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Abstract

Compiler testing is a long-running practise which aims at finding bugs in existing
compilers through the compilation of numerous programs. The GLSLsmith frame-
work is a random program generator for GLSL, a graphics programming language.
By generating a large set of programs and compiling them on multiple compilers,
GLSLsmith has led to the identification of 15 bugs.

Inspired by Csmith, the famous random program generator for the C language,
GLSLsmith supports specific features of graphic languages as well as floating-point
testing: by generating literals in a controlled way, GLSLsmith is able to suppress the
risk of round-offs in floating-point operations, ensuring strict equality in all output
values.

To be useful for compiler development, programs need to be converted into sim-
pler tests by a process called reduction. Program generation or reduction, how-
ever, may introduce undefined behaviours which suppress the meaning of the pro-
gram. By postponing the suppression of such behaviours after generation, GLSL-
smith demonstrates a new way to handle undefined behaviours both at generation-
time and reduction-time. This technique enables to use generic reduction programs,
diminishing the engineering effort needed to perform compiler testing. GLSLsmith
has been tested with three different reducers (C-Reduce, PERSES and glsl-reduce)
comparing the quality of the minimized programs and evaluating the benefits of this
new technique.
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Chapter 1

Introduction

1.1 Importance of Compiler Testing

Compilers are complex pieces of software that convert human-readable languages
to machine-specific languages and apply optimizations to improve the efficiency of
generated code. Like any software, they can exhibit bugs and errors. Moreover, as
compilers are central in application development, their bugs have the potential to
affect multiple programs. It is difficult for developers, being used to looking for bugs
in their own application code, to find that the compiler is to blame. This results in a
loss of time and unnecessary frustration for the programmers.

Compiler testing helps to identify such bugs and remove them from compilers ahead
of time, so that the bugs never affect programmers and end users. As the problem
arises for all languages, most compilers are tested against large conformance test
suites, covering most areas of the underlying language. As a result, usual codes
are likely to be compiled correctly. However, conformance suites are not perfect as
they cannot check every instruction combination of any given language. Fuzzing or
random testing (as described in section 2.1) based on the generation of programs is
another efficient way to find residual bugs as it is more likely to produce less-used
code constructions.

While multiple ways to produce such fuzzing inputs exist, the most common uses
a so-called random program generator (subsection 2.1.1) to generate valid code.
By then comparing results across multiple implementations (subsection 2.1.2), it is
possible to spot discrepancies. Such discrepancy indicates either an undefined be-
haviour (a point not described by the specification) or a bug. To be effective, a
generator, therefore, needs to get rid of all language specific undefined behaviours
(the ones for GLSL are described in section 3.1).

1.2 Contribution

The contribution of this project is GLSLsmith, a complete framework to test graphics
compilers presented in chapter 4. GLSLsmith builds random programs from scratch
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1.2. CONTRIBUTION Chapter 1. Introduction

for both GLSL and ESSL, two shading languages usually used to convert data to
images. While GLSL compilers are validated by conformance test suites and have
been tested extensively through metamorphic testing (see GraphicsFuzz in subsec-
tion 2.2.3), GLSLsmith managed to identify 15 new bugs. Especially 11 bugs are mis-
compilation bugs, which do not create any warning from the compiler but change
the program output. 9 of the identified issues have been fixed as summarized in
subsection 5.1.2. GLSLsmith have been tested on 5 different platforms finding bugs
on each of them, thanks to its high coverage of language features (vectors, built-in
functions, control-flow).

While floating-point values are often excluded from differential testing tools due
to their imprecision (subsection 3.1.6), GLSLsmith is one of the first generators to
support floating-point programs. Extending an idea from one of the Orange gen-
erator tools [1], GLSLsmith ensures that floating-point operations do not introduce
round-off1, GLSLsmith ensures strict equality between the results, effectively en-
abling differential testing (subsection 4.2.4).

GLSLsmith supports a fully automated pipeline to build and reduce tests for graphic
compilers (section 4.4). By postponing the undefined behaviours suppression af-
ter generation, GLSLsmith can ensure that a program stays well-defined through
reduction. Thanks to this property, any reducer can be used without the risk of in-
troducing undefined behaviours, removing the potential engineering effort required
by language-aware reducers. GLSLsmith have been tested with 3 different reducers:
C-Reduce [2], PERSES [3] and Glsl-Reduce [4], providing a way to compare the
quality of reducers without the problem of undefined behaviours and evaluating the
impact of post-processing (section 5.3).

1The idea presented in the report was developed independently but matches the approach pre-
sented in [1], found in a late stage of the project.
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Chapter 2

Background

In order to test compilers, the GLSLsmith framework relies on the random testing
process whose main steps and difficulties are described in section 2.1. As multiple
random program generators have been already designed, the section 2.2 concisely
presents three of them (Csmith, YARPGen and GraphicsFuzz) which influenced the
design of GLSLsmith, presented in chapter 4. The last section of the chapter (sec-
tion 2.3) introduces the main existing graphics frameworks, their general principles
and the tools which enable to test them efficiently. The chosen graphics framework,
OpenGL, its specific features and undefined behaviours are then described in chap-
ter 3, along with information on the tested compilers and reducers.

2.1 Random testing process

2.1.1 Program generation

The first step of randomized compiler testing involves generating programs. This
generation step includes the code file for later compilation but can also generate ex-
tra files to provide information about the test. Randomized compiler approaches are
usually divided into two categories: generator-based approaches and metamorphic-
based approaches [5; 6]. While both methods generate randomized programs, they
may exhibit different properties than can be used for bug identification (discussed
in subsection 2.1.2).

Generator-based approaches generate test programs by strictly following the gram-
mar of a language avoiding undefined behaviours. Programs are built from scratch
following the language specification. While being particularly effective, generator-
based programs cannot be transferred between languages, requiring to write a com-
plete generator per language. Multiple generators have been proposed, such as
Csmith [7; 8] and YARPGen [9], focusing on C and C++ compilers. Generators usu-
ally use context-dependent building rules to expand generated code and then dump
it into a file. Even if generators produce a wide range of expressions, they often
exhibit the same bugs. This problem is rooted in the probability distribution of the
generation-procedure. As long as the distribution is identical, programs, while being

3



2.1. RANDOM TESTING PROCESS Chapter 2. Background

different, show similar properties: even if new bugs exhibiting programs could in
theory be generated, they have an unrealistically low probability to get produced.
Swarm testing [10] therefore proposes to change the program generation configura-
tion across time, leading to new bug discoveries.

Metamorphic approaches generate test programs from a seed (or pool) of already
existing programs by applying a set of transformations, which do not affect the out-
puts of the program. Those transformations are said to be semantic-preserving [11].
Different types of mutations are possible depending on the objective of the genera-
tor. As they don’t generate code from scratch, they don’t necessarily need to under-
stand it completely, making them more reusable. However, as they rely on a pool
of existing programs, the seed of starting programs that exhibit interesting charac-
teristics (such as a great feature diversity) impacts their capabilities. Interestingly,
it is possible to seed such a program with the result of a random program genera-
tor to expand the capabilities of the underlying generator or target specific compiler
features (such as optimizations) [12]. Depending on the applied transformations,
a set of programs can exhibit the same result while using different code paths, for
example, by replacing for loops by while loops. This characteristic can later be used
for bug identification.

2.1.2 Bug identification

Some bugs can be found using only a random program generator when a valid code
is given to a compiler but fails to compile, or code crashes at run time without an
expected reason. Such errors are called Internal Compiler Errors or simply compiler
crashes [12; 13]. However, even if a test program does not crash, the program is
not necessarily correct. Compiled code might exhibit an actual output different from
the expected one. Such bugs are often called miscompilations [5; 12]. In such a
case, it is impossible to rely only on the execution of a single program on a single
compiler to find the bug. Strategies have therefore been designed to identify those
by comparing an expected program output with its implementation.

Oracle testing refers to a strategy in which one has an oracle, which can decide
the correctness of the output. It can be seen as the most convenient situation as it
directly assesses if a given compiled program gives the correct result. While contract-
based languages have used contracts as an oracle [14], most languages do not offer
such functionalities. Thanks to their inner organisation, some generators can effec-
tively be used as oracles [1; 9] by computing the program at generation-time. When
available from generation, the result is likely to change through reduction (discussed
in subsection 2.1.3): the generator would need to evaluate the new outputs for any
reduced program (and therefore could work as an interpreter for any program). For
similar reasons, generators that compute all values at generation time have limited
control-flow support.

Differential testing [15] eliminates the need for an oracle by testing multiple com-
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Chapter 2. Background 2.1. RANDOM TESTING PROCESS

piler versions / implementations. By collecting the results from all the compilers,
it is possible to see if they all return the same answers. A compiler that returns a
different value from all other implementations can exhibit a bug and therefore the
code of such program should be kept, as demonstrated on the left of Figure 2.1.
This approach relies on the assumption that independent compilers are unlikely to
exhibit the same bug. Differential testing is a commonly-used setting, as it has the
benefit to find bugs in multiple compilers, increasing the chance to identify bugs
with a single generator. This method is practical but introduces the problem of unde-
fined or compiler-dependent behaviours. Undefined behaviour is a situation in which
the specification of a language allows compilers to behave differently. They arise
from various sources like the finite representation of numbers and the definition of
arithmetic operations [8]. One of the challenges of random testing is to produce
programs that are free of compiler-dependent behaviours while exploring as many
parts of the language as possible [8; 9].

Metamorphic testing [5; 6] is another way to replace the oracle. While differen-
tial testing uses different compiler versions against the same program, metamorphic
testing uses multiple program versions against a given compiler. The underlying as-
sumption is that one can produce equivalent codes in terms of entries and outputs.
If one of the two versions creates a different output on the compiler, then a possible
bug has been found and the code should be kept, as demonstrated on the right of
Figure 2.1. Two programs need to be similar only for the given inputs, leading to
equivalence modulo input (EMI) testing [12]. EMI testing leverages that one program
can have a different behaviour if such behaviour never propagates to the program
results (never reached code path for a given input, equivalent instructions). EMI
testing finds compiler defects as various codes lead to different internal optimization
by the compiler [16]. It is possible to anticipate that controlled changes in program
instructions should lead to similar results. By relaxing the condition of equivalence
between programs, it enables to compare floating-point values that admit uncer-
tainty. As metamorphic testing requires building a family of programs related to
a given original one, it is more likely to be used in the context of mutation-based
testing (given that the selected mutations do not affect the final code output) [11].
Multiple generators relying on metamorphic testing have been designed its creation
such as Orion [12], Athena [16] and Hermes [? ] as well as one of the Orange
generator [17].

Both differential and metamorphic testing are built on the assumption that the
output values will be identical across programs and compilers implementations.
For integer-based numbers, a result is effectively uniquely defined. However, for
floating-point based values, multiple values can be correct as floating points are only
approximate finite representations of real numbers. Standards, therefore, accept
that the performed operations are only approximate (see subsection 3.1.6 and sub-
section 4.2.4). These approximations can propagate to the final result, such that the
results are unlikely to be equal even for correct programs. As differences between
floating-point results are tolerated by the specification, a first approach is to exclude
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Generator

Generated
program

Compiler 1 Compiler 2

+

outputs
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Compiler

+

outputs

Discard if identical Keep if different

Figure 2.1: Differential testing (left) vs Metamorphic testing (right)

all floating-point values [8]. However, as this solution limits the testing capabilities
on most languages, values can be considered to agree as long as they are within a
given range of each other. Recent program generators, therefore, deal with floating-
points restricting and checking their proximity with a threshold [9]. This approach
can be generalised with different data types such as images, which also admit un-
certainty [11].

A second approach to floating-point testing for C is offered by one of the Orange
program generator [1]. By limiting the support of floating-point to the arithmetical
operations and constraining literal generation to match integer values within range
[2−m; 2m] (where m is the fixed number of bits in the mantissa for a given type), the
generator is able to compute all expected outputs including floating-point values.
As rounding errors can still occur on the result of operations if they to escape those
bounds, the generator checks and rewrites any possibly offending operation.

2.1.3 Test case reduction

A crashing program or one returning a miscompilation output (while being free of
undefined behaviour) probably exhibits a compiler bug. However, such a program
can be unreadable for a human due to its random nature. The given code can be
very long, contain unused or irrelevant code which hides the defect. It is unlikely
that such a program could be accepted as bug proof. It is therefore essential to iden-
tify the underlying code lines triggering the bug and remove all other unnecessary
information. The process to perform this task is called test case reduction. It has two
purposes: identifying unique bugs (multiple programs might exhibit the same under-
lying bug or a program could contain two bugs) and making the code easy to read
for review (and fixing). The reduction can be done by hand or using so-called re-
ducer programs to find shorter code versions with the same properties by performing
operations on the original code while ensuring that chosen properties are satisfied
by the shorter versions. Using a reducer usually requires writing an interestingness
test which indicates if a given program matches a given property.

Reducers exist for common languages such as C (C-Reduce) [18; 2] or as language-
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Chapter 2. Background 2.1. RANDOM TESTING PROCESS

independent tools such as Delta Debugging [19] and Hierarchical Delta Debugging
[20]. They all rely on variations of the Delta Debugging practice. Delta debugging
examines every possible suppression from the code to find if the resulting code still
exhibits a given property (a bug). The resulting file is then 1-minimal, meaning that
any further suppression from the reducer would suppress the bug. Some reducers
are completely language-agnostic and consider codes as a list of strings. Some are
grammar-aware, meaning that that the resulting code is still syntactically valid and
code is recognized as written in the given language. Other reducers are optimized
against one language to perform further operations. An ideal reducer would make as
few assumptions as possible on the underlying language while finding shorter exam-
ples. While reduction implies removing as much code as possible, it may be suitable
to replace some existing code with longer but more readable code [18]. New reduc-
ers such as PERSES [3] use only a language grammar to perform syntactically valid
reduction, improving reduction speed while not being language-specific.

A first challenge associated with test-case reduction is the management of unde-
fined behaviour across reduction. While the generator and the original code is free
from undefined behaviour, it is unlikely that code produced by deletion will have the
same property. A common way to deal with such a situation is to exclude programs
exhibiting compiler-dependent behaviour with one or multiple sanitizers, requiring
such programs to be available in a given language. Sanitizers aim at preventing ac-
cesses to uninitialized memories, ensuring that loops terminate and detecting arith-
metic exceptions. Such sanitizers include UBsan [21] or Frama-C [22] for the C
language. They are usually executed as part of the interestingness function. With-
out such securities, a bug-triggering program will likely be converted to a program
exhibiting an undefined behaviour giving the same value, therefore, destroying the
whole interest of the test [23].

A second challenge is known as bug slippage [24]: across reduction, a different bug
can be triggered by a given program. While it can lead to the opportunistic discov-
ery of a new bug, it can fall back on a commonly experienced bug or create a bug
in a different compiler, leading to an unplanned situation for the reducer. Similarly
to the problem of undefined behaviours through reduction, one way to reduce the
risk of bug slippage is to look for the most precise cause of the error as possible (by
differentiating errors for each compiler or affected values in the program result, for
example).

In both cases, the quality of the interestingness test is crucial to the correct execution
of the reducer. The way compilers report specific defects and the tools available in a
given language are also criteria that determine the capabilities of the test.

7



2.2. EXISTING RANDOM PROGRAM GENERATORS Chapter 2. Background

2.2 Existing random program generators

2.2.1 Csmith

Csmith [2; 18] is one of the most famous, adapted and used program generators
for the C language. It uses probability tables to add new instructions in the given
context, adding new instruction/sub-instruction one at a time and backtracking if
the new code is problematic. It supports a range of C features such as loops and
branch control. It deals with arithmetic-based undefined behaviours by adding safe
wrappers around all math operations, testing for unacceptable values, and default-
ing if an undefined behaviour is reached. Wrappers, generated as either functions or
preprocessor macros, are necessary to remove undefined behaviours (one of them is
shown in Figure 2.2). They are, however, criticized for the pattern they introduce in
the code, reducing the number of optimizations that the compiler might apply, for
example, to group arithmetic operations together. An extension named CsmithEdge

[25] has been proposed to remove unnecessary wrappers. It runs the program twice,
checking wrapper values on a first run to remove unnecessary ones from the code
before recompiling it. This extension demonstrates the possibility to perform meta-
morphic testing by applying semantic-preserving transformation on randomly gen-
erated programs. While Csmith permits the non-termination of programs (which are
caught back by time outs), it deals with pointer-based undefined behaviours as well
as with evaluation-order based undefined behaviours (see subsection 4.3.6 Parame-
ter order control for the adaptation in GLSLsmith) by performing an analysis of the
variables which are used into any given context. Csmith greatly inspired generators
for other languages such as CLsmith [26] for the OpenCL language, VeriSmith [27]
for the Verilog language, and GLSLsmith.

s t a t i c u in t64 t s a f e d i v u i n t 6 4 t ( u in t64 t ui1 , u in t64 t ui2 )
{

return ( ui2 == 0) ? ui1 : ( ui1 / ui2 ) ;
}

Figure 2.2: Example of wrapper for division operations with unsigned integers, testing
explicitly for 0 values before performing the division

2.2.2 YARPGen

YARPGen [9] is a recent generator for the C and C++ languages relying on a recur-
sive generation function. The generation function being aware of the current context
only proposes valid generation. It does not use wrappers for arithmetic-based unde-
fined behaviours but instead computes the values of the different variables during
generation. Knowing every value in advance, YARPGen can remove undefined be-
haviours by rewriting instructions containing problematic values in a similar way to
the one of the Orange generator [1]. It does not use a complete interpreter for C

8



Chapter 2. Background 2.2. EXISTING RANDOM PROGRAM GENERATORS

/ C++ and limits its generation to function call-free programs. As YARPGen com-
putes all variables affection including the output values, it provides an oracle of the
program and the result of the generation could be used to check the values that a
compiler would produce. However, YARPGen does not use the computed values to
check the program outputs. It instead relies on differential testing, enabling reducers
to change the output values. It only provides limited loop support and does not deal
with pointer arithmetic, two critical features of the C / C++ languages. YARPGen
instead focuses on finding compiler bugs that appear through erroneous arithmetic
optimizations unlikely to be triggered by Csmith due to its wrappers.

Another feature of YARPGen is its ability to use generation policies like the swarm-
testing principle to randomly skew the generation probabilities of one feature com-
pared to others. Swarm-testing (and generation policies) has been designed to ex-
periment with more diverse code paths in a similar execution time. For example,
bugs might only appear if a long series of unsigned integers was to be declared in a
row, however choosing uniformly between integers, unsigned integers and boolean,
code exhibiting the bug would appear under extremely low probability. Randomly
skewing the distribution would increase this probability and, therefore, the durabil-
ity for which a generator can be used.

2.2.3 GraphicsFuzz

GraphicsFuzz [11; 4] is a metamorphic-testing framework applied to graphics shad-
ing languages. It uses a pool of original programs to which it performs a series of
semantic-preserving transformations to create variants. Such changes include dead-
code injection, program-workflow and arithmetic rewriting, and code injection from
another program. As the fuzzer generates new entries to the program, it can gen-
erate unreachable code that the compiler can’t optimize. Such code can therefore
trigger different paths in the compiler and result in crashes or miscompilation be-
haviours. To inject live code, the fuzzer ensures that the new text will not interact
with the behaviour of the original code, changing variable names and rewriting func-
tions. One of the advantages of this strategy is that the resulting program is made
of code found in real-life applications. Errors found by GraphicsFuzz are therefore
more likely to be of interest to compiler developers.

Images produced by graphics shaders are, as floating-point values, likely to differ
from one implementation to another while they all remain valid. To compare pic-
tures and spot differences across variants, GraphicsFuzz uses dedicated metric com-
puting the distance between the colour histograms of two pictures. If the distance is
above a threshold, pictures are considered as different, and a bug has possibly been
found. Even if false negative or false positive cases are possible, human experimen-
tation has proved that the measure was accurate enough to be used as a proxy for
similar images.

GraphicsFuzz proposes a new way to deal with the reduction problem. As produced
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shaders are related to an original one by a set of semantic-preserving transforma-
tions, it is possible to apply the principal of Delta debugging to find the minimal
transformations to apply to a shader to reproduce a bug. While it is likely that the
resulting shader is not of a minimal size, the bug-exhibiting shader is however of
interest to report if the original shader is well understood. Moreover, this approach
helps with the problem of new bug identification. Two bugs are likely to be distinct
if they are produced by different transformations. On the contrary, two bugs which
share many transformations may be duplicate. These ideas have been adapted to
spirv-fuzz [28; 29], a fuzzer directly targeting the SPIR-V representation of Vulkan,
and integrated in the set of tools published in official Khronos repositories. The
GraphicsFuzz framework also includes a more traditional language-aware reducer
(discussed in subsection 3.2.3).

2.3 Overview of Graphics Programming

3D images are inherently expensive to produce as they require numerous computa-
tions. However, those computations can mostly be effected in parallel and largely
benefit from the dedicated hardware support offered by graphic cards (GPU). As
the GPU is separated from the CPU, Graphics programming frameworks offer a uni-
fied way to communicate and execute programs on the GPU. Graphics programming
frameworks, therefore, offer at least two capabilities: GPU / CPU communication
and GPU-side program execution.

To perform the communication, Graphics programming frameworks offer a common
API that is implemented by graphic card makers. The API is then exposed to the
CPU-side computations through a low-level library available in multiple languages.
To build a graphic program, it is necessary to write code in a language that will per-
form CPU computations and communicate with a GPU. Such language is known as
the host language.

The GPU part of the program is then written in a dedicated language, commonly
known as a shading language. As multiple steps are necessary to create a picture,
programs are written as multiple code pieces known as shaders with dedicated in-
puts and outputs, the last output being the expected image. It is known as the
graphic pipeline. Across the pipeline, shaders are expected to match their outputs to
the inputs of the next one, a process that is ensured at linking time to create a com-
plete graphic program. Most Graphics programming frameworks associate a unique
shading language to an API.

2.3.1 Available languages

As Graphics programming frameworks are interacting with low-level hardware, their
functions partly depend on the OS. Some are therefore tied to specific OS / hard-
ware. For example, DirectX is only supported by Windows and Metal is only sup-
ported by macOS / IOS. Standards developed by Khronos, OpenGL, OpenGL ES,
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WebGL and Vulkan are on the contrary available on most platforms. As Khronos
only provides the specifications of the API, multiple compilers and drivers exist for
some platforms. Some are directly provided by graphic cards manufacturers, while
others are developed as open-source projects or independent companies. Except for
Vulkan, which uses a binary format, all the other languages support a text-based
shader language: (HLSL for DirectX, GLSL for OpenGL, ESSL for OpenGL ES and
MSL for Metal).

As OpenGL, OpenGL ES, WebGL and Vulkan are developed by Khronos [30], they
share a part of their APIs. Some projects, therefore, support the different shading
languages of Khronos coherently. For example, any OpenGL ES shading language
(ESSL) specification is based a subset of an OpenGL (GLSL) specification (some op-
erations on arrays and precision qualifiers are distinct). GLSLangValidator [31], the
reference code validator can be used for OpenGL and OpenGL ES codes as well as to
translate code to the binary format of Vulkan shaders (SPIR-V).

If the coexistence of multiple similar Graphics programming frameworks can be
surprising, their existence is rooted in the hardware support offered by different
execution platforms. As OpenGL ES and WebGL are lighter versions of OpenGL,
there are especially interesting for 3D rendering in Smartphones (OpenGL ES) and
web browser (WebGL). On computers, most driver implementations can accept ei-
ther ESSL or GLSL as a valid shader. Vulkan has then been developed as a way to
unify Graphics programming frameworks (as discussed in the subsection 2.3.2).

Framework Supported Platforms Shading Language Textual

Direct X Windows HLSL X

Metal MacOs / IOS MSL X

OpenGL Windows / Linux GLSL X

OpenGL ES Windows / Linux / Android ESSL (GLSL ES) X

Vulkan
Windows / Linux / Android

SPIR-V x
MacOs / IOS1

Table 2.1: Summary of the most-common Graphics programming frameworks

2.3.2 Conversions between graphics programming frameworks

While it is common for OpenGL drivers to support OpenGL ES shaders (ESSL for-
mat), there is no direct support to use a different shading language in a given frame-
work. It is an important issue to port a program to different platforms. The Vulkan
specification has been conceived as a way to solve that issue.

1No native support from Mac and IPhone, but a libary performs the conversion
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Vulkan provides the specification for a binary shader language (SPIR-V) which can
be used to target Vulkan-compatible back-ends. It offers a common intermediary
representation for shader code which can be generated from all textual languages
except Metal Shading Language (MSL). The representation can then be optimized
independently from the back-end and can be converted to any shading language (in-
cluding MSL) or executed on a compatible back-end.

While shaders can be effectively converted from one language to another, it is not
sufficient to fully perform the conversion from one Graphics programming frame-
work to another. Especially, the communication of the data to the shader is not
converted and data can be loaded incorrectly in the API. Some projects, such as AN-
GLE [32] or Zink [33], try to close that gap by providing a way to port an API to the
other available back-end APIs per platform. Specifically, ANGLE from Google ports
OpenGL ES and WebGL to Vulkan, and Direct3D, while Zink from the MESA project
performs the conversion from OpenGL to Vulkan.

2.3.3 Scripting languages for shader testing

While real-life applications must provide features unrelated to graphics, traditional
host languages such as C or Java are not well-suited to test shaders. Introduction
codes to draw a single triangle usually contains 100 lines for the OpenGL API [34]
and 1000 lines for the Vulkan API [35]. They require to write a large number of
low-level instructions to perform repetitive tasks (such as passing the correct data or
compiling the shader) and need to be compiled to execute programs. It is therefore
necessary to largely rewrite the host language code. Moreover, as the final binary
equivalent of a shader is largely dependent on the hardware, shaders are only com-
piled from their text form during execution and are often stored in separate files.

Scripting languages have been designed to provide an abstraction to those low-level
instructions and to test shaders in an easier and isolated way. They provide opera-
tions only related to graphics to build a single image/output and to test the result
values. They also offer a convenient way to execute programs in a similar environ-
ment across multiple platforms. Moreover, as the tests are written in a single textual
file, it is easy to read and to share to other people, especially for bug reporting (see
subsection 5.1.1).

Multiple scripting languages exist and are supported by different projects to test
specific APIs. It is usual for projects to ask that bug triggering shaders are enclosed
in their preferred scripting language. Scripting languages are often named by their
testing program. For example:

• shader runner is the test command for the Mesa / piglit [36] project, it deals
with the OpenGL API and is centred on the writing of self-contained test shaders
with pre-determined results. Equivalent versions of the tool exist for the OpenGL
ES APIs.
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• VkRunner [37] is a scripting framework based on the test language of
shader runner to execute Vulkan code. It supports the same shading language
(GLSL) but converts it to SPIR-V to execute it. SPIR-V code can also directly be
used. It can be used on Android as well as on Linux and Windows.

• Amber [38] is a scripting framework developed by Google. It is used as a run-
ner for the Vulkan Conformance Test Suite (Vulkan-CTS). It supports Android
and can be used to probe the difference between two images using histogram
distance (As designed by the GraphicsFuzz project and explained in subsec-
tion 2.2.3). Tests can be written either in the same format as for VkRunner or
using an independent scripting language AmberScript.

• ShaderTrap [39] is a scripting framework developed to support OpenGL and
OpenGL ES APIs. It supports similar functionalities as the previously cited
scripting languages, uses an independent scripting language (close to Amber-
Script). It offers the possibility not only to compare values and images at
run-time but to dump results for a-posteriori analysis.
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Chapter 3

Technology choices

GLSLsmith focuses on the testing of the shader compilers. It does not stress frame-
work APIs and relies on a scripting framework to perform the necessary calls to the
back-end. As OpenGL and OpenGL ES are the most supported frameworks and can
be executed on Vulkan targets easily thanks to ANGLE, GLSLsmith focuses on the
testing of GLSL / ESSL shaders. The main features of the two languages are there-
fore described in section 3.1). As multiple shading languages versions exist, the
generator is focused on the most recent one ported to all the tested target platforms
(see section 3.3). These standards are GLSL 4.5 [40] and ESSL 3.1 [41].

While any scripting framework could be supported by the shader generator of GLSL-
smith to build shaders, the choice of the scripting framework influences the number
of platforms being tested. As the OpenGL ES APIs calls can be converted to Vulkan
through ANGLE, it is possible to test both Vulkan and OpenGL compilers through
a scripting language supporting the OpenGL ES API (shader runner, ShaderTrap).
shader runner does not offer the capability to dump values to files and is, therefore,
more difficult to use for differential testing. As ShaderTrap also offers Android sup-
port, the GLSLsmith framework could be ported to Android as part of future works.
GLSLsmith therefore dump shaders into ShaderTrap files.

One of the the objectives of GLSLsmith is the independence towards the reducer
used in conjunction with it. As GLSLsmith does not make any assumptions on the
used reducer, three different types of reducers have been used (see section 3.2) and
their results compared (see section 5.3). While other reducers exist, they have been
chosen to represent the different reducers that can be available for an arbitrary lan-
guage. The tested reducers are C-Reduce as a language-independent reducer, PERSES
a grammar-aware reducer and Glsl-reduce a language-aware reducer developed
for GLSL as part of the GraphicsFuzz project. Their functionalities are describes in
section 3.2.
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3.1 Interesting GLSL / ESSL features

The GLSL and ESSL languages are based on C. While a full description of the two
languages is unnecessary for this report, some features create specific generation and
undefined behaviour challenges and are therefore presented here. As some features
might have different support across GLSL and ESSL and as ESSL is a subset of GLSL,
all features are presented for ESSL 3.1 and are supported by GLSL 4.5.

3.1.1 Shader communication

Shaders are usually assembled into a full graphics pipeline and act on different steps
of the rendering to produce a picture. However, OpenGL offers a second pipeline
called the compute pipeline.

In a compute pipeline, a single compute shader is used to perform multi-threaded
operations on the GPU. Communication to such shader is achieved differently from
the normal rendering pipeline by using buffer objects. The values of buffers can be
populated from the API and they can be used and updated during shader execution.
As the operations on a compute shader can be multi-threaded, buffers are shared
across all the threads of a single compute shader.

From the point of view of the API, buffer data is considered in binary format. Their
interpretation and typing are then inferred by the types declared in the shader. To
use such buffer in a shader it is required to indicate its location (through a binding
attribute), a name and the description of its different components. By default, com-
pilers are free to arrange data in the buffer in any layout format as they like, which
can be queried by the host language. However, it is possible to ask for a specific
layout through an attribute such as the std140 and std430 which describe the stride
and the alignment of the base types. While values are provided at execution time
by the API calls, the values are unknown at compilation. The Figure 3.1 presents an
example of such buffer.

l ayout ( std430 , binding = 0) b u f f e r 0 {
in t ex t 0 ;
in t ex t 1 [2] ;
f l o a t ex t 2 ;

}

Figure 3.1: Declaration of a buffer object named buffer 0, of layout format std430
bound to location 0. The buffer contains an integer ext 0, an array of two integers ext 1,
and a float ext 3.
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3.1.2 Basic types and operations

ESSL supports signed and unsigned integers, floats and booleans. Values of all types
can be grouped in built-in vector types (from 2 to 4 elements). The relevant types are
ivecX, uvecX, vecX and bvecX respectively where X is the number values. floating-
point values can be grouped in two-dimensional matrices (the two dimensions are
between 2 and 4). The relevant types are matX for square matrices of dimension X
and matXxY for all matrices of dimensions X × Y (including square matrices).

The four traditional arithmetic operations (+, -, * and /) are supported for all arith-
metic types. Operations between a vector and a scalar are defined component-wise
and result in a vector of the same dimension. In the case of matrices, the multipli-
cation operator is defined as the matrix-wise multiplicative operator and is defined
for all mathematically well-defined cases, including vector / matrices multiplication
and matrices / vector multiplications shown in Figure 3.2.

Integer-based types all support modulo operations (%), left and right shifts (<<,
>>) as well as bitwise and, xor and or (&, ∧ and |). Operations between a vector
and a scalar are defined component-wise.

// V a r i a b l e d e c l a r a t i o n
uint a = 0u ;
ivec3 x = ivec3 (1 ,2 ,3) ;
mat2x3 p = mat2x3 (1 .0 f , 2 . 0 f , 3 . 0 f ,

4.0 f , 5 . 0 f , 6 . 0 f ) ;
bool f = true ;

// Examples o f o p e r a t i o n s
uint b = a % 3u ; // s c a l a r / s c a l a r ope ra t i on
ivec3 y = x − 2; // v e c t o r / s c a l a r ope ra t i on
mat3 q = mat3x2 (1 .0 f , 1.0 f ,

1.0 f , 1.0 f ,
1.0 f , 1.0 f ) * p ; // matr ix / matr ix ope ra t i on

vec2 r = p * vec3 (1 .0 f ) ; // matr ix / v e c t o r ope ra t i on

Figure 3.2: Examples of variables declaration and operations. The matrix q presents an
example of matrix multiplication between a 3 × 2 matrix and a 2 × 3 matrix, resulting
in a square 3 × 3 matrix. The multiplication of the matrix p by a vec3 results in the new
vec2 variable r.

While integer addition, subtraction and multiplication are free from undefined be-
haviours (values are required to wrap if they overflow or underflow), divisions in-
troduce two undefined behaviours in the case of the division by 0 or in the case of
the division of MIN INT by (-1). Integer-based operations also introduce undefined
behaviours for the modulo operations (both operand need to be positive) and shifts
(the right operand needs to be between 0 and 32 included). Floating-point opera-
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tions all include undefined behaviours which are detailed in subsection 3.1.6.

Matrices and vector components can be accessed through the same notation as array
indexes using []. Using a single index on a matrix returns the column of the given
index (as a vector). Vectors elements can also be accessed through the ?? notation
as demonstrated in Figure 3.3 which all component is represented by a letter from a
set (r, g, b and a), (x, y, z, w) and (s, t, p, q). While components can be duplicated
in a swizzle for lecture, such swizzle cannot be written.

Conversions between all types are permitted as long as enough values are provided
for the resulting types. It is possible to provide a larger argument than necessary, in
which case, only the first values are kept as shown in Figure 3.3. Vectors and square
matrices can also be initialized from a single value. In that case, all the components
of the vectors are initialized on the value, while in the case of matrices, only the
diagonal is affected.

The order of evaluation of operations is largely undefined. The left or right operand
can be evaluated in any order for most operations except assignments and boolean
operations (and &&, or ||). A more precise description of undefined behaviours re-
lated to the evaluation order is given in subsection 4.3.6 along with their suppression
by post-processing.

// Examples o f s w i z z l e s and array a c c e s s e s
in t c = ivec3 (1 , ivec2 (2 , 3 ) ) . yyzx . rgb . s ; // c = 2
vec2 d = mat2(1 .0 f ) [ 1 ] ; // d = vec2 (0 .0 f , 1.0 f )
f l o a t e = mat4x4(mat3(2 .0 f ) ) [ 2 ] [ 2 ] ; // e = 2.0 f

// Examples o f t ype c o n v e r s i o n s
in t f = in t ( f a l se ) ; // f = 0
vec2 g = vec2 (1 .0 , uvec4 (1u , 2u , 3u , 4u ) ) ; // g = (1 .0 , 1 .0)

Figure 3.3: Examples of swizzles and type conversions. c is built from multiple swizzles
which is equivalent to yyzx.s (rgb is the identity order) and then as y (s designates the
first element). d is built from the square identity 2 × 2 matrix, by taking its second
column. g is built from a floating-point and an unsigned vector for which all but the first
value are useless.

3.1.3 Qualifiers

For any type described before, it is possible to precise extra constraints or expec-
tations that the variable implementation should meet. Such constraints are imple-
mented as qualifiers such as const which precise a compile-time constant to the
compiler. Variables usually have multiple qualifiers which are omitted when they
are kept to their default values.
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For example, all arithmetic variables admit a precision qualifier that precise the size
of their binary representation. In the specific context of a compute shader, all arith-
metic variables are declared by default as highp for high-precision variables. In high-
precision, floating-point values are expected to match the 32 bits implementation of
the IEEE-754 format and signed and unsigned integers are expected to be stored on
32 bits. The other available qualifiers mediump and lowp only describe minimal sizes
for the variables but implementations are free to choose a size for their operand.
While GLSL 4.5 offers support for precision qualifiers, they are considered to be of
no-effect in most cases and floating point values are guaranteed to be represented
on 32 bits.

Qualifiers can also be applied to buffer and buffer values. For example, the layout

qualifier has been used in Figure 3.1 to describe the location and the format of the
buffer. Buffer qualifiers include coherent which indicates to the compiler that read
and write operations need to be coherent across all shader invocations, writeonly
and readonly to precise a write / read-only buffer. Such qualifiers can be either
declared on the full buffer or added only to a specific buffer member.

3.1.4 Functions

GLSL functions include both built-in and user-defined functions. As for variables,
parameters are qualified to indicate when they need to be copied to and from the
function. in parameters are only copied to the function at beginning of their ex-
ecution, out are copied from the function to the calling context at the end of the
execution and inout are copied to the function and copied back as described be-
fore. Functions all have a return type which can either be void or one of the types
described in subsection 3.1.2. The type of the parameters is ensured at function dec-
laration time.

Contrary to C, expressions used as parameters are guaranteed to be evaluated from
left to right at the call time of the function. The order in which values will be copied
back is, however, undefined. It is therefore undefined to call a function with the
same variable for multiple out or inout parameters as represented in Figure 3.4.

Each shader contains a main function which is called at the execution start. There
is no nested function declaration and no forward declaration in GLSL. It is however
possible to declare multiple time the same function as long as only one declaration
matches a function prototype. Overloaded functions are supported.

Multiple built-in functions introduce undefined behaviours if parameters are out of
bound. It is for example the case of clamp for which the minimal bound needs to be
lower than the maximal bound.
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// p r o t o t y p e wi thout d e f i n i t i o n
void g( in in t x , out in t y , out in t z ) ;

// f u s e s the p r o t o t y p e o f g wi thout the d e f i n i t i o n
ivec3 f ( in in t x , inout in t y , out in t z ) {

g(x , y , z ) ;
return ivec3 (x , y , z ) ;

}

// g i s then g i v en a d e f i n i t i o n
void g( in in t x , out in t y , out in t z ){

y = x ;
z = x+1;

}

void main (){
in t a = 2;
g(a , a , a ) ; // unde f ined behav iour
// a = 2 or a = 3 are both v a l i d

}

Figure 3.4: Function declarations and undefined behaviours examples. The undefined
behaviour in the call of g is caused by the use of the variable a for both formal parameters
y and z, resulting in an undefined order of copy back. a can therefore contain the value
of y (the initial value of a) or the value of z (resulting in a + 1).

3.1.5 Compute groups

While all shaders are inherently executed in parallel, it is possible to explicitly con-
figure compute shaders to be executed in workgroups, containing one or more local
threads (the actual number is defined by its local size). The local size of a compute
shader is given directly in the shader code and corresponds to the number of threads
necessary to execute the shader on a given set of values input. While the actual order
of execution of threads is undefined, it is possible to synchronize the thread execu-
tions thanks to built-in functions. On the other hand, the number of workgroups is
defined at execution time through the API to execute one shader across multiple sets
of values. The order of execution between all workgroups is undefined, and they
should be all independent.

Compute shaders define specific variables to query either the workgroup number
or the local number. Thanks to those variables, it is possible to differentiate between
the shader invocations both within a workgroup or in between workgroups to query
the appropriate data from the buffers. While data access is incoherent by default,
it is possible to qualify a buffer as shared to ensured that its values are coherently
handled with the barrier() function.
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3.1.6 Floating point precision

As described in subsection 3.1.3, ESSL supports multiple floating-point representa-
tions based on the IEEE-754 2008 specification [42] (More details about the IEEE
representation are given in subsection 4.2.4). While the representation should logi-
cally follow the IEEE specification, the ESSL specification relaxes multiple constraints
associated with floating-points, leading to a number of undefined and compiler-
dependent behaviours.

Floating-points are required to support the full-range of finite values from the IEEE
single precision ] − 2128, 2128[ as well as both infinities. However, there is no obliga-
tion to support NaN values (which can arise from operations such as 0/0). Moreover,
as the IEEE representation supports two representations of 0 (one positive and one
negative), compilers are permitted to exchange one representation to the other.

While the floating-point representation in itself leads to compiler-dependent be-
haviours, the specification also relaxes the precision of operations and function re-
turning undefined behaviours. It is possible to separate three categories:

• Rounded values: Arithmetic operations such as +, − and × are exact except
for rounding errors. Functions which are described as a combination of such
operations are also correct except for rounding errors. Types conversions are
also included in this category. However, the rounding mode is undefined and
cannot be set by the application.

• Defined precision: The / operation as well as some arithmetic functions (log
and exp) have a fixed authorized precision. This precision is expressed in terms
of units in the last place (ULP) giving the number of bits that are allowed to
differ between implementations. This category of operations is specific to the
GLSL specification and significantly lowers the expectation of the IEEE stan-
dard regarding floating-point precision, leading to discrepancies between im-
plementations results.

• Undefined precision: All built-in functions which do not fall in the two pre-
vious categories are considered to have an undefined precision. In particular,
this applies to trigonometric functions as well as matrices functions such as
determinant calculations.

Compilers are also allowed to perform optimizations such that the resulting values
are “slightly different” [41] from non-optimized code. Especially, they are allowed
to recompute values and to replace some operations which are equivalent in real-life
arithmetic to benefit from hardware support. Examples of such optimizations include
the replacement of multiplications by successive additions or the use of a single bi-
nary instruction to perform a×b+c. Even if those operations are arithmetically well-
defined, different results can be obtained due to the floating-point approximations
and are therefore forbidden by the IEEE-754 norm. While traditional C compilers
such as Clang and gcc do not perform such optimizations by default, both offer a
fast-math mode to authorise such optimizations [43; 44].
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3.1.7 Summary of undefined behaviours

Category Undefined and implementation-defined behaviours

Representation of values
Binary size of values

Floating-point special values

Memory access
Out-of-bound array access

Unitialized variables

Layout and unitialized buffers

Arithmetic

Integer-based division

Negative modulo operands

Out-of-bound shift operands

Floating point operations

Functions
Built-in functions

Floating-point based functions

Evaluation order
Function call copy-backs

Initializers parameters

Side-effecting expressions

Control-flow Non-terminating loops

Race conditions Interaction between workgroups and threads

Table 3.1: Summary of the undefined behaviours divised into categories

Most undefined behaviours of GLSL have been described in the previous subsections
and are summarized in Table 3.1. Two categories of undefined behaviours are not
described above: memory accesses based undefined behaviours and control-flow based
undefined behaviours.

Contrary to C, GLSL does not support pointers and undefined behaviours related
to memory accesses are limited to array accesses and non-initialized memory (see
subsection 3.1.1). While negative array accesses are treated as errors, array accesses
which are out-of-bound but positive are treated as undefined behaviours.

As GLSL permits loops without reachable exit conditions, compilers are authorized to
deal with such programs in any way they find appropriate and results that could be
collected from the execution of such shaders are completely undefined. While long-
running / never ending shaders are normally killed by the OS watchdog depending
on the driver, shader interruptions can have unpredictable results and side-effects
on the OS.
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3.2 Tested Reducers

Reducers are usually compared according to three criteria:

• the speed with which they produce reduction output.

• the size of the reduction output (either in terms of code words or lines).

• the engineering effort required to transfer them to another language.

3.2.1 Language-independent reducers: C-Reduce

C-Reduce [18; 2] is a reducer initially developed for the C language. It uses a set
of transformations in multiple subsequent passes to reduce the code. While some
transformations are directly related to the C language, most of them only rely on
general assumptions such as having “{” as a control flow delimiter. While it is not
the case for all languages (python, for example), it is general enough to be used with
a wide range of languages such as GLSL without adaptation of the tool. As C-Reduce
integrates different transformation types, one transformation might unlock extra re-
duction opportunities in the subsequent passes. Therefore, as with most reducers,
C-Reduce repeats its transformation process as long as a fix-point has not been found.

To use C-Reduce, it is necessary to produce an interestingness test, in the form of a
hard-coded shell script that performs the compilation of the original code, as well
as reduced versions (given that for all reduction attempts, the name of the code file
will be identical). C-Reduce uses a temp directory to build every reduction attempt.
The shell script needs to perform all sanity checks which are suitable and compile the
code. As the reducer is independent of the chosen language, it does not deal by itself
with undefined behaviour. Moreover, as it does not assume much on the structure
of the underlying language, C-Reduce performs transformations that might produce
invalid code, such that the reduction attempt is not recognized as being part of the
programming language.

3.2.2 Grammar-aware reducers: PERSES

PERSES [3] is a grammar-aware reducer. While C-Reduce can perform transforma-
tions that produce invalid code, PERSES uses the user-provided context-free grammar
to ensure that all reduction attempts are well recognized as program codes. It does
not ensure that the code will compile, as many errors are related to the context in
which instructions are written. However, by avoiding generating improper code,
PERSES diminishes the number of reduction attempts, which increases reduction
speed. While the grammar is effectively dependent on the considered language,
it is usually easy to find a grammar recognizing a given language, either from an
open-source project, the specification files or one developed for a random program
generator.
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Once PERSES has been compiled with the necessary grammar, it can use the same
files as for C-Reduce to perform reduction (hard-coded shell script and original
code). While C-Reduce uses a /tmp directory, PERSES build a temporary directory
in the current working environment and then isolates every reduction attempt in
an inner directory. As PERSES has no further knowledge about the programming
language than its grammar, the reduction can introduce undefined behaviours.

3.2.3 Language-aware reducers: Glsl-reduce

Glsl-reduce [23] is the reducer developed by the GraphicsFuzz project, it targets
undefined behaviours and possesses two modes of action. In the first mode, which
is directly related to the way the GraphicsFuzz project generates new shaders, the
reducer tries to remove transformations applied to the original shader to come up
with the closest shader which triggers the bug as described in subsection 2.2.3. In
the second mode of reduction, the reducer applies transformations directly on the
parsed abstract syntax tree (AST) to remove or rearrange nodes. It takes care of
some undefined behaviours which can be introduced, especially array in-bounding
and loops limiting. Glsl-reduce can perform such transformations only because it is
aware of the GLSL language. Porting it to other languages would require consider-
able engineering efforts.

While the first reduction mode is of no interest for GLSLsmith, the second gives
a good example of a language-aware reducer. To use the second more, it is neces-
sary to produce the shader code, an interestingness test (which admits the shader
name as an argument, contrary to C-Reduce and PERSES) and a JSON file of the
name of the shader code.

3.3 Compilers under test

To simplify the buffer collection for differential testing, all tests have been executed
on the same platform, a personal laptop running Ubuntu 21.04 with a discrete graph-
ics card NVIDIA GeForce GTX 1050 Mobile TI. Thanks to ANGLE and the MESA
project which develop open-source drivers, it has been possible to test five different
compilers.

While most differential test settings assume independent compilers, it is not the case
in that test configuration, therefore identical bugs can be triggered across multiple
implementations through a common dependency. Known dependencies are summa-
rized in Table 3.2 (as NVIDIA compilers are not open-source, the dependencies are
assumed).

GLSLsmith has been used in conjunctions with 5 different compilers: 2 OpenGL
API compilers and 3 Vulkan API compilers (through ANGLE):

• OpenGL NVIDIA driver (linux display driver v460.80 - v470.57): A proprietary
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NVIDIA driver used with an NVIDIA GeForce GTX 1050Ti GPU for the OpenGL
API [45].

• LLVMpipe driver (Mesa3d 21.1.1- 21.1.7): A software (CPU) driver developed
as part of the Mesa3D project for the OpenGL API[46].

• ANGLE / Swiftshader driver (SWANGLE) (latest github available version): A
software implementation developed by Google for the Vulkan API [47].

• ANGLE / Vulkan-Intel MESA driver (Mesa3d 21.1.1- 21.1.7): A driver de-
veloped as part of the Mesa3D project for the OpenGL API on combined Intel
Graphics Card [48].

• ANGLE / Vulkan-NVIDIA driver (linux display driver v460.80 - v470.57): A
proprietary NVIDIA driver used with an NVIDIA GeForce GTX 1050Ti GPU for
the Vulkan API [45].

Compiler NVIDIA Mesa code base ANGLE / GLSLang

OpenGL NVIDIA X

LLVMpipe X

Swiftshader X

Vulkan-Intel X X

Vulkan-NVIDIA X X

Table 3.2: Summary of the known compiler dependencies
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GLSLsmith Framework

4.1 General organisation

The workflow of GLSLsmith can be decomposed into three steps. First, the generator
creates a shader and dumps it into a ShaderTrap test file. Then, the ShaderTrap is
post-processed to remove undefined behaviours and results are compared and cat-
egorized. Finally, if the shader is of interest, the code is reduced. In this case, an
interestingness test script is created, and the shader code is split from the ShaderTrap
harness. Reducer attempts reduction on the extracted shader. Then, the interesting-
ness test merges back the shader code with the ShaderTrap harness and the resulting
ShaderTrap code is sent back to execution.

From a technical point of view, the code is divided into three different parts: the
generator, the post-processing unit and the execution / reduction supervision. The
generator and the post-processing unit are written in Java, while the supervision is
ensured by a set of python scripts. This division does not match the steps of the
workflow, so that the post-processing unit can be used independently from the rest
of the framework.

The generator, described in section 4.2, is in charge of the shader generation and is
usually used in batch mode. It generates self-contained ShaderTrap test files. Shader
generated at this stage can contain undefined behaviours. The ShaderTrap code con-
tains the final values which will be passed to the rest of the process. After generation,
the shader is sent to post-processing.

The post-processing unit, introduced in section 4.3, can extract information from
the ShaderTrap code and replace the shader after the suppression of undefined be-
haviours. No other information than the GLSL and ShaderTrap code is provided to
the post-processing unit. As such, it does not assume anything on the provenance of
the code and can be used with any shader meeting the criteria for post-processing
(no name clashes with functions and variables and special considerations for floating
points as describe in subsection 4.2.4). The resulting ShaderTrap test produced by
the post-processing unit is free of errors and undefined behaviours. It can be exe-
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cuted through ShaderTrap.

The supervision scripts, presented in section 4.4, control the bug-finding process
and ensure the automatic generation, execution and reduction of test cases. They
provide a set of tools that can be used independently or as part of the complete au-
tomatic process. Especially, it is possible to use the execution supervision scripts to
perform efficient manual reduction with or without post-processing. To perform au-
tomatic reduction, the supervision script can extract the shader from the ShaderTrap
testing code and build a relevant interestingness test for the reducer. When a po-
tentially reduced file is produced, the execution framework reassembles the shader
with the test harness, enforces post-processing and categorizes the results.

Generator

Post-Processing unit ShaderTrap
Comparison and
categorization

Execution supervision

Non post-processed
ShaderTrap

buffers

Test Creation

Non post-processed ShaderTrap

Reducer

Interestingess test

shader code

interestingness test: Merge and dispatch to execution

ShaderTrap harness reduced shader

Reduction supervision

Figure 4.1: General overview of the GLSLsmith framework
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4.2 Generator

4.2.1 Generation process

The generator first generates the shader in an abstract syntax tree (AST) representa-
tion in which every element of the shader code is represented by a token linked to
its outer element. The shader is then printed to a text format and the ShaderTrap
harness code is printed. As the shader generation is independent of the scripting, it
would be possible to add support for other scripting languages besides ShaderTrap
such as VkRunner or AmberScript as described in subsection 2.3.3.

To focus the engineering effort on the generation of diverse shaders, the genera-
tor and the post-processing are built as submodules of the open-source Graphicsfuzz
framework [4]. Both reuse the AST format, as well as the shader parsing capabilities
of the framework.

To generate a shader, GLSLsmith uses a set of recursive functions which generates
the communication interfaces as well the body of the main function. The program
state is updated through the complete generation such that recursive functions only
build valid code without the need for back-tracking.

While the generation of the shader code is ensured by a single ShaderGenerator

class, all choices of random types and operations are delegated to a secondary class
RandomTypeGenerator to enable unit-testing.

As the suppression of undefined behaviours is delayed to the post-processing unit,
shaders emitted by the generator are free to contain undefined behaviours and er-
rors. Especially, array indexes are not required to be in-bound and can even be neg-
ative. Attempts to execute the resulting code without post-processing may therefore
lead to compile-time errors when the array accesses are folded.

4.2.2 Integers and Boolean support

The generator supports the full range of operations (including ternary operations)
for signed, unsigned integers and boolean values. Especially, it supports vector /
scalar operations as well as comparison operations. Through generation, operand
types are chosen at random from the available types on a given operation.

There is full support for vector swizzles (as well as with indexes) so that vector
components can be used in expressions. As permitted per the standard, multiple
swizzles can be written in a single variable access, either to obtain a smaller vector
or a scalar. In the case where the original vector value is only read, resulting swizzles
are permitted to contain duplicate: the resulting vector can be of a bigger size than
the original vector as shown in Figure 4.2. When the swizzle is a l-value, the size of
the swizzles is however constrained by the original size of the vector: all can be at
most the same size as the former one.
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in t x = (( var 0 ) . t s ) . gr . s ;
bool y = ( var 4 ) . yx . rg . s t [ 1 ] ) ;
uvec4 z = (( ( var 3 [ 5 ] . rg ) . xxyx ) . t t t s ) ;
(w[ ex t 1 ] . rgb ) . xz = bvec2 ( f a l se ) ;

Figure 4.2: Examples of swizzles generated by the generator. The first two swizzles
resulting in x and y are example of generation for scalar values. The y swizzle uses
an array index as described in subsection 3.1.2 to access the first element of the last
resulting swizzle. The two following swizzles or z and w demonstrate the difference
between read and written swizzles: z is built as an expanded vector from 2 to 4, while
the swizzle from w is reduced to 2.

More generally, if across generation, the left operand is an l-value for which writing
is permitted, side-effecting operations can be generated. L-values include variables,
array values as well as vectors, and swizzles as described above.

Function calls that return integer or boolean values are directly generated into ex-
pressions to add more diversity and trigger optimizations. This includes both type
conversions and more generally all functions that return the correct type can be
generated.

4.2.3 Control-flow support

The generator supports the complete set of control-flow instructions, including if /
else, switch, while, for and do-while loops. It also generate early exit instructions
(break, and next execution continue).

ESSL and GLSL, in a similar fashion to C, are permissive in the construction of loops
and conditional instructions. Especially, switch cases are valid even if they don’t
contain any cases or if they contain fall-through statements. Similarly, for-loops are
not guaranteed to contain initialization, condition and loop expressions such that
for(;;) defines a valid loop. While those structures are probably against best prac-
tices in all languages, GLSLsmith does not make such assumptions and generates the
full extent of authorized structures.

While the generation of atypical control-flow structures can be an interesting way
to find bugs, more traditional structures likely trigger specific optimizations. For
that reason, GLSLsmith can also generate guided switch and for structures, which
matches with real-world usages.

Guided switch structures include a random number of consecutive value cases
as well as a default case which is added at random. To ensure that one of the
case will be executed, the offset of the first value is added to the switch expression
and the value of the expression is evaluated modulo the number of cases. In rare
cases and due to the definition of the abs function, the actual value is undefined be-
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// Example o f guided sw i t ch g ene ra t i on
switch (1u + ( var 3 % 2u))
{

case 1u :
{

const uvec4 var 0 = uvec4(15u , 1u , 3u , 1u ) ;
}
break ;
case 2u :
{

ex t 8 [5] %= ( ( ! ( true )) ? ˜ 5 : 2 ] ) ) ;
}
case 3u :
{

var 1 . z . r += ( var 0 [5] ? ( var 2 [ ex t 7 ]) −− : f l o a t (( ex t 5 ) ) ) ;
}
break ;
}

Figure 4.3: Example of guided control-flow generation.
Inner expressions of the cases and the loop have been cut for simplicity.

fore post-processing (modulo operations are only defined for two positive numbers
and abs(MIN INT = MIN INT)). While the case statements are likely to be found in a
real-world application, the format of the switch expression is largely constrained, as
the modulo operation will be changed to a wrapper by the post-processing step (see
subsection 4.3.1. An example of switch operation obtained with the guided switch
generation is given in Figure 4.3.

// Example o f guided for−loop g ene ra t i on
for ( in t f o r v a r 2 = 1; ( f o r v a r 2 >= − 17) ; f o r v a r 2 −= 2)
{

ex t 3[+ (+ ++ ext 6 )] = 1u ;
}

Figure 4.4: Example of guided control-flow generation.
Inner expressions of the cases and the loop have been cut for simplicity.

Guided for structures include the definition of an induction variable declaration, a
classic comparison to a fixed value and an increment expression. For each guided
for-loop generation, a random increment expression is chosen between addition,
subtraction, multiplication and division, a number of steps is chosen, and the upper
or lower bound of the comparison expression is computed at the level of the gener-
ator. The resulting expressions, therefore, only contain the variable declaration and
numerical constants. While it does not cover perfectly all the cases found in real-
world applications (where the upper or lower bound can be another variable), such
for loops have a usual appearance, one of the generated loop is given in Figure 4.4.
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4.2.4 Floating-point support

As described in subsection 3.1.6, floating-point testing is a difficult subject due to
the high number of undefined behaviours and the relative imprecision of operations.
In order to offer exact comparisons between floating-point values, GLSLsmith does
not generate divisions (excluding undefined behaviours related to NaN). It limits its
support to operations and functions for which the only error can come from round-
off by selecting specific literals to generate. As the chosen set of literals is directly
determined by the IEEE-754 representation (32 bits, single-precision floating-point)
[42], a brief description of the format is necessary.

All values are represented on 32 bits divided as follow:

• 1 sign bit: 0 for positive values, 1 for negative values

• 8 exponent bits: an 8-bit unsigned number from 0 to 255, its value is inter-
preted as the exponent of 2 with which the mantissa will be multiplied (after
subtraction of a bias of 127). 0 and 255 are reserved for special numbers,
giving powers of 2 between -126 and 127.

• 23 mantissa bits: the 23 first bits of the result of the division by the exponent
of the number (excluding the leading 1).

While only 23 bits of the mantissa are stored, it effectively brings 24 bits of precision
on any value which admits a floating-point representation as:

• For a value X, the exponent E is chosen as: 2E < X < 2E+1.

• The result of the division of X by 2E will always be X/2E = 1.b1...b23 b24....

• The 23 first bits b1...b23 are stored within the mantissa.

As the generator controls which floating-point literals appear in a program, it is pos-
sible to only generate literals that admit an exact floating-point representation. One
way to do so is by arbitrarily fixing the power of two that the last bit of the mantissa
represents, written r in the following. Once that power of two is fixed, all numbers
which are non-zero multiplicative of r and within range of ]− 224 × r, 224 × r[ admit
a unique and exact floating-point representation.

Moreover, the operations performed on such values benefit from some stability
(named pseudo-stability in the following): the product, the addition and subtraction
of two numbers are guaranteed to be themselves multiples of r in real arithmetic
and are likely to admit a unique and exact floating-pointing representation: it is suf-
ficient to check that the result of the operation is within the range of ]−224×r, 224×r[
and different from 0 (the value 0 can arise as a result of addition and subtraction).
While there is no guarantee that the floating-point arithmetic will perform the same
operation as in real arithmetic, the operation should not result in a rounding error.

The case of the 0 value is special: it does not admit a representation with the same
format as the other powers of r but instead admits two representations: +0 defined
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as all 32 bits set to 0 and −0 defined as all bits to 0 except the sign bit set to 1. The
most conservative approach is to exclude is to exclude 0 from the pseudo-stable set of
values generated. The second is to admit both −0 and +0 in the set, given that the
new extended set is still pseudo-stable by addition, subtraction and multiplication.
The GLSL and ESSL specifications permit to exchange −0 and +0 for optimization
reasons. While it does not impact subtraction, addition and multiplication as all
other values are guaranteed to be finite, comparing the two forms of 0 might lead to
discrepancies between comparisons results and they should be considered as identi-
cal in buffer outputs.

Pseudo-stability is well-defined for any chosen r such that r × 224 < 2127 which leads
when adding the minimum constraint to 2−126 < r < 2103. Interestingly, if r = 20 = 1
is chosen, it gives all integers with absolute value of less than 224, using values in the
same range as the one used by [1] to avoid rounding errors (see subsection 2.1.2) ex-
cluding however the case of 0 which is relative to the specific undefined behaviours
of GLSL. The choice of r = 1 presents two main advantages for GLSLsmith: random
floating-points can be generated directly from the random integer generator, and as
unary increments and decrements are defined as “adding or subtracting 1.0”, those
operators can be safely generated by the shader generator. As generated operations
can lead the values to escape the pseudo-stable range, wrappers are necessary to
constraint further operations (as discussed in subsection 4.3.1).

4.2.5 Skewed random generator

While a uniform random generation can be appropriate to generate test cases, it can
be expected that some values are more likely to trigger code optimizations either
by their arithmetic nature, such as the integers 0 and 1 or because they represent
extremum values for the fixed-size representations of the variables, either if they are
directly present in the shader code or if they are computed after operations.

To test the impact of the values in the shader, GLSLsmith does not generate values
uniformly for arithmetic values. Instead, it chooses uniformly between 4 sub-types
of value generators for integers and unsigned integers. It is possible to enable only
some of them on a specific run of the generator. Once a generator has been chosen,
values are picked from it uniformly at random.

The full-range generator generates values in the whole range of permitted values.
The range can be restrained to deal with generation constraints such as in a shift
operation, in which the right operand needs to be generated between 0 and 32. In
that case, the full random generator is always picked, so that values are guaranteed
to be in-bound.

The special value generator generates values from a limited list of values which are
the most probable values for wrong behaviours or different optimizations. For un-
signed integer, the list is composed only of 0, 1, 2 and the maximum permitted
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unsigned integer (232 − 1). For signed integers, the list is composed of 0, 1, -1, 2, -2
and the two extremum values 231− 1 and −231. As the 2-complement representation
is used, it is interesting to note that −231 does not have a positive equivalent repre-
sentation.

The small-value generator generates values in the range [−128, 128[ ([0, 128[ for un-
signed integers). The bounds have been arbitrary chosen but the idea is to generate
values close to 0, 1 and 2 for eventual subsequent optimization triggered after fold-
ing. In the case of unsigned integers, values close to 0 can also lead to the use of
large values by the program. This is a direct consequence from the specifications of
GLSL and ESSL: operations which should produce negative values are required to
wrap from the highest values instead.

The large-value generator generates values in the range [−231,−227[∪[227− 1, 231− 1[
([228−1, 232−1[ for unsigned integers). Again, the bounds are arbitrarily chosen but
values are expected to wrap from positive to negative after a few operations.

For floating-points literals and as discussed in subsection 4.2.4, GLSLsmith gener-
ates integers. While the full range of ] − 224, 224[ could be used, the literals are
generated in the range ]− 212, 212[ in order to ensure that at least one operation will
be performed before a potential overflow.

4.2.6 Function support

As many built-in functions needed to be registered for random generation, a func-
tion registry holds the list of available / supported functions in the given context.
Supported functions represent a large subset of the built-in functions but exclude
functions for which the resulting types are not well defined (mediump and lowp val-
ues) as well as floating points values for which the precision is unknown.

More precisely, all float-based functions whose definition contain an exact math op-
eration using only addition, multiplication and subtraction are supported as their
precision is inherited from those operations.

4.3 Post-processing unit

The post-processing unit uses many transformations to conservatively remove unde-
fined behaviours. First, the ShaderTrap code is parsed into a program state format
containing both the shader code and reconstructed values from the buffers. Then
the shader code goes across a series of post-processing steps meeting a common in-
terface. Each post-processing step consists of a Visitor which goes through the AST,
identifies undefined behaviours and modify the programs to correct them. As the
post-processing steps are applied multiple times across reduction, an effort is made
to reduce the overhead introduced. Only the Wrappers step (subsection 4.3.1) and
the Parameter Order Control step (subsection 4.3.6) type the AST.
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Undefined behaviours can be decomposed into two categories depending on the
situation in which they are generated. If an undefined behaviour is generated by
the generator, it needs to be corrected for the shader to be executed so that every
generated shader is effectively a test case. However, if an undefined behaviour is
introduced at reduction time, it can either be transformed into valid code, or into
statically incorrect code ( see subsection 4.3.4) to avoid to type the complete AST.
The invalid code is then either caught back by a subsequent step using typing or by
all compilers (as a compile-time or linking-time error) and therefore is discarded.

4.3.1 Wrappers

Wrappers constitute an important part of the avoidance of undefined behaviours in
GLSLsmith. They are used in three different places: integer arithmetic-based un-
defined behaviours avoidance, built-in function parameters undefined values avoid-
ance and float-based precision loss avoidance. Wrappers can be either built as pre-
processor macros or functions. GLSLsmith chooses to include wrappers as functions
so that possible side-effecting operations are only effected once at function call as in
Figure 4.5. All wrappers can be identified by their naming convention of “SAFE ” +
OP OR FUNC NAME in a similar fashion to Csmith [8]. Visitors which build wrap-
pers work by first visiting the full program changing necessary operations to function
calls and registering wrappers for later generation. Then at the end of each pass, all
newly defined wrappers are added to the program.

// O r i g i n a l code
void main () {

in t x = 1;
in t y = ( x++) / 2; // y = SAFE DIV ( x++, 2) ;

}

// Code us ing wrappers
in t SAFE DIV ( in t A, in t B)
{

return B == 0 | | A == −2147483648 && B == −1 ? A / 2 : A / B ;
}

void main () {
in t x = 1;
y = SAFE DIV ( x++, 2) ;

}

Figure 4.5: Example of integer-based arithmetic wrapper
The increment operation on x is effected only once at function call. If the wrapper was
to be written as a pre-processor directive, it would be effected twice, (one for each A in
the SAFE DIV wrapper.
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While wrappers are generally independent of one another, some of them require
modulo operations to ensure that values are taken in bounds. As modulo operations
are well defined only in the case of two positive values, an extra SAFE ABS wrapper
is designed to deal with the MIN INT case and enforce that values returned by abs

are effectively positive or null. As the correct SAFE ABS needs to be defined before
the actual wrapper, every registered wrapper is declared first as a prototype (which
enables forward declaration) and is then given an implementation.

The second special wrapper is “SAFE FLOAT RESULT” which wraps any non-side-
effecting operation or function returning a float-based value. Contrary to the other
wrappers, it does not test the value of the operand or parameters but instead, test if
the value is within the range of float without a precision loss (following the pseudo-
stability criteria as described in subsection 4.2.4) and as demonstrated in Figure 4.6.

While there are many ways to write equivalent wrappers, two general principles
have been applied in the writing of all wrappers:

• Tests on values are made in ternary operators when possible such that they are
likely to get inlined by the compiler

• Default code paths which are executed when the operand effectively hits for-
bidden values perform an operation of the same type as the one which should
have been performed without undefined behaviours.

// O r i g i n a l code
void main ()
{

f l o a t x = dot (1 .0 , 1.0 + 1 . 0 ) ;
}

// Code us ing wrappers
f l o a t SAFE FLOAT RESULT( f l o a t A)
{

return abs (A) >= 16777216.0 f | | abs (A) < 0.5 f ? 10.0 f : A;
}
void main ()
{

f l o a t x = SAFE FLOAT RESULT( dot (1 .0 , SAFE FLOAT RESULT (1 .0+1.0))) ;
}

Figure 4.6: Example of floating-point based arithmetic wrapper
Contrary to the integer-based wrappers, the wrapper is added on the result of the +
and on the result of the function call. Here the “SAFE FLOAT RESULT” defaults to value
10.0f.

In the case of floating-point wrappers, it is impossible to perform a default operation
as this one cannot be guaranteed to be in range, each wrapper instead returns a
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unique value, such that the program never defaults to a succession of operations on
identical constants.

While the application of each step is independent and can be made in any order,
it is preferable to add wrappers last as they add a high number of new functions and
functions calls which imply an overhead in subsequent typing of the AST nodes.

4.3.2 Index-bounding

Array indexes are not guaranteed to be in bounds by the generator (some might even
be trivially negative). Multiple options are possible to enforce that indexes are taken
in the size of an array. The post-processing unit implements two of them: index
modulo array length and clamping shown in Figure 4.7.

In index modulo array length mode, the index-bounding step uses a modulo oper-
ation to inbound the values. As modulo operations are well-defined only in the case
of two positive values, a SAFE ABS wrapper is generated on the left operand. The
right operand of the modulo expression is the length operator, defined for all arrays
in GLSL (and guaranteed to be positive). It permits indexes to reach any possible
value of the array with the same probability. It is the default mode used in produc-
tion by the post-processing unit.

In clamping mode, the index values are clamped between 0 and the length of the
array in a similar fashion to Glsl-reduce [23]. This strategy does not require extra
function definition and only uses the built-in clamp function that is susceptible to be
optimized out, especially as the length of the array is known in most cases at compi-
lation time. However, as values are clamped, the first and last values of the array are
extremely more likely to be used, hiding possible problems which could have arisen
for inner values assignments.

// O r i g i n a l code
in t x [5] ;
y = x[ i ] ;

// Index modulo array
in t x [5] ;
y = x[SAFE ABS( x ) % x . length ( ) ] ;

// Clamping
in t x [5] ;
y = x[clamp( i , 0 , x . length ()+1)];

Figure 4.7: In-bounding of values
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4.3.3 Initialization enforcement

While generation enforces that all variables are initialized, reduction steps are likely
to remove the initialization part of variable declarations. While it might not be a
problem in the case of not-compiling shaders, discrepancies between uninitialized
values might shift a bug to undefined behaviour. This post-processing step, there-
fore, initializes all uninitialized values to the same value of 1. It does not however
prevent the complete removal of a useless variable. As all variables are typed at
declaration, the complete necessary type for the initialization (array size if any, type
of element, constructor) is evident.

This step does not deal with buffers which do not have an initialized value given
by the shader but instead rely on the one provided by the testing script, those are
dealt with by the communication control step (subsection 4.3.4).

4.3.4 Communication control

This step is the equivalent of the initialization enforcement step for buffers. It en-
sures that buffers are either removed completely by reduction or have identical val-
ues across all compilers. This process might seem identical to the initialization en-
forcement, it does not benefit from the same information as variables.

While the data parsed back from the ShaderTrap harness can give the type of the
inner members of the buffer in most cases, arrays of size 1 have the same outer in-
terface as the type of a single element. In that case, it is impossible to differentiate
between the two options. However, as the buffers interfaces are guaranteed to be
correct at generation-time, they can only be ill-defined due to a reduction attempt.
Therefore, the communication control step takes the most-likely option and declares
the value as an element and not an array. If the hypothesis is finally incorrect, the
shader will simply not compile.

4.3.5 Loop limiters

Loops produced by the generator are unlikely to terminate by evaluating their con-
ditional expression to false (except for guided for loops). There might terminate
due to the inner break statements generated by the generator or they run forever.
While never-ending shaders can be caught back by the supervision framework, their
outputs are undefined (as described in subsection 3.1.7) and the test case benefit
from the execution of as many parts of the shader code as possible. Therefore, loop
limiters [23] are introduced by the post-processing unit. The loop limiters can be
introduced in two different ways by post-processing, either by including a global lim-
iter that allows a global budget to the shader or by including a local limiter per loop
with a local budget. While loop limiters are simply extra counters added to loops
to ensure that they exit (either by adding an extra condition to condition expression
or by adding an inner conditional break), there are multiple parameters to take into
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consideration before writing them and which can impact the whole generation pro-
cess.

With a global limiter strategy, the shader code is given a budget for the execution of
all its loops. This guarantees the shader to terminate as the same budget is consumed
by all loops. However, the budget will be consumed by the first non-terminating loop
and all the other loops will not be executed (or only once). This problem is however
nullified if all loops are guaranteed to terminate, either by design or thanks to a local
limiter.

Local limiters define an identical fixed number of executions for all loops. As they
are independent of one loop to another, they enable all loops to effectively have a
chance to be executed. The main problem with local limiters is that multiple inner
loops can increase the complexity of outer loops: while the outer loop will be exe-
cuted 10 times, an inner loop will be executed 10 × 10 times, etc. To prevent this
case from happening, GLSLsmith declares local limiter variables as global variables,
therefore the inner-most loop will always have the same budget as the outer-most
loop. The inner-most loop will probably consume all its budget on the first execution
of its outer loop but is effectively executed.

After some tests with solely the global limiter, the global limiter and local limiters or
with local limiters only, they were no difference in the number of shaders reported
with either a global limiter and local limiters and with only local limiters, while they
were less with only the global limiter. All but one compiler never exhibits time outs
even with only local limiters and the last compiler still times out on some shaders
even with global limiters. Therefore, by default, the post-processing unit only in-
cludes the local limiters.

In both strategies, there are two possible positions to increment the value of a lim-
iter, either the first instruction of the loop or the last one. Increasing the loop limiter
/ breaking at the end of a loop execution presents the advantage of effectively exe-
cuting the loop body at least once (when the original condition of the loop is met).
However, if the loop contains a reached continue instruction, the loop will never be
exited. Moving the increment instruction as the first one of the loop has the interest
of removing this possibility but a loop might exit without being executed at all. In
the case of GLSLsmith, as continue statements can effectively be generated, the in-
crement is realized at the beginning of the loop execution, followed by a conditional
break. The conditional break could have been removed and the conditional expres-
sion rewritten. However, it would enforce all loops to have a conditional expression,
which is not one of the obligations of GLSL as described subsection 5.1.4.

4.3.6 Parameter order control

While GLSL enforces the evaluation order of functions parameters when they are
copied to a function, it does not specify the order in which values should be copied
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back (for inout and out parameters). Similarly, operands are not guaranteed to be
executed from left to right in an operation and the wording for array constructors,
which are written in a similar format to function calls, is ambiguous. As the work of
this step is tightly dependent on the precise rules of the evaluation order in ESSL, a
summary is provided below and examples are given in Figure 4.8:

• Function calls parameters are all evaluated from left, to right, at call time,
an undefined behaviour can only be found in out / inout parameters, as those
values are required to be L-values to be copied back into, there are no possi-
ble nested function calls whose results would be themselves out parameters.
Undefined behaviours therefore only appear if the same expression is used in
different parameters.

• Array constructors parameters are assumed to have an undefined order of
evaluation, as multidimensional arrays are permitted, an inner parameter can
effectively be itself an array constructor. Undefined behaviours can happen as
long as the expression is used in another parameter (even if the expression is
an inner array constructor) and until the outer-most array constructor is exited.

• Operations and operand evaluation order is globally undefined. The left or
right operand can be evaluated first except in the following cases:

– The operation is an assignment, then the left operand is guaranteed to
be evaluated before the right operand.

– The operation is a logical OR or AND, in both cases the left operand is
guaranteed to be evaluated before the right operand (it does not apply to
the XOR operations).

– The operation is a ternary operation, the condition is evaluated first and
only one of the two conditional expressions is then evaluated.

– Two operations apply to the variable identifier, then the order of prece-
dence of the operators is used, this situation occurs for unary operations
(increment, decrements and array access).

Expressions can contain function calls, array accesses and assignments opera-
tions can be enclosed in operations for which the evaluation order is undefined.

An obvious solution to deal with those undefined behaviours is to rewrite all side-
effecting operations to use temporary variables which would be affected before the
execution. However, it would lead to a significant rewriting of all operations and
the effective removal of all side-effecting operations. The difficulty is therefore to
minimize the number of temporary variables to remove all undefined behaviours.

The post-processing unit differentiates three cases for which rewriting is necessary,
evaluating members from left to right. In the case of arrays, the conservative option
has been retained and the whole array is marked as read / written. While some
closer bounding might be possible in many cases, it would require computing the
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in t f ( out in t p0 , out in t p1 , in t p2 ) ;

f (x , x , x ) ; // unde f ined behav iour on the f i r s t two parameters
f (x , y , x ) ; // no unde f ined behav iour
f ( x [ f ( z , y , z ) ] , y , a ) ;
// no unde f ined behaviour , f ( z , y , z ) i s e va lua t ed at c a l l t ime

in t [3]( in t [2]( x , y ) , in t [2]( x −= 3 , z ) , in t [2](w += 2 , w) ) ;
// unde f ined behav iour on x and on w

p[ i ] = i++; // no unde f ined behav iour
(p[ i ] += 2) == 3 | | (p[ i ] −= 2) == 4; // no unde f ined behav iour
++p[p [ 1 ] ] ; // no unde f ined behav iour

x ++ + ++ x ; // unde f ined behav iour
( x += 2) + ( x *= 2) // unde f ined behav iour
f (x , y , z ) + ( x *= 2) // unde f ined behav iour on x
( x += 2 == 3 | | y *=2 == 3 ? y += 3 , x +=2) * ( y += 2);
// unde f ined behav iour on y

Figure 4.8: Examples of undefined-behaviours related situations

value of the array indexes. In all rewritings that the post-processing step performs,
the temporary variable is set to the value of the original variable before the offending
line of code:

• Write after write: A variable is written twice, the second variable needs to be
rewritten to avoid undefined behaviour.

• Write after read: A variable is written after being read, the writing variable
will be rewritten to avoid undefined behaviour.

• Read after write: A variable is read after being written, the read will be rewrit-
ten to avoid undefined behaviour. As read after read are not a concern, all
reads share a default temporary variable.

Examples of the rewriting performed by the Parameter Order Control are given in
Figure 4.9.

While all undefined behaviours from expressions, array constructors and functions
are identified by keeping track of read and written variables, the conditions in which
tracked variables are either added to the rewriting set or flushed from it differs:

• Function call parameters are added to the rewriting list at the end of the
execution of the parameter containing it, they can be flushed as soon as the
function call is exited. They are therefore tracked in a stack of sets.

• Array constructors are added to the rewriting list at the end of the execution
of the parameter containing it, however, they cannot be flushed until the last
array constructor is exited. They are therefore tracked in a single common set.
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in t f ( out in t p0 , out in t p1 , in t p2 ) ;

in t x 1 = x ;
f (x , x 1 , x ) ;

in t x 1 = x ;
in t w r = w;
in t [3]( in t [2]( x , y ) , in t [2]( x 1 −= 3 , z ) , in t [2](w += 2 , w r ) ) ;

in t x 1 = x ;
x ++ + ++ x 1 ;

in t x 1 = x ;
( x += 2) + ( x 1 *= 2) ;

in t x 1 = x ;
f (x , y , z ) + ( x 1 *= 2) ;

in t y 1 = y ;
( x += 2 == 3 | | y *=2 == 3 ? y += 3 , x +=2) * ( y 1 += 2);

Figure 4.9: Rewriting as performed by the post-processing unit

• Operations and operand are the most difficult to handle. They are added to
the tracking list as soon as they are met. However, when a partial evaluation
order is defined (assignment for example), the set of forbidden values is guar-
anteed to be the one used before evaluating that sub-expression. Whenever
the sub-expression is exited, all met variables are added to the forbidden set so
that outer expressions have the correct set, including variable contained in the
assignment.

As a variable identifier is likely to be found in multiple lines of code, all variables
are ensured to be unique with an extra identifier in their name referencing the line
of code (or array access number). This was however not added in the Figure 4.9 for
simplicity.

4.4 Supervision framework

4.4.1 Framework overview

To produce interesting results in a meaningful way, it is necessary to coordinate the
activities of all programs from the generation to the reduction of the shader code.
To completely automate the process, it requires to:

1. Produce batches of random shaders (Generator).

2. Enforce the post-processing step (Post-processing unit).
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3. Compile and execute shaders while dispatching them to correct back-end (Shader-
Trap).

4. Assemble buffers results in a meaningful way and classify outputs.

5. Discard useless shaders, save the interesting ones.

6. Build interestingness tests for a chosen reducer.

7. Split the shader code from the ShaderTrap file.

8. Dispatch the shader code for reduction (Reducer).

9. Assemble back the reduction result and store the resulting ShaderTrap code.

While the automatic pipeline is interesting for many cases, the framework provides
multiple ways to perform only certain steps, especially for development settings. For
example, when new functionalities are added to the generator or the post-processing
unit, it is interesting to ensure that the resulting shaders will correctly compile on a
large set. Other interesting functionalities include a manual reduction helper which
provides a way to execute only a subset of the tasks described above:

1. (Optionally) Enforce the post-processing step.

2. Compile and execute shaders while dispatching them to correct back-end (Shader-
Trap).

3. Assemble buffers results in a meaningful way and classify outputs.

Lastly, a reporting tool permits obtaining some stats on the current execution cam-
paign (for example, the number of shader crashing or giving a different result for a
given compiler) or the size of the files. It also enables to find shaders that are likely
to suffer from remaining undefined behaviours in the generator, by detecting if more
than two buffer values exist or if the two groups of compilers give different results.
Lastly, it can be used to report the affected compiler for a given shader code file. This
is particularly useful when looking through the resulting reduced file to look for new
bugs.

4.4.2 Bug categorization

As reduction is based on the reproduction of a bug with a smaller code base, the
way a bug is categorized directly impacts its chance to get correctly reduced. As
possible undefined behaviours are suppressed by post-processing before reduction
(as described in section 4.3), the principal risk during reduction is bug slippage.

All shaders that present a potential defect exit execution with an error code of 1,
as well as a generated internal 4-digit code, returned as a string. In a given installa-
tion, the first tested compiler is given the id 1, the second 2 etc. As it is impossible
to know the compilers which will be stressed on a given installation, error codes
are only guaranteed to designate a specific compiler (or compiler set) in a fixed
installation context. A summary of the error code categories is given below:
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• 1000: All compilers failed to compile or execute the given program.

• 1000 + 1<<id: Compiler(s) of id failed to compile or execute the given pro-
gram.

• 2000: All compilers failed to compile or execute the given program.

• 2000 + 1<<id: compiler(s) of id timed out on the given program.

• 3000 + 1<<id: Compiler of id gave a different result compared to all other
compilers.

• 3099: All ANGLE / Vulkan compiler gave a different result compared to all
non-ANGLE compilers.

• 4001: Two or more non-trivial groups of compilers give different results.

• 5000: Result is different from the provided reference file.

From experiments, independent compilers are unlikely to crash or time out on the
same shader. In such rare case, the resulting error code permits to identify all com-
pilers in the set (powers of two can be seen as boolean flags). However, different
output results between compilers can have multiple meanings: undefined behaviour,
miscompilation of a given shader or miscompilation in a common dependency. As
described in section 3.3, compilers are not independent, and in particular, all Vulkan
implementations rely on ANGLE [32]. The error code 3099 therefore permits to dif-
ferentiate where the possible miscompilation happens and to report potential bugs
to the correct project.

It is also interesting to note that error codes 1000 and 2000 do not refer to pos-
sible compiler defects but rather to defects in the generator or the post-processing
unit. They are particularly convenient in development to isolate and reproduce er-
rors in the framework.

In a similar fashion, the last error code 5000 does not indicate that a compiler
presents a different behaviour, but it can be used with the reduction framework to
eliminate dead code in a given shader. The idea was that for some bugs, it might
be interesting to first delete all dead code before attempting to reduce the live part
of the code. It has however not been used in production (as reduced shaders have
been of sufficient quality without this pass (see subsection 5.3.2).

4.4.3 Reduction supervision

While one of the difficulties of the automation was to safely automate the execu-
tion (and especially the automatic dispatching to the correct back-end), performing
reduction in an autonomous mode for shaders represent multiple obstacles. As the
reducer uses the interestingness test, the test needs to be sufficient to replicate a
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bug. Contrary to the case of the C language, where a test program is typically self-
contained, the shader by itself is insufficient to be compiled. Therefore the created
interestingness test needs to perform the following:

1. Check that the shader code effectively contains a main

2. Merge the given code back to the ShaderTrap harness (whose location is inde-
pendent from current execution)

3. Call the execution script with the resulting shadertrap code (this is done at the
position of the harness which is controlled by the script)

4. Check if the error code matches with the one given at test generation

As the interestingness test is able to call back the execution script, it does not have
to deal with post-processing by itself but instead relies on the code developed to ini-
tially execute the code. While GlslangValidator (the reference front-end compiler for
GLSL introduced in subsection 2.3.1) is not directly called by the interestingness test,
possible invalid code is caught back through Shadertrap, which validates all shader
code with GlslangValidator before compiling it. This situation is however unlikely as
the wrong shader would have to go through the GlslangValidator pre-processor as
well as the post-processing unit of GLSLsmith without raising an error.

Reduction supervision, therefore, requires to be able to build a shell script to call
Python code from the framework itself. A second problem associated with the task
is that the different reducers are not built to use the same shell script format. While
they all expect the shell code to exit with an error when the bug is not reproduced,
some use the hard-coded initial name of the shader as the argument of all calls, while
the other will pass an extra argument with the name of the new file to compile. It
was however possible to combine both approaches to build a single interestingness
test which only depends on the error code passed at creation. An example of gener-
ated interestingness test is given in Figure 4.10.

As one of the objectives of GLSLsmith is to be able to compare the qualities of mul-
tiple reducers, the supervision generator can add an extra instruction to collect the
number of calls made to the test within reduction (see subsection 5.3.2).

4.4.4 Testing GLSLsmith

While deterministic features of the generator can be tested in isolation, tests are dif-
ficult to write for functions which provide random results. When introducing new
features, new programs generated by the generator, could be wrong GLSL code.
However, the execution framework permits to perform end-to-end testing on multi-
ple batches of shader, validating the new generation features.

In a similar way, it is impossible to test all possible combinations of expressions
for post-processing. While contrary to the generator, it is possible to test each step in
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#!/ usr / bin / env bash
set −o p i p e f a i l
set −o nounset
set −o e r r e x i t
ROOT=” [ . . . ] / g l s l s m i t h /prod ”
ERROR CODE=”3008”
i f [ $# −eq 0 ]
then

SHADER=” t e s t . comp . g l s l ”
else

SHADER ROOT=(${1// ./ })
SHADER=”${SHADER ROOT} . comp”

f i

cat ”$SHADER” | grep ”main ”

python3 ${ROOT}/ s c r i p t s / s p l i t t e r m e r g e r . py
−−merge ${ROOT}/ t e s t . ShaderTrap ”$SHADER”

ERROR CODE IN FILE=$( ( python3 ${ROOT}/ s c r i p t s / reduc t i on he lpe r . py
−−conf ig−f i l e ${ROOT}/ s c r i p t s / con f i g . xml
−−shader−name ${ROOT}/ t e s t . ShaderTrap 2>&1 > /dev/ n u l l ) | | true )

echo $ERROR CODE IN FILE
i f [ ” $ERROR CODE IN FILE ” == ”$ERROR CODE” ]
then

ex i t 0
else

ex i t 1
f i

Figure 4.10: Example of interestigness test showing a possible miscompilation of
Vulkan-Intel with the installation described in chapter 3. The ROOT variable is set to a
valid location, truncated in the listing.

isolation on “trivial” examples, more complicated errors are caught up by the execu-
tion framework, either as shaders which cannot be post-processed or in the case of
remaining undefined behaviours by the increase of errors with multiple sets of value
(reported with the error code 4000).
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Results

The use of the GLSLsmith framework has led to the discovery and reporting of mul-
tiple bugs in the tested compilers. After a brief description of the reporting process
in subsection 5.1.1, a more detailed summary of the identified bugs is given in sub-
section 5.1.2 and a possible categorization of the origin of bugs is given (subsec-
tion 5.1.3 and subsection 5.1.4) along with some shader examples.

The detailed examination of the bug codes tends to prove the various design choices
of GLSLsmith, including the support for guided structures (subsection 5.2.2) and the
way to perform floating-point testing (subsection 5.2.3). Such results permit to dis-
cuss qualitatively the broader impact of the post-processing unit on the bug finding
process subsection 5.2.4.

Finally, the interactions between the post-processing unit and the studied reducers
(C-Reduce, PERSES and glsl-reduce) are studied in more details in section 5.3 and
the qualities of the three reducers are compared according to multiple criteria.

5.1 Identified bugs

5.1.1 Bug reporting processes

In order for a bug to be fixed, it is necessary to report it correctly to the project
owners. Once a clean reduced shader is produced and once the correct source of
the discrepancy has been determined in the case of Vulkan (see subsection 4.4.3),
it needs to be encapsulated in the expected scripting language used by a project:
shader runner for GLSL and Vkrunner for Vulkan to report to Mesa for example.

Then a bug report containing the shader, the testing configuration as well as an
explanation of the expected results has to be filled either in a bug-tracking system
(Gitlab issues for Mesa, GitHub issues for Khronos-related projects, Google Issue
Tracker for ANGLE and SwiftShader) or on a forum (NVIDIA).

Reporting a bug revealed itself to be time-consuming and possibly frustrating, when
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no answer is given by the project owners. On all bugs reported, open-source projects
are the most likely to answer. Moreover, as the code is open-source, it is possible
to follow the handling of the bug and to obtain some insights of the inner work-
ing of a compiler. As an example, a bug reported to SwiftShader turned out to be
caused by spirv-opt, a shader optimizer developed by Khronos for Vulkan. Thanks
to that knowledge, it has been possible to differentiate between bugs triggered by
SwiftShader and spirv-opt in subsequent reports (by calling shaders before and after
optimization on any Vulkan back-end).

In the case of the Mesa project, which is fully open-source, bug reporting has also
led to the discovery of multiple related bugs and the addition of equivalent shaders
to the conformance and regression test suite to ensure that all future releases of the
compilers will not exhibit such bugs.

5.1.2 Summary of identified bugs

While the duration of the bug reporting campaign has been limited by the time
constraint of the project, GLSLsmith found 23 bugs believed to be unique. Among
those 23 bugs, 15 have been successfully reported so far. As GLSLsmith is able to
find multiple bugs in a single run, bugs reports are deliberately reported in a slower,
gradual manner to ensure that the development team has the time to deal with
previously reported bugs (as advised for responsible bug reporting [49]). A summary
of the found and reported bugs is given by Table 5.1 and Table 5.2.

Compiler Crash Miscompilation

NVIDIA 1 8

LLVMpipe 4 2

Swiftshader 1 2

Vulkan-Intel 0 3

Vulkan-NVIDIA 0 2

Table 5.1: Summary of the bugs found
by compiler

Compiler Crash Miscompilation

NVIDIA 0 5

LLVMpipe 4 2

Swiftshader 0 2

Vulkan-Intel 0 2

Vulkan-NVIDIA 0 0

Table 5.2: Summary of the bugs
reported by compiler

During the campaign, one of the reported bugs turned out to be an undefined be-
haviour for which the post-processing was not efficient (this bug is not reported in
Table 5.1 and Table 5.2). It lead to the expression evaluation control of the Pa-
rameter order control step (see subsection 4.3.6). After reporting, some of the bugs
have also have been added to the regression test suite of the Mesa project ensuring
that all future implementations will not exhibit such bugs. On all the fixed bugs, 8
have been fixed within 24h of being reported, suggesting that bugs found through
random generation can be of importance for real-life applications. Those results are
summarized in Table 5.3.
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While not all bugs can be categorized, some similar bugs can be found across mul-
tiple implementations and multiple shaders have been found to trigger the same
wrong code error across independent compilers.

Status of bug Number

Added to regression suite 4

Fixed 9

Confirmed 12

Successfully Reported 15

Not Reported 8

Undefined behaviour 1

Table 5.3: Status of found bugs (Tests added to regression have been fixed and therefore
confirmed after report).

5.1.3 Wrong integer optimizations

Bugs that fall into that categories are related to signed and unsigned integer arith-
metic optimizations (5 have been identified so far). Especially, many of the reported
bugs were triggered by the folding of division operations combined with negative
values. Discrepancies between mathematical integer arithmetic and machine integer
arithmetic (unsigned integers are required to wrap when they overflow / underflow
on the minus operator, -MIN INT=MIN INT) are responsible for 4 of the bugs. The last
one, presented in Figure 5.2 was affecting a large number of division operations on
a platform.

void main ()
{

ex t 2 /= −(1 + 1 / ext 1 ) ; // e x t 2 = 4 and e x t 1 = 2
}

Figure 5.1: Shader 9 affecting the Vulkan-Intel compiler
While the code should return -ext 2 , Vulkan-Intel returned ext 2. The bug was due to
an incorrect optimization on both division and modulo operations. It has been quickly
confirmed with the comment “wow, just wow”, fixed and added to the regression tests.

5.1.4 Atypical control-flow statements

As GLSL is permissive with control-flow statements, the generator found 5 bugs in
atypical control-flow instructions. While some of them are unlikely to be found
into production code, they might appear after conversion from one framework to
another or when a developer tries to find a bug in its own code and comments
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out unnecessary instructions. The 2 found miscompilations could also be executed
by real-world application after optimization (or to compress the size of the shader
code). The 3 other bugs, all crashes have been found with LLVMpipe and are all-
related to variable shadowing into for and do-while loops.

void main ()
{

ex t 0 += ext 1 ; // e x t 0 = 5
switch ( ex t 1 ˆ= ext 0 ) // e x t 0 = 5 ˆ 5 = 0
{

case 0u :
ex t 2 = 1u ;
break ;

case 5u :
ex t 2 = 2u ;
break ;

}
}

Figure 5.2: Shader 4 affecting the LLVMpipe compiler
While the case 0u should be executed, LLVMpipe instead executed the 5u case. The side-
effect in the switch operation was in fact performed twice. The bug was confirmed with
the comment:”This bug (double evaluation of switch expression) affects all mesa drivers.
It’s amazing that it survived for so long (looks like it existed at least since 2011)”, quickly
fixed and an adapted shader has been added to the regression test suite.

5.2 Justification of the design choices

5.2.1 Skewed random values

As described in subsection 4.2.5, the generator does not generate random literals
uniformly but instead combines multiple random generators. While the impact of
the small and large values generator has not been demonstrated yet, multiple spe-
cial values identified in the conception such as 0, 1 and the MIN INT have been
found in the reported shaders. Even if those values have possibly been generated by
the uniform distribution, operations using the MIN INT are responsible for 4 bugs
and 1 and -1 are both partly responsible for 2 bugs. This strongly supports the idea
that the special value generator is of interest of bug finding.

After reporting, it has been found that MIN INT issues were partly related to the
incorrect assumptions made on integer arithmetic such as abs returning a positive
value (as shown in Figure 5.3) or -MIN INT being different from MIN INT.
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in t SAFE ABS( in t A)
{

return A == −2147483648 ? 2147483647 : abs (A) ;
}

void main ()
{

ex t 8 = SAFE ABS( abs ( ex t 7 ) ) ;
// e x t 7 = −2147483648, e x t 8 = 2147483647
}

Figure 5.3: Shader 21 affecting the Vulkan-Intel compiler
Optimizations wrongly compile the test in the SAFE ABS function due to call in the
parameter to the built-in abs. The issue has been confirmed but not yet fixed.

5.2.2 Guided structures

As described in subsection 4.2.3, the generator generates both guided switch and
for control-flow statements. While guided switch statements have not yet permitted
to find unique new bugs (some duplicate have been found), one bug presented in
Figure 5.4 have been found to be only generated thanks to guided for loops. It
proves the interest of the generation of such features. Moreover, as such bug could
be found in applications, they are likely to be of importance.

void main ()
{

// e x t 3 = 0;
for ( uint i = 12u ; i > 3u ; i −= 3u)
{

ex t 3 += 1u ;
}

// e x t 3 = 3;
}

Figure 5.4: Bug 24 affecting the NVIDIA compiler
The initial value of ext 3 is set to 0 by a buffer (not represented here). As the value of
i is decremented by 3 at each iteration, the inner loop should be executed 3 times (for
i=12u, 9u and 6u). However, after execution, NVIDIA reports a value of 2. The bug has
been reported but not yet confirmed.

5.2.3 Floating-point results

While floating-point support has been exploited only at the end of the project and
did not benefit from the same testing time, early results are encouraging: 3 bugs
have been found relying on floating-points. Among the 3 bugs found, one is possible
to reproduce without relying on floating-point values, leaving 2 bugs directly related
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to floating-points. The two bugs have not been reported yet, however, as both cases
are independent from the precision of floating-points operations, they are likely to
be correct (in the first case, a correct shader does not compile on a platform, in the
second case, different buffer values are affected by an operation).

Another shader found by differential testing has turned to be a discrepancy between
-0 and +0 in the buffer results. In that specific case, the two implementations could
have been considered equal with a more elaborate comparison function on the buffer
results. It tends however to confirm that inclusion of the 0 in a relaxed pseudo-stable
range (see subsection 4.2.4) may lead to additional undefined behaviours which
could be difficult to catch such as direct comparisons within the shader between -0
and +0.

5.2.4 Post-processing insights

While the first purpose of post-processing is to remove undefined behaviours, it ef-
fectively introduce patterns in the generated code. If such patterns can be detrimen-
tal for the full explorations of optimizations (as described in subsection 2.2.1 with
Csmith), some of the bugs reported has been found to be generated only thanks to
post-processing (as the example given in Figure 5.3). Especially, the post-processing
unit can generate structures that are not supported at a given time by the genera-
tor, guiding the addition of features. For example, the support for arrays has been
extended in the generator after the discovery of a bug triggered by the rewriting of
an undefined behaviour in an expression by the Parameter Order Control (subsec-
tion 4.3.6).

Another example of introduced behaviour is the generation of user-defined function
calls, even if the generator does not build function definitions. Through the different
manual reductions performed, many bugs have been found to disappear when the
user-defined function call was removed. One explanation for such behaviour is that
the compiler is able to call built-in functions though compilation (as required for the
support of constant values) which lead to possible optimizations that the compiler
cannot perform with user-defined function calls.

These results, as well as the bugs found thanks to the guided control-flow structures
support the idea that the introduction of repetitive pieces of code into generated code
may expand the code coverage of a given generator. Those contrast with the findings
of CsmithEdge [25] and might indicate that generators which would randomly select
between systematic wrapper generation and relaxed wrapper generation (either by
static or dynamic analysis) might achieve a better overall language coverage.
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5.3 Reducers comparisons

5.3.1 Impact of the post-processing on reduction

As the reducer is unaware of the post-processing step, it can drastically modify the
impact of the considered reductions: a reduction attempt from the reducer may lead
to changes in the non post-processed code which is then canceled by the undefined
behaviour removal. On the other hand, the suppression of certain tokens by the
reducer can lead to a significant decrease in the post-processed version, for example
because a wrapper is not generated or because it eliminates a complete buffer block
(as buffers which are not completely eliminated are regenerated by the Communi-
cation Control step described in subsection 4.3.4).

As expected, it is necessary to add a final step of reduction at the end to elimi-
nate unnecessary wrappers, compress buffers blocks when possible and eliminate
unnecessary ShaderTrap instructions (such as declaring unused buffer or dumping
buffers which do not carry information for the given test). While this final step is
not automated, it is largely simplified as the resulting shaders are only a few lines
long. Interestingly, it is sometimes easier to perform part of this reduction before
post-processing to have a better reading of the program (for example converting the
test expression of a while loop to a a conditional if expression removes loop limiters
as introduced in subsection 4.3.5).

A second unexpected and potentially more detrimental side-effect of post-processing
is that reduction steps which do not lead to the suppression of any token in the post-
processed version can mislead the reducer. As the reducer thinks that a better code
has been found, it might restart a full series of reduction attempts, in a process of
over-reduction while the program is already 1-minimal with regards to the undefined
behaviours suppression, possibly delaying the results.

5.3.2 Benchmark presentation

The quality of the three reducers (C-Reduce, PERSES and glsl-reduce as described
in section 3.2) has been evaluated on a set of 22 shaders exhibiting the different
bugs found by GLSLsmith. The initial sizes of the programs are between 28 and 408
lines (mean 179 lines). The shaders reproduce 13 of the 15 reported bugs. The other
shaders are either possible duplicates which have been reduced during the campaign
or bugs which have not yet been reported. The distribution of the reduced shaders
classed by compilers and between crash and miscompilation is given in Table 5.4.
The two other reported bugs are not reproducible with current compiler versions as
a fix has been deployed.

The benchmark has been used to evaluate two different characteristics of the re-
ducers: their efficiency and the quality of the outputs [3]. To evaluate the efficiency,
two metrics have been used: the duration of the reduction, which gives a practical
measurement but is hardware-dependent and the number of calls to the interestig-
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Compiler Crash Miscompilation

NVIDIA 1 6

LLVMpipe 3 2

Swiftshader 0 1

Vulkan-Intel 0 9

Vulkan-NVIDIA 0 1

Table 5.4: Distribution of the shaders per compiler

ness test. The number of calls depends only on the reducer characteristics and is
therefore hardware independent. Multiple metrics have been proposed to evaluate
the quality of a reduced shader such the number of lines [20], the number of to-
kens [20; 3], the number of bytes / characters [2]. For this benchmark, the number
of lines and the number of characters have been reported. As the reduction out-
put is not the final state of the evaluated shader, values have been computed on
the post-processed version of the shaders. As the final step of reduction likely will
have to remove unnecessary wrappers, the number of wrapper calls has been also
reported. C-Reduce and PERSES support multi-threading, however, as the test is not
self-contained, race conditions might occur in the common execution directory and
multi-threading has not been enabled.

5.3.3 Benchmark results

After the execution of the benchmark, all reducers manage to provide smaller shaders
which are free of undefined behaviours and which are easy to analyze for the fi-
nal manual reduction step. As shown in Table 5.5, glsl-reduce returns the longest
shaders of the three reducers. Looking more closely at the reduced shaders, this can
partially be explained by the fact that glsl-reduce does not attempt any reduction
on the buffers. On the contrary, both PERSES and C-Reduce aggressively reduce the
buffers. While necessary buffers are regenerated by the communication control step
of post-processing (subsection 3.1.1), useless ones can be safely eliminated.

Even if the number of arithmetic operations within reduced shaders is low, some still
require multiple wrappers to be fully defined. In particular, shaders which contain
multiple array indexes generates calls to the SAFE ABS wrapper.

If all reducers can be considered of good quality, C-Reduce happens to be ineffi-
cient when compared with glsl-reduce and PERSES and is unpractical to use in pro-
duction settings. On the contrary, both Glsl-reduce and PERSES seem to be strong
candidates to perform reduction within a continuous setting of generation / reduc-
tion. Glsl-reduce is the fastest of the three reducers, which was expected as it is a
glsl-specific reducer. It generates two times less test calls as PERSES. The number of
test calls could be critical to reduce shaders which time out. As no sanitizer exists
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Minimum Maximum Mean Median

C-Reduce

Test calls 2703 21368 7807 6700

Reduction time (h:m:s) 2:10:50 20:15:20 6:42:59 5:30:04

Line count 11 51 24.3 23

Character count 202 1484 616.2 516

Wrapper calls 1 16 3.6 3

PERSES

Test calls 94 462 209.5 174

Reduction time (h:m:s) 0:04:00 0:29:33 0:12:07 0:09:44

Line count 12 59 26.6 24

Character count 259 1431 620.1 497

Wrapper calls 0 8 2.7 2

glsl-reduce

Test calls 31 274 96 82

Reduction time (h:m:s) 0:02:00 0:21:03 0:07:23 0:05:57

Line count 28 70 37.1 36.5

Character count 464 1993 1049 946

Wrapper calls 0 13 4 2.5

Table 5.5: Summary of the results per tested reducer

for GLSL, it is impossible to compare directly the efficiency of a reducer with and
without post-processing. However, a previous evaluation of PERSES with C bugs [3]
reports a mean reduction time of around 30 minutes for programs which are twice
as long as the examined shaders. It is therefore reasonable to consider that the post-
processing slows down the reduction process.

While timing evaluations are provided for C-Reduce [2], they only apply to C pro-
grams for which C-Reduce has more transformations. By examining the proposed
shaders across reduction as well as the logs, conjectures can be made to explain the
poor efficiency of C-Reduce. As it uses a fix-point research to decide if a program is
completely reduced, it can be anticipated that even small suppression in a pass trig-
ger a complete new pass of attempted transformations, even when the suppression
was meaningless. Two origins can be suggested for those deletions. A first source
can be GLSL in itself, as it supports shortened expressions when the values of some
parameters are obvious. Such shortened expressions include the omission of the size
of an array upon declaration when the size is obvious (initializer size, affectation
from another array) or the local size of the compute shader which can be omitted on
two directions. A second source could be post-processing: by removing or renam-
ing buffer elements, the reducer can think that it produced a smaller shader. Such
transformations introduce undefined behaviours, are therefore eliminated, and the
final shader exhibits the same properties as before. As the reducer is blind to the
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post-processing, it will select the new shader if it exhibits the wanted property and
will launch a new cycle of reduction.
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Conclusion

6.1 Achievements

GLSLsmith has permitted the identification and the report of 15 bugs so far, and
may lead to the possible discovery of new bugs in the upcoming weeks. The design
of its automation framework also enables to target other local compilers without
adding extra code. While GLSL and Vulkan have been tested extensively thanks to
metamorphic testing, GLSLsmith is the first framework enabling the generation of
random shaders from scratch and the differential-testing of graphic compilers work-
ing, in a context where compilers are not fully independent.

The generator of GLSLsmith benefits from the wide coverage of GLSL features it
supports, including vector types, buffers and the complete set of control-flow in-
structions. Other features, such as the support for floating-point testing, the gener-
ation of guided structures or the use of skewed random values generators may be
of interest for the testing of other languages. Especially, GLSLsmith builds its sup-
port for floating-point testing in a challenging environment where the constraints of
the IEEE specifications are partly relaxed by controlling the choice of floating-point
literals and ensuring that operations never escape the pseudo-stable range where no
round-off errors occur.

While the mechanisms by which GLSLsmith ensures the absence of undefined be-
haviours in programs have been used since Csmith (for example the addition of
wrappers to perform safe arithmetic operations), GLSLsmith applies them in a new
way, delaying the suppression of undefined behaviour to a “just-in-time” post-processing
step. This method enables to reduce the engineering effort required to use a reducer
without undefined behaviours. It confirmed the interest of the PERSES reducer to
port reduction to multiple languages and while the use of C-Reduce is slow com-
pared to PERSES and glsl-reduce, it can still be used as a last-resort reducer.
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6.2 Limitations

GLSLsmith has been successful in its initial objective of finding and reporting bugs.
However, the generator still lacks multiple GLSL features of interest which would
enable a greater diversity of programs. Especially, the generator is unable to gen-
erate function definitions and function calls are therefore restricted to the built-in
functions. Matrices which are key features of the floating-point of GLSL are also not
included in the test. As the testing framework has been only used in the context
of ESSL shader generation, certain features of GLSL are not supported such as im-
plicit type conversions. Moreover, as GLSLsmith uses compute shaders to get value
outputs instead of pictures, the testing setting is different from the classic graphics
pipeline. The framework cannot be used to find bugs happening through the con-
version to pictures.

While floating-point testing has given some interesting early results, it is impossi-
ble to fully confirm if this will lead to the same number of bug findings as for integer
programs or if the numerous constraints on literal generations and wrappers will
prevent the shader to exhibit other bugs. If the generation of integer-based values
is completely free of undefined behaviours, the two representations of 0 in floating-
points creates the risk of false-positives and the suppression of 0 from the supported
range of values is a blocking point to implement matrix support in the generator
(matrices constructors generate diagonal matrices when used with a single value).

Lastly, while post-processing have been used to successfully suppress undefined be-
haviours, GLSL does not support pointers, largely limiting memory-based undefined
behaviours. It is expected that porting the same type of implementation to other lan-
guages such as C would bring additional difficulties (or might even be impossible).
Moreover, the efficiency of C-Reduce seems to be greatly diminished compared to
the other reducers and performances announced for the C language. As GLSL does
not benefit from sanitizers, it has been impossible to compare if the problem comes
from the post-processing step or of C-Reduce used with GLSl but it might indicate
that post-processing might be detrimental in the case of fully generic reducers.

6.3 Future works

Expanding the support by the generator of the specification features, it would be
interesting to ensure that the generator works for GLSL. More generally, GLSLsmith
would benefit from a larger support of platforms including Android devices and the
support for WebGL technologies. In particular, it could lead to the discovery of se-
curity vulnerabilities which have a broader interest for compiler development teams.

To expand floating-point testing, multiple approaches would be of interest. First,
it would be interesting to compare if the number of shaders exhibiting different val-
ues evolves by changing the value of r for the pseudo-stable range. To resolve the
problem of the two representations of 0 being inter-exchangeable, wrappers could
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be added to problematic operations (such as comparisons). While directly testing
for 0 values in the wrappers is expected to be useless, checking if the absolute value
of the variable is close to 0 (abs(x) < 0.5f) should work.

As wrappers have been found to prevent optimizations and hide bugs in the case of
Csmith, the implementation of static analysis into the post-processing unit to identify
trivially useless wrappers would benefit both program diversity and the final man-
ual reduction step. Dynamic analysis as proposed in CsmithEdge is also expected to
be of interest especially in the case of floating-point where numerous wrappers are
needed.

Lastly, while no mitigation measures have been taken during the project to reduce
the side-effects of post-processing with reducers and with C-Reduce in particular,
two possible solutions would be to either early-stop reduction when the program
size decreases to a certain point (from the different experiments, 95% of the initial
size seems to be a correct threshold) or after a set running time. A second approach
would be to cache the answer of the interestigness test, either signaling the identical
produced shader as non-interesting or to reduce the overhead due to the compilation
and execution.

6.4 Ethical considerations

Previous fuzzing projects applied to graphics compilers have identified security vul-
nerabilities, especially in the case of WebGL. GLSLsmith has nevertheless not iden-
tified any security-related bug and does not test WebGL. By being available as an
open-source project, GLSLsmith can be used by anyone, including potential mali-
cious users. However, it also has the potential to help development teams to identify
such pre-existing bugs, ensuring the reliability of the compilers, in an equal measure.

Except potential cybersecurity risks, random program generators can uncover an
important number of bugs in a short period of time. One might want to report as
many as possible either to prove the interest of generator or to increase the reliability
of the compilers. However, a considerate and more ethical approach is to file bug re-
ports at a slower pace to ensure that programmers do not feel pressured or criticized
for their work. The priority should always to be useful to the compiler development,
especially in the case of open-source projects. As described in subsection 5.1.2, this
second approach has been followed throughout the project as it is believed to be the
best course of action in the long term.
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