

and occur before E(j). That is, we wish to find I = {i | i < j and E(i) races with E(j)}.
In the following, it is assumed that we only consider ops that occur before E(j).

Write-read and write-write races If E(j) is a read op that accesses o, then E(j) can

only race with the most recent write to o. Similarly, if E(j) is a write op that accesses

o, where there have been no reads from o since the last write, E(j) can only race with

the most recent write to o. In these cases, I will either be the empty set or the singleton

set containing the global clock of the most recent write to o. Note that this global clock

138

is one of the clocks in o.writeVC; specifically, the one with the largest value. To avoid

iterating over every clock in o.writeVC, we store the thread id of the last write, denoted as

o.lastWriteTid. Thus, the global clock of the last write to o is o.writeVC(o.lastWriteTid).

Read-write races If E(j) is a write op that accesses o, and there has been at least

one read of o since the last write to o (before E(j)), then E(j) can only race with the

reads from o since the last write. Note that we only need to consider the most recent

read of o by each thread; an earlier read from a thread must happen-before the later read

from the same thread, and so cannot race with a subsequent write. Furthermore, a pair

of reads from different threads can also be ordered in the happens-before relation (via

transitivity) and so only the most recent read of the pair may race with E(j). Crucially,

the “interesting” global clocks—those that correspond to all reads of o that occurred since

the last write to o and that are not obscured by (related transitively in the HBR to) a

later read of o—will be contained in o.readVC. Not every clock in o.readVC necessarily

corresponds to a read from o (or even a read op), but these other clocks are still required

in order to track the combined happens-before information of all reads of o. In order to

track which clocks in o.readVC are interesting (as defined above) for race detection, we use

a list of boolean values o.readsMask = 〈b1, b2, . . . , bn〉, implemented as a bitmask, where

o.readsMask(i) is true iff o.readVC(i) is an interesting global clock that may race with

E(j). Thus, I will contain a subset of the interesting global clocks.

In the above, we have described the set of global clocks that may be in I (and that our

algorithms will consider) because they access o. However, the clocks described may still

happen-before E(j) transitively (via operations that do not access o). We now present the

algorithms that incorporate the above ideas.

Updating vector clocks The algorithm for updating vector clocks is shown in

Listing 5.11. This updateVectorClocks method is invoked after each op that is exe-

cuted. The thread data of the thread that executed the op is t; the global clock of the

op is globalClockOfSyncOp; the sync object accessed by the op is o; and write is true iff

the op is a write. We use the same notation for accessing the vector clocks, lastWriteTid

and readsMask as introduced above. We use t.threadId to get the thread id of t. We

access a vector clock like an array of ints (with indices starting at 0) for clarity, but note

that Java does not actually support operator overloading and so in JESS vector clocks are

accessed and manipulated via method calls.

We first update t’s vector clock to be equal to the conceptual vector clock of the op.

The first step is on line 8 where we set t.VC[t.threadId] to be the global clock of the

139

1 public static void updateVectorClocks(
2 final ThreadData t,
3 final int globalClockOfSyncOp) {
4

5 final SyncObjectData o = t.currOpSyncObjectData;
6 final boolean write = t.getCurrOp().getOpType().isWrite();
7

8 t.VC[t.threadId] = globalClockOfSyncOp;
9

10 if (write) {
11 if(o.readsMask.isEmpty()) {
12 t.VC.join(o.writeVC);
13 } else {
14 t.VC.join(o.readVC);
15 }
16 // Equivalent to: for all i: o.writeVC[i] = t.VC[i];
17 o.writeVC.set(t.VC);
18

19 o.lastWriteTid = t.threadId;
20 o.readsMask.clear();
21 } else {
22 t.VC.join(o.writeVC);
23 // The following loop is similar to o.readVC.join(t.VC)
24 // but also updates o.readsMask as necessary.
25 for(int i=0; i < o.readVC.length; ++i) {
26 if(o.readsMask[i] && t.VC[i] >= o.readVC[i]) {
27 o.readsMask[i] = false;
28 }
29 o.readVC[i] = t.VC[i];
30 }
31 o.readsMask[t.threadId] = true;
32 }
33 }

Listing 5.11: The updateVectorClocks method.

140

op because we wish to ensure that an op at least always happens-after itself. However,

t’s vector clock must be updated further. In Listing 5.11, we use VC1.join(VC2) to

denote mutating vector clock VC1 to become the pointwise maximum of VC1 and VC2 (i.e.

join(VC1 ,VC2)). We use the join operation to conceptually add edges to the happens-

before relation. Or, to put it another way, we use join to capture HBR edges in a particular

vector clock.

Returning to Listing 5.11, if the op is a write, the current op happens-after all previous

accesses of o (reads and writes). As explained earlier, o.readVC and o.writeVC captures

the happens-before information for all previous reads and writes of o. As also noted earlier,

if there have been no reads of o since the last write, then the op only races with the last

write of o (the previous accesses of o happen-before the current op via transitivity). Thus,

on line 10, we check if the op is a write and on line 11 we check if there have been no

reads of o since the last write; if so, then we join t’s vector clock with o.writeVC (line

12). Otherwise, there have been reads from o since the last write and so the op only races

with these reads. Thus, we join t’s vector clock with o.readVC (line 14); the reads since

the most recent write are guaranteed to happen-after the most recent write, which is why

there is no need to also join with o.writeVC. If the op is a read, then we join t’s vector

clock with o.writeVC (line 22), since a read happens-after the most recent write.

This covers how t’s vector clock is updated, but the vector clocks of o must also be up-

dated. If the op is a write, then o.writeVC is simply set to t.VC (line 17) because o.writeVC

must contain the vector clock of the last write op, which is what t.VC currently represents.

We also update o.lastWriteTid appropriately (line 19) and clear o.readsMask; that is, we

set every element in o.readsMask to be false indicating that there have been no reads

since the last write to o. If the op is a read, then we set o.readVC to join(o.readVC, t.VC)

(line 25) because o.readVC must contain the pointwise maximum of all reads and the op

that is being processed is a read; furthermore, t.VC currently represents the vector clock

of this read op. However, note that instead of calling o.readVC.join, we perform the

join using a for-loop because we also need to update o.readsMask; on line 27, we change

o.readsMask[i] to false if we are about to update o.readVC[i] to the same or a larger

value. If o.readsMask[i] was not already false, then o.readVC[i] was a global clock of

a read of o that occurred since the last write. However, updating o.readVC[i] to a larger

or equal value indicates that the current read op happens-after the previous read. Note that

if the new value of o.readVC[i] remains the same then o.readVC[i] still corresponds to

the same read but this read now happens-before the current op and so is no longer relevant,

as it cannot race with any future write to o. Finally, we set o.readsMask[t.threadId] to

true since thread t just performed a read of o and o.readVC[t.threadId] is the global

141

clock this read (globalClockOfSyncOp).

1 public static void getRaces(
2 final ThreadData t,
3 final Set<Integer> raceClocks) {
4

5 final SyncObjectData o = t.currOpSyncObjectData;
6 final Op op = t.getCurrOp();
7 final boolean write = op.getOpType().isWrite();
8

9 // Write-read or write-write race.
10 // Next sync op of t may race with previous write to o.
11 if (o.lastWriteTid >= 0 && (!write || o.readsMask.isEmpty())) {
12 // Is last write concurrent with this thread?
13 if (o.writeVC[o.lastWriteTid] > t.VC[o.lastWriteTid]) {
14 raceClocks.add(o.writeVC[o.lastWriteTid]);
15 }
16 }
17 // Read-write race.
18 // Next sync op of t may race with one or more previous reads from o.
19 else if (write && !o.readsMask.isEmpty()) {
20

21 for (int i = 0; i < o.readVC.length; ++i) {
22 // Does o.readVC[i] correspond to a read from o
23 // and is it concurrent with this thread?
24 if (o.readsMask[i] && o.readVC[i] > t.VC[i]) {
25 raceClocks.add(o.readVC[i]);
26 }
27 }
28 } else {
29 // This is the first sync op on o. No races.
30 }
31 }

Listing 5.12: The getRaces method.

Get races The algorithm for calculating the set of races, I, is shown in Listing 5.12.

The algorithm forms part of the DPOR algorithm (see Algorithm 5) where we find all

ops that race with the next op of each thread. The getRaces method checks the next

op of thread t. Note that the next op of t has not actually been executed yet and may

not be the next op in the execution. Thus, although this algorithm is essentially a race

detection algorithm, what we are really calculating here is the backtracking points needed

by DPOR. Also, note that t.VC is not the vector clock of the next op of t, but is instead

the vector clock of the most recent op executed by t. Nevertheless, we can use t.VC to

check if various ops in the execution so far are concurrent with the last op of t; if there

exist ops that are both concurrent with the last op of t and dependent with the next op

142

of t, then these ops would race with the next op of t if this op was executed next. The

write variable is true iff the next op of thread t is a write; o is the sync object accessed.

On line 11, we check if there has been at least one write to o (o.lastWriteTid >= 0);

we then check whether the next op of t is a read or whether there have been no reads

from o since the last write. If so, the next op of t may only race with the previous write

to o; this implies a write-read or a write-write race as described earlier. The global clock

of the previous write to o is o.writeVC[o.lastWriteTid]; we check whether the previous

write is concurrent with the last op of t using Definition 9 (line 13). That is, we check

if the previous write does not happen-before the last op of t; if so, then the last write

would race with the next op of t and so we add the clock of the last write to the set of

races (line 14).

On line 19, we check if the next op of t is a write and if there has been at least one read of

o since the last write (or since the start of the execution). If this condition holds, then the

next op of t can only race with these reads; we consider each clock o.readVC[i] (line 24)

but only if the clock corresponds to a read (i.e. if o.readsMask[i] is true). For each

clock that is a read, we test whether the read is concurrent with the last op of t using

Definition 9 and, if so, the read would race with the next op of t and so we add the read

clock to the set of races (line 25).

5.4.4 Op class

We now reveal the fields of the Op class (which represents an op) and discuss several

challenges that influenced the design. Note that we will obtain the hash of the HBR of an

execution by hashing the set of ops in the execution (by XORing the hashes of the ops)

and so equivalent HBRs should have the same hash. The fields of the Op class are shown

in Listing 5.13.

Identity The first four fields are those described in our earlier definition of an op. How-

ever, note that the tid and obj fields are of type Op. We could have stored the tid as

an int where the ith thread created has a tid of i. However, it is possible for two or

more threads to be created concurrently (by two or more threads) and, thus, two different

executions with the same HBR could create the threads in a different order; this could lead

to different thread ids and different HBR hashes. Thus, we instead represent the thread

id of a thread via the op that created the thread. Similarly, we represent the identity of a

sync object via the op that created it. For example, creating a new Java object is an op

with an opType of OpType.OBJ INIT and with the obj field set to null; let us call this a

143

1 public final class Op {
2

3 private final Op tid;
4 private final Op obj;
5 private final OpType opType;
6 private final int pti;
7

8 private final int numWrites;
9

10 private final int objAddr;
11 private final int objOffset;
12

13 // methods omitted
14

15 }

Listing 5.13: The fields of the Op class, which represents an op.

creation op. An op that locks the object (with opType OpType.ENTER MONITOR) will have

its obj field set to the creation op. We describe below how fields and array elements are

handled, using the objOffset field.

Capturing the HBR The HBR of an execution can be implicitly represented by the set

of ops in the execution. To do this, we must be able to (conceptually) recreate the HBR

from the set of ops. We described this briefly in §4.5 but we now give more detail. We

use the approach given in [MQ07a]. Note that the total-order between ops from the same

thread is captured by the pti field; given any two ops, op1 and op2, if op1.tid = op2.tid

and op1.pti > op2.pti , then op1 happens-before op2. The addition of the numWrites field

allows us to capture the inter-thread orderings. Given an execution E containing an op

E(i), E(i).numWrites is the number of ops in E[1 : i] that access E(i).obj and are writes.

Formally:

E(i).numWrites = |{j | 1 ≤ j ≤ i ∧ E(j).obj = E(i).obj ∧ IsWrite(E(j))}|

Given two ops, op1 and op2, that access the same object (op1.obj = op2.obj) then

op1 happens-before op2 if: op1.numWrites < op2.numWrites, or op1.numWrites =

op2.numWrites and op1 is a write. Thus, the addition of the numWrites field allows

the HBR of an execution to be canonically represented as the set of ops in the execution,

without any edges or vector clocks being stored. Note that we never actually reconstruct

the happens-before relation from the set of ops. We use this observation to construct the

hash of the HBR by XORing the hashes of the ops. We let the hash of an execution be

144

defined in this way. That is, hash(E) = hash(E(1)) ⊕ hash(E(2)) ⊕ . . . ⊕ hash(E(|E|)).
Furthermore, as an execution grows, one op at a time, the next execution (and HBR) hash

can be obtained incrementally by XORing the hash of the next op with the previous exe-

cution hash. In other words, given E1 · 〈op〉 = E2, then hash(E2) = hash(E1)⊕ hash(op).

Of course, hash collisions are possible, which will lead to incorrectly treating two distinct

HBRs as being equal. In JESS, we use the MurmurHash3 128-bit hash function7 from

Google’s Guava Java library8 to reduce the chance of collisions.

Global objects Recall from §5.1.1 that we test a ConcurrencyTestCase object by

repeatedly executing the execute method. The execute method may access objects that

were created before the first execution of the execute method, such as objects created

during the warm up executions. Thus, these sync objects will not have a creation op

within any execution and so we cannot identify them via a creation op. To solve this, if

a sync object is first accessed within an execution by a non-creation op then we assume

this is a global sync object (one that was created outside of the execution) and so we

set the objAddr field of the op to the identity hash code of the object (from applying

System.identityHashCode). Note that these hash codes will not change across executions

as the JVM is not restarted. The hash codes are not guaranteed to be unique, but collisions

are unlikely and there is no alternative that guarantees uniqueness. Furthermore, we do

not use the identity hash codes of objects created during executions so the chance of a

collision is greatly reduced. Thus, the identify of an object is now the combination of

the obj and objAddr fields. Note that the identity of an object is added (lazily) to the

SyncObjectData object that it is mapped to, so the identity hash code only has to be

calculated once.

Field and array offset We initially included (somewhat artificial) ops that represented

the creation of every field and array element, so that these elements have a unique cre-

ation op. For example, in every constructor callback we added a write op (with opType

FIELD INIT) for every field in the class. Similarly, in an array creation callback we added

a write op for every element in the array. We avoid doing this (for greater elegance and

efficiency) using the objOffset field. We let an object creation op represent creating the

object and all fields and an array creation op represent creating the array object and all

array elements. When a field or array element is accessed, we let the op refer to the cre-

7https://github.com/google/guava/blob/master/guava/src/com/google/common/hash/Murmur3_

128HashFunction.java
8https://github.com/google/guava

145

https://github.com/google/guava/blob/master/guava/src/com/google/common/hash/Murmur3_128HashFunction.java
https://github.com/google/guava/blob/master/guava/src/com/google/common/hash/Murmur3_128HashFunction.java
https://github.com/google/guava

ation op (or the global address) of the object or array, but with the objOffset field set to

the offset of the field or array element (both of which start at 1). Note that ClassManager

(§5.2.2) ensures that every field in a class (and its super-classes) is assigned a unique int

index which is used as the value for objOffset when accessing fields. Thus, the identity of

a sync object is now the combination of the obj, objAddr and objOffset fields, where the

objOffset field is 0 if we are accessing the object itself such as when entering (locking) a

monitor. Therefore, every object, field and array element has a unique identity.

Note that our description of how to construct the HBR of an execution given the set of

ops must change slightly; two ops only access the same object if the objects have the same

identity (according to the obj, objAddr and objOffset fields), with one exception: the

objOffset is ignored if one of the ops is a creation op because the creation op represents

accessing all array elements of an array or fields of an object.

Execution id The final issue relates to global objects and the SyncObjectData class

that is used to derive Op objects. Recall from §5.2.4 that each field is mapped to a

SyncObjectData object stored in a shadow field. The SyncObjectData class includes fields

id, addr, offset and numWrites, which store the values that will be used in op fields obj,

objAddr, objOffset and numWrites, respectively. Consider that shadow fields of global

objects persist across executions. In particular, the numWrites field on a SyncObjectData

object, which stores the number of writes to the field so far, may be from a previous

execution. Similarly, the state of the vector clocks may also be old. In contrast, the

SyncObjectData objects for objects and array elements are stored in weak identity hash

maps that can be cleared before each execution, and non-global objects will be recreated in

each execution with uninitialised shadow fields. For global objects, we need a mechanism to

detect shadow fields that contain data from a previous execution. To achieve this, we give

the ExecutionManager an integer execution id that is incremented after each execution

and we give the SyncObjectData class an executionId field. When a SyncObjectData

object is initialised, its executionId field is set to the current execution id. On subsequent

executions, if the executionId field of a SyncObjectData object does not match the

current execution id then we reinitialise the SyncObjectData object.

5.4.5 Implementing barriers using read and write ops

Recall that every op is either a read or write. We now describe how we implemented a

barrier using only read and write ops. Assume a barrier object for use with k threads.

A barrier object supports only one operation, a barrier wait operation, that blocks the

146

calling thread until k threads in total are blocked waiting on the barrier object; thus,

the kth thread that reaches the barrier is in fact not blocked and releases all other k − 1

threads blocked at the barrier object. The kth thread also causes the barrier object to be

reset so that it will block the next k−1 threads that try to wait on the barrier and the kth

thread to wait will again not be blocked and will release the other threads, and so on. We

refer to the set of k barrier wait operations and k threads involved in a single use of the

barrier (where the kth wait operation resets the barrier) as a round of operations/threads.

In terms of the HBR, a barrier wait operation executed by a thread happens-before all

other barrier wait operations in this round. Notice that this implies a symmetric relation

between barrier wait operations which is not possible in our asymmetric HBR; our HBR

is a subset of a total-order over the ops, which means we cannot have cycles. Thus, we

use two ops per barrier wait operation: a BARRIER PRE op followed by a BARRIER POST

op. The BARRIER POST op is blocking except for the kth thread in a round which does not

get blocked, releases the other threads at the barrier and resets the barrier. We can now

describe the HBR between these ops: a BARRIER PRE op happens-before all BARRIER POST

ops in the same round. Crucially, BARRIER PRE ops are unordered with each other, and

BARRIER POST ops are unordered with each other. This is important because the order in

which a set of threads reach a barrier in an execution does not change the state reached by

the execution. Thus, two executions in which threads reach the barrier in different orders

but are otherwise identical should have the same HBRs.

Unfortunately, it is not possible to directly implement this description of the HBR

using read and write ops; letting BARRIER PRE be a write and/or BARRIER POST be a write

causes these ops types to be ordered with respect to each other, which is too strong of

an ordering. Letting them both be reads causes all ops to be unordered, which is too

weak. Thus, we introduce a BARRIER MID op such that all threads in a round proceed

as follows: all threads execute a read BARRIER PRE op, then one thread will execute a

write BARRIER MID op, and then all threads will execute a read BARRIER POST op. This

achieves the ordering we require. However, it is not clear which thread should execute

the BARRIER MID op; it cannot be the last thread to reach the barrier as this will change

depending on the order that threads reach the barrier (leading to different HBRs). It

cannot be the thread that created the barrier as this thread may not be participating in

the round. Thus, when a barrier is created, we start a barrier thread that blocks on a

BARRIER MID op and will be released once k threads have executed the BARRIER PRE op

in a round. This ensures that the BARRIER MID op is always executed by the same thread

and the HBR will be the same, regardless of the order in which threads reach the barrier.

147

5.5 Related work

Concuerror [GCS11, CGS13, AAJS14] is a systematic concurrency testing tool for Erlang

programs. Implementation details of Concuerror are described in [CGS13]. Concuerror

uses a source-to-source transformation (of the core Erlang language) to instrument the

target program and libraries. Because Erlang uses actor-style programming, the imple-

mentation details are quite Erlang-specific, or at least specific to the actor-style. Thus,

the contribution is mostly orthogonal to ours.

Several implementation details of the CHESS SCT tool are briefly described

in [MQB+08, MM07], including how standard Win32 API functions are instrumented

using a wrapper library and how blocking threads are detected without necessarily hav-

ing to reimplement synchronising operations (as we do in JESS). Unlike in CHESS, in

JESS we decouple the scheduling strategy (and its data structures) from the rest of the

tool (see §5.3.4), such that the stack data structure used in a DFS need not exist when

using a scheduling strategy that does not require it (such as the random scheduling strat-

egy); we recommend that SCT tool authors follow this approach in the future for greater

flexibility.

Java bytecode instrumentation We have already mentioned the TCH [FSS04] and

method doubling [PSE07] approaches from prior work. Our approach is very similar

to the method doubling of [PSE07], although that abstract has only high-level details;

we describe some additional details, including handling of constructors, instrumenting

methods of java.lang.Object using method body doubling and instrumenting thread

creation which we have not seen in prior work. Unlike these prior works, we also add

shadow fields and shadow arrays, similar to those used in RoadRuner [FF10] (discussed

below), and discuss some of the issues in finding efficient ways of storing data. The source

code for our method doubling approach is also available,9 in contrast to the method

doubling of [PSE07].

RoadRunner [FF10] is a dynamic analysis framework built using ASM for concurrent

Java programs. In contrast to JESS, RoadRunner does not instrument standard libraries;

it does not use method doubling or any similar approach. This was the main reason for

not using RoadRunner in our work. Nevertheless, our shadow fields and shadow arrays

were heavily inspired by the description in the RoadRunner paper [FF10].

9https://github.com/mc-imperial/jtool-sct

148

https://github.com/mc-imperial/jtool-sct

Vector clock operations The original DPOR algorithm included an implementation

description using vector clocks [FG05], but this only supports write operations; thus, it uses

one vector clock per thread and one “last write clock” per object. Prior work [SKH12]

gives an improved version of DPOR that handles both read and write operations. Per

object, the approach stores: one write vector clock, one access vector clock, one last write

clock and a list of last read clocks (vs. our bitmask). As described in [SKH12], the list

potentially causes bad worst case performance:

A trivial worst case for finding a backtracking point is O(|E|). This happens,

for example, when a program consists of a single process [i.e. a single thread]

executing multiple successive reads from a single communication object fol-

lowed by a write to the same communication object

Note that the program could have many threads, but that a pattern that leads to par-

ticularly poor performance is when one thread performs many reads to the same object

followed by a write, at which point all previous reads since the last write are checked using

the happens-before relation. In contrast, our approach stores at most one read clock per

thread (so at most n read clocks in total, where n is the number of threads); we track

which of the read clocks in o.readVC are worth considering in a bitmask which prevents

unnecessary happens-before tests.

The CHESS tool [MQB+08] includes an implementation of DPOR that considers read

and write ops. Note that this DPOR implementation is not described in the original project

and was most likely added as part of later work [CBM10]. Thus, there is no published

description of this implementation. From studying the source code,10 we believe that,

per sync object, the DPOR component stores one “last write” clock and one “accesses”

vector clock. However, this is not sufficient to perform happens-before tests; the CHESS

happens-before monitor component stores two additional vector clocks per sync object.

Despite this inefficiency, the DPOR component stores at most one read clock per thread per

sync object, which is similar to our approach. However, the “accesses” vector clock is an

additional vector clock, whereas our approach uses an existing vector clock plus a bitmask.

Furthermore, a read clock for thread i is never discarded due to reads from other threads (as

in our approach), so some redundant read clocks may remain which could lead to redundant

happens-before tests. Additionally, at the time of writing, we believe the CHESS DPOR

source code contains a bug; when determining the backtracking points due to the next

read op of a thread that accesses o, only the most recent access to o is considered. This

access may turn out not to race and so no backtracking points will be added, but in this

10http://chesstool.codeplex.com/SourceControl/latest#Chess/Dpor.cpp

149

http://chesstool.codeplex.com/SourceControl/latest##Chess/Dpor.cpp

case, the other (less recent) accesses to o should then be considered, but they are not.

This incorrect approach can lead to unsoundness due to missed backtracking points. We

have received a confirmation from the author that the bug appears to be genuine [Coo16].

We hope that our description of vector clock operations and race detection will serve as

an efficient and sound reference for future researchers.

In contrast to prior work, a key insight of our approach is that the clocks for previous

reads and writes can always be found in o.writeVC and o.readVC which means no addi-

tional vector clocks or lists are needed. Furthermore, o.lastWriteTid must be less than

or equal to n and so can likely be stored as an 8- or 16-bit integer. The o.readsMask

is implemented as a bitmask which is also very space-efficient. Although this does not

give a better big O space complexity compared to prior work (we still need O(n) clocks

per object), the improved space efficiency is arguably still useful in the context of race

detection because of the potentially large number of sync objects (i.e. in the extreme case,

every byte in the heap could be a sync object). We also believe that our approach is

efficient in terms of run time complexity compared to prior approaches, as we track the

minimal number of previous read clocks using a reads bitmask to identify the necessary

clocks; some additional work is needed to maintain this bitmask but this work is performed

(efficiently) during the update to the read vector clock and is justified since it prevents

redundant happens-before tests from occurring later.

5.6 Conclusion

We have presented implementation details of JESS, our systematic concurrency testing

tool for Java programs, as a reference for future researchers. We covered instrumenting

Java programs using bytecode instrumentation, key design details of the tool, and some

more advanced details relating to POR.

150

6 Case study: applying SCT to Azure

Service Fabric distributed systems

In our empirical study (Chapter 3), we described some difficulties of applying SCT in prac-

tice (§3.4.2). In particular, programs that use network communication are problematic, as

they require a large engineering effort to model the various networking functions/libraries

and to handle inter-process communication. Additionally, ensuring that programs are de-

terministic (modulo scheduling nondeterminism) can be nontrivial. Motivated by these

challenges and the importance of distributed systems, in this chapter, we consider applying

SCT to distributed systems written for Azure Service Fabric [Fam15] (or Fabric for short),

a platform and API for writing reliable services. On the one hand, distributed systems

represent an extreme challenge for SCT due to the networked, inter-process communica-

tion. On the other hand, Fabric provides a stable C# API, which allows any modelling

and engineering effort to be reused. We attack the challenge of ensuring determinism in

this highly nondeterministic setting by using actors [HBS73, HO09, DDK+15]. We focus

on actors that are restricted to basic send and receive operations; this allows SCT to be

applied with minimal user effort, as actors only communicate via message-passing, which

is mediated by the actor runtime. In short, we aim to allow users to write and test actor-

based services for the Fabric platform so they can reap the benefits of SCT. To this end,

we created a model of Fabric using actors that can be used to test actor-based Fabric

services within a single process, removing inter-process communication entirely. The main

results of this chapter are:

� A description of our Fabric model version 1, written using the P# actor frame-

work.We describe its architecture and how replication (a key operation in Fabric) is

achieved.

� A description of our Adara actors framework and the benefits it provides over other

frameworks like P#. The main issue we found when using P# is that it uses

dynamically-typed actors; it is not possible to statically determine the type of an

actor reference and the messages that it can receive. Adara actors provides portable,

151

statically-typed actors that are defined by C# interfaces. This provides type safety

and allows existing compiler/IDE features and static analyses to work as expected.

� A description of our Fabric model version 2 that uses Adara actors. We describe the

key changes including how we were able to reduce the amount of asynchrony in our

model (reducing its complexity) while still providing enough asynchrony to explore

interesting interleavings of operations. We describe how replication is achieved to

show the differences from version 1.

� An experimental evaluation showing that we can apply SCT to Fabric services and

find bugs. We constructed a test system with 15 bugs that can be individually

enabled: 11 real bugs that we found during development and 4 injected bugs that

we believe are representative of subtle mistakes that developers are likely to make

when writing Fabric services. We test for each bug using the controlled random

scheduler (described in §3.2.4) and the PCT d=3 scheduler (described in §3.2.5).

For each scheduler and for each bug, we execute 10,000 schedules. We found 14 of

the 15 bugs using SCT, including all of the 4 injected bugs, showing that our Fabric

model includes enough behaviours/asynchrony to expose these subtle pitfalls. We

note that the controlled random scheduler performed poorly in comparison to its

performance in our previous empirical study (§3.7) and we comment on the relative

ease of applying SCT to actor-based systems compared to in Chapters 3 and 4.

We give an introduction to Azure Service Fabric (§6.1), an introduction to actor pro-

gramming (§6.2), a description of our first Fabric model (§6.3), a description of our Adara

actors framework (§6.4), a description of Fabric model V2 that uses Adara actors (§6.5),

and a description of our experiments (§6.6). We conclude in §6.8.

Relation to published work Details of our first Fabric model were described

in [DMT+16]. The P# framework was described and evaluated in [DDK+15].

6.1 Introduction to Azure Service Fabric

Azure Service Fabric [Fam15] (or Fabric for short) is a platform and API for writing

services that are replicated for reliability. It is used by Microsoft for their own cloud

services such as SQL Database, DocumentDb, Bing Cortana, Halo Online, Skype for

Business, and many others [Fam15]. Our focus in this work is the lowest-level C# API

provided by Fabric which is not yet publicly documented. To use Fabric, the developer

152

Primary
Request

Op

Secondary

Secondary

Secondary
Op

Op

Op





1

2

2

2

34

4

4

3

3
56

Figure 6.1: A diagram showing replication in Fabric.

Secondary

Secondary
Op

Op



(New)
Secondary

Context

Op


Primary

Op


Secondary

(delta) State

1
2

3

Figure 6.2: A diagram showing state copying in Fabric.

writes a C# service using the Fabric API that receives requests (e.g. HTTP requests)

from clients and mutates its state based on these requests. To make the service reliable,

Fabric launches several replicas of the service, where each replica is a separate process that

typically runs on a different node. One replica is selected to be the primary which serves

client requests; the remaining replicas are secondaries that redundantly store the same data

as the primary and can optionally be used to serve read-only client requests. Although

the Fabric API helps developers in writing reliable services, there are still many subtle

cases that must be handled by the developer to ensure that state is correctly replicated

between replicas. The nondeterminism due to the asynchronous and distributed nature of

services further increases the likelihood of subtle concurrency bugs being introduced. Thus,

applying SCT to Fabric services would be extremely useful for finding and reproducing

such bugs in a deterministic manner.

We give a brief overview of two key Fabric processes, replication and copying, in order

to give an impression of the complexity of Fabric and introduce some terminology. As

a running example, consider a shopping list service that simply stores a list of strings.

Clients can request the list of items from the primary or secondary replicas (i.e. read the

list) or request to add a string to the list at the primary replica.

Figure 6.1 shows the replication process in Fabric: (1) The primary receives a request

from a client that changes the state of the replica. For example, in the shopping list

service the request would be to add an item to the shopping list. The primary does not

153

yet change its state but instead creates an object that captures the operation that will

mutate the state of the replica. We refer to this object as the replication operation. (2) The

primary informs Fabric (via an API call) of the replication operation, which Fabric then

forwards to all secondaries. (3) Each secondary updates its state based on the replication

operation. Note that the code that updates the state of the secondary is written by the

developer. For example, in the shopping list service a secondary will add an item to

its shopping list. (4) Each secondary informs Fabric that its state has been updated.

Fabric acknowledges the replication operation with the primary. (5) Once at least half

of the secondaries have acknowledged the replication operation, Fabric invokes a callback

(written by the developer) at the primary. The callback applies the replication operation

to the primary’s state and (6) acknowledges to the client that the request completed. Note

that some secondaries may not have updated their state by the time the client request is

acknowledged. If a secondary falls too far behind it can “catch up” by receiving a copy

of the state from the primary. A particular instance of this state copying occurs when a

primary fails, which we now describe.

When the primary fails, Fabric elects one of the secondaries to become the new primary

and spawns a new secondary. The promoted secondary is informed by Fabric that it is

now the primary. The new secondary initially has no state and so must catch up to the

state of the primary. Fabric services that maintain state can optionally write state to a

persistent data store, such as to disk or an external database server. Thus, note that the

new secondary may be able to restore state from its persistent store, although this state

may be slightly out-of-date. Figure 6.2 shows the state copying process in Fabric. (1) The

new secondary sends its copy context data; that is, the secondary sends messages to the

primary indicating what state it has managed to restore from its persistent store. (2) In

the simple case, the new secondary has no state or is slightly behind the primary. The

primary sends a copy of its state so that (3) the secondary updates its state. However,

the primary need not send its full state. Based on the copy context data it received

from the secondary, the primary can instead send the delta-state—messages that allow

the secondary to mutate its restored state into the primary’s current state. Note that

various subtle issues can arise here. For example, a secondary may have updated its state

(and written this state to its persistent store) due to replication operations that ended

up not being applied at the primary. The new secondary may restore this state and

the new primary must detect this “false-progress” from the copy context data and act

appropriately; the simple solution is for the primary to send a full copy of its state to the

secondary.

154

Service

- shoppingList : List<String>
- monitor : Object

+ IStatefulServiceReplica.Initialize(...) : void
+ IStatefulServiceReplica.OpenAsync(...) : Task<IReplicator>
+ IStatefulServiceReplica.ChangeRoleAsync(newRole : ReplicaRole, ...) : Task<String>
+ IStatefulServiceReplica.CloseAsync(...) : Task
+ IStatefulServiceReplica.Abort(...) : void
+ IStateProvider.GetLastCommittedSequenceNumber(...) : long
+ IStateProvider.UpdateEpochAsync(...) : Task
+ IStateProvider.OnDataLossAsync(...) : Task<bool>
+ IStateProvider.GetCopyContext(...) : IOperationDataStream
+ IStateProvider.GetCopyState(...) : IOperationDataStream

Figure 6.3: A class diagram of our C# Fabric shopping list service class. Many fields and
methods are omitted so as to focus only on the key details. We use “. . . ” to
indicate omitted method parameters

6.1.1 The Fabric API

The Fabric API that we model for this work is publicly available, but not publicly doc-

umented, and has only been used internally at Microsoft. The public release of Azure

Service Fabric1 includes and documents two higher-level APIs that are built on top of the

low-level API. Furthermore, there is limited code available that uses the low-level Fabric

API. As such, we created our own straightforward shopping list service in C# that uses

the low-level Fabric API. This allowed us to understand the Fabric API and provide an

example of how to use it for future reference. We describe some elements of the Fabric

API using our shopping list service as an example.

The class diagram of the shopping list Service class is shown in Figure 6.3. The class

stores the shopping list in its shoppingList field. The object in the monitor field is used

as a monitor to protect accesses to the shopping list, as certain methods and callbacks can

be invoked by Fabric concurrently. A Fabric service has to provide implementations of

the IStatefulServiceReplica and IStateProvider interfaces; our Service class imple-

ments both of the interfaces, although in general each interface could be implemented by a

different class. In each replica process, Fabric creates an instance of the Service class and

then invokes the Initialize method, followed by OpenAsync and then ChangeRoleAsync,

where the newRole parameter will reveal whether this replica will be a primary or sec-

1https://azure.microsoft.com/services/service-fabric/

155

https://azure.microsoft.com/services/service-fabric/

<<interface>>
IStateReplicator

+ GetCopyStream() : IOperationStream
+ GetReplicationStream() : IOperationStream
+ ReplicateAsync(...) : Task<long>
+ UpdateReplicatorSettings(...) : void

Figure 6.4: A class diagram of Fabric’s IStateReplicator interface.

ondary. The IStateProvider interface methods will be invoked to get information about

the state (i.e. the shopping list) of the replica. For example, GetCopyContext will be called

on a new secondary in order to get the copy context information, as described earlier. The

GetCopyState method will be called on the primary to get the state that will be sent to

a new secondary (which is referred to as the copy state). These methods return and take

streams (e.g. IOperationDataStream), which are objects on which Fabric or the service

code repeatedly invokes GetNextAsync to get the next operation. Each operation is simply

an array of bytes. Thus, service code must serialise/deserialise its copy context or copy

state data in order to send/receive it to/from other replicas. Replication operations are

handled in the same way.

The file structure of Fabric’s IStateReplicator interface is shown in Figure 6.4.

Fabric provides an IStateReplicator object to the service. The key methods are

ReplicateAsync, which allows the primary to send replication operations to the secon-

daries, and GetCopyStream/GetReplicationStream, which allows secondaries to get the

copy/replication stream on which to receive copy/replication operations from the primary.

6.2 Actor programming using P#

Our aim is to apply SCT to Fabric services. In order to apply SCT in this highly non-

deterministic setting, we take advantage of actor-style programming [HBS73, Akk, HO09,

DDK+15, Pon]. A key advantage of this approach is that actors only communicate via

message-passing, which is mediated by the actor runtime; this allows SCT to be applied

efficiently and with minimal user effort because we can simply provide an alternative ac-

tor runtime that controls when messages are sent and received. This is in contrast to

Chapters 3 and 4, where we had to handle arbitrary synchronisation operations using

complex and expensive instrumentation of the target program. To introduce actor-style

programming, we describe the P# framework [DDK+15], which was used to implement

156

the initial version of our Fabric model. We note that (non-actor) C# programs typically

use C# tasks2, which are asynchronous operations that are scheduled on a thread pool.

Actor-style programming is an alternative approach which we assume to be incompatible

with task-based programming.

P# [DDK+15] is a framework for asynchronous, actor-style programming co-designed

with SCT. It takes advantage of the message-passing approach to apply SCT with minimal

user effort. A P# program consists of a set of actors that communicate by sending messages

to each other. Note that the program is a single process; the actors are scheduled on a

thread pool. Each actor has private fields (i.e. private state) and a FIFO queue in which

received messages are placed. An actor processes its messages, one-at-a-time, by removing

the message from the front of its queue. For each removed message, the appropriate

action for the given message type is invoked. An action is just a sequential C# method;

an action should not create C# threads/tasks, use C# synchronisation primitives, nor

perform inter-actor communication via other means such as via shared memory accesses.

Actions can create additional actors and send messages to other actors. Each P# actor

conceptually has a state field; the mapping between message types and actions for an actor

can change depending on the value of its state field. However, in this work, we focus on

actors with a single state and thus a fixed mapping between message types and actions.

We can describe a P# program in terms of our abstract model of a concurrent pro-

gram (§2.2): actors are analogous to threads, private fields are part of each actor’s thread

state, and each actor’s FIFO queue is part of the shared state. The visible operations

are: create (to create an actor), start (which is the first operation executed by every ac-

tor and thus this operation is disabled until the actor has been created), end (which is

the last operation executed by every actor before the actor halts—the actor then blocks

forever on a second end operation—see §2.2), send (which is a non-blocking operation

that adds a given message to a given actor’s queue), and receive (which blocks the calling

actor until/unless the calling actor’s queue contains at least one message at which point

the first (oldest) message is removed and returned for processing). Note that details of

action handlers and state fields are abstracted away as they are captured by transitions

and thread states. Note that there is no join operation to wait for an actor to terminate.

In Adara actors, which we introduce in §6.4, we add a join operation for convenience.

2https://msdn.microsoft.com/en-us/library/dd537609(v=vs.110).aspx

157

https://msdn.microsoft.com/en-us/library/dd537609(v=vs.110).aspx

1 public class MHuman : Machine
2 {
3 public class EEat : Event
4 {
5 public string foodName;
6 public int nourishmentAmount;
7

8 public EEat(string foodName, int nourishmentAmount)
9 {

10 this.foodName = foodName;
11 this.nourishmentAmount = nourishmentAmount;
12 }
13 }
14

15 private int health = 100;
16

17 [Start]
18 [OnEventDoAction(typeof(EEat), nameof(OnEat))]
19 class SingleState : MachineState { }
20

21 void OnEat()
22 {
23 EEat e = (EEat) this.ReceivedEvent;
24 health += e.nourishmentAmount;
25 Console.WriteLine(
26 $"Just ate {e.foodName} and gained {e.nourishmentAmount} health.");
27 }
28 }

Listing 6.1: The definition of a P# MHuman actor.

Example P# actor An example of a P# actor is shown in Listing 6.1.3 Note that in

P#, actors are called machines and messages are called events, but we continue to use the

terms actors and messages. As shown: an actor is a class that derives from P#’s Machine

class (line 1); a message is a class that derives from P#’s Event class (line 3), which need

not be nested as in this example (although we use this convention for messages that are

unique to a particular actor); a field is an ordinary C# private field (line 15); a state is a

nested class that derives from P#’s State class (line 19); and an action is a C# method

with void return type (line 21). A mapping between a message type and an action is

defined using a C# attribute (which is like a Java annotation) as seen on line 18. Thus,

when this actor receives an EEat message, the OnEat action will be invoked, which in this

case just updates the private field of the actor and prints a message for debugging. To

create an instance of the MHuman actor and send it an EEat message, another actor can

3P# provides a domain specific language for writing P# programs, which is transpiled to C#. However,
we did not use this in our work and instead write programs directly in C# as shown, using P# as a library.

158

execute the following code from inside an action:

1 MachineId m = CreateMachine(typeof(MHuman));

2 Send(m, new EEat("Pizza", 2));

The CreateMachine and Send methods are defined by P#’s Machine class.

P# execution A P# program can be executed on P#’s production runtime or SCT

runtime. The production runtime uses C# tasks to schedule actors to execute on a thread

pool. Thus, note that an actor need not be implemented as a thread but it is possible

to think of an actor as a thread when considering the semantics of a P# program. The

SCT runtime performs SCT, letting only one actor execute at a time in order to explore

the different interleavings. The SCT runtime supports various schedulers including a

straightforward depth-first search, the controlled random scheduler, and a version of the

PCT scheduler; we described these schedulers in our empirical study in §3.2.

6.3 P# Fabric model

In this section, we describe our P# Fabric model. Recall that our aim is to apply SCT to

distributed systems but that trying to handle arbitrary network communication functions

and inter-process communication is extremely challenging. Thus, we chose to target Fabric

services specifically by implementing a model of Fabric and testing the services against

this model within a single process. Our initial aim was to produce a P# Fabric model on

which we could run unmodified C# Fabric services (i.e. the services would not be written

using P#) using P#’s production runtime. This would give us confidence that our model

is accurate enough to run Fabric services but we would not be able to perform SCT because

we cannot control task-based C# code. We would then be able to port services to P# so

that SCT can be applied.

We describe our approach (§6.3.1), the architecture (§6.3.2), an example of how repli-

cation occurs in our model (§6.3.3), how we created a test harness for running Fabric

services on our model (§6.3.4), and how we were able to prototype P# Fabric services on

our model to perform SCT (§6.3.5).

6.3.1 Approach

A key design choice that we made upfront was that we should not try to model all in-

ternal details of Fabric, and we should under- and over-approximate in our model where

reasonable, with the goal of allowing interesting interleavings and without introducing

159

Secondaries

ServiceRuntime

ReplicaRuntime ReplicaRuntime

IStateReplicator

MStatefulServiceReplica IStateProvider

IStatefulServiceReplica

Primary

ReplicaRuntime

ClusterRuntime

…

ServiceRuntime…

MStateReplicator Translation Layer

Figure 6.5: A diagram showing the design of the P# Fabric model. The rounded rect-
angles with a blue outline represent P# actors, while the rectangles with a
black outline are C# classes that implement the interface given by the as-
sociated label. The solid lines indicate communication via messages. The
dashed lines show composition, e.g. a ReplicaRuntime actor invokes methods
on its IStateProvider object. Note that an MStateReplicator actor and its
IStateReplicator object interact via shared-memory communication.

false-errors. For example, Fabric uses a distributed leader election algorithm to pick

which secondary to promote. Implementing this in the model would greatly increase the

schedule-space of the system without any benefit. Indeed, this algorithm is not even de-

scribed in the Fabric documentation as it is not relevant to the service code. Instead, our

model picks the first viable secondary. We believe this is sufficient to expose interesting

interleavings. Nevertheless, we could change our model to nondeterministically pick one of

the viable secondaries if we later find that more nondeterminism is needed to expose bugs.

Regardless, we do not model the election algorithm; our goal was to model the observable

behaviours of the Fabric API so that we can expose interesting interleavings of the service

code.

160

6.3.2 Architecture

Figure 6.5 shows the design of our Fabric model. We use the term real Fabric to refer to

the current implementation of Fabric. In the real Fabric, multiple services can be running

and communicating with each other; in our model, the ClusterRuntime actor manages

all Fabric services that exist in our system and allows for the creation of new services. A

ServiceRuntime actor is created for each instance of a service that is running. In the real

Fabric, each service is made up of multiple replica processes that typically run on different

nodes. Furthermore, there is no central “manager” process like the ServiceRuntime actor.

This is another example of how our model does not need to follow the design of the real

Fabric, as these details do not affect the execution of the service code that we want to

test. We use the ServiceRuntime actor for convenience to store information about the

service and to manage all replicas that are part of the service. Additionally, the replicas

all communicate with each other via the ServiceRuntime actor (unlike in the real Fabric).

Each replica process is represented as a ReplicaRuntime actor, where each service has one

primary replica and a configurable number of secondary replicas. Figure 6.5 only shows

the actors and objects managed by a primary ReplicaRuntime actor, but the secondary

ReplicaRuntime actors are identical. We refer to the actors and objects shown below

the ReplicaRuntime as the translation layer, as these actors and objects are only used

to allow the C# service code to interact seamlessly with the P# ReplicaRuntime actor,

without modification.

The IStateProvider and IStatefulServiceReplica objects are provided by the Fab-

ric service code, as described in §6.1.1. The ReplicaRuntime creates a new instance of

the IStatefulServiceReplica implementation and creates an MStateServiceReplica

actor that wraps the object. The ReplicaRuntime thus makes “calls” on the

IStatefulServiceReplica object indirectly by sending and receiving messages (i.e. asyn-

chronously). The reason for this approach is that we needed the ReplicaRuntime actor to

be able to process other messages while invoking methods of IStatefulServiceReplica.

For example, when invoking ChangeRoleAsync on the IStatefulServiceReplica object

(but before the call has returned), we still want the ReplicaRuntime to be able to send

and receive messages relating to replication or copying, as this may reveal subtle bugs

in the service code. If the ReplicaRuntime actor made the call directly then the actor

would be blocked until the call returns. In contrast, the methods of the IStateProvider

interface are less complex and so the ReplicaRuntime invokes these methods directly,

for simplicity. Recall that the IStateReplicator object is provided to the service code

by Fabric. Thus, our model provides its own implementation of this interface. At the

161

ServiceRuntime

ReplicaRuntime

ReplicaRuntimeIStateReplicator ReplicaRuntime…

MStateReplicator

ReplicateAsync

RR.EPrimaryRepOp

SR.EPrimaryRepOp

RR.EPrimaryRepResult (Accepted)

RR.EPrimaryRepResult (Accepted)

(waiting)

LSN, Task (waiting)

LSN++

1

2

3

4

5

6

7

(Primary)

(Secondaries)

Figure 6.6: A diagram showing the first stage of replication in our Fabric model. The left
ReplicaRuntime is the primary replica.

time of creating the model, P#did not support waiting to receive a P# message from an

arbitrary task/thread. This posed a problem, as the service code can invoke methods of

IStateReplicator from some task/thread that it has created, yet we wanted to be able

to send a message to ReplicaRuntime and wait for a response. To solve this, we use an

MStateReplicator actor to wait for messages via inter-task synchronisation; this violates

the rule that actions should not synchronise with other tasks (as explained in §6.2), as the

actions of MStateReplicator use synchronisation to notify other tasks about the mes-

sage. However, the main consequence of breaking this rule (in general) is that we cannot

perform SCT on the code, which is already the case, since we are interfacing with C#

task-based code. We addressed this issue in version 2 of our Fabric model (§6.5).

6.3.3 Replication example

Having introduced the architecture of our model, we now show how we modelled replication

(introduced in §6.1) which is a key process in Fabric. As as result, we also introduce more

Fabric terminology.

State 1: getting the logical sequence number (LSN) for the replication opera-

tion Figure 6.6 shows the first stage of replication in our model. We assume the primary

162

has already received a client request and now wants to send the replication operation to

the secondaries so they can update their state. The C# service code at the primary in-

vokes ReplicateAsync (1) on the IStateReplicator object; our implementation of this

method sends an RR.EPrimaryRepOp message (2) to the ReplicaRuntime actor, which in-

cludes the serialised replication operation data. For example, in our shopping list service,

the operation data is an instance of an add operation class that contains a string that will

be added to the shopping list. The ReplicateAsync method then blocks until it receives

a message, using the MStateReplicator actor.

In the ServiceRuntime actor, we store the current logical sequence number (LSN). In

the Fabric API, each replication operation is assigned a consecutive integer LSN, such that

all operations have a well-defined total-order. We speculate that the real Fabric stores this

in the primary replica process and secondaries must also mirror this in case the primary

goes down. In our model, we chose to store the current LSN in the ServiceRuntime actor

along with a buffer that stores all replication operations that have not yet been acknowl-

edged by a majority of secondaries. Our intention was to simplify our model; by keeping

complex logic in the ServiceRuntime actor along with the required data, we reduced

the communication needed between the ServiceRuntime actor and ReplicaRuntime ac-

tors. The replication operation is given the current LSN. The current LSN is then incre-

mented (4). The ServiceRuntime actor then sends an RR.EPrimaryRepResult message

to the ReplicaRuntime actor (5) that includes the LSN and indicates that the replication

operation has been accepted (but has not yet been acknowledged by a majority of secon-

daries). This is forwarded by the ReplicaRuntime actor (6). When the MStateReplicator

actor receives the message, the call to ReplicateAsync returns the LSN assigned to the

operation as well as a task that is not yet complete (7); the task will complete later, when

the MStateReplicator actor receives a second RR.EPrimaryRepResult message indicating

that the replication operation has been acknowledged by a majority of secondaries.

Stage 2: applying the replication operation at secondaries Figure 6.7 shows the

second stage of replication in our model and we now detail the steps of this process. (1) The

ServiceRuntime actor is still executing the action for the EPrimaryRepOp message. The

action sends k ESendReplicate messages to the ServiceRuntime actor, where k is the

number of secondaries; the action for this message sends an ESecondaryRepOp message

to one of the secondaries. We chose to have the ServiceRuntime actor send messages to

itself so that the sending of messages to the secondaries is split up across multiple actions

and so can be “interrupted” by other messages. In particular, we model primary failure

(i.e. simulating the primary’s node crashing, or becoming unresponsive due to network

163

ServiceRuntime

ReplicaRuntime

IStateReplicator

MStateReplicator

…

ESendReplicate

ESendReplicate

ESecondaryRepOp ESecondaryRepOp…

IStateReplicator

MStateReplicator

ReplicaRuntime

GetReplicationStream

IOperationStream

GetNextAsync

Task (waiting)

IOperation

Acknowledge

ESecondaryRepAck

…

ReplicaRuntime

ESecondaryRepOp

SR.EPrimaryRepOp

1

1

1

1

2

3 4

5 6

7

8

9

(Primary)
(Secondaries)

k

k

Figure 6.7: A diagram showing the second stage of replication in our Fabric model.

failure) by sending an EKillPrimary message to the ServiceRuntime actor; thus, the

primary can be “killed” at a point where only some of the secondaries have received the

replication operation. Figure 6.7 shows one secondary ReplicaRuntime actor in detail.

Note that earlier, the service code of the secondary invoked GetReplicationStream (3) on

its IStateReplicator object, which returns a stream (4). The service code starts a task to

get the messages from the stream by calling GetNextAsync (5), which yields a task (6) that

only completes once the MStateReplicator actor receives an ESecondaryRepOp message

(2). Now that the message has been received, the task yields an IOperation object

(7), containing the serialised operation data. The secondary service code deserialises the

operation and applies it. For example, for the shopping list service, the service code adds

the deserialised string to its shopping list. Once the operation is applied, the service code

invokes Acknowledge (8) on the IOperation object, which we implemented to send an

ESecondaryRepAck to the ReplicaRuntime actor (9).

Stage 3: acknowledging the replication operation Figure 6.8 shows the third

stage of replication in our model. The secondary ReplicaRuntime actor forwards the

ESecondaryRepAck message to the ServiceRuntime actor (1). In the ServiceRuntime ac-

tor, we store the set of acknowledged replication LSNs for each ReplicaRuntime actor. (2)

164

ServiceRuntime

ReplicaRuntime

IStateReplicator

MStateReplicator

replicas: […, (ackedLSN: [2], …), …]

IStateReplicator

MStateReplicator

ReplicaRuntime ReplicaRuntime

ESecondaryRepAck

ESecondaryRepAck

RR.EPrimaryRepResult (Acked)

RR.EPrimaryRepResult (Acked)

LSN, Task (waiting)

LSN

1

2
3

4

5

(Primary)
(Secondaries)

Figure 6.8: A diagram showing the third stage of replication in our Fabric model.

The acknowledgement message from the secondary causes the set of acknowledged LSNs for

the secondary to be updated. Once a majority of secondaries have acknowledged the repli-

cation operation, the ServiceRuntime actor sends the second RR.EPrimaryRepResult (3)

message to the primary ReplicaRuntime, indicating that the replication operation has

been acknowledged. This message is forwarded to the MStateReplicator actor (4) and

the task that was previously returned to the service code completes (5), yielding (for con-

venience) the LSN of the acknowledged replication operation. The Fabric documentation

notes that, at the primary, replication operations are not necessarily acknowledged in or-

der. Our model captures this scenario since the ESecondaryRepAck messages (for each

replication operation) can be sent in any order.

6.3.4 Test harness

To execute a C# service on our Fabric model using the P# production runtime, we

used a test harness similar to the one shown in Listing 6.2. On line 5, we create the

ClusterRuntime actor, yielding the id of the actor. On line 7, we create the service

runtime parameters object that defines various parameters for our Fabric service, such as

how many secondary replicas there should be. In particular, we set the CSharpFactory

parameter to a factory object that will be used to create a shopping list service object

for each ReplicaRuntime actor. On line 14, we send an EAddServiceRuntime message to

165

1 class Program
2 {
3 static void Main(string[] args)
4 {
5 MachineId id = PSharpRuntime.CreateMachine(typeof (ClusterRuntime));
6

7 var serviceRuntimeParams = new ServiceRuntimeParams
8 {
9 // ...

10 CSharpFactory = new ShoppingListServiceFactory()
11 };
12

13 var e = new ClusterRuntime.EAddServiceRuntime(serviceRuntimeParams);
14 PSharpRuntime.SendEvent(id, e);
15

16 var eKill = new ClusterRuntime.EKillPrimary(serviceRuntimeParams.ServiceName);
17 PSharpRuntime.SendEvent(id, eKill);
18

19 Console.WriteLine("[Press enter to exit]");
20 Console.ReadLine();
21 }
22 }

Listing 6.2: Test harness for executing our C# shopping list service on our Fabric model.

the ClusterRuntime actor. This message will cause a ServiceRuntime actor and several

ReplicaRuntime actors to be created, thus creating several replicas of our shopping list

service. On line 17, we send an EKillPrimary message to the ClusterRuntime actor,

which will cause the primary replica of our shopping list service to fail; this allows us to

test secondary promotion and the state copying process. The test harness does not check

that a new primary was elected and that all state was copied successfully. However, our

model does include many assertions to check expected properties which can be used to

reveal bugs in our model and the service. We describe how we created a more thorough

test harness for SCT that checks the state of all replicas in §6.6.1.

6.3.5 P# services

Our long-term goal was to allow Fabric services to be written in P# to be executed on the

real Fabric and also on which we could perform SCT using our Fabric model. In this work,

we do not address the creation of a P# Fabric API nor the challenge of running P# services

on the real Fabric. However, we were able to prototype running P# services on our model

by porting our shopping list service to P#. Intuitively, we replaced the translation layer in

Figure 6.5 with a single MShoppingList actor. We modified the ReplicaRuntime actor so

that, when hosting a P# service, calls to IStateProvider are replaced with sending and

166

receiving messages. In other words, our initial attempt at a P# Fabric API was essentially

made up of the message types used for communication between the ReplicaRuntime and

translation layer. Thus, we were able to perform SCT on our service; this revealed many

subtle bugs in our Fabric model that had remained hidden when testing C# services

without SCT. Indeed, the numerous subtle bugs we encountered in our model was a key

motivation for creating version 2 of our Fabric model (§6.5) with an improved design. We

defer discussion of bugs to §6.6.3 where we perform SCT on our Fabric model V2.

6.4 Adara actors

In this section, we describe our Adara actors framework, which provides statically-typed

actors for C#. While developing the P# Fabric model, described in §6.3, we identified

several shortcomings of using P# in practice. Our solution was to create Adara actors.

We then created the Fabric model V2 (which we will describe in §6.5) using Adara actors.

Note that we created Adara actors from scratch (without using P#). The Adara actors

framework provides the following benefits:

� Statically-typed actors using C# interfaces; we discuss the benefits of statically-

typed actors below (§6.4.2).

� Actors defined using Adara actors depend only on a small set of C# interfaces and so

are decoupled from the underlying runtime. Thus, they are portable as they could,

in theory, be executed on other actor frameworks, such as P#, Akka.NET, etc. by

implementing an alternative runtime that defers to the target framework.

� Better integration with C#’s task-based concurrency; Adara actors can treat any

task as an actor and wait on these tasks (as is common in task-based code). SCT

can be performed on these task-based actors.

Note that the approach used to implement statically-typed actors is not limited to C#; it

would be possible to implement the approach in other languages that support interfaces,

such as Java. In this section, we describe some of the issues of using P# that motivated

the creation of Adara actors (§6.4.1), we describe the Adara actors framework using exam-

ples and discuss its advantages (§6.4.2), and describe the code generation used in Adara

actors (§6.4.3).

167

6.4.1 Motivation

The main issue we encountered when using P# is that it uses dynamically-typed ac-

tors. That is, it is not possible to statically determine the type of an actor reference (a

MachineId object) and the messages that it can receive. This can make the code less

readable (as it can be unclear what kind of actor an actor reference refers to) and can

lead to run-time errors that could be detected at compile-time (when a message is sent

to an actor that cannot handle the message); C# developers are used to the benefits of

static-typing provided by C# classes and interfaces. Also, defining actors requires several,

tedious manual steps and conventions that are not understood by existing tools, compilers

and IDEs. This can hurt developer productivity; again, C# developers are used to having

strong tool-support, such as being able to automatically generate and refactor code.

Consider the following statements that create an MHuman actor and send it an EEat

message:

1 MachineId m = CreateMachine(typeof(MHuman));

2 Send(m, new EEat("Pizza", 2));

The MachineId object stored in variable m is not specialised to denote that the actor is of

type MHuman. Thus, the compiler and IDE cannot provide any assistance or static checks.

For example, there is no way to know what messages can be sent to m. There is no way

to discover the “interface” of m nor use IDE features to autocomplete messages or jump

to the MHuman class. On line 2, any object can be passed as the second parameter to the

Send method; there is no compile-time check that an EEat message can be received by m.

Also consider that MachineId objects can be sent to other actors; in such scenarios, it can

be very difficult to keep track of which messages an actor can receive.

Consider, once again, the definition of the MHuman actor in Listing 6.1. Notice that in

order to add a new message and corresponding action, a new nested class must be defined

(with fields and possibly a constructor), one or more mappings must be added, and an

action must be added. Although the example only has one message type (EEat) and

so may seem relatively straightforward, in practice we found that prototyping additional

messages was tedious due to the required manual steps; the IDE provides little assistance

since it is not aware of this workflow. Also, notice that in the OnEat action (§21), the

event that triggered the action is obtained via the this.ReceivedEvent property and

must be cast (unsafely) to the EEat type (line 23). This is another manual, unsafe step.

Also note that, even if the MachineId class included MHuman as a generic type parameter,

the mappings are specified in the MHuman class using C# attributes, which, again, are not

understood by existing tools and so provide no information to the compiler and IDE.

168

1 public interface IHuman : ITypedActor
2 {
3 void Eat(string foodName, int nourishmentAmount);
4 void Run(int distanceInMeters);
5 }

Listing 6.3: The IHuman actor interface.

1 public class Human : IHuman
2 {
3 private int health = 100;
4

5 public void Eat(string foodName, int nourishmentAmount)
6 {
7 health += nourishmentAmount;
8 Console.WriteLine(
9 $"Just ate {foodName} and gained {nourishmentAmount} health.");

10 }
11

12 // ...
13 }

Listing 6.4: The Human class implementation of the IHuman actor.

A further potential issue is that P# code is highly-dependent on the P# library and

runtime. As such, P# actors are not portable. The effort that we have spent in modelling

Fabric might be useful in the future in contexts where P# is not appropriate or not needed.

Thus, it would be ideal if we could write our Fabric model using portable actors that are

independent of the P# runtime, and so could be run on other C# actor frameworks in

the future (e.g. P#, Akka.NET [Akk], etc.) without changes.

6.4.2 Adara actors

Our solution to these issues is Adara actors—a library for defining portable, statically-

typed actors using C# interfaces. We now explain how actors are defined using an example.

Listing 6.3 shows how we define an IHuman actor interface. Actor interfaces implement

the ITypedActor interface (which is an empty interface) to distinguish them from nor-

mal interfaces. The method signatures in IHuman define the message types that it can

receive; in this case, it can receive Eat and Run messages. The method parameters de-

fine the fields in the respective message. Thus, the Eat message has fields foodName and

nourishmentAmount, and the Run message has a distanceInMeters field. Listing 6.4

shows the Human class that implements IHuman. This class provides an implementation

of the IHuman actor interface and contains the private state (i.e. the health field) and

169

the actions (i.e. the methods) for the actor. Listing 6.5 shows how to create an IHuman

actor and send it a message. On line 2, an IHuman actor is created, where the private

1 // A new instance of Human provides the handlers and private state of the actor.
2 IHuman humanProxy = typedRuntime.Create<IHuman>(new Human());
3 // Send messages to the IHuman actor by invoking methods.
4 humanProxy.Eat("Pizza", 2);

Listing 6.5: Creating a typed actor in Adara actors and sending a message.

state and actions of the actor are given by a new instance of the Human class. However,

the returned IHuman object is not the instance of Human. Instead, it is an actor proxy

object that allows messages to be sent to the new actor by simply invoking methods of

the proxy object. Thus, on line 4, the call to humanProxy.Eat is not directly invoking the

Human.Eat method; instead, a message is sent to the IHuman actor containing the method

name (“Eat”) and the parameter values (“Pizza” and 2) and the call immediately returns,

regardless of when the message is processed. Thus, it is equivalent to Send in P#. When

the message is processed by the IHuman actor, the Adara runtime invokes the Human.Eat

method on the Human object (created on line 2), passing the parameter values (“Pizza”

and 2) from the message.

We note the following advantages of Adara’s statically-typed actors (or just typed actors

for short) over P#’s dynamically-typed actors (untyped actors for short):

� Statically-typed actors are type-safe. This improves code readability as it is always

possible to determine the interface of an actor reference (actor proxy) and, thus,

the messages that can be sent to the actor. It is only possible to a send a message

to a typed actor if the typed actor has defined an action for that message type.

This eliminates run-time errors caused by unhandled messages. Additionally, the

receiving actor does not need to cast the incoming message like in P#.

� We immediately have IDE and compiler integration due to the use of interfaces. For

example:

– Method names and parameters are auto-completed and invoking a non-existent

method gives an IDE/compiler error.

– It is fast and straightforward to define messages because they are generated

from method signatures. IDE features, such as refactoring and code generation,

all work as expected. For example, action stubs (i.e. empty actions) can be

automatically generated (because empty interface method implementations can

be generated by the IDE).

170

1 public interface IA : ITypedActor { void A(); }
2 public interface IB : ITypedActor { void B(); }
3 public interface IAB : IA, IB {}
4

5 public class AB : IAB
6 {
7 public void A() {}
8 public void B() {}
9 }

10

11 public class Main
12 {
13 static void Main()
14 {
15 // ...
16 IAB ab = typedRuntime.Create<IAB>(new AB());
17 IA a = (IA) ab;
18 // ...
19 }
20 }

Listing 6.6: An example of hiding message types in Adara actors by exploiting interfaces.

– It is easy to find all actions for a given message type (i.e. method) as this simply

requires searching for all implementing methods which is supported by IDEs.

� Describing and understanding the interface of an actor simply involves looking at

the C# interface, which is familiar and well-understood. Furthermore, the benefits

of normal C# interfaces apply; an actor can implement multiple actor interfaces and

an actor proxy object can be cast to one of the implementing interfaces in order to

“hide” methods of the other interfaces, simplifying the interface of the proxy object.

This casted proxy object can be sent to other actors and these actors will only be

able to send messages that are part of the casted interface. For example, consider

Listing 6.6. The ab proxy object is cast to an IA object (line 17), which hides the

B method, and this casted proxy object could be sent to another actor that expects

an IA actor (as opposed to an IAB actor).

Architecture and portability An additional benefit of Adara actors is that actors

are portable; actor code (such as our Fabric model V2 (§6.5)) only depends on a set of

interfaces, and not our implementations of these interfaces. The assembly dependency

diagram for Adara actors and the Fabric model V2 is shown in Figure 6.9. An assembly

is the smallest unit of deployment for .NET applications and typically contains a set of

precompiled classes/interfaces.

171

Typed Actor Runtime Interfaces

Typed Actor Runtime

Untyped Actor Runtime Interfaces

Untyped Runtime (production)

Untyped Runtime (SCT)

E.g. Others (e.g. P#-based)

Fabric Model V2

Key: implements

uses

Figure 6.9: The assembly dependency diagram for our Adara actors framework and our
Fabric model V2.

As shown in Figure 6.9, Adara actors consists of untyped actor runtime interfaces (which

provide the ability to create dynamically-typed actors) and typed actor runtime interfaces

(which provide the ability to created statically-typed actors). Notice that the Fabric model

V2 does not depend on our typed actor runtime nor any of our untyped runtimes; instead,

it depends on the typed actor runtime interfaces assembly. Similarly, our typed actor

runtime requires an untyped actor runtime that provides basic, dynamically-typed actors

and can be implemented in any appropriate way. We provide two untyped runtimes (like

in P#): a production runtime and an SCT runtime. Note that these do not use P#; they

were implemented from scratch using C# tasks. In theory, one could also implement the

untyped actor runtime interface using P# or another untyped actors library. In order

to run our Fabric model using specific typed and untyped runtimes, we need another

assembly (not shown) that depends on the Fabric model and the concrete runtimes (e.g.

our production untyped runtime and our typed actor runtime) and creates the initial

actors from the Fabric model using the concrete runtimes.

6.4.3 Code generation for actor proxies

We now describe the code generation that occurs for actor proxies by considering

our earlier example. The idea of automatically generating proxy objects is not new;

such objects are generated in remote procedure call frameworks like Java’s Remote

Method Invocation (RMI) [Ora], the Windows Communication Foundation (WCF) [Mic],

and Apache Thrift [Apa]. Our approach uses run-time code generation via the

System.Reflection.Emit package to emit bytecode, but compile-time code generation

could be used instead.

Consider Listing 6.5 once again. When the Create method is called (line 2) for the

first time for a given actor interface (e.g. IHuman), the typed actor runtime generates a

single proxy class and potentially several message classes. For example, for the IHuman

class, the runtime generates a proxy class similar to that shown in Listing 6.7. The proxy

172

1 public class HumanProxy : IHuman
2 {
3 public IMailbox<object> mailbox;
4

5 #region Implementation of IHuman
6 public void Eat(string foodName, int nourishmentAmount)
7 {
8 var msg = new EatMsg
9 {

10 foodName = foodName,
11 nourishmentAmount = nourishmentAmount
12 };
13 mailbox.Send(msg);
14 }
15

16 // ...
17

18 #endregion
19 }

Listing 6.7: The generated HumanProxy class.

1 public class EatMsg : ICallable
2 {
3 public string foodName;
4 public int nourishmentAmount;
5

6 // Overrides ICallable.Call
7 public void Call(ITypyedActor t)
8 {
9 ((IHuman) t).Eat(foodName, nourishmentAmount);

10 }
11 }

Listing 6.8: The generated EatMsg class.

contains a field for the mailbox of the target actor, which is initialised by the typed actor

runtime to refer to an untyped actor that we will describe below. A mailbox is like a

MachineId in P# in that it is used to send untyped messages to an actor. We show the

implementation of the Eat method on line 6; the method stores the method parameters

in a new EatMsg object and sends the object to the target actor. The EatMsg class is one

of the generated message classes; the runtime generates one such class for each method in

the actor interface (e.g. each method in IHuman). For the IHuman.Eat method, the typed

actor runtime generates an EatMsg message class similar to that shown in Listing 6.8. For

each parameter of the Eat method there is a corresponding field in the EatMsg class. The

EatMsg.Call method is used to invoke the Eat method on a given object that implements

173

IHuman, passing in the field values as the parameters.

Once the proxy and message classes have been generated, the typed actor runtime cre-

ates an untyped actor and sends it an object that implements the actor interface. For ex-

ample, in Listing 6.5, the runtime sends the instance of the Human class (which implements

the IHuman actor interface). The untyped actor then simply invokes ICallable.Call on

every received message, passing in the object (e.g. the Human object). Once the untyped

actor has been sent the object that implements the actor interface, a new instance of the

proxy class (e.g. HumanProxy) that sends messages the untyped actor is returned (line 2

of Listing 6.5).

6.5 Fabric model V2

In this section, we describe our Fabric model V2, which uses an alternative design and

Adara actors (§6.4). We encountered several issues with our first Fabric model (§6.3).

First, the shortcomings of using P# described in §6.4.1 made development difficult. Sec-

ond, the mixture of tasks and P# actors in our translation layer was inelegant. In Adara

actors, we ensured that our untyped actors runtime could support treating tasks as actors,

allowing them to send and receive messages without resorting to shared-memory synchro-

nisation. Third, we encountered many subtle bugs in our original model. We decided that

creating a ReplicaRuntime actor for each replica led to an unnecessarily complex model.

We also learned more about Fabric while developing the model and we felt that several

other aspects of our model would benefit from a different design. We describe several

aspects of the new design below, followed by an example of replication (§6.5.1).

Removal of ReplicaRuntime actors and shared-memory communication

Figure 6.10 shows the design of our Fabric model V2. Unlike in the original (Figure 6.5),

the IServiceRuntime actor (similar to the ServiceRuntime actor in the original) di-

rectly communicates with wrapper actors for each replica. In other words, there are no

ReplicaRuntime actors. The IServiceRuntime actor contains a list of ReplicaInfo

objects that stores all information about the replicas. This information was previously

split between the ServiceRuntime and ReplicaRuntime actors. This removes a large

amount of complexity from the model. However, communication with the replicas is

still asynchronous due to the wrapper actors: IStatefulServiceReplicaWrapper and

IStateProviderWrapper. Also, our implementation of IStateReplicator (which we

provide to the service code) now communicates with the IServiceRuntime actor via mes-

sages instead of using shared-memory communication; this is enabled by our Adara actors

174

IServiceRuntime

IStateProviderWrapper

IClusterRuntime

IServiceRuntime…

IStatefulServiceReplicaWrapperIStateReplicator

IStatefulServiceReplica IStateProvider

Replica
Replica

…

Figure 6.10: A diagram showing the design of our Fabric model V2. The rounded rect-
angles with a blue outline represent actors, while the rectangles with a black
outline are C# objects that implement the interface given by the associated
label. The solid lines indicate communication via messages. The dashed lines
show composition (e.g. the IStateProviderWrapper actor invokes methods
on its IStateProvider object).

untyped actor runtime being able to obtain a mailbox for the current task on which mes-

sages can be received.

Primary and secondaries In our first Fabric model, we created several

ReplicaRuntime actors at once in order to maintain a set of replicas for a service. These

were then changed into primaries or secondaries, state copying occurred, etc. concurrently.

By running and modifying our shopping list service on the real Fabric, we later realised

that Fabric will first try to establish a single primary replica before creating/updating the

secondaries. Furthermore, if the primary changes before a secondary has become an active

secondary, the idle secondary will be destroyed and restarted. These behaviours were not

described in the documentation (although this is not surprising, as the documentation was

minimal) but we believe it is safe to rely on them in the future. This leads to a simpler

system with less asynchrony; all secondaries can be ignored until the primary replica is

established, at which point all secondaries can be handled concurrently. This benefits us

in two ways: (1) our model is simpler and less likely to have bugs; (2) SCT is more efficient

as the size of the schedule-space is reduced.

175

Request-response buffers In the real Fabric, when replicas perform state copying and

replication they request a message from a stream (by calling GetNextAsync), which can

yield different results depending on the state of the replica set. In our original Fabric

model, we implemented streams using the provided messaging system of P#. Thus, repli-

cas just waited for a message, instead of requesting a message. In version 2 of our model,

replicas instead send a message to the IServiceRuntime actor requesting a replication or

copy operation from the stream and the IServiceRuntime actor responds with a replica-

tion or copy operation message (or a closed message). This allows us to implement the

precise behaviour of streams. We noticed a recurring pattern in these scenarios which

led us to create request-response buffers. A request-response buffer contains two buffers:

one for the the requests for an operation and one for the responses (the operation data

messages). Requests can arrive before responses and vice versa. For example, a secondary

may request a replication operation before a primary has sent one or the primary may send

one or more replication operations before a secondary has requested one. When adding

to the request-response buffer, the newly added request or response may match with a

buffered response or request, respectively. A function object is passed to the Add method

that will be executed when a request and response are matched. There are also cases where

multiple request-response pairs exist in the buffer but cannot be processed and removed

immediately; we give of an example of this when we describe replication (§6.5.1). As such,

requests and responses continue to be buffered until the ProcessMatching method is in-

voked, at which point all request-response pairs are processed using the provided function

object. The function objects can return different values to indicate whether the request,

response, both, or neither, should be removed from the buffers. For example, in our func-

tion objects, a null response is never removed as it indicates the end of the stream; all

future requests from the stream are removed and cause the null operation to be sent to

the replica, as in the real Fabric. We believe request-response buffers may be a useful data

structure in general for actor systems.

6.5.1 Replication version 2

We now describe replication in our Fabric model V2 to contrast it with replication in our

original Fabric model (§6.3.3). Figure 6.11 shows the first and second stages of replication

in our Fabric model V2. As before, we assume that the primary replica has received a

client request that it has to replicate to the secondaries. The service code at the primary

invokes ReplicateAsync (1) on the IStateReplicator object, providing the replication

operation, which sends a PrimaryRepOp message (2) containing the replication opera-

176

IServiceRuntime

IStateReplicator

ReplicateAsync

PrimaryRepOp

(waiting)

LSN,

primary.sentLSN++
for each secondary:

secondary.replicationRRBuff.add(resp)

1

2

3

5

4 ReplicateGotLSN

6

IStateReplicator

GetReplicationStream

IOperationStream

GetNextAsync

7 8

9
SecondaryRepOpReq11

12 RepOpReponse

IOperation

Acknowledge

13
15 SecondaryRepOpAck

14

Task

Task
10

Figure 6.11: A diagram showing stage one and two of replication in version 2 of our Fabric
model. The left IStateReplicator is the primary replica.

tion to the IServiceRuntime actor. The IServiceRuntime actor no longer contains a

single currentLSN field. Instead, the current LSN is stored in the sentLSN field of the

ReplicaInfo object that corresponds the primary replica. We believe this more accurately

represents how the real Fabric stores LSNs; if the primary fails, the current LSN may be

lost with it. Similar to before, the IServiceRuntime actor increments the primary’s LSN

and responds with a ReplicateGotLSN message (4) which contains the new LSN for the

replication operation. As before, the ReplicateAsync method returns (5) the LSN and a

task. We show the task as an actor to highlight the fact that Adara actors allows tasks to

behave like an actor by waiting for messages. The action at the IServiceRuntime is still

executing; the replication operations are added as a response to the replication request-

response buffer (replicationRRBuff) of each secondary (6). Recall that a request that is

added to the buffer will be matched with this response and the request-response pair will

be processed. Alternatively, a request for a replication operation may already be in the

buffer. In this example, we assume the former. Note that the IServiceRuntime actor no

longer needs to send messages to itself; this approach was used in the old model so that

we could achieve the scenario where the primary fails and only a subset of secondaries

had received the replication operation. Since replication operations are now requested via

messages, this scenario can occur in a schedule where some secondaries have not yet made

177

a request for the replication operation.

As before, the service code at a secondary replica will acquire the replication stream

(7–8) and invoke GetNextAsync (9) to get a task (10) that will yield the next replication

operation. This time, our implementation of the task sends a SecondaryRepOpReq mes-

sage (11) to the IServiceRuntime. This request will be matched with the response in the

secondary’s replication request-response buffer. As hinted earlier, the request-response

pair may not always be processed and removed immediately. For example, if the primary

has changed since the last successful replication operation, the secondary must be notified

about the change before receiving the next replication operation; in this case, the match

function sends a message to the secondary’s IStateProviderWrapper actor and leaves

the request-response pair in the buffer to be processed later. In this example, we as-

sume the pair can be processed immediately; the match function sends a RepOpResponse

message (12) and the pair is removed from the buffer. This message allows the task to

complete and yield an IOperation (13). The secondary deserialises and applies the op-

eration to update its state and then invokes Acknowledge (14) which we implement to

send a SecondaryRepOpAck message to the IServiceRuntime actor. Once a majority of

secondaries have acknowledged the replication operation, the IServiceRuntime sends a

message to the primary to acknowledge the operation; this process is very similar in the

original Fabric model (§6.3.3) and so we omit a description and diagram.

6.6 Experiments

We aim to show that we can apply SCT to distributed systems written for the Fabric

platform. Thus, we aim to show that our actor-based Fabric model is complete enough

to find bugs in Fabric services that use the actor-style approach. We also wish to briefly

contrast the effort needed to apply SCT when using actors with the effort needed in

Chapter 3 and Chapter 4, where we used C/C++ and Java benchmarks, respectively. To

this end, we created a test system consisting of: our Fabric model V2, our shopping list

service modified to use Adara actors, a client actor that sends requests to the shopping

list service, and a test harness that initialises the above and waits for quiescence (i.e.

for all actors to block because there are no more messages to process). Our test system

contains 15 bugs: 11 real bugs that were found using SCT,4 and 4 injected bugs based on

errors that we thought developers would be likely to make when writing Fabric services.

We guarded each bug/fix with its own boolean variable so that we can enable each bug

4One real bug was actually found via inspection while fixing another bug (found via SCT) and has not
yet been reproduced using SCT.

178

in isolation. We test each bug using the controlled random scheduler (§3.2.4) and the

PCT d=3 scheduler (§3.2.5). Recall that these schedulers both use randomisation and

were used in the empirical study in Chapter 3. In particular, recall that PCT d=3 uses

a priority based scheduler with 2 randomly chosen priority change points and that this

scheduler found the most bugs at various different schedule limits (§3.7.2). We execute

each scheduler on each bug for 10,000 schedules. We report the number of buggy schedules

detected as well as other data. We use this approach to answer the following research

questions (RQs):

RQ1 Can we find bugs in our test system using SCT, thus showing that we can apply SCT

to actor-style distributed systems written for the Azure Service Fabric platform?

RQ2 Does our Fabric model include enough asynchrony/nondeterminism to expose the

injected bugs in our system? (We believe the injected bugs highlight several tricky

and subtle aspects of developing Fabric services that developers are likely to get

wrong at some point.)

RQ3 How do the controlled random scheduler and PCT d=3 scheduler compare in terms

of number of bugs found, and how do these results compare to our results of our

empirical study in Chapter 3?

RQ4 How easy was it to apply SCT to this actor-based system compared to applying SCT

to our C/C++ benchmarks in Chapter 3 and our Java benchmarks in Chapter 4?

We describe our test system (§6.6.1), our scheduler implementations (§6.6.2), our re-

sults (§6.6.3), and our main findings (§6.6.4).

6.6.1 Test system

As described above, our test system consists of our Fabric model V2, our shopping list

service modified to use Adara actors, a client actor that sends requests to the shopping

list service, and a test harness (a method) that we repeatedly execute. We now describe

our shopping list service, how we ported the service to Adara actors, our client, and our

test harness.

Shopping list service Our shopping list service stores a list of strings (items). Clients

can request the list of items from the primary or secondary replicas (i.e. read the list), or

request to add a string to the list at the primary replica (i.e. modify the list). A request to

add an item is replicated to the secondary replicas before being applied at the primary and

179

confirmed with the client. Although the service sounds simple, Fabric services are subtly

complex; developers must implement services very carefully, following the pseudocode

in the Fabric API documentation, in order to ensure that data is copied and replicated

correctly. For example, the primary replica must be very careful in tracking and applying

its replication operations as they may be acknowledged out-of-order (but typically must

be applied in order).

Porting our service to Adara actors Our shopping list service uses C# tasks and a

monitor (i.e. a mutex with signalling capabilities) to perform operations asynchronously

as suggested by the Fabric documentation. We could have reimplemented our service

using a single actor (without a mutex). This would greatly reduce the concurrency in the

system and perhaps simplify the implementation of services at the expense of performance.

However, we wanted to capture the complexity and concurrency of Fabric services as

described in the Fabric documentation as accurately as possible, so we decided to make

minimal changes to the service. Thus, we changed the service to create and wait for tasks

using the untyped actors runtime so that these tasks can be treated as actors and controlled

during SCT. We also implemented a monitor actor that allows actors to lock, unlock, wait

and pulse the monitor (notify waiting actors) by sending and receiving messages. Although

the actors share objects, the ownership of the shared objects is conceptually transferred

via the messages being sent to and received from the monitor actor. Thus, there are no

data races. After these changes, we were able to run the service (deterministically) on

the Adara actors SCT runtime. As stated earlier, we leave the creation of an elegant,

actor-based Fabric API for future work.

Client We created a client actor that attempts to add three unique items to the shopping

list service. In our Fabric model, we modelled parts of the Fabric client API which allows

client code to query a Fabric service by name and retrieve a list of endpoints (URLs) for

the replicas of that service. Each endpoint is marked as referring to either the primary

replica or one of the secondary replicas. Additionally, we added extra methods to the

Fabric model so that actors can add and retrieve mappings from URLs to actor mailboxes

(to model network communication via sending messages). Thus, each shopping list replica:

(1) creates an actor that “listens” for client requests; (2) adds a mapping between some

chosen URL and the listening actor’s mailbox; (3) informs Fabric of the URL so that clients

can retrieve it. The client actor: (1) uses the Fabric client API to query the shopping

list service by name, receiving a URL for each replica; (2) looks up the mapping for the

primary URL to get a mailbox to which it can send messages.

180

Our client actor repeatedly tries to resolve (i.e. get the mailbox of) the primary’s listen-

ing actor; this can fail because the primary has not yet initialised or because the primary

has been killed. Once the primary is resolved, the client sends three add requests to the

primary in order to add the three unique items to the shopping list. The client keeps track

of pending requests and, on receiving a response, re-resolves the primary replica, requests

the current state of the shopping list, and re-sends add requests if necessary. Note that

any add request could fail if the primary is killed at the right moment and the item may or

may not have been replicated to the secondaries. Our client can also request the shopping

list from every replica and assert that the shopping lists are equal and contain only the

three unique items (with no duplicates).

Test harness Our test harness creates an instance of the shopping list service configured

to use three replicas (i.e. one primary and two secondaries). It also immediately creates

an actor that sends a “kill primary” message so that the primary will be killed at some

point in the schedule. The client actor is also created. The test harness then waits for

quiescence (i.e. for all actors to block because there are no more messages to process).

It then tells the client to check that all replicas have the expected shopping list. Note

that the client will stop sending messages once it sees that the primary’s shopping list

contains the three items; from this point, it is not possible for the shopping list to be lost

unless two replicas are killed. Thus, the test harness should always see that all replicas

have the expected shopping list. The test harness can therefore detect bugs in the client,

service or Fabric model that prevent this expected final state from being reached, such

as incorrect handling of replication/copy operations or secondary promotion. The client,

service and Fabric model also all contain additional assertions to check various expected

properties. We found bugs from both categories; i.e. some bugs cause more immediate

assertion failures, while others only cause the final state assertion to fail.

6.6.2 Random schedulers

We implemented the controlled random scheduler (§3.2.4) and the PCT scheduler (§3.2.5)

for our Adara actors SCT runtime. Note that we treat actors analogously to threads and

so our previous descriptions of these schedulers still apply, although we used a modified

version of the PCT scheduler. We now describe our modified version of the PCT scheduler,

how we applied POR, how we handled yielding and liveness issues, and how we generated

our random seeds.

181

Modified PCT algorithm We use a modified version of the PCT scheduler (different

to the version described in §3.2.5) that does not require an upfront estimated number of

steps k nor an estimated number of threads/actors n. This is useful as our system creates

many, short-lived actors and so the number of actors created can vary e.g. depending on

when the primary is killed. Our modified PCT algorithm proceeds as follows, where k

is initially 1:

1. Insert the initial actor into a list L. The total-order of the actors in L yields the

relative actor priorities; the first actor in the list has the highest priority while the

last actor in the list has the lowest priority.

2. Randomly pick integers k1, . . . , kd−1 from {1, . . . , k}. These will be priority change

points. Thus, initially, k1 = k2 = . . . = kd = 1.

3. Schedule actors strictly according to their priorities; always execute the actor with

the highest priority that is enabled. After executing the ki-th step, move the actor

that executed the step to the end of the list giving it the lowest priority.

4. When an actor a is created, randomly choose j from {1, . . . , |L| + 1} and insert a

into L before the jth element. Thus, if j = 1 then a becomes the first actor in L

and if j = |L|+ 1 then a is appended to the end of L.

5. Once the schedule reaches a terminal state, update k to be the maximum of the

current value of k and number of steps in the schedule. The algorithm repeats from

step 1 for the next schedule with the updated value of k. Thus, k is the maximum

number of steps in a terminal schedule executed so far.

Note that k is always initialised to 1 before testing each bug for 10,000 schedules; i.e.

the updated value of k is not reused across different bugs.

POR In an actor program, it is only necessary to consider the order in which send

operations are interleaved; swapping the order of other operations does not change the

terminal state reached. This is a form of POR, which we introduced in general in §4.2.

In Adara actors, we take a different approach to applying POR that is compatible with

random schedulers and takes advantage of the message-passing style. Consider a scheduler

that executes only non-send operations until the only enabled actors are all about to

execute send operations. The non-send operations would have been executed eventually

with any scheduler (assuming an acyclic state space) and would have the same behaviour;

they are independent of the not-yet-executed send operations. In particular, any receive

182

operation that will be dependent with a not-yet-executed send operation must be blocked.

The order of other operation types (creating an actor, waiting for an actor, etc.) is similarly

uninteresting. We can also explain this in terms of the HBR (§4.2): the only operations

ordered in the HBR that can be reversed (i.e. by scheduling different enabled actors to get

a different HBR and thus reach a different state) are pairs of send operations.

Thus, to apply POR we modified our controlled random scheduler and PCT scheduler

to always execute the first enabled actor (in order of actor creation) that is executing a

non-send operation until the only enabled actors are those about to execute sends. At this

point, the scheduler chooses to execute one of the actors that is about to execute a send

operation. Thus, a send operation is a single a step (transition); all non-send operations

(except yield—see below), even those from other actors, are (conceptually) combined into

the preceding send operation.

Yielding and liveness Our test system contains actors that retry operations an infinite

number of times until they succeed e.g. resolving the primary replica or performing a repli-

cation operation. To help prevent unfair schedulers from executing an infinite schedule,

we ensure that actors perform a yield operation before retrying. The controlled random

scheduler ignores yield operations as its random choices typically avoid infinite schedules.

However, the PCT scheduler is typically very unfair and is likely to execute infinite sched-

ules. We used the same approach as in our empirical study (see §3.3); when the PCT

scheduler executes a yield operation, the current actor is moved to the end of the list giv-

ing it the lowest priority. Note that, for both the random scheduler and PCT scheduler,

we make yield count as a step (transition).

There are 3 bugs that we test that can lead to infinite executions. We detect these using

a straightforward approach: we apply a step limit of 5,000 steps; if a schedule reaches this

step limit, we stop exploring the the schedule and increment the number of observed

“livelock schedules” (see Table 6.1). Note that the maximum number of steps observed so

far (k) is not updated when the step limit is reached.

Random seeds We use the same approach for exploring random schedules as in our

empirical study (see §3.6). Thus, we generate 10,000 random seeds using a random number

generator. We reuse these same random seeds for each bug and both schedulers, where

each seed is used to seed the random number generator of the scheduler before executing

each schedule. Thus, for each seed, bug and scheduler, we execute a single schedule.

Note that, unlike in our original empirical study, the schedules produced by our modified

PCT scheduler are technically dependent on the order in which we execute the schedules

183

id name Rand PCT d=3

in
je

ct
ed

b
u

g
?

#
m

a
x

a
ct

o
rs

#
m

a
x

en
a
b

le
d

a
ct

o
rs

#
m

a
x

st
ep

s
(k

)

#
sc

h
ed

u
le

s
to

fi
rs

t
b

u
g

#
sc

h
ed

u
le

s
to

fi
rs

t
li
v
el

o
ck

#
b

u
g
g
y

sc
h

ed
u

le
s

#
li
v
el

o
ck

sc
h

ed
u

le
s

#
m

a
x

a
ct

o
rs

#
m

a
x

en
a
b

le
d

a
ct

o
rs

#
m

a
x

st
ep

s
(k

)

#
sc

h
ed

u
le

s
to

fi
rs

t
b

u
g

#
sc

h
ed

u
le

s
to

fi
rs

t
li
v
el

o
ck

#
b

u
g
g
y

sc
h

ed
u

le
s

#
li
v
el

o
ck

sc
h

ed
u

le
s

0 BadAssertInPrimaryReplicateOp 104 11 465 - - 0 0 120 17 456 186 - 118 0
1 UpdateServiceEndpointTooEarly 104 11 465 - - 0 0 121 17 432 - 19 0 1036
2 PromotePrimaryImmediately 104 11 465 - - 0 0 119 17 458 124 - 129 0
3 PromotePrimaryImmediatelyBadFix 104 11 465 - - 0 0 120 17 456 6568 - 1 0
4 UpdateSecondaryEpochTooEarly 104 11 465 - - 0 0 120 17 456 - - 0 0
5 BlockForNextId 103 8 436 1 - 9999 0 121 14 459 6 - 5522 0
6 GetCopyStreamNPE 91 10 436 6 - 1427 0 120 17 456 6 - 1558 0
7 ActiveSecondaryCopyStreamDoneButCancelled 104 11 465 - - 0 0 121 17 461 1477 - 44 0
8 SecondaryCopyStreamDoneButCancelled 104 11 465 - - 0 0 120 17 456 124 914 21 3
9 DontClearCreateReplicasList 109 11 485 - - 0 0 120 17 456 244 - 3 0
10 DoReplicateWithoutMutex 109 11 485 7 - 1877 0 120 17 450 36 - 103 0
11 DontWaitWhenSendingCopyState 3 109 11 485 - - 0 0 120 17 456 244 - 20 0
12 CommitAckedOpImmediately 3 109 11 485 15 - 91 0 120 17 456 5 - 1083 0
13 CommitAckedOpImmediatelySkipAssertions 3 109 11 485 15 - 91 0 120 17 456 5 66 1027 34
14 SendDuplicateRequests 3 112 11 533 9 - 1491 0 134 17 548 5 - 2353 0

Table 6.1: Experimental SCT results for our Fabric test system. For the controlled random
scheduler (Rand) and PCT d = 3 scheduler, and for each of the 15 bugs, we
execute 10,000 schedules.

because the maximum number of steps seen so far (k) is updated based on the previously

executed schedules. However, k is typically updated to close to its final value after just

1 or 2 schedules so we believe the number of buggy schedules found would be similar

regardless of the order in which schedules are executed.

6.6.3 Results

We executed our experiments on a MacBook Pro (Retina, 13-inch, Mid 2014) with an Intel

Core i7-4578U CPU and 16GB of RAM running Windows 10 64-bit. The C# projects

were compiled using Visual Studio Enterprise 2015 Update 2 with .NET 4.6. The full

set of data gathered for our testing is shown Table 6.1. Each bug has an id and name

for reference, which are shown in the first two columns. For both the controlled random

scheduler (Rand) and the PCT d=3 scheduler, and for each bug, we report (in order of

the table columns): the maximum number of actors observed at a scheduling point, the

maximum number of enabled actors observed at a scheduling point, the maximum number

of steps (sends and yields) observed in a single schedule, the number of schedules up to

184

and including the first buggy schedule (where a buggy schedule is one where an assertion

failed), the number of schedules up to and including the first livelock schedule (where

a livelock schedule is one where the step limit of 5,000 was reached), the total number

of buggy schedules explored, and the total number of livelock schedules explored. If no

buggy/livelock schedules were found for a particular bug and scheduler, then we write “-”

in the “# schedules to first to bug/livelock” column.

Of the 15 bugs, the random scheduler found 6 while the PCT d=3 scheduler found

14. Thus, PCT was more effective at finding bugs compared to the random scheduler.

Furthermore, we note that the random scheduler is not as effective at finding bugs in this

test system compared with the benchmarks in our empirical study (§3.4.1) (where the

random scheduler found the majority of the bugs). We consider the results for individual

bugs below.

Bug overview The list of 15 bugs that we used are shown in our results table (see

Table 6.1). We provide the “# max (enabled) actors” and “# max steps (k)” columns for

both schedulers to give an indication of the complexity of the test system with each bug

enabled. Bugs 0–9 (inclusive) are bugs in our Fabric model, bugs 10–13 are bugs in our

shopping list service, and bug 14 is a bug in our client actor.

Fabric model bugs The bugs in our Fabric model are all real (i.e. unintentional) bugs

that we found; these were caused by coding or design mistakes that we made when imple-

menting our Fabric model V2. For example, bug 1 (UpdateServiceEndpointTooEarly)

causes a secondary that is promoted to a primary to continue to be listed as a secondary in

the list of endpoints of the service, even though it should be listed as a primary. This can

lead to a livelock where the client actor infinitely and unsuccessfully tries to resolve the

primary endpoint for the service. As seen in Table 6.1, PCT found livelock schedules due

to this bug, while the random scheduler did not; the random scheduler schedules the actor

that kills the primary almost immediately, before any secondaries can be initialised. Thus,

it completely misses this important scenario. This observation explains why the random

scheduler performed poorly on our test system; the eagerness with which it schedules the

actor that kills the primary causes it to miss most interesting scenarios.

Interestingly, bug 5 (BlockForNextId) was found by the random scheduler on almost

all schedules (9999), while PCT only exposed the bug on just over half of the schedules

(5522). The bug causes the ServiceRuntime and ClusterRuntime actors to deadlock, due

to the ServiceRuntime actor waiting for a message from the ClusterRuntime actor (and

vice versa) from within an action, which, although possible in Adara actors, is arguably

185

not idiomatic actor programming as it can lead to deadlock. The bug can occur within

just a few steps, such as in the following scenario: first, the ClusterRuntime actor creates

the ServiceRuntime actor; second, the ClusterRuntime actor receives a request from the

client actor to resolve the primary replica, and so sends a message to the ServiceRuntime

actor and then blocks until it receives a response; the ServiceRuntime actor sends a

request to the ClusterRuntime actor asking for an id for the initial primary replica and

also blocks until it receives a response. We believe that the random scheduler performs well

because the bug is very likely to occur if the ServiceRuntime actor is preempted before

sending a request for a replica id (and the random scheduler is very likely to preempt

actors). Furthermore, the client actor often repeatedly tries to resolve the replicas, which

means it is very likely that a resolve request will be interleaved with the id request, which

causes the deadlock. In contrast, there are probably only a few depths at which PCT

can insert a change point for the bug to be exposed, and the relative actor priorities of

the client actor, ServiceRuntime and ClusterRuntime actors will also need to allow the

required interleaving.

Notice that a few of the bugs in our Fabric model were exposed via a small number

of buggy schedules (i.e. < 30) and so can perhaps be considered “difficult to find” bugs.

In particular, bug 3 (PromotePrimaryImmediatelyBadFix) was exposed by only a single

schedule using the PCT scheduler. This bug is related to bug 2, which occurs when a

secondary is under consideration for being promoted to a primary while it is still applying

replication operations. Given a very specific interleaving of operations, this bug can cause

our Fabric model to lose track of which replication operations have been applied at the

new primary resulting in the Fabric model re-issuing already-used LSNs. Bug 3 is a fix

that we applied for bug 2 which turned out to also be buggy, but requires an even more

specific interleaving of operations to occur, which explains why only one buggy schedule

was found.

We note that bug 4 (UpdateSecondaryEpochTooEarly) was not found by either sched-

uler. This bug was found by inspection; we believe this bug could be exposed using the

test harness given the right schedule but we were not able to reproduce it yet.

Real shopping list service bug Bug 10 (DoReplicateWithoutMutex) is the only

real bug we found in our shopping list service. It was caused by an actor calling

ReplicateAsync at the primary (to send a replication operation to the secondaries) with-

out first locking the monitor. This goes against the advice of the Fabric documentation.

We attempted this approach because we thought it was valid and would maximise the

concurrency of replication operations and so better test our Fabric model. We imagine

186

developers might (incorrectly) attempt this to achieve additional parallelism. However, if

the actor calling ReplicateAsync is interrupted by another actor (also trying to send a

replication operation) before acquiring the monitor, and both replication operations are

confirmed by a majority of secondaries before the interrupted actor can acquire the mon-

itor, the primary can end up applying replication operations in the wrong order. As seen

in Table 6.1, this bug was found by both schedulers.

Injected shopping list service bugs Bugs 11–13 represent bugs that we believe de-

velopers are likely to introduce when attempting to write Fabric services. We injected

these bugs into our shopping list service to test whether our Fabric model contains enough

asynchrony to expose these bugs.

Bug 11 (DontWaitWhenSendingCopyState) is a bug in the primary code that provides

the state of the shopping list to new secondaries; Fabric asks the primary to send the state

that would be observed after applying a particular replication operation (and all those

before it). However, the primary may not have actually applied the specified replication

operation yet and so must wait until it has been applied (the operation is applied by

another actor) so that the correct state is copied to the secondary. We achieve this by

waiting on the monitor until the specified replication operation has been applied. When

bug 11 is enabled, we send the current state of the shopping list without waiting, causing

the secondary to potentially receive an old version of the shopping list. It would be very

unlikely to observe this on the real Fabric because of the small window of time between

Fabric notifying the the primary that a replication operation has been acknowledged and

the primary applying the replication operation. As seen in Table 6.1, this bug was only

exposed by the PCT scheduler, and on just 20 schedules.

Bug 12 (CommitAckedOpImmediately) affects the way the primary applies replication

operations after they have been acknowledged by a majority of secondaries. Fabric may

notify the primary of acknowledged replication operations in the wrong order, and so

the code at the primary must carefully store a list of unapplied replication operations so

that it only applies consecutive, acknowledged operations, starting from the front of the

list. When bug 12 is enabled, the primary applies acknowledged replication operations

immediately without considering their order, potentially resulting in the shopping list

items ending up in the wrong order at the primary. Bug 13 is the same as bug 12, but

skips some assertions in our primary code so that the error is not immediately detected. As

seen in Table 6.1, bugs 12 and 13 were detected by both schedulers. Interestingly, bug 13

sometimes results in livelock, as found by PCT. We believe this occurs when the primary

gets blocked trying to send a copy of the shopping list to a secondary when waiting for

187

the latest replication operation to be applied; the actor is never unblocked because only

the most recently applied replication operation is checked which (due to the bug) is not

the replication operation with the highest (and the required) LSN. This causes the client

actor’s add operations to repeatedly fail (until the secondary is brought up-to-date, which

never happens).

Injected client actor bug Finally, bug 14 is a bug in the client actor that causes it

to sometimes send duplicate add operations; this is caused by the actor reading the state

of the shopping list at the primary and requesting all missing items to be added without

taking into account previous add operations that are still in-progress (but not yet visible

at the primary). This bug is based on a real error that we made when implementing the

client actor, but we bounded the maximum number of in-progress operations that the

client would send so that the bug would not exceed the step limit of 5,000. As seen in

Table 6.1, this bug was detected by both schedulers.

6.6.4 Main findings

We now report our main findings by answering our research questions (RQs) given at the

beginning of this section.

RQ1: Can we find bugs in our test system using SCT, thus showing that we

can apply SCT to actor-style distributed systems written for the Azure Service

Fabric platform? Yes. We found 5 bugs in our shopping list and client, and a further

9 in our Fabric model. We have not yet reproduced 1 bug that we believe exists in our

Fabric model but we think it could be reproduced given the appropriate schedule.

RQ2: Does our Fabric model include enough asynchrony/nondeterminism to

expose the injected bugs in our system? (We believe the injected bugs high-

light several tricky and subtle aspects of developing Fabric services that devel-

opers are likely to get wrong at some point.) Yes. We found all 4 injected bugs.

Bug 11 (DontWaitWhenSendingCopyState) was only found using the PCT scheduler while

the other 3 were found by both the PCT and random schedulers.

RQ3: How do the controlled random scheduler and PCT d=3 scheduler com-

pare in terms of number of bugs found, and how do these results compare

to our results of our empirical study in Chapter 3? Of the 15 bugs, the random

scheduler found 6 while the PCT scheduler found 14 (including all those found by the

188

random scheduler). Thus, PCT was more effective at finding bugs in this system. The

random scheduler performed poorly compared to our previous study (where it found the

majority of bugs). We believe this is because it eagerly schedules the actor that kills the

primary replica which causes it to miss many interesting scenarios. There was one excep-

tion: bug 5 (BlockForNextId) was found on almost 100% of schedules using the random

scheduler, and on just over 50% of schedules when using PCT. Of course, we only used

one test system (with multiple bugs) which may be a mostly adversarial system for the

random scheduler. However, we believe that actor-based test systems that wish to sim-

ulate failure (such as killing the primary replica) are likely to include actors that trigger

this failure when scheduled; the random scheduler is likely to always perform poorly in

such systems. Future work could investigate schedulers that take these failure-triggering

actors into account.

RQ4: How easy was it to apply SCT to this actor-based system compared to

applying SCT to our C/C++ benchmarks in Chapter 3 and our Java bench-

marks in Chapter 4? Applying SCT was much easier than in previous chapters as

we did not have to instrument binaries/classes, track various different visible operations,

nor detect data races (although data races may still exist in our system). The modelling

effort was, of course, much greater. We hope that this cost can be amortized over testing

multiple Fabric services. Also, testing other distributed systems that use a less-complex

platform (such as the higher-level Fabric APIs) might require less modelling effort. How-

ever, we note that porting an existing non-actor-based system to an idiomatic, actor-based

equivalent is a significant design and engineering challenge that we did not attempt (out-

side of modelling Fabric). Furthermore, näıvely porting a system to use nonidiomatic

actors (as we did with the shopping list service) is not ideal and would not always be

as easy as it was in our case; our shopping list service was fairly straightforward and

did not use many synchronisation operations. Thus, the benefits of actor-based systems

are not immediately available to existing code without re-writing. Overall, we conclude

that actor-based systems are ideally suited for SCT due to actors only communicating

via message-passing, which is mediated by the actor runtime and thus easy to control.

Furthermore, message-passing enables a straightforward POR approach that we were able

to apply to our random schedulers (§6.6.2).

189

6.7 Related work

Our work is not the first example of applying SCT to actor-based systems. P# was

inspired by the P language [DGJ+13], a domain specific language for actor-style pro-

gramming that compiles to C for production and to the Zinger model checking language

for SCT. P was used to implement and verify the USB device driver stack that ships

with Microsoft Windows 8. P# was introduced in [DDK+15] and SCT was performed

on several benchmarks. A number of P# case studies (including our first Fabric model)

were described in [DMT+16]. Concuerror [GCS11, CGS13, AAJS14] (as discussed in §5.5)

is a systematic concurrency testing tool for Erlang programs (the Erlang language uses

the actor model [HBS73]). Concuerror supports several techniques, including preemption

bounding [MQ07b] and optimal DPOR [AAJS14]. We note that Concuerror supports

a technique referred to as blocking avoidance that we believe is similar in spirit to our

straightforward POR approach of combining execution of non-send operations with the

previous send operation (see §6.6.2).

6.8 Conclusion

We have presented a large case study in which we created a model of Azure Service Fabric

so we can apply SCT to distributed systems written for Fabric. We described our Adara

actors framework that provides portable, statically typed actors, which we used to create

the final version of our Fabric model. We found 14 of the 15 bugs in our test system

using SCT, including the 4 injected bugs that we believe are representative of mistakes

that developers are likely to make when developing Fabric services. Thus, our Fabric

model contains enough behaviours/asynchrony to expose these subtle pitfalls. We note

that applying SCT to actor-based systems is more straightforward than in shared-memory

systems. As in our prior empirical study (Chapter 3), the PCT d=3 scheduler performed

well, finding 14 of the bugs, while the random scheduler was less effective than before,

finding only 6 of the bugs.

190

7 Conclusions and future work

7.1 Contributions

This thesis has made the following contributions to the field of SCT:

� In Chapter 3, we presented an empirical study of existing SCT techniques over 48

concurrent benchmarks. Our most surprising result was that the “näıve” controlled

random scheduler, which randomly chooses one thread to execute at each scheduling

point, performed well, finding more bugs than preemption bounding. PCT (with

parameter d=3) performed the best and only missed one bug which was also missed

by all other techniques. The results call into question whether schedule bounding is

an effective technique for finding bugs and/or whether the concurrency benchmarks

used in research are useful. We report that several benchmarks are arguably trivial.

For example, the bugs in 18 benchmarks were exposed at least 50% of the time when

using the random scheduler.

� In Chapter 4, we introduced the lazy happens-before relation (lazy HBR) which pro-

vides reduction beyond partial-order reduction for programs that use mutexes. We

proved that schedules with identical lazy HBRs are guaranteed to reach identical

states and presented two reduction techniques backed by the lazy HBR: lazy HBR

caching and lazy dynamic partial-order reduction. Our experimental results showed

the significant potential and practical reduction of using the lazy HBR.

� In Chapter 5, we described implementation details of our SCT tool, JESS, which

we believe to be an important contribution because such implementation details are

rarely discussed in prior work. We described our race detection algorithm which we

believe to be more efficient than any prior work.

� In Chapter 6, we applied SCT in the context of distributed systems written for Azure

Service Fabric (Fabric)—a platform and API for reliable services. We introduced our

Adara actors framework for writing portable, statically-typed actors. We evaluated

our Fabric model on a system containing 11 real bugs and 4 API-related injected

191

bugs. We found 14 of the 15 bugs using SCT, including all of the injected bugs

(that we believe are representative of mistakes that developers are likely to make

when developing Fabric services) showing that our Fabric model includes enough

behaviours/asynchrony to expose these subtle pitfalls. We note that applying SCT

to actor-based systems, where actors are restricted to just sending and receiving

messages, is more straightforward than in shared-memory systems where one has to

consider the memory model, instrumenting every memory access, and a larger set of

concurrency functions (versus just send and receive).

In summary, in this thesis we have evaluated, improved, described, and applied practical

systematic concurrency testing.

7.2 Future work

Future SCT studies We believe that further studies that compare additional SCT

techniques would greatly benefit the field. Our study in Chapter 3 is limited by the set of

techniques and benchmarks that we consider. Partial-order reduction techniques (which

we only consider in isolation in Chapter 4) are obvious candidates for future studies.

In particular, it would be interesting to test whether sound reduction techniques (like

optimal DPOR [AAJS14]) provide enough reduction to allow exhaustive exploration; in

§4.6.3, we encountered a number of benchmarks that could not be exhaustively explored

within our schedule limit by DPOR nor lazy DPOR, although neither of these techniques

is optimal. If sound reduction approaches cannot explore all terminal states then it would

be useful to test to what extent they are worthwhile for bug finding. We would also

like to create and test other straightforward randomisation techniques as these seem to

be surprisingly effective. However, perhaps the most challenging aspect of these types of

studies is obtaining concurrent benchmarks that (a) are amenable to SCT and (b) represent

code that is used in practice. Applying SCT to complex programs like web browsers

or servers is probably infeasible; instead, we can consider testing certain libraries and

modules in isolation. However, as noted in our study, even this is often nontrivial due

to the complexity and poor testability of codebases. Indeed, a study that focuses on the

challenges of applying SCT to one or two complex open source projects could be useful

in itself. We believe it would be useful to include multiple tools in future studies so as to

increase the types of benchmarks that can be considered; our study was limited to C/C++

programs that use pthreads as this is what the Maple tool targets.

192

Other concurrency testing techniques Some concurrency testing techniques do not

serialise execution and/or do not rely on a deterministic target program [EFN+02, PLZ09,

YNPP12, BKMN10, NBMM12]. As such, they can be applied to a greater number of

benchmarks with less effort, including complex programs like web browsers. It would be

useful to compare these techniques with each other and with SCT techniques; it would be

useful to test whether the additional control provided by SCT is actually advantageous

for bug finding compared to the most effective non-SCT approaches.

Sound reduction algorithms As suggested in Chapter 4, it would be useful to im-

prove our lazy DPOR algorithm so that it is sound for programs that do not contain

mutex-deadlock states. It would be useful to compare our lazy DPOR algorithm with

optimal DPOR [AAJS14], and to consider creating a lazy version of optimal DPOR. How-

ever, perhaps the most interesting direction for reduction is demonstrated by the maximal

causality reduction (MCR) [Hua15] algorithm that is optimal and reduces beyond POR

(and thus beyond optimal DPOR) using an SMT solver. It would be useful to evaluate the

overhead of using an SMT solver; MCR uses parallelism to overcome the solver bottleneck

but the additional CPU time is still a cost and DPOR could also be parallelised in theory.

Nevertheless, the additional CPU time needed for the reduction may be justified by the

savings from not exploring redundant schedules.

Relaxed memory models We assumed sequential consistency throughout this thesis;

as described in §2.1, this is common in prior work and is not a limitation for programs

that are intended to be free from data races (and free from weak memory operations)

and thus only exhibit sequentially consistent behaviours. Chronological traces [AAA+15]

allow optimal DPOR to check programs for the TSO and PSO memory models. The

MCR [Hua15] has also been extended [HH16] to support TSO and PSO. Applying such

techniques to programs that have only sequentially consistent behaviours should not in-

crease the number of schedules explored. However, enabling exploration of schedules that

exhibit the effects of weak memory (i.e. forcing delayed visibility of writes) has a cost in

terms of time and engineering effort; the work of [AAA+15] uses an LLVM interpreter

to explore schedules, which is slower than native execution. This is just one approach,

but this requirement for additional control is yet another challenge which may make it

less straightforward to apply SCT in practice and, as described in §3.4.2, we believe this

is already challenging. Thus, perhaps it is worthwhile performing this more challenging

SCT for weak memory models on small test cases that test implementations of concur-

rency primitives (mutexes, concurrent containers, etc.) where the additional overhead and

193

restrictions are less troublesome, and then rely on regular sequentially consistent SCT

and data race detection for testing large programs that use these primitives, assuming the

primitives can “shield” the program from the effects of the weak memory model [GMY12].

Nevertheless, in future work, it would be useful to investigate if there are ways of exploring

weak memory behaviours without significantly increasing execution time.

194

Bibliography

[AAA+15] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson,

Carl Leonardsson, and Konstantinos F. Sagonas. Stateless model checking

for TSO and PSO. In TACAS, pages 353–367, 2015.

[AAJS14] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.

Optimal dynamic partial order reduction. In POPL, pages 373–384, 2014.

[Akk] Akka.NET. Akka.NET. http://getakka.net/. Online. Accessed: 2016-09.

[AKT13] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for

efficient bounded model checking of concurrent software. In CAV, pages 141–

157, 2013.

[Apa] Apache Software Foundation. Apache thrift. https://thrift.apache.org/.

Online. Accessed: 2016-09.

[B+07] Norris Boyd et al. Rhino: Javascript for Java. Mozilla Foundation. Project

Website: http://www.mozilla.org/rhino, 2007.

[BAEFU06] Yosi Ben-Asher, Yaniv Eytani, Eitan Farchi, and Shmuel Ur. Producing

scheduling that causes concurrent programs to fail. In PADTAD, pages 37–

40, 2006.

[BCD+12] Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, and Paul

Thomson. Gpuverify: a verifier for GPU kernels. In OOPSLA, pages 113–132,

2012.

[BCD+15] Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz

Qadeer, Paul Thomson, and John Wickerson. The design and implementation

of a verification technique for GPU kernels. ACM Trans. Program. Lang.

Syst., 37(3):10:1–10:49, 2015.

[BH05] Saddek Bensalem and Klaus Havelund. Dynamic deadlock analysis of multi-

threaded programs. In HVC, pages 208–223, 2005.

195

http://getakka.net/
https://thrift.apache.org/

[Bie11] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Prince-

ton University, 2011.

[BKMN10] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh

Nagarakatte. A randomized scheduler with probabilistic guarantees of finding

bugs. In ASPLOS, pages 167–178, 2010.

[Boe11] Hans-J. Boehm. How to miscompile programs with “benign” data races. In

HotPar, pages 1–6, 2011.

[CBM10] Katherine E. Coons, Sebastian Burckhardt, and Madanlal Musuvathi. Gam-

bit: Effective unit testing for concurrency libraries. In PPoPP, pages 15–24,

2010.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-

nization skeletons using branching-time temporal logic. In Logic of Programs,

pages 52–71, 1981.

[CF11] Lucas Cordeiro and Bernd Fischer. Verifying multi-threaded software using

SMT-based context-bounded model checking. In ICSE, pages 331–340, 2011.

[CGS13] Maria Christakis, Alkis Gotovos, and Konstantinos F. Sagonas. Systematic

testing for detecting concurrency errors in erlang programs. In ICST, pages

154–163, 2013.

[CMM13] Katherine E. Coons, Madan Musuvathi, and Kathryn S. McKinley. Bounded

partial-order reduction. In OOPSLA, pages 833–848, 2013.

[Coo16] Katherine E. Coons. private communication, October 2016.

[CRKH05] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux De-

vice Drivers, 3rd Edition. 2005.

[CWY11] Qichang Chen, Liqiang Wang, and Zijiang Yang. SAM: self-adaptive dynamic

analysis for multithreaded programs. In HVC, pages 115–129, 2011.

[DDK+15] Pantazis Deligiannis, Alastair F. Donaldson, Jeroen Ketema, Akash Lal, and

Paul Thomson. Asynchronous programming, analysis and testing with state

machines. In PLDI, pages 154–164, 2015.

196

[DGJ+13] Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Ra-

jamani, and Damien Zufferey. P: safe asynchronous event-driven program-

ming. In PLDI, pages 321–332, 2013.

[DMT+16] Pantazis Deligiannis, Matt McCutchen, Paul Thomson, Shuo Chen, Alas-

tair F. Donaldson, John Erickson, Cheng Huang, Akash Lal, Rashmi Mud-

duluru, Shaz Qadeer, and Wolfram Schulte. Uncovering bugs in distributed

storage systems during testing (not in production!). In FAST, pages 249–262,

2016.

[EFN+02] Orit Edelstein, Eitan Farchi, Yarden Nir, Gil Ratsaby, and Shmuel Ur. Mul-

tithreaded java program test generation. IBM Syst. J., 41(1):111–125, 2002.

[ELC02] E.Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation tool

to implement adaptable systems. In Adaptable and extensible component

systems, November 2002.

[EP14] Mahdi Eslamimehr and Jens Palsberg. Race directed scheduling of concurrent

programs. In PPoPP, pages 301–314, 2014.

[EQR11] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamarić. Delay-bounded

scheduling. In POPL, pages 411–422, 2011.

[Fam15] Bob Familiar. Microservices, IoT, and Azure: Leveraging DevOps and Mi-

croservice Architecture to Deliver SaaS Solutions. Apress, 1st edition, 2015.

[FF09] Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise

dynamic race detection. In PLDI, pages 121–133, 2009.

[FF10] Cormac Flanagan and Stephen N. Freund. The RoadRunner dynamic analysis

framework for concurrent programs. In PASTE, pages 1–8, 2010.

[FF13] Cormac Flanagan and Stephen N. Freund. RedCard: Redundant check elim-

ination for dynamic race detectors. In ECOOP, pages 255–280, 2013.

[FG05] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction

for model checking software. In POPL, pages 110–121, 2005.

[FG11] Cormac Flanagan and Patrice Godefroid. Addendum to dynamic partial-

order reduction for model checking software. 2011.

197

[FLR98] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementa-

tion of the Cilk-5 multithreaded language. In PLDI, pages 212–223, 1998.

[FSS04] Michael Factor, Assaf Schuster, and Konstantin Shagin. Instrumentation

of standard libraries in object-oriented languages: The twin class hierarchy

approach. In OOPSLA, pages 288–300, 2004.

[GCS11] Alkis Gotovos, Maria Christakis, and Konstantinos F. Sagonas. Test-driven

development of concurrent programs using concuerror. In Erlang, pages 51–

61, 2011.

[GJS+13] James Gosling, Bill Joy, Guy L. Steele, Jr., Gilad Bracha, and Alex Buck-

ley. The Java Language Specification, Java SE 7 Edition. Addison-Wesley

Professional, 1st edition, 2013.

[GMY12] Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang. Show no weak-

ness: Sequentially consistent specifications of TSO libraries. In DISC, pages

31–45, 2012.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent

Systems, volume 1032 of Lecture Notes in Computer Science. Springer, 1996.

[God97] Patrice Godefroid. Model checking for programming languages using VeriSoft.

In POPL, pages 174–186, 1997.

[GP93] Patrice Godefroid and Didier Pirottin. Refining dependencies improves

partial-order verification methods. In CAV, pages 438–449, 1993.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR

formalism for artificial intelligence. In IJCAI, pages 235–245, 1973.

[HF11] Gerard J. Holzmann and Mihai Florian. Model checking with bounded con-

text switching. Formal Asp. Comput., 23(3):365–389, 2011.

[HH16] Shiyou Huang and Jeff Huang. Maximal causality reduction for TSO and

PSO. In OOPSLA, 2016.

[HJG11] Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Swarm verification

techniques. IEEE Trans. Software Eng., 37(6):845–857, 2011.

198

[HO09] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and

event-based programming. Theoretical Computer Science, 410(2):202–220,

2009.

[Hol03] Gerard Holzmann. The Spin Model Checker: Primer and Reference Manual.

Addison-Wesley, first edition, 2003.

[Hua15] Jeff Huang. Stateless model checking concurrent programs with maximal

causality reduction. In PLDI, pages 165–174, 2015.

[HZ11] Jeff Huang and Charles Zhang. An efficient static trace simplification tech-

nique for debugging concurrent programs. In SAS, pages 163–179, 2011.

[JPPS11] Nicholas Jalbert, Cristiano Pereira, Gilles Pokam, and Koushik Sen. RAD-

Bench: a concurrency bug benchmark suite. In HotPar, pages 1–6, 2011.

[JS10] Nicholas Jalbert and Koushik Sen. A trace simplification technique for effec-

tive debugging of concurrent programs. In FSE, pages 57–66, 2010.

[KLVU10] Bohuslav Křena, Zdeněk Letko, Tomáš Vojnar, and Shmuel Ur. A platform

for search-based testing of concurrent software. In PADTAD, pages 48–58,

2010.

[KP92] Shmuel Katz and Doron Peled. Defining conditional independence using col-

lapses. Theor. Comput. Sci., 101(2):337–359, July 1992.

[KZC12] Baris Kasikci, Cristian Zamfir, and George Candea. Data races vs. data race

bugs: Telling the difference with Portend. In ASPLOS, pages 185–198, 2012.

[L+05] Chi-Keung Luk et al. Pin: Building customized program analysis tools with

dynamic instrumentation. In PLDI, pages 190–200, 2005.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly executes

multiprocess programs. IEEE Trans. Comput., 28(9):690–691, 1979.

[LB98] Bil Lewis and Daniel J. Berg. Multithreaded Programming with Pthreads.

Prentice-Hall, 1998.

[LPSZ08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mis-

takes: A comprehensive study on real world concurrency bug characteristics.

In ASPLOS, pages 329–339, 2008.

199

[Mic] Microsoft. What is windows communication foundation. https://msdn.

microsoft.com/en-us/library/ms731082(v=vs.110).aspx. Online. Ac-

cessed: 2016-09.

[MM07] Tom Ball Madan Musuvathi, Shaz Qadeer. Chess: A systematic testing tool

for concurrent software. Technical report, November 2007.

[MQ07a] M. Musuvathi and S. Qadeer. Partial-order reduction for context-bounded

state exploration. Technical Report MSR-TR-2007-12, Microsoft Research,

2007.

[MQ07b] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for sys-

tematic testing of multithreaded programs. In PLDI, pages 446–455, 2007.

[MQ08] Madanlal Musuvathi and Shaz Qadeer. Fair stateless model checking. In

PLDI, pages 362–371, 2008.

[MQB+08] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-

manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing

Heisenbugs in concurrent programs. In OSDI, pages 267–280, 2008.

[N+07] Satish Narayanasamy et al. Automatically classifying benign and harmful

data races using replay analysis. In PLDI, pages 22–31, 2007.

[NBMM12] Santosh Nagarakatte, Sebastian Burckhardt, Milo M.K. Martin, and Madan-

lal Musuvathi. Multicore acceleration of priority-based schedulers for concur-

rency bug detection. In PLDI, pages 543–554, 2012.

[Nit14] Michael Nitschinger. Debugging concurrency issues with OpenJDK jc-

stress. http://nitschinger.at/Debugging-Concurrency-Issues-with-Open-JDK-

Jcstress, 2014.

[Ora] Oracle. Java SE 7 Remote Method Invocation API. http://docs.

oracle.com/javase/7/docs/technotes/guides/rmi/index.html. Online.

Accessed: 2016-09.

[PHW07] Donald E. Porter, Owen S. Hofmann, and Emmett Witchel. Is the optimism

in optimistic concurrency warranted? In HotOS, pages 1:1–1:6, 2007.

[PJ14] Pavel Paŕızek and Pavel Janč́ık. Approximating happens-before order: Inter-

play between static analysis and state space traversal. In SPIN, pages 1–10,

2014.

200

https://msdn.microsoft.com/en-us/library/ms731082(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms731082(v=vs.110).aspx
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/index.html

[PL11a] Pavel Paŕızek and Ondrej Lhoták. Identifying future field accesses in exhaus-

tive state space traversal. In ASE, pages 93–102, 2011.

[PL11b] Pavel Parizek and Ondrej Lhoták. Randomized backtracking in state space

traversal. In SPIN, pages 75–89, 2011.

[PLZ09] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing atomicity violation bugs

from their hiding places. In ASPLOS, pages 25–36, 2009.

[Pon] Pony Developers. Pony. http://www.ponylang.org/. Online. Accessed:

2016-09.

[PSE07] Jeff H. Perkins, David Saff, and Michael D. Ernst. Instrumentation of stan-

dard libraries in Java. In Research Abstracts. CSAIL, 2007.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of con-

current systems in cesar. In Proceedings of the 5th Colloquium on Interna-

tional Symposium on Programming, pages 337–351, 1982.

[RM09] Neha Rungta and Eric G. Mercer. Clash of the titans: Tools and techniques

for hunting bugs in concurrent programs. In PADTAD, pages 9:1–9:10, 2009.

[SB01] Lorna A Smith and J Mark Bull. A multithreaded Java grande benchmark

suite. In Java for High Performance Computing, 2001.

[SBGH12] Jiŕı Simsa, Randy Bryant, Garth A. Gibson, and Jason Hickey. Scalable

dynamic partial order reduction. In RV, pages 19–34, 2012.

[Sen08] Koushik Sen. Race directed random testing of concurrent programs. In PLDI,

pages 11–21, 2008.

[SES+12] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac

Flanagan. Sound predictive race detection in polynomial time. In POPL,

pages 387–400, 2012.

[SI09] Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer: data race

detection in practice. In WBIA, pages 62–71, 2009.

[SKH12] Olli Saarikivi, Kari Kahkonen, and Keijo Heljanko. Improving dynamic par-

tial order reductions for concolic testing. In ACSD, pages 132–141, 2012.

[SL05] Herb Sutter and James Larus. Software and the concurrency revolution. ACM

Queue, 3(7):54–62, 2005.

201

http://www.ponylang.org/

[SSO+10] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and

Magnus O. Myreen. x86-TSO: a rigorous and usable programmer’s model for

x86 multiprocessors. Commun. ACM, 53(7):89–97, 2010.

[TD15] Paul Thomson and Alastair F. Donaldson. The lazy happens-before relation:

better partial-order reduction for systematic concurrency testing. In PPoPP,

pages 259–260, 2015.

[TDB14] Paul Thomson, Alastair F. Donaldson, and Adam Betts. Concurrency testing

using schedule bounding: An empirical study. In PPoPP, pages 15–28, 2014.

[TDB16] Paul Thomson, Alastair F. Donaldson, and Adam Betts. Concurrency test-

ing using controlled schedulers: An empirical study. ACM Trans. Parallel

Comput., 2(4):23:1–23:37, February 2016.

[W+95] Steven Cameron Woo et al. The SPLASH-2 programs: Characterization and

methodological considerations. In ISCA, pages 24–36, 1995.

[WSG11] Chao Wang, Mahmoud Said, and Aarti Gupta. Coverage guided systematic

concurrency testing. In ICSE, pages 221–230, 2011.

[YCG08] Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A runtime model checker

for multithreaded C programs. Technical Report UUCS-08-004, University

of Utah, 2008.

[YN09] Jie Yu and Satish Narayanasamy. A case for an interleaving constrained

shared-memory multi-processor. In ISCA, pages 325–336, 2009.

[YNPP12] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. Maple: A

coverage-driven testing tool for multithreaded programs. In OOPSLA, pages

485–502, 2012.

[ZKW15] Naling Zhang, Markus Kusano, and Chao Wang. Dynamic partial order

reduction for relaxed memory models. In PLDI, 2015.

202

	Introduction
	Contribution
	Work published during the PhD

	Background
	Systematic concurrency testing
	Concurrent program model
	States
	Transitions
	Schedules
	Shared objects

	Common visible operations

	Empirical Study
	Motivation
	The techniques
	Unbounded depth-first search (DFS)
	Iterative preemption bounding
	Iterative delay bounding
	Controlled random scheduling
	Probabilistic Concurrency Testing
	Upper bounds on number of terminal schedules and probabilistic guarantees

	Maple
	Benchmark Collection
	Details of benchmark suites
	Effort required to apply SCT

	Research questions
	Experimental Method
	Experimental Results
	Venn diagrams
	Cumulative plots
	Results tables
	Benchmark Properties
	Techniques In Detail

	Main findings
	Related work
	Conclusion

	The lazy happens-before relation
	Motivation
	The lazy HBR: an illustrative example

	Background
	The lazy HBR
	Lazy DPOR
	Dynamic partial-order reduction (DPOR)
	From DPOR to lazy DPOR
	Lazy DPOR algorithm

	JESS: an SCT tool for Java programs
	Experimental Evaluation
	Potential reduction offered by lazy HBR
	Comparing lazy and regular HBR caching
	Lazy vs. regular DPOR

	Related work
	Conclusion

	Implementing an SCT tool
	Overview of the tool
	Creating a concurrency test case
	Creating a test harness
	Performing offline JDK instrumentation
	Running the test harness

	Instrumenting Java programs
	The advantages of dynamic bytecode instrumentation
	Use of the ASM library, Java agents and our ClassManager
	Instrumenting Java code and standard libraries via method doubling
	Shadow fields, shadow arrays and shadow objects
	Issues and techniques
	Limitations

	Implementing systematic concurrency testing for Java
	Executor and ExecutionManager
	ThreadData objects and thread serialisation
	The schedule method
	Scheduling strategy
	Schedule example: enter monitor

	Advanced SCT details
	Unified synchronisation operations
	Transitions as ops
	Efficient vector clock operations
	Op class
	Implementing barriers using read and write ops

	Related work
	Conclusion

	Case study: applying SCT to Azure Service Fabric distributed systems
	Introduction to Azure Service Fabric
	The Fabric API

	Actor programming using P#
	P# Fabric model
	Approach
	Architecture
	Replication example
	Test harness
	P# services

	Adara actors
	Motivation
	Adara actors
	Code generation for actor proxies

	Fabric model V2
	Replication version 2

	Experiments
	Test system
	Random schedulers
	Results
	Main findings

	Related work
	Conclusion

	Conclusions and future work
	Contributions
	Future work

	Bibliography

