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ABSTRACT
Our team, All You Need Is A Fuzzing Brain, was one of seven final-
ists in DARPA’s Artificial Intelligence Cyber Challenge (AIxCC),
placing fourth in the final round. During the competition, we devel-
oped a Cyber Reasoning System (CRS) that autonomously discov-
ered 28 security vulnerabilities—including six previously unknown
zero-days—in real-world open-source C and Java projects, and suc-
cessfully patched 14 of them. The complete CRS is open source at
github.com/o2lab/afc-crs-all-you-need-is-a-fuzzing-brain.

This paper provides a detailed technical description of our CRS,
with an emphasis on its LLM-powered components and strategies.
Building on AIxCC, we further introduce a public leaderboard for
benchmarking state-of-the-art LLMs on vulnerability detection and
patching tasks, derived from the AIxCC dataset. The leaderboard is
available at o2lab.github.io/FuzzingBrain-Leaderboard.
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1 BACKGROUND
We first introduce some background information of AIxCC [2],
which is necessary to understand the design choices of our CRS
(which is called "FuzzingBrain" in the rest of this paper). Readers
already familiar with AIxCC may go directly to Section 2.

1.1 POV and Patch Generation
In AIxCC, participants are tasked with building autonomous vul-
nerability detection and patching systems that operate effectively on
real-world open-source projects. These systems must fulfill two crit-
ical requirements: (1) automatically generate Proofs-of-Vulnerability
(POVs), and (2) produce patches in the form of diff files that remedi-
ate the discovered issues.

Proof-of-Vulnerability (POV). Given a target software that
contains one or more vulnerabilities (either seeded by AIxCC or
zero-days), for each vulnerability, generate an input that triggers a
sanitizer error when processed by a fuzzer harness. AIxCC targets
vulnerabilities in C and Java projects, and it uses OSS-Fuzz [7]-
compatible fuzzers, such as libFuzzer and AFL for C projects, and
Jazzer for Java projects, to prove a vulnerability. For C projects, the
software can be compiled using various sanitizers: AddressSanitizier,
MemorySanitizer, and Undefined-BehaviourSanitizer.

The POV generation process can be viewed formally as follows:

GeneratePOV(H, S) → (ℎ, 𝑠𝑎𝑛, 𝐼 )
s.t. Trigger(ℎ, 𝑠𝑎𝑛, 𝐼 , 𝑆) = True

where 𝐻 represents a collection of fuzzer harnesses, 𝑆 is the
target software, and ℎ ∈ 𝐻 is a fuzzer harness, 𝑠𝑎𝑛 a sanitizer type,
and 𝐼 a sanitizer-error triggering input. The generated POV serves
as concrete evidence of the vulnerability’s exploitability and also
provides a test case for patch validation.

Patch Generation. Given a target software 𝑆 which contains
one or more vulnerabilities, for each vulnerability, generate a patch
in the form of a diff file that satisfies the following requirements:

(1) The patched software 𝑆 ′ compiles successfully (i.e., without
syntax or build errors);

https://github.com/o2lab/afc-crs-all-you-need-is-a-fuzzing-brain
https://o2lab.github.io/FuzzingBrain-Leaderboard/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Table 1: AIxCC Tasks and Challenge Modes

Component Description
Two Tasks

POV Generation Generate binary exploit (.bin) to trigger vulnerability
Patch Generation Generate diff patch to fix vulnerability & pass functionality tests

Three Challenge Modes
Delta-Scan Mode Input: Target commit | Detect commit-specific vulnerabilities & Generate remediation
Full-Scan Mode Input: Complete codebase | Full codebase vulnerability discovery & remediation
SARIF Assessment Mode Input: External reports (SARIF) | Validate vulnerability reports

(2) The patch eliminates all known proofs of the vulnerability:

∀(ℎ, 𝑠𝑎𝑛, 𝐼 ) ∈ POVs . ¬Trigger(ℎ, 𝑠𝑎𝑛, 𝐼 , 𝑆 ′)

where POVs is a set of known POVs for the given vulnerabil-
ity, ℎ ∈ 𝐻 is a fuzzer harness, and 𝑠𝑎𝑛 is a sanitizer type;

(3) The patch preserves functional correctness according to a
given set TestSuite of regression tests for the software:

∀𝑇 ∈ TestSuite . Pass(𝑇, 𝑆′)

These requirements provide a degree of confidence that patches
not only remove vulnerabilities but also preserve intended func-
tionality, minimizing the introduction of regressions.

Importantly, when the patches submitted by a team are evaluated,
the set POVs for a vulnerability is taken to be the union of valid
proofs submitted for the vulnerability across all teams. Therefore,
to be valid, it is not enough for a team’s patch to simply eliminate
the POVs discovered by the team; the patch must be general enough
to work for POVs discovered by other teams as well.

Using the diff format for patches enables seamless integration
with existing version control systems and open-source development
workflows, facilitating review and maintainability.

1.2 Three Challenge Modes
To address diverse vulnerability management scenarios in real-
world software development, AIxCC defines three distinct challenge
modes that participating systems shall support: Delta-Scan, Full-
Scan, and Static Analysis Report-Based (SARIF [10]). Each mode
corresponds to a different class of inputs and evaluation tasks.

1.2.1 Delta-Scan Mode. This mode targets commit-based vulnera-
bility analysis, focusing on changes introduced by a specific commit.

Input: A target commit 𝐶 , repository base state 𝑆base (state
before applying commit 𝐶), source code repository 𝑅, and corre-
sponding OSS-Fuzz fuzzer harnesses 𝐻 .

1.2.2 Full-Scan Mode. This mode targets capabilities to discover
vulnerabilities across the entire codebase, rather than restricting
analysis to a single commit.

Input: A software state 𝑆 (specific version), source code reposi-
tory 𝑅, and corresponding OSS-Fuzz fuzzer harnesses 𝐻 .

1.2.3 SARIF Assessment Mode. This mode validates externally pro-
vided vulnerability reports, typically from static analysis tools or
issue trackers. More details can be found in Section 5.

Objective: Confirm the accuracy of reported vulnerabilities and
filter out false positives.

Input: Structured vulnerability reports (e.g., SARIF) including af-
fected functions, vulnerability classifications, location information,
contextual metadata, etc.

1.3 Competition Scoring
The AIxCC scoring rule incentivizes submission accuracy and
speed:

𝑆𝑐𝑜𝑟𝑒 = 𝐴𝑀 × (𝑉𝐷𝑆 + 𝑃𝑅𝑆 + 𝑆𝐴𝑆 + 𝐵𝐷𝐿)

Accuracy Multiplier (AM):

𝐴𝑀 = 1 − 1−𝑟
4 , 𝑟 = 𝑎𝑐𝑐

𝑎𝑐𝑐+𝑖𝑛𝑎𝑐𝑐

Time Multiplier:

𝜏 = 0.5 + 𝑡𝑖𝑚𝑒𝑟𝑒𝑚
2×𝑡𝑖𝑚𝑒𝑤𝑖𝑛𝑑𝑜𝑤

POV (VDS): 2 × 𝜏 if crash, else 0
Patch (PRS): 6 × 𝜏 if valid, else 0
SARIF Assessment (SAS): 1 × 𝜏 if correct, else 0
Bundle Score (BDL): 1 × 𝜏 if valid, else 0
AIxCC had a total number of 60 challenges in the final round.

Each challenge score is the sum of valid POV, patch, SARIF assess-
ment, and bundle points, scaled by an accuracy multiplier. Each
valid POV earns 2 points, patch 6 points, and SARIF assessment 1
point, all decaying over time to a 50% minimum. In addition, bundle
points (BDL) are awarded for grouped submissions. Details can be
found in the AIxCC final scoring guide [9].

2 OVERVIEW OF FUZZINGBRAIN
ARCHITECTURE

As depicted in Figure 1, FuzzingBrain consists of four core services:
CRS WebService, Static Analysis Service, Submission Service, and
Worker Services. All services execute in parallel on separate VM
nodes. The first three run as single instances, while multiple in-
stances of theWorker Services are deployed (around 100 VMs in the
final round) to support parallel task execution.

The CRS Web Service acts as the central coordinator. It decom-
poses tasks, builds fuzzers, and assigns them to worker services.
The Static Analysis Service performs static code analyses to an-
swer queries related to function metadata, reachability, and call
paths. TheWorker Services generate POVs and patches by run-
ning fuzzing and LLM-based strategies. The Submission Service
interacts with the competition API, handling submission dedupli-
cation, SARIF validation, and bundles.
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Figure 1: Overview of FuzzingBrain Architecture.

2.1 Task Decomposition
Figure 2 illustrates the workflow for decomposing and distributing
tasks across FuzzingBrain’s services. Upon receiving a task (which
contains metadata describing the challenge, e.g., a delta-scan or
a full-scan of a target project), the CRS Web Service first builds
the target project and its fuzzers using OSS-Fuzz utilities. Each
fuzzer is an executable binary generated from a fuzzer harness
instrumented with a sanitizer (AddressSanitizer, MemorySanitizer,
or UndefinedBehaviorSanitizer for C/C++1, and Jazzer for Java).

The service then prepares isolated workspaces by cloning the
target repository, constructing project-specific Docker containers,
and generating fuzzer binaries for all supported sanitizer configu-
rations. A single project may yield dozens of fuzzers: for example,
dropbear contains 17 fuzzer harnesses, each compiled with three
sanitizers, producing more than 50 binaries.

All fuzzers are distributed across the Worker Services to enable
concurrent execution. To minimize communication overhead, only
the fuzzer path (fuzzer name and sanitizer type) is sent to a worker.
The corresponding binary and Docker image are reconstructed
locally on the worker node.

In parallel, the task is also dispatched to the Static Analysis
Service and the Submission Service. The former conducts program

1FuzzingBrain also supports C++, besides C and Java projects.

analysis, while the latter manages bookkeeping for POV and patch
submissions.

2.2 Libfuzzer and LLM-based Fuzzing
Upon receiving a target fuzzer, aWorker Service first builds the
corresponding fuzzer binary, and then proceeds to generate POV in-
puts and patches specific to that fuzzer. Both traditional fuzzing and
LLM-powered fuzzing are performed on the same file system to dis-
cover inputs that can trigger sanitizer errors. Each fuzzer executes
inside a Docker container with all required runtime dependencies.

The traditional fuzzing setup is intentionally minimal: we rely
solely on libFuzzer, whose fuzzing corpus is configured to reside
in a shared directory accessible by the LLM-based fuzzing strategies.
All LLM-based strategies execute in parallel, and the inputs they
generate that do not immediately trigger crashes are preserved
in the shared corpus. These inputs are often close to valid crash-
inducing cases and therefore serve as valuable seeds for libFuzzer.
Since the parallel strategies can generate a very large number of
test inputs per second, the shared corpus directory is periodically
cleaned to prevent uncontrolled growth. Rather than performing
libFuzzer’s built-in corpus minimization, our approach removes
files based on age: any input older than 10 minutes is deleted. This
lightweight policy keeps the corpus size manageable while still
allowing recently generated inputs (which are more likely to be
relevant) to contribute to subsequent fuzzing iterations.
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For each LLM-based fuzzing strategy, theWorker Service spawns
a dedicated Python subprocess. Once a POV is identified, the work-
flow transitions to the patching phase, where multiple patching
processes are launched in parallel.

FuzzingBrain currently incorporates 23 distinct LLM-based
strategies (10 for POV and 13 for patches), categorized by their
operational mode and target language focus, as summarized in Ta-
ble 2. Each strategy executes in an independent process but adheres
to a unified interface for receiving task specifications and returning
results in a consistent format. Further details of our LLM-based
POV generation and patching strategies are presented in Sections 3
and 4, respectively.

2.3 XPatch without POV
For certain complex challenges, generating POVs may be infeasible
within the competition timeframe. To handle such cases, we de-
veloped XPatch, a strategy that attempts to produce patches even
when no POV has been found. XPatch is triggered only after half
of the competition time has elapsed without a successful POV. Ac-
cording to the competition rules, such patches can still earn credit
as long as they remediate the introduced vulnerability and do not
regress against any known POVs. A detailed discussion of XPatch
is provided in Section 4.7.

2.4 Static Analyses
Upon receiving a task, the Static Analysis Service performswhole-
program static analysis of the target project and supports three
types of queries fromWorker Services: (1) FunctionMetadata—given
a function name and an optional file name or path, return all match-
ing functions along with their metadata, including parameters and
source code; (2) Reachability—given a fuzzer harness, identify all
functions reachable from its entrypoint, returning each function’s
name, file path, and start/end line numbers; (3) Call Paths—given a
fuzzing harness and a target function, enumerate call paths from
the fuzzer entrypoint to the target. Each call path comprises an
ordered sequence of functions, including their file paths, names,
and line ranges. To mitigate path explosion, we cap the number of
call paths at 20, returning the first 20 if more exist. We also enforce
a maximum call path depth (default: 50 for C/C++ and 10 for Java)
to avoid excessively long paths. These defaults were chosen heuris-
tically based on empirical observations from the exhibition rounds:
in C/C++ projects, vulnerabilities are often buried deep within com-
plex call chains, making a higher threshold useful, whereas in Java
projects, exploitable issues are typically exposed through shorter,
higher-level entrypoints, so a smaller depth bound is sufficient in
practice.

Developing static analysis tools for real-world projects proved
to be both challenging and time-consuming. We encountered nu-
merous performance and soundness issues, ultimately leading us
to build two customized static analysis frameworks: one for C/C++
and one for Java. We present further details in Section 6.

2.5 Submission Deduplication
The Submission Service receives all POV and patch submissions
from Worker Services and applies several mechanisms to eliminate

duplicates. Deduplication is essential because redundant submis-
sions reduce the accuracy multiplier.

For POV submissions, each entry is accompanied by a signature,
defined as the crash location (source file and line number) extracted
from the crash call stack. If the crash location is unavailable, heuris-
tics are applied to construct a signature from the crash output and
sanitizer. Two POVs are considered duplicates if they share the
same signature. However, distinct signatures may still correspond
to the same underlying vulnerability. To capture such cases, we
employ LLM-based comparison: crash reports from two POVs are
provided as input to three different LLMs, and the submissions are
marked as duplicates if at least two of the models consider them
redundant.

Patch submissions require a different strategy, since multiple
distinct patches may be valid attempts for the same vulnerability,
and some patches may fail during validation. Deduplication is there-
fore applied more conservatively, using three rules: (1) If two patch
diffs are highly similar, we compute their Levenshtein distance and
discard duplicates with a distance below 10. (2) If two patches are
submitted within a short interval (3 seconds) and correspond to the
same POV signature, the second of the two patches is discarded. (3)
We cap the number of patch submissions per vulnerability at five.

For XPatch, where no POV is available, we assume that each
task corresponds to a single introduced vulnerability. In this case,
the canonical signature is derived from the task itself, and the
submission cap is stricter: at most three XPatches are allowed per
task.

2.6 SARIF Assessment
For each SARIF broadcast, FuzzingBrain performs validation through
LLM-based assessment and leverages the information for POV gen-
eration when appropriate. If a SARIF report is deemed valid and no
POV has yet been discovered for the corresponding vulnerability,
the CRS Web Service forwards the SARIF to Worker Services to
guide POV generation. We present further details in Section 5.

2.7 Bundle Creation
Each bundle groups together two or more items (POV, patch, and/or
SARIF broadcast) that correspond to the same underlying vulnera-
bility. In our approach, to enable consistent grouping, we associate
each vulnerability with a canonical signature, defined as the signa-
ture of the first submitted POV. Patch submissions may also include
an optional pov_signature when the patch is explicitly derived
from a known POV.

Within the Submission Service, bundles are created and updated
according to the following rules:

• POV submissions. Upon receiving a POV, if it is not marked
as a duplicate and its status is passed (as confirmed by the
competition API), then:
– If the POV matches a SARIF that has been assessed as a
true positive, a new bundle containing both the POV and
SARIF is created.

– Otherwise, the POV initializes a bundle on its own.
• Patch submissions. Upon receiving a patch, if it is not marked
as a duplicate and its status is passed, then:
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Table 2: FuzzingBrain LLM-based Strategies

Strategy Name Mode Language Focus Stage
Delta-Scan Strategies
xs0_delta delta-scan C/C++, Java POV Generation
as0_delta delta-scan C/C++, Java POV Generation
patch_delta delta-scan C/C++, Java Patch Generation
patch0_delta delta-scan C/C++, Java Patch Generation
patch1_delta delta-scan C/C++, Java Patch Generation
patch2_delta delta-scan C/C++, Java Patch Generation
patch3_delta delta-scan C/C++, Java Patch Generation
xpatch_delta delta-scan C/C++, Java Patch Generation
Full-Scan Strategies
xs0_c_full full-scan C/C++ POV Generation
xs0_java_full full-scan Java POV Generation
xs1_c_full full-scan C/C++ POV Generation
xs1_java_full full-scan Java POV Generation
xs2_java_full full-scan Java POV Generation
as0_full full-scan C/C++, Java POV Generation
patch_full full-scan C/C++, Java Patch Generation
patch0_full full-scan C/C++, Java Patch Generation
patch1_full full-scan C/C++, Java Patch Generation
patch2_full full-scan C/C++, Java Patch Generation
patch3_full full-scan C/C++, Java Patch Generation
xpatch_full full-scan C/C++, Java Patch Generation
Report-Based Strategies
sarif_POV0 report-based C/C++, Java POV Generation
xpatch_sarif report-based C/C++, Java Patch Generation
Unharnessed Strategies
generate_fuzzer unharnessed C/C++, Java POV Generation

– If the patch shares a pov_signaturewith an existing POV,
the patch is bundled with that POV.

– If the POV is already in a bundle with a SARIF, the patch
is added to the existing bundle, extending it to include all
three components.

• SARIF broadcasts. Upon receiving a SARIF that has been
validated as a true positive:
– If the SARIF matches an existing POV, it is bundled to-
gether with that POV.

– If the POV already belongs to a bundle (e.g., with a patch),
the SARIF is added to that bundle.

2.8 Technology Stack
As illustrated in Figure 2, FuzzingBrain is implemented primarily in
two programming languages: Go and Python. For the CRS services,
we selected Go with the Gin web framework. This choice reflects
Go’s strengths in efficiently handling large numbers of concurrent
operations and its mature ecosystem for building high-performance,
production-grade web services.

In contrast, all LLM-based POV and patching strategies are im-
plemented as independent Python modules. Python was chosen
due to its rich ecosystem for LLM development and its extensive set
of third-party libraries, which allow rapid prototyping and flexible
experimentation. Each strategy module can execute independently,
enabling modularity and isolation.

Finally, for model routing, we developed a custom framework
for model selection, routing, and fallback. Existing off-the-shelf
solutions were found to be unreliable and prone to errors under
competition workloads (e.g., failing to handle high request volume,
rate limits, server overloaded, etc). To enhance robustness against
individual model failures or limitations, our framework employs a
multi-model fallback mechanism. The system maintains a priori-
tized list of models, including those from Anthropic, Google, and
OpenAI. When invoking an LLM, the framework attempts models
in the predefined order; if one becomes unavailable or encounters
an error, the request is automatically redirected to the next avail-
able model in the list. This design ensures continuity of service and
minimizes disruptions during critical operations.

2.9 Parallelization
A central design principle of FuzzingBrain is parallelization: every
component that can be parallelized is parallelized, in order to maxi-
mize the speed of vulnerability discovery and patch generation.

FuzzingBrain’s deployment infrastructure in the competition
environment consists of:

• Approximately 100 virtual machines, each provisioned with
32–192 cores.

• Each VM runs between 100 and 10,000 threads concurrently.
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This large-scale parallelization enables simultaneous processing
of multiple challenges while maintaining high resource utilization
and system throughput. The result is an architecture capable of
scaling efficiently under heavy workloads, ensuring both rapid
vulnerability detection and timely patch generation.

3 LLM-BASED POV STRATEGIES
FuzzingBrain implements a total of 10 LLM-based POV generation
strategies: two designed for delta-scans, six for full-scans, one for
SARIF-based challenges, and one for unharnessed challenges (i.e.,
those without fuzzer harnesses and not scored).

All strategies conform to a standardized framework built on
iterative, dialogue-based interaction with LLMs. This feedback-
driven refinement loop allows the system to incorporate execution
results into successive iterations, enabling the LLM to learn from
failed attempts and progressively improve its understanding of the
target vulnerability.

Each strategy executes as an independent process and adheres
to a unified interface for task inputs and outputs. Strategies uti-
lize five different frontier LLMs—claude-3.7, chatgpt-latest
(gpt-4o at the time of the competition), claude-opus-4, o3, and
gemini-2.5-pro. For each model, the framework performs mul-
tiple generation attempts, up to a maximum of five iterations by
default. In addition, each strategy is subject to a configurable time-
out (default: 30 minutes).

If a model fails to generate a valid POV within its iteration limit,
the system automatically falls back to the next model in the priority
list. This cascading mechanism increases the likelihood of success
by leveraging the complementary strengths of different LLMs, as
individual models often excel at distinct categories of vulnerability
patterns.

3.1 Base Strategies
FuzzingBrain implements a baseline strategy (xs0_delta) for delta-
scans, as illustrated in Figure 3. This strategy establishes core
prompting and feedback patterns that most other strategies inherit
and extend.

The approach operates entirely via multi-turn, text-based dia-
logue with LLMs, cleanly decoupling analysis logic from the execu-
tion environment.

System Prompt. We initiate each dialogue with a high-level sys-
tem instruction, for example:

“You are a world-class software vulnerability detection
expert. Do not apologize when incorrect; instead, itera-
tively refine your analysis and proceed. When possible,
identify any additional information that would improve
your answer.”

User Message (Inputs). The user message combines the commit
diff and the fuzzer harness source code, together with language-
and sanitizer-specific guidance:

“The provided commit introduces a vulnerability. Your
task is to craft an input for the fuzzer harness that trig-
gers the vulnerability. Your input will be executed by
the following harness: [Fuzzer Source Code] [San-
itizer Guidance] [Language-Specific Guidance]

Your output must be a Python script that creates a file
named exactly x.bin, and a short description of the
vulnerability and the target function.”

Language- and Sanitizer-Specific Guidance. For C/C++ targets,
the prompt includes sanitizer-focused instructions for Address-
Sanitizer (e.g., buffer overflows, use-after-free), MemorySanitizer
(e.g., uninitialized reads), and Undefined-BehaviorSanitizer (e.g.,
integer overflows, pointer misalignment). For Java targets, we in-
clude Jazzer-oriented guidance (e.g., deserialization flaws, injection
vectors, runtime exceptions).

LLM-Generated Python and Execution. We extract the Python
code from the LLM response, execute it to generate x.bin, and then
run the fuzzer harness on this input. At this stage, the harness is not
performing fuzzing; it is simply used as an execution wrapper with
sanitizers enabled to detect crashes (i.e., sanitizer errors). If a crash
occurs, we record a successful POV and submit it to the Submission
Service. If the attempt fails at any stage, the process continues with
another LLM interaction, where the next user message provides
structured feedback derived from the failure. For example:

“Fuzzer output: { truncate_output(fuzzer_output,
200) } The test case did not trigger the vulnerability.
Please analyze the output and try again. Consider: (1)
alternative input formats/values; (2) edge cases; (3) fo-
cusing on functions modified in the commit; (4) careful
attention to boundary conditions; (5) step-by-step rea-
soning.”

Coverage-Guided Feedback. If x.bin does not trigger a crash,
we also supply coverage feedback in the next iteration. The feed-
back summarizes executed functions and branch decisions with
±3 lines of surrounding source context. For C/C++, we build with
coverage instrumentation, execute the fuzzer on x.bin to produce
coverage.profdata, then use llvm-profdata to derive an LCOV-
style report from which we extract executed branches and nearby
lines. For Java, we use JaCoCo to collect coverage data, generate a
report, and post-process it to recover executed methods/branches
with corresponding source excerpts.

3.2 Advanced Strategies
The as0_delta strategy introduces several enhancements over the
base approach to improve vulnerability discovery effectiveness. The
primary differences among strategies are summarized in Table 3 and
Table 4. In this section, we highlight advanced modules that extend
the base strategy; different strategies compose these modules in
different combinations.

Multi-Input Generation. Unlike the base strategy, which pro-
duces a single test case per iteration, as0_delta generates multiple
candidates. Each LLM interaction emits a Python script that cre-
ates five binary inputs (x1.bin–x5.bin), yielding five exploitation
opportunities per iteration instead of one.

Vulnerability Category–Based Prompting. This module enu-
merates Common Weakness Enumeration (CWE) classes and ap-
plies category-specific prompts to guide input generation toward
the intended weakness. C/C++ (10 categories):

• CWE-119: Buffer Overflow
• CWE-416: Use After Free
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Figure 2: Task Distribution & Strategy Running

Table 3: Delta-Scan POV Generation Strategies Comparison

Strategy Input Analysis Generation Method Core Characteristics
xs0_delta Commit diff analysis Single input per iteration Basic strategy, iterative LLM refinement
as0_delta Commit diff analysis Multi-input generation Advanced strategy with 5 inputs per try

Table 4: Full-Scan POV Generation Strategies Comparison

Strategy Function Discovery Ranking Method Core Characteristics
xs0_c_full Call graph analysis LLM ranking Basic function filtering with simple LLM ranking
xs0_java_full Call graph analysis LLM ranking Basic function filtering with simple LLM ranking
xs1_c_full Dual reachability analysis Multi-model LLM ranking Parallel processing with improved function identification
xs1_java_full Dual reachability analysis Multi-model LLM ranking Parallel processing with improved function identification
xs2_java_full Dual reachability analysis Multi-model LLM ranking Advanced Java vulnerability detection with early termination
as0_full Call graph analysis LLM ranking + fuzzing Advanced generation with multi-phase strategies

• CWE-476: NULL Pointer Dereference
• CWE-190: Integer Overflow
• CWE-122: Heap-based Buffer Overflow
• CWE-787: Out-of-bounds Write
• CWE-125: Out-of-bounds Read
• CWE-134: Format String vulnerabilities
• CWE-121: Stack-based Buffer Overflow
• CWE-369: Divide by Zero

Java (representative examples; our implementation targets 15 cate-
gories):

• CWE-22: Path Traversal
• CWE-77/78: Command/OS Command Injection
• CWE-79: Cross-Site Scripting
• CWE-89: SQL Injection
• CWE-502: Unsafe Deserialization
• CWE-611: XML External Entity (XXE) Processing
• CWE-918: Server-Side Request Forgery (SSRF)
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Figure 3: Basic POV Generation Strategy

Modified-Function Context Injection. Beyond the commit
diff, we identify all modified files and functions and append the full
source of each modified function to the prompt to provide precise
context. To stay within model context limits and emphasize salient
code, we cap the injected source at 2,000 lines per function.

Call-Path–Based Analysis. This module queries the Static
Analysis Service for call paths from the fuzzer entrypoint to all
modified (and thus potentially vulnerable) functions. For each call
path, the system crafts a targeted prompt asking the LLM to gener-
ate an input that exercises that path, steering toward code regions
likely to trigger the vulnerability. We limit the number of call paths
to 20. If all per-path attempts fail, a final aggregated prompt com-
bines all paths for one last POV-generation attempt.

3.3 Full-Scan Strategies
For full-scan scenarios, where no commit diff is available, Fuzzing-
Brain employs a set of strategies that analyze the entire codebase
to identify potentially vulnerable functions.

Call Graph–Based Analysis. The xs0_c_full and
xs0_java_full strategies employ static analysis to narrow the
search space prior to applying LLM-based vulnerability detection.
Specifically, they query the Static Analysis Service to enumerate
functions reachable from fuzzer entrypoints. This pruning step
typically reduces the candidate set from thousands of functions to
a more tractable subset of reachable targets.

LLM-Based Vulnerable Function Ranking. Once reachable
functions are extracted, LLMs are used to score and rank them

based on their likelihood of containing vulnerabilities. The ranking
incorporates language-specific vulnerability patterns tailored to
C/C++ and Java.

Enhanced Full-Scan Strategies. The xs1_c_full,
xs1_java_full, and xs2_java_full strategies extend the base-
line full-scan approach with more refined call graph construction,
advanced ranking heuristics, and specialized vulnerability pattern
recognition for their respective languages.

Advanced Full-Scan Integration. The as0_full strategy in-
tegrates all of the above modules (static call graph analysis, LLM-
based ranking, and advanced vulnerability heuristics) into a unified
workflow for large-scale vulnerability discovery across entire code-
bases.

4 LLM-BASED PATCHING STRATEGIES
FuzzingBrain implements 13 LLM-based patching strategies: six
designed for delta-scans, six for full-scans, and one special XPatch
strategy for generating patches without POVs.

Except for XPatch, all patching strategies follow the same work-
flow, illustrated in Figure 4:

(1) Target Function Identification: Identify vulnerable func-
tions using strategy-specific heuristics.

(2) Metadata Extraction: Retrieve the complete function source
code and surrounding context.

(3) Patch Generation: Use LLMs to produce a revised version
of the function body.
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Figure 4: Basic Patch Generation Strategy

(4) Function Rewrite: Replace the original function with the
LLM-generated content.

(5) Diff Creation: Generate a .diff file using Git differential
tools.

(6) Validation: Ensure compilation, execute POV tests, and run
functionality tests.

(7) IterativeRefinement: Provide structured feedback for failed
attempts, iterating until success or timeout.

4.1 Patch Validation Criteria
We define a patch as a code modification that mitigates a vulnerabil-
ity without altering the program’s intended functionality. Patches
are generated in standard .diff format and must satisfy four vali-
dation criteria:

(1) Applicability: The patch applies cleanly to the codebase.
(2) Compilability: The patched codebase compiles successfully.
(3) Vulnerability Mitigation: Known POVs (if available) no

longer reproduce the vulnerability.
(4) Functionality Preservation: The patched codebase passes

its functionality tests.

A patch is only considered valid if it passes all four criteria.

4.2 Basic Patch Strategy
Table 5 shows a high-level comparison of the patching strategies.
The baseline strategy, patch_delta, operates through multi-turn
LLM-driven conversations, similar to the POV generation process.

In each iteration, the LLM proposes a candidate patch, which is val-
idated against the criteria above. Successful patches are submitted;
failures trigger detailed feedback and another iteration, up to the
MAX_ITERATION limit.

Target Function Identification. Target functions are identi-
fied as those suspected to be vulnerable (as determined by LLM
analysis). This is the most critical step, as the quality of patching
depends heavily on accurate function selection. Identification relies
on structured prompts that combine commit diffs and crash logs,
for example:

"Your task is to identify all potentially vulnerable func-
tions from a code commit and a crash log. The commit
introduces a vulnerability. The vulnerability is found
by an expert, with a crash log."

Leveraging POV Generation Context. This strategy reuses
conversation history from the POV generation phase. The addi-
tional context, including prior failure cases and reasoning traces,
improves the LLM’s ability to generate correct and targeted patches.

FunctionMetadata Extraction.Once target functions are iden-
tified, the system queries the Static Analysis Service to extract de-
tailed metadata, including function boundaries, complete source
code, and precise file locations. This ensures the LLM has sufficient
context to propose syntactically and semantically valid patches.

Multi-Model Resilience and Validation. To improve relia-
bility, the patching process employs multiple LLMs from different
providers (e.g., Anthropic, Google, and OpenAI). For each model,
the system runs an iterative loop in which the LLM generates a
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Table 5: Delta-Scan Patch Generation Strategies Comparison

Strategy Function Identification Failure Feedback Special Features
patch_delta & patch_full LLM analysis only Basic crash info -
patch0_delta & patch0_full Diff extraction only Basic crash info -
patch1_delta & patch1_full LLM + Diff hybrid Basic crash info -
patch2_delta & patch2_full LLM + Diff + Control flow paths Dynamic execution analysis
patch3_delta & patch3_full LLM + Diff Basic crash info Expert analysis + Sample patches

candidate patch, the patch is applied to the codebase, and its valid-
ity is tested through compilation, execution of known POVs using
the fuzzer harnesses (with sanitizers enabled), and, when available,
functionality tests. If the patch fails at any stage, structured feed-
back—including compiler errors, failed diffs, or fuzzer output—is
appended to the conversation, and the LLM attempts a revised
patch in the next iteration. This process repeats until a valid patch
is produced, the maximum iteration limit is reached, or the timeout
expires. If one model fails to produce a valid patch, the system
automatically falls back to the next model in the priority list.

4.3 Greedy Strategy
The patch0_delta strategy implements a greedy approach that
assumes vulnerable functions are guaranteed to appear within the
commit diff.

Function Identification Optimization. Rather than relying
on LLM analysis, this strategy directly treats all functions present
in the commit diff as vulnerable targets:

Vulnerable Functions = all modified functions

By extracting modified functions directly from the diff, this strat-
egy reduces the computational overhead of LLM-driven identifi-
cation in scenarios where vulnerabilities are clearly introduced
through recent code changes.

Hybrid Enhancement. The patch1_delta strategy combines
diff-based extraction with LLM analysis:

Potential Vulnerable Functions = LLM-identified func-
tions + all modified functions in the diff

This hybrid design preserves the efficiency of direct diff extraction
while broadening coverage with LLM-derived insights.

4.4 Path-Aware Strategy
The patch2_delta strategy enhances patch generation through
dynamic execution analysis and enriched prompting.

Control-Flow Integration. When patches fail validation, run-
time control-flow data is incorporated into subsequent LLMprompts,
similar to feedback mechanisms in POV generation. For C/C++
projects, coverage data is collected using LLVM profiling; for Java
projects, JVM bytecode coverage analysis is employed. This in-
formation is embedded in prompts to enable path-aware patch
generation.

Enhanced Function Discovery. LLM prompting is extended
to encourage the inclusion of functions beyond those explicitly
mentioned in crash traces. For example:

"You should include all functions that are potentially
vulnerable, including not only those that appear in the

crash call stack, but also those not directly mentioned
in the crash log."

This approach increases the likelihood of addressing indirect vul-
nerabilities and related security issues.

4.5 Knowledge-Enhanced Strategy
The patch3_delta strategy augments patch generationwith expert
vulnerability analysis and a curated patch catalog.

Expert Analysis Integration. The strategy incorporates the
initial analysis response from the POV generation phase as an
expert assessment, providing contextual understanding of the vul-
nerability’s characteristics and exploitation patterns.

Sample Patch Catalog. The strategy retrieves vulnerability-
specific patch examples from a catalog indexed by sanitizer signa-
tures and vulnerability categories. These examples serve as concrete
guidance for remediation approaches.

Context Retrieval. The strategy also supports dynamic context
retrieval, enabling the LLM to request additional source code when
needed:

"If you need the source code of any other function, please
return the file paths and function names in the following
JSON format:"

This feature supports comprehensive reasoning over complex vul-
nerabilities that span multiple functions or require broader program
context.

4.6 Full-Scan Patch Strategy
The main difference between full-scan patching strategies and delta-
scan is the absence of a commit-based context, which forces func-
tion identification to rely solely on crash log analysis and LLM
reasoning. To compensate, full-scan strategies employ enhanced
prompting for more accurate target selection. Specifically, special-
ized prompts guide the LLM in analyzing beyond the immediate
crash stack trace, encouraging exploration of indirectly related
functions that may also contain vulnerabilities.

4.7 XPatch Strategy
The XPatch strategy addresses cases where no POVs or crash logs
are available.

For delta-scans, this process is relatively straightforward be-
cause the commit diff provides strong contextual clues about where
the vulnerability was introduced. We extract all modified functions
from the diff and supply their full source code as context to the
LLM.

For full-scans, where no commit information is available, XPatch
relies on LLM-based scoring of all fuzzer-reachable functions. The
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LLM assigns likelihood scores to candidate functions based on pre-
defined rubrics, and the top 𝑘 functions (default: 5) are saved. These
functions are then used as the input context for patch generation.

Function Scoring Prompts. The scoring prompt is tailored to
both language and vulnerability class.

• For C/C++, the rubric targets memory safety issues such as
off-by-one errors, integer overflows, and buffer boundary
violations. Functions are scored from 1–10 to reflect the like-
lihood of a flaw: 10 indicates a certain violation, 7–9 strong
indicators, 2–6 weak or indirect hints, and 1 no evidence of
problems.

• For Java, multiple specialized rubrics are supported:
– Malicious logic detection: identifies intentionally harmful
constructs such as backdoors, command injection, data
exfiltration, privilege escalation, or kill-switches. Scores
range from 1–10, where 10 indicates definite evidence
of malicious intent, 7–9 strong indicators, 2–6 weak or
indirect hints, and 1 no evidence of malicious behavior.

– Unsafe deserialization: flags dangerous uses of Java deseri-
alization APIs without proper validation (e.g., unfiltered
use of ObjectInputStream, XMLDecoder, or SnakeYAML).
Scores range from 1-10 (similar to above).

In all cases, the LLM outputs a JSON array containing function
names, assigned scores, and short justifications, sorted by descend-
ing score. Only functions with scores ≥ 7 are retained.

Patch Generation. Once candidate functions are identified,
their metadata and source code are provided to the LLM, with
explicit instructions that the vulnerability lies within one or more of
these functions. The LLM is then tasked with generating candidate
patches to mitigate the issue.

Patch Validation with LibFuzzer. Since XPatch operates with-
out known POVs, validation relies entirely on fuzzing. After ap-
plying a candidate patch, we execute LibFuzzer on the patched
binary for 60 seconds. If the fuzzer produces a new crash during
this run, the patch is deemed unsuccessful. Otherwise, the patch is
considered valid under the available test conditions.

5 SARIF ANALYSIS AND ASSESSMENT
Our SARIF (Static Analysis Results Interchange Format) report-
based analysis implements a multi-stage processing pipeline that
transforms external vulnerability reports into actionable security
assessments. Figure 5 illustrates the workflow.

Upon receiving a SARIF broadcast, the CRS Web Service first
parses the data to extract vulnerability metadata, including stack
trace information, vulnerability classifications, precise code loca-
tions, affected functions, and contextual data. After processing, a
typical SARIF report yields structured vulnerability information
containing:

• Affected Functions: Target function names and their asso-
ciated source file locations

• Vulnerability Classifications: CWE identifiers and rule-
based categorizations

• Location Information: Precise line numbers, file paths,
and code regions

• Contextual Metadata: Severity levels, confidence scores,
and analytical tool information

• Stack Trace Data: Function call sequences and execution
flow information

Based on this information, we identify potential vulnerable func-
tions and use the Static Analysis Services to determine whether
there is a fuzzer that can reach these vulnerable functions from its
fuzzer input entry point. If not reachable, then we send a validation
request to the Submission Service. This request includes relevant
source code extracted from the target project, based on the vulner-
able file, line numbers, and function name specified in the SARIF
report (when available). At the Submission Service, three different
LLMs are queried in sequence to perform two checks: 1. Determine
whether the SARIF is likely a false positive. 2. Determine whether
the SARIF is likely a true positive.

If a majority consensus is reached, the resulting assessment is
submitted to the competition API. If the outcome is inconclusive
(e.g., conflicting results or LLM errors), the SARIF is deferred for
later reassessment. Two additional mechanisms are then applied: 1.
When the Submission Service receives a POV, it checks whether the
POV corresponds to any unprocessed SARIF reports. If a match is
found, the SARIF is confirmed as valid. 2. Independently, the SARIF
is broadcast to Worker Services to drive POV generation. If a POV
is successfully generated based on the SARIF, the SARIF is likewise
confirmed as valid and submitted as such.

Valid SARIF reports provide valuable contextual information,
such as vulnerability description and precise source location, which
can help improve the effectiveness of POV and patch generation.
Accordingly, when a SARIF is classified as valid (but no POV has
yet been identified) or remains undecided, it is forwarded toWorker
Services to support further analysis and exploration.

The Submission Service handles SARIF validation because it
tracks all POV submissions. This enables direct correlation between
SARIF-reported vulnerabilities and actual POV-triggered crashes.
The matching algorithm proceeds in two stages: (1) check whether
the SARIF artifactLocation (e.g., vulnerable file and line num-
bers) appears in the POV crash trace, and (2) if necessary, use LLMs
to compare the SARIF vulnerability description with the details of
the POV submission.

6 STATIC ANALYSIS IMPLEMENTATION
6.1 Static Analysis for C/C++
OurC/C++ analysis pipeline integrates three external tools: LLVM [6],
SVF [8], and Bear [3]. The workflow is as follows: generate LLVM
bitcode for each fuzzer binary, use SVF to construct a call graph,
compute all functions reachable from each fuzzer, and then build
call paths from the fuzzer entrypoint to each reachable function.
To improve efficiency, all fuzzers are analyzed in parallel, and for
each fuzzer–function pair, call paths are constructed concurrently
using breadth-first search (BFS). The maximum call path depth is
limited to 50.

Generating LLVM bitcode presented significant engineering dif-
ficulties. Simply appending -emit-llvm to clang often failed due
to missing dependent headers. To address this, we first collect all
compile commands of the target project into a compilation data-
base by building it inside the OSS-Fuzz base Docker image via
the command: bear -o /out/compile_commands.json compile.
This uses the Bear tool [3] to intercept and store the compilation
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Figure 5: SARIF Report-based Strategy

command associated with each source file. We then process each
compile command entry to produce bitcode for each source file,
maintaining separate bitcode sets for fuzzer harnesses and project
source files. For each fuzzer, all bitcode files are subsequently linked
into a single bitcode module. Despite this, errors persisted, requir-
ing fallback heuristics such as hardcoding common header paths
and compiler flags. Ultimately, our tool successfully generated bit-
code for over 95% of source files across tested projects, including
curl, dropbear, and sqlite3.

Performance posed an additional challenge. Linked bitcode files
could exceed 50 MB, and SVF frequently exceeded 1 hour or ran
out of memory when constructing call graphs from such large
bitcode files. To mitigate this, we trim oversized bitcode modules
to a manageable size (e.g., 25 MB), apply lightweight type-based
call graph analysis, and enforce a 10-minute timeout. If SVF fails to
complete within this time budget, the Static Analysis Service will
return empty results for that query.

6.2 Static Analysis for Java
For Java projects, we leverage CodeQL [4], which provides a more
mature and reliable analysis infrastructure than the toolchain used
for C/C++. The workflow consists of three main steps: (1) building a
CodeQL database from the project source code, (2) executing queries
against the database, (3) decoding query results and computing per-
fuzzer data structures (i.e., reachable functions and call paths). We
implemented two custom queries: one for extracting reachable
functions, and another for computing call paths. These queries

are designed to handle challenges such as function overloading
and dynamic loading, which complicate traditional static analysis
approaches.

To maximize performance, multiple call path queries are batched
to reduce database connection overhead (the primary latency bot-
tleneck). The number of fuzzer–target pairs can be extremely large
(up to 100K), so we employ a batch execution mode with a batch
size of 1,000. To avoid race conditions, the database is cloned for
each fuzzer path, ensuring that every fuzzer operates on an isolated
copy.

The call path analysis employs a balanced approach to cycle
handling that prioritizes comprehensive path discovery over strict
cycle prevention, that is, the code prevents direct cycles (intermedi-
ate methods cannot be the source or target method) but does not
fully prevent indirect cycles. This design choice recognizes that
indirect cycles often represent legitimate and valuable execution
patterns in real world projects, such as recursive algorithms. The
Analysis Service mitigates the theoretical risk of infinite recursion
through a practical depth limit (10 calls), ensuring both computa-
tional efficiency and analytical completeness.

In addition, we developed a lightweight baseline analysis that
conservatively identifies function callees using only class types and
function names. This approach sacrifices precision but serves as
a fallback mechanism when CodeQL queries fail or become too
costly.
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Our Java static analysis pipeline completes within five minutes
for representative OSS-Fuzz projects such as Apache Zookeeper,
Tika, and Commons-Compress.

7 PERFORMANCE OPTIMIZATIONS
Across the three exhibition rounds, we observed that FuzzingBrain
is effective and fast at producing POVs and patches: the vast major-
ity were generated within the first 30 minutes. Most vulnerabilities
were detected under AddressSanitizer, and our LLM-based strate-
gies discovered nearly all POVs; traditional fuzzing (in our case,
libFuzzer) contributed only one or two POVs. However, we also
exhausted our allocated OpenAI API credits in one round. Post-
mortem analysis showed that a substantial portion of credits was
spent on Worker Services assigned to fuzzers that could not reach
the vulnerable code, making POV discovery impossible regardless
of LLM effort.

Some target projects can yield more than 50 fuzzers (fuzzer har-
nesses × {address, memory, undefined} sanitizers). To curb waste
and improve throughput for the final round, we applied the follow-
ing policies:

Sanitizer Selection. We disabled UndefinedBehaviorSanitizer for
all projects and disabled MemorySanitizer for projects with more
than ten fuzzer harnesses, prioritizing AddressSanitizer where we
observed the highest yield.

Time Budgeting for LLM-Based Fuzzing. To control API spend,
each worker’s LLM-based fuzzing is capped at 60 minutes, and
reduced to 45 minutes if other fuzzers have already produced POVs
for the same target.

libFuzzer Time Management. To preserve CPU for concurrent
fuzzers on the same VM, we limit libFuzzer to at most half of the
competition time. Concretely (as implemented in our controller):

• If one or more POVs have been found (either by LLM-based
strategies or libFuzzer) and libFuzzer has already run longer
than the half-time budget (or longer than half that budget
while multiple fuzzers are active on the same VM), we stop
libFuzzer to save resources.

• If no POVs found, we continue until the half-time budget is
reached, then stop.

Parallelism and Isolation. Because patching requires full rebuilds
(often minutes per attempt), we run 3–5 parallel processes for each
patching strategy. A single VM may execute 20–30 patching pro-
cesses concurrently for one vulnerability. Each process operates in
its own isolated workspace to prevent cross-contamination between
attempts.

Patch Submission Caps per Vulnerability. Submitting too many
patches, even if valid, reduces the accuracy multiplier and lowers
the overall score. Because patches contribute the largest share of
points, we balance patching success probability against scoring
penalties by capping the number of submissions per vulnerability
(keyed by canonical signature): at most five POV-based patches and
at most three XPatches.

These treatments reflect tradeoffs between efficiency and cover-
age, aiming to optimize performance under resource constraints.
However, they may not guarantee the best possible score in every

setting. For example, if many vulnerabilities can only be triggered
under MemorySanitizer or UndefinedBehaviorSanitizer, skipping
these sanitizers would cause FuzzingBrain to miss them, leading to
lower overall performance in the final round.

8 ADDITIONAL LESSONS LEARNED
Engineering a reliable LLM-based system of this scale proved ex-
tremely challenging. We encountered countless bugs, spent many
days debugging, and learned several important lessons across soft-
ware engineering, infrastructure management, and system design.

8.1 Concurrency and Parallelization
FuzzingBrain relies heavily on parallelism, which introduced subtle
race conditions and deadlocks:

• In one exhibition round, the Submission Service froze after
a few hours. We later traced the root cause to a classical
deadlock in Go mutex usage across multiple threads. The is-
sue was resolved by removing mutexes and replacing shared
maps with sync.Map.

• Worker services occasionally submitted false-positive POVs
due to file-level race conditions. Multiple POV strategies
wrote to the same output path (x.bin), leading tomismatched
files being submitted. The fix was to isolate file paths for
each subprocess.

8.2 LLM-Generated Code and Debugging
More than 90% of our system code was generated with LLM as-
sistance. While this accelerated development, it also made debug-
ging significantly harder, as we were not as familiar with code we
did not write ourselves. This experience highlighted the tradeoff
between rapid prototyping and long-term maintainability when
relying heavily on LLMs for code generation.

8.3 Configuration Management
With multiple services (each requiring its own API keys), we main-
tained four separate .env files across subdirectories. In one exhibi-
tion round, a critical service failed because its file was not updated
with the correct keys. This underscored the need for centralized
and automated secret management, rather than relying on manual
updates.

8.4 Logging and Observability
According to AIxCC competition logs, our system performed ex-
tremely well for the first three days of the final round, but submitted
nothing after Day 4. We suspect a critical crash or bug, but the root
cause remains unknown due to loss of logs:

• Our system generated gigabytes of logs across serviceswithin
hours, but most logs were stored only on ephemeral VM
nodes in the Azure VMSS cluster.

• After the competition, all VM nodes were recycled, and the
logs disappeared permanently, preventing postmortem anal-
ysis.

This revealed the importance of persistent, centralized logging and
monitoring in large-scale distributed systems.
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8.5 Validation and Silent Failures
Post-final analysis revealed a critical flaw in our patch validation
pipeline: a missing parameter in a Python function call caused all
Python subprocesses (invoked from Go to handle LLM-based patch-
ing) to crash silently. Consequently, many patches were submitted
without verification against known POVs, leading to a significant
drop in accuracy. This highlights the need for robust error handling,
explicit status reporting, and fail-safe validation mechanisms when
orchestrating heterogeneous components.

8.6 Diverse Fuzzing Strategies
Our system made only minimal use of traditional fuzzing (only
libFuzzer). While LLM-based fuzzing was highly effective, we likely
missed opportunities to discover additional POVs by not integrating
alternative fuzzers such as AFL++ [1] or Honggfuzz [5]. Incorporat-
ing diverse fuzzing engines could have improved overall coverage
and robustness.

9 FUZZINGBRAIN LEADERBOARD
To systematically evaluate state-of-the-art LLMs on vulnerability
detection and patching, we developed the FuzzingBrain Leaderboard
based on the AIxCC benchmarks (36 challenges drawn from the
three exhibition rounds, 16 C challenges and 20 Java challenges). In
each run, FuzzingBrain is restricted to using a single LLM for both
POV generation and patching, allowing us to directly measure the
performance of that model. Scoring follows the AIxCC rubric: each
POV is worth 2 points and each patch is worth 6 points. Models are
then ranked according to their total score across all benchmarks,
providing a standardized comparison of capability.

We introduce several modifications to make leaderboard evalua-
tion practical and reproducible:

• Single-VM Execution: FuzzingBrain is executed on a single
VM, and the vulnerability-triggering fuzzer is provided as
input.

• Precomputed Static Analysis: Static analysis results for
each target project are precomputed and stored in JSON
format. The Static Analysis Service, therefore, only needs
to answer queries and return results, minimizing runtime
overhead.

• Time Limit: Each run is capped at one hour in total, cover-
ing both POV generation and patching.

The current leaderboard is available at o2lab.github.io/FuzzingBrain-
Leaderboard. We plan to regularly maintain this evaluation frame-
work to enable transparent, standardized, and reproducible com-
parisons of different LLMs in real-world vulnerability discovery
and remediation tasks.
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