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Note: I’d be grateful for feedback on these lecture notes and associated materials, including any typos that
you find, or any parts where you find the notes lacking in clarify. Also if you’d like to discuss Java concur-
rency issues further then I’d be very happy to chat with you. Drop me a line to report issues or follow up:
afd@imperial.ac.uk.

Acknowledgment: I found Benjamin Winterberg’s tutorials on Java 8 concurrency to be a really useful
resource when preparing these lectures. I thoroughly recommend reading his three blog posts on the topic,
starting with this one:

http://winterbe.com/posts/2015/04/07/java8-concurrency-tutorial-thread-executor-
examples/.

1 Introduction

The aim of these lectures is to give you a brief tour of some of the more recent developments in Java related
to concurrency. Compared with the traditional approach to concurrency—the Thread class and Runnable
interface, and the use of synchronized methods and blocks—the more recent language and library features
support both higher- and lower-level programming, for developers who in the first case wish to be relieved of
some of the pain of concurrent programming, or in the second case wish to have an even more detailed degree
of control over concurrent execution compared with what the traditional language mechanisms provide.

The lectures will be delivered in a live programming style, and these notes are intended for you to read
afterwards to remind yourself what we covered.

Code The code associated with these lectures is available here:

http://www.doc.ic.ac.uk/˜afd/teaching/Concurrency

This includes both the skeleton code that I will start with during the lectures as I demonstrate each concept,
and the final code that we produce during the classes. In what follows, when I refer to packages and class I am
referring to the final version of the code, not the skeleton.

2 Running example: a hash set

To illustrate some ideas related to concurrency, we will develop a simple class representing a hash set. In
practice, thread-safe collections ship with the Java libraries, so you shouldn’t have to write your own, but the
hash set example is nevertheless good for teaching purposes.

The hash set class and methods Package basichashset includes a class, MyHashSet, that implements
a basic generic hash set with a few operations:

• boolean contains(T item); – returns true if and only if an object .equals() to item is in the
set

• boolean add(T item); – adds item to the set unless an object .equals() to item was already
there, returning true if and only if item was added

• boolean remove(T item); – removes an object .equals() to item if one exists, returning true if
and only if something was removed

• int size(); – returns the number of elements currently in the set
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Sequential use of the hash set Class Main illustrates a basic usage of the hash set in a sequential context.
The intention is that the hash set should be fine for sequential use (though of course it is not an optimized
implementation).

Thread-safety The hash set class is not thread-safe. This is demonstrated by class BadThreads, where
multiple threads try to add elements to a hash set concurrently. On my laptop, this leads to a null pointer
exception inside the LinkedList class that I have used to implement the buckets of the hash set. The issue is
that LinkedList is not thread-safe, so bad things can be expected to happen when multiple threads modify
a linked list concurrently.

Aside: use of lambda expressions to write threads compactly Notice that in BadThreads I have
written:

Runnable addElements = () -> {
for(int i = 0; i < 1000; i++) {

hs.add("word" + i);
}

};

to create an instance of a Runnable in a very compact fashion. This is possible because Runnable is a
functional interface—an interface with just one method. In the case of Runnable the single method is the
method with signature void run(). As a result, we can provide an anonymous instance of Runnable using
a lambda expression of the form ()-> { ... }, which describes a method that takes no arguments and causes
the statements inside the braces to be executed.

This is much more compact than the alternative, equivalent, approach of using an anonymous class, which
looks like this:

Runnable addElements = new Runnable () {
@Override

public void run() {
for(int i = 0; i < 1000; i++) {

hs.add("word" + i);
}

}
};

For more information about Java 8 lambdas, check out my lectures on the topic: http://www.doc.ic.
ac.uk/˜afd/teaching/Java8/Java8-Lambdas-Slides.pdf. There are many good tutorials online
about this as well.

3 Using synchronized in an attempt to make the hash set thread-
safe

Let us now turn our attention to making the hash set thread-safe.

A trivial solution: synchronized methods We could trivially make the hash set thread-safe by marking
all its methods as synchronized. This would lead to poor performance, though, because it would sequentialize
access to the hash set. It would be impossible for updates to distinct buckets in the hash set to be processed
concurrently.

A finer-grained approach: synchronized blocks Instead, we can apply synchronized at a finer level
of granularity. In contains we can wrap the check for whether the element is inside the relevant bucket in a
synchronized block, synchronizing on bucket:

public boolean contains(T item) {
List<T> bucket = getBucket(item);
if(bucket == null) {

return false;
}
synchronized(bucket) {

return bucket.contains(item);
}

}

We can use synchronized similarly in add and remove to ensure exclusive access to a bucket when
reading or modifying it.

A challenge is how to create a new bucket in add in a thread-safe manner when no bucket yet exists.
Here is the beginning of the original code for add:
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public boolean add(T item) {
List<T> bucket = getBucket(item);
if(bucket == null) {

bucket = new LinkedList<>();
buckets.set(getBucketIndex(item), bucket);

}
...

}

To attempt to make this code thread-safe, we employ the following strategy. If a thread finds that bucket
is null, the thread will proceed with creating a bucket. However, it is possible that two threads might both
find the same bucket to be null, and both try to create it. To avoid this, the threads must synchronize on
some common object. They cannot synchronize on the bucket, because it does not yet exist! Instead, they can
synchronize on the this reference to the hash set itself. This suggests code along the following lines:

List<T> bucket = getBucket(item);
if(bucket == null) {

synchronized(this) {
bucket = new LinkedList<>();
buckets.set(getBucketIndex(item), bucket);

}
}

However, this is not quite right: it is possible for both threads to find that bucket is null, and then for both
threads to (one after another) create a new bucket. Each thread will then have a separate bucket for items that
should hash to the same bucket. Only the bucket for the second thread to pass through the synchronized block
will remain in the hash set; the other bucket will be garbage-collected and the item added by the first thread
will get lost as a result.

To overcome this, a thread can check whether the bucket is still null after it enters the synchronized block:

List<T> bucket = getBucket(item);
if(bucket == null) {

synchronized(this) {
bucket = getBucket(item);
if(bucket == null) { // Another thread might have made the bucket in the meantime

bucket = new LinkedList<>();
buckets.set(getBucketIndex(item), bucket);

}
}

}

This double-checked locking idiom tries to ensure that a thread only creates a new bucket if the bucket still
does not exist after the thread acquires a lock on the hash set.

Unfortunately, the relaxed Java memory model means that double-checked locking as shown here may fail,
as a result of compiler optimizations and/or relaxed memory effects. For more details of this, see The “Double-
Checked Locking is Broken” Declaration, signed by a multitude of Java experts: http://www.cs.umd.edu/

˜pugh/java/memoryModel/DoubleCheckedLocking.html. In Section 4 we will illustrate the relaxed
nature of the Java memory model and in Section 5 we will show how atomic references can be used to implement
double-checked locking correctly.

Lack of synchronization on size A less subtle shortcoming of the thread-safe hash set is that size is
not protected: size is incremented in add and decremented in remove, and can be accessed concurrently by
threads updating different buckets. Because the threads only synchronize on the bucket they are working on,
access to size is not synchronized. As a result, size can get out of sync. The crux of the problem here is
that incrementing size via size++ is not atomic: this statement involves loading the current value of size
into a register, incrementing that register, then storing the new value back to memory. If two threads execute
size++ concurrently when size is 42, they might both load 42 in to registers, both increment 42 to 43, then
both store 43 back to memory, so that in effect size only gets incremented once.

The package synchronizedhashset contains the semi-thread-safe version of the hash set. Class LessBad
Threads illustrates that the code works more reliably: on my PC I no longer find that exceptions are thrown.
However, occasionally I see that the size of the hash set becomes nonsensical due to the issues related to size
being updated.

We could resolve the problem with updating size by making every access to size be synchronized on the
hash set. This would be a shame as it would cause add and remove operations on the hash set to be basically
sequentialized. In Section 5 will see how to use an atomic integer to solve this problem.
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4 Relaxed memory

Let us take a brief detour to illustrate the relaxed nature of the Java memory model. In the process, we shall
introduce the notion of an executor service, a future, and a multi-catch block.

Store buffering Suppose that x and y are int variables, both accessible to threads T1 and T2. Suppose
that T1 executes this method:

int thread1() {
x = 1;
return y;

}

and T2 executes this method:

int thread2() {
y = 1;
return x;

}

If both threads are launched, with x and y initialized to 0, what are the possible values the threads can
return?

Under a sequentially consistent memory model, where a concurrent execution can be explained as some
interleaving of instructions by individual threads, it would be possible to have T1 and T2 return, respectively,
0 and 1, 1 and 0, or 1 and 1. It would not be possible for both threads to return 0: there is no interleaving
where both threads execute their return statements but where neither x nor y has been updated.

However, the Java memory model does allow this situation. This is because the memory model is relaxed,
to cater for properties of modern hardware, such as the total store order memory model that x86 processors
exhibit. In particular, x86 processors implement store buffering, where stores to memory locations are queued
in buffers. Under such a model, it is possible for T1 to issue its write to x and T2 to issue its write to y, but
for these writes to be queued in store buffers waiting to be committed to memory. If the return statements
are issued before the writes reach memory, the original values of x and y will be returned, so that both threads
return 0. A relaxed memory model also enables certain compiler optimizations that would not be possible in
general under an assumption of sequential consistency.

Coding up the store buffering test in Java Take a look at class Main in the relaxedmemory package.
The class declares two static fields, x and y, that are both integers.

Instead of launching threads via the Thread class, the example uses a more modern approach: an executor
service. The statement:

ExecutorService executor = Executors.newFixedThreadPool(2);

creates a service for running threads that will use a fixed-size pool of two threads.
The behaviour of T1 is described as a Callable instance:

Callable<Integer> t1 = () -> {
x = 1;
return y;

};

Callable<T> is a generic interface that declares a single method with signature:

public T call() throws Exception;

An implementation of Callable, for a given T, describes the behaviour of a thread that will perform some
task and return a result of type T, possibly throwing an exception in the process. This is in contrast to a
Runnable, which cannot return a result, and cannot throw a (non-RuntimeException) exception.

Because Callable<T> is a functional interface, it can be instantiated using a lambda expression, as shown
above. This is equivalent to writing the more verbose:

Callable<Integer> t1 = new Callable<Integer>() {
@Override
public Integer call() throws Exception {

x = 1;
return y;

}
};

T2 is described similarly using a lambda:
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Callable<Integer> t2 = () -> {
Thread.yield();
y = 1;
return x;

};

To look for store buffering effects, we can loop a number of times submitting these callables to the executor
service. Each time we submit a callable, we get back a future. This is an object that will, once the callable has
terminated, allow us to get the result that the callable returned:

for(int i = 0; i < MAX; i++) {

x = 0; // Reset the static
y = 0; // variables

Future<Integer> r1 = executor.submit(t1); // Submit the threads
Future<Integer> r2 = executor.submit(t2); // to the executor

try {
// The calls to ’get’ block until the value associated with the future is ready
if(r1.get() == 0 && r2.get() == 0) {

System.out.println("r1 == 0 and r2 == 0");
}

} catch (ExecutionException|InterruptedException e) {
break;

}
}

Futures Notice that we get a Future<Integer> for each callable that we submit to the executor service.
Each of these is a promise to return an integer at some point in the future. The calls r1.get() and r2.get()
block until the promised integer is ready. Of course, because our threads are so simple, the associated integers
will be available almost instantaneously, and very likely before control reaches the get() calls. A future is a
useful construct in the case that we wish a thread to run in the background computing a chunky piece of work;
as you can see from the use of get() above, code that uses the future value looks very natural.

Multi-catch blocks Notice the use of a multi-catch block to catch either an exception of type ExecutionExc
eption (representing the exception that a callable might throw) or an InterruptedException (which a
thread might throw in general. The | operator avoids the need to write multiple catch blocks if we wish to
handle several exceptions in the same manner.

Shutting down the executor service It is necessary to use:

executor.shutdown();

to shut down the executor service at the end of program execution. If this command is not issued, the program
will hang.

Do we observe store buffering? On my PC, I saw 2 instances of store buffering behaviour over 100,000
runs. On adding Thread.yield() at the start of each callable’s call() method (which tells the scheduler
to schedule a different thread), I saw instances of store buffering 47 times over 100,000 runs.

This “store buffering” could be due to x86 store buffering behaviour, or might be the result of compiler
optimizations; looking at the compiled bytecode would be one step towards investigating this, though one
would have to look at the machine code that is just-in-time compiled by the Java Virtual Machine to understand
whether the compiler is reordering memory operations or not.

Using volatile to restore sequential consistency If we add the volatile qualifier to each of x and
y, we no longer see any relaxed behaviour. This is because a memory operation issued to a volatile variable
is guaranteed to be ordered before a memory operation that is issued later.

To summarize our detour into relaxed memory: the Java memory model is not sequentially consistent,
and the effects of this can occasionally be seen. This can lead to faulty reasoning about protocols such as
double-checked locking where one typically assumes sequential consistency when reasoning.
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5 Overcoming the double-checked locking and size-tracking issues
with atomic references and an atomic integer

Recall the two deficiencies with the almost-thread-safe hash set discussed in Section 3: the vulnerability of the
double-checked locking pattern (due to Java’s memory model) and the lack of synchronization on the size
field. We show how these can be addressed using atomic references and an atomic integer, dealing with the
latter first. The version of the hash set with these features is in the superchargedhashset package.

Counting with an AtomicInteger We can replace:

private int size;

with:

private AtomicInteger size;

to use the special AtomicInteger class to represent the size of the hash set. This class supports a number of
integer operations, with the guarantee that they will appear to take place atomically to a client of the class.

the two operations relevant to us are:

• int incrementAndGet(); – increments the value of the integer and returns its new value

• int decrementAndGet(); – decrements the value of the integer and returns its new value

Calling size.incrementAndGet() and size.decrementAndGet() are the atomic analogues of exe-
cuting size++ and size--. These methods map to special “read-modify-write” hardware instructions that
avoid the problems associated with the non-atomic size++ and size-- statements. At most one thread can
perform a read-modify-write operation on one memory location at a single time: if multiple threads attempt
such an operation on a common memory location, the execution of these operations is sequentialized.

It might seem like this sequentialization in the face of contention is just as bad as using a synchronized
method on the hash set to increment and decrement size. However, the overhead of issuing a single atomic
increment or decrement is lower than that of acquiring a lock. Still, contention can be an issue. Later, we will
see how a long adder can be used to reduce contention.

To fully replace size with an atomic integer, we must use:

size = new AtomicInteger(0);

to make the value zero initially, and implement the size() method as follows:

public int size() {
return size.get(); // the .get() call retrieves an int value from the counter

}

Using AtomicReferences for double-checked locking The issue with double-checked locking as pre-
sented in Section 3 is that operations on references in Java may not exhibit sequentially consistent behaviours.
One solution to this involves making the references involved in double-checked locking volatile. We will look
at a different (and in my view, cleaner) solution, using atomic references.

The AtomicReference<T> class is a generic class that is used to wrap references to objects of type T. An
atomic reference is simply a reference to an object, but it has the special property that the reference can be set
and retrieved in an atomic fashion. It is thus safe to use in fine-grained concurrent contexts, such as that of
double-checked locking.

To handle the hash set buckets using atomic references, we can replace the buckets field, originally:

private final List<List<T>> buckets;

with:

private final List<AtomicReference<List<T>>> buckets;

Instead of setting each bucket to null initially, we initialize each atomic reference so that it does not hold
a reference (i.e., each atomic reference holds null):

for(int i = 0; i < numBuckets; i++) {
buckets.add(new AtomicReference<>());

}

We can now implement double-checked locking in add in a manner similar to that shown in Section 3, but
using atomic references to ensure correct concurrent behaviour:
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public boolean add(T item) {
AtomicReference<List<T>> bucket = getBucket(item);
if(bucket.get() == null) {

synchronized(this) {
bucket = getBucket(item);
if(bucket.get() == null) {

bucket.set(new LinkedList<>());
buckets.set(getBucketIndex(item), bucket);

}
}

}
...

}

The key point here is that all manipulation of bucket references goes through AtomicReference objects,
which use low-level hardware instructions to ensure that the reference updates really are atomic. In particular,
the situation where thread T1 observes a bucket to be null despite the fact that T2 has already created a
bucket and issued an instruction to write the address of the new bucket to the buckets array is eliminated.

If you study the code in superchargedhashset you will see that this use of atomic references comes at
a readability cost: some relatively intrusive changes to the original code are required to deal with the fact that
each bucket is wrapped in an atomic reference, and it can be easy to get confused between a bucket and an
atomic reference that refers to a bucket, especially when testing references against null.

6 Reader/writer locks

The code in readerswritershashset shows how to implement a version of the hash set with lower con-
tention, using reader/writer locks and a long adder.

Reader/writer locks allow multiple threads to acquire a read lock, if no thread holds a write lock, and at most
one thread to acquire a write lock, so long as no other thread holds any lock. This allows multiple concurrent
readers, which is good for scenarios where reading is more common than writing.

A long adder provides much of the functionality of an atomic integer, for the case where one wishes to add to
a quantity multiple times, but only read the quantity occasionally. The long adder uses additional memory to
avoid threads having to always synchronise when making an update to the quantity being added to, by storing
partial sums. When a thread reads the quantity, the partial sums need to be added together to give the required
result.
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