
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

FuzzFlesh
A multi-language compiler testing tool

Author:
Amber Gorzynski

Supervisor:
Prof. Alastair Donaldson

Submitted in partial fulfillment of the requirements for the MSc degree in Computing of
Imperial College London

September 2023

Abstract

I create FuzzFlesh, a novel compiler testing tool with support for multiple languages.
FuzzFlesh produces a set of executable test cases by fleshing randomly generated con-
trol flow graphs into programs in a target language. Each test case is constructed to
have a deterministic execution path through the control flow graph. If the actual run-
time path differs from the expected path, then a miscompilation bug may be responsible.
This approach specifically targets control flow optimisations, an area of relative compiler
complexity. FuzzFlesh and can be easily applied to a range of languages because the
graph and path generation components are language-independent.

I test the approach on 4 different languages (LLVM IR, Java bytecode, CIL, C) and 10
compiler toolchains including a mix of well-used and more experimental toolchains
(LLVM, GraalVM LLVM, GraalVM Java, HotSpot, CFR, Fernflower, Mono, ILSpy, Clang,
GCC). Among these, FuzzFlesh found two bugs: one in each of the Java decompilers
CFR and Fernflower. The Java decompilers are relatively experimental and must con-
tend with control flow constraints. These results indicate that FuzzFlesh may be most
effective when applied to toolchains that are capable of handling control flow restric-
tions.

I evaluate FuzzFlesh on LLVM IR, which has relatively accessible tooling. I use two met-
rics: (1) compiler code coverage and (2) mutation analysis, defined here as the ability
of the approach to detect and kill synthetic bugs within the compiler. FuzzFlesh achieves
reasonable performance on both metrics, given its simplicity, indicating that it can be a
useful method for testing novel or early-stage languages or compiler toolchains. Further
work could include adding language-specific features to increase the complexity of the
programs, and testing toolchains that contain more complex control flow restrictions.

1

CONTENTS CONTENTS

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Objectives . 3
1.3 Contributions . 3

2 Background 5
2.1 Compilers and their bugs . 5
2.2 Testing approach . 6
2.3 Test program generation and validity . 6
2.4 Test oracle construction . 8
2.5 Test diversity . 9
2.6 Test case reduction . 10
2.7 Test evaluation . 11

3 FuzzFlesh design 13
3.1 Overview . 13
3.2 Graph generation . 15
3.3 Path generation . 17
3.4 Program fleshing . 17
3.5 Test runner . 18
3.6 Test case reduction . 19

4 Program fleshing 21
4.1 Language selection . 21
4.2 LLVM IR . 23
4.3 Java bytecode . 24
4.4 CIL . 26
4.5 C . 27

5 Compiler toolchains 29
5.1 LLVM IR . 29
5.2 Java bytecode . 30
5.3 CIL . 31
5.4 C . 32

6 Evaluation 33
6.1 Bug-finding experiments . 33
6.2 Compiler code coverage . 37
6.3 Mutation analysis . 43

7 Conclusion and further work 45
7.1 Summary of findings . 45
7.2 Areas for further work . 46

2

1 INTRODUCTION

1 Introduction

1.1 Motivation

Compilers are essential software components. Like all other software, they suffer from bugs.
Many testing tools exist, but the complexity of designing test approaches means that each
tool tends to have particular strengths and limitations: they are good at detecting some types
of bugs and not others. In addition, developing testing tools typically takes a significant
amount of programming effort.

In this project I build on Klimis et al. [1] to develop a novel compiler testing approach called
FuzzFlesh that complements existing compiler fuzzing methods. FuzzFlesh randomly gener-
ates two structures: (1) control flow graph ‘skeletons’ and (2) paths through each graph. It
fleshes the graph-path combinations into test programs in a target language. Each program
is equipped with a test oracle that verifies whether the actual runtime path through the graph
matches the expected path. Any difference in the paths indicates a possible miscompilation.
The self-checking nature of the test cases means that tests can be performed directly on a
single compiler, in contrast to other testing methods that require multiple compiler versions.

A key strength of the approach is that most of the toolchain required can be implemented in
a language-independent way. It can therefore be easily extended to multiple languages. The
language-specific part of the toolchain does not take long for an experienced programmer
to implement. This is in contrast to other tools, which require extensive language-specific
engineering to produce test cases. The method could therefore be particularly useful for
applications in novel languages and toolchains.

A further potential advantage of this method is its focus on exercising the control flow op-
timisations within compilers. While some existing compiler testing tools support a range of
control flow constructs, this is not their central focus. And many tools have limited support
for complex control flow because it makes other aspects of testing more difficult. These tools
mainly exercise the parts of the compiler responsible for analysing language and optimisa-
tions that concern statement construction.

1.2 Objectives

This project aims to answer the following research questions:

RQ1 How effective is FuzzFlesh at identifying real compiler bugs?

RQ2 How thoroughly is FuzzFlesh able to test compiler optimisations?

RQ3 How does the efficacy of FuzzFlesh vary across languages and compiler toolchains?

RQ4 To what extent can FuzzFlesh identify bugs that are different from those identified by
other approaches, and what are the drivers of any differences?

RQ5 How feasible is it to extend FuzzFlesh to multiple languages? What are the key con-
straints imposed by having a shared program skeleton generation component of the
fuzzing toolchain?

1.3 Contributions

In this project I have answered the above research questions by:

3

1.3 Contributions 1 INTRODUCTION

• Creating a novel compiler testing toolchain that features shared program generation
across multiple languages, based on control flow graph generation.

• Implementing the toolchain for four distinct languages that are characterised by un-
structured control flow: LLVM IR, Java Bytecode, CIL, and C.1

• Evaluating the performance of the fuzzer using a range of metrics including fuzzing
campaign outcomes for 10 compiler toolchains (LLVM, GraalVM LLVM, GraalVM Java,
HotSpot, CFR, Fernflower, Mono, ILSpy, Clang, GCC), compiler code coverage, and
mutation analysis.

FuzzFlesh was able to identify two distinct bugs within Java decompilers: one each in CFR
and Fernflower. It was also able to achieve a reasonable level of code coverage and mu-
tant kills in the LLVM compiler. FuzzFlesh may therefore be most useful for applications to
compiler toolchains that must implement complex rules relating to control flow.

The remainder of this report is structured as follows:

• Section 2 provides an overview of the literature on compiler testing.

• Section 3 sets out the overall design of FuzzFlesh and discusses the language-independent
components in detail.

• Section 4 discusses the implementation of the language-specific program fleshing ap-
proaches for each language.

• Section 5 describes each compiler toolchain that I tested during the project.

• Section 6 contains an evaluation of FuzzFlesh and reports the bugs in detail along with
other evaluation metrics.

• Section 7 summarises the key findings with respect to each research question that is
set out above in 1.2, and discusses areas of further work.

1In this context, ‘unstructured’ is defined as allowing unrestricted control flow. I note that C could be
described as a structured language due to its support for hierarchically-organised constructs such as nested
loops. However, for the purposes of this work I regard C to be unstructured because goto can be used to
arbitrarily transfer control flow to any part of a program. This is in contrast to Java, for example, which imposes
restrictions on the transfer of control.

4

2 BACKGROUND

2 Background

This section summarises the relevant literature on compiler testing. First, I describe the core
functionality of compilers and the motivation for testing them. Next, I set out the general
framework used for compiler testing. I then review and compare the main approaches to
compiler testing.

2.1 Compilers and their bugs

Compilers are programs that translate code from a source language to a lower level target
language. The compilation process consists of multiple connected phases, each of which
performs a different task.

Figure 1: Compiler structure

The specific design varies across implementations. In general there are three passes:

• Front end (analysis): This contains lexical, syntactic, and semantic analysis. The pur-
pose is to perform checks to ensure that the source code conforms to all language-
specific requirements on syntax and semantics. For example, an important component
of semantic analysis is type checking.

• Middle end (optimisation): Following analysis, the source code is translated to an
intermediate representation that can be machine-independent (e.g. LLVM IR). Optimi-
sations are performed with respect to some goals, such as faster or shorter code. The
amount and nature of optimisations carried out varies extensively across compilers.

• Back end (code generation): Finally, the code generation phase translates the (opti-
mised) intermediate representation to the target language. Depending on the compiler,
this may be a machine-specific language, in which case machine-dependent optimisa-
tions may be performed.

Compilers can contain bugs at any phase. Bugs can be categorised as crash-inducing or
miscompilation bugs. The latter is more insidious: the target code produced by the compiler
is silently incorrect. This can cause unexpected problems in the program at runtime and
can propagate to downstream applications, for example see Sun, Zhang and Su [2]. It is
also difficult to detect because developers tend not to suspect the compiler as a source of
bugs. Compiler testing is therefore an important and widely researched area. Chen et al.
[3] provide a comprehensive review of current state-of-the-art compiler testing approaches,
which covers 85 relevant papers. Note that in this review I focus on empirical compiler
testing and do not cover formal verification. 2

2It is difficult to formally verify compilers because both the inputs and outputs of compilers are arbitrarily
long and complex. There is a lack of formal specification for exactly how compilers should operate, for example
exactly which optimisation passes should be performed (and in what order).

5

2.2 Testing approach 2 BACKGROUND

2.2 Testing approach

Figure 2 shows the core components of compiler testing. The implementation of each com-
ponent varies across test approaches. First, a set of ‘test programs’ is generated. Next, a test
harness feeds the test programs to the compiler of interest and evaluates a ‘test oracle’ on the
resulting output to determine whether the test has passed or failed. Test failure indicates the
presence of a potential compiler bug. Finally, if a bug is detected, then a test case reducer is
used to produce a minimised bug-triggering test case. This is necessary because the original
test program may be large, which makes debugging difficult.

Figure 2: Compiler testing process

I discuss the key design features of compiler testing in Sections 2.3-2.7: test program gener-
ation and validity, test oracle construction, test diversity, test case reduction, and test evalu-
ation.

2.3 Test program generation and validity

Program generation can take three approaches: create full programs from scratch, mutate
existing full programs, or augment a skeleton program with code. The process typically
includes some random component (fuzzing) to generate a large suite of tests in an automated
way.

Ensuring validity of test programs is a key challenge in the production process. A test case is
valid if it avoids language-specific undefined behaviour, for example maintaining type con-
straints throughout a strongly-typed program. An invalid program is of limited usefulness:
at most it will test the initial analytical phases of the compiler. It may be useful for detecting
some crashes, but it cannot detect miscompilation because the compiler will never reach the
code generation stage for an invalid program.

Below I describe the main testing tools in terms of their approach to program generation and
ensuring validity.

2.3.1 Program generation tools

Program generation typically involves using the AST of a language to compose and concate-
nate valid statements. Csmith [4] is a randomised test-case generation tool for C, which is

6

2 BACKGROUND 2.3 Test program generation and validity

able to test for both compiler crashes and ‘wrong-code’ miscompilation bugs. Csmith has two
key program generation features. First, the test-case programs are expressive: they exercise
a variety of C language features including pointers, control-flow (if/else, loops, goto),
and function calls. Second, test-case programs avoid undefined and unspecified behaviour
through static and dynamic code-checking. This enables miscompilation testing, since any
compilation ‘wrong-code’ bug is not caused by undefined behaviour. A limitation of Csmith
is its complexity: extensive code is required to articulate the rules for avoiding undefined
behaviour (the original tool is around 40k lines of C++).

YARPGen [5] is a C/C++ random test-case generator that is designed to improve upon
Csmith in two areas. First, it adopts a simpler approach to ensuring program validity by
using only static analysis during the code generation phase and avoiding dynamic checks.
Second, it contains mechanisms to specifically target and stress-test the compiler’s optimisa-
tion passes. Its key limitation is that the core tool does not support loops (unlike Csmith),
thereby limiting the control flow complexity in the test-case programs.3

2.3.2 Program mutation tools

Program mutation takes an original program and edits it to produce a set of test programs.
The nature of the mutation varies by tool. Equivalence Modulo Input (EMI) is a popular form
of mutation testing. Its core idea is to take an existing real-world program and transform
it by injecting or deleting code in such a way that the modified program is equivalent to
the original program. Le, Afshari and Su [6] create a tool, Orion, that implements this
approach by deleting ‘dead code’ that is never reached during runtime. The EMI approach
is particularly good at testing a compiler’s analysis and optimisation phases. This is because
while the mutated programs are semantically equivalent to one another, they can differ
significantly in terms of control flow structure, which in turn affects the optimisations that
are implemented by the compiler.

Another advantage of program mutation exists with respect to ensuring program validity.
The original program is free from undefined behaviour by design, and the mutations can
also be designed to avoid undefined behaviour: Orion’s mutations involve deleting dead
code, which cannot introduce undefined behaviour. Donaldson et al. [7] create an EMI-
based tool in which the code transformations are designed such that they are not capable of
introducing undefined behaviour. Therefore there is no need for behaviour-checking.

CLsmith [8] and Orange4 [9] are program mutation tools that inject code rather than prun-
ing it. CLsmith is developed from Csmith to test OpenCL compilers.4 OpenCL programs typ-
ically do not contain any dynamically unreachable code, so the tool instead injects ‘dead-by-
construction’ code, i.e. code which is constructed to be dynamically unreachable. Orange4 is
a random test-case generator for C compilers, which repeatedly transforms an initial trivial
program to produce new test cases. Orange4 injects features into reachable code (such as
variable declarations) while ensuring that the overall program behaviour is unaffected. A
key limitation of the Orange4 approach is the restrictions imposed on control flow. In order
to reduce the complexity of ensuring no undefined behaviour is caused by code additions
(given they are in ‘live’ code regions), loops are constructed such that the loop body will

3Note that some limited support for loops exists in the experimental parts of YARPGen’s code, however this
is still restricted.

4OpenCL is a multi-core programming model that allows programmers to utilise parallel processing capabil-
ities of their machine by flagging data-parallelizable parts of a program.

7

2.4 Test oracle construction 2 BACKGROUND

execute at most once.

2.3.3 Skeleton fleshing

Fleshing is a more recent program generation method, and is most relevant for my project.
The test case base is a skeleton program that requires a ‘fleshing’ step in which code is added
to create an executable test program.

Klimis et al. [1] present a novel approach to compiler testing called ‘control flow fleshing’.
This approach involves generating interesting and valid control flow graphs for the SPIR-V
GPU computing language. The graph creation step uses two methods: (1) mining CFGs
from existing test suits, and (2) formal modelling of the SPIR-V language. They do not
create a random generator, although they note that this is a further potential approach to
CFG skeleton production. The graphs are then ‘fleshed’ to produce executable programs
by writing a basic block of code for each graph vertex. CFG fleshing produces programs
with interesting control flow and is therefore able to stress-test compiler optimisations that
relate to control flow. This is a different approach to other tools, which focus on statement
generation and tend to have limited control flow due to the added complexity of undefined
beahviour checking. CFG validity checking is required because SPIR-V has strict restrictions
on the structure of its control flow, although this is more straightforward than the undefined
behaviour checking required for other tools such as Csmith.

Zhang, Sun and Su [10] develop a conceptually similar generation approach called Skeletal
Program Enumeration (SPE). Rather than randomly generating or mutating large programs,
they create a set of small syntactic skeletons based on the C/C++ AST with placeholders for
variables. Placeholders in the skeletons are filled by exhaustively enumerating all possible
variables v ∈ V. The SPE approach is limited because the resulting programs may contain
undefined behaviour, which means only compiler crashes can be detected and not miscom-
pilation bugs.

2.4 Test oracle construction

A test oracle is a mechanism for determining whether the compiler has exhibited any unde-
sired behaviour. Compiler test oracle construction is challenging. In other areas of software
testing it is typically straightforward to specify whether a test has passed or failed. For ex-
ample, a unit test could assert whether a function has returned the expected value for the
given inputs. However, detecting a miscompiled program requires a priori knowledge of the
correct compilation. But the correct compilation can only be known by compiling the pro-
gram. Therefore, a counterfactual for each compiled program is required that can be used
to check for discrepancies. Strategies for constructing test oracles include differential testing
and metamorphic testing.

2.4.1 Differential testing

Differential testing, introduced in McKeeman [11], involves executing a test case on two or
more comparable compilation systems. The systems could be different compilers, different
optimisations within the same compiler, or different versions of the same compiler. If the
resulting output code differs or one compiler crashes, then the input test has exposed a
potential bug.

8

2 BACKGROUND 2.5 Test diversity

Csmith and YARPGen both use differential testing on C and C++ compilers including dif-
ferent versions of GCC and LLVM. CLsmith uses both differential and metamorphic testing:
the differential testing approach exploits the mutli-core nature of the language to compile
on different OpenCL kernels and compare the results.

2.4.2 Metamorphic testing

Metamorphic testing uses metamorphic relations, which specify how changes in the input
source code should affect the output code produced by the compiler [12]. The most com-
monly used relation is the equivalence relation. For example, a change to the input source
code in a ‘dead code’ area should result in no change to the output code; the programs should
be ‘equivalent’. These relations can be used to form test oracles for mutated programs.

The advantage of metamorphic testing over differential testing is that it eliminates the re-
quirement for multiple versions of the same compiler. Tools that use metamorphic testing
include:

• Orion produces equivalent versions of the same program by pruning dead code. It
checks equivalence by running the progams under some defined set of inputs and as-
serting that the output is equal across programs.

• Orange4 transforms programs by adding features in reachable parts of the code in a
semantics-preserving way, for example adding a constant assignment.

• CLsmith injects ‘dead-by-construction’ code into programs. This is dynamically un-
reachable, for example inserting if-statements that will never evaluate to true at run-
time.

• Spirv-fuzz applies a series of semantics-preserving transformations to a source pro-
gram. The transformations include splitting code blocks, adding dead code, and adding
loads / store statements.

Control flow fleshing [1] is of particular relevance to my project. Once CFGs are created as
the program skeleton, a path through the graph is generated by a random traversal. The
skeleton is ‘fleshed’ with code such that program execution should follow this path. The
skeleton is also equipped with code to record the nodes that are actually visited during
runtime. The test oracle is constructed by asserting whether the actual nodes visited during
execution match the expected path. Any difference between the expected and actual path
indicates a possible miscompilation bug.

2.5 Test diversity

Diversity of syntax, semantics, and control flow within and across test programs is necessary
to test all parts of the compiler. Compilers have many configuration options including opti-
misation levels, source languages supported, and target platforms. The search space for bugs
is therefore very large and difficult to search exhaustively. In addition, extending the search
along one dimension can make another dimension more complex. For example, including a
wider range of language features increases the difficulty of ensuring validity.

Groce [13] makes the case for diversity in software testing. Their core argument is that
different types of fuzzers tend to be good at detecting different types of bugs. Therefore,

9

2.6 Test case reduction 2 BACKGROUND

many different types of testing should be used, even if some of those methods are measur-
ably ‘worse’ than others when compared at an aggregate level. The paper sets out three
approaches to improving the level of testing diversity. First, varying test length can detect
different types of bugs: for example, bugs relating to uninitialised values are more likely to
be caught at shorter test lengths, whereas bugs relating to buffer overflows are more likely
to be caught at longer test lengths. Second, swarm testing is a technique in which certain
language features are either oversampled or omitted entirely from some tests. This decreases
the diversity within a test, but increases the diversity across tests. The resulting set of be-
haviours across test cases is more diverse and can detect bugs that are triggered by repeated
behaviour, or that can be ‘suppressed’ by some specific feature. Groce et al. [14] provide fur-
ther detail on this method. Finally, ensemble methods are tools that employ multiple fuzzing
techniques and therefore provide a diversity of approach.

McKeeman [11] also emphasises the importance of testing diversity by distinguishing be-
tween different ‘quality levels’ of tests, which refers to testing targeted at different levels of
the compiler. For example, a ‘low quality’ test for a C compiler could be a random ASCII
string: this is likely to pick up crash bugs in the syntactic level of the compiler, but is unlikely
to probe the the optimisation and code generation level. Ideally, holistic testing should cover
all levels.

Livinskii, Babokin and Regehr [5] also observe that fuzzers tend to reach a ‘saturation point’,
after which they struggle to uncover further bugs. This is caused by the ‘biases’ within
test-case generators that mean they are unable to explore and stress-test all aspects of the
compiler. Therefore, there is always a need for novel and diverse testing approaches.

2.6 Test case reduction

Test case reduction is required to reduce a bug-triggering test case to a size that is conducive
to debugging. Compiler developers request that bug reports are as specific as possible, while
test programs can be arbitrarily long and complex. Test case reduction faces a similar chal-
lenge to program generation: it must avoid undefined behaviour.

Delta debugging [15] is an automated approach to test case reduction, given a passing test
case and a corresponding failing test case. The delta debugging algorithm involves removing
parts of the failing test case and checking whether the modified version still fails. This
is repeated until a ‘minimal test case’ is found, which is defined as a test case in which
removing any single input entity causes the failure to disappear. Once a passing test case
and a minimal failing test case is obtained, isolating the difference between the cases helps
to identify the source of the bug.

C-Reduce [16] is a test case reduction tool developed by the authors of CSmith. The paper
presents three approaches to test case reduction. Two of the methods rely on Csmith to
avoid undefined behaviour; however these methods tend to be unable to produce results
that are small enough to be included in a bug report. The final method applies a series
of reducing transformations to the bug-triggering test case and checks for program validity
using third-party tools KCC and Frama-C. This approach is able to produce sufficiently small
test cases.

Transformation-based program generation can provide a useful basis for test case reduction
and deduplication of bug-triggering test cases. Donaldson et al. [7] design program trans-
formations in the test case generation stage to be as simple and independent as possible.

10

2 BACKGROUND 2.7 Test evaluation

Once a bug-triggering variant program is found, the test case is reduced by searching for a
minimal subsequence of transformations that still trigger the bug. Deduplication is achieved
by grouping similar transformations under ‘types’: bugs triggered by the same ‘type’ of trans-
formation are considered more likely to be duplicates.

Ball and Horwitz [17] present an algorithm that can be used to reduce program control flow
graphs. Program ‘slicing’ with respect to some program output involves removing the parts
of the program that are unrelated; i.e. that can be removed without affecting the program
calculation of that output. The method starts with the ‘slicing point’ (the program output
of interest) and uses a Program Dependence Graph to trace all of the components of the
graph that can influence that output. Other components are discarded. The challenge of
unstructured control flow is that it is difficult to trace how statements such as jump and goto
relate to specific outputs.

2.7 Test evaluation

Compilers typically have extensive test suites,5 and are heavily used ‘in the wild’. Therefore,
one might expect that any bugs that could have a significant impact on real-world code
would be quickly detected and reported by users, leaving only obscure bugs to be found by
automated testing. But while undiscovered bugs may be obscure, they are not necessarily
insignificant.

It is relatively easy to quantify the number of distinct bugs found by fuzzers. However, lim-
ited research exists on the real impact of such bugs. Marcozzi et al. [19] attempt to answer
the question of whether fuzzing is useful by developing and implementing a methodology
to evaluate the impact of historical fuzzer-found bugs on real-world code. The impact of
a bug is defined as the extent to which it alters the semantics of a given application. The
key findings of the paper are that bug-affected compiler code is typically encountered quite
frequently when compiling real-word applications; however, the semantic impact of these
bugs tends to be small in terms of the fraction of application functions affected. Interest-
ingly, the semantic impact of user-found bugs was slightly lower than of fuzzer-found bugs,
which suggests that bugs uncovered ‘in the wild’ are not necessarily more important than
those identified by testing campaigns.

2.7.1 Coverage

Most papers summarising fuzzing campaigns report the headline number of bugs detected
in each compiler under test. Code coverage metrics used to evaluate testing tools include
incremental code coverage and path coverage:

• Incremental code coverage measures the percentage of compiler code that is executed
during testing. The incremental effect of the testing tool is measured by comparing the
code coverage of the compiler’s own testing suite with and without the test tool. The
delta is the incremental code coverage. For most tools, this tends to be fairly small,6

which suggests that the tools are not covering significantly more code. However, de-
spite this fact, these tools have been able to uncover a reasonable number of bugs. This
suggests that incremental percentage covered may not be a useful measure for how the
compiler is being stress-tested.

5For example, see the LLVM test suite [18]
6For example, YARPGen increases code coverage by around 0.01% to 2.83% across various coverage metrics

11

2.7 Test evaluation 2 BACKGROUND

• Path coverage is an alternative metric [4, 5]. This metric is the number of paths
through the compiler code executed as a proportion of all possible paths. It is dif-
ficult to measure because the number of paths through code is potentially infinite;
neither paper attempts to quantify this.

2.7.2 Synthetic bug detection

Mutation analysis and testing are techniques used to evaluate and enhance the quality of
test suites. Jia and Harman [20] provide a survey of the development of mutation testing.
Mutants are synthetic bugs that are deliberately injected into a piece of source code. This
can be done by applying mutation operators, which transform some of the code syntax.
For example, a mutation operator could replace every arithmetic operator with a different
arithmetic operator. The test suite is then run on the mutated code. A ‘mutation score’ is
calculated, which is the number of mutants killed as a percentage of all mutants in the code.
Test suites with a higher mutant score are considered to be more thorough. Andrews, Briand
and Labiche [21] provide evidence that synthetic mutations are a useful proxy for real faults.

Madeyski et al. [22] describes a key challenge of mutation testing: the presence of equivalent
mutants, which are semantically equivalent to the original code, and duplicated mutants,
which are semantically equivalent to each other. Equivalent mutants increase the cost of
mutation testing because tests are run on these mutants even though they are not ‘interesting’
in the sense of not representing distinct potential bugs. Hariri et al. [23] run mutation
testing on LLVM to explore how compiler optimisations affect the cost and results of mutation
testing. They find that the percentage of equivalent and duplicated mutants is higher at
higher optimisation levels, which means that it is important to properly control for these
when interpreting the overall mutation score of a test suite.

In addition to evaluating existing test suites, mutation testing can be used to enhance test
suites by generating new tests. Mutants that are unkilled represent vulnerabilities: new tests
can be created that are designed to kill those outstanding mutants, and added to the test
suite. This is a pre-emptive form of testing that increases coverage before a real bug occurs.
Mutants can also be used to assist debugging: automated tests can produce many failing
test cases that are triggered by the same underlying bug. Holmes and Groce [24] present a
method to identify which test cases are likely to be caused by the same underlying bug based
on the observation that if two failures can be fixed by the same mutant, then it is likely that
they are due to the same underlying bug.

12

3 FUZZFLESH DESIGN

3 FuzzFlesh design

In this section I describe the design of the FuzzFlesh tool. In Section 3.1 I set out an overview
of the full toolchain and a brief description of each component. In Sections 3.2 - 3.6 I describe
each component in further detail.

3.1 Overview

FuzzFlesh aims to test compilers for crash and wrong-code bugs. It generates test cases
by creating CFG skeletons and ‘fleshing’ these into programs in a target language. It also
creates a set of feasible paths through the graph, and a corresponding set of directions that
the program should follow at each branch point in order to traverse a particular path. Each
test program is equipped with code that records the actual path it takes at runtime. If there
is any difference between the expected path and the actual path, then a miscompilation bug
may be responsible. The comparison of the expected and actual path forms the test oracle,
which is self-contained within every test case.

The graph- and path-generation parts of FuzzFlesh are language-independent. The outputs
can be used to generate test programs in multiple target languages. The tool is thereby able
to test a wide range of compiler toolchains.

Figure 3 shows the components of the FuzzFlesh toolchain: (1) Graph Generator, (2) Path
Generator, (3) Flesher, and (4) Runner.

Figure 3: Proposed toolchain

The key components of FuzzFlesh are summarised below, with additional detail on each step
in Sections 3.2 - 3.6

1. Generate graph: Generate a set of interesting and valid CFGs. An example CFG is
shown in Figure 4, with a corresponding C program in Listing 1.

13

3.1 Overview 3 FUZZFLESH DESIGN

CFG definition: A CFG is a directed, rooted graph G with nodes N and edges E, where
each n ∈ N represents a ‘basic block’ of a program, and each e ∈ E represents a possible
path between nodes that the control flow of a program could take.

2. Generate a set of random (valid) paths through the CFG with a corresponding direc-
tions array. For example, a path through the illustrative example could be: [0, 1, 1,
1, 3] with directions array [1, 1, 1, 0]. The program control flow begins at node 0,
evaluates the first condition to true and travels to node 1. It then evaluates the while
condition to true and re-visits node 1 a further two times. Finally, the while condition
evaluates to true and the control flow moves to node 3, which is the exit node.

3. Create a ‘fleshed’ program for each CFG. Fleshing refers to the translation from a graph
structure to a program in a target language. This involves writing blocks of code for
each vertex such that the resulting program follows the structure of the control flow
graph. Each block contains the following components: the relevant branching condi-
tion (if any) for that block, with links to successor vertices; code to read a ‘directions’
array that guides the runtime control flow; and code to record each vertex visited
during runtime in an ‘output’ array that is used during testing.

4. Wrap each pair (path, fleshed CFG) in a program that compares the ‘expected path’
(generated in step 2) with the ‘actual path’ recorded at runtime. This comparison
provides the test oracle: any discrepancy between actual and expected path indicates
a possible miscompilation error. For example, if we run our first random path and
receive output [0, 2, 3] then a possible bug is flagged.

Figure 4: Example CFG

1 int main(){

2 // node 0

3 if(condition){

4 // node 1

5 while(condition) {}

6 }

7 else{

8 //node 2

9 }

10 // node 3

11 return 0;

12 }

Listing 1: Example CFG pseudocode

14

3 FUZZFLESH DESIGN 3.2 Graph generation

The graph and path generation steps are language-independent: the output is a set of data
structures that can be used to create programs in a variety of languages. The program
fleshing and test running steps are language-specific. In this project I have implemented
four distinct language backends, which I discuss further in Section 4.

3.2 Graph generation

The graph generator is the first component of the fleshing tool. Its aim is to create a CFG
that can be used as the basis for a program. The output is a directed graph data structure
that contains nodes and directed edges.7 Ideally, the set of generated graphs should be
‘interesting’ in that they cover a wide range of possible program structures and are able to
trigger control-flow-based optimisations within compilers. The graph generator accepts a
set of input parameters that configure the resulting graph shape. These are summarised in
Table 1.

Parameter Description Type Default
Graph size Number of nodes to include in the graph int 250
Generation approach Generation approach to use int 1
Annotations Whether or not to include annotations bool True
N annotations Number of annotations to include int 0.2 ∗

size

Minimum successors Minimum number of successor nodes to add
to each node when growing the graph

int 1

Maximum successors Maximum number of successor nodes to add
to each node when growing the graph

int 3

Table 1: Graph generation input parameters

I have implemented two graph generation approaches, each of which is adapted from graph
generators provided in Python’s NetworkX package [25]:

• Approach 1: Growing network generation. The graph generator grows a graph using
a breadth-first algorithm. Each node is given a random number of successors, from
0 up to a maximum successor parameter. Once the number of nodes added to the
graph is equal to the graph size, graph generation stops. This constructs a wide tree
graph that contains a path from the entry node to at least one exit node, but does not
have any jumps beyond immediate child nodes. To enhance the graph shape, it can
be optionally annotated by adding edges to a randomly chosen number of nodes in
the graph. The edges may jump forwards (from parent to a node further away from
the root), backwards (from a parent to a node closer to the root), across the graph
to a different branch, or to the node itself. Finally, exit nodes are optionally added
to a randomly selected sample of nodes in the graph. This approach is adapted from
Krapivsky and Redner [26]. The main adaptation is the addition of annotated edges,
which I include to introduce cycles into the CFG so that important program constructs
such as loops and branches are represented.

• Approach 2: Erdős-Rényi generation: The graph generator creates a set of nodes ac-
cording to the graph size parameter. It then randomly connects them via directed

7The graph data structure uses Python’s NetworkX package, which can be easily converted to/from .dot
format.

15

3.2 Graph generation 3 FUZZFLESH DESIGN

edges. A single node is randomly selected as the root node, such that the graph has a
single entry point. In addition, exit nodes are randomly added to a proportion of the
nodes. This approach is adapted from Erdős and Rényi [27] approach to generating
random graphs. The main adaptation is simplifying the node-connecting approach in
order to generate the graphs more quickly.

Figure 5 shows illustrative examples of CFGs produced by each approach that have the same
number of nodes. The blue edges in Approach 1 show the ‘annotations’ that are added to
the underlying tree structure. Approach 1 produces graphs that contain longer chains of
connected nodes, whereas Approach 2 produces more ‘randomly’ shaped graphs, typically
with a smaller number of distinct nodes on any potential path. Approach 2 also produces
graphs that contain more unreachable sub-graphs, because the graph is not grown out from
the root node. For example, Approach 2 may create graphs where some nodes cannot be
reached from the root node, whereas under Approach 1 every node can be reached from
the root node under some set of directions. This difference in graph shapes may result in
different compiler optimisations, for example to remove unreachable (‘dead’) code.

Figure 5: Illustrative examples of CFGs produced by each approach

The generated graphs must be a valid basis for programs, which is achieved by ensuring that
they meet the following conditions:

• There must exist a single entry point to the graph. Most languages require that pro-
grams only have a single entry point.

• There must exist a path from the entry node to an exit node. Exit nodes are defined as
having no child nodes. If no such path exists, then every execution of the graph will
feature an infinite loop.

• Some languages have additional restrictions on control flow. For example, Java does
not allow irreducible control flow. In this project, all language backends allow irre-
ducible control flow, so the CFGs produced are valid. However, in future implementa-
tions it could be necessary to include an additional filtering step to remove CFGs that
are invalid for a particular language.

An alternative graph generation approach would be to harvest them from the wild. Many
tools exist to extract CFGs from existing programs.8 Most of these tools output CFGs as a .dot

8For example Khronos provides a spirv-cfg tool that converts SPIR-V programs to GraphViz dot files, and

16

3 FUZZFLESH DESIGN 3.3 Path generation

file, which is readable by the NetworkX Python package used to manipulate graph objects in
this project. FuzzFlesh could be extended to take such graphs as inputs and either generate
programs directly from them, or mutate them to form additional test cases.

The advantages of using real graphs as a base is that they may be more likely to produce test
cases that are close to ‘realistic’ programs, and therefore may discover bugs that are more
likely to be triggered in the wild. Combining graphs from different sources, or repeating
them, would also provide a greater diversity of test cases. However, since the original pro-
gram (presumably) did not trigger a bug, CFGs directly extracted from real programs may
be less likely to find bugs than those that are randomly generated.

3.3 Path generation

The path generator performs a random traversal of each graph. It records the sequence
of nodes visited on the path, and a corresponding directions array. Multiple paths can be
generated for each graph, and they can be configured by a maximum length input parameter.
Once this length is reached, the path generation algorithm identifies the shortest path to an
exit node and adds this to the path. This stage of the toolchain is language-independent:
paths are output as a data structure containing the path and the directions array.

An improvement to the path generation component would be to randomly instruct the path
generator to identify opportunities to create many iterations of loops, for example where a
node has an edge that returns to itself. This could be useful for triggering bugs that require
repeated execution of the same action.

3.4 Program fleshing

At this stage, the toolchain becomes language-specific. The input is a graph data structure,
and optionally a path. The output is a program in a particular language, which is designed to
write the IDs of each node visited at runtime to an actual output array. This can be compared
with the expected output to provide the test oracle.

The program output by this step is a test program with a single function containing the
fleshed CFG. The function accepts input parameters for the directions array and an empty
output array, which is filled during the program. The function is called from a separate
wrapper program that passes the directions array and evaluates the output (discussed further
in Section 3.5).

The general framework for program fleshing involves traversing the graph and ‘fleshing’ each
node based on its characteristics. First, the start of the program is fleshed with the necessary
code to begin the program, including the declaration of the function and data structures for
the directions and output arrays. Next, the flesher traverses the CFG and fleshes each node
with code that records the node ID in the output array so that the actual path taken through
the program at runtime is recorded. In addition, the flesher checks the number of childeren
that each node has and fleshes it as follows:

• Unconditional nodes with one child pass control directly to that child with the language-
specific equivalent of a goto or jump statement.

• Conditional nodes with two or more children are fleshed with code to read the current
direction from the directions array and evaluate a conditional statement based on this

LLVM provides an equivalent dot-cfg to extract CFGs from LLVM IR programs.

17

3.5 Test runner 3 FUZZFLESH DESIGN

direction. Control is passed to the child node that is associated with the given direction.
All of the languages I have implemented use branching if/else statements for two
children, and switch statements for more than two children.

• Exit nodes with no children contain a return instruction that causes control to exit the
function and return to the calling wrapper program. Test programs may have multiple
exit nodes.

Fleshing is language-specific. I have therefore implemented it as distinct ProgramGenerator
class for each language backend. However, all of these implementations share a common
structure (described above). Within this program generation structure, each of the language
backends contains several language-specific implementation options. These are described in
Section 4.

As a future development of the tool, it would be possible to extract the overall structure as
an abstract ProgramGenerator class containing the high-level algorithm for traversing the
graph and fleshing each node based on the number of children it has. The advantage of this
would be to provide a clear structure for future language implementations to follow. Within
this structure, it would be possible to implement further language-specific program features.
For example, to exercise a wider range of language features, each conditional node could be
fleshed with either a switch or a set of if/else statements (rather than the current set up,
in which the instruction is set based on the number of child nodes). Small language snippets
featuring language-specific operators could also be added to nodes within this structure.
However, it is possible that imposing an overall structure in this way reduces the flexibility
of the program generation approach. For example, adding function calls would require a
more complex approach to flesh the overall program and each called function.

3.5 Test runner

The test runner runs the test and evaluates the test oracle to determine whether a possible
compiler bug is detected. This step is language-specific, and in some cases varies by compiler
toolchain. For example, some languages have both static and JIT compilers, which require
different compilation processes. These are discussed further in Section 5.

The test runner includes linking the generated test case program to a wrapper program,
which performs the following functions:

• Reads the expected output and directions array from an input file, and declares the
required data structures including the actual output array.

• Calls the test case function and passes the directions array and empty actual output
array as parameters. The way in which the function is called can vary by compiler
toolchain, for example the alternative implementations for static and JIT compiler are
discussed in Section 4.

• Compares the expected and actual output arrays after the test case function has re-
turned, and determines whether they are equal. Any necessary clean-up is performed
here, for example memory deallocation in C++.

Due to the language- and compiler-specific nature of this step, there is unlikely to be any fur-
ther potential for useful abstraction. It would theoretically be possible to create a meta-tool
that took many options and deployed tests based on these. This could increase the overall
throughput of tests. However, engineering fuzzing tools in this way tends to make them less

18

3 FUZZFLESH DESIGN 3.6 Test case reduction

flexible in terms of adding new options. I have therefore constructed and maintained distinct
runners for each language.

3.6 Test case reduction

I have not implemented an automated test case reducer in this project due to time con-
straints. However, in the future this would be an important feature to make the simplification
and triage of bug-triggering test cases easier. I conducted manual test reduction for the two
Java decompiler bugs found. Below I set out a systematic approach to test case reduction
that is informed by my manual efforts.

In principle, a significant part of test case reduction could be implemented at the language-
independent graph and path level. The overall test case reduction approach involves taking
a bug-inducing test case, removing parts of it, and checking whether it is still bug-inducing.
If it is, then the smaller test case is put through the same reducer to test whether it can be
reduced further. If it is not, then the original test case is randomly reduced again to test
whether a different reduction is possible.

As an illustrative example, suppose we have a program based on the CFG in Figure 6. The
expected path through the graph is [0, 2, 1, 1, 1, 4, 6, 4, 6, 7], but the actual path at runtime
is [0, 2, 4, 6, 7], which indicates that a bug is present. The program could be reduced in the
following ways:

• Graph reduction: Segments of the graph could be removed, and the program re-
fleshed. This could be guided by information from the program. Figure 7a shows
the illustrative example where the graph has been reduced by removing all nodes that
are never visited, and all edges from remaining nodes to the removed nodes. If this
graph is no longer bug-triggering, then nodes could instead be removed incrementally
from the original graph, starting with exit nodes. Alternatively, non-visited edges could
be removed rather than non-visited nodes. When I manually reduced the Java byte-
code test cases, I found that a minimum set of specific nodes and edges were required
to trigger the bug, not all of which were visited at runtime.

• Path reduction: Parts of the path could be removed by identifying the divergence point
in the path and simplifying the preceding or subsequent path. The simplification could
be implemented by finding the shortest route from the root to the divergence point, or
from the divergence point to an exit node. Figure 7b shows the example graph under
path reduction. Path divergence occurs at path[2], and so the path reduction algorithm
would retain path [0, 2, 1] and find the shortest route from path[3] (node 1) to the
exit. This would give the full path: [0, 2, 1, 4, 5]. The motivation for retaining the full
graph is that it may be necessary to trigger the compiler optimisation that contained
the bug.

• Graph and path reduction: Parts of the graph and path could be removed. In the pre-
vious example, the path could be truncated and all non-visited nodes visited could be
removed. This substantial type of reduction may be less likely to still be bug-triggering,
however it would result in a faster reduction if it was successful.

19

3.6 Test case reduction 3 FUZZFLESH DESIGN

Figure 6: Example CFG
Expected path: [0, 2, 1, 1, 1, 4, 6, 4, 6, 7]

Actual path: [0, 2, 4, 6, 7]

(a) Reduce graph
Expected path: [0, 2, 1, 1, 1, 4, 6, 4, 6, 7]
Actual path: [0, 2, 4, 6, 7]

(b) Reduce path
Expected path: [0, 2, 1, 4, 5]
Actual path: [0, 2, 4, 6, 7]

Figure 7: Reduction approaches

20

4 PROGRAM FLESHING

4 Program fleshing

Section 4.1 gives an overview of the key features of the Flesher component of each language
backend. First, I discuss the motivation for the choice of languages used in this project, and
the general approach to the program generation within the FuzzFlesh toolchain. In Sections
4.2 - 4.5 I discuss the approach for each language in detail and show a simple example
‘fleshed’ node in each language.

4.1 Language selection

I have implemented four language backends for FuzzFlesh: LLVM IR, Java bytecode, Com-
mon Intermediate Language (CIL), and C. This demonstrates that the general FuzzFlesh
framework can be successfully applied to a range of languages. The motivation for select-
ing languages is that they are all widely used languages, they cover a range of compiler
toolchain options, and they include low-level (LLVM IR, Java bytecode, CIL) and high-level
(C) languages.

It is beyond the scope of this project to give a formal definition of control flow within lan-
guages, however I briefly discuss here because it is relevant to several of the languages and
compiler toolchains that I test. The CFG fleshing approach was previously successfully used
to identify bugs in SPIR-V compilers. SPIR-V is a structured control flow graph based lan-
guage. Constructs such as branches and loops are represented using basic blocks of code and
are subject to a strict set of rules about nesting, entry, and exit. These rules are detailed in
Section 2.1.1 of the Khronos SPIR-V language specification [28].

Structured languages do not allow irreducible control flow. Intuitively, irreducible occurs
when a CFG exhibits a cycle that cannot be reduced to a single-entry, single-exit structure. It
is possible to transform irreducible CFGs to reducible CFGs. This is demonstrated in Figure
8. However, this can result in programs that are very long [29]. In contrast, unstructured
control flow graph languages (such as LLVM IR), do not impose rules about the path that
control flow can take; they support unrestricted goto statements that can arbitrarily transfer
control to any part of the program.

(a) Irreducible CFG (b) Reducible CFG

Figure 8: Example of irreducible-to-reducible CFG conversion adapted from [29]

Representing structured constructs as basic blocks in accordance with the rules in SPIR-V

21

4.1 Language selection 4 PROGRAM FLESHING

was previously difficult because the rules were complex and unclear [1]. This may have
resulted in compiler implementations that were not fully compliant, and therefore suffered
from bugs.

LLVM IR, CIL, Java bytecode, and C all allow irreducible control flow. As a result, the Fuz-
zFlesh language backends do not need to perform validity checks on the CFG inputs. In other
language backends it may be necessary to implement a validity checker to ensure that valid
programs are created.

4.1.1 Program options

Each language backend is implemented as a distinct ProgramGenerator class, as discussed
in Section 3.4. These generators share a similar high-level structure, which in theory could
be extracted as an abstract ProgramGenerator parent class. Within the fleshing structure,
there are several language-specific implementation options. These are discussed in more
detail in the language sections below.

One important option that is conceptually common across all languages is the treatment of
the directions array. There are two conceptual options (each with multiple language-specific
implementations):

• Statically unknown: The directions array can be passed to the test case function at
runtime as a parameter from the wrapper program. In this case, the test case is fleshed
to accept the directions array and read directions from it, but these directions are not
known at compile-time. This creates a program in which every node in the graph is
potentially dynamically reachable at run-time, given suitable inputs.

• Statically known: Alternatively, the directions array can be hard-coded into the func-
tion during the fleshing step. The directions are thereby known to the compiler at
compile-time, and can be used to perform optimisations. For example, the compiler
may be able to use this information to infer that some parts of the program are un-
reachable (‘dead’) and remove them as part of a dead code elimination optimisation.

These approaches may result in different compiler optimisations: the more information the
compiler has at compile-time, the more optimisations it is likely to be able to make.

Further work could explore additional options for the treatment of the directions array, in-
cluding node-specific directions arrays. In theory this gives the compiler the same amount of
information for optimisations, but the compiler may find it easier to make inferences about
each node since the information for that node is more concentrated. Additionally, a mixture
of statically known and unknown directions could be used.

Beyond the directions array, an additional option for fleshing would be to randomly in-
clude additional language-specific features within each node. To minimise the requirement
for undefined-behaviour checking, these language snippets could be designed to be self-
contained and non-conflicting. However, any extensive language-specific content increases
the development time, which may undermine the quick-implementation advantage of Fuz-
zFlesh.

22

4 PROGRAM FLESHING 4.2 LLVM IR

4.2 LLVM IR

LLVM Intermediate Representation (LLVM IR) [30] is a platform-independent intermediate
representation language that is used throughout the LLVM compiler infrastructure project.
LLVM is used as the compiler backend for many compiler toolchains, including clang/

clang++, rustc, and swiftc.

LLVM IR has two important language characteristics in common with SPIR-V, which is the
language that the CFG fleshing method was previously successfully applied to in Klimis et
al.[1]

• LLVM IR and SPIR-V are control flow graph based languages: programs are repre-
sented as a series of non-branching basic blocks containing instructions. These basic
blocks are connected by conditions, which form the edges of the graph.

• LLVM IR and SPIR-V use Static Single Assignment (SSA) form, which means that ev-
ery variable is assigned exactly once. This simplifies variable properties: they cannot
change value. As a result, SSA form simplifies optimisations that involve tracking vari-
able dependencies through the program, such as dead code elimination and constant
propagation. For example, constant propagation involves replacing variables with con-
stant values in cases where these are known at compile-time. To illustrate: suppose
a program initialises int x1 = 3 and later initialises int x5 = x1. To apply constant
propagation to x5, the compiler must check that x1 is not reassigned in the intervening
code. Under SSA, the value of x1 cannot be changed. Therefore, no further checks are
required.

LLVM IR was selected as the first language backend implementation for FuzzFlesh because it
shares these language characteristics with SPIR-V. In addition, it is a widely-used language
with an accessible compiler and associated tooling.

The main program fleshing option for LLVM IR test programs is the treatment of the di-
rections array. I have implemented two options. First, the directions array is dynamically
passed to the program at runtime. The advantage of this approach is that test throughput
is higher: for n graphs and m paths, it is only necessary to compile n programs rather than
n · m programs. However, fewer compiler optimisations are likely to be possible since the
compiler does not have any information about which branches may be taken at runtime, nor
which code is unreachable.

Second, the directions array is written in to the program at the fleshing stage, and is therefore
known at compile-time. This gives the compiler more information to support optimisations.
However, the test throughput is reduced due to additional compilation time since every
(graph, path) combination must be statically compiled (as opposed to compiling a single
graph and running it m times, once for each path).

Example fleshed node

Listing 2 shows the fleshed node 1 from the example CFG shown in Figure 4. Note that each
variable is assigned only once under SSA form, which results in fairly verbose code. First,
the node ID is stored in the output array. The correct position in the output array is tracked
by a counter variable that is initialised to 0 at the beginning of the program and incremented
after each write. Next, because this is a branching node, the directions are read from the
dirs array using an index variable dir counter, which is incremented after the direction is
read. Finally, the direction is evaluated to give the branch condition. If the condition is true

23

4.3 Java bytecode 4 PROGRAM FLESHING

(i.e. the current direction is equal to 0), then control returns to the beginning of node 1.
Otherwise, control passes to node 3.

1 1:

2

3 ; store node label in output array

4 %index_1 = load i32 , i32* %counter

5 %output_1 = load i32*, i32** %output

6 %output_1_ptr = getelementptr inbounds i32 , i32* %output_1 , i32 %index_1

7 store i32 1, i32* %output_1_ptr

8

9 ; increment counter

10 %temp_1_1 = add i32 %index_1 , 1

11 store i32 %temp_1_1 , i32* %counter

12

13 ; get directions for node

14 %index_dir_1 = load i32 , i32* %dir_counter

15 %dir_1 = sext i32 %index_dir_1 to i64

16 %dir_1_ptr = getelementptr inbounds [1 x i32], [1 x i32]* %dirs , i64 0, i64 %

dir_1

17 %dir_1_value = load i32 , i32* %dir_1_ptr

18

19 ; increment directions counter

20 %temp_1_2 = add i32 %index_dir_1 , 1

21 store i32 %temp_1_2 , i32* %dir_counter

22

23 ; branch

24 %condition_1 = icmp eq i32 %dir_1_value , 0

25 br i1 %condition_1 , label %1, label %3

Listing 2: LLVM IR branching node with two children

4.3 Java bytecode

Java bytecode is the JVM platform-independent instruction set that is used within class files.
Platform-specific JVMs load, verfiy, and execute bytecode class files using a JIT compiler.
Java bytecode is a stack-based language, unlike LLVM IR or SPIR-V. While Java does not allow
irreducible control flow, Java bytecode does. The bytecode instruction set [31] includes an
unrestricted goto command that can be used to transfer control to anywhere in the program.
This difference in restrictions allows Java bytecode more freedom to express and optimise
code. For example, [32] contains an example where the javac compiler produces bytecode
that ‘may be surprising and counterintuitive to the Java developer... goto opcodes are used
to help control flow’.

There is no native support for writing textual Java bytecode. Instead, I use Jasmin [33],
which is an assembler for the JVM that converts textual bytecode to class files. Other frame-
works for writing Java bytecode exist, however Jasmin appears to be the most minimal: its
instruction set is identical to the JVM instruction set, and it does not provide any helper
functionality to produce bytecode. I chose Jasmin as the simplest approach for the project
to minimise the risk that my programs test the third-party assembler, rather than the JIT
compiler.

There are two sets of options within the Java bytecode program flesher: the treatment of the
directions array, and the way in which the test case is called from the wrapper.

Directions

24

4 PROGRAM FLESHING 4.3 Java bytecode

The directions array can either be dynamically passed to the test case as a function parameter,
or it can be hard-coded into the test program. If the directions array is unknown, then it
is possible that the dynamic optimiser will not have enough information to perform some
optimisations (since the next time the function is called, it is theoretically possible that a
different directions array is passed).

Alternatively, if the directions array is known, this gives the JIT compiler more information
to make inferences about the program structure, which can in turn enable a wider range of
optimisations. Similarly to LLVM IR, the disadvantage of hard-coding the directions array
within each test case is an increase in the number of programs that must be compiled to
class files. However, a longer compile-time is less problematic for Java bytecode because
optimisations are not performed at compile-time, which means the absolute time taken is
shorter than for LLVM IR.

Wrapper

The second program fleshing option for Java bytecode is the way in which the test case is
called from the wrapper program. I have implemented two approaches:

• Dynamic class loading: In this approach, I create a TestCaseI interface that includes
a testCase function, which is implemented by all test case programs generated by
the flesher. The Java wrapper program creates an instance of TestCaseI and uses
reflection to load specific named test cases at runtime. The advantage of this approach
is that the wrapper must only be compiled once. However, the use of reflection may
limit the ability of the JIT compiler to perform optimisations.

• Static test case compilation: In this approach, I create a TestCase object in the wrapper
and call a testCase member function. I compile the wrapper and test case separately
for each test case by adding the test case to the Java classpath. This results in a longer
compile time than the first approach since the wrapper must be compiled multiple
times, however as noted above this does not have a large absolute impact due to the
relatively fast Java compile time.

Example fleshed node

Listing 3 shows the fleshed node 1 from the example CFG shown in Figure 4. Java bytecode
uses stack operations, and stores the output and directions arrays in local variables. For
example, the output array is stored in local variable 2, and the output index is stored in local
variable 3. The instructions aload 2 and iload 3 load the output array reference and index
onto the stack; sipush 1 and iastore 1 write the node number 1 to the output array. This
is how the program keeps a record of which nodes were visited at runtime.

1 block_1:

2

3 ; store node label in output array

4 aload_2

5 iload_3

6 sipush 1

7 iastore

8

9 ; increment counter

10 iinc 3 1

11

12 ; get directions for node

13 aload_1

25

4.4 CIL 4 PROGRAM FLESHING

14 iload 4

15 iaload

16

17 ; increment directions counter

18 iinc 4 1

19

20 ; branch

21 ifeq block_1

22 goto block_3

Listing 3: Java bytecode branching node with two children

4.4 CIL

CIL, also known as MSIL, is a platform-independent intermediate representation language
used within the Microsoft .NET framework to represent C#, F#, and Visual Basic. It is a
stack-based language with a similar instruction set to Java bytecode. However, unlike Java,
both CIL and C# allow the use of irreducible control flow.

The main program fleshing option is whether the directions array is passed to the program as
a parameter or hard-coded within the test function body. The conceptual issues are similar to
those found in Java bytecode (Section4.3) due to the similarity of the languages. However,
in practice I found that CIL compilation took a long time due to the startup time for the
.NET runtime environment. As a result, the additional compilation time required by the
hard-coded directions array had a material impact on the test throughput.

Example fleshed node

Listing 4 shows the fleshed node 1 from the example CFG shown in Figure 4. CIL uses stack
operations similarly to Java bytecode. Branching works by pushing the current direction
onto the stack (in lines 18 - 20), and evaluating whether it is equal to zero (in lines 29 -
30). If the condition evaluates to false, then program control moves to node 3. Otherwise,
control cycles back to the beginning of node 1.

1 block_1:

2

3 // store node label in output array

4 ldarg.2

5 ldind.ref

6 ldloc.1

7 ldc.i4 1

8 stelem.i4

9

10 // increment output counter

11 ldloc.1

12 ldc.i4.1

13 add

14 stloc.1

15

16

17 // push node direction

18 ldarg.1

19 ldloc.0

20 ldelem.i4

21

22 // increment directions counter

23 ldloc.0

26

4 PROGRAM FLESHING 4.5 C

24 ldc.i4.1

25 add

26 stloc.0

27

28 // branch

29 ldc.i4.0

30 ceq

31 brfalse block_2

32 br block_1

Listing 4: CIL branching node with two children

4.5 C

C is a high-level language. It allows irreducible control flow, which can be implemented
via arbitrary goto statements. This language backend was the final implementation within
the project. It took approximately only 6 hours to code and test, including several fleshing
options. This demonstrates the ease with which the FuzzFlesh can be extended to additional
languages and toolchains.

The main fleshing option in the C program is the treatment of the directions array. The
additional language features available in C relative to low-level languages provide additional
implementation options.

Similarly to the low-level languages, I implement a directions array that is passed to the test
program as a parameter. In this context, it is unknown to the static compiler at compile-time,
which limits the extent of possible optimisations.

There are multiple implementations of hard-coding the directions array into the test pro-
gram. I use two slightly different options:

• Directions are known at compile time: I use an integer array that is initialised at the
beginning of the program with the directions array values. This is analogous to the
approach used in the low-level language implementations.

• Directions are known and unchangeable at compile time: I also implement a constant
integer array, which provides the compiler with the information that this array will
not be changed throughout the course of the program. From manual inspection of C-
to-LLVM IR translation, const variables are sometimes translated differently and may
therefore enable different levels of optimisation.

Example fleshed node

Listing 5 shows the fleshed node 1 from the example CFG shown in Figure 4. Since C is
a high level language it is much easier to understand the statements, but the format is the
same as the previous examples. The node ID is written to the output array at the current
index, which is then incremented. The current direction is evaluated: if it is true, then
control returns to the beginning of block 1. Otherwise, control moves to node 3.

1 block_1:

2

3 // store visited node to output array

4 actual_output[out_counter ++] = 1;

5

6 if(directions[dir_counter ++] == 0){

7 goto block_1;

27

4.5 C 4 PROGRAM FLESHING

8 }

9 else{

10 goto block_3;

11 }

Listing 5: C branching node with two children

28

5 COMPILER TOOLCHAINS

5 Compiler toolchains

The Runner component of the toolchain calls the fleshed program from a wrapper program
and executes it for a range of compiler toolchains.

I have tested most of the languages on multiple compiler toolchains. These can be cate-
gorised as static compilers, JIT compilers, and decompilers.

• Static compilers compile a program to machine code in full before execution. Opti-
misations are applied at this stage based on analysis of the program structure. Opti-
misations aim to increase the performance of a program, for example with respect to
execution speed or program size. For example, a common optimisation is the removal
of ‘dead code’ that can never be reached during program execution, e.g. anything that
falls within a while(false){...} statement. This reduces the size of the code, and
can simplify the program to enable more advanced optimisations.

• JIT compilers compile code to machine code during execution. Implementations vary,
but optimisations are typically performed at runtime. The advantage of this is that
optimisations can be based on runtime profiling information. To trigger optimisations,
code must usually be executed multiple times so that profiling information is available.
I therefore include a loop within the wrapper program that runs each test multiple
times for JIT compiler testing, where the number of loop iterations is passed as a test
parameter.

• Decompilers are available for many languages. The purpose of these tools is to recon-
struct source code corresponding to compiled code. This can be useful for detecting
security vulnerabilities, or program analysis in cases where the source code is unavail-
able. Decompilation is a difficult process because there can be multiple valid ways to
decompile a given piece of code. For example, a low-level switch statement could be
represented by a high-level switch statement or mutliple if/else statements. In addi-
tion, compiled code can be heavily altered through compiler optimisations, and infor-
mation can be lost during compilation, for example variable names and code structure.
This can make it difficult for the decompiler to reconstruct the original code.

5.1 LLVM IR

The LLVM project includes clang/clang++, which is the C/C++ compiler frontend for the
LLVM compiler toolchain. I therefore use a wrapper program written in C++ to call the
LLVM IR test case function. The motivation for using a different language for the wrapper is
that C++ provides useful abstractions for reading and writing from/to files.

I have tested two LLVM compiler toolchains: a static compiler and a JIT compiler.

5.1.1 Static compilers

LLVM IR can be statically compiled using the LLVM toolchain. Optimisations are applied
to the LLVM IR at this stage via the LLVM opt tool [34]. Examples of optimisations include
simplifycfg, which eliminates ‘dead’ code (that is unreachable during runtime) and merges
basic blocks that only have one predecessor or successor [35]. In addition, LLVM defines
several pre-set optimisation levels: O1, O2, O3, Oz, and Os. Each of these involves applying a
different set of optimisations. FuzzFlesh can either accept a specific optimisation, or choose
a random default optimisation level.

29

5.2 Java bytecode 5 COMPILER TOOLCHAINS

5.1.2 JIT compilers

Several JIT compilers are available for LLVM IR, including the LLVM toolchain lli tool and
GraalVM LLVM.9 GraalVM LLVM uses a similar conceptual apporach to the Java HotSpot
compiler which is described in detail in Section 5.2.1: it initially interprets LLVM bitcode,
collects profiling information, and then dynamically compiles and optimises parts of the
program that are ‘hot’. The C++ wrapper for this toolchain therefore calls the LLVM IR test
case function repeatedly in order to generate profiling information.

The preferred file format for GraalVM LLVM is a native executable with embedded bitcode.10

GraalVM LLVM comes with a pre-built LLVM toolchain including clang. I found that it was
necessary to produce the executables using this toolchain in order for GraalVM to accept the
files without errors. This compilation process took a relatively long time to execute, and
therefore limited the testing througput for this toolchain. I discuss this further in Section
6.1.

The C++ wrapper for this toolchain calls the LLVM IR test case function repeatedly in order
to generate profiling information.

5.2 Java bytecode

The bytecode wrapper is implemented in Java. It calls the test case function repeatedly
so that the JIT compiler has enough information to make profile-based optimisations. The
number of function repetitions is an input parameter to the program.

5.2.1 JIT compilers

I test the HotSpot JIT compiler, which works as follows:11 initially, when a program is run
it is interpreted rather than compiled. Although interpretation is slower than executing
compiled code, it is the quickest way to start up the program execution, and is suitable for
short programs that only execute once. If the program runs for some time, then the compiler
gathers profiling information to identify ‘hot spots’: parts of the program that are repeatedly
executed. These hot spots are compiled using a tiered approach that implements increasingly
aggressive optimisations based on real-time profiling data. Compiled code is cached so that
it can be used in future function calls, while infrequently-used parts of the code continue to
be interpreted. Optimisations can include method inlining and loop unrolling. Interestingly,
the compiler may also de-optimise and re-optimise code. This can occur if the compiler has
performed an optimisation based on an assumption that subsequently transpires to be false,
for example if the program behaviour changes.

I also test the GraalVM JIT compiler, which operates in a similar way to the HotSpot JIT
compiler [37].

9The GraalVM LLVM compiler is also called lli, but has slightly different functionality to the LLVM lli tool
10Although GraalVM documentation states that the GraalVM LLVM runtime can execute plain bitcode files,

I found that it would not execute the bitcode files produced by FuzzFlesh, which LLVM’s JIT compiler lli was
able to execute.

11See [36] for more information on the HotSpot compiler.

30

5 COMPILER TOOLCHAINS 5.3 CIL

5.2.2 Decompilers

In addition to JIT compilers, I also test several Java decompiler toolchains. These are some-
what ‘experimental’, and therefore are more likely to contain bugs or to be unable to handle
some class files. I test two Java decompilers: Class File Reader (CFR) [38] and Fernflower
[39]. I selected these decompilers based on Harrand et al. [40] and Mauthe et al. [41],
which evaluate the performance of Java decompilers on a range of class files. CFG and
Fernflower are two of the highest performing decompilers.

CFR is a Java decompiler written in Java 6, which can decompile modern Java features up
to Java 14 and will attempt to decompile class files from other JVM languages into Java.
It works by detecting known Java bytecode patterns from known compilers such as javac.
Fernflower is the built-in decompiler used by IntelliJ. Both decompilers describe themselves
as ‘under development’, and note that they will not be able to successfully decompile all class
files. Nevertheless, they welcome bug reports and suggestions for improvement.

The testing process for the Java decompilers is as follows:

• First, I generate a Java bytecode program and compile it to a class file.

• Next, I use the decompiler to decompile the class file to a Java source program. At this
stage, the decompiler may fail and throw an exception if it encounters Java bytecode
that it is unable to process.

• If the decompilation was able to produce a Java source program, I re-compile it to a
class file.

• Finally, I execute the de- and re-compiled program using the JVM. If the program
crashes or does not give the expected runtime output, then a possible bug is flagged.

In some cases, it may be inappropriate to test a Java decompiler using test cases that were
originally written in Java bytecode rather than Java. For example, it is possible that a Java
bytecode program does not have a corresponding representation in Java due to differences
in restrictions between the languages. However, all test cases used in this project can be
compiled to class files and executed by a JVM, which suggests that a decompiler should be
able to handle them. Additionally, since decompilers can be used for security purposes to
inspect potentially malicious class files, it is useful to understand any areas of weakness in
decompilation. At a minimum, the decompiler should provide an informative error message
stating which part of the bytecode it was unable to process.

5.3 CIL

I implement a wrapper program in C#. Similarly to the Java wrapper, it calls the test case
function repeatedly so that the JIT compiler has enough information to make profile-based
optimisations. The number of function repetitions is an input parameter to the program.

I test the Mono compiler, which is a JIT compiler that performs profile-guided optimisations
at runtime. In addition, I test the ILSpy C# decompiler.

5.3.1 JIT compilers

Mono [42] is an open source implementation of Microsof’s .NET framework. It supports
compilation on a range of architectures and operating systems including MacOS. Mono con-

31

5.4 C 5 COMPILER TOOLCHAINS

sists of an interpreter and an optimising JIT compiler, similarly to HotSpot and GraalVM.
Mono also supports a slower compilation engine based on LLVM,12 which is slower to run
but produces more optmised code. I found that the ‘fast’ compiler ran slowly on my machine,
and so I did not test the slower Mono LLVM compiler during this project, but it could be an
interesting area for further work.

5.3.2 Decompilers

ILSpy [43] is an open source .NET decompiler that decompiles .exe and .dll files to C#. Un-
like the Java decompilers, it does not have to convert irreducible control flow to a reducible
graph, since C# does not have the same control flow restrictions as Java. I use a similar de-
and re-compilation process as set out in Section 5.2.2.

5.4 C

C is typically statically compiled. Many different compiler toolchains exist, which use a
similar structure to the LLVM compiler toolchain described in Section 5.1. For example,
different optimisation levels can be passed to the compiler at compile-time. I test clang and
gcc, which are widely-used compiler toolchains.

5.4.1 Static compilers

clang is part of the Clang project [44], which is the C language family front-end for the
LLVM project. Code compiled by clang is transformed to LLVM IR and optimised using the
LLVM optimisations described in Section 5.1.1. It is possible to pass default optimisation
levels to clang: O1, O2, O3, Oz, and Os. However, it is not possible to pass specific individual
optimisations to clang as it is with the LLVM opt tool.

gcc is part of the GNU Compiler Collection [45]. Optimisation levels are the same as for
clang. Detail on which specific optimisations are invoked at each level can be found at [46].

12See [42] for additional detail

32

6 EVALUATION

6 Evaluation

In this Section I empirically evaluate FuzzFlesh. In Section 6.1 I describe the fuzzing cam-
paign design and report the bugs identified. In Section 6.2 I evaluate the efficacy of Fuz-
zFlesh on the LLVM toolchain to determine code coverage of the optimisation ‘middle-end’
of the compiler. In Section 6.3 I report performance in detecting synthetic bugs injected
into the LLVM toolchain. In principle it would be possible to perform coverage and muta-
tion analysis on other toolchains, however given time constraints and tool availability I have
focused on LLVM.13

In Section 7 I use the evaluation results to address the research questions defined in Sec-
tion 1.

6.1 Bug-finding experiments

FuzzFlesh was able to identify two possible bugs: one in the Java decompiler CFR, and
another in the Java decompiler Fernflower. Java decompilers aim to reverse-engineer Java
source code from class files, which is useful for security analysis and debugging in cases
where the original source code is not available. See Section 5.2.2 for a more detailed de-
scription of these decompilers. I have reported both of these bugs. The CFR bug has been
confirmed and a fix is in process, while the Fernflower potential bug is being investigated.
Below I describe the experimental set-up across all toolchains, and then provide further
detail on each bug.

6.1.1 Fuzzing campaign

I conducted fuzzing campaigns on a range of languages and compiler toolchains through-
out this project, with the aim of identifying potential compiler crash- or wrong-code-bugs.
Table 2 describes the full set of languages and toolchains tested.

Language Toolchain Type Version Architecture OS

LLVM
LLVM Static 18.0.0 arm64 macOS
LLVM Static 14.0.0 x86 64 Ubuntu 22.04
GraalVM JIT 15.0.614 arm64 macOS

Java bytecode

HotSpot JIT 17.0.8 x86 64 Ubuntu 22.04
GraalVM JIT 17.0.8+9.1 x86 64 Ubuntu 22.04
CFR Decompiler 0.152 x86 64 Ubuntu 22.04
Fernflower Decompiler 232.9559.62 x86 64 Ubuntu 22.04

CIL
Mono JIT 6.12.0.199 arm64 macOS
ILSpy Decompiler 8.1.0.7455 arm64 macOS

C
clang Static 14.0.0 x86 64 Ubuntu 22.04
gcc Static 11.4.0 x86 64 Ubuntu 22.04

Table 2: Tested toolchains

Table 3 reports the average test throughput and approximate total testing time for the main
compiler toolchains and test configurations that I tested throughout the project. Throughput

13For example, JITWatch is an Oracle tool for observing which methods are being compiled in a program
(rather than interpreted), and which optimisations are being applied.

14Oracle GraalVM Native 23.0.1

33

6.1 Bug-finding experiments 6 EVALUATION

varied significantly for different toolchains. GraalVM LLVM and Mono were particularly
slow: this may have been because they were running on a less powerful machine. I was
limited on which machine I could run these toolchains on due to difficulties installing and
compiling.15 This machine configuration was mainly motivated by ease of implementation.

Language Toolchain OS Directions Throughput Total test time

LLVM
LLVM Ubuntu 22.04 Known 13,700 120
LLVM Ubuntu 22.04 Unknown 82,400 120
GraalVM macOS Known 500 48

Java bytecode

HotSpot Ubuntu 22.04 Known 3,750 120
HotSpot Ubuntu 22.04 Unknown 3,950 120
CFR Ubuntu 22.04 Known 1,000 48
Fernflower Ubuntu 22.04 Known 1,100 48

CIL
Mono macOS Unknown 250 48
ILSpy macOS Unknown 250 48

C
Clang Ubuntu 22.04 Known 2,000 60
Gcc Ubuntu 22.04 Known 450 60

Table 3: Throughput (tests per hour) and total test time (hours)

Within toolchains, as previously discussed the test configurations with known directions ar-
ray have a lower throughput than those with an unknown directions array. For example, the
LLVM testing throughput is around 6 times higher for unknown directions than known. This
is due to the additional compilation time required for known directions.16 The difference
in throughput is much lower for known / unknown directions under the HotSpot compiler
because programs are not statically compiled.

The different approximate time estimates for each compiler toolchain were in part driven by
machine availability: I had access to multiple Ubuntu machines and was therefore able to
conduct a longer testing campaign than those running on macOS. The shorter times for CFR
and Fernflower reflect the fact that the range of tests that could run without triggering the
bugs described below was more limited.

The difference in throughput and resource availability most severely affected GraalVM LLVM,
which had a low throughput and only a single machine available for testing. As a result, it is
likely that the fuzzing campaign that I conducted throughout this project was not sufficiently
rigorous to thoroughly test it.

6.1.2 Bug 1: CFR nested switch

FuzzFlesh identified the first bug in CFR version 0.152. Listing 6 contains the main method
from the bug-triggering test case, and Figure 9 shows the corresponding control flow graph.
I manually reduced the test case from its original form, including removing the code re-
lating to the directions array and output array since these were not necessary to trigger
the bug. Decompiling this class leads to an error message that it cannot be decompiled.

15GraalVM LLVM in particular had difficulty accepting LLVM IR programs compiled in different ways, and so
I limited testing to one macOS machine where it functioned most reliably.

16Since for m graphs and n paths, unknown directions only requires the compilation of m programs. Each
path is passed to the program at runtime as a parameter. In contrast, known directions are hard-coded into the
program, which results in m·n test programs that must be compiled.

34

6 EVALUATION 6.1 Bug-finding experiments

1 .method public static main([Ljava/

lang/String ;)V

2 .limit stack 2

3 block_0:

4 bipush 1

5 lookupswitch

6 0: block_1

7 1: block_2

8 default : block_1

9 block_1:

10 bipush 1

11 lookupswitch

12 0: block_3

13 1: block_4

14 default : block_3

15 block_2:

16 return

17 block_3:

18 return

19 block_4:

20 return

21 .end method

Listing 6: CFR bug-triggering test

Figure 9: CFR bug-triggering CFG

I reported this bug and received a response from the CFR creator.17 They explained that
there were two underlying problems: first, ‘an accounting failure caused by an unexpected
rewrite’ within the processing of the switch statements. Once this bug was fixed, CFR was
able to decompile the test case but produced incorrect Java due to an additional bug. The
source of the second, more serious, bug is the nested lookupswitch statements in blocks 0
and 1. Compiling Java with javac would result in the branches of the second switch being
contained within the body of the first, whereas FuzzFlesh writes the blocks separately. This
unexpected bytecode formulation confused CFR. Its usual approach in such cases is employ
heuristics to untangle switch statements, however these did not work properly in this case.

The CFR creator commented he would expect that CFR should be able to cope with this
program, and he is investigating the issue further. However, in general, CFR will likely not
be able to decompile all class files that originate from Java bytecode perfectly, particularly
those containing obfuscated control flow.

6.1.3 Bug 2: Fernflower irreducible control flow

FuzzFlesh identified a second bug in another decompiler, Fernflower, version 232.9559.62.
Fernflower takes a different approach to decompilation than CFR: rather than looking for
bytecode patterns emitted by known javac compilers, it attempts to determine whether the
given class file can be represented in Java. It was therefore able to correctly decompile the
class file corresponding to Listing 6.

However, it was not able to decompile the test case shown in Listing 7. The bug is still
being investigated.18 The source of the issue is likely to be that the CFG, shown in Figure
10, contains irreducible control flow, which is permitted in Java bytecode but not in Java.
Irreducible control flow can be converted to reducible control flow using several techniques,

17https://github.com/leibnitz27/cfr/issues/348
18https://youtrack.jetbrains.com/issue/IDEA-331720

35

https://github.com/leibnitz27/cfr/issues/348
https://youtrack.jetbrains.com/issue/IDEA-331720

6.1 Bug-finding experiments 6 EVALUATION

as noted in Section 4.1. Indeed, the removal of any edge, node or statement from the CFG
resulted in a program that Fernflower was able to decompile, even those still containing
irreducible control flow. For example, the decompiler worked correctly when I removed the
statements on lines 12 and 13, which simply push and pop a constant to/from the stack.

1 .method public static main([Ljava

/lang/String ;)V

2 .limit stack 2

3 block_0:

4 bipush 2

5 ifeq block_1

6 goto block_3

7 block_1:

8 bipush 0

9 ifeq block_2

10 goto block_1

11 block_2:

12 bipush 2

13 pop

14 goto block_3

15 block_3:

16 bipush 0

17 lookupswitch

18 0: block_4

19 1: block_1

20 2: block_2

21 default : block_4

22 block_4:

23 return

24 .end method

25

Listing 7: Fernflower bug-triggering test

Figure 10: Fernflower bug-triggering CFG

The creator of Vineflower, another Java decompiler that is a fork of Fernflower, commented
that they would expect Fernflower to be able to decompile this test case since part of its orig-
inal purpose was to deobfuscate. The ability to deobfuscate is important if the decompiler is
used for security purposes, such as examining class files from potentially malicious sources.

6.1.4 Bug discussion

Both bugs relate to a similar area: the decompilation of a language that allows irreducible
control flow to a language that does not. While decompilers are generally not able to de-
compile every class file,19 it is still useful to identify bugs so that the tools can be improved,
particularly for use in security analysis.

The fleshing approach was also previously able to identify bugs in SPIR-V compilers. While
SPIR-V compilers and Java decompilers clearly have many differences, they must both im-
plement complex rules to handle control flow restrictions. The (de)compilers may struggle
to implement these rules correctly: specifically, Java decompilers may struggle to implement
efficient algorithms to convert irreducible-to-reducible control flow, even though it is theo-
retically possible. This is particularly the case for basic blocks that contain more complex
statements, or when the CFG contains a more complex structure than the most simple ir-
reducible cycle. Interestingly, FuzzFlesh did not find any bugs in ILSpy, which is the third

19For example, the CFR FAQ page states that it is likely that edge cases exist that it will struggle to deal with.

36

6 EVALUATION 6.2 Compiler code coverage

decompiler that I tested. However, the throughput for ILSpy tests was particularly low, and
so I was not able to test it as thoroughly as the Java decompilers. ILSpy decompiles from a
binary executable to C#, which allows irreducible control flow. This suggests that FuzzFlesh
is most useful for testing compiler toolchains that must handle restrictions relating to control
flow.

FuzzFlesh was not able to identify any bugs in the majority of compiler toolchains tested.
This may be because they are relatively well-used, and so do not contain many bugs, or
because the test programs produced are too simple to trigger bugs. I explore whether the
test programs are able to reach into the optimising parts of compilers in Sections 6.2 and
6.3, and discuss potential areas for development in Section 7.

6.2 Compiler code coverage

Compiler code coverage measures the proportion of the compiler source code that is exe-
cuted (‘covered’) during program compilation. Coverage metrics provide evidence on the
thoroughness of the testing in terms of the extent to which FuzzFlesh is exercising different
parts of the compiler. This information can be used to understand whether the test programs
produced by FuzzFlesh are too simple to trigger optimisations. For example, if FuzzFlesh
does not cover a particular area of an optimisation file, this indicates that the program for-
mat is not able to trigger that optimisation.

I evaluate the extent to which FuzzFlesh is able to cover compiler optimisations because this
is the area that the approach is specifically targeted at.

6.2.1 Methodology

For the evaluation, I only consider the LLVM toolchain and do not test coverage of other
languages or toolchains. This is because the process of instrumenting compiler source code
with coverage is not straightforward.20

The methodology for estimating LLVM coverage is as follows:

• First, I compile LLVM with coverage instrumentation using gcov [47].

• Next, I use the instrumented LLVM to compile and optimise test cases. This produces
coverage information for each code file within the compiler. The coverage information
includes details of which specific lines and functions were executed during the test
compilation.

• Finally, I process the raw information that is produced by gcov using lcov, which
is a graphical report-producing front-end for gcov. Coverage can be calculated in
aggregate over multiple tests to provide a picture of typical compiler coverage under
repeated testing.

I use two comparators to evaluate FuzzFlesh’s coverage:

20Building compilers with coverage involves instrumenting them using third-party tooling. LLVM has built-
in coverage tooling (llvm-cov), however I was not able to build the opt tool using this because the memory
requirements at the linking stage exceeded my available memory. The large memory requirements at the build
stage arise because the instrumentation process bloats the compiler files. In addition, the third-party tooling
does not reliably work with all computer configurations: I attempted several configurations before successfully
building LLVM with coverage on Ubuntu 18.04.

37

6.2 Compiler code coverage 6 EVALUATION

• Csmith is a well-used random generator of C/C++ programs. The programs can be
easily compiled through the LLVM toolchain. In addition, they support arbitrary goto

statements which lead to interesting control flow.

• The LLVM test suite contains whole programs that are mainly written in C/C++.
Whole program test outputs are compared to a reference output to ensure they are
compiling correctly. LLVM also has unit and regression tests, which are more targetted
pieces of LLVM IR code. Unit tests are primarily intended to test data structures, and
so are not a particularly relevant comparator for FuzzFlesh. Regression tests aim to
test the analysis and transform passes on LLVM IR, and so these would be a useful
comparator. However, I was not able to build LLVM with coverage including the unit
and regression tests due to memory constraints,21 so I have not included these.

LLVM optimisations can be applied in multiple ways:

• The opt tool can be used to apply individual optimisations or combinations of optimisa-
tions through default levels: O1, O2, O3, Os, and Oz. O1 - O3 are increasingly aggressive
optimisation levels, while Os optimises for output code size and Oz optimises for code
speed. opt operates on LLVM IR (i.e. it is not possible to use opt to optimise a C
program).

• clang/clang++ can also be used to invoke optimisations through the same default
levels as opt. LLVM IR code can be compiled direcly by clang/clang++, so it can be
tested by the FuzzFlesh LLVM IR language backend as well as the C language backend.
However, specific optimisations cannot be passed to clang.

LLVM optimisations are implemented as a series of ‘Analysis’ and ‘Transform’ passes that per-
form operations on a program [35]. Analysis passes gather information about the program
to inform Transform passes, which apply specific transformations to the code. The optimisa-
tions are implemented as a set of C++ files contained within the LLVM code base. Transform
pass files are grouped into sub-categories including AggressiveInstCombine, Scalar, and Vec-
torize. I measure the code coverage of FuzzFlesh, Csmith, and the LLVM test suite on the
Transform passes, and report the results below.

6.2.2 Overall coverage results

I test two main configurations of invoking optimisations, one each through clang and opt.
For all tests, I measure the code coverage from running 1,000 FuzzFlesh tests, 1,000 Csmith
tests, and the LLVM whole-program test suite.22

clang results

Table 5 shows the code coverage results for the overall coverage of the LLVM compiler and
overall coverage of a subset of transformation categories. These tests were compiled using
clang++ under the O3 optimisation flag, which performs the most intensive optimisations. I
compare the coverage results from FuzzFlesh tests produced using the C language backend,

21See footnote 20
22I note that this may not be a fully appropriate comparison because of the different test throughputs for Fuz-

zFlesh and Csmith: if one testing approach takes much longer to compile then this may not be a fair comparison
of their testing ability. An alternative approach would be to give each tool a time budget (e.g. of 6 hours) and
measure coverage over that period. In addition, running the full LLVM test suite took much longer than either
of the test approaches; however, the test suite is not a directly equivalent testing approach to random testing in
any case.

38

6 EVALUATION 6.2 Compiler code coverage

Csmith tests (which are written in C), and the LLVM test suite (which is mainly written in
C++).23 I have not presented the results for any that have less than 5% line and function
coverage CFGC, Csmith, and the LLVM test suite.24

FuzzFlesh C Csmith LLVM tests
Line Function Line Function Line Function

AggrInstCombine 31 75 63 96 91 100
Scalar 24 29 40 39 49 45
Utils 23 32 34 37 52 52
InstCombine 20 47 50 71 72 88
Vectorize 19 24 53 66 80 81
IPO 6 6 10 8 13 10
ObjCARC 5 10 5 10 5 10
Coroutines 1 4 1 4 2 6

Table 4: clang: LLVM optimisation coverage from invocation of clang on C/C++ programs (%)

Despite the relative simplicity of the fleshing approach, it is able to achieve a reasonable level
of coverage for some transformation categories. For example, FuzzFlesh covers 31% of lines
in the Vectorize Transform category, and 24% of lines in the Scalar category, which contains
many important transformations including aggressive dead code elimination (ADCE) and
transformations relating to loop optimisations.

Unsurprisingly, the FuzzFlesh has lower coverage than Csmith. This is expected because
Csmith tests are designed to produce code that is far more syntactically rich than FuzzFlesh.
For example, Csmith includes function calls, which correspondingly exercise the function
inlining optimisation, while the fleshing approach does not include this language-specific
feature. FuzzFlesh also does not include most of the operators and instructions of the lan-
guage, which results in lower optimisation coverage. Both fuzzers have lower coverage than
the LLVM test suite, which is expected because the LLVM test suite is carefully designed to
cover the important parts of the compiler code base.

opt results

In addition to compiling tests using clang, I also measure the code coverage from running
the LLVM opt tool on 1,000 FuzzFlesh LLVM IR tests and 1,000 Csmith tests under the O3

optimisation flag. In order to ensure I am comparing a similar compilation process, I first
convert the Csmith programs to LLVM IR using the clang -emit-llvm flag, and then invoke
opt on the resulting IR programs. Table 5 shows the code coverage results for the overall
coverage of the LLVM compiler and overall coverage of a subset of transformation categories.

The opt coverage results follow a similar pattern to the clang results: FuzzFlesh achieves a
reasonable level of coverage, up to 14% of some overall Transform categories, but is lower
than Csmith. Interestingly, optimising through opt rather than clang results in lower cov-
erage for both the FuzzFlesh and Csmith tests. For example FuzzFlesh C tests achieve 24%
coverage of Scalar Transforms when compiled through clang, but FuzzFlesh IR programs

23clang is also able to compile LLVM IR programs to executables, however this will of course not exercise the
LLVM components that are concerned with parsing C/C++ syntax. This is not a significant issue because testing
these parts of clang is not the focus of this project. Nevertheless, I report C tests compiled under clang here for
a closer like-for-like comparison.

24This includes the Instrumentation and CFGuard categories, which are negligibly covered by all approaches.

39

6.2 Compiler code coverage 6 EVALUATION

FuzzFlesh IR Csmith IR
Line Function Line Function

AggressiveInstCombine 14 58 61 96
Scalar 14 22 31 35
Utils 11 19 29 36
Vectorize 10 15 40 49
InstCombine 7 20 44 68
IPO 4 6 11 9
Coroutines 1 4 1 4
Instrumentation 0 1 0 1

Table 5: opt: LLVM optimisation coverage from invocation of opt on programs in LLVM IR format
(%)

only achieve 14% coverage when opt is invoked directly. clang optimises by invoking the
underlying LLVM opt tool, so it is somewhat surprising that invoking it directly (using the
same O3 optimisation level) leads to different amounts of optimisation coverage.

This difference could be caused by two factors. First, differences in the nature of optimisa-
tions called by opt and clang. This could occur because clang performs optimisations until
some set of conditions is met, and these may differ from the conditions used by opt. Alter-
natively, the sequencing or set of optimisations involved the clang O3 option is different to
the LLVM opt O3 option. This suggests that a fuzzing campaign with the objective of testing
the optimisation files should focused on clang rather than opt.

FuzzFlesh IR FuzzFlesh C
Line Function Line Function

Vectorize 18 23 19 24
Scalar 17 23 24 29
AggrInstCombine 14 58 31 75
Utils 12 20 23 32
InstCombine 7 20 20 47
ObjCARC 5 10 5 10
IPO 4 5 6 6
Coroutines 1 4 1 4

Table 6: clang: LLVM coverage from invocation of clang on programs in LLVM IR and C (%)

Second, the difference between the FuzzFlesh C and LLVM IR tests. Table 6 presents cover-
age results for FuzzFlesh IR programs compiled through clang and FuzzFlesh C programs
compiled through clang. This shows that C programs generated by FuzzFlesh are able
to achieve higher coverage of the LLVM optimisations than the IR programs. Both sets of
programs were generated using the same CFG and path generation approach and so have
similar structures. The main difference is therefore the language. This suggests that the C
program may be converted to LLVM IR using a richer variety of LLVM IR syntax than I used
in the FuzzFlesh program generator. This provides further evidence that syntactic richness
is important for covering optimisations, and that a future development of FuzzFlesh should
include language-specific options for implementing control flow structures.

Note that the coverage comparison in Table 5 is not entirely like-for-like: there is no way to

40

6 EVALUATION 6.2 Compiler code coverage

emit fully raw LLVM IR from C code. The -emit-llvm option performs very minor optimi-
sations, and decorates all functions with a set of attributes that may affect future optimisa-
tions.25 This means that testing opt using C tests that have been converted to LLVM IR may
under-exercise the tool, which may be another reason for lower coverage.

6.2.3 File-level coverage results

More granular coverage results show that the fleshing approach can achieve reasonably high
coverage of particular optimisation code files. Table 7 shows the LLVM files for which Fuz-
zFlesh C achieves the highest line coverage when compiled using clang.

Transform File FuzzFlesh C Csmith LLVM tests
IPO InferFunctionAttrs.cpp 100 100 100
Utils SizeOpts.cpp 100 100 100
Scalar SCCP.cpp 97 97 100
Utils LoopRotationUtils.cpp 72 77 78
Utils PromoteMemoryToRegister.cpp 72 82 86
IPO CalledValuePropagation.cpp 69 75 83
Scalar LoopDeletion.cpp 68 94 96
Utils LoopSimplify.cpp 67 94 95
Scalar ADCE.cpp 67 89 89
Utils LCSSA.cpp 66 74 79
Utils GlobalStatus.cpp 62 98 98
Utils SCCPSolver.cpp 62 75 89
Scalar DeadStoreElimination.cpp 61 81 92
IPO FunctionAttrs.cpp 61 67 88
Scalar LoopStrengthReduce.cpp 59 73 79

Table 7: Line coverage of a sample of LLVM optimisation files (%)

FuzzFlesh achieves high coverage for several optimisation files that relate to control flow,
including LoopRotationUtils.cpp, which converts loops into do/while structures. The pur-
pose of this transformation is to extract loop-invariant operations, such as loads (in IR), into
the loop header so that they are not repeatedly executed within the loop body. Other CFG-
specific optimisations include LoopDeletion.cpp and LoopSimplify.cpp. FuzzFlesh achieves a
lower level of coverage than Csmith and the LLVM test suite across all files.

Table 8 reports the files for which FuzzFlesh IR achieves the highest line coverage under
opt. This also shows relatively high coverage of CFG-specific optimisations. For example,
the fleshing tests achieve 64% coverage for the LoopSimlify.cpp optimisation file, which
ensures that nested loops are clearly separated.

FuzzFlesh C and IR are not able to cover more code than the LLVM test suite for any optimi-
sation files. FuzzFlesh IR is able to achieve higher coverage than Csmith on one optimisation
file, which is in bold in Table 8. FuzzFlesh does not cover some files well, particularly those
relating to vectorization. Although FuzzFlesh achieves relatively high overall vectorization
coverage, it is not able to cover some files that are well-covered by Csmith and the test suite.

25For example, using the -emit-llvm option produces LLVM IR with an optnone attribute applied to all
fucntions, which prohibits any optimisations. Applying a further flag, Xclang -disable-O0-optnone removes
the optnone attribute, but other attributes including noinline, which prohibits function inlining, remain.

41

6.2 Compiler code coverage 6 EVALUATION

Transform File name FuzzFlesh Csmith LLVM tests
Utils SizeOpts.cpp 100 100 100
Scalar SCCP.cpp 97 97 100
Utils LCSSA.cpp 68 74 79
Scalar ADCE.cpp 65 89 89
Utils LoopSimplify.cpp 64 94 95
Utils PromoteMemoryToRegister.cpp 64 82 86
IPO InferFunctionAttrs.cpp 64 100 100
Scalar LoopDeletion.cpp 59 94 96
Scalar BDCE.cpp 58 100 100
Utils LoopRotationUtils.cpp 56 77 78
Scalar InstSimplifyPass.cpp 53 55 53
Scalar SimplifyCFGPass.cpp 53 46 62
Utils CanonicalizeFreezeInLoops.cpp 52 54 57
IPO FunctionAttrs.cpp 52 67 88
Scalar GVN.cpp 51 76 85

Table 8: opt: Line coverage of a sample of LLVM optimisation files (%)

For example, VPlan.cpp is not covered at all by FuzzFlesh C, but is 72% and 80% covered
by Csmith and the LLVM tests respectively. Vectorization involves converting loops to vector
operations. Csmith may express loops in a way that is more amenable to optimisation than
the FuzzFlesh C or IR programs, which use a limited set of instructions to represent control
flow constructs. For example, FuzzFlesh C uses goto to represent loops rather than for. This
means that they do not have an explicitly represented increment counter, which is useful for
implementing vectorization operations because it is clear to the compiler how many times a
loop body will be executed. It is also useful for scalar optimisations such as loop unrolling,
which involves repeating the loop body n times, where n is the number of increments. If the
number of increments is not explicitly represented, then it is more difficult for the compiler
to apply this optimisation.

6.2.4 Comparison of program fleshing approaches

I implemented several program fleshing approaches for LLVM IR, which are detailed in Sec-
tion 4.2. The motivation for this was that providing the compiler with different amounts of
information at compile-time could lead to different levels of optimisations. I measure com-
piler coverage under the two main program fleshing options for LLVM to test whether the
different approaches result in different levels of coverage.

Table 9 reports the results for 1,000 FuzzFlesh tests in which the directions array is known
at compile-time, and 1,000 FuzzFlesh tests in which the directions array is unknown. Cov-
erage is slightly higher for the tests in which the directions array is known, which suggests
that providing the compiler with this additional information allows it to perform additional
optimisations. However, the incremental coverage is fairly small. A useful next step would
be to explore the specific optimisation files further, specifically the conditions for particular
optimisations to be triggered, to understand what kind of language-specific program fleshing
options could induce greater optimisation.

42

6 EVALUATION 6.3 Mutation analysis

Directions known Directions unknown
Line Function Line Function

AggressiveInstCombine 14 58 14 58
Scalar 14 22 11 20
Utils 11 19 9 17
Vectorize 10 15 10 14
InstCombine 7 20 5 17
IPO 4 6 4 6
Coroutines 1 4 1 4
Instrumentation 0 1 0 1
CFGuard 0 0 0 0
ObjCARC 0 0 0 0

Table 9: LLVM coverage under different program fleshing options (%)

6.2.5 Code coverage limitations

Code coverage has some limitations as an evaluation metric. It only describes whether a line
was executed, and does not include information on the relative importance of different lines,
or whether tricky edge cases are covered. In addition, aggregate coverage over a set of tests
does not provide information on the sequencing of line execution, which may matter for bug
detection. For example, it may be necessary to execute lines 3, 5, and 7 in sequence to trigger
a bug; if test A executes lines 3 and 7 and test B executes line 5, all of the bug-triggering
lines are ‘covered’ but we have not tested the bug-triggering sequence.

Path coverage is a more advanced method that takes into account sequencing, but it is com-
plex to implement and existing tools are less available than function and line coverage. A
further useful metric to use would be differential coverage. This reports the number of
lines that are covered by one test but not another. For example, one testing approach could
achieve 70% coverage and the other could achieve 20%. If the latter approach covers a
distinct set of functions or lines to the former, then it is a useful complementary testing
approach.

6.3 Mutation analysis

Mutation analysis is the process of injecting synthetic bugs (‘mutants’) into a piece of code
and checking whether they cause a test to fail. This can be used to evaluate how well a
testing approach can detect and ‘kill’ mutants in the compiler code.

6.3.1 Methodology

I use the Dredd mutation analysis tool [48] to mutate the LLVM compiler toolchain. Dredd
can mutate C++ code bases and provides functionality to track which mutants should be
reachable by specific test cases. The mutation analysis process is as follows:

• Build: First, I build two instrumented versions of LLVM: one with mutant instrumen-
tation to inject synthetic bugs into the compiler, and a second with mutant tracking
instrumentation to keep track of which mutants a particular test should be able to
detect. Dredd uses a compilation database produced when LLVM is initially built to
determine where to inject mutants.

43

6.3 Mutation analysis 6 EVALUATION

• Mutate: Next, I use Dredd to mutate a specific file within the LLVM code base. Once
the file is mutated, I re-build LLVM with the mutation so that it is incorporated into
the binaries. Dredd is able to mutate multiple files or libraries, however I only mutate
individual files because the process of mutation increases the file size substantially.
This can lead to difficulty at the re-build stage when the large files must be linked. Due
to the time taken to mutate files, I only perform mutation analysis for a small subset of
optimisation files.

• Test: Finally, I run the mutated opt on a set of FuzzFlesh and Csmith tests with the
appropriate optimisation. For example, I mutate the file LoopSimplifyCFG.cpp within
LLVM, and I optimise tests with the simplifycfg option. All mutants injected by Dredd
are disabled by default, which means that they do not have an effect on the file. Mu-
tants are enabled one at a time using an environment variable that specifies which
mutant to activate. Each test is run repeatedly until either (a) all mutants that are
theoretically detectable by the test are killed, or (b) some time limit expires. Mutant-
killing results are collected from the full set of tests and aggregated to give the overall
‘mutant score’, which is the proportion of mutants in the file that were killed during
testing.

6.3.2 Results

The mutation testing results are shown in Table 10. FuzzFlesh tests are able to detect many
mutants within the optimisation files: 55% of mutants in the aggressive dead code elimi-
nation (ADCE.cpp) file are killed, and 43% of mutants in the simplify CFG (LoopSimplify-
CFG.cpp) file are detected. Of the detected mutants, all are killed. These results provide
further evidence that FuzzFlesh is an effective testing method that is able to detect bugs
within the LLVM optimisation code. In addition to the coverage measures, the mutation
testing result demonstrates that the tests are able to identify and kill bugs in the code, as
opposed to simply ‘covering’ the compiler.

I also test the ability of Csmith to kill mutants as a comparator for FuzzFlesh. Similarly to
the coverage analysis, Csmith kills a higher proportion of mutants than the FuzzFlesh tests.
This is likely to be due to the greater syntactic richness and optimisation-triggering abilities
of Csmith.

Transform File FuzzFlesh IR Csmith
Scalar ADCE.cpp 55 89
Utils LCSSA.cpp 44 49
Scalar LoopSimplifyCFG.cpp 43 85
Scalar LoopUnroll.cpp 29 47
Utils BasicBlocksUtils.cpp 26 39
Scalar LoopRotation.cpp 24 29
Scalar LoopUnrollAndJam.cpp 11 11

Table 10: Mutants detected and killed by FuzzFlesh and Csmith (% of total mutants in each file)

44

7 CONCLUSION AND FURTHER WORK

7 Conclusion and further work

FuzzFlesh is a multi-language compiler testing tool that has successfully identified two bugs
in Java decompilers. It has demonstrated the feasibility of sharing a language-independent
random program skeleton generator across several different language backends with a small
amount of programming time. In this Section I discuss the key findings of this project with
respect to each of the research questions that were introduced in Section 1.2, and set out
areas of potential further work to address the limitations of FuzzFlesh.

7.1 Summary of findings

7.1.1 RQ1: How effective is FuzzFlesh at identifying compiler bugs?

FuzzFlesh was able to detect two potential bugs: one each in the Java decompilers CFR and
Fernflower. I have reported both bugs and received confirmation of the CFR bug, while the
Fernflower potential bug is still under investigation. The ultimate source of both bugs is likely
to be the implementation of rules relating to control flow restrictions. This demonstrates that
FuzzFlesh can be an effective method for identifying real bugs within compilers, particularly
those relating to control flow.

However, FuzzFlesh was not able to identify any bugs in the majority of compiler toolchains
tested, which suggests that in its present state it may not be an effective method for bug-
catching.

7.1.2 RQ2: How thoroughly is FuzzFlesh able to cover compiler optimisations?

I evaluate the thoroughness of FuzzFlesh tests using two metrics: compiler code coverage
and mutation analysis. Code coverage measures the amount of the compiler that the tests
exercise. Mutation analysis measures the ability of the tests to detect synthetic bugs that
are injected into the compiler. FuzzFlesh tests are able to achieve a reasonable level of
compiler optimisation coverage given the simplicity of the approach, including over 50%
line coverage of 28 LLVM optimisation files. FuzzFlesh is also able to detect and kill mutants
(synthetic bugs) that are injected into LLVM compiler optimisation files, which provides
further evidence that the approach can successfully identify compiler bugs.

7.1.3 RQ3: How does the efficacy of FuzzFlesh vary across languages and compiler
toolchains?

All bugs identified were in Java decompilers. These have two salient characteristics com-
pared to the other langauges and toolchains tested. First, they are relatively novel and
experimental compared to well-established compilers such as clang, which means that they
are less well-tested and therefore more likely to contain bugs. Second, while Java bytecode
does not have any control flow restrictions, Java does. The decompiler must therefore con-
vert the program from unstructured to structured, which is a complex process that can lead
to errors (as was the case here). The conceptual approach implemented by FuzzFlesh was
previously used to successfully identify bugs in SPIR-V compilers [1], which also involves
strict control flow restrictions. This suggests that FuzzFlesh may be particularly well-suited
to compiler toolchains that have complex control flow restrictions.

45

7.2 Areas for further work 7 CONCLUSION AND FURTHER WORK

7.1.4 RQ4: To what extent can FuzzFlesh identify bugs that are different from those
identified by other approaches, and what are the drivers of any differences?

The approach focuses on control flow, which results in test cases that have a different format
to other approaches. For example the Java bytecode tests containing irreducible control
flow would not be produced by a Java compiler fuzzer, yet they were able to uncover some
interesting bugs.

Additionally, the ease of implementation for novel languages means that this approach could
be a useful ‘first-pass’ compiler tester for novel languages and toolchains.

7.1.5 RQ5: How feasible is it to extend the compiler fuzzing method to multiple
languages? What are the key constraints imposed by having a shared program-
generation component of the fuzzing toolchain?

FuzzFlesh can be easily extended to multiple languages. I have demonstrated this by suc-
cessfully applying the approach to four distinct languages: LLVM IR, Java bytecode, CIL, and
C. Implementation to an additional language is expected to take approximately 8 - 12 hours
of coding time for an experienced programmer, while language-specific program generation
variants will of course take more time to implement. This method could therefore have use-
ful applications in novel languages or compiler toolchains. For example, the method was
effective in identifying bugs in Java decompilers, CFR and Fernflower, which are somewhat
experimental tools.

Shared program-generation components did not impose any significant constraints on the
languages that I tested. However, languages that involve greater control flow restrictions
would require additional filtering stages because the CFG-generation step will produce in-
valid graphs. Producing valid CFGs, for example that do not contain irreducible control flow,
may require significant additional work, or obtaining graphs from an alternative source.

7.2 Areas for further work

The obvious limitation of this method is that it has only found two bugs ‘in the wild’. This
could be because the toolchains are so well-tested that there exist few bugs, or because
the tests are not sufficiently complex to trigger any existing bugs, particularly in well-used
compilers. Areas for further research to address the limitations of FuzzFlesh are as follows:

• Incorporation of additional language-specific features: The method is able to cover
relevant parts of the compiler and detect synthetic bugs. However, it may be that the
kind of real-world-bugs likely to exist in compilers are not detectable by such simple
programs. The tests leave most of the compiler code uncovered, and most mutants
remain unkilled. This suggests that the approach may be achieving a fairly superficial
level of coverage, and is not able to probe deeper into the compiler code where the real
bugs might be lurking. A simple language-specific development would be to include
a wider range of options for implementing control flow features, for example using
a wider range of branching instructions. A further potential extension would be to
combine the control flow structure with some randomly generated code snippets within
each block (although this would require more complex behaviour testing). Another
option would be to specifically encode optimisation-inducing control flow features, for
example similarly to Livinskii, Babokin and Regehr [49].

46

7 CONCLUSION AND FURTHER WORK 7.2 Areas for further work

• Testing on structured control flow languages: FuzzFlesh was successful at uncover-
ing bugs in the Java decompilers and previously in SPIR-V, which is a structured control
flow graph language that is subject to many rules around control flow handling. This
suggests that the method may be particularly effective at uncovering bugs relating to
control flow restrictions, where the compiler implementation of these rules may have
gone awry. It would therefore be useful to test other structured languages, or tools
that operate at the intersection between structured and unstructured languages e.g.
compilers / decompilers that are converting unstructured to structured programs.

• Wider range of program generation methods: It is possible that the program gen-
eration methods used here do not produce ‘interesting’ enough program structures.
Alternative methods of program generation could be explored, for example based on
mutating CFGs that are extracted from real programs.

• A more thorough fuzzing campaign: In the project I tested many different languages
and toolchains. Due to time constraints and low test throughput for some toolchains,
it is possible that the number of programs tested was simply insufficient to locate bugs.
For example, GraalVM LLVM testing had a very low throughput because the LLVM
IR programs had to be constructed in a specific format using a version of clang that
shipped with GraalVM, which took a long time. This means that I was not able to test
it thoroughly in the time available. In general, newer toolchains may be less amenable
to fuzzing due to slowness or inability to cope with unusual programs.

In addition, if the method is successful at identifying bugs, then a useful area of further work
would be to develop a fleshing-based method for test case reduction, as discussed in Section
3.6. The method would be based on reducing the graph and paths, rather than reducing the
program, which means that it could be shared across language backends.

47

REFERENCES REFERENCES

References

[1] Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F.
Donaldson. Taking Back Control in an Intermediate Representation for GPU Comput-
ing. Proceedings of the ACM on Programming Languages, 7:1740 – 1769, 2023. URL
https://doi.org/10.1145/3571253.

[2] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. Towards understanding com-
piler bugs in GCC and LLVM. Proceedings of the 25th International Symposium on Soft-
ware Testing and Analysis, pages 294 – 305, 2016. URL https://doi.org/10.1145/

2931037.2931074.

[3] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and
Lu Zhang. A Survey of Compiler Testing. ACM Computing Surveys, 53:1 – 36, 2019.
URL https://doi.org/10.1145/3363562.

[4] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs
in C compilers. Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 283 – 294, 2011. URL https://doi.org/

10.1145/1993498.1993532.

[5] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. Random Testing for C and C++
Compilers with YARPGen. Proceedings of the ACM on Programming Languages, 4:1 –
25, 2020. URL https://doi.org/10.1145/3428264.

[6] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence mod-
ulo inputs. Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 216 – 226, 2014. URL https://doi.org/10.1145/

2594291.2594334.

[7] Alastair F. Donaldson, Paul Thomson, Vasyl Teliman, André Perez Maselco Ste-
fano Milizia, and Antoni Karpiński. Test-case reduction and deduplication almost for
free with transformation-based compiler testing. Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, pages
1017 – 1032, 2021. URL https://doi.org/10.1145/3453483.3454092.

[8] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson. Many-
core compiler fuzzing. Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 65 – 76, 2015. URL https:

//doi.org/10.1145/2737924.2737986.

[9] Kazuhiro Nakamura and Nagisa Ishiura. Random testing of C compilers based on
test program generation by equivalence transformation. 2016 IEEE Asia Pacific Confer-
ence on Circuits and Systems (APCCAS), 2016. URL https://ieeexplore.ieee.org/

document/7804063.

[10] Qirun Zhang, Chengnian Sun, and Zhendong Su. Skeletal program enumeration for
rigorous compiler testing. ACM SIGPLAN Notices, 52:247 – 361, 2017. URL https:

//doi.org/10.1145/3140587.3062379.

[11] William M McKeeman. Differential testing for software. Digital Technical Journal,
10:100 – 107, 1998. URL https://www.hpl.hp.com/hpjournal/dtj/vol10num1/

vol10num1art9.pdf.

48

https://doi.org/10.1145/3571253
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1145/3363562
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3428264
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/3453483.3454092
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/2737924.2737986
https://ieeexplore.ieee.org/document/7804063
https://ieeexplore.ieee.org/document/7804063
https://doi.org/10.1145/3140587.3062379
https://doi.org/10.1145/3140587.3062379
https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf

REFERENCES REFERENCES

[12] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. Metamorphic testing: A new
approach for generating test cases. Technical REport HKUST-CS98-01, Department of
Computer Science, Hong Kong University of Science and Technology, Hong Kong. URL
https://arxiv.org/abs/2002.12543.

[13] Alex Groce. Let a thousand flowers bloom: on the uses of diversity in software testing.
Proceedings of the 2021 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, pages 136 – 144, 2021. URL
https://doi.org/10.1145/3486607.3486772.

[14] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. Swarm test-
ing. Proceedings of the 2012 International Symposium on Software Testing and Analysis
(ISSTA), 2012. URL https://users.cs.utah.edu/~regehr/papers/swarm12.pdf.

[15] Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating Failure-Inducing Input.
IEEE Transactions on Software Engineering, 28:183 – 200, 2002. URL https://doi.

org/10.1109/32.988498.

[16] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang.
Test-case reduction for C compiler bugs. ACM SIGPLAN Notices, 46:335 – 346, 2012.
URL https://doi.org/10.1145/2345156.2254104.

[17] Thomas Ball and Susan Horwitz. Slicing programs with arbitrary control-flow. Inter-
national Workshop on Automated and Algorithmic Debugging, pages 206 – 222, 1993.
URL https://link.springer.com/chapter/10.1007/BFb0019410.

[18] LLVM. LLVM test suite, . URL https://llvm.org/docs/TestingGuide.html. Ac-
cessed: 2023-01-09.

[19] Michaël Marcozzi, Qiyi Tang, Alastair F. Donaldson, and Cristian Cadar. Compiler
Fuzzing: How Much Does It Matter? Proceedings of the ACM on Programming Lan-
guages, 3:1 – 29, 2019. URL https://doi.org/10.1145/3360581.

[20] Yue Jia and Mark Harman. An Analysis and Survey of the Development of Mutation
Testing. IEEE Transactions on Software Engineering, 37:649 – 678, 2011. URL https:

//dl.acm.org/doi/10.1145/3575693.3575750.

[21] J.H. Andrews, J.H, L.C. Briand, and Y. Labiche. Is mutation an appropriate tool for
testing experiments? Publicationes Mathematicae Debrecen, pages 290–297, 2005.

[22] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Józala. Overcoming
the equivalent mutant problem: A systematic literature review and a comparative ex-
periment of second order mutation. IEEE Transactions on Software Engineering, 40(1):
23–42, 2014. doi: 10.1109/TSE.2013.44.

[23] Farah Hariri, August Shi, Hayes Converse, Sarfraz Khurshid, and Darko Marinov. Eval-
uating the Effects of Compiler Optimizations on Mutation Testing at the Compiler IR
Level. IEEE 27th International Symposium on Software Reliability Engineering (ISSRE),
pages 105 – 115, 2016. doi: 10.1109/ISSRE.2016.51.

[24] Josie Holmes and Alex Groce. Using mutants to help developers distinguish and debug
(compiler) faults. Software Testing, Verification and Reliability, 30, 2020. URL https:

//doi.org/10.1002/stvr.1727.

49

https://arxiv.org/abs/2002.12543
https://doi.org/10.1145/3486607.3486772
https://users.cs.utah.edu/~regehr/papers/swarm12.pdf
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498
https://doi.org/10.1145/2345156.2254104
https://link.springer.com/chapter/10.1007/BFb0019410
https://llvm.org/docs/TestingGuide.html
https://doi.org/10.1145/3360581
https://dl.acm.org/doi/10.1145/3575693.3575750
https://dl.acm.org/doi/10.1145/3575693.3575750
https://doi.org/10.1002/stvr.1727
https://doi.org/10.1002/stvr.1727

REFERENCES REFERENCES

[25] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod
Millman, editors, Proceedings of the 7th Python in Science Conference, pages 11 – 15,
Pasadena, CA USA, 2008. URL https://networkx.org/.

[26] P. L. Krapivsky and S. Redner. Organization of growing random networks. Physical
Review E, 63(6), may 2001. doi: 10.1103/physreve.63.066123. URL https://doi.

org/10.1103%2Fphysreve.63.066123.

[27] P. Erdös and A. Rényi. On random graphs i. Proceedings. 27th International Conference
on Software Engineering, 2005. ICSE 2005., pages 402–411, 2005. doi: 10.1109/ICSE.
2005.1553583.

[28] Khronos group. https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.

html#_structured_control_flow. Accessed: 2023-01-09.

[29] Larry Carter, Jeanne Ferrante, and Clark Thomborson. Folklore confirmed: Reducible
flow graphs are exponentially larger. ACM SIGPLAN Notices, 38, 10 2003. doi: 10.
1145/640128.604141.

[30] LLVM. LLVM, . URL https://llvm.org/. Accessed: 2023-01-09.

[31] Oracle. Java Bytecode Instruction Set, . URL https://docs.oracle.com/javase/

specs/jvms/se7/html/jvms-6.html. Accessed: 2023-01-09.

[32] Ted Neward. The Server Side. URL https://www.theserverside.com/news/

1363881/The-Working-Developers-Guide-to-Java-Bytecode. Accessed: 2023-06-
09.

[33] Jonathan Meyner and Daniel Reynaud. Jasmin. URL https://jasmin.sourceforge.

net/. Accessed: 2023-01-09.

[34] LLVM. LLVM Opt, . URL https://llvm.org/docs/CommandGuide/opt.html. Ac-
cessed: 2023-01-09.

[35] LLVM. LLVM Passes, . URL https://llvm.org/docs/Passes.html. Accessed: 2023-
01-09.

[36] Oracle. Oracle HotSpot, . URL https://www.oracle.com/java/technologies/

whitepaper.html. Accessed: 2023-01-09.

[37] GraalVM. Graal Compiler. URL https://www.graalvm.org/latest/

reference-manual/java/compiler/. Accessed: 2023-01-09.

[38] CFR. CFR. URL https://www.benf.org/other/cfr/. Accessed: 2023-01-09.

[39] IntelliJ. Fernflower. URL https://github.com/JetBrains/intellij-community/

tree/master/plugins/java-decompiler/engine/src/org/jetbrains/java/

decompiler. Accessed: 2023-01-09.

[40] Nicolas Harrand, César Soto-Valero, Martin Monperrus, and Benoit Baudry. Java de-
compiler diversity and its application to meta-decompilation. CoRR, abs/2005.11315,
2020. URL https://arxiv.org/abs/2005.11315.

[41] Noah Mauthe, Ulf Kargén, and Nahid Shahmehri. A large-scale empirical study of an-
droid app decompilation. 2021 IEEE International Conference on Software Analysis, Evo-

50

https://networkx.org/
https://doi.org/10.1103%2Fphysreve.63.066123
https://doi.org/10.1103%2Fphysreve.63.066123
https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#_structured_control_flow
https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#_structured_control_flow
https://llvm.org/
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html
https://www.theserverside.com/news/1363881/The-Working-Developers-Guide-to-Java-Bytecode
https://www.theserverside.com/news/1363881/The-Working-Developers-Guide-to-Java-Bytecode
https://jasmin.sourceforge.net/
https://jasmin.sourceforge.net/
https://llvm.org/docs/CommandGuide/opt.html
https://llvm.org/docs/Passes.html
https://www.oracle.com/java/technologies/whitepaper.html
https://www.oracle.com/java/technologies/whitepaper.html
https://www.graalvm.org/latest/reference-manual/java/compiler/
https://www.graalvm.org/latest/reference-manual/java/compiler/
https://www.benf.org/other/cfr/
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine/src/org/jetbrains/java/decompiler
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine/src/org/jetbrains/java/decompiler
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine/src/org/jetbrains/java/decompiler
https://arxiv.org/abs/2005.11315

REFERENCES REFERENCES

lution and Reengineering (SANER), pages 400–410, 2021. doi: 10.1109/SANER50967.
2021.00044.

[42] Mono. Mono. URL https://www.mono-project.com/docs/advanced/mono-llvm/.
Accessed: 2023-01-09.

[43] ILSpy. ILSpy. URL https://github.com/icsharpcode/ILSpy. Accessed: 2023-01-09.

[44] LLVM. Clang, . URL https://clang.llvm.org/. Accessed: 2023-01-09.

[45] GNU. GCC, . URL https://gcc.gnu.org/. Accessed: 2023-01-09.

[46] GNU. GCC Optimisations, . URL https://gcc.gnu.org/onlinedocs/gcc/

Optimize-Options.html. Accessed: 2023-01-09.

[47] GNU. gcov, . URL https://gcc.gnu.org/onlinedocs/gcc/Gcov.html. Accessed:
2023-01-09.

[48] Multicore Group, Imperial College London. Dredd. URL https://github.com/

mc-imperial/dredd. Accessed: 2023-01-09.

[49] Vsevolod Livinskii, Dimitry Babokin, and John Regehr. Fuzzing Loop Optimizations in
Compilers for C++ and Data-Parallel Languages. Proceedings of the ACM on Program-
ming Languages, 7:1826 – 1847, 2023. URL https://doi.org/10.1145/3591295.

51

https://www.mono-project.com/docs/advanced/mono-llvm/
https://github.com/icsharpcode/ILSpy
https://clang.llvm.org/
https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://github.com/mc-imperial/dredd
https://github.com/mc-imperial/dredd
https://doi.org/10.1145/3591295

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions

	2 Background
	2.1 Compilers and their bugs
	2.2 Testing approach
	2.3 Test program generation and validity
	2.4 Test oracle construction
	2.5 Test diversity
	2.6 Test case reduction
	2.7 Test evaluation

	3 FuzzFlesh design
	3.1 Overview
	3.2 Graph generation
	3.3 Path generation
	3.4 Program fleshing
	3.5 Test runner
	3.6 Test case reduction

	4 Program fleshing
	4.1 Language selection
	4.2 LLVM IR
	4.3 Java bytecode
	4.4 CIL
	4.5 C

	5 Compiler toolchains
	5.1 LLVM IR
	5.2 Java bytecode
	5.3 CIL
	5.4 C

	6 Evaluation
	6.1 Bug-finding experiments
	6.2 Compiler code coverage
	6.3 Mutation analysis

	7 Conclusion and further work
	7.1 Summary of findings
	7.2 Areas for further work

