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Abstract

Model checking is an increasingly popular technique for the formal verification of

concurrent systems. The application of model checking is limited due to the state-

space explosion problem – as the number of components represented by a model in-

creases, the worst case size of the associated state-space grows exponentially. As

such, models of realistic systems are often too large to feasibly check. Over the last

15 years, symmetry reduction techniques for model checking have been developed

and, in a restricted setting, have been shown to be effective in reducing the state-

space explosion problem. Current techniques can handle limited kinds of symme-

try, e.g. full symmetry between identical components in a concurrent system. They

avoid the problem of automatic symmetry detection by requiring the user to spec-

ify the presence of symmetry in a model (explicitly, or by annotating the associated

specification using additional language keywords), or by restricting the input lan-

guage of a model checker so that only symmetric systems can be specified. Addi-

tionally, computing unique representatives for each symmetric equivalence class is

easy for these limited kinds of symmetry.

We present a theoretical framework for symmetry reduction which can be

applied to explicit state model checking. The framework includes techniques for

automatic symmetry detection using computational group theory, which can be ap-

plied with no additional user input. These techniques detect structural symmetries

induced by the topology of a concurrent system, so our framework includes exact

and approximate techniques to efficiently exploit arbitrary symmetry groups which

may arise in this way. These techniques are also based on computational group

theoretic methods.

We prove that our framework is logically sound, and demonstrate its gen-

eral applicability to explicit state model checking. By providing a new symmetry

reduction package for the SPIN model checker, we show that our framework can be

feasibly implemented as part of a system which is widely used in both industry and

academia. Through a study of SPIN users, we assess the usability of our automatic

symmetry detection techniques in practice.
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Chapter 1

Introduction

Over the last 25 years, temporal logic model checking [32, 26, 130, 134, 145] has

become one of the most popular techniques for formal verification of concurrent

hardware and software systems. Given a finite-state model which captures the es-

sential behaviour of a concurrent system, and a temporal logic property which de-

scribes some requirement of the system, a model checking algorithm determines

whether or not the property holds in the initial state (or states) of the model. Fur-

thermore, if the property does not hold, the model checker outputs a counter-example

– a behaviour of the model which violates the given property. Model checkers can

therefore be used to automatically find subtle defects in complex concurrent sys-

tem designs, or to prove the absence of certain defects, increasing confidence in the

system. The fact that model checking is, in principle, a fully automated technique

makes it more appealing to designers than other formal methods such as develop-

ment by specification and refinement, or mechanical theorem proving.

Although model checking has proved successful in both industry and

academia, the technique is hindered by the state-space explosion problem. This is

where, in the worst case, the number of reachable states of a model grows expo-

nentially with the number of components of the system being modelled. Consider

a system comprised of n identical components, each of which occupies one of k

local states, for some n, k > 0. A state of a model of this system can be viewed as

a tuple (l1, l2, . . . , ln), where li ∈ {1, 2, . . . , k}, (1 ≤ i ≤ n). Thus there are kn po-

tential states in the model. Although in practice it is unusual for every state to be

reachable, it is typical for the number of reachable states to approach this upper

limit. This means that memory and time constraints often prohibit model checking

properties of systems with many components.

A lot of model checking research concentrates on approaches to reduce the

state-space explosion problem. Techniques such as symbolic model checking [18,

128], partial-order reduction [67, 137], abstraction [30] and symmetry reduction [14,

27, 31, 55, 103] have been successfully used in the verification of large systems.

Symmetry reduction is applicable when a system contains replicated com-

ponents. Such replication, or symmetry, can result in portions of the state-space of
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a model of the system being equivalent up to rearrangement of component identi-

fiers. If symmetry is known to be present in a specification then model checking

of certain properties can be performed over a quotient model, which is generally

smaller than the unreduced model. The quotient model is usually constructed by

converting each state encountered during search to a unique representative of its

symmetric equivalence class. There are two main problems which must be over-

come for a symmetry reduction technique to be useful: it must be possible to derive

symmetries of a model from its associated high-level specification, and an efficient

method of computing equivalence class representatives must be available.

Existing techniques for exploiting symmetry in model checking assume that

symmetries of a model are either known a priori [31], coded into the model through

the use of special keywords [14, 103], or guaranteed to exist by restricting the in-

put language so that there is full symmetry between multiple instances of a pa-

rameterised component [166]. The first two approaches are potentially prone to

error, and compromise the automation of model checking, which is one of its main

strengths as a verification technique. With the third approach, the specification lan-

guage is designed to suit one particular state-space reduction technique, which may

restrict the style of specifications, and typically only full symmetry between identi-

cal components can be captured in this way. Ideally, a model checking tool should

be able to detect symmetry automatically from a high level system description.

The problem of computing equivalence class representatives is usually

avoided by only providing support for full symmetry, since in this special case rep-

resentatives can be efficiently computed using techniques based on sorting. How-

ever, many other kinds of symmetry commonly occur in models of concurrent sys-

tems with a regular structure. For example, cyclic/dihedral groups are typically

associated with systems which have uni/bi-directional ring structures, and wreath

product groups occur when dealing with tree topologies. Efficient strategies for

representative computation have been proposed for symmetry groups which are

known to have certain structural properties [27]. However, an automated solution to

the problem of classifying the structure of any group so that an appropriate strategy

can be chosen is required.

1.1 Contribution and Structure of the Thesis

We provide a review of model checking and symmetry reduction literature in

Chapters 2 and 3 respectively. In Chapter 4 we present a selection of examples

for which symmetry detection and/or reduction using existing techniques is ei-

ther difficult, or impossible. The rest of the thesis is divided into two parts, which

respectively addresses research problems in automatic symmetry detection, and

efficient exploitation of symmetry.
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Chapters 5–8 are concerned with techniques for automatic symmetry detec-

tion. Examples from Chapter 4 are used in Chapter 5 to highlight a correspondence

between symmetries of the communication structure and symmetries of the model

associated with a specification. We develop automated symmetry detection tech-

niques for message passing specification languages in Chapter 7, using a small lan-

guage which captures the essential features of the widely used Promela language.

The approach involves computing the symmetry group of the static channel diagram

of a specification (a graphical representation of potential communication in the un-

derlying model), and using a computational group theoretic algorithm to compute

a subgroup of these symmetries which induces automorphisms of the underlying

model. In Chapter 8 we describe SymmExtractor, an implementation of these tech-

niques for Promela, using the computational group theoretic package GAP. We eval-

uate the usability of SymmExtractor using a set of Promela specifications written

as solutions to two student assessed exercises.

The problem of efficiently exploiting symmetries during model checking is

addressed in Chapters 9 – 11. In Chapter 9 we extend existing results on efficiently

computing equivalence class representatives for certain kinds of symmetry group

under a simple model of computation, and present a computational group theoretic

approach to classifying an arbitrary symmetry group so that an appropriate sym-

metry reduction strategy can be chosen. Given a set of group generators, the classi-

fication algorithm analyses the structure of the group, identifying it as a wreath or

disjoint product of subgroups (which are in turn analysed), or as a basic symmetry

group. For certain kinds of basic symmetry groups, exact, efficient symmetry reduc-

tion strategies are available. Otherwise we propose an approximate strategy based

on local search. This strategy does not provide optimal reduction, but is sound, as

well as being fast in practice. For symmetry groups which decompose as a product

of basic groups, a composite symmetry reduction strategy is selected. In Chapter 10

we then consider a more realistic model of computation, and show that exact sym-

metry reduction strategies under the simple model of computation are no longer

guaranteed to provide optimal reduction. We show how to extend these strategies

to achieve optimality, at the expense of polynomial time. In Chapter 11 we describe

TopSPIN, a symmetry reduction package for the SPIN model checker, which incor-

porates our (detection and reduction) techniques. We show significant reductions

in verification time and space requirements for model checking safety properties

for a variety of examples.

1.2 Thesis Website and Source Forge

The results in this thesis are illustrated using a variety of specifications of various

concurrent systems. Some of these are given in Appendix A, but all are available

online at the following URL:
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http://www.dcs.gla.ac.uk/people/personal/ally/thesi s/

Release distributions of the three software tools presented in the thesis, SPIN-to-

GRAPE, SymmExtractor and TopSPIN, can also be downloaded from the above URL.

The tools are open source and their source code can be downloaded from Source

Forge:

https://sourceforge.net/projects/symmetryglasgow/

1.3 Notation for Equality and Assignment

Throughout the thesis we make extensive use of the Promela specification lan-

guage. Promela follows the C convention of using == to denote the boolean equal-

ity operator and = assignment. For example, x==5 is a boolean expression which

evaluates to true iff x has the value 5. On the other hand, x=5 is a statement which

assigns x to the value 5.

When writing mathematical equations and presenting algorithms, we prefer

to use = to denote the equality operator, and := to denote assignment (the approach

used by languages such as Ada and Pascal). Therefore the meaning of == and := is

unambiguous, but the meaning of = depends on whether it occurs in a Promela (or

Promela-Lite) code fragment. The SMC language, discussed in Section 3.3.3, uses =

and == in the same way as Promela.

1.4 Acknowledgment of Published Work

Much of the original material in this thesis has been published by the author in a

selection of co-authored papers.

The survey of symmetry reduction techniques presented in Chapter 3 ap-

pears in [132]; the SPIN-to-GRAPE tool of Chapter 4 was first presented in [49]. The

automatic symmetry detection techniques of Chapter 7 are published (in a prelimi-

nary form) in [48] and [42], in which the SymmExtractor tool is also introduced. The

type reconstruction algorithm used by SymmExtractor (see Section 8.2) was devel-

oped as part of the ETCH type checker [41]. Chapters 9 and 10 introduce strategies

for symmetry reduction which have been published in [44] and [46] respectively,

while the TopSPIN symmetry reduction package is described in [43].

However, the content of this thesis is the work of the author, incorporating

supervisory suggestions.

Published work not included in the thesis

We have published three papers related to symmetry reduction in model checking,

the content of which are not included here. The topics covered by these papers are:
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a symmetry reduction technique specific to featured networks [131], an approach

to symmetry reduction for probabilistic, symbolic model checking [45], and a com-

parison of techniques for exploiting symmetry in model checking and constraint

programming [47].

While these papers address interesting problems related to the role of sym-

metry reduction in formal verification, they do not fit into the suite of automatic,

general techniques for exploiting symmetry which we present here.



Chapter 2

Model Checking and the State Space Explosion Problem

In this chapter we formally present temporal logic model checking, introducing the

Kripke structure formalism used to model a concurrent system, together with the

logic CTL⋆ and its commonly used sub-logics, CTL and LTL. We give an overview

of some standard model checking algorithms and tools. In particular, we describe

the Promela specification language and its bespoke model checker, SPIN, which are

referred to frequently in Chapters 4–11. The chapter concludes with a discussion of

techniques which have been developed to combat the state-space explosion prob-

lem.

We begin by describing the use of model checking in the development of

reliable concurrent systems.

2.1 The Model Checking Process

Verification of a concurrent system design by temporal logic model checking tradi-

tionally involves first specifying the behaviour of the system at an appropriate level

of abstraction. The specification P is described using a high level formalism (often

similar to a programming language), the semantics of which are an associated finite

state model, M(P). A requirement of the system is specified as a temporal logic

property, φ.

A software tool called a model checker then exhaustively searches the finite

state model M(P), checking whether φ holds at each initial state. If φ does not

hold at some initial state, an error trace or counter-example is reported. Manual ex-

amination of this counter-example by the system designer can reveal that P does

not adequately specify the behaviour of the system, that φ does not accurately de-

scribe the given requirement, or that there is an error (bug) in the design. In this

case, either P , φ, or the system design (and thus also P and possibly φ) must be

modified, and re-checked. This process is repeated until the model checker reports

that φ holds in every initial state of M(P), in which case we say M(P) satisfies φ,

written M(P) |= φ. The model checking process is illustrated by Figure 2.1.
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Figure 2.1: The model checking process.
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Figure 2.2: Traditional and modern approaches to model checking in the development
of systems (adapted from [156]).

Assuming that the specification and temporal properties have been con-

structed with care, successful verification by model checking increases confidence

in the system design, which can then be refined towards an implementation. This

traditional approach is illustrated in the left hand side of Figure 2.2.

In practice, software is often developed rapidly, without much initial testing

or verification. In this case there is a need to apply model checking techniques to

the source code of an existing system, in an attempt to correct logical design flaws.

Semi-automatic abstraction techniques are used to extract a specification and logi-

cal properties from source code so that the model checking process can be applied.

This modern approach is illustrated on the right hand side of Figure 2.2.



2.2: KRIPKE STRUCTURES AND TEMPORAL LOGIC 20

2.2 Kripke Structures and Temporal Logic

As discussed above, the model checking problem involves determining whether or

not a finite state model describing the behaviour of a concurrent system satisfies

a temporal logic formula specifying a desired safety or liveness property of the

system. A Kripke structure is the common formalism for representing a finite state

model, and temporal logic formulas are usually expressed in (a sub-logic of) CTL⋆,

or the µ-calculus.

Let V = {v1, v2, . . . , vk} be a finite set of system variables, where each vi

ranges over a finite non-empty set Di of possible values. Then D = D1 × D2 ×

· · · × Dk is the set of all possible system states. A Kripke structure is defined in

terms of D as follows:

Definition 1 A Kripke structure M over D is a tuple M = (S, S0, R) where:

1. S = D is a non-empty, finite set of states

2. S0 ⊆ S is a set of initial states

3. R ⊆ S × S is a transition relation

A path in M from a state s ∈ S is an infinite sequence of states π = s0, s1, s2, . . .

where s0 = s, such that for all i > 0, (si−1, si) ∈ R. For states s and t, it is common

to denote the transition (s, t) by s → t. A state s ∈ S is reachable if there is a path

s0, s1, . . . , s, . . . in M where s0 ∈ S0. A transition (s, t) ∈ R is reachable if s is a

reachable state.

We usually deal with Kripke structures which have a single initial state s0 ∈

S, in which case we write M = (S, s0, R).1

Figure 2.3 shows the reachable part of a Kripke structure for a model of two

process mutual exclusion. The model consists of two processes, each with three

local states N, T and C. Each process has a single state variable, sti say (i ∈ {1, 2}).

Here V = {st1, st2} and D1 = D2 = {N, T, C}. The values N, T and C denote that

a process is in the neutral, trying or critical state respectively. For A ∈ {N, T, C} we

abbreviate the proposition sti = A by Ai. Only if process i is in the trying state (i.e.

Ti holds) and process j 6= i is not in the critical state (i.e. ¬Cj holds) can process i can

move into the critical state. Thus in the model it is not possible for both processes to

be in the critical state. That is, the mutual exclusion property holds. Note that there

is a single initial state (indicated by an incoming edge with no predecessor state in

Figure 2.3). In the initial state both processes are in the neutral state.

1. Following the convention of e.g. [30, 55, 57, 59], Definition 1 does not include a labelling function.
Such a structure is sometimes referred to simply as a transition system [30]. We could equivalently de-
fine states as being labelled with atomic propositions of the form (vi = di) (where di ∈ Di) [32].
However, the above notation in which states are valuations of variables (and thus are implicitly la-
belled) is convenient for presentation of our results, and is close to the representation of states used
by explicit-state model checkers.
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Figure 2.3: Kripke structure for two-process mutual exclusion.

2.2.1 CTL⋆

To express properties of Kripke structures we introduce the branching time tem-

poral logic CTL⋆. The set of CTL⋆ state and path formulas are defined inductively

over a finite set of propositions over system variables. The quantifiers A and E are

used to denote for all paths, and for some path respectively (where Fφ = ¬A¬φ).

In addition, X, U, F and G represent the standard next-time, strong until (see e.g.

[92]), eventually and always operators (where Eφ = trueUφ, and Gφ = ¬F¬φ re-

spectively). Note that we use p ⇒ q to denote ¬p ∨ q in the standard way. Let V

and Di, (1 ≤ i ≤ k) be as above. Then:

• true, false, (vi = di) and (vi 6= di) (for all vi ∈ V, di ∈ Di) are state formulas

• if φ and ψ are state formulas, then so are ¬φ, φ ∧ ψ and φ ∨ ψ

• if φ is a path formula, then Aφ and Eφ are state formulas

• any state formula φ is also a path formula

• if φ and ψ are path formulas, then so are ¬φ, φ ∧ ψ and φ ∨ ψ, Xφ, φUψ, Fφ

and Gφ.

Given (path or state) formulas φ and ψ, ψ is a sub-formula of φ, written ψ ⊆ φ,

if either ψ = φ, ψ is an operand to one of the operators appearing in φ, or ψ is

bound to a quantifier appearing in ψ. The sub-formula ψ is propositional if it is a

state formula which does not include A or E. A maximal propositional sub-formula

of φ is a propositional sub-formula ψ such that if ψ ⊆ ψ′ ⊆ φ, where φ′ is also a

propositional sub-formula, then ψ = ψ′.

The logic CTL⋆ is the set of all state formulas. For a Kripke structure M, if

the CTL⋆ formula φ holds at a state s ∈ S then we write M, s |= φ (or simply
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s |= φ when the identity of the model is clear from the context). Otherwise we

write M, s 6|= s. The relation |= is defined inductively below. Note that for a path

π = s0, s1, . . . we define first(π) = s0 and, for all i ≥ 0, πi is the suffix of π starting

from state si.

• s |= true, and s 6|= false

• s |= (vi = di) if and only if s = (e1, e2, . . . , ek) and ei = di (1 ≤ i ≤ k)

• s |= (vi 6= di) if and only if s = (e1, e2, . . . , ek) and ei 6= di (1 ≤ i ≤ k)

• s |= ¬φ if and only if s 6|= φ

• s |= φ ∧ ψ if and only if s |= φ and s |= ψ

• s |= φ ∨ ψ if and only if s |= φ or s |= ψ

• s |= Aφ if and only if π |= φ for every path π starting at s

• s |= Eφ if and only if π |= φ for some path π starting at s

• π |= φ, for any state formula φ, if and only if first(π) |= φ

• π |= ¬φ if and only if π 6|= φ

• π |= φ ∧ ψ if and only if π |= φ and π |= ψ

• π |= φ ∨ ψ if and only if π |= φ or π |= ψ

• π |= φUψ if and only if, for some i ≥ 0, πi |= ψ and πj |= φ for all 0 ≤ j < i

• π |= Xφ if and only if π1 |= φ

• π |= Fφ if and only if πi |= φ, for some i ≥ 0

• π |= Gφ if and only if πi |= φ, for all i ≥ 0 .

Model checking involves determining the satisfaction of a temporal logic for-

mula by a Kripke structure. The model checking problem can be specified globally or

locally as follows [134]:

Global model checking problem – Given a Kripke structure M and a CTL⋆ for-

mula φ, determine the set of states in M that satisfy φ (i.e. determine {s ∈ S :

M, s |= φ}).

Local model checking problem – Given a Kripke structure M, a CTL⋆ formula φ

and a state s in M, determine whether s satisfies φ (i.e. M, s |= φ).

Recall the set S0 of initial states of a Kripke structure M. In practice we are

typically interested in whether the initial states of a model satisfy a given property,

so we say that the model M satisfies the CTL⋆ property φ, denoted M |= φ, if

M, s |= φ for all s ∈ S0.

Returning to the mutual exclusion example of Figure 2.3, we can express the

mutual exclusion property formally in CTL⋆ as follows:

Property 1 AG(¬(C1 ∧ C2)).
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The Kripke structure clearly satisfies this property as (C, C) is not a reachable state.

Property 1 is a safety property – it asserts that something (bad) never happens. A

liveness property on the other hand expresses that eventually something (good)

must happen during an execution. For example, Property 2 below states that hav-

ing reached its trying region a process will eventually progress to its critical section

(the progress property):

Property 2 AG(T1 ⇒ (FC1)).

To see that the Kripke structure does not satisfy this property, consider the infinite

path starting at (N, N), followed repeatedly by the cycle (T, N), (T, T), (T, C), (T, N).

Process 1 waits in the trying region forever along this infinite path, violating

Property 2. Thus this path is a counter-example which proves that M, (N1N1) 6|=

Property 2.

We now define two sub-logics of CTL⋆ which are commonly used in appli-

cations of model checking.

CTL

The logic CTL (Computation Tree Logic) is the sub-logic of CTL⋆ in which the tem-

poral operators X, U, F and G must be immediately preceded by a path quantifier.

For example the so-called reset property, AG(EF Restart), which asserts that from

any state it is possible to get to the Restart state, is a CTL property. Efficient model

checking algorithms exist for this sub-logic (see Section 2.3.1), which is expressive

enough for the needs of most hardware verification problems, and thus is used

almost exclusively in this area.

LTL

The logic LTL (Linear Temporal Logic) is obtained by restricting the set of CTL⋆ for-

mulas to those of the form Aφ, where φ does not contain A or E. It cannot express

e.g. the reset property (see above). On the other hand, the property A(FG Leader),

which states that eventually the proposition Leader will hold forever, can be ex-

pressed in LTL but not CTL. Although the model checking problem for LTL is

NP-hard [32], LTL model checking can be performed on-the-fly using an automata-

theoretic approach (see Section 2.3.2) which can be very efficient in practice. LTL is

applied almost exclusively in software verification.

Figure 2.4 illustrates the relationship between CTL, LTL and CTL⋆. Ex-

ample properties (adapted from [32]) in CTL ∩ LTL, CTL \ LTL, LTL \ CTL and

CTL⋆ \ (CTL ∪ LTL) are shown. For a debate on the relative benefits of CTL vs. LTL

see [92].
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A(FG p)AG(EF p)

CTL LTL

AG p

AG(EF p) ∨ A(FG p)

CTL∗

Figure 2.4: Relationship between the temporal logic CTL⋆ and its sub-logics CTL and
LTL, with example properties.

2.2.2 µ-calculus

It is worth noting that properties of transition systems can also be expressed in the

propositional µ-calculus [111]. This powerful language is obtained by extending

Hennessy-Milner logic (a simple modal logic) [79] with fixpoint operators. The µ-

calculus is of interest to researchers in formal verification as many temporal logics

(e.g. CTL⋆) can be encoded into it.

Although symmetry reduction techniques have been shown to be compati-

ble with µ-calculus model checking [55], we restrict our attention to CTL⋆ and its

sub-logics, which are expressive enough to describe most properties of interest, and

are supported by widely used model checkers such as SPIN and SMV.

2.3 Model Checking Algorithms

We now describe standard explicit-state model checking algorithms for CTL and

LTL, and indicate how they can be combined for CTL⋆ model checking.

2.3.1 CTL model checking

The model checking algorithm for CTL [28, 145] works by successively marking

states which satisfy sub-formulas of the formula to be checked, starting with propo-

sitional sub-formulas which are trivial to check. The particular form of the algo-

rithm used depends on the formula. For illustration, we give here an example of

how the algorithm proceeds to check formula φ, where φ is A(φ1Uφ2).

For a state s, s |= φ if and only if either s satisfies φ2 or s has at least one suc-

cessor, s satisfies φ1 and all successors of s satisfy φ. Initially all states are marked to

indicate whether they satisfy φ1 and/or φ2. States which satisfy φ2 can immediately

be marked as satisfying φ. Each state is also marked with a number (nb say), denot-

ing how many successors have yet to be marked as satisfying φ. Initially for each

state s, nb is set to 0 if s |= φ, or to the number of successors of s otherwise. In the

latter case, each time a successor of s is marked as satisfying φ, nb is decremented
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by one. When nb = 0 for s, clearly s |= φ. When no states can be remarked, the

algorithm terminates. If, at this point, all initial states are marked as satisfying φ,

then M |= φ.

The algorithm for determining whether a CTL formula φ holds in a state s of

M is linear in the size of the formula and the Kripke structure – the complexity is

O(|φ| · (|S| + |R|)), where |φ| is the length of φ [28]. An extension of the algorithm

which only considers fair computations (see Section 3.6.2) is presented in [28].

2.3.2 Automata-theoretic LTL model checking

The model checking problem for LTL can be restated as: “given M and φ, does there

exist a path of M that does not satisfy φ?” One approach to LTL model checking is

the tableau approach described in [134]. However, we concentrate here on the more

efficient automata-theoretic approach [119, 176].

Definition 2 A finite state automaton (FSA) A is a tuple A = (S, s0, L, T, F) where:

1. S is a non-empty, finite set of states

2. s0 ∈ S is an initial state

3. L is a finite set of labels

4. T ⊆ S × L × S is a set of transitions

5. F ⊆ S is a set of final states.

A run of A is an ordered, possibly infinite, sequence of transitions

(s0, l0, s1), (s1, l1, s2), . . .

where, for all i ≥ 0, si ∈ S, li ∈ L and, (si, li, si+1) ∈ T. An accepting run of A is a

finite run in which the final transition (sn−1, ln−1, sn) has the property that sn ∈ F.

In order to reason about infinite runs of an automaton, alternative notions

of acceptance, e.g. Büchi acceptance, are required. We say that an infinite run (of

an FSA) is an accepting ω-run (i.e. it satisfies Büchi acceptance) if and only if some

state in F is visited infinitely often in the run. A Büchi automaton is an FSA defined

over infinite runs (together with the associated notion of Büchi acceptance).

Every LTL formula can be represented as a Büchi automaton (see for exam-

ple [177], and references therein). In order to verify an LTL property Aφ, a model

checker must show that all paths of a model M satisfy φ (alternatively, find a

counter-example, namely a path which does not satisfy φ). To do this, an automaton

A representing the reachable states of M is constructed, together with an automa-

ton B¬φ which accepts all paths for which ¬φ holds. The asynchronous product of

the two automata, A′ is constructed. (In practice A′ is usually constructed implic-

itly, by letting A and B¬φ take alternate steps). Any accepting run of A′ signifies

an error. If there are no accepting runs, M |= φ. Generally to prove LTL properties,
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a depth-first search is used. As the search progresses, all states visited are stored

(in a reduced form) in a hash array (or heap), and states along the current path are

pushed on to the stack.

If the property φ to be verified is a safety property, say φ = AG ψ, where

ψ does not contain the until operator U, then a depth-first search of A′ is used. If

a state is encountered at which ψ is false, then φ is false and the current path (the

current contents of the stack) provides a counter-example. If, on the other hand,

φ is a liveness property, then determining the truth, or otherwise, of φ relies on

the ability to detect the presence of infinite accepting runs in A′. This is achieved

either by using the classic approach of Tarjan [172] in which the strongly connected

components are constructed and analysed separately for acceptance runs, or via a

nested depth-first search [35]. A nested depth-first search is more efficient than the

classic approach in that it is not necessary to produce all acceptance runs, just a

single acceptance cycle (if one exists). Suppose, for example φ is A(GF p), for some

proposition p. From any state s reached during an initial search at which ¬p holds,

a second search is initiated to check for paths leading back to s, during which p

remains false. If no such path exists, the original search resumes from s.

The complexity of LTL model checking is exponential in the length of the for-

mula to be checked: O((|S|+ |R|) · 2O(|φ|)). This is because the worst case automa-

ton generated from an LTL formula φ may have 2|φ| states. Although in the worst

case this means that LTL model checking is much harder than CTL model checking,

in most practical cases there is little performance difference [92, Appendix B].

2.3.3 Model checking for CTL⋆

Model checking for CTL⋆ was first introduced in [28]. A method for checking CTL⋆

properties [54] involves the use of an LTL model checker on the sub-formulas of

the property to be checked. The complexity of CTL⋆ model checking is the same

as for LTL model checking. However, due to the automata-theoretic approach for

LTL model checking and the efficient CTL model checking algorithm, most model

checkers are used to verify either CTL or LTL properties, but not both.

2.4 Promela and SPIN

Clearly it would be impractical to model complex concurrent systems directly as

Kripke structures. In practice, a system is described using a high-level specifica-

tion formalism which has Kripke structure semantics. A model checking tool takes

as input a specification of a concurrent system, together with a property in some

temporal logic. Using algorithms such as those outlined in Section 2.3, together

with appropriate state-space reduction techniques (see Section 2.6), the tool checks
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whether or not the associated model satisfies the property, providing a counter-

example if the result is negative. Certain properties (such as absence of deadlock,

or basic safety properties which can be expressed using specification-level asser-

tions) can be checked without a temporal property.

The model checker SPIN (simple Promela interpreter) allows LTL reasoning

about specifications written in Promela (process meta language). SPIN has been

widely used in industry and academia for reasoning about communications pro-

tocols. In this section we give an overview of Promela and SPIN, which are used for

implementation and examples throughout Chapters 4–11. For an excellent Promela

language reference, see [65]. Full details of SPIN and Promela can be found in the

SPIN reference manual [92]. In Section 2.5 we briefly describe a selection of other

model checking tools.

2.4.1 Promela

Promela is an imperative style specification language geared towards the descrip-

tion of network protocols. In general, a Promela specification consists of a series

of global variables, channel declarations and process type (proctype) declarations,

together with an initialisation process. Desired logical properties of a specification

are either presented using assertions embedded in the body of a proctype, or via a

never claim – a special additional process which can be used for the verification of

LTL properties.2

Each proctype in a Promela specification can be viewed as a finite automa-

ton (see Section 2.3.2), and the model associated with this specification is the asyn-

chronous product of the automata for all proctype instantiations. This global au-

tomaton can be viewed as a Kripke structure, so we talk about the Kripke structure,

rather than the automaton, associated with a Promela specification.

Variables and channels

Promela includes the following primitive data types: bit, byte, short and int (numeric

types); pid (a type for storing process identifier values), and bool (for boolean val-

ues). Names for messages in a protocol can be defined using a single enumeration,

called mtype. For example, the declaration:

mtype = {request,ack,grant,deny }

defines four distinct message names for use in a protocol. User-defined record types

can be constructed using the typedef keyword. The declaration

typedef message { pid sender; pid receiver; mtype body;

bit encrypted }

defines a record type, message, with four fields: sender and receiver (which have type

pid), body (an enumeration), and encrypted (a bit). Single-dimensional arrays can be

2. Temporal properties can also be expressed using progress and accept labels in the body of a proc-
type. We do not discuss these here.
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declared using C-like syntax. For example:

message A[5]

defines an array of length five, with element type message . Two-dimensional ar-

rays can be declared indirectly using an array whose elements are instances of a

record type which includes an array type as one of its fields.

To facilitate the specification of protocols, Promela includes a chan data

type to describe both synchronous and buffered channels. A channel declaration

can have one of three forms. A declaration chan 〈name〉 = [ x] of {〈type〉1,

〈type〉2,..., 〈type〉k} (x ≥ 0, k > 0) defines a new channel (referred to by 〈name〉).

Each message to be sent on this channel must be a tuple of values, where the

value at position i has type 〈type〉i (1 ≤ i ≤ k). We refer to the elements of

this tuple as message fields. If x > 0 then the declaration defines a buffered, first-

in first-out channel of length x. If x = 0 then communication on the channel

is synchronous. The component of the channel declaration of the form [ x] of

{〈type〉1, 〈type〉2,..., 〈type〉k} is called a channel initialiser. A channel declara-

tion chan 〈name〉1 = 〈name〉2, on the other hand, does not define a new channel.

Rather it defines a new channel reference, 〈name〉1, which refers to the channel re-

ferred to by 〈name〉2 (the name associated with a previous channel declaration).

Finally, a declaration chan 〈name〉 defines a channel reference which is initially

null. A useful feature of Promela is that, like the π-calculus [159], it supports the

declaration of first-class channels: the type chan may be given as a message field

type in a channel initialiser, so that channel references can be passed on the channel.

This allows for specifications with dynamic communication structures.

We say that a channel variable is globally instantiated if it is declared in global

scope (outwith any proctype definition), and has a channel initialiser.

A (non-channel) global variable declaration may be prefixed by the hidden

keyword. This indicates to SPIN that the variable is a “scratch” variable, used only

for intermediate computation within atomic or d step blocks (see below). Ac-

cordingly, to save memory, SPIN does not include the values of hidden variables in

the data structure used to represent a state of the model associated with a specifi-

cation. It is the responsibility of the user to ensure that hidden variables are used

correctly; SPIN cannot check this automatically. It is particularly convenient to de-

clare global constant data structures (e.g. fixed lookup tables) as hidden , so that

they are not duplicated in every state of the global state-space.

Processes and statements

A Promela proctype is a parameterised process definition. A proctype consists of a

name, an optional list of parameters and local variable declarations, and an ordered

list of statements. Each proctype includes a built-in, read-only variable called pid ,

which records the identifier of a process (a non-negative integer). In addition, each

proctype includes an implicit program counter variable, which stores the current
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position of execution within the proctype body. This variable cannot be explicitly

referred to. However, particular positions in the proctype body can be marked us-

ing labels, which can then be used for control flow via goto statements (as in the

C language).

A specification usually includes a designated init process which is auto-

matically instantiated at the start of verification, and which may instantiate further

processes via run statements.3 A run statement consists of a proctype name, and

a list of actual parameters for the proctype. Execution of a run statement causes

an instance of the given proctype to be added to the pool of running processes.

The init process is assigned pid value 0 by SPIN, and processes identifiers are

thereafter assigned in order of instantiation.

The simple statements in a proctype fall into three categories: expressions,

updates, and communication statements. An expression is a boolean expression over

local and global variables, using the standard equality operators == and != , re-

lational operators <, <=, > and >=, and logical operators &&, || and ! . Boolean

expressions may also test the state of a buffered channel c using the len opera-

tor (which returns the length of c); the operators full , empty , nfull and nempty

which determine whether c is full, empty, not full or not empty respectively,4, or via

a channel poll expression (see [92] for details). Upon reaching an expression state-

ment, a process may not continue execution until the expression evaluates to true.

When this is the case, execution of the statement has no side-effects. The Promela

keywork skip can be used in place of the expression statement true . An update

is a statement of the form 〈variable〉=〈expr〉. Such a statement is always executable

(as long as the expression does not involve division by zero or an out-of-bounds

array access), and updates the value of the given variable with the result of the

expression.

A communication statement involves sending on or receiving from a channel.

A send statement has the form 〈chan〉! 〈expressions〉, where 〈chan〉 is a channel vari-

able and 〈expressions〉 is a comma-separated list of expressions. The type of each

expression must match the type of the corresponding message field of the chan-

nel to which the variable refers. A statement of this form is executable either if the

channel is buffered and not full, or if the channel is synchronous and there is an-

other process ready to receive on the channel. Sending on a buffered channel has

the effect of adding a message to the buffer, and sending on a synchronous channel

causes the list of expression values to be written to a corresponding list of variables

offered by the receiving process. A receive statement has the form 〈chan〉?〈variables〉,

where 〈chan〉 is as before, and 〈variables〉 is a comma-separated list of distinct vari-

ables. A receive statement is executable either if the channel is buffered and not

3. Processes may also be instantiated using the active keyword – see [92] for details.
4. The provision of both full and nfull (similarly empty and nempty ) is necessary since, for
reasons described in [92], it is illegal to write !full( c) .
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empty, or if the channel is synchronous and there is another process ready to send

a message on the channel. Receiving on a buffered channel causes the given list of

variables to be assigned to the associated field values of the next message on the

buffer, which is also removed from the buffer. Receiving on a synchronous channel

causes the list of variables to be overwritten by the (evaluated) list of expressions

offered by the associated sender process.

Our description of communication statements has not covered various fea-

tures, including: non-destructive channel reading; sorted-send and random-receive

operations; the eval operator, and the built-in, write-only ‘ ’ variable. These fea-

tures are fully documented in the reference manual [92].

Control flow

The most basic control flow operator in Promela is ‘; ’, which denotes sequence (as

in most imperative languages). Following languages such as Pascal, ‘; ’ is intended

as a statement separator rather than a statement terminator, so strictly should not ap-

pear at the end of a list of statements. However, the SPIN implementation relaxes

this condition, and a terminating semi-colon is optional. Any occurrence of ‘; ’ can

be equivalently replaced with the alternative separator ‘-> ’. However, ‘-> ’ is usu-

ally used to express a compound statement of the form guard -> update.

To describe a system at an appropriate level of abstraction it is often conve-

nient to specify that a particular sequence of statements should be executed as a

single update. This can achieved using a d step (deterministic step) or atomic

block. A d step block consists of one or more non-blocking, deterministic state-

ments to be executed as a single transition. Examples of blocking statements in-

clude channel operations, expression statements, and run statements (which may

block due to an upper limit of 256 running processes imposed by SPIN). In addition,

it is not legal for a goto or break statement (described below) to potentially cause

a jump out of a d step block. An atomic block is similar, but it is permissible

for statements within an atomic block to involve non-deterministic choice, poten-

tially block execution of the process, or cause a jump out of the block. The use of

d step over atomic , when applicable, results in more efficient use of memory

during verification.

Repetitive choice can be specified using a compound statement of the form

do 〈options〉 od . The 〈options〉 part of this construct is a list of Promela fragments,

separated by the :: token. A process executes a do..od statement by repeatedly

executing one of the options, if any are executable. A break or goto statement

may be used to jump out of a do..od loop. Non-repetitive choice can be specified

similarly using an if..fi construct. Examples of do..od and if..fi are pro-

vided in Figure 2.5. The if..fi example shows that the guards which determine

executability of each option need not be mutually exclusive: if the guard (x==4)

evaluates to true then either of the statement sequences which start with this guard
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if
:: link!5 -> ... do
:: (x==4) -> goto finish :: (counter<N) -> ...
:: (x==4) -> ... :: (counter==N) -> break
:: else -> skip od

fi;
...

finish:

Figure 2.5: Condition, repetition and goto statements in Promela.

mtype = {N,T,C}
mtype st[6]=N

proctype user() {
do

:: d_step { st[_pid]==N -> st[_pid]=T }
:: d_step { st[_pid]==T &&

(st[1]!=C && st[2]!=C && st[3]!=C && st[4]!=C && st[5]!=C)
-> st[_pid]=C

}
:: d_step { st[_pid]==C -> st[_pid]=N }

od
}

init {
atomic {

run user();
run user();
run user();
run user();
run user();

}
}

Figure 2.6: Promela specification of mutual exclusion with 5 processes.

can be executed. The else keyword can be used to assert that a particular option

should only be chosen if no other options are executable. The if..fi example

also illustrates the way flow of control can be organised using traditional goto

statements and labels.

Example

We illustrate some of the features of Promela using the simple specification shown

in Figure 2.6, which is a five-process version of the mutual exclusion protocol de-

scribed in Section 2.2. The specification consists of: an enumerated type definition

for the symbolic constants N, T and C; a global array st which is used to hold the

state of each process; a user proctype, and an init process which instantiates a

number of user processes.

The body of the user proctype is a single do..od statement. Each op-

tion in this loop is a d step block which is in turn comprised of a guard (e.g.

st[ pid]==N ) followed by an update (e.g. st[ pid]=T ). Each block is exe-

cutable at a given state if its associated guard evaluates to true. A user process

proceeds by repeatedly executing one of the d step blocks, if any are executable.

In this example, the options within the do..od statement are mutually exclusive.
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never {
T0_init:

if
:: (!(st[1]==C) && st[1]==T) -> goto accept_S4
:: (1) -> goto T0_init
fi;

accept_S4:
if
:: (!(st[1]==C)) -> goto accept_S4
fi;

}

Figure 2.7: Example never claim for the LTL property AG(T1 ⇒ (FC1)).

¬C1true

¬C1 ∧ T1
S0 S1

Figure 2.8: Büchi automaton representing the formula ¬AG(T1 ⇒ (FC1)).

The init process instantiates five user processes via a sequence of run state-

ments. The run statements are contained within an atomic block, to indicate that

they should be executed as an indivisible block.

Note that a Promela array with length l > 0 is indexed using integers in

the range 0 . . . (l − 1). However, in the mutual exclusion example, the five user pro-

cesses have pid variables with values in the range 1–5. Therefore the array st is

declared with length 6, and position 0 of the array is unused.

Figure 2.6 does not illustrate the declaration and use of channels. Appen-

dices A.2 and A.3 contain Promela specifications which include buffered and syn-

chronous channel declarations respectively.

2.4.2 Reasoning about Promela specifications

As mentioned above, simple logical properties of a Promela specification can be

expressed using assert statements embedded in the body of proctypes, and more

complex LTL properties can be expressed using a never claim process. The never

claim corresponding to an LTL property φ is a fragment of Promela code equiv-

alent to a Büchi automaton representing the formula ¬φ (see Section 2.3.2). Fig-

ure 2.7 shows the never claim used to verify the progress property (Property 2,

Section 2.2.1), for the simple mutual exclusion example. The propositions T1 and

C1 in the property are represented by propositions st[1]==T and st[1]==C re-

spectively in the never claim. Figure 2.8 shows the associated Büchi automaton

for ¬AG(T1 ⇒ (FC1)). States s0 and s1 of the automaton correspond to the labels

T0 init and accept S4 of Figure 2.7 respectively. A never claim can include an
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Figure 2.9: The SPIN verification process.

expression of the form name[ i]@label to refer that the program counter of process i,

an instantiation of proctype name, is at the position of the specified label.

Given a Promela specification (optionally including an associated never

claim), SPIN generates a C program, pan.c . This program is called the verifier gen-

erated by SPIN. It includes data structures to represent states of the model asso-

ciated with the input specification, and search algorithms for exploration of the

state-space. The LTL model checking algorithm is based on the approach described

in Section 2.3.2. Routines to implement various state-space reduction techniques

(some of which are discussed in Section 2.6) are also incorporated in pan.c . As well

as checking properties of a specification expressed using assertions and a never

claim, SPIN can be used to search for deadlock states (from which no transitions orig-

inate).

In order to obtain a verification result, pan.c must be compiled and ex-

ecuted. Figure 2.9 illustrates the process of LTL property verification using SPIN.

Note that a conclusive verification result will only be obtained if memory permits.

When checking a large state-space, the verifier may terminate having exhausted

available memory without finding an error.

2.4.3 Features of SPIN

A variety of built-in state-space reduction techniques are provided by SPIN. The

model checker also supports simulation of Promela specifications though a user

interface.

SPIN uses on-the-fly verification and partial-order reduction techniques (dis-

cussed in Section 2.6.3) to reduce the number of states which need to be explored

during model checking. Additionally, the tool provides data-flow optimisation to

identify points in the specification where variables become dead, and techniques for

statement merging, both of which help reduce verification complexity.

To reduce the per-state storage requirement, SPIN provides three state com-

pression options (see Section 2.6.2), and automatically eliminates write-only vari-

ables from the state-vector.

Support for sophisticated simulation of Promela specifications is provided

via the XSPIN user interface. Execution of a specification may be simulated ran-

domly or interactively, or may be guided by a counter-example generated by a veri-

fication attempt. The interface allows a user to step through a simulation run, track-
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Figure 2.10: Simulation of a Promela specification using message sequence charts.

ing the values of global and local variables and channels. In interactive mode, non-

deterministic choices are resolved by the user. Channel-based communication be-

tween processes may also be graphically illustrated using message sequence charts

(MSCs). An MSC represents each process by a vertical time-line with a top box in-

dicating the name of the process. Messages between processes are represented by

diagonal arrows between time-lines, and indicate a partially ordered set of com-

munication events. MSCs support visualisation of complex communications proto-

cols, and can be a useful aid when understanding counter-examples produced by a

model checker [138].

Figure 2.10 shows a screen-shot of the XSPIN interface. A Promela specifica-

tion is loaded into the top-left pane. The bottom-left pane shows the status of the

current simulation run, and the right-hand pane shows an MSC for the simulation.

A user can also choose to display the current values of global and local variables in

a separate window.

2.5 Other model checkers

We broadly classify model checkers into three categories: standard checkers, which

check logical properties of high level specifications; real time/probabilistic checkers,

which allow performance evaluation, and direct model checkers, which aim to ver-

ify source code.
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2.5.1 Standard model checkers

The explicit-state model checker Murφ [40] uses a language based on a collection

of guarded commands (condition/action rules), which are executed repeatedly in

an infinite loop. The imperative-style language incorporates new data types, in-

cluding multiset (for describing a bounded set of values whose order is irrelevant

to the behaviour of the description) and scalarset (for describing a subrange whose

elements can be freely permuted; see Section 3.3.2). The verifier performs a depth-

or breadth-first search over the state-space to check for absence of deadlock, or sat-

isfaction of safety properties expressed using assert statements, or invariants. More

complex temporal properties cannot be verified.

The tool COSPAN [113] uses an automata-theoretic approach to model

checking. The system to be verified is modelled as a collection of coordinating pro-

cesses described in the S/R (selection/resolution) modelling language. The verifier

supports both on-the-fly explicit-state search and symbolic search using binary de-

cision diagrams (BDDs – see Section 2.6.2).

The most successful BDD-based symbolic model checker (see Section 2.6.2)

is the CTL model checker SMV [128]. Systems are described using the SMV lan-

guage, which has a precise semantics relating input specifications to their expres-

sions as boolean formulas. SMV supports synchronous and asynchronous commu-

nication, and provides for modular descriptions of re-usable components. NuSMV

[25] is a re-implemented and extended version of SMV which includes a textual

interaction shell and graphical user interface, as well as techniques for model par-

titioning and LTL model checking.

An enhanced version of SMV, RuleBase [8] is an industry-oriented tool for

the verification of hardware designs. In an effort to make the specification of CTL

properties easier for the non-expert, RuleBase supports its own language, Sugar, as

well as standard hardware description languages such as VHDL and Verilog.

In Sections 3.9.1 and 3.9.2 we discuss the implementation of symmetry re-

duction techniques in standard model checking tools.

2.5.2 Real time and probabilistic model checkers

When modelling certain critical systems, it is essential to include some notion of

time. If time is considered to increase in discrete steps (discrete-time), then exist-

ing model checkers can be readily extended [3]. The most widely used dense real-

time model checker (in which time is viewed as increasing continuously) is UPPAAL

[116]. Models are expressed as timed automata and properties defined in UPPAAL

logic, a subset of timed computation tree logic (TCTL). UPPAAL uses a combination

of on-the-fly and symbolic techniques so as to reduce the verification problem to

that of manipulating and solving constraints. Another real-time model checker is

KRONOS [186] which is used to analyse real-time systems modelled in several timed
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process description formalisms. A real-time extension to COSPAN [4] allows real-

time constraints to be expressed by associating lower and upper bounds on the

time spent by a process in a local state.

The probabilistic symbolic model checker PRISM [83, 114, 153] allows rea-

soning about models of probabilistic systems. The tool supports discrete- and

continuous-time Markov chains, as well as Markov decision processes, which al-

low both probabilistic and non-deterministic behaviour. Properties are written in

terms of probabilistic computation tree logic (PCTL), or continuous stochastic logic

(CSL). Models can also be specified using PEPA (performance evaluation process

algebra) [82] and converted to PRISM.

We discuss symmetry reduction implementations for real time and proba-

bilistic model checking tools in Section 3.9.3.

2.5.3 Direct model checking tools

Finite state model checking traditionally requires the manual construction of a

model, via a specification language, which is then converted into a Kripke struc-

ture for model checking. Recently there has been much interest in applying

model checking directly to program source code written in languages such as Java

[161] and C [108]. Early approaches to model checking Java software, e.g. Java

PathFinder [77], involved the direct translation of Java code into Promela, and sub-

sequent verification using SPIN. Thus these approaches were restricted to programs

containing features supported by both Java and Promela (this is not the case for

floating point numbers, for example).

The BANDERA tool [34] avoids direct translation by instead extracting an ab-

stracted finite-state model from Java source code. This model is then translated into

a suitable modelling language (Promela or SMV) and model checked accordingly. A

second-generation Java PathFinder tool [179] makes extensive use of the BANDERA

abstraction techniques, and works directly with Java bytecode.

The dSPIN tool [38] is an extension of SPIN which has been designed for mod-

elling and verifying object-oriented software (in particular Java programs). In addi-

tion to the usual features available with SPIN, the dSPIN tool allows for the dynamic

creation of heap objects.

The Bogor model checking framework [148] is used to check sequential and

concurrent Java programs. Behavioural aspects of a program to be verified are first

specified in JML (Java modelling language), which, together with the original Java

program, is then translated into a lower-level specification for verification. Bogor

exploits the canonical heap representation of dSPIN and is implemented as a plug-in

for the Eclipse [33] integrated development environment.

Various tools address the problem of direct model checking of C code. For

example, BLAST (Berkeley lazy abstraction software verification tool) [80] uses

counter-example guided abstraction refinement (see Section 2.6.3) for proving the
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correctness of software. Microsoft’s SDV (static driver verifier) tool uses the SLAM

[5] analysis engine to analyse the source code of Windows device drivers. SDV in-

volves a similar abstraction, verification and refinement loop to that of BLAST.

The VeriSoft model checker [68] is used to verify concurrent processes ex-

ecuting C code. Systematic search of the state-space allows the user to check for

deadlock, assertion violations and livelocks. A stateless search is used, whereby only

states along the current path are stored, together with as many states as possible in

the remaining available memory. As a result it is theoretically possible to verify

systems of any size. However, the same path may be explored many times, and so

search can be very slow.

Recent versions of the SPIN tool allow C code to be embedded into Promela

specifications. This feature allows Promela specifications to be automatically ex-

tracted from C code [91].

Symmetry reduction techniques have been used in various direct model

checkers, as we discuss in Section 3.9.4.

2.6 Tackling the State-space Explosion Problem

As noted in Chapter 1, the major problem which limits the application of model

checking is that of state-space explosion – as the number of components in a specifi-

cation of a concurrent system increases, the associated model suffers combinatorial

growth, quickly becoming too large to feasibly check. Since its conception, much re-

search in model checking has concentrated on combatting the state-space explosion

problem, and a variety of techniques have been proposed.

We identify three approaches to tackling the problem. The first approach

involves (usually manual) conversion of a specification into a more efficient speci-

fication which captures the same essential behaviour, but has a smaller associated

model. Techniques such as design abstraction and source code or communication

structure optimisation follow this approach, and are discussed in Section 2.6.1. The

second approach relies on a compact representation of states. The most success-

ful technique of this kind is symbolic model checking; while state compression and

supertrace verification have also proved useful in practice. These are discussed in

Section 2.6.2. The final approach, discussed in Section 2.6.3, involves reducing the

number of states which must be checked to verify a property, without specification-

level modification. Techniques include on-the-fly model checking, partial-order re-

duction, symmetry reduction, abstraction and compositional reasoning.

2.6.1 Specification-level abstraction

The following reduction techniques are applied at the source code level before veri-

fication. They can therefore be used in conjunction with other state-space reduction

techniques applied during verification.
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Design abstraction

As discussed in Section 2.1 and illustrated by Figure 2.2, traditional model checking

involves manual construction of an abstract high level specification which captures

the behaviour of the system under verification. The size of the state-space asso-

ciated with a specification depends crucially on the level of this abstraction. For

example, a data-oriented abstraction of a communications protocol which distin-

guishes the contents of individual packets will give rise to a much larger state-

space than a control-oriented abstraction where packet contents are not specified.

Thus good design abstraction is one of the key techniques for developing specifica-

tions which have tractable associated state-spaces. According to Holzmann [92]:

Choosing the right level of abstraction can mean the difference be-

tween a tractable model with provable properties and an intractable

model that is only amenable to simulation, testing, or manual review.

An ideal design abstraction results in the construction of the smallest suf-

ficient (associated) model which still allows verification to be performed [92]. De-

sign abstraction is usually a manual process. However, techniques based on pro-

gram slicing [174] can be used to automatically remove fragments of a specification

which cannot affect the temporal property to be verified [92]. This process is ar-

guably a form of design abstraction.

Source code optimisation

Common modelling pitfalls can lead to unnecessary state-space explosion. For ex-

ample, neglecting to reset a counter variable at the end of a loop can result in many

states which are identical except for the counter value. Assuming that the counter

has no further use after the loop and will be reset if the loop is executed again, this

duplication is redundant and could easily be avoided.

When working with large models it may also be possible to reduce the size

of the state-vector (the portion of memory required to represent a state) through

careful use of advanced specification language features. For detailed source code

optimisation strategies for Promela, see [92, 154, 155]. Certain modelling pitfalls

can be compensated for by using automatic data-flow optimisation techniques (tra-

ditionally used by optimising compilers).

The distinction between design abstraction and source code optimisation is

that changing the level of design abstraction may allow the elimination of data

(variables) from a specification. Source code optimisation on the other hand in-

volves appropriate management of data so that, at a given level of abstraction, the

state-space is minimised.
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Communication structure optimisation

The choice of communication structure for a specification can significantly affect

the size of the state-space of the underlying model, when buffered channels are

used. For example, modelling communication between two processes using two

dedicated channels, rather than a single shared channel, increases the number of

messages which may potentially be in transit so may result in a larger state-space.

While a complex communication structure may be necessary to faithfully model a

given system, the truth of a particular temporal property may not be affected by the

choice of communication structure. In some cases it is possible to check a property

over a smaller model with a simpler communication structure if it can be shown that

the behaviour of the original model relevant to the property can be emulated by the

reduced model [157, 158]. A similar approach is suggested in [89].

2.6.2 Compact state-space representation

Symbolic model checking

Symbolic model checking [18] is a method by which states and transitions of a

model are represented symbolically (as opposed to explicitly) in order to save space.

A particular symbolic approach, BDD-based encoding, has proved especially suc-

cessful for the verification of CTL properties for very large systems [128].

A binary decision tree is a structure that is used to represent a boolean for-

mula. Any assignment of truth values to the variables of the formula corresponds

to a path down the tree from the root node to a terminal node, which is labelled

either true or false. The value of this label determines the value of the function for

this assignment of variables. A binary decision diagram (BDD) is obtained from a

binary decision tree by merging isomorphic subtrees and identical terminals. Any

set of states can be encoded as a BDD. Indeed, if S is a set of states encoded as a

set of boolean tuples (on a set X), then for any fixed ordering of the elements of X,

there is a unique BDD representing S [17].

An ordered binary decision diagram (OBDD) is a BDD which has a total or-

dering applied to the variables labelling the vertices of the diagram. The size of

the OBDD can vary greatly depending on the ordering used. Heuristics have been

developed to find efficient orderings for a given formula (when such an ordering

exists). Determining whether a given ordering is more efficient than another order-

ing is NP-complete [11].

For a Kripke structure, both the set of states and the set of transitions can

be represented by BDDs. All possible states are encoded, as opposed to all reach-

able states. As the superfluous states are unreachable, they do not affect the result

of model checking. Indeed, their presence may lead to a simplification of certain

BDDs. In addition, it is possible to first compute the reachable states, R say, and

then restrict the CTL model checking algorithm to R.
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State compression

The SPIN model checker provides two lossless compression techniques – they guar-

antee exhaustive search if memory permits. These techniques reduce the amount of

memory required to store each state of a model, and thus allow larger state-spaces

to be explored.

The first compression technique is known as collapse compression [86]. This

method works by storing separate state components for each process in the system,

and a separate component for the global data objects of the system (channels and

global variables). A global state is then composed from these state components

using a small, unique index for each.

The collapse method of compression can provide significant reduction in

state-space storage requirements, and is fast. However, for models with large state-

spaces, SPIN provides a heavy-weight compression scheme using a minimised au-

tomaton representation of the state-space, somewhat similar to a BDD [90]. As the

state-space of a model is searched, the model checker builds an automaton which

recognises states which have been previously seen. Thus on reaching a state, if the

state is recognised by the automaton then the state has already been encountered,

and search can backtrack. Otherwise the automaton is modified to recognise this

new state in the future. The automaton is typically much smaller than the full state-

space of the model, and in some cases memory requirements of the verifier are

exponentially smaller than for standard search. However, the minimised automa-

ton approach is considerably slower than search without compression, or search

using collapse compression.

For maximum lossless compression the two state compression techniques

can be combined.

Supertrace verification

The compression techniques discussed above are both lossless, that is they guaran-

tee exhaustive search if memory permits. In many applications of model checking,

finding errors is the main focus of verification rather than proving absence of errors.

For such applications SPIN provides a lossy compression technique called supertrace

verification [87] (also known as bitstate hashing). This technique is useful for explo-

ration of large state-spaces, but does not guarantee full state-space coverage, as we

discuss below.

During search (without the supertrace technique), SPIN uses a hash table to

store the state-space. When a state is encountered, a hash table lookup determines

whether the state has been seen before; if it has not then it is added to a linked-list of

states at its hash table slot. Supertrace verification is based on the observation that

if the number of hash table slots greatly exceeds the number of reachable states

then, assuming a good quality hash function, each state can be stored in a separate
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slot. In this case, each slot of the hash table could be represented by a single bit – if

a state is hashed to a slot in the table which is set to one then it can be assumed that

this state has been seen before. This method vastly reduces the memory required to

store states, and also leads to efficient hash table operations since linked-lists need

no longer be searched.

Although the probability of hash collision is low, when such collisions hap-

pen the model checking algorithm will erroneously assume that a state has been

visited before. Thus supertrace mode does not guarantee 100% coverage of the

state-space, but can often provide good coverage of a state-space much larger than

could be explored using standard search. A variant of supertrace mode, also imple-

mented in SPIN is the hash-compact method [184].

2.6.3 Reducing state-space size

Symmetry reduction

Symmetry reduction for model checking is the main topic of this thesis. In Chap-

ter 3 we provide a detailed summary of symmetry reduction theory, and a thorough

survey of existing techniques and tools.

On-the-fly model checking

It is not always necessary to build the entire state-space in order to determine

whether or not a specification satisfies a given property.

If the property to be checked is false, only part of the state-space needs to be

constructed, up to the point at which an error state (safety property) or a violating

cycle (liveness property) is discovered. However, if there are no errors, the entire

reachable part of the state-space must be constructed. This means that although

debugging can be performed relatively easily, property verification very quickly

becomes prohibitive.

On-the-fly methods are most suitable for explicit-state model checking al-

gorithms based depth-first search, and have been developed to check LTL, CTL

and CTL⋆ properties [10, 176, 178]. SPIN is an example of an on-the-fly LTL model

checker. Approaches for combining on-the-fly techniques with symbolic model

checking are restricted to the checking of safety properties [9].

Partial-order reduction

The explosion of states and transitions in a model results from the interleaving of

actions of distinct processes in all possible orders. In general, the consideration of

such interleavings is crucial: bugs in concurrent systems often arise due to unex-

pected ordering of actions. However, if a set of transitions are entirely independent

and are invisible with respect to the property being verified, the order in which they

are executed does not affect the overall behaviour of the system. (A transition is
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invisible with respect to a property φ if the truth of φ is unaffected by the transi-

tion.) Partial-order reduction [53, 67, 137] exploits this fact, and considers only one

representative ordering for any set of concurrently enabled, independent, invisible

transitions.

Partial-order reduction methods rely on determining a suitable subset of

transitions to be considered at every state. As a result, rather than exploring a struc-

ture M an equivalent (usually smaller) structure M′ is explored, with fewer transi-

tions and fewer states. The equivalence in this case is φ-stutter equivalence (where

φ is the property to be checked). If we regard states as being labelled with propo-

sitions (as discussed in Footnote 1, page 20) then for two paths π1 and π2, let π
φ
1

and π
φ
2 be the paths obtained from π1 and π2 by restricting the set of labels to the

propositions contained in φ. Then π
φ
1 and π

φ
2 are said to be φ-stutter equivalent if

they can both be reduced to a common path π by repeated application of the stut-

tering operator. (The stuttering operator replaces two successive occurrences of a

state s in a path by a single occurrence.)

Note that partial-order reduction can only be used to check properties which

are closed under stuttering. All LTL properties which to not use the next-time (X)

operator are closed under stuttering.

For some systems, where all actions are dependent on one another, partial-

order reduction cannot offer any improvement in verification space or time. In

many realistic cases however, partial-order reduction can be extremely effective.

For example, for some systems the growth of the state-space as the number of

processes increases is reduced from exponential to polynomial when partial-order

methods are used. In others the global state-space may increase with the growth of

a parameter whereas the size of the reduced state-space remains unchanged [66].

Data abstraction

In Section 2.6.1 we discussed the use of design abstraction for modelling a system

at an appropriate level of detail so that property verification is tractable. We now

discuss the more precise, formal notion of data abstraction. Data abstraction reduces

the number of states in a model by restricting the set of values which variables may

take. The resulting reduced Kripke structure M̂ is an abstraction of the original

structure M: every execution in M has a corresponding execution in M̂. This idea

has been formalised by various authors (e.g. [30, 36, 112]). We now summarise the

approach presented in [30].

Recall that a Kripke structure is defined over a set of variables V =

{v1, v2, . . . , vk}, and that Di denotes the domain of possible values for vi (1 ≤ i ≤ k).

Formally, for each 1 ≤ i ≤ k, let hi : Di → D̂i be a surjection. The surjection hi maps

values of variable vi onto an abstract domain D̂i. Let D̂ = D̂1 × D̂2 × · · · × D̂k. Then

h : D → D̂ defined by h((d1, d2, . . . , dk)) = (h1(d1), h2(d2), . . . , hk(dk)) is a surjec-

tion mapping a state s ∈ S (= D) to an abstract state ŝ ∈ D̂. This surjection can be
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Figure 2.11: Mutual exclusion model reduced via abstraction.

used to define a minimal abstract Kripke structure, each state of which is the image

of a set of concrete states under h.

Definition 3 M̂ is the abstract Kripke structure over D̂ given by:

• Ŝ = D̂

• Ŝ0 = {h(s) : s ∈ S0}

• R̂ = {(h(s), h(t)) : (s, t) ∈ R}.

The abstract Kripke structure M̂ may be significantly smaller than M. If φ is

a CTL⋆ formula over M̂ then a corresponding formula C(φ) can be interpreted over

M. The formula C(φ) is obtained by replacing every state sub-formula (vi = d̂i)

with the disjunction
∨
{(vi = di) : h(di) = d̂i}, and (vi 6= d̂i) with ¬C(vi = d̂i).

The sub-logic of CTL⋆ consisting of formulas which do not use the path

quantifier E is denoted ACTL⋆. Most temporal properties of interest in verification

problems can be expressed in ACTL⋆ (or even ACTL, the corresponding restriction

of CTL). The next theorem shows that certain ACTL⋆ properties of M can be proved

by checking M̂.

Theorem 1 Let φ be an ACTL⋆ formula over M̂. Then M̂ |= φ ⇒ M |= C(φ).

With certain additional conditions on h, this result can be extended to apply to

CTL⋆.

We illustrate the abstraction approach using the mutual exclusion example.

Recall from Section 2.2 that Di = {N, T, C} for i ∈ {1, 2}. Let D̂i = {N, C}, and

define hi(N) = N, hi(T) = N and hi(C) = C for i ∈ {1, 2}. This abstraction maps

both the neutral and trying regions onto a single neutral region. Figure 2.11 shows

the abstract Kripke structure M̂ corresponding to the Kripke structure of Figure 2.3

under this abstraction.

Let φ = AG(¬(C1 ∧ C2)) (φ is Property 1 of Section 2.2.1). Clearly φ ∈

ACTL⋆, and C(φ) = φ (since our abstraction does not affect the critical region).
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Thus φ can be checked over M̂. Note that M̂ satisfies the CTL⋆ formula ψ =

EG(N1 ∧ N2) – there is a path where the transition (N, N) → (N, N) is repeated

forever. This formula is not in ACTL⋆, so we cannot conclude that the formula

C(ψ) = EG((N1 ∨ T1) ∧ (N2 ∨ T2)) is satisfied by M (it is easy to check that it

is not).

Note that Theorem 1 does not state that we can disprove properties of M by

model checking M̂. Indeed, given a counter-example for a property φ in M̂, there

may be no corresponding counter-example for C(φ) in M. For example, M̂ 6|=

AF(C1 ∨ C2), which states that the critical section will eventually be reached by

one of the processes. Again this is shown via the path where (N, N) → (N, N) is

repeated forever. It is easy to check that there is no corresponding counter example

in M.

Abstraction techniques have been used in conjunction with symbolic model

checking to verify designs of industrial complexity. However, the user is required

to manually specify the abstraction functions. This requires significant insight into

the verification problem, compromising the automation of model checking.

Recently there has been progress towards automating the use of abstraction

as a state-space reduction technique. Counter-example guided abstraction refine-

ment (CEGAR) [29] is an iterative process where a reduced model is derived from

a high level specification using coarse (even arbitrary) abstraction functions. An

ACTL⋆ property φ is checked over this abstract model. If φ holds then the truth of

C(φ) for the unreduced model is established, otherwise a counter-example in the

abstract model is reported. An algorithm is used to check whether a corresponding

concrete counter-example exists in the original model. If so, then the falsity of C(φ)

has been established. Otherwise the counter-example is refuted, and information

obtained from this counter-example analysis used to refine the abstract model, re-

sulting in a larger (but still abstract) state-space which will not admit the spurious

counter-example. In practice, the refinement will prohibit a whole class of spurious

counter-examples. This process is repeated until a result is obtained, or the abstract

model cannot be refined any further without exceeding resources. The CEGAR pro-

cess is illustrated in Figure 2.12 (adapted from [163]). CEGAR is at the heart of the

SLAM and BLAST software model checkers [5, 80].

Compositional verification

A concurrent distributed system is usually comprised of a number of components

executing in parallel. It may be possible to verify that a property holds for a model

of the system by checking components of the system individually using an assume-

guarantee proof strategy [142]. With this verification strategy, the typical syntax of a

property is: 〈φ〉M〈ψ〉, where φ and ψ are temporal formulas. This property states

that if M is a model such that M |= φ then it must be the case that M |= ψ. The

parallel composition of components M1 and M2 can then be checked using the
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Figure 2.12: The CEGAR process.

〈true〉M1〈ψ〉 〈ψ〉M2〈φ〉

〈true〉M1 ‖ M2〈φ〉

Figure 2.13: Proof strategy for compositional verification.

inference rule of Figure 2.13 [32, 73].

Practical compositional verification involves first decomposing a system

into components M1,M2, . . . ,Mn (n > 0), and finding an environment assump-

tion Ai for each component Mi. Each environment assumption must capture

enough of the behaviour of M1,M2, . . . ,Mn so that proving Mi ‖ Ai |= φ for

each i is sufficient to show that M1 ‖ M2 ‖ · · · ‖ Mn |= φ. The challenge in au-

tomating these techniques is the derivation of adequate environment assumptions.

This can be achieved using methods for regular language learning [136].

Summary

Model checking is an automated technique which can be used to reason about tem-

poral properties of finite state concurrent systems by constructing a model repre-

senting all system states. One of the major problems associated with model check-

ing is state-space explosion. The main approaches to overcoming state-space ex-

plosion involve construction of an efficient high level specification (using design

abstraction and source code or communication structure optimisation), a reduction

in state representation size (e.g. symbolic representation and state compression),

or a reduction in the number of states or paths explored (e.g. symmetry reduction,

partial-order reduction and data abstraction).
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We have provided a formal definition of CTL⋆ model checking, outlined

basic model checking algorithms for CTL and LTL, and surveyed a selection of

model checking tools and state-space reduction techniques. In particular, we have

provided a detailed overview of the SPIN model checker and its input language,

Promela.



Chapter 3

Symmetry Reduction

Concurrent systems often contain many replicated components and, as a conse-

quence, model checking may involve making a redundant search over equivalent

areas of the state-space. For example, consider the Kripke structure shown in Fig-

ure 2.3, associated with the Promela mutual exclusion specification of Figure 2.6

(restricted to two processes). Though simple, this example clearly demonstrates the

existence of symmetry within a Kripke structure. In terms of the mutual exclusion

property AG(¬(C1 ∧ C2)) (Property 1), any pair of states (A, B) and (B, A), where

A and B belong to {N, T, C}, are equivalent (state (A, B) will satisfy the mutual ex-

clusion property if and only if (B, A) does). Most symmetry reduction techniques

exploit this type of symmetry by restricting state-space search to equivalence class

representatives, and often result in significant savings in memory and verification

time [14, 31, 55, 103].

The earliest use of symmetry reduction in automatic verification was in the

context of high-level (coloured) Petri nets [95] where reduction by equivalent mark-

ings was used to construct finite reachability trees. These ideas were later extended

for deadlock detection and the checking of liveness properties in place/transition

nets [170].

3.1 Group Theory

Symmetries of a Kripke structure (see Section 3.2) form a group, thus our descrip-

tion of symmetry reduction techniques in this chapter, and the symmetry reduction

techniques which we develop throughout the thesis, require some definitions and

results from group theory. For more details, see e.g. [22, 81, 150].

3.1.1 Groups, subgroups and homomorphisms

Definition 4 A group is a non-empty set G together with a binary operation ◦ :

G × G → G which satisfies:

• For all α, β, γ ∈ G, α ◦ (β ◦ γ) = (α ◦ β) ◦ γ
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• There is an element id ∈ G such that, for all α ∈ G, α = id ◦ α = α ◦ id. The

element id is called the identity of G

• For all α ∈ G there is an element β ∈ G such that α ◦ β = β ◦ α = id. The

element β is called the inverse of α, denoted α−1.

In practice, the binary operation ◦ is usually composition of mappings, so we omit

it, writing αβ for α ◦ β.

Let G be a group and let H ⊆ G. If αβ ∈ H for all α, β ∈ H (i.e. H is closed

under the binary operation) then H is also a group, and we say that H is a subgroup

of G, denoted H ≤ G. If H ⊂ G then H is a proper subgroup of G, denoted H < G.

Definition 5 Let X ⊆ G. Then 〈X〉 denotes the smallest subgroup of G which con-

tains X, and is called the subgroup generated by X. If α1, α2, . . . , αk ∈ G then we use

〈α1, α2, . . . , αk〉 to denote 〈{α1, α2, . . . , αk}〉.

For any group G, if X ⊆ G has the property that G = 〈X〉 then X is called

a set of generators for G. It can be shown that if G is a finite group, there exists a

generating set X for G with |X| ≤ log2 |G|. As a result, it is often convenient to

work with a small generating set for a large group.

Definition 6 Let H be a subgroup of G, and let α ∈ G. Then the set Hα = {βα : β ∈

H} is a (right) coset of H in G.

A similar definition can be given for left cosets of H in G. We will henceforth use

coset to mean right coset. It can be shown that the set of cosets of H in G is a partition

of G. A set of coset representatives for H in G is a subset of G which consists of exactly

one element from each coset of H in G.

Definition 7 Let α, β ∈ G. The element β−1αβ ∈ G is called the conjugate of α by β,

and is denoted αβ. Let H ≤ G, and suppose that for all α ∈ H and β ∈ G, αβ ∈ H

(i.e. H is closed under conjugation). Then H is a normal subgroup of G, and we

write H E G.

A mapping between two groups which preserves products of elements is

called a homomorphism:

Definition 8 Let (G1, ◦), (G2, ⋆) be groups. A homomorphism from G1 to G2 is a map-

ping θ : G1 → G2 which satisfies, for all α, β ∈ G1,

θ(α ◦ β) = θ(α) ⋆ θ(β).
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If θ is injective then θ is a monomorphism from G1 to G2. If θ is bijective then θ is

an isomorphism from G1 to G2, and G1 and G2 are said to be isomorphic, denoted

G1
∼= G2.

Isomorphic groups are algebraically indistinguishable, and in some sense

can be thought of as equal – they differ only in that their elements may be labelled

differently [81]. However, two isomorphic groups may have distinct actions on a

set (see Section 3.1.3), so for the purposes of this work it is important to regard

groups which are isomorphic but whose elements are not presented in the same

form, as distinct.

The following standard theorem shows that if there is a monomorphism

from a group G1 to a group G2 then G1 is isomorphic to a subgroup of G2:

Theorem 2 Let G1, G2 be groups and θ : G1 → G2 a monomorphism. Then G1
∼=

θ(G1) ≤ G2, where θ(G1) = {θ(α) : α ∈ G1}.

3.1.2 Permutation groups

Let X be a non-empty set. A permutation of X is a bijection α : X → X. The set

of all permutations of X forms a group under composition of mappings, denoted

Sym(X). Given a group H ≤ Sym(X), we use moved(H) to denote the subset of

X which is affected by H: moved(H) = {x ∈ X : α(x) 6= x for some x ∈ H}.

For α ∈ Sym(X) we use moved(α) to denote the set moved({x}). The degree of a

permutation group G is defined to be |moved(G)|, with the exception that the trivial

group {id} is said to have degree one (even though |moved({id})| = 0).

If X is finite then it can be shown that |Sym(X)| = |X|!, and an element of

Sym(X) can be conveniently expressed using disjoint cycle form. Let α ∈ Sym(X). If

α = id then we write id for α as usual. Otherwise, we can write α as a product of

cycles as follows:

α = (a1,1 a1,2 . . . a1,s1
)(a2,1 a2,2 . . . a2,s2) . . . (at,1 at,2 . . . at,st)

where t > 0, 2 ≤ si ≤ |X| (1 ≤ i ≤ t), ai,j ∈ X (1 ≤ i ≤ t, 1 ≤ j ≤ si), and the ai,j

are all distinct. In this form, for x ∈ X, if x = ai,j for some i and j then α(x) = ai,j′

where j′ = j + 1 if j < si and j′ = 1 if j = s1; otherwise α(x) = x.

Definition 9 Let X be a non-empty set, G ≤ Sym(X), x ∈ X, Y ⊆ X, and X a

partition of X.

• The stabiliser of x in G is the set stabG(x) = {α ∈ G : α(x) = x}.

• The pointwise stabiliser of Y in G is the set stab∗G(Y) = {α ∈ G : α(x) =

x ∀ x ∈ Y} =
⋂

x∈Y stabG(x).

• For α ∈ G, define α(Y) = {α(x) : x ∈ Y} ⊆ X. The setwise stabiliser of Y in G
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is the set stabG(Y) = {α ∈ G : α(Y) = Y}.

• The partition stabiliser of X in G is the set stabG(X ) = {α ∈ G : α(Y) =

Y ∀ Y ∈ X} =
⋂

Y∈X stabG(Y).

It is straightforward to show that stabG(x), stab∗G(Y), stabG(Y) and stabG(X ) are all

subgroups of G.

Definition 10 Let G ≤ Sym(X) where X is a non-empty set. The group G induces

an equivalence relation ≡G on X thus: x ≡G y ⇔ x = α(y) for some α ∈ G.

The equivalence class under ≡G of an element x ∈ X, denoted [x]G , is called the

orbit of x under G. The group G is transitive if there is a single orbit, X. When not

referring to a specific orbit representative, we typically denote an orbit Ω, and say

that Ω ⊆ X is non-trivial if |Ω| > 1. When considering actions of G on two distinct

sets X and Y, it is sometimes convenient to write [x]G for the orbit of x ∈ X under

G, and orbG(y) for the orbit of y ∈ Y under G.

Two important classes of permutation groups are symmetric groups and

cyclic groups:

Definition 11 For n > 0, the group Sym({1, 2, . . . , n}) is called the symmetric group

of degree n, denoted Sn. From the above, we have |Sn| = n!. Sn is often referred to as

the full symmetry group.

Definition 12 The cyclic group of degree n, denoted Cn, is the subgroup of Sn gener-

ated by the cycle (1 2 . . . n).

3.1.3 Group actions on sets

Fundamental to most applications of symmetry reduction in model checking is the

idea that a group of permutations of a given set induces a group of permutations

on another (usually larger) set. For example, a group of process identifier permuta-

tions naturally induces a group of permutations of the set of states associated with

a specification. We describe this idea formally using group actions. The following

definition and theorem are adapted from [150].

Definition 13 We say that a group G acts on the non-empty set X if to each α ∈ G

and x ∈ X there corresponds a unique element α(x) ∈ X and that, for all x ∈ X and

α, β ∈ G,

• (αβ)(x) = α(β(x))

• id(x) = x.
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Theorem 3 Let G act on X. Then to each α ∈ G there corresponds an element ρα ∈

Sym(X) defined by ρα : x 7→ α(x), and the map ρ : G → Sym(X) defined by

ρ : α 7→ ρα is a homomorphism.

We call the homomorphism ρ the permutation representation of G corresponding to

the group action.

3.1.4 Products of groups

Certain groups can be described as products of their subgroups. Four important

kinds of product are direct, disjoint, wreath and semi-direct products, which we

introduce in Definitions 14, 15, 16–17 and 18 respectively.

Let G be a group, and H1, H2, . . . , Hk subgroups of G (1 ≤ i ≤ k, k > 1). If

G = H1H2 . . . Hk = {α1α2 . . . αk : αi ∈ Hi (1 ≤ i ≤ k)} then G is the product of the

Hi.

Definition 14 Let G be a group, and let H1, H2, . . . , Hk be subgroups of G. Then G

is the (internal) direct product of the Hi, written G = H1 × H2 × · · · × Hk, if Hi E G

(1 ≤ i ≤ k), G is the product of the Hi, and Hi ∩ Hj = {id} for all i 6= j (1 ≤ i, j ≤ k).

Definition 15 Let G ≤ Sym(X), where X is a non-empty set. Suppose that G is the

product of subgroups H1, H2, . . . , Hk, and that moved(Hi) ∩ moved(Hj) = ∅ for all

1 ≤ i 6= j ≤ k. Then G is denoted H1 • H2 • · · · • Hk, and called the disjoint product

of the Hi, and the Hi a disjoint product decomposition for G. The disjoint product is

said to be non-trivial if G 6= Hi 6= {id} for all 1 ≤ i ≤ k.

Note that if G has two disjoint product decompositions such that the con-

stituent subgroups of the second product are all subgroups of constituent sub-

groups of the first, then we say that the second decomposition is finer than the

first.

It is easy to show that if G is the disjoint product of H1, H2, . . . , Hk then G is

the direct product of these subgroups, thus disjoint products are a special case of

direct products for permutation groups with a specific action.

The following definition of the wreath product of two permutation groups,

which we call the outer wreath product, is adapted from a definition given in [106]

and allows us to construct a new permutation group from two arbitrary permuta-

tion groups.

Definition 16 Let H ≤ Sm and K ≤ Sd for some m, d > 0. Let X = {1, 2, . . . , md},

and let {X1, X2, . . . , Xd} be a partition of X into equal-sized subsets, with |Xi| = m
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and Xi = {(i − 1)m + 1, (i − 1)m + 2, . . . , (i − 1)m + m} (1 ≤ i ≤ d). We define an

action for K, and d distinct actions for H, on X.

For β ∈ K and x ∈ X, suppose x ∈ Xi for some 1 ≤ i ≤ d, so that x =

(i − 1)m + t for some 1 ≤ t ≤ m. Define β(x) = (β(i) − 1)m + t. Let σ be the

permutation representation corresponding to this action of K on X.

For α ∈ H, x ∈ X and 1 ≤ i ≤ d, suppose x ∈ Xj for some 1 ≤ j ≤ d, so

that x = (j − 1)m + t for some 1 ≤ t ≤ m. Define α(x) = x if i 6= j and α(x) =

(j − 1)m + α(t) otherwise. Let σi be the permutation representation corresponding

to this action of H on X.

The outer wreath product of H and K is the group H ≀ K ≤ Sym(X) defined as

follows: H ≀ K = {σ(β)σ1(α1)σ2(α2) . . . σd(αd) : β ∈ K, αi ∈ H (1 ≤ i ≤ d)}.

Note that in the above definition, each of the σi permutes a different set of

the partition and σ permutes the partition.

The next definition, which we call the inner wreath product, allows us to

identify an existing group as a wreath product of subgroups. It is similar to,

but more general than Definition 16: the requirement that X must be the set

{1, 2, . . . , md} partitioned into contiguous subsets is lifted.

Definition 17 Let H ≤ Sm and K ≤ Sd for some m, d > 0. Let X be a set with

|X| = md, and {X1, X2, . . . , Xd} a partition of X into equal-sized subsets, where

|Xi| = m and Xi has the form Xi = {xi,1, xi,2, . . . , xi,m} for some xi,j ∈ X (1 ≤ i ≤ d,

1 ≤ j ≤ m). We define an action for K, and d distinct actions for H, on X.

For β ∈ K and x ∈ X, suppose x ∈ Xi for some 1 ≤ i ≤ d, so that x = xi,t

for some 1 ≤ t ≤ m. Define β(x) = xβ(i),t. Let σ be the permutation representation

corresponding to this action of K on X.

For α ∈ H, x ∈ X and 1 ≤ i ≤ d, suppose x ∈ Xj for some 1 ≤ j ≤ d, so that

x = xj,t for some 1 ≤ t ≤ m. Define α(x) = x if i 6= j and α(x) = xj,α(t) otherwise.

Let σi be the permutation representation corresponding to this action of H on X.

If G = {σ(β)σ1(α1)σ2(α2) . . . σd(αd) : β ∈ K, αi ∈ H (1 ≤ i ≤ d)} then G is

the inner wreath product of H and K, also denoted H ≀ K.

For neatness, we do not use notation to distinguish inner and outer wreath

products, and explicitly state the type of product referred to when necessary. Note

that we can unambiguously refer to the outer wreath product of two permutation

groups, but must specify the partition X = {X1, X2, . . . , Xd} when reasoning about

an inner wreath product. We refer to the triple (H, K,X ) as a wreath product de-

composition for G, and say that the decomposition is non-trivial if both H and K are

non-trivial.

It is clear that any inner wreath product H ≀ K (with associated partition) is

identical, up to renaming of points, to the outer wreath product H ≀ K. The order of
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H ≀ K depends on the orders of H and K, and the degree of K:

Theorem 4 If G is an inner or outer wreath product H ≀ K then |G| = |H|d × |K|,

where d is the degree of K.

Definitions 16 and 17 describe wreath products with the imprimitive action

[22]. There are other definitions of wreath products with other kinds of action, and

it is important to note that the results on wreath products which we present in

Section 9.4 are specific to the imprimitive action.

Direct products and wreath products are both generalised by semi-direct

products:

Definition 18 Let G be a group, N a normal subgroup of G and H a subgroup of

G. Suppose G = NH and N ∩ H = {id}. Then G is a semi-direct product of N and H,

denoted N ⋊ H.

3.1.5 Graphs and automorphisms

An undirected/directed graph (referred to as a graph/digraph) is a pair (V, E) where

V is a set of vertices and E a set of edges – unordered/ordered pairs of vertices.

An edge of a graph is written as a set {u, v} whereas a digraph edge is written as a

pair (u, v) (u, v ∈ V). A hypergraph is a pair (V, E) where V is a set of vertices and

E ⊆ 2V a set of hyper-edges.

A digraph (V, E) is bipartite if V = V1 ∪ V2, where V1 ⊂ V and V2 ⊂ V are

disjoint non-empty sets and, for (u, v) ∈ E, u ∈ V1 and v ∈ V2, or u ∈ V2 and v ∈ V1.

A colouring of (di/hyper)graph (V, E) is a mapping C : V → K, where K is a

finite set of colours. A coloured (di/hyper)graph is a triple (V, E, C) such that (V, E)

is a (di/hyper)graph and C a colouring of (V, E).

If Γ = (V, E) is graph/hypergraph and α a permutation of V, then for any

e = {v1, v2, . . . , vm} ∈ E, α acts on e thus:

α(e) = {α(v1), α(v2), . . . , α(vm)}.

The action of α on the edges of a digraph is defined similarly, and the ordering must

be preserved in this case.

Definition 19 Let Γ = (V, E, C) be a coloured (di/hyper)graph and α a permuta-

tion of V. Then α is an automorphism of Γ if the following conditions are satisfied:

• For all e ∈ E, α(e) ∈ E

• For all v ∈ V, C(v) = C(α(v)).

An automorphism of an un-coloured (di/hyper)graph is a permutation of V which
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satisfies the first condition in the above definition. The set of all automorphisms

of a (di/hyper)graph Γ forms a group under composition of mappings, denoted

Aut(Γ).

3.1.6 GAP and GRAPE

GAP (groups, algorithms and programming) [63] is a computational algebra system

which provides data structures and algorithms for working with a variety of alge-

braic structures. In particular, GAP includes a large library of permutation group

algorithms. Given generators (specified in disjoint cycle form) for a permutation

group G acting on the set {1, 2, . . . , n}, GAP functions can be used to compute,

for example, subgroups of G with particular properties (such as point- and set-

stabilisers); the orbits of G on {1, 2, . . . , n}; coset representatives for a subgroup H

of G, and homomorphisms from G to another group. The fundamental permutation

group algorithms which GAP uses are described in [19, 162].

On its own, GAP provides little support for graph-theoretic computation.

GRAPE (graph algorithms using permutation groups) [168] consists of a set of func-

tions which can be imported into GAP, including a function to compute the auto-

morphism group of a directed, coloured graph. This function interfaces with the

nauty (no automorphisms, yes) program [126], which uses the most efficient algo-

rithm currently known for finding the automorphism group of a graph [125].

For further details of the techniques used by GRAPE and nauty see [169]. In

subsequent chapters we make use of the following functions:

• AutGroupGraph( Γ [,C]) : GRAPE function which returns generators for the

automorphism group of the directed graph Γ (see Definition 19). The op-

tional argument C allows a colouring on the vertices of Γ to be specified, in

which case generators for the subgroup of automorphisms which preserve

this colouring will be computed

• IsomorphismGroups( G,H) : GAP function which computes an isomor-

phism between the groups G and H if they are isomorphic (see Definition 8),

and returns fail otherwise

• IsomorphicSubgroups( G,H) : GAP function which computes all mono-

morphisms (see Definition 8) from H into G up to conjugacy of the image

groups. (Subgroups H and K of G conjugate if H = α−1Kα for some α ∈ G.)

3.2 Symmetry Reduction Using Quotient Structures

Definition 20 Let M = (S, S0, R) be a Kripke structure. An automorphism of M is

a permutation α : S → S which preserves the transition relation and set of initial

states. That is α satisfies the following conditions:



3.2: SYMMETRY REDUCTION USING QUOTIENT STRUCTURES 55

1. For all s, t ∈ S, (s, t) ∈ R ⇒ (α(s), α(t)) ∈ R

2. α(S0) = S0.

The set of all automorphisms of a Kripke structure M forms a group under com-

position of mappings, denoted Aut(M).

In a model of a concurrent system with many replicated processes, Kripke

structure automorphisms may involve the permutation of process identifiers or

data values throughout all states of the model. On the other hand, a model may in-

clude a data structure which has geometrical symmetry [88], in which case Kripke

structure automorphisms involve applying the geometrical symmetries through-

out all states of the model. In each of these cases there is group G which permutes a

(typically small) set of process identifiers, data values or nodes of a data structure,

and an action of G on S (see Definition 13). Let ρ be the permutation representa-

tion corresponding to this action (see Theorem 3). The group of automorphisms

of M induced by G is ρ(G), the image of G under the permutation representation.

Given α ∈ G, rather than referring to the automorphism ρα of M we sometimes

say simply that α is an automorphism of M.

Given a subgroup G of Aut(M), the orbits of S under G (see Definition 10)

can be used to construct a quotient Kripke structure MG as follows:

Definition 21 The quotient Kripke structure MG of M with respect to G is a tuple

MG = (SG, S0
G, RG) where:

• SG = {repG(s) : s ∈ S} (where repG(s) is a unique representative of [s]G)

• S0
G = {repG(s) : s ∈ S0}

• RG = {(repG(s), repG(t)) : (s, t) ∈ R}.

If G is non-trivial then the quotient structure MG is smaller than M. For any

s ∈ S, the size of [s]G is bounded by |G|, and so the theoretical minimum size of SG

is |S|/|G|. Since for highly symmetric systems we may have |G| = n!, where n is

the number of components, symmetry reduction potentially offers a considerable

reduction in memory requirements.

To give an example of a quotient structure, for the mutual exclusion example

shown in Figure 2.3, observe that swapping the process indices 1 and 2 throughout

all states is an automorphism of the structure. If α denotes this automorphism then

for this example Aut(M) = {α, id}, where id is the identity mapping. Choosing

a unique representative from each orbit we obtain the quotient Kripke structure

MAut(M) illustrated by Figure 3.1.

It can be shown [31, 55] (see Theorem 5 below) that a model and its quotient

model satisfy the same symmetric CTL⋆ formulas. A CTL⋆ formula φ is symmetric, or

invariant, with respect to a group G if for every maximal propositional sub-formula

f appearing in φ (see Section 2.2.1), and for every α ∈ G, M, s |= f ⇔ M, α(s) |= f .
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N, N

T, N

C, N

C, T

T, T

Figure 3.1: Quotient Kripke structure for two-process mutual exclusion.

Theorem 5 If M and MG denote a model and its quotient model with respect to

a group G respectively, then M, s |= φ ⇔ MG, repG(s) |= φ, for every symmetric

CTL⋆ formula φ.

Theorem 5 is proved by establishing a correspondence between the paths of M and

MG, and using induction on the structure of CTL⋆ formulas [31, 55]. An analogous

result holds for symmetric µ-calculus formulas [55].

Since, by Condition 2 of Definition 20, the initial states of M are preserved

by G, we have the following corollary:

Corollary 1 With the same conditions as Theorem 5, M |= φ ⇔ MG |= φ.

Corollary 1 is similar to Theorem 1 (see Section 2.6.3) which shows that properties

of a Kripke structure can be inferred by proving properties of a structure which

has been reduced by data abstraction. There are two key differences. Theorem 1

is restricted to ACTL⋆ formulas, while Corollary 1 applies to any CTL⋆ formula

which is symmetric. In addition, unlike Theorem 1, Corollary 1 can be used to find

errors as well as prove properties since, in this case, the implication is two-way.

Consider the two-process mutual exclusion property AG(¬(C1 ∧ C2)) (Property 1

of Section 2.2.1). Let us call this property φ1. Clearly φ1 is symmetric with respect to

the automorphism group G = {α, id}, where α is defined as above. Thus the Kripke

structure M (represented by Figure 2.3) satisfies φ1 if and only if the quotient struc-

ture MG (represented by Figure 3.1) does. Therefore, to check the mutual exclusion

property, it is sufficient to check the quotient model only. Note that MG also sat-
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Algorithm 1 Algorithm to construct a quotient Kripke structure.

SG := {repG(s) : s ∈ S0}
unexplored := {repG(s) : s ∈ S0}
RG := ∅

while unexplored 6= ∅ do
remove a state s from unexplored
for all successor states t of s do

add s → repG(t) to RG

if repG(t) /∈ SG then

add repG(t) to SG

add repG(t) to unexplored
end if

end for

end while

isfies the property φ2 defined as AG(¬C2). However, as φ2 is not symmetric with

respect to the automorphism group, we cannot infer the truth (or otherwise) of φ2

for M. (Indeed, clearly M 6|= φ2.) The progress property AG(T1 ⇒ (FC1)) (Prop-

erty 2 of Section 2.2.1) is also not symmetric – it refers to process 1 in an asymmetric

way. Consider Property 3 below, a weaker version of the progress property:

Property 3 AG((T1 ∨ T2) ⇒ (F(C1 ∨ C2))).

This asserts that if some process is in the trying region then eventually some (but

not necessarily the same) process will reach the critical section. This property is

symmetric with respect to Aut(M), and it is easy to check that it holds for both M

and MG.

Algorithm 1 (adapted from [55, 103]), shows how a quotient structure can be

constructed incrementally if symmetries of the Kripke structure can be identified

before search. The successors of a given state are determined by the transition rules

of a high level specification. Note that to determine a unique element repG(s) for

each orbit [s]G , we require a canonicalisation function. We discuss the problem of

constructing such a canonicalisation function in Section 3.4. Using Algorithm 1 it

may be possible to build the quotient structure even though the original structure

is intractably large.

An approach that is suggested for symmetry reduction during automata-

based model checking involves the construction of an annotated quotient structure

(AQS) [55, 164]. In this case there is a labelled edge between representative states

repG(s) and repG(t) for every edge that exists (in M) from repG(s) to an element

of [t]G . If (repG(s), t′) were such an edge (in M) then the edge (in the annotated

quotient structure) would be labelled with a permutation α such that α(repG(t)) =

t′. Not only is it possible to unwind the original structure M from the (annotated)
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quotient structure, but it is also possible to check properties expressed in indexed

CTL⋆ – an extension to CTL⋆ in which properties include the indexed quantifiers for

all processes or for some process. In addition, properties to be checked are not required

to be symmetric with respect to the group G. We discuss the use of AQSs to verify

properties under fairness assumptions in Section 3.6.2.

3.3 Identifying Symmetry

The first step which must be accomplished by any method which exploits symme-

try is the identification of symmetries in a model. Let M be a Kripke structure. An

obvious approach to solving this problem would be to construct M, and then to

find a symmetry group G of M using a standard algorithm (e.g. nauty [125]). These

symmetries could be used to reduce M to a quotient model, MG.

This approach is flawed in two ways. Firstly, finding automorphisms of a

Kripke structure is equivalent to checking for state-space isomorphism, which for

large state-spaces is a hard problem (no polynomial time algorithm is known [125]).

Secondly, if enough resources were available to construct M then symmetry reduc-

tion would be unlikely to be of much benefit. Indeed, the power of reduction tech-

niques is that they allow a reduced model to be checked even when the unreduced

model is intractable.

Thus the problem is to find symmetries of M without building M explic-

itly. We now discuss four approaches to symmetry identification: explicit specifica-

tion of symmetry group generators, specification of symmetries via a purpose-built

scalarset data type, restriction of the specification language to guarantee symme-

try between components, and inference of symmetry by communication structure

analysis.

3.3.1 Manual specification of a symmetry group

The problem of symmetry detection can be avoided altogether by requiring the user

to manually specify generators for a symmetry group [27, 69, 135]. This approach

requires expert user knowledge of symmetry reduction theory, and is prone to er-

ror. Nevertheless, if used with care then providing the option to specify symme-

try manually allows symmetry reduction to be applied when the user can identify

symmetries in a specification which are not recognised by an automated approach.

3.3.2 Scalarsets

A popular approach to symmetry detection involves annotation of the system de-

scription via a purpose-built data type [103]. The data type is called a scalarset,

and acts as documentation that certain symmetries are present in a specification

expressed in the Murφ description language [40].
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Definition 22 A scalarset is an integer sub-range with restricted operations as fol-

lows:

1. An array with a scalarset index type can only be indexed by a scalarset vari-

able of exactly the same type

2. A term of scalarset type must be a variable reference. (A scalarset may not

appear as an operand to + or any other operator in a term)

3. Scalarset variables may only be compared using =, and in such cases, must

be of exactly the same type

4. For all assignments d := t, if d is a scalarset variable, t must be a term of

exactly the same scalarset type

5. If a scalarset variable is used as an index of a for statement, the body of the

statement is restricted so that the result of the execution is independent of

the order of the iterations.

The restrictions are sufficient to ensure that consistent permutation of

scalarset variables in all states corresponds to an automorphism of the state-space.

Furthermore, violations of the restrictions can be detected in polynomial time [103].

As the above conditions refer to general language features, they can clearly be

adapted to apply to other specification formalisms.

Given a specification P containing a scalarset S which represents the integer

sub-range {0, 1, . . . , n − 1} (for some n > 0), any permutation of {0, 1, . . . , n − 1}

naturally induces a permutation of the associated state-space. This is best illus-

trated by an example. Let x and y be variables of P with scalarset and non scalarset

type respectively, and A an array with scalarset index type and element type. Let

t be a state of the model associated with P , and let t.x, t.y and t.A[i] denote the

values of x, y and element i of A (0 ≤ i ≤ n − 1) at state t respectively. Let αS be

any permutation of {0, 1, . . . , n − 1}. Then αS is defined to act on state t such that:

αS (t).x = αS (t.x); αS (t).y = t.y, and αS (t).A[i] = αS (t.A[α−1
S (i)]). For a precise,

recursive definition of this action, and a proof of the following theorem, see [103].

Theorem 6 Given a specification containing a scalarset S , every permutation αS on

the states of the state-space M derived from the specification is an automorphism

of M.

Corollary 2 If a specification P has scalarsets S1,S2, . . . ,Sk (k > 0), there are sym-

metries in the state graph M and we can use the symmetry-reduced state graph

MG to perform verification, where G is the group of all permutations of the states

with respect to S1,S2, . . . ,Sk.
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atomic {
j = 0;
do :: j==A -> break

:: j<A -> body; j++
od

}

Figure 3.2: Synthesising a for loop with scalarset index variable in Promela.

If |Si| is the size of scalarset Si (1 ≤ i ≤ k), then the symmetry group G has

order |S1|! × |S2|! × · · · × |Sk|!.

To illustrate the need for Condition 5 of Definition 22, let S be a scalarset

type with range {0, 1, . . . , n − 1}. Consider a loop with counter variable j of type S ,

and let k be a global variable of the same scalarset type. Including an assignment

k := j at the end of the loop body means that the final value of k will be n − 1. This

distinguishes the value n− 1 from the other values in the range of S , thus the range

cannot be safely permuted.

An example of the use of scalarsets with Murφ is in the verification of the

Needham-Shroeder public key protocol [133]. The protocol involves a set of Ini-

tiator processes and a set of Receptor processes. Each Initiator process is identified

by the variable Initiatorid which is used to index an array storing the state of each

Initiator process. The Initiatorid variable is also used as an index within a for loop

containing the rules determining the behaviour of each Initiator process. As the

Initiator processes behave symmetrically, by declaring the Initiatorid variable with

a scalarset type, symmetry reduction can be automatically performed. Similarly, a

scalarset type can be used to identify symmetry between the Receptor processes.

Scalarsets have been used to implement symmetry reduction techniques for

the SPIN model checker via the SymmSpin tool [14] (see Section 3.9.1). Unlike Murφ,

the Promela language does not include a for construct. However, a for loop which

uses a scalarset index variable can be synthesised using the Promela do..od con-

struct within an atomic block, as shown in Figure 3.2. In the figure, j is a scalarset

variable which has range {0, 1, . . . , A − 1} for some A > 0. The loop body con-

sists of a sequence of statements between the condition j<A and the increment

j++ , which must satisfy Condition 5 of Definition 22. In particular, this condition

implies that the body must not include any potentially blocking statements (e.g.

send/receive statements). Although the assignment j=0 violates Condition 4 of

Definition 22, since the loop is enclosed in an atomic block the value of j is not

visible until after execution of the loop. At this point j is assigned to A, which

SymmSpin uses as a default value for a scalarset variable within this range. Thus

symmetry between scalarset values is not broken by the assignment j=0 .

Figure 3.3 illustrates how scalarsets can be used to specify symmetry in the

Promela mutual exclusion example of Figure 2.6.1 In this specification, a constant

1. Note that in order to avoid modification of the Promela parser, SymmSpin requires information
about scalarsets to be supplied in a separate file [14] (see Section 3.9.1). For simplicity and readability,
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mtype {N,T,C}

const A = 5;
scalar PID[A];

mtype st[PID] = N

proctype user(PID i) {
PID j = A;
bool critical_empty = false;

do :: d_step { st[i]==N -> st[i]=T }
:: d_step { st[i]==T ->

critical_empty = true;
j = 0;
do :: j < A ->

critical_empty = critical_empty && st[j]!=C;
j++

:: else -> break;
od;
j = A;
if :: critical_empty -> st[i]=C

:: else -> skip;
fi;
critical_empty = false;

}
:: d_step { st[i]==C -> st[i]=N }

od
}

init {
PID i = A;
atomic {

i = 0;
do :: i<A -> run user(i); i++

:: else -> break;
od

}
}

Figure 3.3: Identifying symmetry in a mutual exclusion example using scalarsets.

A is defined to represent the number of user processes in the specification, and a

scalarset of size A named PID is introduced via the declaration scalar PID[A] .

Since A is set to 5, the PID type is a scalarset with range {0, 1, 2, 3, 4}. Rather than

using the built in pid constant, the user proctype now takes a parameter i, which

has type PID . The array st of mtype values is indexed by the PID type, indicated

by the occurrence of PID in the declaration of st.

It is necessary to modify the syntax of the original Promela specification

to satisfy the conditions of Definition 22. In particular, the boolean expression

of Figure 2.6 (with re-indexing) (st[0]!=C && st[1]!=C && st[2]!=C &&

st[3]!=C && st[4]!=C) does not obey Condition 1 – literal values cannot be

used to index an array of scalarset type. The modified specification computes the

expression using a do..od loop (as described above), storing the result in a boolean

variable, critical empty . Only if this variable holds the value true can the pro-

cess enter the critical state. Note that re-modelling the mutual exclusion protocol

we have included this information in the specification.
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this way changes the semantics of the underlying model slightly. We discuss this in

Section 4.2.

The use of scalarsets described above exploits component symmetry (sym-

metry between the processes themselves). The scalarset approach can also be used

to exploit data symmetry. A scalarset that is used to denote data symmetry is referred

to as a data scalarset.

Definition 23 A scalarset S is a data scalarset in a specification P if S is not used as

an array index or for statement index.

If a protocol uses a data scalarset, then it is said to be data independent [183].

In this case, symmetry reduction can be used to reduce an infinite state-space (in

which data is unbounded) to a finite state-space (with bounded data) thus:

Theorem 7 If P is a specification, S the name of a data scalarset in P and P1 and P2

are specifications identical to P except that S is declared to be of size N1 in P1 and

N2 in P2, then there exists NS > 0 such that the symmetry-reduced state graphs of

P1 and P2 are isomorphic whenever N1 ≥ NS and N2 ≥ NS .

However this application of scalarsets is seldom required as data abstrac-

tion (see Section 2.6.3) can be used to eliminate redundant data values [30]. Data

symmetry reduction will be discussed again in Section 3.8.

The original scalarset approach [103] only considered the verification of sim-

ple safety properties of the form AG(¬error). However, scalarsets have been suc-

cessfully used to exploit symmetry during the verification of more general LTL for-

mulas [14]. A major drawback to scalarsets is that they only allow the specification

of total (or full) symmetries (where all processes of a given type are interchange-

able), so could be applied to a system of processes connected as a clique, say, but

not, for example, as a ring or tree. An alternative data type, called circularset [101]

and additional extensions to the scalarset data type [49] have been proposed to han-

dle systems with ring structures and more general systems respectively. However,

these alternatives share with the scalarset approach the problem that the user must

identify symmetry in the model and select an appropriate data type to specify the

presence of this symmetry. This means that symmetry reduction using scalarsets is

not a “push button” reduction technique.

We say that symmetries of a model are specified using scalarsets, since given a

specification with scalarset annotations it is trivial to determine a symmetry group

for the underlying model.
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Program

Module user = 5;

st[user] = 0;

u of user: {
st[u] == 0 -> st[u] = 1;
st[u] == 1 & ALL(v of user: st[v] != 2) -> st[u] = 2;
st[u] == 2 -> st[u] = 0;

}

Figure 3.4: An SMC specification of mutual exclusion with five processes.

3.3.3 Input language restriction

The problem of detecting structural symmetry between components can be made

trivial by restricting the input specification language in such a way that full sym-

metry is guaranteed between processes which have the same type.

This is the approach to symmetry detection used by the SMC (symmetry-

based model checker) tool [166] (see Section 3.9.1). Figure 3.4 shows the mutual

exclusion example with five processes, expressed in the SMC language. The values

0, 1 and 2 are used to represent the local states N, T and C respectively. Note that the

boolean expression to check that the critical section is empty is expressed succinctly

as ALL(v of user: st[v] != 2) . This expression preserves the semantics of

the original Promela specification.

The model associated with an SMC specification with m module types

and ki instantiations of module type i (1 ≤ i ≤ m) is guaranteed to have

k1! × k2! × · · · × km! component symmetries. The corresponding group of symme-

tries is the disjoint product (see Section 3.1.4) of groups Ski
(1 ≤ i ≤ m), each of

which permutes one set of module indices. The modules of SMC are essentially

analogous to the scalarsets of Murφ [166], and index variables (variables which take

module indices as values) must satisfy similar conditions to those of Definition 22.

Only full symmetry between components of the same type can be identified using

the SMC language.

We say that symmetries of a model are specified using a restricted input lan-

guage since, by declaring multiple instances of a given module type, the user indi-

cates the presence of symmetry and it is then trivial to determine the corresponding

group of permutations.

Capturing symmetry by input language restriction is crucial to the ap-

proach of exploiting symmetry using generic representatives [45, 57, 58, 60] (see Sec-

tion 3.5.2).

3.3.4 Communication structure analysis

Let I = {1, 2, . . . , n} be a set of process identifiers, for some n > 0. For simple

concurrent specifications consisting of a finite number of isomorphic (identical up
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to renaming) processes executing in parallel and communicating via shared vari-

ables, a subgroup of the automorphism group of M can be determined from the

communication relation of the specification [55]. The communication relation CR of the

specification P =‖i∈I pi is defined as the undirected graph CR = (I , E), where

{i, j} ∈ E iff processes pi and pj share a variable (i, j ∈ I).

Theorem 8 If M is the Kripke structure associated with P = ||i∈I pi where all pi

are normal and isomorphic (see [55]) then Aut(CR) ≤ Aut(M).

The group Aut(CR) may be automatically computed since CR is typically small

compared to M, or may simply be known in advance.

Theorem 8 applies to systems in which all variables are shared between at

most two processes, and all processes are of the same type. This result is gener-

alised [27] to remove this restriction via the introduction of the coloured hypergraph

HG(P) of a shared variable specification P (see Section 3.1.5). The node set of the

hypergraph HG(P) is I and there is a hyper edge w ⊆ I if the specification P has

a variable shared by all process pi, i ∈ w. Each node is assigned a colour, so that

two processes pi and pj are isomorphic iff nodes i and j have the same colour in the

coloured hypergraph. Two processes are isomorphic in this case if they are of the

same process type, and have equivalent sets of transitions.

Theorem 9 If M is the Kripke structure associated with a specification P = ||i∈I pi

then Aut(HG(P)) ≤ Aut(M).

In Chapter 7 we prove a similar result for a richer specification language

(Theorem 13) which shows that Kripke structure automorphisms can be derived

by computing automorphisms of the static channel diagram of a specification, which

assumes a message passing model of computation. In the context of hardware veri-

fication, a related approach [124] uses GAP for identifying symmetries in structural

descriptions of digital circuits.

3.3.5 A note on the complexity of automatic symmetry detection

As noted at the start of Section 3.3, for symmetry reduction to be useful it must be

possible to determine symmetries of the model M associated with a specification

without actually constructing M. Ideally we would like an automatic symmetry

detection technique to compute all symmetries of M by static analysis of a specifi-

cation P without placing restrictions on the form of P . However, in order to avoid

complexity equivalent to that of checking a safety property of the form AG p (for

some proposition p) it is necessary to restrict the form of specifications, or to reject

certain potential symmetries which cannot be efficiently checked as belonging to

Aut(M). We illustrate why this is the case using a simple Promela example.
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breaksym:
if

:: _pid==1 && <expr> ->
special = 1

:: else -> skip
fi;

Figure 3.5: Promela example to illustrate the general complexity of automatic symme-
try detection.

Let P be a Promela specification consisting of n instantiations of a user proc-

type, for some n > 1. Suppose that each user has a local variable, special, which is

set to 0 on declaration. We use speciali to denote the local variable special of process

i. Suppose that the body of every user process contains the conditional statement

shown in Figure 3.5, where 〈expr〉 is an arbitrary boolean expression (which may

refer to global variables and channels of the specification). Suppose the statement

special = 1 is the only assignment to special (after declaration), that appears

in the definition of a user, and pid==1 the only guard which treats process identi-

fiers asymmetrically. Clearly this statement cannot be executed by a user with pid

not equal to 1. Assume that the rest of the specification does not differentiate indi-

vidual processes in any way.

If it is impossible for user 1 to reach breaksym with 〈expr〉 evaluating to

true, then clearly any permutation of process identifiers will induce an automor-

phism on the associated model M. Otherwise, user 1 will be able to execute the

statement special = 1 , leading to a state s with s |= (special1 = 1). By the

above discussion it is clear that, for any i > 1 and any reachable state t in M,

t 6|= (speciali = 1). Therefore any process permutation α for which α(1) 6= 1 can-

not induce an automorphism on M. If α is such a permutation then determining

whether α induces an automorphism of M is equivalent to checking the temporal

property AG(¬(user[1]@breaksym ∧ 〈expr〉)).

Thus an effective symmetry detection technique for Promela must either re-

strict the use of the specification language so that this asymmetric use of process

identifiers is not allowed, or conservatively assume that certain process permu-

tations do not induce automorphisms of M. In Chapters 7 and 8 we develop an

efficient automatic symmetry detection technique for Promela which aims to place

as few restrictions as possible on the form of a specification, and to detect a large

subgroup of Aut(M) in practice.

3.4 Exploiting Symmetry with a Simple Model of Computation

The crux of exploiting symmetry when model checking is that during search, when

a state t is reached, it is necessary to test whether a state u has already been reached

such that t ≡G u (i.e. t = α(u) for some α ∈ G). This is known as the orbit problem
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[31], and is central to all model checking methods that exploit symmetry. Tech-

niques must be used to either solve the orbit problem efficiently, or to find some

kind of approximate solution.

On encountering a state t, Algorithm 1 (Section 3.2) checks whether there is

some α ∈ G such that α(t) ∈ SG by checking whether repG(t) ∈ SG, where rep is a

function which computes a unique representative of [t]G . Since the algorithm only

stores representative states, if some state u with u ≡G t has been encountered then

repG(u) ∈ SG. Since repG(u) = repG(t) (which follows from [u]G = [t]G), the test

repG(t) ∈ SG returns true, and search can backtrack.

For simple concurrent systems it is common to reason about states us-

ing a single integer variable for each component, representing the valuation of

the local variables of the component [27, 57, 59] (we justify this formally in Sec-

tion 9.1). Using the notation preceding Definition 1 (Section 2.2), we have a set

V = {v1, v2, . . . , vn} of variables, where for each i the domain Di of vi is a finite set

L ⊂ Z. A state s is then a vector in Ln. An element α ∈ Sn acts naturally on a state

s = (x1, x2, . . . , xn) ∈ Ln as follows: α(s) = (xα−1(1), xα−1(2), . . . , xα−1(n)).2

Let ≤ denote the usual lexicographic ordering on vectors in Ln: for s, t ∈ Ln

where s = (x1, x2, . . . , xn), t = (y1, y2, . . . , yn), s ≤ t if s = t or there is some

1 ≤ i ≤ n such that xj = yj for each 1 ≤ j < i, and xi < yi. When attempting

to exploit symmetry with this model of computation, it is convenient to use the

lexicographically least element in the orbit as a representative.

Definition 24 The constructive orbit problem (COP) [27, 106] Given a group G ≤

Sn and a state s ∈ Ln, find the lexicographically least element in the orbit of s.

In other words, the COP is the problem of computing min≤[s]G .

Theorem 10 [27, 106] The COP is NP-hard.

Despite this discouraging result, it has been shown that the COP can be

solved efficiently for certain classes of symmetry group. Furthermore, it may be

possible to efficiently compute an approximate solution to the COP, resulting in a

quotient model which uses multiple representatives from each orbit.

3.4.1 “Easy” classes of groups

For the following classes of automorphism group G (acting on a model of a system

of n processes), the COP can be solved in polynomial time [27, 106]:

• G has order polynomial in n, for example a cyclic or dihedral group, or the

group associated with an n × n torus

2. This action makes sense provided the local state of a component does not include variables which
take component identifiers as values. In Chapter 10 we consider this more complex case.
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• G is the symmetric group Sn

• G is a disjoint product or wreath product of groups for which the COP is

polynomial time solvable

• G is generated by transpositions.

Note that, when G is the symmetric group Sn, the lexicographically least (lex-least)

element of the orbit of a state can be obtained by sorting the state-vector. When G

has order polynomial in n the COP can be solved by enumerating the orbit of a

state. In the other cases, the lex-least element is found by sorting segments of the

state-vector individually. This is discussed further in Chapter 9.

3.4.2 Multiple representatives

Requiring that every element of a given orbit [s]G is mapped to the same represen-

tative of [s]G ensures that symmetry reduction is optimal in terms of space require-

ments. However, if unique representatives cannot be efficiently computed then the

time requirements for model checking with symmetry may be prohibitive.

Suppose we relax the uniqueness condition so that, for an orbit [s]G , any

state in [s]G is mapped to one of a small set of representatives:

repG([s]G) = {repG(t) : t ∈ [s]G} ⊆ [s]G .

This ensures that a quotient structure includes at least one state from each orbit [s]G ,

and symmetry reduction is sound (i.e. Theorem 5 still holds). Provided the sets of

representatives are sufficiently small compared to the orbits themselves, symmetry

reduction can still be effective.

Clearly we can no longer select the minimal element of [s]G as repG(s). How-

ever, we can often compute representatives of individual states very efficiently by

choosing repG(s) = f (s) where f : S → S is a normalisation function which maps all

states to states no larger than themselves. A good normalisation function is one for

which, for all s, f (s) is “almost” the minimum state in [s]G . Using a normalisation

function in this way provides an approximate solution to the COP.

Symmetry reduction options which use multiple orbit representatives are

provided by Murφ and SymmSpin, as discussed in the next section. We propose a

general approximate solution to the COP based on local search in Chapter 9.

3.4.3 Using orbit representatives in practice

The scalarset method [103] assumes the existence of a canonicalisation function (in

which states are replaced by a unique equivalence class representative) or a nor-

malisation function (in which a subset of states are used as multiple representative

states). For symmetry reduction in Murφ a suitable canonicalisation function [102]

applies all permutations to a state s and returns the lexicographically smallest im-

age. An approach using a normalisation function is also suggested, in which the
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state-vector is split into two parts. For a given state, a permutation α is selected that

produces the lexicographically smallest image of the first (most significant) part of

the associated state-vector. The representative state chosen is the concatenation of

the image of the two parts of the state vector (under α).

The use of normalisation and canonicalisation functions with scalarsets is

extended [14] using heuristics to choose the order in which variables are posi-

tioned in the state-vector. This ordering determines, for example, which variables

are most significant and appear in the first (leftmost) part of the split state-vector.

One approach, the sorted strategy, involves the identification of an array indexed by

a scalarset type (the main array) and placing it in the leftmost position of the state-

vector. In another approach, the segmented strategy, the lexicographically smallest

image of the second part of the state-vector, with respect to all of the permutations

that canonicalise the first part, is used in the representative state. There is trade off

between reduction in memory requirements and faster verification for the sorted

and segmented strategies. The segmented strategy yields canonical representatives,

but is more computationally expensive than the sorted strategy. On the other hand,

use of the sorted strategy may result in several states from the same equivalence

class being explored. In Chapter 9 we generalise the segmented strategy to apply to

arbitrary symmetry groups.

Two other approaches, pc-sorted and pc-segmented, are suggested for sys-

tems in which no suitable main array exists but the process identities are of type

scalarset. In this case a main array is constructed, containing the program counters.

A prototype implementation of this approach is implemented in the SymmSpin

package [14], which we discuss in Section 3.9.1.

A canonicalisation function is suggested, again within the context of SPIN

[135], for systems with any (user-specified) symmetry. Though less restrictive than

the scalar-set approach (full symmetry is not required and more general operations

on permutable variables are permitted), a canonicalisation function must be con-

structed manually by the modeller for every individual model, thereby limiting

the applicability of the method.

3.5 Combining Symmetry Reduction with Symbolic Representation

If BDDs are used to represent the state-space of a model then exploiting symmetry

using the approach described in Section 3.2 becomes more complex, as the orbit re-

lation of a symmetry group must be represented as a BDD. The orbit relation of a

group G is the set of pairs {(s, t) : s, t ∈ S, s ≡G t}. It can be shown that the min-

imum size of a BDD representing the orbit relation induced by a transitive group

(see Definition 10, Section 3.1.2) is exponential in the minimum of the number of

components in a system and the number of states in one component [31]. The result
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is extended to the class of separable groups, which subsumes the class of transitive

groups [106]. Since transitive groups occur commonly in models of concurrent sys-

tems, the combination of standard symmetry reduction techniques with symbolic

model checking is limited. We now discuss some methods which avoid the con-

struction of the orbit relation for symbolic model checking.

3.5.1 Multiple representatives and symbolic model checking

By using multiple representatives from each orbit, the problem of computing the

orbit relation can be avoided to some extent [27, 31]. The idea is similar to the idea

of using multiple representatives discussed in Section 3.4.2, but depends on a spe-

cific subset of automorphisms. If G is a set of Kripke structure automorphisms, a

subset C of G is chosen which is closed under inverses and contains the identity

element. The set of representatives Rep is selected so that each orbit has at least one

element in Rep and, for every s ∈ S, there is some α ∈ C such that α(s) ∈ Rep. The

size of Rep (and consequently the size of the resulting quotient model) depends crit-

ically on the choice of C, which must be chosen carefully according to the structure

of the system being verified [27]. The state-space of the quotient model is not re-

duced (with respect to the original model) as much as with unique representatives.

However, the use of multiple representatives reduces the size of the BDDs required

to store the state-space, and thus are more effective when symbolic representation

of states is used.

In practice, BDDs reduced through multiple representatives may still be in-

tractably large. Approaches using generic representatives or computing represen-

tatives dynamically, which we discuss in Sections 3.5.2 and 3.5.3 respectively, have

been shown to outperform the multiple representatives approach [58, 59].

3.5.2 Generic representatives

For symbolic model checking of fully symmetric systems using BDDs, a method

which uses generic representatives avoids both the orbit problem and construction

of the orbit relation [57]. This method involves translating the specification for a

model into a reduced specification, which can be explored using standard symbolic

model checking algorithms. The idea of generic representatives is best explained

using an example. For a basic model of mutual exclusion with three processes, the

states (N, N, T), (T, N, N) and (N, T, N) are all equivalent. This is because there are

two processes in the neutral local state and one in the trying local state in each of the

three global states. The generic representative of these states is (2N 1T). A generic

representative indicates how many processes are in each local state, but does not re-

fer to individual processes. Thus the reduced specification abstracts from processes

to counters, with one counter for each local state indicating the number of processes

currently in that state.
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1T 1N

1C 1N

1C 1T

2N

2T

Figure 3.6: Symmetry-reduced model for two-process mutual exclusion using generic
representatives.

byte no_N=5;
byte no_T=0;
byte no_C=0;

init {
do

:: d_step { no_N>0 -> no_N--; no_T++ }
:: d_step { no_T>0 && no_C==0 -> no_T--; no_C++ }
:: d_step { no_C>0 -> no_C--; no_N++ }

od
}

Figure 3.7: Generic form of five-process mutual exclusion.

The translation rules defined for fully symmetric specifications (where sym-

metry is guaranteed by input language restriction) ensure that the state-space of the

translated specification is isomorphic to the quotient structure associated with the

original specification. Figure 3.6 shows the Kripke structure for two-process mu-

tual exclusion using generic representatives. Notice that the structure is identical to

the quotient structure of Figure 3.1, except for the change of variables.

Figure 3.7 shows the translated version of the five-process mutual exclusion

specification of Figure 2.6. The associated Kripke structure, shown in Figure 3.8,

has 11 states, whereas the original specification has a state-space of size 112.

The generic representatives approach is extended [58] to include systems

with global shared variables. The translation of a specification into reduced form

is polynomial in the length of the specification and the approach compares well

to those using unique or multiple representatives. However, benefits of this ap-

proach can be negated due to the local state explosion problem, where the number

of potential local states of a process is exponential in the number of local variables.
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Figure 3.8: Kripke structure associated with the specification of Figure 3.7.

Since the reduced specification requires one counter per local state, BDD repre-

sentations which require bits to be reserved for each counter become infeasible.

Techniques have been proposed to limit local state explosion based on live vari-

able analysis (similar to the data flow optimisations provided by SPIN [92]) and local

reachability analysis [60]. The generic representatives approach is also limited as it

only applies to fully symmetric systems which are simple enough to be amenable

to counter abstraction [59].

The generic representatives approach has been applied to provide symmetry

reduction for probabilistic symbolic model checking [45] (see Section 3.9.3).

3.5.3 Dynamic computation of representatives

Another approach to combining symmetry reduction techniques with symbolic

representation (for CTL model checking) involves determining orbit representa-

tives dynamically during fixpoint iterations [59]. Instead of building the orbit re-

lation for a model, this approach works by computing transition images with re-

spect to the unreduced structure, then mapping the new states to their respective

representatives. This approach is not restricted to fully symmetric systems, and can

handle data symmetry (see Section 3.8) as well as process symmetry. A potential

bottleneck here is the operation of swapping bits in the BDD representation of the

model, which must be performed repeatedly during representative computation.

The complexity of such swaps depends exponentially on the distance, in the BDD

variable ordering, between the variables to be swapped. To avoid this problem,

permutations are expressed as a product of transpositions of adjacent elements. Ex-

perimental results show that this approach outperforms the use of multiple and

generic representatives (see Sections 3.5.1 and 3.5.2 respectively) when applied to a

queueing lock algorithm and a buggy version of a cache coherence protocol.

3.5.4 Under-approximation

Model checking algorithms that use depth-first search (DFS) can be adapted so

that the first element of an orbit encountered during the search is chosen as the or-

bit representative [166]. However, this approach is not suitable for symbolic model

checking techniques as DFS is very inefficient in the context of BDD state represen-

tation.
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On-the-fly orbit representative selection is possible during symbolic reacha-

bility analysis by combining symmetry reduction with a technique known as under-

approximation [7], where only a subset of reachable states is considered at each step

of symbolic verification. This approach to symmetry reduction can be used for fal-

sification of temporal properties, but cannot generally provide verification.

3.6 Combining Symmetry Reduction with Other Techniques

Basic symmetry reduction does not take into account the more sophisticated tech-

niques associated with model checking. In this section we discuss the combination

of symmetry and partial-order reduction, and the modification of symmetry reduc-

tion techniques to successfully handle fairness.

3.6.1 Symmetry and partial-order reduction

Partial order reduction (see Section 2.6.3) and symmetry reduction are orthogonal

reduction techniques. They can therefore be successfully used in conjunction, re-

sulting in larger savings in memory and verification time.

The combination of the two techniques was first suggested in the context of

Petri nets [175]. This approach applies to the stubborn sets method of partial-order

reduction and is restricted to deadlock detection.

The idea of combining two reductions simultaneously is extended to veri-

fication of next-time free LTL properties by model checking [53]. Indeed, an algo-

rithm is given for combining partial-order reduction and any bisimulation preserv-

ing equivalence. When the equivalence is the orbit relation the algorithm proceeds

as follows: from any state s an ample set of transitions is calculated. The orbit repre-

sentatives of any states reachable via these transitions are then explored. A similar

algorithm, combining the persistent sets method of partial-order reduction with

symmetry reduction is used within the stateless search technique implemented in

VeriSoft [69] (see Section 3.9.4).

3.6.2 Exploiting symmetry under fairness assumptions

Fairness is vital for proving liveness properties, as it reflects the basic requirement

that processes are executing at an indefinite but positive speed [56]. Two important

kinds of fairness are weak fairness and strong fairness. Given a Kripke structure M,

an infinite path π of M is strongly fair if each process that is enabled infinitely often

executes infinitely often. A path π is weakly fair if any process that is continuously

enabled executes infinitely often.

Fairness is generally incompatible with basic symmetry reduction meth-

ods because the progress of an individual process along a path of the quotient
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structure cannot be tracked in the usual way. For example, consider the transi-

tion (C, T) → (N, T) in the two-process mutual exclusion Kripke structure (Fig-

ure 2.3) which results from process 1 leaving the critical section. The transition is

represented in the quotient Kripke structure (Figure 3.1) by (C, T) → (T, N). The

quotient transition indicates that one of the processes leaves the critical section, but

there is no information as to which process this is.

This fundamental problem is overcome when the automata theoretic ap-

proach using annotated quotient structures is used, in the context of fair indexed

CTL⋆ properties [56, 164]. An annotated quotient structure MG is used together

with an automaton A which accepts only fair computations. An efficient algorithm,

based on finding maximal strongly connected components (MSCCs) [172] (see Sec-

tion 2.3.2) is presented for model-checking fair indexed CTL⋆ formulas under the

assumption of strong and (by implication) weak fairness. Correctness results (in-

cluding liveness properties) are verified for a resource controller example using a

prototype (fair) model checker. Comparison with an unreduced model indicates an

exponential reduction in the number of stored states.

This approach to symmetry reduced model checking has been extended to

the on-the-fly case [74] in which MG ×A is checked during construction. The ap-

proach also exploits state symmetries [55]. A state symmetry of a state s is a permuta-

tion α ∈ Aut(M) on process indices such that α(s) = s. If processes i and j have the

same local state in global state s, and if α(i) = j, then only the transitions made from

state s by process i need to be considered, saving space and computation time. The

resulting algorithm is exploited in SMC [166], which we discuss in Section 3.9.1.

A parallel approach to model checking with symmetry reduction and weak

fairness [13] combines the weak fairness algorithm implemented in SPIN [92] (based

on the Choeka flag algorithm [24]) with a symmetry reduction algorithm [12] based

on the nested depth first search (NDFS) approach to model checking [93]. As well

as exploiting the usual advantages over the MSCC algorithms, the NDFS approach

is compatible with approximate verification techniques, such as the hash-compact

method and supertrace verification (see section 2.6.2).

3.7 Exploiting Symmetry in Less Symmetric Systems

Many systems which occur commonly in practice are comprised of several simi-

lar, but not all identical processes. An example is the readers-writers problem [57],

where m reader processes and n writer processes access a shared resource, for some

m, n > 0.

A writer always has priority over a reader when both are trying to access

the shared resource. If M is a model of this system, then M is not fully symmet-

ric. In fact Aut(M) is S{1,2,...,m} • S{m+1,m+2,...,m+n} (see Definition 15, Section 3.1.4)
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– readers can be permuted, writers can be permuted, but readers cannot be inter-

changed with writers.3 However, the state graph is symmetric in every sense except

for transitions from a state where two processes are attempting to access the shared

resource.

It is possible to exploit this kind of almost symmetry during model checking.

Indeed, by defining different classes of symmetry, such as near or rough symmetry

[57], or virtual symmetry [52], it is still possible to infer temporal logic properties

of the system by model checking a suitable quotient graph using the entire group

Sm+n as the automorphism group.

3.7.1 Near and rough symmetry

Suppose M is a model of a system, and I the set of process identifiers associated

with M. Then a permutation α ∈ Sym(I) is said to be a near automorphism of M

if, for every transition s → t of M, either α(s) → α(t) is a transition of M or s is

totally symmetric with respect to Aut(M). (That is, s is invariant under Aut(M).)

The model M is said to be nearly symmetric if it has a suitable group of near auto-

morphisms Gn.

If, on the other hand, Gr is a subgroup of Sym(I), then M is roughly sym-

metric with respect to Gr if for every pair of states s and s′ where s ≡Gr s′, any

transition from s is matched by a transition from s′ provided the associated local

transition (from s′) would involve a process with the highest priority. If M is a

nearly (roughly) symmetric model with respect to group Gn (Gr) then, despite the

lack of complete symmetry, it can be shown that symmetry reduction with respect

to Gn (Gr) preserves all symmetric CTL⋆ properties [57].

3.7.2 Virtual symmetry

Both near and rough symmetry are subsumed by the notions of virtual and strong

virtual symmetry [52]. As well as systems with static priorities (which can already

be described via rough symmetry) virtual symmetry applies to systems where re-

sources are asymmetrically shared according to dynamic priorities.

The symmetrisation RG of a transition relation R by a group G is defined by:

RG = {α(s) → α(t) : α ∈ G and s → t ∈ R}.

Intuitively, symmetrising a transition relation can be thought of as the process of

adding transitions which are missing due to asymmetry in the system.

A structure M is said to be virtually symmetric with respect to a group Gv

acting on S if for any s → t ∈ RGv , there exists α ∈ Gv such that s → α(t) ∈ R. In

addition, if for any s → t ∈ RGv , there exists α in Fix(s, Gv) (the largest subgroup

3. Assuming there are no symmetries other than those which permute process ids.
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of Gv which fixes s) such that s → α(t) ∈ R, then M is said to be strongly virtually

symmetric with respect to Gv. If a Kripke structure M is (strongly) virtually sym-

metric with respect to a group Gv, model checking of symmetric properties can be

performed over MGv
[52]. A procedure is given to identify the case where a Kripke

structure is strongly virtually symmetric with respect to a group Gv. This procedure

involves local counting of transitions which are present in RGv but absent in R. Vir-

tual symmetry has been successfully combined with the generic representatives

approach (see Section 3.5.2) for the case where processes are fully interchangeable

with respect to virtual symmetry [182]. This allows symmetry-reduced symbolic

model checking of partially symmetric systems, using the NuSMV model checker

[25] (see Section 2.5).

3.7.3 Automata theoretic approaches

A method involving the symmetry reduction of models with little or no symmetry

uses guarded annotated quotient structures (GQSs) [164, 165]. These structures ex-

tend the annotated quotient structures [55, 56, 74] discussed in Section 3.2. Suppose

M is the Kripke structure of a system, and M′ ⊇ M is obtained from M by adding

transitions (in a similar manner to the process of symmetrisation described above),

so that M′ has more symmetry than M. A guarded annotated quotient structure

for M can be viewed as an annotated quotient structure for M′, with edges la-

belled to indicate which processes can make the transition (in M). Thus the original

edges of M can be recovered from the representation of M′. A temporal property

φ can be checked over the guarded annotated quotient structure by unwinding

the structure, even if φ is not symmetric with respect to the automorphisms used

for reduction. This approach potentially allows large factors of reduction to be ob-

tained since a larger group of automorphisms is used than would be possible using

standard quotient structure reduction. Indeed, experimental results, using the SMC

model checker [166], show how the GQS method is applied effectively to a system

of prioritised processes.

A recent extension to the GQS approach [167] involves (symmetry reduced)

model checking of extended CTL (CCTL) properties (which involve an additional

construct, COUNT, for specifying the number of components in a given state). This

extended logic is more expressive than indexed CTL (see Section 3.2).

Properties are again not restricted to being fully symmetric in an alternative

automata theoretic approach [2], but must be partially symmetric. For example, con-

sider the following property: “if some process is waiting for a resource then it will

get it, provided none of the processes with higher identity will require the resource

in the future”. To check the satisfaction of a formula φ for a model M, with set of

states S, a set of equivalence relations are first computed between states of B, the

Büchi automaton representing φ. If G is a symmetry group of M, one equivalence

relation is defined for every element of G. Two states b1, b2 ∈ B are equivalent with
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respect to α ∈ G if and only if the predecessors and successors of b1 are mapped

to the predecessors of b2 and the successors of b2 respectively (and vice versa). The

quotient graph is then constructed by applying the equivalence relations to the

pairs of states (s, b) ∈ S ×B. The approach is extended [75] to partially symmetric

models by representing the model itself as the synchronised product of a symmet-

ric model and an asymmetric Büchi automaton. The method is illustrated using

well-formed Petri nets.

3.8 Exploiting Data Symmetry

Most of the symmetry reduction methods described in this paper relate to struc-

tural symmetry. However, as discussed in Section 3.3, another form of symmetry,

namely data symmetry, can be exploited to increase the effectiveness of model

checking. In Section 3.3 we discussed the application of scalarsets to exploit data

symmetries.

As software specifications often involve large data structures with vast num-

bers of potential values, it may be impossible to check that properties hold for every

feasible assignment of values to the data set. That is, it may not be possible to check

the properties for every interpretation of the model. It is therefore desirable to only

check representative models for each equivalence class of interpretations. This use

of data equivalence is exploited for software analysis using the Nitpick specifica-

tion tool [104].

3.9 Implementations of Symmetry Reduction

In this section we list the major tools for which symmetry reduction has been im-

plemented. This is not intended as an exhaustive exposition, but as a selective il-

lustration.

3.9.1 Explicit state methods

Murφ

The Murφ specification language is the first language to have been augmented with

the scalarset data type (see Section 3.3). As a result, the Murφ verification system

[40] is the first to implement symmetry reduction using scalarsets [103] and has

inspired many of the other implementations discussed in this section.

An automorphism group for the state-space is determined statically from

the Murφ specification and consists of all permutations of scalarset values. The

lexicographically smallest member of each orbit is used as the orbit representative
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and a suitable canonicalisation function (see Section 3.4.3) is used to map every

state to its orbit representative.

Murφ has been used to verify a number of highly symmetric algorithms,

for example Peterson’s n-process mutual exclusion algorithm [140] (see Section 4.3)

and a lock implementation for the Stanford DASH multiprocessor [117].

A prototype extension of Murφ includes two alternative classes of algorithm

for representative computation [107]. The first class of algorithms transforms each

state encountered during search to a characteristic graph, and derives a canonical

state representative from the canonical form of this graph. The nauty graph isomor-

phism tool [125] is used to perform canonicalisation operations. The other class of

algorithms uses ordered partitions on states, and during canonicalisation considers

only permutations which are compatible with the partitioning of a given state. This

approach mimics the partitioning approach commonly used by graph isomorphism

algorithms [125].

SMC

The Symmetry based Model Checker (SMC) [164, 166] is an explicit state model

checker which has been specifically designed for the verification of highly symmet-

ric systems. Exploiting both process symmetry and state symmetry, in addition to

proving safety properties, SMC is the only model checker that can be used to effec-

tively verify liveness properties under both strong and weak fairness assumptions.

Symmetry is detected via input language restriction (see Section 3.3.3). Variables in

the simple SMC language are either global variables accessed identically by pro-

cesses of the same type, or arrays indexed by process identifiers (index variables)

and manipulated via universal or existential quantification (see the ALL statement

of Figure 3.4).

Model checking is performed using a technique [74] involving annotated

quotient structures (AQSs) (see Sections 3.2 and 3.6.2). The AQS can be constructed

either in advance or on-the-fly. For on-the-fly construction, it is also possible to store

the edges of the AQS during construction. If the edges are not stored considerable

space savings can be made. However, verification time is increased dramatically.

The AQS is constructed incrementally, and the first state of an orbit encoun-

tered during search is used as the representative for that orbit. State symmetries of

a state s are detected by partitioning the processes within each module type into

equivalence classes. A leader process is chosen from each equivalence class, and

only transitions from s made by one of the leader processes are explored.

Reached states are stored in a hash table, and a hashing function is used

which always hashes equivalent states to the same location, and desirably hashes in-

equivalent states to different locations. For a state s, the hashing function returns

Checksum(s) mod b, where b is the hash-table size. The checksum for a state is com-

puted from the values of variables in that state. Each time a state is to be stored
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at a position in the hash-table, a check is made to see if the state is equivalent to

any other state in that position in the table. Two states with differing checksums

cannot be equivalent, so SMC performs the pre-test of comparing checksums be-

fore checking the equivalence of two states. In many cases this quickly shows the

inequivalence of states.

To check whether two states with equal checksums are equivalent, a poly-

nomial time bounded, randomised algorithm is used which runs in quadratic time.

This algorithm sometimes falsely reports that two equivalent states are not equiva-

lent, which may result in the construction of a larger-than-optimal AQS (but is not

unsafe – see Section 3.4.2).

SMC has been used to check the correctness of the link layer part of the IEEE

standard 1394 Firewire protocol [97], and also a resource controller example. The

resource controller example shows that exploiting state symmetry can speed up

verification considerably when the number of processes is high. Recent extensions

of SMC [165, 167] enable partially symmetric systems with priorities to be verified

over a GQS, and properties to be expressed in CCTL (see Section 3.7.3).

SymmSpin

Symmetric SPIN (SymmSpin) [14] is a symmetry reduction package for the SPIN

model checker [92]. To allow process symmetry of a system to be specified, the

scalarset data type [103] is used. As noted in Section 3.3.2, to avoid modifying

the Promela parser, rather than directly extending the Promela language with the

scalarset data type, all of the symmetry information is provided (by the user) in a

separate file. This is referred to as the system description file, and identifies which

variables have scalarset type.

SymmSpin uses a script [84] to modify the verifier generated by SPIN for a

given specification (see Section 2.4.2), adding symmetry reduction via a represen-

tative function which, for a given state, computes an orbit representative for the

state. For a given orbit the representative is the least element with respect to a

specified canonicalisation function or one of the minimal elements computed via

a normalisation function (see Section 3.4.3). During search SymmSpin stores the

original states on the stack and representative states on the heap (see Section 2.3.2).

This means that counter-example traces generated by SymmSpin correspond to

real counter-example traces through the model, rather than the representatives of a

counter-example trace.

Experiments using SymmSpin show that for certain models the factor of re-

duction gained is close to the theoretical limit [14]. These experiments also show

that the combination of symmetry and partial-order reduction can be effective. A

prototype extension of SymmSpin for symmetry reduced model checking under

weak fairness [13] has also been developed, as discussed in Section 3.6.2.

In Chapter 11 we present a symmetry reduction package which follows the
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SymmSpin approach of adding symmetry reduction algorithms to the verifier gen-

erated by SPIN.

Other SPIN-based implementations

An extension to SPIN is proposed [39] to allow symmetry reduction of models of

systems of replicated processes. The specification language Promela is augmented

with two additional keywords, ref and public which identify reference variables and

local variables with public scope respectively. These variables may hold the ad-

dresses of other processes for communication purposes or represent process ids.

Orbit representatives are computed by a process called pseudo sorting in which the

parts of the state-vector corresponding to the individual processes are sorted lexi-

cographically. As the original state-vector ordering depends on the order in which

variables are declared, the efficiency of the sorting algorithm depends on the initial

declaration ordering.

3.9.2 Symbolic methods

SMV

As a symbolic model checker, SMV [128] does not lend itself to symmetry reduction

of the state-space. This is because the symbolic representation of the orbit relation

as a BDD is prohibitively large (see Section 3.4). However, symmetry reduction on

the cases associated with a property to be proved for a system is achieved via the use

of scalarsets [127]. In order to exploit abstraction techniques available with SMV, a

method called temporal case splitting is used to break a given property down into

a parameterised set of assertions. This addresses state explosion, but may result

in an unwanted side-effect, namely case explosion. Declaring variables as scalarsets

enables SMV to sort the assertions into equivalence classes. Specifically, if we have

two assertions φ1 and φ2 where φ2 is obtained from φ1 by some permutation of

scalarset values, then φ1 holds if and only if φ2 holds. Thus for a given param-

eterised set of assertions, it is only necessary to check a representative subset of

assertions. This representative subset is chosen in such a way that every assertion

in the original parameterised set can be mapped to a representative assertion via

permutation of scalarset values.

SYMM

One purpose-built symbolic model checker that exploits symmetry reduction meth-

ods for the verification of CTL specifications is SYMM [27]. SYMM uses a simple input

language based on a shared variable model of computation and allows the user to

give symmetries of the system to be verified.

To avoid computing the orbit relation, symmetry reduction is implemented

using the multiple orbit representatives approach (see Section 3.5.1). SYMM has been
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used to verify the IEEE Futurebus arbiter protocol [96] which controls a number

of prioritised components competing for a resource. Each individual process is de-

scribed via a module. Modules with the same priority can be permuted.

Other symbolic implementations

The RuleBase model checker [8] has been experimentally extended with symme-

try reduction techniques for under-approximation [7] (see Section 3.5.4). Generators

for a symmetry group of the verified system are supplied by the user. The gener-

ators which are genuine symmetries of the system, and under which the checked

property is invariant, are retained by the model checker for exploitation during

search. Experimental results show that RuleBase performs significantly better for

the checking of liveness properties when symmetry reduction is applied. However,

no improvement in performance has been shown for safety properties.

An experimental model checking system, UTOOL [60], has been developed

for the investigation of techniques to combine symmetry reduction with symbolic

representation. This tool uses the input language of Murφ and performs symbolic

verification, exploiting symmetry wherever possible. UTOOL avoids constructing

the orbit relation through the use of generic representatives, or through dynamic

representative computation (see Sections 3.5.2 and 3.5.3 respectively). Though less

efficient, for the purposes of comparison UTOOL also implements symmetry re-

duction using pre-computed multiple representatives (see Section 3.5.1).

3.9.3 Real-time and probabilistic methods

UPPAAL

The real time model checking tool UPPAAL has been extended to exploit symmetry

[78], using scalarsets [103]. As the main purpose of UPPAAL is to perform reachabil-

ity analysis, symmetry reduction using scalarsets is an obvious choice: the original

scalarset theory was developed in the context of reachability analysis rather than

the checking of temporal logic properties. However, the soundness of symmetry re-

duction does not follow directly, since the UPPAAL language is very different from

that of Murφ. Hence soundness is proved separately for UPPAAL.

The implementation of symmetry reduction in UPPAAL involves the devel-

opment of an efficient algorithm for the computation of a canonical representative

for a state. This is particularly challenging since UPPAAL represents sets of clock

valuations symbolically using a difference bounded matrix (DBM).

The scalarsets for a given model define a set of state swaps for the model.

Each state swap is an automorphism of the model, and the set of all state swaps

can be used to compute a canonical state representative. In order to simplify the

computation of representatives, two assumptions are made. The first is that an ar-

ray indexed by scalarsets does not contain elements of scalarset type. The second
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is that a timed automaton in a UPPAAL model may only reset its clock to the value

zero. This assumption ensures that individual clocks can always be ordered using

the order in which they were reset; this is called the diagonal property and leads to a

total ordering on states. Note that the diagonal property is important as, for a given

total ordering, minimisation using state swaps of a general DBM is at least as hard

as testing isomorphism for strongly regular graphs [78]. A state is minimised using

the state swaps defined by scalarsets in the model, together with this total ordering.

This minimised state is a canonical representative for the original state.

Experimental results for Fischer’s mutual exclusion protocol show that ex-

ponential savings can be gained by exploiting symmetry. Further experiments for

an audio/video protocol and for a distributed agreement algorithm are also en-

couraging. Since symmetry reduction in UPPAAL makes use of scalarsets, only total

symmetries can be exploited.

RED

Another (symbolic) real time model checker to support symmetry reduction is RED

[181]. The symmetry reduction algorithm uses relations between pointers to define

an ordering among processes. This ordering is then used to compute a represen-

tative by sorting the associated orbits. Every permutation is constructed via suc-

cessive composition of transpositions. This can lead to an over approximation of

the reachable state-space (the “anomaly of image false reachability”). For this rea-

son using RED with symmetry reduction is only useful for checking that a state is

not reachable. The performance of RED (with symmetry reduction) is compared to

that of Murφ [40] (with symmetry reduction) and SMC [166] for three benchmark

systems [181]. Since it manages to successfully combine symbolic techniques with

symmetry reduction, as the number of processes increases, RED dramatically out-

performs the other model checkers.

PRISM

As with standard symbolic model checking, a symmetry reduction technique for

probabilistic symbolic model checking must avoid construction of the orbit re-

lation (see Section 3.5). PRISM-symm, a prototype extension to the PRISM model

checker, uses an approach based on dynamic representative computation [59] (see

Section 3.5.3) to build symmetry-reduced probabilistic models [115]. This approach

requires initial construction of the unreduced model as a multi-terminal BDD

(MTBDD) which is then reduced using an algorithm based on bubble sort.

Although this approach cannot handle models with intractably large MTBDD

representations, it is useful in the case where it is possible to build but not verify

properties of an unreduced model. This situation occurs due to the additional space

overhead associated with probabilistic verification algorithms over standard model
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checking algorithms. Experimental results for four case studies [115] show that this

symmetry reduction technique can speed up model checking and facilitate verifi-

cation of larger systems. Surprisingly, in certain cases the MTBDD for the quotient

model is larger than the MTBDD for the unreduced model, due to loss of regularity

as a result of permuting rows of the probabilistic transition matrix.

An alternative approach to exploiting symmetry in probabilistic model

checking uses generic representatives (see Section 3.5.2) [45]. A fully symmetric

PRISM specification is automatically translated into generic form using the GRIP

(generic representatives in PRISM) tool. The resulting specification can then be di-

rectly checked using PRISM. This method avoids constructing an MTBDD for the

original model, so can be applied to larger examples than the techniques of [115].

3.9.4 Direct model checking

dSPIN

An on-the-fly state-space exploration algorithm exploiting both process and heap

object symmetry in Java programs has been implemented in the dSPIN model

checking tool [99]. For dynamic systems modelled using dSPIN, the number of state

components may grow along an execution path. Therefore, rather than applying

symmetry reduction with respect to a fixed permutation group, a family of groups

is considered. A suitable group is selected at each execution step. Orbit representa-

tives are calculated using a similar set of heuristics to those used by SymmSpin.

Bogor

A symmetry reduction technique has been developed for the Bogor model check-

ing framework [148], which is used to model check Java programs. The symmetry

reduction methods used in Bogor [149] are based on those implemented in dSPIN,

but use more efficient heuristics [100] for state-vector sorting.

States contain both thread and heap information and these different parts of

the state (the thread and the heap state) are sorted separately. Threads are sorted by

comparing associated program counters which does not always produce a unique

ordering, but heap states can be sorted in a canonical way. For every heap state s,

there is an associated set of memory locations, l1,s, l2,s, . . . , lr,s say. It is possible to

sort the indices of the memory locations (for a given s) by ordering the traces asso-

ciated with each pair (s, li,s), 1 ≤ i ≤ r. The trace for pair (s, li,s) is the smallest of

all of the incoming chains (pairs of thread identifiers and variable sequences) which

can themselves be ordered in a natural way. The sorting of the location indices pro-

duces a strictly ordered list of integers. If G is a symmetry group acting on the heap

elements, then the ordered list associated with state s is identical to the correspond-

ing list for any s′ in the same orbit of G as s. Thus the index sorting function is a

canonicalisation function (see Section 3.4.3).
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VeriSoft

The VeriSoft model checker [68] verifies C code directly via a stateless search. As

such, the symmetry reduction methods implemented in VeriSoft [69] rely on equiv-

alences between sequences of transitions rather than between states.

In order for equivalent transitions to be identified, labels are added to tran-

sitions, so the model is a labelled transition system. Two transitions are equivalent

with respect to a given symmetry group G if their respective labels are equivalent

with respect to G. This concept can be easily extended to sequences of transitions.

Symmetry reduction is used to prune transitions on-the-fly. If, for some state s and

α ∈ G, transitions a and α(a) are enabled at s and α fixes s, then only one of a or

α(a) need be explored. This is similar to the notion of state symmetry described in

Section 3.6.2. Given that s is not stored explicitly, it is not straightforward to check

that α fixes s. However, assuming that α fixes the initial state s0, if w is the sequence

of transitions leading from s0 to s, then it can be shown that α(s) = s if and only if w

and α(w) are equivalent with respect to a partial-ordering of transitions. Thus, by

combining symmetry reduction with partial order reduction techniques (see Sec-

tion 2.6.3) the problem of checking that α(s) = s is overcome.

Other direct model checking implementations

A limited form of symmetry reduction is applied [118] within the second gener-

ation Java PathFinder tool (JPF2) [179] (see Section 2.5) which model checks Java

bytecode directly. Like dSPIN, JPF2 is capable of handling dynamic structures (al-

though, unlike dSPIN, data is not allocated dynamically). States are composed of a

static area, a dynamic area and a thread area, each of which is represented as an

array. Two states are considered to be equivalent if a permutation applied to the

static and dynamic area arrays of the first state gives the corresponding arrays of

the second. A canonicalisation function is used which imposes a simple ordering

(calculated during model checking) on the static and dynamic areas of the states.

Summary

Symmetry reduction techniques involve avoiding the exploration of areas of the

state-space which are symmetrically equivalent to those already visited. We have

given an overview of symmetry reduction techniques for model checking and how

they relate to other reduction approaches. We have also surveyed implementations

of these techniques, both for existing model checkers (e.g. SPIN and Murφ) and

purpose-built checkers (e.g. SMC). This survey identifies three clear areas for re-

search, which we address in the remainder of the thesis.

The identification of symmetries involves finding symmetries of a model

without building the model explicitly. Detection of full symmetry between iden-
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tical components can be achieved by annotating a specification with the scalarset

data type, or by appropriately restricting the input language. On the other hand,

with a shared variable model of computation, component symmetries may be de-

rived via analysis of the communication structure of a high level specification. In

Chapters 7 and 8 we develop fully automatic techniques for the detection of ar-

bitrary component symmetries under a message passing model of computation,

based on communication structure analysis.

The crux of exploiting symmetry in explicit state model checking is the (con-

structive) orbit problem: it must be solved efficiently, or a good approximate so-

lution must be available. In Chapters 9 – 11 we present exact and approximate

strategies for solving the COP for an arbitrary group of component symmetries.



Chapter 4

Analysing Symmetry in Simple Concurrent Systems

In this chapter we introduce a software tool, SPIN-to-GRAPE, which we have de-

veloped to allow comprehensive analysis of small state-spaces using the computa-

tional graph theoretic package GRAPE (see Section 3.1.6). We apply SPIN-to-GRAPE to

five example specifications, in each case highlighting the disadvantages of specify-

ing symmetry using scalarsets (with SymmSpin) or via input language restriction

(with the SMC language). For the first three examples we emphasise the manual

effort which may be required at the specification level to specify symmetry. The

subsequent examples exhibit fairly complex symmetry groups which are beyond

the scope of these techniques. We also use the examples to illustrate the change in

symmetry resulting from modifications to the specifications.

These examples motivate the development of automatic symmetry detection

techniques in Chapters 7 and 8, which can handle arbitrary types of structural sym-

metry and do not require annotation at the specification level by the user.

4.1 SPIN-to-GRAPE

The SPIN-to-GRAPE tool uses SPIN to construct the state-space associated with a

Promela specification and produces a directed graph representation which can be

input to the graph theoretic package GRAPE. GRAPE can then be used to compute

the automorphism group of the state-space. We briefly describe the algorithm used

by SPIN-to-GRAPE.

Among the options which SPIN provides for running verifications on Promela

specifications is the verbose compile-time directive. This option writes every step of

a verification run to standard output. Running a verification to search for invalid

end-states on a deadlock-free specification with the verbose option, and no partial-

order reduction (or other options which change the structure of the state-space),

results in a textual description of the Kripke structure associated with the specifica-

tion. In order to manipulate the Kripke structure as a directed graph using GRAPE

we have designed a tool, SPIN-to-GRAPE, which takes relevant verbose output and
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7: Down - program non-accepting [pids 5-0]
New state 3
Pr: 5 Tr: 5
Pr: 5 Tr: 6
Pr: 5 Tr: 7
7: sv_save

7: proc 5 exec 7, 10 to 10, D_STEP non-accepting [tau=0]
8: Down - program non-accepting [pids 5-0]
Stack state 1
8: Up - program
sv_restor

8: proc 5 reverses 7, 10 to 10, D_STEP [abit=0,adepth=0,tau= 0,0]
Pr: 4 Tr: 5
7: sv_save

7: proc 4 exec 5, 10 to 10, D_STEP non-accepting [tau=0]
8: Down - program non-accepting [pids 5-0]
New state 4
Pr: 5 Tr: 5
Pr: 5 Tr: 6
Pr: 5 Tr: 7
8: sv_save

8: proc 5 exec 7, 10 to 10, D_STEP non-accepting [tau=0]
9: Down - program non-accepting [pids 5-0]
New state 5

Figure 4.1: Example of verbose output produced by SPIN.

produces a description of a graph for GRAPE. Figure 4.1 shows a fragment of verbose

output corresponding to the mutual exclusion specification of Figure 2.6.

The SPIN-to-GRAPE tool is a PERL [180] program based on Algorithm 2,

which traces the steps taken by SPIN when performing the state-space search. The

algorithm uses a separate stack for each process in the model. Every time a line

in the input file (created from the verbose output) indicates that a process has ex-

ecuted a statement (for example the line 7: proc 5 exec 7 . . . in Figure 4.1),

the current state number is pushed on to the stack for that process. When a line of

input indicates that a process has reversed (when search backtracks, e.g. the line

8: proc 5 reverses 7 . . . in Figure 4.1), a value is popped from the stack of

that process, and the current state number is set to this value. Every time a line of

input is found which specifies that a new or old state has been reached (indicated

by New state x or Stack state x respectively, where x is a state number), a

line of GRAPE code is generated specifying that a transition should be added to the

graph. The file produced as output from SPIN-to-GRAPE can be loaded into GAP, and

the AutGroupGraph() function of GRAPE used to find the automorphism group

of the state-graph. Note that the graph representation produced by SPIN-to-GRAPE

does not include information about the values of variables at each state: each node

of the graph is represented by an integer.

Though SPIN-to-GRAPE is useful for working with Promela specifications

that exhibit small state-spaces, the complexity of the nauty algorithm means that

it is not generally feasible to analyse models with more than around 15,000 states

(though the performance of nauty in practice depends intimately on the structure

of the input graph [125]).
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Algorithm 2 Algorithm used by SPIN-to-GRAPE to construct the state-space of a
model from a SPIN output file

open input and output files
current := 1
for each line in input file do

if line signifies new state s then

output edge current → s
current := s

else if line signifies old state s then

output edge current → s
else if line indicates process p executes then

push current on stack for p
else if line indicates process p reverses then

current := pop from stack for p
end if

end for

close input and output files

To accompany SPIN-to-GRAPE we have written a GAP function for com-

puting quotient state-spaces – QuotientKripke( Γ, G) . This function takes a di-

rected graph Γ representing a Kripke structure M, together with a subgroup G of

Aut(M), and returns a directed graph representing the quotient Kripke structure

MG. As discussed in Section 3.2, the theoretical minimum size of |SG| (the number

of states in the quotient structure) is |S|/|G| (where |S| is the number of states in the

original structure). The QuotientKripke() function allows us to determine, for

small models, the factor of reduction available by exploiting symmetry in practice.

4.2 Simple Mutual Exclusion Example

Recall the simple mutual exclusion example, used for illustration in Chapters 2

and 3. The Promela specification for mutual exclusion with five processes is shown

in Figure 2.6. A modified specification, annotated with scalarsets for use with

SymmSpin, is given in Figure 3.3 and discussed in Section 3.3.2. A version of the

specification in the SMC language is given in Figure 3.4 and discussed in Sec-

tion 3.3.3.

4.2.1 Comparing the original specification with the SymmSpin version

In the initial specification (Figure 2.6), a process in its trying state is either blocked

(if some process is in the critical state), or can move to the critical state. In the mod-

ified specification (Figure 3.3), a trying process can always make a transition to

check if the critical section is free, moving to the critical state if it is, remaining

in the trying state otherwise. Figure 4.2 shows the model for the modified mutual
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Figure 4.2: Mutual exclusion Kripke structure associated with the SymmSpin specifi-
cation.

exclusion protocol when restricted to two processes.1 The semantic difference is

illustrated by the self-loop transitions in Figure 4.2 which are not present in Fig-

ure 2.3, the Kripke structure for the original specification. The re-modelling of the

protocol has resulted in a more abstract underlying model which simulates the orig-

inal (it adds behaviour). To verify that the symmetry reduction process preserves

this behaviour, observe the self-loop transition in Figure 4.3, the quotient Kripke

structure for the modified protocol under symmetry. It is difficult to see how this

semantic difference could be avoided when using scalarsets to specify symmetry.

The SymmSpin specification is also more complex than the original. There

are several additional variables: for each user process there is a flag to test whether

the critical section is empty, a loop counter and an id parameter. The init process

also uses a loop counter. This added complexity makes the specification more diffi-

cult to understand and increases the size of the state-vector for the associated model

from 36 to 56 bytes. Through careful use of hidden variables (see Section 2.4.1) it is

possible to reduce the state-vector to the original size, but this requires significant

additional manual effort and expert knowledge of Promela. Furthermore, hidden

variables can easily be misused, as SPIN does not check for cases where a hidden

variable actually contains relevant state information [92].

1. The local variables i, j and critical empty are not included in the figure as i is a constant process
identifier, and j and critical empty are only manipulated within a d step block, being reset to default
values before the end of this block.
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Figure 4.3: Quotient structure associated with the SymmSpin specification.

4.2.2 SMC specification

The SMC language is well suited to specifying this example (see Figure 3.4). The

condition which guards the transition of a process to the critical state is expressed

using the ALL quantifier, which asserts that a boolean expression must hold for

every process of a given module type.

4.3 Peterson’s Mutual Exclusion Protocol

Although useful for illustration, the mutual exclusion example discussed above is

very abstract, and does not specify how exclusive access to the critical section by

contending processes is guaranteed. We now discuss a more realistic protocol.

In Peterson’s n-process mutual exclusion protocol [140], entry to the critical

section is gained by a single process via a series of n − 1 competitions. For each

competition there is at least one loser, thus the mutual exclusion condition is satis-

fied since at most one process can win the final competition.

This protocol is used as an example for symmetry-reduced verification with

the SymmSpin tool [14]. We discuss the SymmSpin specification, then present an

alternative, semantically equivalent Promela specification which uses a smaller

state-vector and is easier to understand. Though still symmetric, scalarsets cannot

be used to directly specify symmetry in this enhanced specification. However, an

equivalent SMC specification can be written.

We then present a more realistic specification of the protocol, and use SPIN-

to-GRAPE to verify that the underlying model of this specification is symmetric. We
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show that neither scalarsets nor the SMC language can specity the inherent (full)

symmetry for this example.

4.3.1 SymmSpin specification

We have obtained the Promela specification and accompanying system description

file which were used for experiments with SymmSpin (personal communication, D.

Bosnacki, 2003).Adapted versions of these files are given in Appendix A.1.12 The

SymmSpin specification is based on a presentation of the algorithm in [123].

The system description file defines a PID scalarset type of size 3. SymmSpin

regards global declarations as being part of a virtual proctype called :system: .

For this example the :system: proctype includes two declarations which involve

scalarsets. The flag array is indexed by variables of type PID , and its elements are

bytes. This array is used to track the status of each process in the competition. Spec-

ifying that the index type of this array is PID indicates that the position of its el-

ements (but not their values) should be affected by any permutation of the PID

range. Additionally there is a global array turn which is indexed by the byte type,

and contains PID values. Thus a PID permutation should affect the values of el-

ements of this array, but not alter their positions. The system description file also

states that the user proctype has two local PID variables.

Using SPIN-to-GRAPE to compute the symmetry group G of the state-space

associated with this specification confirms that this use of scalarsets identifies all

symmetries of the model. The symmetry group here is isomorphic to S3, the sym-

metric group on three points (see Definition 11). Furthermore, GRAPE can be used

to show that the quotient state-space constructed by SymmSpin is identical to that

computed using the QuotientKripke() function.

4.3.2 A simpler, equivalent specification

If we do not use scalarsets to annotate the Peterson specification, and therefore are

not concerned with the restrictions of Definition 22 (see Section 3.3.2), we can write

a simpler Promela specification of the protocol, as shown in Appendix A.1.2.

In this specification the user proctype uses the built-in pid variable (see

Section 2.4.1) rather than being parameterised with an identifier. Although this

means the flag array must be declared with size 4 rather than 3 (since values of the

pid variable start at 1) and so one value of this array is wasted, use of the built-in

identifier instead of a parameter reduces the state-vector size by one byte for each

process. Entry to the critical section is now guarded by a single boolean expression

rather than a loop. This is easier to read, and avoids the inclusion of loop counter

variables in the state-vector. The init process is also simplified. Consequently, the

2. We have applied some source code optimisation techniques (see Section 2.6.1) in order to compare
the example fairly with an SMC specification and an alternative Promela specification.
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simpler specification uses a 32 byte state-vector, whereas the original state-vector

requires 44 bytes. We were not able to obtain a reduction in the state-vector for the

original specification using hidden variables.

To check that the original and simplified specifications have the same un-

derlying model we used SPIN-to-GRAPE to generate both state spaces as directed

graphs, and GRAPE to confirm that these graphs are isomorphic. For this compar-

ison we disabled the data-flow and statement merging optimisations provided by

SPIN (see Section 2.4.3), in which case both models have 11,318 states.

It is interesting to note that applying data-flow optimisation and statement

merging to the original specification results in a reduction to 6,143 states, whereas

applying them to the simplified specification results in a model of just 2,636 states.

Thus the simplification simultaneously reduces the state-vector size, and increases

the factor of reduction obtained using the SPIN optimisations before symmetry re-

duction is even applied. Using SPIN-to-GRAPE we find that the quotient structure

associated with the simplified specification (with optimisations) has 494 states.

4.3.3 SMC specification

An SMC specification of the protocol is given as Appendix A.1.3. The specification

is designed to be semantically equivalent to the Promela examples, and SMC ver-

ifies that the associated model also has 11,318 states. As in our enhanced Promela

specification, the need for a loop to compute the predicate that guards entry to the

critical section is avoided via the SMC ALL quantifier.

Although the SMC specification is difficult to read, this is due to the guarded

command syntax of the language, rather than the method by which symmetry is

handled.

4.3.4 A more realistic specification

The authors of [14] note that their specification uses atomicity in a somewhat unre-

alistic manner:

In our implementation the global predicate that guards the entry in

the critical section is checked atomically. As this guard ranges over

all process indices, the atomicity was necessary due to the restrictions

on statements that can be used such that the state-space symmetry is

preserved.

Indeed, if the loop in the SymmSpin specification was not executed within

an atomic statement, the boolean variable ok would be updated sequentially with

respect to the process flags in a fixed order. This order would destroy symmetry

between the processes.

In Appendix A.1.4 we give a Promela specification of the protocol where the

predicate ok is computed non-atomically, and the process flags are considered in an
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arbitrary order. This is achieved by each process using a local array, checked, indexed

by process identifiers, to track whether flag[j] has been considered for each 1 ≤ j ≤

n. Making the order of this computation arbitrary means that the model checker

will consider every possible ordering. This makes no assumptions about the order

which an implementation of the protocol would use, making the specification very

general. Additionally, not imposing an execution ordering preserves symmetry in

the underlying model. The state-space associated with a two-process version of this

specification is small enough that we can use SPIN-to-GRAPE to identify a symmetry

group of order 2.

As noted in [14], the scalarset restrictions do not allow us to specify sym-

metry in this more realistic specification. Also, we cannot write an equivalent SMC

specification since the language does not allow an update to refer to a specific pro-

cess of a given module type. This example shows that even if there is full symmetry

between identical processes, it may not be possible to specify this symmetry using

scalarsets or a restricted input language.

4.4 A Prioritised Resource-Allocator

We now model a system which consists of n client processes, each of which requires

access to a resource, and a resource allocator process which takes requests from the

clients wishing to use the resource, granting access to one client at a time. Each

client has a fixed priority level, and when faced with multiple requests the resource

allocator grants access to the requesting client with the highest priority. When sev-

eral requests are made with the same priority the resource allocator chooses non-

deterministically which to satisfy. The system has a star topology, where the resource

allocator process is the central node and all of the client processes communicate with

this process only. The model is similar to an example used for symmetry reduction

in partially symmetric systems using GQSs [165] (see Section 3.7).

Communication between a client and the resource allocator is controlled by

a basic protocol. A client sends a request message to the allocator. When the allo-

cator decides to allow this client access to the resource it sends back a confirmation

message. Once the client finishes using the resource it sends a finished message to

the allocator. There is one (asynchronous) communication channel between the re-

source allocator and each client. In order to allow a comprehensive investigation of

the state-space of the associated specification using SPIN-to-GRAPE, it is important

that the number of states is kept to a minimum. To reduce the number of states re-

sulting from the interleaving of events internal to each process, atomic statements

are used so that each execution step taken by each process includes a send or receive

event (this state-space reduction is also suggested in [69]). An additional channel,

nullchan, is used as a default value for local channel variables. This channel is de-

clared with capacity 0 in order to minimise the state-vector.
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A Promela specification of the system with seven clients and three levels

of priority is given in Appendix A.2.1. There are two, three and two clients with

priority levels 0, 1 and 2 respectively.

4.4.1 Analysis of symmetry in the resource allocator specification

The model M associated with the Promela specification P with seven clients, as

described above, has 1,921 states. Using our combination of SPIN, SPIN-to-GRAPE,

GAP and GRAPE we find that |Aut(M)| = 24. It is clear that these automorphisms

arise from the interchangeability of clients with the same priority level, and we can

use GAP to show that Aut(M) is isomorphic to a direct product (see Definition 14)

of symmetric groups:

Proposition 1 Let M be the model associated with the resource allocator specifi-

cation described above. Then Aut(M) ∼= S2 × S3 × S2.

We used GAP to construct a group G = S2 × S3 × S2 (GAP provides functionality to

compute the direct product of permutation groups). The IsomorphismGroups()

function was used to show that Aut(M) ∼= G. Each symmetric group consists of

automorphisms which permute the identifiers of one set of similarly prioritised

processes. The QuotientKripke() function shows that |MAut(M)| = 337.

In general, for a resource allocator specification with n processes and k pri-

ority levels (k, n > 0), if mi denotes the number of clients which have priority level

i (0 ≤ i < k, ∑
k−1
i=0 mi = n) then it is clear that Aut(M) will be isomorphic to the

group ∏0≤i<k
mi>1

Smi
, where ∏ denotes the direct product.

4.4.2 Re-modelling for SymmSpin and SMC

Symmetry in this example can be handled using scalarsets or input language re-

striction by separating the client processes into three distinct process types, client0,

client1 and client2, according to their priority level. To specify the example using

scalarsets for use with SymmSpin, three separate scalarset types can be declared.

The client proctype declarations will be essentially the same, and the resource allo-

cator process will also involve duplicated code.

We have specified the example using SMC in Appendix A.2.2. Due to the

major differences between the Promela and SMC languages, the SMC specification

does not generate exactly the same state-space as the Promela specification (the

SMC state-space is larger). However, both specifications model the same essential

behaviour. Note that the three client modules in the SMC specification are almost

identical, and that statements of the resource allocator module are separated into

three similar blocks, one for each client module type.
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Figure 4.4: Inter-process sharing in the resource allocator specification.

4.4.3 Sharing between client processes

No communication between client processes takes place in our model of the re-

source allocator. Consider an alternative specification where client processes can

share the resource. If client i is configured to share with client j then on receiving a

confirmation message (i.e. gaining access to the resource), client i uses the resource

then checks to see if client j has sent a request to the resource allocator. If this is the

case, client i intercepts the request and gives client j access to the resource. When

client j finishes using the resource it sends a finished message as usual. Client i inter-

cepts this finished message, and sends its own finished message back to the resource

allocator. Appendix A.2.3 shows a Promela specification of the resource allocator

system where client 3 shares with client 4, client 4 with client 5, and client 5 with

client 3.

Let M′ denote the model associated with this specification. Our automated

setup shows that |Aut(M′)| = 12, thus the degree of symmetry in the Kripke struc-

ture is reduced by enabling sharing between certain processes. This is because there

is now a cyclic relationship between clients 3, 4 and 5 due to the configuration of the

additional sharing functionality. This cyclic relationship is illustrated by Figure 4.4.

We can use GAP to show that Aut(M′) ∼= S2 × C3 × S2, where C3 is the cyclic group

of order 3 (see Definition 12).

It is not possible to specify this product of symmetric and cyclic groups using

SymmSpin or SMC as cyclic symmetries cannot be handled by either technique.

The resource allocator example illustrates that while priority information

can be conveniently embedded within a specification, in order to specify symme-

try between components of the same priority level using SymmSpin or SMC it is

necessary to explicitly partition distinctly prioritised process into separate process

types. This results in duplicated code, and makes the task of adding or removing

priority levels laborious. Additionally, altering the communication structure to al-

low inter-process sharing changes the nature of symmetry in the associated model.

The resulting symmetry group cannot be specified using either technique.
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Figure 4.5: Flow of control in a three-tiered architecture.

4.5 A Three-Tiered Architecture

A common software engineering design pattern for distributed systems is the three-

tiered architecture. Components in such an architecture are separated into three lay-

ers, a layer of clients, a layer of servers and a layer of data storage systems. The typ-

ical flow of messages for such a system is shown in Figure 4.5 (adapted from [171]).

This pattern is common in the e-business domain, where customers buy products

or make bookings over the Internet. A set of servers at various geographical loca-

tions deal with customer (client) requests and communicate with a central (possibly

replicated) database.

Our next specification is of a simple three-tiered system consisting of three

process types: client, server and database. Each client process is parameterised by an

input channel name, and a channel name associated with a server process. The server

processes are parameterised by two channel names. The first of these channels is

used to receive requests from client processes, and the second to send queries to

the database. A client process loops continuously, sending a request message and a

reference to its incoming channel to the server to which it is connected, and wait-

ing until a result message is received on its incoming channel. Similarly each server

process continuously repeats the actions of receiving a request and channel refer-

ence from a client, sending a query to the database and receiving data, then sending

a result back to the client on the given channel. The database process continuously

receives queries from the servers and returns data. All the channels in the specifi-

cation are synchronous, to minimise the state-space sufficiently to allow us to use

SPIN-to-GRAPE for analysis.

The configuration we consider consists of a database, three servers, and

eight clients. There are three blocks of clients, two of size three, one of size two.

Each block is associated with a distinct server. The Promela specification is given

as Appendix A.3 and the topology illustrated by Figure 4.6.

4.5.1 Analysis of symmetry in the three-tiered specification

Let P denote the three-tiered specification of Appendix A.3, and M the associated

model. The model is small enough to allow comprehensive analysis using our au-
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Figure 4.6: Topology of the three-tiered architecture specification.

tomated setup. This configuration of processes is interesting as there are multiple

servers as well as multiple clients, and the tree of processes is not perfectly bal-

anced, a feature which is reflected in the symmetry of the underlying model.

We have used our automated setup to prove the following result:

Proposition 2 Let M be the model associated with the three-tiered specification

described above. Then Aut(M) ∼= (S3 ≀ S2) × S2.

Here S3 ≀ S2 denotes the outer wreath product of S3 and S2 (see Definition 16). As

for direct products, GAP provides functionality for computing the wreath product

of two permutation groups.

The original Kripke structure has 2,021 states. The QuotientKripke()

function reveals that the quotient structure with respect to Aut(M) has 107 states.

This is a significant factor of reduction which, for realistic sizes of model, could

prove extremely effective in combatting state-space explosion. However, the kind

of symmetry exhibited by this specification cannot be specified using scalarsets or

input language restriction.

Intuitively, the reason that Aut(M) ∼= (S3 ≀ S2) × S2 is that there are two

blocks of three identical client processes (giving rise to the subgroup S3 ≀ S2), and a

single block of two client processes (giving rise to the subgroup S2). Consider the

model M associated with an arbitrary configuration of this three-tiered system. Let

k be the maximum number of clients connected to any server in the configuration,

and let mi denote the number of servers which are connected to i clients for each

1 ≤ i ≤ k. Since, for any i > 0, Si = Si ≀ S1, the above discussion and result clearly

generalises to give:

Aut(M) ∼=
(

∏
1≤i≤k
mi 6=0

(Si ≀ Smi
)
)

.

In [106], the automorphism group of an arbitrary rooted tree is described,

which could be used to generalise the above argument to systems with more than

three tiers.
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Figure 4.7: A 4-dimensional hypercube.

4.5.2 Mixed modes of communication in the three-tiered specification

As noted above, all communication in our three-tiered architecture specification

is modelled using synchronous channels, so that messages are passed via a hand-

shake between sender and recipient, with no buffering. Consider a modified ver-

sion of the specification where the channel which client8, client9 and client10 use

to send requests to server3 (channel cl se 2) is changed to be an asynchronous

buffer with size 1.

For the Kripke structure M associated with the original specification we

have Aut(M) ∼= (S3 ≀ S2) × S2. Let M′ be the Kripke structure associated with the

altered specification. Analysis using SPIN-to-GRAPE reveals that Aut(M′) ∼= S3 ×

S3 × S2, which is smaller than (S3 ≀ S2) × S2. This is because the modified channel

means that it is no longer possible to permute server processes 2 and 3, and their

associated channels.

4.6 Message Routing in a Hypercube Network

A popular topology used in the implementation of switch-based multi-computers

is the hypercube [171]. The following definition is adapted from [173]:

Definition 25 The n-dimensional hypercube (where n ≥ 1) is a graph G = (V, E)

where

• V = {0, 1}n

• E = {{x, y} : x, y ∈ V differ in exactly one bit}.

A 4-dimensional hypercube can be displayed graphically as two cubes, as

shown in Figure 4.7. In a switch-based multi-computer using a hypercube topology,

messages are routed between the processors. Algorithm 3 is a simplified version of

a routing algorithm described in [61]. For xi ∈ {0, 1}, we use xi to denote 1 − xi

(the complement of xi). Each node has an n-bit process identifier. On receiving a

message, a node in the hypercube checks the id of the intended recipient. If this is
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Algorithm 3 Basic algorithm for message routing in a hypercube network.

Behaviour of node x = (x1, x2, . . . , xn):
while true do

receive message destined for node y = (y1, y2, . . . , yn)
if x = y then

process message
choose a new destination node y

end if

choose i ∈ {1, 2, . . . , n} such that xi 6= yi

forward message to neighbour (x1, . . . , xi, . . . , xn)
end while

the same as its own id then it processes the message, and chooses a new destina-

tion. Otherwise (or after a new destination has been chosen) the node forwards the

message to a neighbour whose id has one more bit in common with the id of the

intended recipient.

In our final example we model a system where messages are routed through

a hypercube network using Algorithm 3. Appendix A.4.1 gives the Promela spec-

ification for message passing in a 3-dimensional hypercube. The processes are de-

fined via a node proctype, parameterised by an input channel and n output channels

(where n is the dimension of the hypercube), each of which is the input channel for

a distinct neighbour. Global variables record the destination and current position

of the message. Communication is achieved via a channel for each node in the hy-

percube, and the init process sends the first message to a non-deterministically

chosen node. To ensure that the state-space of the model is small enough to analyse,

only one message is passed through the network at a time.

In our specification the identifier of a node is an integer i in the range

1, 2, . . . , n. This represents the n-bit vector i − 1 (viewed as a binary number). The

subtraction is necessary since SPIN assigns process ids starting from 1 rather than

0 (which is reserved for the init process). Given a message destined for node pro-

cess k, node process i computes the bitwise exclusive-or of k − 1 and i − 1. If there is

a 1 in position m of the result then the message can be forwarded to the neighbour

of i with id j such that i − 1 and j − 1 (viewed as binary numbers) differ only bit m.

The node process non-deterministically chooses one such suitable neighbour.

4.6.1 Analysis of symmetry in the hypercube specification

The automorphism group of an n-dimensional hypercube is well understood,

and is derived in [76]. For any permutation α ∈ Sn, we define the action of α

on x = (x1, x2, . . . , xn) by α(x) = (xα(1), xα(2), . . . , xα(n)). For each 1 ≤ i ≤ n,

define the ith complementation permutation γi by γi(x) = (x1, . . . , xi, . . . , xn). Let

Kn = 〈γ1, γ2, . . . , γn〉, the group generated by all combinations of the γi. The au-

tomorphism group of the n-dimensional hypercube is the semi-direct product of Sn
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and Kn, denoted Kn ⋊ Sn (see Definition 18, Section 3.1.4). It can be shown that

|Kn ⋊ Sn| = |Kn| × |Sn| = 2n × n!.

When analysing the nature of the symmetry in our hypercube specification

we would have liked to have used a configuration with at least four dimensions

as a case study. However, the state-space of even the 4-dimensional configuration

proved too large to analyse using our setup (1.6× 107 states) so we restrict ourselves

to the 3-dimensional configuration (a cube). This problem demonstrates the rapid

explosion of a state-space, and hence the need for techniques such as symmetry

reduction.

Proposition 3 Let M be the model associated with the 3-dimensional hypercube

specification described above. Then Aut(M) ∼= K3 ⋊ S3.

Again we have proved this result using our automated setup. The original

Kripke structure has 15,409 states. Using QuotientKripke() we find that the re-

sulting quotient structure has 411 states. Again the factor of reduction is encourag-

ing. As with the three-tiered architecture example, the kind of symmetry exhibited

by this specification cannot be specified using existing techniques.

Our specification of message routing in a hypercube involves arithmetic op-

erations on variables which have pid type. Process ids are used as operands in

bit-wise exclusive-or operations in order to determine how the packet should be

routed. Approaches to exploiting symmetry usually prohibit these kind arithmetic

operations, e.g. Condition 2 of Definition 22 prohibits this use of scalarset vari-

ables. This example shows that restrictions on the use of process identifiers in arith-

metic operations are not always necessary for the preservation of symmetry. In Sec-

tion 7.6.2 we discuss the problem of automatically identifying cases where process

ids can be used as operands to arithmetic expressions without breaking symmetry.

Let M be the model associated with a configuration of the hypercube speci-

fication with n dimensions for some n ≥ 1. It would seem likely, from the previous

discussion, that the above result generalises to give Aut(M) ∼= Kn ⋊ Sn.

4.6.2 Message routing in a hypercube with a fixed initiator

Recall that in the hypercube specification the packet is first sent non-deterministic-

ally by the init process on one of the channels in the system. Such non-

determinism in a model can often lead to a blow up of states, and a common ap-

proach to improve efficiency would be to remove this non-determinism. Indeed,

altering the specification so that the init process always sends the packet on the

channel associated with node process 1 results in a model with 8,866 states, com-

pared with 15,409 states in the original model.3

3. Applying this modification to the 4-dimensional specification results in a reduction from 1.6× 107

to 8.9× 106 states. However, the smaller state-space is still too large for analysis using SPIN-to-GRAPE.
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SPIN-to-GRAPE shows that the resulting automorphism group of the altered

model M′ is isomorphic to a subgroup of the automorphism group of a cube. More

specifically, Aut(M′) ∼= stabK3⋊S3
(0), where stabK3⋊S3

(0) is the stabiliser of node 0 =

(0, 0, 0) (see Definition 9, Section 3.1.2).

Interestingly, the QuotientKripke() function shows that the quotient

structure corresponding to M′ has 1,669 states, whereas that corresponding to M

has size 411. For this example, although removing non-determinism from the spec-

ification results in a reduction of size in the Kripke structure, the corresponding

reduction in symmetry means that the quotient structure of the altered model is

actually larger than the quotient structure of the model with no alterations.

Summary

We have introduced SPIN-to-GRAPE, a software tool which allows automorphisms

of small state-graphs associated with Promela specifications to be explicitly com-

puted. We have used SPIN-to-GRAPE to study five Promela examples. The first three

examples highlight disadvantages of using scalarsets or input language restriction

(via the SMC language) to specify symmetry. Our modified specification of Peter-

son’s mutual exclusion protocol is an example for which there is full symmetry

between components, and yet neither SymmSpin nor SMC can be used to express

it. The final two examples exhibit fairly complex symmetry groups which decom-

pose as wreath or semi-direct products of subgroups. This type of symmetry cannot

be specified using scalarsets or the SMC language.

By making modifications to the example specifications and analysing the

corresponding changes in symmetry in the underlying models, we have observed

that the automorphism group of a model depends on the communication struc-

ture of its high level specification. In addition, we have shown that modifying a

specification may reduce its state-space but result in a loss of symmetry, so that the

corresponding quotient model is larger than the quotient model associated with

the original specification.



Chapter 5

Channel Diagrams

In Chapter 4 we identified a relationship between the communication structure of

a Promela specification and the automorphisms of its associated model. In the re-

source allocator specification, allowing client processes to communicate with each

other in order to share the resource reduces symmetry in the underlying model;

making one of the communication links asynchronous in the three-tiered architec-

ture specification destroys some of the original symmetry, and fixing the initiating

process in the 3-dimensional hypercube specification results in a corresponding re-

duction in symmetry.

One formal notion of the communication structure of a Promela specifica-

tion is its channel diagram [157]. In this chapter we show for each of the example

specifications discussed in Chapter 4 that there is a correspondence between au-

tomorphisms of the channel diagram and automorphisms of the Kripke structure

associated with a Promela specification. This correspondence is the motivation for

the automatic symmetry detection techniques developed in Chapters 7 and 8, based

on static channel diagram analysis.

5.1 Channel Diagram Associated with a Promela Specification

The channel diagram [157] associated with a Promela specification is a graphical

representation of its channel-based communication structure. The definition we

present here is adapted from the original presented in [157].

Given a Promela channel declaration chan c = [ a] of {T1, T2,..., Tk},

a is the capacity and {T1, T2, . . . , Tk} the message type of c. Note that {T1, T2, . . . , Tk}

denotes an ordered list of types rather than a set. We use the set-based notation

throughout for consistency with Promela. The signature of c, denoted signature(c)

is the pair (a, {T1, T2, . . . , Tk}). For example, if a channel A is declared as follows:

chan A = [3] of {mtype,byte } then signature(A) = (3, {mtype , byte }).

Let P be a Promela specification in which all process are instantiated atom-

ically by the init process, and all channels are globally instantiated (see Sec-

tion 2.4.1). Let VP denote the set of process identifiers and VC the set of global chan-
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nel names in P . For i ∈ VP let proctype(i) be the name of the proctype of which

process i is an instantiation.

Definition 26 If M = (S, s0, R) is the Kripke structure associated with P then the

channel diagram of P is a coloured, bipartite digraph CD(P) = (V, E, C) where:

• V = VP ∪ VC is the set of process identifiers and channel names in P

• For i ∈ VP and c ∈ VC,

– (i, c) ∈ E iff there is a reachable transition (s, t) ∈ R which involves

process i sending a message on channel c

– (c, i) ∈ E iff there is a reachable transition (s, t) ∈ R which involves

process i receiving a message on channel c

• C is a colouring function defined by C(v) = proctype(v) if v ∈ VP, and

C(v) = signature(v) if v ∈ VC.

Note that while it may not be possible to determine the operations involved in a

transition (s, t) by examination of s and t alone (e.g. if the transition results from

execution of an atomic block), this information can always be obtained from ex-

amination of s and t in the context of the specification P .

Examples of channel diagrams are given throughout Sections 5.2 and 5.3.

When displaying a channel diagram as a figure we use ovals and rectangles to

represent processes and channels respectively.1 The type of a process is given by its

proctype name, and channel signatures are indicated using a key.

5.1.1 Deriving channel diagrams

Since Definition 26 depends on the transition relation R, construction of CD(P) in

general requires exploration of the reachable states of M. Thus we can only de-

rive the channel diagram for a specification if its associated model is tractable. The

channel diagrams used for illustration in this chapter have been manually derived

from their associated Promela specifications via simulation with SPIN. This process

could be automated by adding code to log the use of channels during verification

to the pan.c file produced by SPIN (see Section 2.4.2).

In Chapter 7 we define the static channel diagram of a specification, which

can be efficiently constructed by syntactic inspection of P .

5.1.2 Channel diagram automorphisms

An automorphism of the channel diagram CD(P) = (V, E, C) is an automor-

phism of the directed, coloured graph (V, E, C) (see Definition 19, Section 3.1.5).

1. In the original presentation of channel diagrams, ovals were used for channels and rectangles
for processes [157]. The notation was changed by mistake in [42, 48, 49]. To be consistent with work
published from this thesis we use the modified notation.
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chan one_two = [1] of {int}; chan two_one = [1] of {int};

proctype node(chan in; chan out) {
pid x;
if

:: in? ...
:: out! ...

...
}

init {
atomic {

run node(one_two,two_one);
run node(two_one,one_two);

}
}

Figure 5.1: A fragment of a Promela specification.

The group of all automorphisms of CD(P) is denoted Aut(CD(P)). We can com-

pute Aut(CD(P)) by inputting CD(P) to GAP. The vertices of VP are directly

represented using the integers {1, 2, . . . , n}; the vertices of VC are represented by

{n + 1, n + 2, . . . , n + m}, where |VC| = m. The group Aut(CD(P)) is computed

by the GRAPE function AutGroupGraph() (see Section 3.1.6). The colouring C is

specified as an argument to this function.

An element α ∈ Aut(CD(P)) has a natural action on M, the model asso-

ciated with P , which we illustrate using an example. Let P be a Promela spec-

ification, part of which is shown in Figure 5.1, with associated model M. Fig-

ure 5.2 shows the channel diagram for P . It is easy to check that Aut(CD(P)) =

{id, (1 2)(one two two one)}. A state s of M has the form:

s = (contents of one two, contents of two one, in1, out1, x1, pc1,

in2, out2, x2, pc2).

where yi denotes the value of variable y of node process i. The internal program

counter variable for process i is denoted pci. For α ∈ Aut(CD(P)), the state α(s)

has the form:

α(s) = (contents of α(one two), contents of α(two one), α(inα(1)), α(outα(1)),

α(xα(1)), pcα(1), α(inα(2)), α(outα(2)), α(xα(2)), pcα(2)).

The values of the variables of node i at s are initially those of node α(i) at α(s),

then α is applied to the values of the channel and process id variables xi, ini and

outi. Similarly, the contents of channel c at s are those of channel α(c) at α(s). If a

process id variable has value yi = 0 then we define α(yi) = 0.

Concretely, suppose s = ([ ], [5], two one, one two, 0, 10, one two,

two one, 1, 8) and α = (1 2)(one two two one). Then α(s) = ([5], [ ], two one,

one two, 2, 8, one two, two one, 0, 10).
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(1,{int})

Key to channel signatures

two_one

one_two

node1 node2

Figure 5.2: Channel diagram associated with the Promela code fragment of Figure 5.1.
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client5 client6
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client7 client9client8 client10

cl3 cl4 cl5 cl6

client11

cl7
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cl8

server2

se1

cl_se_2

server3

se2

server4

se3

cl_se_3

database1

db_link

Key to channel signatures

cl_se_1

null

Figure 5.3: Channel diagram for three-tiered architecture specification.

We show that in some cases elements of Aut(CD(P)) induce automorphisms

of M with this natural action.

5.2 Channel Diagrams for the Channel-based Specifications

We first consider the channel diagrams associated with the three-tiered architec-

ture, hypercube and resource allocator specifications (see Sections 4.5, 4.6 and 4.4

respectively), since in these specifications processes communicate using channels

rather than variables.

5.2.1 Three-tiered architecture channel diagram

Recall from Section 4.5 the three-tiered architecture example, the Promela specifi-

cation of which is given in Appendix A.3. Figure 5.3 shows the channel diagram

associated with this specification.
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We use GRAPE to compute the following generating set for the group

Aut(CD(P)):

Aut(CD(P)) = 〈(5 6)(cl1 cl2), (6 7)(cl2 cl3), (8 9)(cl4 cl5),

(9 10)(cl5 cl6), (11 12)(cl7 cl8),

(5 8)(cl1 cl4)(6 9)(cl2 cl5)(7 10)(cl3 cl6)

(2 3)(se1 se2)(cl se 1 cl se 2)〉.

Note that the last two lines in the presentation of this generating set denote

a single group element. We can see from Figure 5.3 that the first generator of this

group, the permutation (5 6)(cl1 cl2) is an automorphism of CD(P) since swap-

ping clients 5 and 6 and simultaneously swapping the associated channels cl1 and

cl2 leaves the structure and colouring of the channel diagram unchanged. The other

generators can similarly be verified to be automorphisms of CD(P).

Our automated setup shows that the groups Aut(M) and Aut(CD(P)) are

isomorphic, thus there is a direct correspondence between channel diagram and

Kripke structure automorphisms for this example.

Now consider the three-tiered specification with mixed modes of commu-

nication, discussed in Section 4.5.2. The difference between this specification and

the original is that the signature of channel cl se 2 (the channel which client

processes 8, 9 and 10 use to send requests to server process 3) is changed from

(0,{mtype,chan }) to (1,{mtype,chan }). Let P ′ denote the modified specifica-

tion, with associated model M′. We observed in Section 4.5.2 that Aut(M′) is a

smaller group than Aut(M), since changing this channel signature destroys sym-

metry between servers 2 and 3. Since channel nodes are coloured according to their

signature, this change in symmetry is reflected in the automorphisms of the channel

diagram associated with the specification: we find that Aut(M′) ∼= Aut(CD(P ′)).

5.2.2 Channel diagram for the hypercube specification

The channel diagram for the 3-dimensional hypercube specification (see Section 4.6

and Appendix A.4.1) is shown in Figure 5.4. Recall that the init process initially

sends the packet to a non-deterministically chosen node, thus there are edges from

the node representing the init process (with identifier 0) to every channel in the

diagram. For neatness this is simplified in Figure 5.4.

The channel diagram CD(P) is essentially a cube. Since the node processes

in P are all identical, we expect any automorphism of the channel diagram to cor-

respond to an automorphism of the underlying Kripke structure, and indeed this

is the case. As with the three-tiered architecture example, GRAPE shows that the

groups Aut(M) and Aut(CD(P)) are isomorphic.

In Section 4.6.2 we considered a modified specification where the init pro-
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Key to channel signatures
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link4

link8link7

link5 link6

init0

. . .

node1

node3

node2

node4

node8node7

node5 node6

Figure 5.4: Channel diagram for 3d hypercube specification.

cess always sends the packet initially to node process 1. Let P ′ denote this modified

specification and M′ its associated model. We found that this modification resulted

in a corresponding loss in symmetry, since node process 1 is no longer equivalent

to the other nodes. The channel diagram CD(P ′) is identical to CD(P) except that

the only edge from the node representing the init process is that to the channel

node labelled link1. Removal of the other edges results in a loss of symmetry in the

channel diagram, and the relationship between symmetries of the channel diagram

and symmetries of the Kripke structure is maintained. Using our automated setup

we find that Aut(M′) ∼= Aut(CD(P ′)).

5.2.3 Channel diagram for the prioritised resource allocator

Figure 5.5 shows the channel diagram for the prioritised resource allocator speci-

fication discussed in Section 4.4. The specification is given in Appendix A.2.1. The

priority level of each client is also indicated in Figure 5.5, though this information

is not part of the channel diagram.

Let P denote the resource allocator specification and M its associated

model. Recall from Section 4.4.1 that |Aut(M)| = 24. Inputting the channel dia-
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(1,{mtype})

(0,{mtype})

resource_
allocator8

priorities:

client1 client2 client3 client5client4 client6 client7

0 0 1 1 1 2 2

nullchan

link1 link2 link3 link4

Key to channel signatures

link6 link7link5

Figure 5.5: Channel diagram for resource allocator specification.

gram CD(P) to GRAPE and computing its automorphism group reveals that:

Aut(CD(P)) = 〈(1 2)(link1 link2), (2 3)(link2 link3), . . . , (6 7)(link6 link7)〉,

and |Aut(CD(P))| = 5, 040. Since |Aut(M)| 6= |Aut(CD(P))|, there is not a direct

correspondence between Kripke structure and channel diagram automorphisms.

This is because priority levels, which induce asymmetry between components, are

not encoded in the channel diagram.

However, we can use the function IsomorphicSubgroups( Aut(CD(P)),

Aut(M)) to show that there is a monomorphism (see Definition 8, Section 3.1.1)

which maps Aut(M) to a subgroup G of Aut(CD(P)). By Theorem 2 (Section 3.1.1),

G ∼= Aut(M). G is clearly the subgroup of Aut(CD(P)) which preserves the prior-

ity information indicated in Figure 5.5.

Let P ′ denote the resource allocator specification where certain clients share

the resource (see Section 4.4.3), with associated model M′. The corresponding

channel diagram, CD(P ′), is shown in Figure 5.6. The cyclic relationship between

clients 3, 4 and 5 resulting from the configuration of process sharing (illustrated by

Figure 4.4) is captured by the additional edges in Figure 5.6 compared with Fig-

ure 5.5.

We showed in Section 4.4.3 that Aut(M′) is smaller than Aut(M): introduc-

ing sharing reduces the symmetry inherent in the model. This reduction in symme-

try is reflected in the channel diagram: we have |Aut(CD(P ′))| = 144. Again there

is a monomorphism from Aut(M′) to a subgroup of Aut(CD(P ′)).
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(1,{mtype})

(0,{mtype})

resource_
allocator8
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link6 link7link5

Figure 5.6: Channel diagram for resource allocator specification with resource sharing
enabled.

user2 usernuser1 . . .

Figure 5.7: Form of channel diagram for the mutual exclusion examples.

5.3 Channel Diagrams for the Mutual Exclusion Examples

The Promela specifications of the simple mutual exclusion protocol (see Sections 2.2

and 4.2) and Peterson’s mutual exclusion protocol (see Section 4.3) do not involve

channels. Instead, processes communicate via global arrays. However, each of these

examples still has a well-defined associated channel diagram consisting of just a

set of process nodes – both the sets VC and E of Definition 26 are empty. Figure 5.7

shows the general form of the channel diagram associated with an n-process mu-

tual exclusion specification (either the simple example, or Peterson’s protocol).

Although the channel diagram of Figure 5.7 is trivial, its automorphism

group is the group Sn since all user processes are interchangeable. This group is

isomorphic to the group of Kripke structure automorphisms for a mutual exclu-

sion protocol with n processes.

5.4 Approximating Channel Diagrams

As discussed in Section 5.1.1, construction of CD(P) requires exploration of the

reachable states of M, which is precisely what model checking with symmetry

reduction aims to avoid.

In Chapter 6 we introduce Promela-Lite, a specification language based on

Promela. In Chapter 7 we define the static channel diagram SCD(P) associated

with a Promela-Lite specification P and show that SCD(P) can be efficiently com-
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puted by static analysis of P . The static channel diagram is an approximation of

the channel diagram associated with a specification. We then show that there is a

general correspondence between automorphisms of SCD(P) and automorphisms

of M, the model associated with P .

Summary

We have defined the channel diagram of a Promela specification (first introduced

in [157]), and used our automated setup to show for the examples of Chapter 4 that

there is a correspondence between automorphisms of the channel diagram CD(P)

and automorphisms of the Kripke structure M associated with a Promela specifi-

cation P . We have discussed the limitations associated with channel diagrams and

motivated the use of the static channel diagram, an approximation of the channel

diagram that can be efficiently computed via static analysis of P .



Chapter 6

Promela-Lite

The examples of Chapter 4 and the correspondence between channel diagram and

Kripke structure automorphisms observed in Chapter 5 motivate us to develop au-

tomatic symmetry detection techniques for Promela, which are not restricted to full

symmetry, based on analysis of a structure similar to the channel diagram. This is

the topic of Chapters 7 and 8. In order to support our techniques with a formal

proof, we first present Promela-Lite, a specification language which captures the es-

sential features of Promela. The Promela language includes a large set of keywords

and language features which facilitate the specification of complex communica-

tions protocols. The downside of this is that proving properties about Promela spec-

ifications is laborious, requiring many case-by-case arguments. Rigorous proofs are

also hindered by the lack of a formal definition of the semantics of Promela as im-

plemented by SPIN.

Promela-Lite is a smaller specification language that includes core Promela

features such as parameterised processes, first-class channels and global variables,

but omits many language features such as enumerated types, record types, arrays

and rendez-vous channels. We are able to present a full grammar and type sys-

tem for this smaller language, and define precise Kripke structure semantics for

Promela-Lite specifications. In Chapter 7 we use the semantics to rigourously prove

the correctness of our symmetry detection techniques for a Promela-like language.

Promela-Lite and Promela are similar enough that it is not too great a leap of faith

to accept that our results can be applied to Promela, for which a rigorous proof is

not practical (as discussed above). In addition, omitting certain ornate features of

Promela from Promela-Lite makes our proof easier to understand, and thus easier

to transfer to other specification formalisms.

It is important to stress that we do not intend to implement a Promela-Lite

model checker, or for users to write Promela-Lite specifications in practice (though

we do illustrate the language with an example specification). While it may seem

that the restricted syntax of Promela-Lite does not meet our aim of reducing the

restrictions placed on the form of a specification, the restricted syntax is only for

ease of presentation of our results. Our Promela implementation (see Chapter 8)



6.1: SYNTAX 111

lifts most of these restrictions.

The name Promela-Lite was inspired by Featherweight Java, a calculus which

captures the core object oriented features of Java (classes, methods and inheritance),

but omits most features of the full language [98].

We define the syntax and type system of Promela-Lite in Sections 6.1 and 6.2

respectively. In Section 6.3 we present Kripke structure semantics for the language,

and prove that a well-typed Promela-Lite specification has a well-defined associ-

ated Kripke structure.

6.1 Syntax

6.1.1 A note on BNF

We use the standard Backus-Naur form (BNF, see e.g. [1]) to specify the syntax of

Promela-Lite. BNF notation can be used to specify the grammar of a language via

a sequence of production rules (also called non-terminals). A production rule 〈prod〉

has the form:

〈prod〉 ::= A1,1 A1,2 . . . A1,s1

| A2,1 A2,2 . . . A2,s2

| . . .

| Ak,1 Ak,2 . . . Ak,sk

where each Ai,j is either a production rule, or a terminal symbol. The terminal sym-

bols include language keywords such as do , operators such as :: , variable names

and literal values. A BNF grammar must have a designated initial production rule.

A sentence in the language is a sequence of terminal symbols which conforms to the

structure of the initial rule.

Let 〈prod〉 be a BNF production rule. We use the following shorthand no-

tation to refer to occurrences of 〈prod〉 on the right hand side of other production

rules:

• 〈prod〉? denotes an optional occurrence of 〈prod〉

• 〈prod〉∗ denotes a sequence of zero or more occurrences of 〈prod〉

• 〈prod〉+ denotes a sequence of one or more occurrences of 〈prod〉

• 〈prod-list, ‘◦’〉 denotes a ◦-separated list of one or more occurrences of 〈prod〉,

i.e.
〈prod-list, ‘◦’〉 ::= 〈prod〉

| 〈prod〉 ◦ 〈prod-list, ‘◦’〉

6.1.2 Syntax of types

The syntax of Promela-Lite data types is summarised in Figure 6.1 (see Figure 6.3

for details of the 〈name〉 production rule). The initial production rule for this gram-

mar is 〈type〉, and we refer to a sentence in the language of types as a type. The
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〈type〉 ::= int
| pid
| 〈chantype〉
| 〈typevar〉

〈chantype〉 ::= 〈recursive〉? chan { 〈type-list, ‘, ’〉 }

〈recursive〉 ::= rec 〈typevar〉 .

〈typevar〉 ::= 〈name〉

Figure 6.1: Promela-Lite type syntax.

int

int

int...

chan

chan

chan

chan

Figure 6.2: Infinite tree representing the recursive type rec X . chan{X, int}.

language includes two primitive data types, int and pid, representing integer val-

ues and process id values respectively. Basic channel types have the form chan{T},

where T denotes a comma-separated list of types. The types which comprise T may

themselves be channel types, thus Promela-Lite support first-class channels.

It can be useful for a channel of type T to accept a channel of type T as one of

its arguments. In this case, T is a recursive type – its form is self-referential. Accord-

ingly, Promela-Lite includes syntax for recursive channel types (the 〈recursive〉 rule

of Figure 6.1). For example, consider a type T of the form rec X . chan{X, int}. Then

T denotes a channel which accepts messages consisting of two fields: a channel of

type T, and an integer. This recursive type can be unfolded by removing the initial

‘rec X . ’ and substituting ‘X’ for the original expression, resulting in the type expres-

sion chan{rec X . chan{X, int}, int} (which can in turn be unfolded). The resulting

types are the same, and intuitively they represent the type illustrated as an infinite

tree in Figure 6.2. We discuss the implicit use of recursive types in Promela in Sec-

tion 8.2.2. We use chan{T} to refer to an arbitrary channel type, since a channel type

of the form rec X . chan{. . . } can always be unfolded into this form. In Section 8.2.2

we discuss an algorithm for minimising recursive types by converting them to a

canonical form. We say that two recursive types are equal if they are identical after

minimisation.

The name ‘X’ used in the above example is a type variable, and is said to be

bound, as it is introduced by the prefix ‘rec X . ’ and then occurs within the scope

of this prefix. A type variable which is not bound is said to be free. A well-formed
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type is one for which there are no free type variables. The types int, chan{int} and

rec X . chan{X, int} are all well-formed; the type chan{X} is not. Note that a type

such as rec X . int is well formed; this type unfolds to int.

6.1.3 Syntax of the language

A Promela-Lite specification consists of a series of channel and global variable dec-

larations, one or more proctypes, and an init process. The syntax is given in Fig-

ure 6.3. The initial production rule is 〈spec〉, and we have simplified the presenta-

tion of the rules 〈name〉 and 〈number〉. We refer to a valid Promela-Lite sentence as

a specification. In the 〈guard〉 production rule, ⊲⊳ denotes an operator taken from the

set {==, != , <, <=, >, >=}. For simplicity, we have not included the division operator

in Promela-Lite. This is to avoid the need for detailed semantics for division-by-

zero errors in Section 6.3, an issue which is orthogonal to the symmetry detection

techniques which we present in Chapter 7.

A channel declaration chan c = [ a] of {T} (according to the 〈channel〉 rule

of Figure 6.3) defines a buffered channel c with type chan{T} and length a. This is

similar to a globally instantiated channel in Promela (see page 28). We define the

signature of c by signature(c) = (a, {T}). This is similar to the notion of channel

signatures for Promela specifications defined in Section 5.1. We refer to channels

declared in this way as static channels. The name of a static channel cannot be

re-assigned (either by appearing on the left hand side of an assignment, or as an

argument to a channel receive operation). If signature(c) = (a, {T}) we use cap(c)

to denote the capacity of c, which is equal to a.

A global variable declaration T x = a associates a name x with a type T ∈

{int, pid} and an initial value a.

A Promela-Lite proctype is a parameterised process definition. A proctype

has a list of parameters, and a set of statements contained in a do . . . od loop. For

simplicity we do not allow proctypes to declare local variables. In Promela, param-

eters to a proctype and local variables are treated identically, thus any local variable

can be equivalently declared as a parameter, with an initial value supplied as a run

statement argument. For this reason we use the terms parameter and local variable

interchangeably throughout this chapter and Chapter 7.

Each statement has the form atomic { 〈guard〉 -> 〈update-list, ‘; ’〉 }. Exe-

cutability of the statement is decided by 〈guard〉, a boolean expression over vari-

ables and channels of the specification. The effect of a statement is determined

by 〈update-list, ‘; ’〉, which is a sequence of updates to variables and channels. The

atomic block which surrounds the guard and updates indicates that executing the

statement results in a single transition of the system. Keywords to determine the

length, fullness and emptiness of channels are provided by the language.

The init process consists of a set of run statements. Each run statement

instantiates a process of a given proctype, assigning initial values to all of its lo-
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〈spec〉 ::= 〈channel〉∗ 〈global〉∗ 〈proctype〉+ 〈init〉

〈channel〉 ::= 〈name〉 = [ 〈number〉 ] of { 〈type-list, ‘, ’〉 } ;

〈global〉 ::= 〈type〉 〈name〉 = 〈number〉 ;

〈proctype〉 ::= 〈name〉 ( 〈param-list, ‘; ’〉? ) { do 〈statement-list, ‘:: ’〉 od }

〈param〉 ::= 〈type〉 〈name〉

〈statement〉 ::= atomic { 〈guard〉 -> 〈update-list, ‘; ’〉 }

〈guard〉 ::= 〈expr〉 ⊲⊳ 〈expr〉
| nfull ( 〈name〉 )
| nempty ( 〈name〉 )
| ! 〈guard〉
| 〈guard〉 &&〈guard〉
| 〈guard〉 || 〈guard〉
| ( 〈guard〉 )

〈update〉 ::= skip
| 〈name〉 = 〈expr〉
| 〈name〉 ? 〈name-list, ‘, ’〉
| 〈name〉 ! 〈expr-list, ‘, ’〉

〈init〉 ::= init { atomic { 〈run-list, ‘; ’〉 } }

〈run〉 ::= run 〈name〉 ( 〈arg-list, ‘, ’〉? ) ;

〈arg〉 ::= 〈name〉
| 〈number〉
| null

〈expr〉 ::= 〈name〉
| 〈number〉
| pid
| null
| len ( 〈name〉 )
| ( 〈expr〉 )
| 〈expr〉 ◦ 〈expr〉 (where ◦ ∈ {+, - , * })

〈name〉 ::= an alpha-numeric string, which may include ‘_’, and must start with a letter or
with ‘_’

〈number〉 ::= an integer

Figure 6.3: Syntax of Promela-Lite.
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Judgements

Γ ⊢ ⋄ Γ is a well-formed type environment
Γ ⊢ T T is a well-formed type in Γ

Γ ⊢ T T1, T2, . . . , Tk are well-formed types in Γ

Γ ⊢ e : T e is a well-formed expression of type T in Γ

Γ ⊢ e : T e1, e2, . . . , ek are well-formed expressions of types
T1, T2, . . . , Tk respectively in Γ

Γ ⊢ f OK f is a well-formed Promela-Lite fragment in Γ

Γ ⊢ fi OK(1 ≤ i ≤ l) f1, f2, . . . , fl are well-formed Promela-Lite fragments in Γ

General form of a type rule

Γ1 ⊢ J1 Γ2 ⊢ J2 . . . Γl ⊢ Jl (other conditions)

Γ ⊢ J
(rule name)

Figure 6.4: Notation for type rules.

cal variables. The atomic block surrounding the run statements indicates that all

processes in the specification are instantiated simultaneously. If process i is an in-

stantiation of proctype p, we write proctype(i) = p.

There is a special channel literal, null , which denotes an undefined channel

reference, intended for use as a default value. The typing rules of Section 6.2 pre-

vent the use of null for communication. The value 0 can be used as a default value

for variables with pid type. Like Promela, each Promela-Lite process has a built in

constant, pid , which records its run-time instantiation number. This is defined as

the position of its run statement in the init process.

An example Promela-Lite specification is given in Figure 6.8 and discussed

in Section 6.5.

6.2 Type System

We present a type system for Promela-Lite, using the notation of [23], adapted with

shorthand notation from [98]. In Section 6.3 we present Kripke structure semantics

for Promela-Lite specifications, and show that if P is a well-typed Promela-Lite

specification then it has a well-defined associated Kripke structure (Theorem 11).

A typing environment Γ is an ordered list of distinct variables and their types,

and has the form x1 : T1, x2 : T2, . . . , xk : Tk. Here x : T reads “x has type T”. The

empty typing environment is denoted ∅, and the set of variables declared in typing

environment Γ is denoted dom(Γ). We associate with Γ a set sc(Γ) consisting of the

names of all static channels declared in Γ. We define sc(∅) = ∅ (the first ∅ denotes

the empty typing environment, the second an empty set).

Figure 6.4 summarises the forms of type judgement which we use, together

with the general form of a typing rule. The judgements can be used to assert that an
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environment Γ is well-formed, a type T is well-formed in Γ (see Section 6.1.2), an ex-

pression is well-formed and has type T in Γ, and a fragment of a specification (e.g. a

proctype declaration or a statement) is well-formed in Γ. Intuitively, an expression

or fragment is well-formed if it can be attributed clear semantics (so, for example,

the expression ‘5+true’ is not well-formed, whereas ‘5+6’ is a well-formed expres-

sion with type int), and an environment is well-formed if it is comprised of sensible

variable declarations. Formally, asserting that an environment, type, expression or

fragment is well-formed just means that it is regarded as legal by the type system.

Given a language together with a type system and formal semantics, the intuitive

and formal notions of well-formedness coincide if we can prove a theorem show-

ing that well-formed sentences in the language are well behaved according to the

semantics.

For brevity, we use Γ ⊢ T to assert that types T1, T2, . . . , Tk are well-formed

in Γ, and Γ ⊢ e : T to assert that for 1 ≤ i ≤ k, expression ei is well-formed and has

type Ti in Γ. Similarly, Γ ⊢ fi OK (1 ≤ i ≤ l) asserts that Promela-Lite fragments

f1, f2, . . . , fl are all well-formed in Γ. A typing rule consists of a horizontal line, with

a list of judgements and other conditions above the line, and a single judgement

below. If the judgements and conditions above the line all hold then the truth of the

judgement below the line can be inferred.

Figure 6.5 gives a complete set of typing rules for Promela-Lite. The value

n referred to by rule T-PID-LITERAL is the number of processes in the specifica-

tion, and is determined by the number of run statements in the init process. For

presentation of the type system we introduce a tuple type, to represent the form of

arguments for a proctype. A proctype which accepts an ordered list of arguments

of types T1, T2, . . . , Tk has type (T1, T2, . . . , Tk). The symbols a and a refer to literal

values; e, ei and e to expressions; c to a static channel; p to a proctype name; x

and x to local/global variable names (x could also be a proctype name in T-VAR);

ui to updates; gi to guards, and ri to run statements. In rule T-PROCTYPE we use

p( T x) as shorthand for a proctype name together with a list of formal parameters

x1, x2, . . . , xk, where xi has type Ti (1 ≤ i ≤ k). We use alldiff (x1, x2, . . . , xk) to assert

that xi 6= xj if i 6= j (i.e. the xi are all different).

The rules T-SEND and T-RECV require that the fullness/emptiness of a chan-

nel is checked before it can be used for communication. Note that in both rules the

guard g and/or updates u2, . . . , ul can be omitted (for conciseness this is not indi-

cated in Figure 6.5).

A literal value in the range {0, 1, . . . , n} has both type pid and int according

to the type system. We say that such a literal occurs in a pid context if it is assigned

to a pid variable, sent as a pid argument on a channel, passed as a pid argument in a

run statement, or compared with a pid variable using == or != . We say that a literal

a has type pid if it occurs in a pid context, otherwise it has type int.
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Environment

∅ ⊢ ⋄
(T-ENV-∅)

Γ ⊢ ⋄ Γ ⊢ T x /∈ dom(Γ)

Γ, x : T ⊢ ⋄
(T-ENV-x)

Expressions
Γ ⊢ ⋄ a ∈ Z

Γ ⊢ a : int
(T-INT-LITERAL)

Γ ⊢ ⋄ a ∈ {0, 1, . . . , n}

Γ ⊢ a : pid
(T-PID-LITERAL)

Γ ⊢ ⋄ in proctype scope

Γ ⊢ pid : pid
(T- PID)

Γ ⊢ e : T

Γ ⊢ ( e) : T
(T-PARENTHESIS-e)

Γ ⊢ ⋄ Γ ⊢ T

Γ ⊢ null : chan{T}
(T-NULL)

Γ, x : T, Γ′ ⊢ ⋄

Γ, x : T, Γ′ ⊢ x : T
(T-VAR)

Γ ⊢ e1 : int Γ ⊢ e2 : int ◦ ∈ {+, - , * }

Γ ⊢ e1 ◦ e2 : int
(T-ARITH)

Γ ⊢ c : chan{T}

Γ ⊢ len( c) : int
(T-LEN)

Guards
Γ ⊢ e1 : int Γ ⊢ e2 : int ⊲⊳ ∈ {<, <=, >, >=}

Γ ⊢ e1 ⊲⊳ e2 OK
(T-REL)

Γ ⊢ e1 : T Γ ⊢ e2 : T ⊲⊳ ∈ {==, != } T 6= (T1, T2, . . . , Tk)

Γ ⊢ e1 ⊲⊳ e2 OK
(T-EQ)

Γ ⊢ g OK

Γ ⊢ ( g) OK
(T-PARENTHESIS-g)

Γ ⊢ g OK

Γ ⊢ ! g OK
(T-NOT)

Γ ⊢ g1 OK Γ ⊢ g2 OK

Γ ⊢ g1 &&g2 OK
(T-AND)

Γ ⊢ g1 OK Γ ⊢ g2 OK

Γ ⊢ g1 || g2 OK
(T-OR)

Basic updates
Γ ⊢ x : T Γ ⊢ e : T x /∈ sc(Γ) T 6= (T1, T2, . . . , Tk)

Γ ⊢ x = e OK
(T-ASSIGN)

Γ ⊢ ⋄

Γ ⊢ skip OK
(T-SKIP)

Statements
Γ ⊢ g OK Γ ⊢ ui OK(1 ≤ i ≤ l)

Γ ⊢ atomic { g -> u1; u2; . . . ; ul } OK
(T-UPDATE)

Γ ⊢ g OK Γ ⊢ x : chan{T} Γ ⊢ e : T Γ ⊢ ui OK(2 ≤ i ≤ l)

Γ ⊢ atomic { ( g) && nfull( x) -> c! e; u2; . . . ; ul } OK
(T-SEND)

Γ ⊢ g OK Γ ⊢ x : chan{T} Γ ⊢ x : T
Γ ⊢ ui OK(2 ≤ i ≤ l) alldiff (x) {x} ∩ sc(Γ) = ∅

Γ ⊢ atomic { ( g) && nempty( x) -> c?x; u2; . . . ; ul } OK
(T-RECV)

Declarations

Γ, x : T ⊢ 〈global〉∗ 〈proctype〉+ 〈init〉 OK
Γ ⊢ a : T T ∈ {int, pid} x /∈ dom(Γ)

Γ ⊢ T x = a; 〈global〉∗〈proctype〉+〈init〉 OK
(T-GLOBAL)

Γ, c : chan{T} ⊢ 〈channel〉∗ 〈global〉∗ 〈proctype〉+ 〈init〉 OK
Γ ⊢ T c /∈ dom(Γ) a > 0

Γ ⊢ chan c = [ a] of {T}; 〈channel〉∗〈global〉∗〈proctype〉+〈init〉 OK
(T-SC)

Processes

Γ ⊢ T Γ, x : T ⊢ si OK(1 ≤ i ≤ l)
Γ, p : (T) ⊢ 〈proctype〉∗ 〈init〉 OK {p, x} ∩ dom(Γ) = ∅ alldiff (p, x)

Γ ⊢ proctype p( T x) { do :: s1 :: s2 :: . . . :: sl od } 〈proctype〉∗ 〈init〉 OK
(T-PROCTYPE)

Γ ⊢ p : (T) Γ ⊢ a : T a ⊆ Z ∪ {null } ∪ sc(Γ)

Γ ⊢ run p( a) OK
(T-RUN)

Γ ⊢ ri OK(1 ≤ i ≤ k)

Γ ⊢ init { atomic { r1; r2; . . . ; rk } } OK
(T-INIT)

Figure 6.5: Type system for Promela-Lite.
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A Promela-Lite specification P has one of the three forms:

1. chan c = [ a] of {T}; 〈channel〉∗〈global〉∗〈proctype〉+〈init〉

2. T x = a; 〈global〉∗〈proctype〉+〈init〉

3. proctype p( T x) { do :: s1 :: s2 :: . . . :: sl od } 〈proctype〉∗ 〈init〉

depending on whether or not there are any channel or global variable declarations

in P . Depending on which form P takes, one of the typing rules T-SC, T-GLOBAL

or T-PROCTYPE is applicable. We say that P is well-typed if ∅ ⊢ P OK. We now

present Kripke structure semantics for Promela-Lite, and show that these seman-

tics unambiguously define the model associated with a well-typed Promela-Lite

specification.

6.3 Kripke Structure Semantics

Let P be a Promela-Lite specification with n processes for some n > 0 (i.e. there are

n run statements in the init { atomic {. . . } } block). We now detail the seman-

tics of P as a Kripke structure M. We show that if P is well-typed according to the

type system of Section 6.2 then the Kripke structure M is well-defined.

For a well-formed type T, let lit(T) denote the set of all possible literal val-

ues which can have type T in the specification P . Thus lit(int) = Z
1, lit(pid) =

{0, 1, . . . , n} and lit(chan{T}) = {c : c is the name of a static channel with

c : chan{T}} ∪ {null }. Note that typing rule T-NULL ensures that null is a literal

value for any well-formed channel type.

We define the domain of a variable or static channel as follows. If x is a global

or local variable of type T then the domain of x is lit(T). If c is a static channel with

signature(c) = (l, {T1, T2, . . . , Tk}) (for some k, l > 0) then the domain of c is the set:

{[(a1,1, a1,2, . . . , a1,k), (a2,1, a2,2, . . . , a2,k), . . . , (am,1, am,2, . . . , am,k)]

: 0 ≤ m ≤ l, ai,j ∈ lit(Tj) (1 ≤ i ≤ m, 1 ≤ j ≤ k)}.

This set consists of all possible sequences of messages for the channel, including

the empty sequence [ ].

Let p be a proctype in P , and x a parameter of P . Suppose that proctype(i) =

p for some i (1 ≤ i ≤ n). We use p[i].x to denote the local variable x for this process.

If c is a channel with type chan{T1, T2, . . . , Tk}, we use~a as a shorthand for a message

(a1, a2, . . . , ak) on c (where ai : Ti, 1 ≤ i ≤ k).

6.3.1 States of a specification

A state of a Promela-Lite specification P can be expressed as an ordered tuple con-

sisting of a value for each variable in the specification, using the notation preceding

1. In practice, lit(int) is a finite range of integers which can be represented using a fixed word size.
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chan A = [1] of {pid,chan{int}}; chan B = [2] of {int}; chan C = [ 2]
of {int}; pid leader = 0;

proctype user(chan{int} in; chan{int} out; int x) {
...

}

init {
atomic {

run user(B,C,0);
run user(C,B,0);

}
}

Figure 6.6: Part of a simple Promela-Lite specification.

Definition 1 (Section 2.2), where the domain of each variable is as described above.

However, it is more convenient to reason about a state as a set of propositions.

If s is a set consisting of exactly one proposition of the form (x = a) for each

variable x in P (where a is a value in the domain of x), then s can be converted into

a state by writing the value of each variable and static channel as an appropriately

ordered tuple. Thus we can equivalently (and more conveniently) reason about a

state as a set of assignments to variables.

Figure 6.6 shows part of a simple Promela-Lite specification with three static

channels, A, B and C, a global variable leader and two instantiations of a user

proctype. If we order the static channels and global variables as they appear in the

specification, and order the local variables of user 1 before those of user 2, then an

example state of the associated model is:

s = ([(1, B)], [4, 5], [ ], 1, B, C, 0, C, B, 0).

Using the equivalent set-based notation we have:

s = {(A = [(1, B)]), (B = [4, 5]), (C = [ ]), (leader = 1),

(user[1].in = B), (user[1].out = C), (user[1].x = 0),

(user[2].in = C), (user[2].out = B), (user[2].x = 0)}.

We will use the latter notation in the rest of this chapter, and in Chapter 7.

The set S of (potential) states of M consists of every possible assignment to vari-

ables and channels of P . As discussed in Footnote 1 (page 118), the range of allowed

integer values is finite, thus S is a finite set.

6.3.2 Initial state

The values with which global variables are assigned on declaration, together with

the parameter values which are passed to proctypes in run statements, determine

the initial state of M.

For a global variable x with x : T, let init(x) denote the value in lit(T) to
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which x is assigned at its declaration. For a local variable p[i].x with p[i].x : T, let

init(p[i].x) denote the initial value in lit(T) to which x is assigned in the ith run

statement. M has a single initial state s0, defined thus:

so = {(c = [ ]) : c is a static channel name in P} ∪

{(x = init(x)) : x is a global variable of P} ∪

{(p[i].x = init(p[i].x)) : x is a parameter of proctype p

instantiated by the ith run statement (1 ≤ i ≤ n)}

6.3.3 Expression evaluation

We define a function evalp,i which takes a state s ∈ S and an expression e of the

form 〈expr〉 (see Figure 6.3), and returns the value of e when evaluated at s in the

context of process i with proctype(i) = p. Let s ∈ S be a state of M. Then:

• evalp,i(s, x) = a if (x = a) ∈ s (i.e. x is a global variable)

• evalp,i(s, x) = a if (p[i].x = a) ∈ s (i.e. x is a local variable of p)

• evalp,i(s, c) = c if c is a static channel name or null

• evalp,i(s, a) = a if a ∈ Z

• evalp,i(s, pid ) = i

• evalp,i(s, len( c) ) = m if c is a static channel and (c = [~a1, ~a2, . . . , ~am]) ∈

s (0 ≤ m ≤ cap(c))

• evalp,i(s, len(null) ) = 0

• evalp,i(s, len( x) ) = evalp,i(s, len(c)) if (p[i].x = c) ∈ s

• evalp,i(s, ( e) ) = evalp,i(s, e)

• evalp,i(s, e1 ◦ e2) = evalp,i(s, e1) ◦ evalp,i(s, e2) (where ◦ ∈ {+,−, ∗}).

As discussed in Footnote 1 (page 118), lit(int) is a finite range of integers in prac-

tice. Let min(int) and max(int) denote the minimum and maximum values in this

range, and assume min(int) < 0. If the result evalp,i(s, e1) ◦ evalp,i(s, e2) falls out-

with the allowed range, we define evalp,i(s, e1 ◦ e2) = ((evalp,i(s, e1) ◦ evalp,i(s, e2) +

|min|) mod (max − min)) − |min|. This definition means that the result of such a

calculation is truncated so that e.g. max(int) + 1 = min(int). This follows the ap-

proach used by SPIN to deal with out-of-range operations in Promela specifications

[92].

6.3.4 Satisfaction of guards

We use the evalp,i function to define a relation |=p,i between states and guards which

determines whether a guard holds at a given state. For a guard g of the form 〈guard〉

(see Figure 6.3) and a state s ∈ S, with p and i as above, s |=p,i g means that the

state s satisfies the guard g in the context of p and i. The relation |=p,i is defined as

follows:
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• s |=p,i e1 ⊲⊳ e2 iff evalp,i(s, e1) ⊲⊳ evalp,i(s, e2) (where ⊲⊳ ∈ {==, != , <, <=, >,

>=})2

• s |=p,i nfull (c) iff (c = [~a1, ~a2, . . . , ~am]) ∈ s and cap(c) > m, where c is a

static channel

• s |=p,i nempty (c) iff (c = [~a1, ~a2, . . . , ~am]) ∈ s and m > 0, where c is a static

channel

• s |=p,i nfull (x)/nempty (x) iff (p[i].x = c) ∈ s and s |=p,i nfull (c)/

nempty (c), where x is a locally declared channel of p

• s |=p,i ! g iff s 6|=p,i g

• s |=p,i g1 &&g2 iff s |=p,i g1 and s |=p,i g2

• s |=p,i g1 || g2 iff s |=p,i g1 or s |=p,i g2

• s |=p,i ( g) iff s |=p,i g.

6.3.5 Effect of updates

For a proctype p, variable name x and process identifier i with proctype(i) = p,

define:

var(x) =

{
x if x is a global variable

p[i].x if x is a local variable

For each update u described by the 〈update〉 rule in Figure 6.3, the effect of

u on a state s (in the context of a process i with proctype p) is given in Figure 6.7.

In each case we define the update u, the conditions under which u applies, and

the result of applying u to s (denoted execp,i(s, u)). Given a sequence of updates

u1, u2, . . . , uk and a state s the rules of Figure 6.7 can be applied repeatedly to

define the state reached by executing the ui in sequence, starting in state s. The

resulting state is denoted execp,i(s, u1; u2; . . . ; uk), where execp,i(s, u1; u2; . . . ; uk) =

execp,i(. . . execp,i(execp,i(s, u1), u2), . . . , uk).

Note that for certain updates it may be the case that none of the rules of

Figure 6.7 are applicable. For example, suppose (c = [~a1, ~a2, . . . , ~am]) ∈ s, where

m = cap(c), i.e. the static channel c is full in state s. In this case there is no rule

which defines the effect of executing ‘c! e1, e2, . . . , ek’, since a condition of the rule

for sending on static channels is that the channel must not be full. We say that

execp,i(s, u) is undefined if no rule of Figure 6.7 is applicable.

A state s is well-defined if it can be equivalently expressed as a tuple.

This is the only the case if it contains exactly one proposition for each variable

of P . Thus for the state resulting from an update to be well-defined it must be

the case that the rule corresponding to the update removes propositions about a

distinct set of variables, then adds one proposition for each variable. For an arbi-

trary Promela-Lite specification this is not necessarily the case. Consider an update

2. Strictly, ⊲⊳ on the right hand side of ‘iff’ is =, 6=, ≤ or ≥ if ⊲⊳ on the left hand side is ==,!= ,<= or
>= respectively.
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u Conditions on s Resulting state execp,i(s, u)

‘skip ’ none s

‘x = e’ (var(x) = a) ∈ s
(
s \ {(var(x) = a)}

)
∪ {(var(x) = evalp,i(s, e))}

‘c! e1, e2, . . . , ek’ (c = [~a1 , ~a2, . . . , ~am]) ∈ s
(
s \ {(c = [~a1, ~a2, . . . , ~am])}

)
∪

s |=p,i nfull (c) {(c = [~a1, ~a2 , . . . , ~am, (evalp,i(s, e1), evalp,i(s, e2), . . . ,
evalp,i(s, ek))])}

‘c?x1, x2, . . . , xk‘ (c = [(a1,1, a1,2 , . . . , a1,k),
(
s \ {(c = [(a1,1, a1,2, . . . , a1,k), ~a2, . . . , ~am ]),

~a2, . . . , ~am]) ∈ s (var(x1) = b1), (var(x2) = b2), . . . , (var(xk) = bk)}
)
∪

s |=p,i nempty (c) {(c = [~a2, . . . , ~am ]), (var(x1) = a1,1), (var(x2) = a1,2),
(var(xj) = bj) ∈ s (1 ≤ j ≤ k) . . . , (var(xk) = a1,k)}

‘x! e1, e2, . . . , ek’ (p[i].x = c) ∈ s execp,i(s, ‘c! e1, e2, . . . , e′k) (if well-defined)

‘x?x1, x2, . . . , xk’ (p[i].x = c) ∈ s execp,i(s, ‘c?x1, x2 , . . . , x′k) (if well-defined)

Figure 6.7: Update execution rules. Each rule is interpreted in the context of process i
which is an instantiation of proctype p.

‘c?x, x’, where c is a static channel and x is a global variable. Suppose (x = a) ∈ s,

(c = [(a1, a2)]) ∈ s and a1 6= a2. The rule for executing receive updates constructs

state execp,i(s, ‘c?x, x′) by removing (x = a) from s, then adding the propositions

(x = a1) and (x = a2). Thus execp,i(s, ‘c?x, x′) is not well-defined.

The following theorem states that, for a well-typed Promela-Lite specifica-

tion P , if the guard associated with a statement of P is satisfied at state s ∈ M,

then the rules of Figure 6.7 lead to a well-defined next-state t. In other words, the

theorem shows that execution of a well-typed specification at a given state can al-

ways progress if some process has a guard which is true at the state. The proof is

presented in Appendix B.1.

Theorem 11 (Progress theorem) Let P be a well-typed Promela-Lite specification

with associated model M, s a state of M, atomic { g -> u1; u2; . . . ul } a state-

ment of proctype p, and i the identifier of an instantiation of p. Suppose s |=p,i g.

Then execp,i(s, u1; u2; . . . ; ul) is well-defined.

From now on, when we refer to a Promela-Lite specification P we assume

that P is well-typed.

6.3.6 Deriving a Kripke structure

Let P be a Promela-Lite specification. The states S and initial state s0 of M are

as defined above. The transition relation R is defined as follows. Let s ∈ S and

let atomic { g -> u1; u2; . . . ; uk } be a statement of proctype p in P . Suppose

process i is an instantiation of p. If s |=p,i g then (s, execp,i(s, u1; u2; . . . ; uk)) ∈ R. By

Theorem 11, execp,i(s, u1; u2; . . . ; uk) is well-defined.
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6.4 Promela-Lite → Promela

Promela-Lite is not a subset of Promela since it includes extended notation for chan-

nel types, and the built-in null constant.

Let P be a Promela-Lite specification. Then P can be converted into a

Promela specification as follows. Firstly, unfold all recursive type expressions in

P so that they have the form chan{T} (where the types comprising T may be re-

cursive). Secondly, replace every type expression of the form chan{T} with chan.

Finally, add the declaration chan null = [0] of {T} to the beginning of the

specification, where T is any Promela type (e.g. bit ).

The Promela-Lite semantics described in Section 6.3 are based on: the se-

mantics for Promela described informally in [92], four years of SPIN use, and the

SPIN source code. The semantics have been designed so that if P is a well-typed

Promela-Lite specification and P ′ the corresponding Promela specification then P

and P ′ have the same associated model. In Appendix C.1 we discuss, in detail, the

Promela features which Promela-Lite omits.

6.5 Example: Load-balancing

To illustrate Promela-Lite we now discuss an example specification of a message

passing system, given in Figure 6.8. The specification consists of three server pro-

cesses, six client processes and three loadbalancer processes. A particular client has

been blocked by the system, indicated by the global pid variable blocked client.

A loadbalancer process continuously receives requests sent by client pro-

cesses. A request consists of two parts: the identity of a client (derived from its pid

variable), and the input channel of the client. If the message is from the blocked

client then the loadbalancer sends back the value 0, indicating that the request has

been denied. Otherwise the loadbalancer forwards the name of the input channel of

the given client to the server with the shortest queue of incoming messages (choos-

ing non-deterministically between servers which share the shortest queue length).

On receiving a client channel name, a server uses it to send the value 1 to the client,

which abstractly represents the result of the request.

The specification has a dynamic communication structure since channel ref-

erences are passed between processes.

Summary

In order to allow the rigorous development of automatic symmetry detection tech-

niques for Promela, we have presented the syntax, type system and Kripke struc-

ture semantics for Promela-Lite, a specification language which captures the essen-

tial features of Promela, but is easier to work with in practice. We have illustrated

Promela-Lite using a specification of a loadbalancing system.
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chan se1 = [3] of {chan{int}};
chan se2 = [3] of {chan{int}};
chan se3 = [3] of {chan{int}};

chan lb1 = [1] of {pid,chan{int}};
chan lb2 = [1] of {pid,chan{int}};
chan lb3 = [1] of {pid,chan{int}};

chan cl1 = [1] of {int}; chan cl2 = [1] of {int};
chan cl3 = [1] of {int}; chan cl4 = [1] of {int};
chan cl5 = [1] of {int}; chan cl6 = [1] of {int};

pid blocked_client = 9;

proctype loadbalancer(chan{pid,chan{int}} in;
chan{int} client_link; pid client_id; int pc) {

do
:: atomic { pc==1 && nempty(in) -> in?client_id,client_lin k;

pc = 2 }
:: atomic { pc==2 && client_id!=blocked_client -> pc = 3 }
:: atomic { pc==2 && client_id==blocked_client &&

nfull(client_link) -> client_link!0; pc = 4 }
:: atomic { pc==3 && len(se1)<=len(se2) && len(se1)<=len(s e3)

&& nfull(se1) -> se1!client_link; pc = 4 }
:: atomic { pc==3 && len(se2)<=len(se1) && len(se2)<=len(s e3)

&& nfull(se2) -> se2!client_link; pc = 4 }
:: atomic { pc==3 && len(se3)<=len(se1) && len(se3)<=len(s e2)

&& nfull(se3) -> se3!client_link; pc = 4 }
:: atomic { pc==4 -> client_id = 0; client_link = null; pc = 1 }

od
}

proctype server(chan{chan{int}} in; chan{int} client_li nk; int pc) {
do

:: atomic { pc==1 && nempty(in) -> in?client_link; pc = 2 }
:: atomic { pc==2 && nfull(client_link) -> client_link!1;

pc = 3 }
:: atomic { pc==3 -> client_link = null; pc = 1 }

od
}

proctype client(chan{int} in; chan{pid,chan{int}} lb;
int response; int pc) {

do
:: atomic { pc==1 && nfull(lb) -> lb!_pid,in; pc = 2 }
:: atomic { pc==2 && nempty(in) -> in?response; pc = 3 }
:: atomic { pc==3 -> response = -1; pc = 1 }

od
}

init {
atomic {

run server(se1,null,1); run server(se2,null,2);
run server(se3,null,3); run loadbalancer(lb1,null,0,1) ;
run loadbalancer(lb2,null,0,1); run loadbalancer(lb3,n ull,0,1);
run client(cl1,lb1,-1,1); run client(cl2,lb1,-1,1);
run client(cl3,lb2,-1,1); run client(cl4,lb2,-1,1);
run client(cl5,lb3,-1,1); run client(cl6,lb3,-1,1);

}
}

Figure 6.8: Promela-Lite specification of a loadbalancing system.



Chapter 7

Finding Symmetry by Static Channel Diagram Analysis

The examples in Chapter 4 have led us to identify some problems with existing

symmetry detection techniques using scalarsets and input language restriction.

These approaches cannot handle certain kinds of symmetry which arise from the

communication structure of a system, and they place undue restrictions on the form

of specifications; in particular the way in which process identifiers may be used. In

Chapter 5 we established a correspondence between channel diagram automor-

phisms and Kripke structure automorphisms for these example specifications.

In this chapter we introduce the static channel diagram of a Promela-Lite spec-

ification. This diagram type is similar to the channel diagram, but can be extracted

by syntactic inspection of a specification even if the associated model is intractably

large. We formally establish a general correspondence between automorphisms of

the static channel diagram and automorphisms of the Kripke structure associated

with a Promela-Lite specification.

We present a symmetry detection technique based on this correspondence,

which can be summarised as follows: generators for a group of candidate symme-

tries for a Promela-Lite specification are found by analysing the static channel di-

agram of the specification. These generators are checked individually against the

specification to see if they induce valid automorphisms of the associated model.

Starting with the set of candidate generators which are valid, the largest possible

subgroup of candidate symmetries which are all valid is computed. These symme-

tries can then be used for reduced model checking.

Unlike previous approaches to symmetry detection, our approach can de-

tect arbitrary component symmetries arising from the communication structure of

a specification. The approach can be fully automated (as we demonstrate in Chap-

ter 8), and requires no additional information from the user. The only requirement

is that the specification satisfies certain restrictions which are formally described

using the type system of Section 6.2. The restrictions can be automatically checked,

and are less strict than those imposed by the scalarset data type or the SMC input

language.

At the end of this chapter we discuss various ways in which the technique
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could be extended to further reduce restrictions on the form of a specification, and

to capture symmetry between global variables. We emphasise that the static chan-

nel diagram is merely used as a heuristic for finding a good group of candidate

symmetries, and discuss other possible diagram types.

7.1 Static Channel Diagrams

Let P be a Promela-Lite specification with n processes. Let VP = {1, 2, . . . , n} be the

set of process identifiers, and VC the set of static channel names for P . Recall from

rules T-SEND and T-RECV (Figure 6.5, Section 6.2) that a Promela-Lite statement

involves at most one send or receive update, and this update must appear at the

beginning of the sequence of updates for the statement.

Definition 27 The static channel diagram associated with P is a coloured, bipartite

digraph SCD(P) = (V, E, C) where:

• V = VP ∪ VC is the set of process identifiers and static channel names in P

• For i ∈ VP, c ∈ VC and proctype(i) = p,

– (i, c) ∈ E iff p has a statement of the form ‘atomic { g -> 〈name〉! e1, e2,

. . . , ek; u2; . . . ; ul }’ where 〈name〉 is c, or 〈name〉 is a parameter of p

initialised with value c

– (c, i) ∈ E iff p has a statement of the form ‘atomic { g -> 〈name〉?x1, x2,

. . . , xk; u2; . . . ; ul }’ where 〈name〉 is c, or 〈name〉 is a parameter of p

initialised with value c

• C is a colouring function defined by C(v) = proctype(v) if v ∈ VP, and

C(v) = signature(v) if v ∈ VC.

The difference between the static channel diagram of a Promela-Lite specification

and the channel diagram of a Promela specification (Definition 26, Section 5.1)

is that the channel diagram records all possible channel-based communication,

whereas the static channel diagram records potential communication on certain

channels. The static channel diagram of a specification can be seen as a static ap-

proximation of the communication structure for the specification. It does not cap-

ture communication arising from dynamic passing of channel references, and edges

of the diagram may result from send/receive updates which in practice cannot be

executed in any reachable state of M.

7.1.1 Deriving static channel diagrams

Given a Promela-Lite specification P , SCD(P) can be efficiently derived via a sin-

gle pass of P . The node set and colouring can be deduced immediately from the

declaration of static channels and the run statements.
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(1,{pid,chan{int}})

(1,{int})

(3,{chan{int}})

loadbalancer4 loadbalancer5 loadbalancer6

Key to channel signatures

cl1 cl2 cl3 cl4 cl5 cl6

lb1 lb2 lb3

se3se2se1

client7 client8 client9

server1 server2 server3

client12client11client10

Figure 7.1: Static channel diagram associated with the loadbalancer specification (Fig-
ure 6.8).

If a proctype p involves an explicit send/receive on static channel c then an

edge (i, c)/(c, i) is added to the diagram for each i ∈ VP such that proctype(i) = p.

Each channel parameter x of p is marked as a send parameter and/or a receive pa-

rameter if p contains an update of the form x! e1, e2, . . . , ek and/or x?x1, x2, . . . , xk.

For each i ∈ VP with proctype(i) = p, suppose the actual value for x in the ith run

statement is c (where c is a static channel name). If x is marked as a send/receive

parameter then an edge (i, c)/(c, i) is added to the diagram.

The next result follows from the above discussion:

Proposition 4 Let P be a Promela-Lite specification. The complexity of deriving

SCD(P) from P is linear in the size of P .

Therefore, unlike deriving the channel diagram of a Promela specification (Sec-

tion 5.1.1), it is possible to derive SCD(P) from a Promela-Lite specification P

even if M is intractably large.

Figure 7.1 shows the static channel diagram for the Promela-Lite specifica-

tion of the loadbalancer system, given in Figure 6.8. The graphical notation is sim-

ilar to that for channel diagrams introduced in Section 5.1. Note that there are no

outgoing edges from the server processes to the client input channels. This is because

communication from a server process to a client channel is achieved dynamically, us-

ing the channel reference passed to a server by one of the loadbalancer processes.

The state-space associated with the corresponding Promela version of the

specification (derived using the method described in Section 6.4) is intractably

large, thus we cannot compute its associated channel diagram.
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7.2 Static Channel Diagram Automorphisms

An automorphism of the static channel diagram SCD(P) = (V, E, C) is an au-

tomorphism of the directed, coloured graph (V, E, C) (see Definition 19, Sec-

tion 3.1.5). The group of all automorphisms of SCD(P) is denoted Aut(SCD(P)).

This is analogous to the notion of a channel diagram automorphism (see Sec-

tion 5.1.2). For α ∈ Aut(SCD(P)) we define α(0) = 0 and α(null ) = null ,

where 0 and null are the default values used by variables of type pid and chan

respectively.

Since SCD(P) is a small graph (its size is proportional to the size of P),

the group Aut(SCD(P)) can be efficiently computed directly using a standard al-

gorithm such as nauty [125], or via GRAPE as described in Section 5.1.2 (for chan-

nel diagrams). Let P denote the loadbalancer specification of Figure 6.8. The static

channel diagram SCD(P) is shown in Figure 7.1. Using GRAPE we find:

Aut(SCD(P)) = 〈(7 8)(cl1 cl2), (9 10)(cl3 cl4), (11 12)(cl5 cl6),

(4 5)(lb1 lb2)(7 9)(cl1 cl3)(8 10)(cl2 cl4),

(5 6)(lb2 lb3)(9 11)(cl3 cl5)(10 12)(cl4 cl6),

(1 2)(se1 se2), (2 3)(se1 se2)〉.

Recall that i is the pid of the ith proctype inistantated in the init process.

It is straightforward to check that each generator of this group is indeed

an automorphism of SCD(P). We have used GAP to show that Aut(SCD(P)) ∼=

S3 × (S2 ≀ S3). Intuitively, the wreath product group S2 ≀ S3 arises due to symmetry

within each of the three blocks of clients (the group S2), combined with symmetry

between the three blocks (the group S3). The group S3 on the left hand side of

the direct product corresponds to permutation of the server processes (and their

associated channels).

We now define the image of P under an element of Aut(SCD(P)), and an

action of Aut(SCD(P)) on the states of M.

7.2.1 Image of P under α ∈ Aut(SCD(P))

Let P be a Promela-Lite specification and α ∈ Aut(SCD(P)). The specification

α(P) is obtained from P by replacing every applied occurrence of a static channel

name c with α(c); every occurrence of a value a ∈ {1, 2, . . . , n} in a pid context

(see Section 6.2) with α(a), and permuting the order of run statements so that run

statement i appears in position α(i) in α(P) (1 ≤ i ≤ n).

Similarly, given an expression e, guard g, update u or statement s of P , the

expression α(e), guard α(g), update α(u) or statement α(s) is obtained by replacing

every static channel name c and pid literal a with α(c) and α(a) respectively.
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7.2.2 Action of Aut(SCD(P)) on the states of M

Let α ∈ Aut(SCD(P)). We first define the effect of α on propositions which refer to

variables and static channels of P :

• Let (x = a) be a proposition referring to a global variable x with x : T and

a ∈ lit(T). If T = pid then α((x = a)) = (x = α(a)), otherwise α((x = a)) =

(x = a). (Note that the Promela-Lite type system ensures that T ∈ {int, pid}.)

• Let (p[i].x = a) be a proposition referring to a local variable x of process

i, with x : T and a ∈ lit(T). If T = pid or T = chan{T} then α((p[i].x =

a)) = (p[α(i)] = α(a)). Otherwise α((p[i].x = a)) = (p[α(i)] = a). Since

α preserves the colouring of processes according to their proctype, process

α(i) is also an instantiation of proctype p and therefore the local variable

p[α(i)].x exists. Thus the action of α is well-defined.

• Let (c = [~a1, ~a2, . . . , ~am]) be a proposition referring to a static channel c with

signature (l, {T}) where 0 ≤ m ≤ l. Then α((c = [~a1, ~a2, . . . , ~am])) = (α(c) =

[~a1
α, ~a2

α, . . . , ~am
α]). If ~ai = (a1, a2, . . . , ak) then ~ai

α = (b1, b2, . . . , bk) where

bi = α(ai) if Ti = pid or Ti = chan{U} and bi = ai otherwise. The action of α

is well-defined as α preserves the signature of static channels.

Let M = (S, s0, R) be the model associated with P . Recall that a state s ∈ S

is a set of propositions, one for each variable and static channel of P . The state α(s)

is defined as follows: α(s) = {α(z) : z ∈ s}.

For all s ∈ S and α, β ∈ Aut(SCD(P)), it is clear that (αβ)(s) = α(β(s))

and id(s) = s, therefore the definition of α(s) is an action of Aut(SCD(P)) on S (see

Definition 13, Section 3.1.3).

7.3 Correspondence Result

Let ρ be the permutation representation of Aut(SCD(P)) corresponding to its

action on S. By Theorem 3 (Section 3.1.3), ρ(Aut(SCD(P))) ≤ Sym(S). Now

Aut(M) ≤ Sym(S), but we cannot, in general, say anything about the relationship

between ρ(Aut(SCD(P))) and Aut(M) with respect to the subgroup relation.

In this section we define what it means for an element of Aut(SCD(P)) to

be valid for P , and show that the set of all valid elements of Aut(SCD(P)) form a

subgroup G ≤ Aut(SCD(P)). We prove that if α ∈ Aut(SCD(P)) is valid for P

then ρ(α) ∈ Aut(M). Thus ρ(G) ≤ Aut(M). The relationship between the various

groups is illustrated in Figure 7.2.

7.3.1 Valid elements of Aut(SCD(P))

We say that two Promela-Lite specifications P1 and P2 are equivalent, and write

P1 ≡ P2, if they are identical up to re-arrangement of statements in the do . . . od
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Sym(S)

ρ(Aut(SCD(P)))

G

Aut(M)

ρ(G)

Aut(SCD(P))

largest subgroup

reduction

suitable for
symmetrywhich is valid

for P

ρ

Figure 7.2: Relationship between valid automorphisms of SCD(P) and automor-
phisms of M.

construct, and operands to the commutative, associative operators +, * , &&and || .

For brevity, we then say that P1 and P2 are identical “up to re-arrangement”.

An element α ∈ Aut(SCD(P)) is valid for P if α(P) ≡ P .

Theorem 12 Let G = {α ∈ Aut(SCD(P)) : α is valid for P}. Then G ≤

Aut(SCD(P)).

Proof Since id(P) = P , clearly id(P) ≡ P , thus id ∈ G. Associativity is inher-

ited from Aut(SCD(P)). Let α, β ∈ G. Then α(P) and β(P) are identical to P up

to re-arrangement. It follows that αβ(P) ≡ P (by successively applying the rear-

rangements of α to those of β), i.e. αβ ∈ G. Since Aut(SCD(P)) is finite, α−1 = αk

for some k > 0, thus α−1 ∈ G by the above argument. The result follows. �

If H is a subgroup of Aut(SCD(P)) such that every element of H is valid

for P we say that H is valid for P . The group G of Theorem 12 is the largest valid

subgroup of Aut(SCD(P)).

To check whether P ≡ α(P) for α ∈ Aut(SCD(P)), we use a function

normalise. The specification normalise(P) is obtained from P by sorting the state-

ments in the do...od loop of a proctype and the operands of commutative oper-

ators, using the natural ordering on strings. It is clear that if two specifications are

equal after normalisation then they are equivalent. Thus α ∈ Aut(SCD(P)) is valid

for P if normalise(P) = normalise(α(P)). This provides an efficient, conservative

test of validity for elements of Aut(SCD(P)). Since the complexity of sorting a list

of length k is O(k log(k)), we have:

Proposition 5 The complexity of checking whether P ≡ α(P) is O(|P| log(|P|)).



7.3: CORRESPONDENCE RESULT 131

7.3.2 Main result

In this section we prove the following theorem:

Theorem 13 Let P be a Promela-Lite specification, and α ∈ Aut(SCD(P)). If α is

valid for P then ρ(α) ∈ Aut(M).

For ease of presentation, we shall use α(s) rather than ρ(α)(s) to denote the image

of s under the element ρ(α). The proof of Theorem 13 uses two technical lemmas,

proofs of which are given in Appendix B.2.

Lemma 1 If α ∈ Aut(SCD(P)) and g is a guard in P then

s |=p,i g ⇔ α(s) |=p,α(i) α(g).

Lemma 2 Let u1, u2, . . . , uk be updates of P , α ∈ Aut(SCD(P)) and s a state such

that execp,i(s, u1; u2; . . . ; uk) is well-defined. Then

execp,α(i)(α(s), α(u1); α(u2); . . . ; α(uk)) = α(execp,i(s, u1; u2; . . . ; uk)).

Proof of Theorem 13 By Definition 20 (Section 3.2), we must show that (i) if (s, t) ∈

R then (α(s), α(t)) ∈ R, and (ii) α(s0) = s0.

If (s, t) ∈ R then there is a process with pid i such that proctype(i) = p

(for some proctype p), and a statement z in p such that the guard of z holds for

process i at s, and execution of the updates of z by process i at s leads to state t.

Since α(P) ≡ P the statement α(z) (possibly re-arranged) also appears in proctype

p. By Lemma 1, the guard of α(z) holds for process α(i) at α(s), and by Lemma 2,

execution of the updates of α(z) by process α(i) at α(s) leads to state α(t). Therefore

(α(s), α(t)) ∈ R.

We must show that for any proposition (v = d) in s0, α((v = d)) ∈ s0 also.

In s0, all static channels are empty, so for any static channel c, the propositions

(c = [ ]) and α((c = [ ])) = (α(c) = [ ]) both belong to s0. For each global variable

x, (x = x0) ∈ s0, where x0 is the initial value for x (specified at declaration). If x : int

then α((x = x0)) = (x = x0) ∈ s0. If x : pid then we must have α(x0) = x0 (since

α(P) ≡ P), so α((x = x0)) = (x = α(x0)) = (x = x0) ∈ s0.

For any local variable x, suppose x0 is the initial value given for x in run

statement i. Then (p[i].x = x0) ∈ s0. Let y0 be the initial value given for x in run

statement α(i), so that (p[α(i)].x = y0) ∈ s0. If x : int then, since P = α(P), the

value for x in run statements i and α(i) must be the same, i.e. x0 = y0. So we

have α((p[i].x = x0)) = (p[α(i)].x = x0) = (p[α(i)].x = y0) ∈ s0. Suppose that

x : pid or x : chanT. Then, since P = α(P), the value for x in run statement α(i)

is the image under α of the value for x in run statement i, i.e. y0 = α(x0). We have

α((p[i].x = x0)) = (p[α(i)].x = α(x0)) = (p[α(i)].x = y0) ∈ s0. �
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7.4 Finding the Largest Valid Subgroup of Aut(SCD(P))

We showed in Section 7.3.1 (Theorem 12) that the set G consisting of all elements of

Aut(SCD(P)) which are valid for P is a subgroup of Aut(SCD(P)). G is thus the

largest subgroup of Aut(SCD(P)) which is valid for P .

In this section we present an algorithm to find this subgroup. First we es-

tablish some preliminary results. For the relevant group theoretic definitions, see

Section 3.1.

Lemma 3 Let X be a set of generators for Aut(SCD(P)). Let X′ = {α ∈ X :

α is valid for P}. Then 〈X′〉 is valid for P .

Proof By definition of G, X′ ⊆ G. Therefore 〈X′〉 ≤ G, and the result follows. �

Lemma 4 Suppose H ≤ Aut(SCD(P)) is valid for P and α ∈ Aut(SCD(P)) is

valid for P . Then 〈H ∪ {α}〉 is valid for P .

Proof Since H is valid for P , H ≤ G. Similarly, since α is valid for P , α ∈ G. Thus

H ∪ {α} ⊆ G. It follows from Lemma 3 that 〈H ∪ {α}〉 ≤ G. �

Our algorithm for finding G starts with a known valid subgroup H of

Aut(SCD(P)), and adds valid coset representatives (see Definition 6, Section 3.1.1)

to the generators of H to obtain successively larger valid subgroups. The following

lemma is used to determine when G has been found.

Lemma 5 Suppose H ≤ Aut(SCD(P)) and H is valid for P . Let {α1, α2 . . . , αk}

be a set of coset representatives for H in Aut(SCD(P)), where α1 ∈ H, αi ∈

Aut(SCD(P)) \ H for 2 ≤ i ≤ k and k = |Aut(SCD(P))|/|H|. Suppose α2, . . . , αk

are not valid for P . Then H is the unique largest valid subgroup of Aut(SCD(P))

(i.e. H = G).

Proof Since H is valid for P , H ≤ G. Suppose H ⊂ G. Then there exists α ∈ G

with α /∈ H. So Hα is a right coset of H in Aut(SCD(P)), and Hα = Hαi for some

2 ≤ i ≤ k. Since α ∈ G, Hα ⊆ G, so Hαi ⊆ G and thus αi ∈ G. This is a contradiction

since G is valid for P and αi, by hypothesis, is not. Hence H = G. �

Algorithm 4 can be used to compute the largest valid subgroup G of

Aut(SCD(P)).

Theorem 14 Algorithm 4 computes the largest valid subgroup of Aut(SCD(P)).

Proof By Lemmas 3 and 4, the group H computed by Algorithm 4 is valid for

P . The group H is the largest subgroup of Aut(SCD(P)) which is valid for P by

Lemma 5. �
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Algorithm 4 Algorithm to find the largest valid subgroup of Aut(SCD(P))

X := generators of Aut(SCD(P))
H := 〈{α ∈ X : α(P) ≡ P}〉
U := representatives of right cosets of H in Aut(SCD(P)) except H
while U 6= ∅ do

U := U \ {α}
if α(P) ≡ P then

H := 〈H ∪ {α}〉
if |Aut(SCD(P))|/|H| < |U| then

U := representatives of right cosets of H in Aut(SCD(P)) except H
end if

end if

end while

We illustrate Algorithm 4 using the loadbalancer example. Let P be the spec-

ification of Figure 6.8. Generators for Aut(SCD(P)) computed by GRAPE are given

in Section 7.2. The generators which do not fix the process identifier 9 are not valid

for P since, if α is one of these generators, the declaration pid blocked client

= 9 in P is replaced with pid blocked client = α(9) in α(P), and α(9) 6= 9,

thus α(P) 6≡ P . The other generators are valid for P , therefore:

H = 〈(7 8)(cl1 cl2), (11 12)(cl5 cl6),

(1 2)(se1 se2), (2 3)(se1 se2)〉

is valid for P . GAP tells us that |Aut(SCD(P))| = 288 and |H| = 24, so there

are |Aut(SCD(P))|/|H| = 12 cosets of H in Aut(SCD(P)). We can use GAP

to compute representatives α1, α2, . . . , α11 for the 11 cosets of H in Aut(SCD(P))

which are distinct from H. We find that the first nine of these are not valid for

P , but α10 = (4 6)(lb1 lb3)(7 11)(cl1 cl5)(8 12)(cl2 cl6) is valid for P . This el-

ement is added to the generators of H, and we find |H| = 48, so there are now

|Aut(SCD(P))|/|H| = 6 cosets of H in Aut(SCD(P)). However, it is more effi-

cient to check the final original coset representative α11 than to compute and check

a new set of coset representatives. This is the purpose of the innermost conditional

statement in Algorithm 4. We find that α11 is not valid for P , thus:

H = 〈(7 8)(cl1 cl2), (11 12)(cl5 cl6),

(1 2)(se1 se2), (2 3)(se1 se2),

(4 6)(lb1 lb3)(7 11)(cl1 cl5)(8 12)(cl2 cl6)〉

is the largest subgroup of Aut(SCD(P)) which is valid for P .

Algorithm 4 performs badly if the initial group H is small, and Aut(SCD(P))

very large. If H is the largest valid subgroup then (|Aut(SCD(P))|/|H|) − 1 coset
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representatives must be checked. We discuss the implementation of Algorithm 4,

together with a group theoretic optimisation, in Section 8.3.3.

7.5 Generalising Static Channel Diagram Automorphisms

Let P be a Promela-Lite specification with associated model M. We have shown

that automorphisms of M can be derived from the group Aut(SCD(P)). We now

define a group Aut(Ψ(P)) such that Aut(SCD(P)) ≤ Aut(Ψ(P)), and show that

our techniques can be generalised so that automorphisms of M can be derived

from Aut(Ψ(P)).

Definition 28 Ψ(P) is a coloured graph Ψ(P) = (V, ∅, C) where:

• V = VP ∪ VC is the set of process identifiers and static channel names in P

• C is a colouring function defined by C(v) = proctype(v) if v ∈ VP, and

C(v) = signature(v) if v ∈ VC.

The graph Ψ(P) could be obtained from SCD(P) by removing all of the

edges of SCD(P), although it is trivial to obtain Ψ from P . The group Aut(Ψ(P))

is the subgroup of Sym(V) which preserves the colouring C, i.e. Aut(Ψ(P)) = {α ∈

Sym(V) : C(v) = C(α(v)) ∀ v ∈ V}.

The techniques presented in this chapter were motivated by the correspon-

dence between channel diagram and Kripke structure automorphisms observed

in Chapter 4. However, if Aut(SCD(P)) is replaced with Aut(Ψ(P)) consistently

throughout Sections 7.3 and 7.4, the correspondence result still holds, and Algo-

rithm 4 can be used to find the largest valid subgroup of Aut(Ψ(P)).

We show that the largest valid subgroup of Aut(Ψ(P)) is the same as the

largest valid subgroup of Aut(SCD(P)):

Theorem 15 Let P be a Promela-Lite specification, and G the largest subgroup of

Aut(Ψ(P)) which is valid for P . Then G ≤ Aut(SCD(P)) and G is the largest

subgroup of Aut(SCD(P)) which is valid for P .

Proof Ψ(P) = (V, ∅, C) and SCD(P) = (V, E, C), where V = VP ∪ VC. Let α ∈ G.

Suppose α /∈ Aut(SCD(P)). Since α ∈ Aut(Ψ(P)), α preserves the colouring C,

therefore there must be an edge (u, v) ∈ E such that (α(u), α(v)) /∈ E. By definition

of SCD(P), we have (u, v) = (i, c) or (u, v) = (c, i) for some i ∈ VP and c ∈ VC.

Suppose (u, v) = (i, c). By Definition 27 (Section 7.1) there is a proctype

p in P such that proctype(i) = p and p contains a statement z which involves a

write on a static channel c or on a local variable of p initialised with value c in run

statement i. Since α(P) ≡ P , the statement α(z) (possibly re-arranged) also appears

in proctype p. If z involves a write on static channel c then α(z) involves a write on
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static channel α(c). If z involves a write on a local variable of p initialised with value

c in run statement i then α(z) involves a write on the same variable which, since

α(P) ≡ P , is initialised with value α(c) in run statement α(i). In both cases, since

proctype(α(i)) = p, (α(i), α(c)) ∈ E. If (u, v) = (c, i) then, by a similar argument,

(α(c), α(i)) ∈ E.

This is a contradiction, so we must have (u, v) ∈ E ⇒ (α(u), α(v)) ∈ E, i.e.

α ∈ Aut(SCD(P)). The result follows. �

We have G ≤ Aut(SCD(P)) ≤ Aut(Ψ(P)), where G is the largest valid

subgroup of Aut(Ψ(P)). Since Aut(SCD(P)) is usually smaller than Aut(Ψ(P)) it

is more practical to search for G in Aut(SCD(P)) than Aut(Ψ(P)). For example,

let P be the loadbalancing specification (see Figure 6.8). Then Ψ(P) is obtained by

removing all the edges from SCD(P) shown in Figure 7.1. Any permutation which

maps a process/channel node coloured with a given proctype name or channel sig-

nature to a similarly coloured process/channel node is an automorphism of Ψ(P).

Using GRAPE we find:

Aut(Ψ(P)) = 〈 (1 2), (2 3), (4 5), (5 6), (7 8),

(8 9), (9 10), (10 11), (11 12),

(cl5 cl6), (cl4 cl5), (cl3 cl4),

(cl2 cl3), (cl1 cl2), (lb2 lb3),

(lb1 lb2), (se2 se3), (se1 se2) 〉

and |Aut(Ψ(P))| = 671, 846, 400. None of the generators of Aut(Ψ(P)) are valid

for P . On the other hand, in Section 7.4 we showed that |Aut(SCD(P))| =

288, and that the initial valid subgroup generated by the valid generators of

Aut(SCD(P)) has size 24. The largest valid subgroup of Aut(SCD(P)) (and thus

of Aut(Ψ(P))) was shown to have size 48. Computing within Aut(SCD(P)) rather

than Aut(Ψ(P)) reduces the problem of searching the whole of Aut(Ψ(P)) for 48

elements to searching a small set of coset representatives in a much smaller group.

Aut(SCD(P)) can be thought of as a good upper bound for valid symme-

tries, from which the least upper bound G can be computed. An open research

problem is to determine whether there is an alternative diagram to SCD(P), Γ(P)

say, such that for any Promela-Lite specification P , Γ(P) can be extracted from P

in polynomial time and Aut(Γ(P)) = G, the largest valid subgroup of Aut(Ψ(P)).

7.6 Extending the Techniques

The Promela-Lite syntax and type system place fewer restrictions on the use

of pid literals and expressions than those associated with scalarset variables in

Murφ/SymmSpin (see Definition 22, Section 3.3.2), or index variables in SMC (see
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Guards (ctd.)
Γ ⊢ e : pid Γ ⊢ a ∈ {0, 1, . . . , n} ⊲⊳ ∈ {<, <=, >, >=}

Γ ⊢ e ⊲⊳ a OK
(T-RELATIONAL-PID-LIT)

Γ ⊢ e : pid Γ ⊢ a ∈ {0, 1, . . . , n} ⊲⊳ ∈ {<, <=, >, >=}

Γ ⊢ a ⊲⊳ e OK
(T-RELATIONAL-LIT-PID)

Figure 7.3: Typing rules to allow pid expressions to be compared with literal values
using relational operators.

Section 3.3.3). In particular, literal pid values can be referred to explicitly in expres-

sions and updates. However, relational and arithmetic operations involving pid ex-

pressions are still not allowed. The techniques presented in this chapter can handle

arbitrary kinds of symmetry which arise from the static channel diagram of a spec-

ification, but symmetry between global variables cannot be detected, and the check

for validity of static channel diagram automorphisms is not as sophisticated as it

could be.

We now outline some ways in which certain restrictions on the use of pid

expressions can be relaxed, and sketch how the static channel diagram can be ex-

tended to allow symmetries between global variables to be captured. We then illus-

trate the conservative nature of our validity check.

7.6.1 Allowing relational operators with pid arguments

Since lit(pid) is a finite set of integers ({0, 1, . . . , n}), if e is an expression with

e : pid and a ∈ {0, 1, . . . , n}, the guard e < a can be re-written as a disjunction:

(e==0||e==1|| . . . e==a − 1) (where a − 1 denotes a value rather than an arith-

metic expression). The guards e > a, e <= a, e >= a, a < e, a > e, a <= e and a >= e

can be expanded in a similar way.

Suppose we extend the type system to include the typing rules given in Fig-

ure 7.3. These rules allow expressions of pid type to be compared relationally with

pid literals. Let P ′ be a Promela-Lite specification which is well-typed in this ex-

tended type system. Let P be the specification obtained from P ′ by expanding ev-

ery guard e ⊲⊳ a or a ⊲⊳ e (where e : pid is either a variable name or pid , and

a ∈ {0, 1, . . . , n}) using the method described above. Clearly P ′ is a Promela-Lite

specification which is well-typed with respect to the original type system, and P ′

and P have identical associated models. Thus our symmetry detection techniques

can be applied to P to obtain a group of static channel diagram automorphisms

suitable for symmetry reduction when model checking P ′.

This straightforward expansion technique makes Promela-Lite less restric-

tive and so allows our automatic symmetry detection techniques to apply to a

wider range of specifications.
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7.6.2 Symmetrically invariant operations

The Promela-Lite type system prohibits the use of process identifiers in arithmetic

operations (rule T-ARITH). This restriction is typical of techniques for symmetry

identification (see Sections 3.3.2 and 3.3.3). However, as discussed in Section 4.6.1

for the hypercube example, it is not necessarily the case that arithmetic operations

of this kind destroy symmetry.

An arithmetic operation involving only literal integers and pid variables

x1, x2, . . . , xk can be thought of as a function f (x1, x2, . . . , xk). Given an element α ∈

Aut(SCD(P)), if k is small then it is feasible to check whether α( f (a1, a2, . . . , ak)) =

f (α(a1), α(a2), . . . , α(ak)) for every combination of values ai ∈ {1, 2, . . . , n}. If this

is true we say that f is invariant under α.

For example, in a uni-directional ring network with five processes, the up-

date next = (current%5)+1 could be used to find the neighbour or the process

identified by current. Let α ∈ Aut(SCD(P)) have the form (1 2 3 4 5)β, where

β is a permutation of static channels. It is easy to check that, for any value of

current ∈ {1, 2, 3, 4, 5}, α((current%5) + 1) = (α(current)%5 + 1).

Suppose we extend the type system to allow an update of the form x =

f (x1, x2, . . . , xk) where x, x1, . . . , xk are pid variables, as long as the enclosing state-

ment has a guard of the form g && x1!=0 && x2!=0 && . . . && xk!=0 . This ensures

that the operation f is not applied to arguments which have the value 0, which rep-

resents a default pid value.

If P is well-typed according to the extended type system, we can replace a

statement of the form atomic { g && x1!=0 && x2!=0 && ...&& xk!=0 -> . . . ;

x = f (x1, x2, . . . , xk); . . . } (where x, x1, . . . , xk are variables with type pid) with nk

distinct statements, each of the form:

atomic { g && x1==a1 && x2==a2 && . . . && xk==ak ->

. . . ; x = f (a1, a2, . . . , ak); . . . }

where ai ∈ {1, 2, . . . , n} (1 ≤ i ≤ n) and f (a1, a2, . . . , ak) is the value of f for this

input. Since f only involves the xi and constant values, this value can be statically

computed for each statement. If the resulting specification is well-typed according

to the original type system (i.e. if each value f (a1, a2, . . . , ak) ∈ lit(pid)) then the

standard symmetry detection technique can be applied. In this case the complexity

of checking whether α is valid for P is still polynomial in the size of P , but the size

of P is now O(nk) where k is the highest arity of any arithmetic function involving

pid variables. Using the above example, the statement:

atomic { g && current!=0 -> . . . ; next = (current%5)+1; . . . }

is replaced by five statements:

atomic { g && current==1 -> . . . ; next = 2; . . . }

atomic { g && current==2 -> . . . ; next = 3; . . . }

atomic { g && current==3 -> . . . ; next = 4; . . . }
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atomic { g && current==4 -> . . . ; next = 5; . . . }

atomic { g && current==5 -> . . . ; next = 1; . . . }

Clearly this approach is not practical if k is large, in which case more sophis-

ticated techniques are required.

7.6.3 Capturing symmetry between global variables

If global variables are used for communication in a specification P then automor-

phisms of the associated model M may arise due to permutations of the variables.

The symmetry detection techniques presented earlier cannot handle this kind of

symmetry, since the static channel diagram SCD(P) does not capture the relation-

ship between processes and global variables.

We now sketch an extension of our technique to deal with this kind of sym-

metry, based on the notion of an extended static channel diagram. For a Promela-Lite

specification P , let VG denote the set of global variable names for P .

Definition 29 Let SCD(P) = (V ′, E′, C′) be the static channel diagram associated

with P . The extended static channel diagram associated with P is a coloured, tripartite

digraph1 ESCD(P) = (V, E, C) where:

• V = VP ∪ VC ∪ VG is the set of process identifiers, static channel names and

global variable names in P

• If e ∈ E′ then e ∈ E

• For i ∈ VP, x ∈ VG and proctype(i) = p,

– (i, x) ∈ E iff p has an update of the form x = e

– (x, i) ∈ E iff p has an update of the form y = e where the expression e

refers to global variable x

• C is a colouring function defined by C(v) = C′(v) if v ∈ V ′, and C(v) =

type(v) if v ∈ VG.

This definition is identical to Definition 27 (Section 7.1) except that ESCD(P)

includes nodes for global variables, and edges between process identifiers and

global variables. An edge from a process identifier to a global variable node is in-

cluded if the process can potentially update the variable; an edge from a global

variable node to a process identifier is included if the result of an update made by

the process can potentially be affected by the value of the variable.

The group Aut(ESCD(P)) is the set of all automorphisms of the di-

rected, coloured graph ESCD(P) (see Definition 19, Section 3.1.5). Given α ∈

Aut(ESCD(P)), the definition of α(P) is similar to the case where α ∈ SCD(P), ex-

cept that each applied occurrence of a global variable name x in P is replaced with

1. The definition of a tripartite digraph is a natural extension of the definition of a bipartite digraph
given in Section 3.1.5.



7.6: EXTENDING THE TECHNIQUES 139

α(x) in α(P), a declaration int x = init(x) is replaced with int x = init(α(x)), and

a declaration pid x = init(x) is replaced with pid x = α(init(α(x))).

If M = (S, s0, R) is the model associated with P , the action of Aut(ESCD(P))

on S is similar to that of Aut(SCD(P)), except that if x is a global variable then

α((x = a)) = (α(x) = a) if x : int, and α((x = a)) = (α(x) = α(a)) if x : pid.

The statements and proofs of Lemmas 1 and 2 and Theorem 13 are readily

adapted to show that, for α ∈ Aut(ESCD(P)), if α(P) ≡ P then ρ(α) ∈ Aut(M).

It is trivial to modify the computational group theoretic approach of Section 7.4 in

order to compute the largest valid subgroup of Aut(ESCD(P)).

7.6.4 Extending the notion of validity

In the following example we show that our notion of validity may be unneces-

sarily restrictive. Let P be a Promela-Lite specification with associated model M,

p a proctype of P , x, y, z local variables of p with x : pid and y, z : int, and

α ∈ Aut(SCD(P)). Suppose α maps 2 to 1 and 1 to 2, and α(P) ≡ P , so that

ρ(α) ∈ Aut(M).

Assume that the body of p begins with the following two statements:

atomic { x==1 && y!=3 && z!=4 -> x=0; }

atomic { x==2 && y!=3 && z!=4 -> x=0; }

so that the body of p in α(P) begins with the same statements in a different order.

Clearly we can re-write these statements as follows:

atomic { x==1 && y!=3 && z!=4 -> x=0; }

atomic { x==2 && (!(y==3 || z==4)) -> x=0; }

without changing M. In this case, we still have ρ(α) ∈ Aut(M). However, the body

of p in α(P) now begins with the statements:

atomic { x==2 && y!=3 && z!=4 -> x=0; }

atomic { x==1 && (!(y==3 || z==4)) -> x=0; }

Assuming that P does not happen to also include these statements, the bodies of p

in P and α(p) are not the same up to re-arrangement, i.e. α(P) 6≡ (P).

Nevertheless, our approach to checking the validity of elements is safe and

fast, and is sufficient for most sensibly written specifications. It would be possible

to extend our techniques to employ a more sophisticated equivalence check, e.g. by

using a theorem prover.

Summary

We have defined the static channel diagram SCD(P) associated with a Promela-Lite

specification P , and shown that it can be efficiently computed via a single pass of

P . After defining a group action of the automorphism group Aut(SCD(P)) on the

states S of M, the model associated with P , we have proved that there is a largest
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valid subgroup G ≤ Aut(SCD(P)) for which ρ(G) ≤ Aut(M), where ρ is the

permutation representation of the group action. Furthermore, we have presented

a computational group theoretic algorithm for computing the group G. This tech-

nique allows a subgroup of Aut(M) to be efficiently derived from the specification

P , to be subsequently used for symmetry reduction.

We have shown that our technique can be generalised to apply to any sub-

group of Aut(Ψ(P)), but that Aut(SCD(P)) can be a good candidate group for

efficient symmetry detection. We have discussed extensions to the approach which

allow certain relational and arithmetic operations involving process identifier vari-

ables, and the detection of symmetry between global variables. In addition, we

have suggested how the notion of valid automorphisms could be extended.



Chapter 8

SymmExtractor – an Automatic Symmetry Detection Tool for

Promela

In this chapter we describe SymmExtractor, an automated symmetry detection tool

for Promela which we have developed, based on the static channel diagram anal-

ysis techniques of Chapter 7. After providing an overview of the tool, we discuss

the restrictions on the form of a Promela specification which must be satisfied be-

fore SymmExtractor can be applied. We then discuss two problems related to type-

checking which SymmExtractor solves: how to deduce the type of an incompletely

specified channel in order to check the validity of static channel diagram automor-

phisms, and how to convert recursive channel types to a canonical form to allow

comparison when constructing a static channel diagram.

We discuss the way in which the GAP and saucy tools are used to com-

pute the largest valid subgroup of Aut(SCD(P)), and provide experimental results

showing how SymmExtractor performs on a variety of specifications based on the

motivating examples of Chapter 4.

In order to assess the practical feasibility of the restrictions imposed by

SymmExtractor we have carried out a user study, applying SymmExtractor to a

set of Promela examples written as solutions to two student assessed exercises.

We present the results of this evaluation, which highlight some mismatches be-

tween the restrictions imposed by SymmExtractor and the specification styles used

in practical Promela examples.

8.1 An Overview of SymmExtractor

SymmExtractor is a Java program based on a Promela parser generated using the

SableCC compiler generation framework [62]. The Promela grammar is adapted

from a BNF grammar presented in [92], with the SPIN source code used to resolve

ambiguity in the grammar specification.

The abstract syntax tree representation of the input specification is type-

checked, and type reconstruction is used to obtain the full types of all chan-

nels in the specification. Reconstructed channel types which are recursive are then
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Figure 8.1: The automatic symmetry detection processes used by SymmExtractor.

converted to a minimised canonical form. The typed abstract syntax tree is then

checked to see whether it satisfies certain restrictions imposed by the theory of

Chapter 7. If these restrictions are satisfied then the static channel diagram SCD(P)

for the specification P is derived, and its automorphisms are computed using the

saucy program [37]. Algorithm 4 of Section 7.4 is then used to compute the largest

subgroup of Aut(SCD(P)) which is valid for P . Checking validity depends on the

reconstructed type information obtained by SymmExtractor, and GAP is used to

calculate sets of coset representatives.

The automatic symmetry detection process is summarised in Figure 8.1. The

SymmExtractor implementation is embedded in our symmetry reduction package

TopSPIN (see Chapter 11), and is available online. Instructions on how to use Symm-

Extractor are included in the TopSPIN manual, Appendix C.2. We discuss various

aspects of our automatic symmetry detection process in the remainder of this chap-

ter.

8.1.1 Summary of the restrictions imposed by SymmExtractor

As discussed in Chapter 6, Promela includes a number of language features which

are not included in Promela-Lite. Most of these features could be handled by a

straightforward extension of the results of Chapter 7, and are therefore supported

by SymmExtractor. On the other hand, there are certain features of Promela for

which the theory of Chapter 7 cannot obviously be extended. These features are

not supported by SymmExtractor.

Appendix C.1 provides a detailed summary of non-Promela-Lite features

which SymmExtractor does and does not support. We now summarise the restric-
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tions on the form of a Promela specification which SymmExtractor requires, and

automatically checks:

1. The init process must have the form

init {

atomic {

run 〈name〉1(. . . );

run 〈name〉2(. . . );
...

run 〈name〉n(. . . );

〈statement-list, ‘; ’〉

};

〈statement-list, ‘; ’〉

}

The list 〈statement-list, ‘; ’〉 of statements within the atomic block must con-

sist of assignments of literal values to distinct variables. This is explained in

Section 8.3.2. The n run statements must be the only run statements occur-

ring in the specification.

2. All global channel declarations must include a channel initialiser (see Sec-

tion 2.4.1), and names of global channels must be treated as constants.

3. Variables of type pid must only be assigned to values in the range {0, 1, . . . , n},

to other pid variables or to the pid constant, and may not be used as

operands to arithmetic operators.

4. An array must either be indexed by pid variables and literal values in

the range {0, 1, . . . , n}, or by byte variables and literal values in the range

{0, 1, . . . , 255}. The former case is only permissible if the array is declared

with size n + 1.

5. The assignment x = y, where x and y are chan variables, is only permissible

if x and y have the same channel type and x is not a static channel. Similarly,

supplying a chan variable x as a send/receive argument to a channel is only

permissible if the type of x matches the corresponding field type for the

channel (and in the receive case, x must not be a static channel).

In Section 8.5 we investigate the implications of these restrictions in practice by

studying a set of Promela specifications written as solutions to student assessed

exercises.

8.2 Typechecking Promela

When designing Promela-Lite, to ease presentation of our theoretical results we in-

cluded notation for fully specifying channel types, and for defining recursive types.

In Promela, the type of a first-class channel can only be partially specified using a
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chan A = [1] of {chan};
chan B = [1] of {pid,int};

proctype Q() {
chan C;
A?C;
C!3,4;
...

}

proctype R() {
A!B;
...

}

Figure 8.2: Promela example where type information is partially specified.

channel initialiser, and while recursive types cannot be explicitly declared, they can

be used implicitly as we demonstrate in Section 8.2.2.

We now show that full type information for a Promela specification can be

obtained using type reconstruction, and that resulting recursive types can be stored

canonically via a minimisation process. This complete type information allows the

theoretical results of Chapter 7 to be applied to Promela specifications.

8.2.1 Reconstructing channel types

As noted in Section 6.4, a key difference between Promela-Lite and Promela is that

channel types in Promela-Lite are fully specified, whereas certain Promela channel

types are only partially specified.

Consider a Promela specification P which includes the fragment of code

shown in Figure 8.2. The local variable C of Q is declared to be a channel, but the

type of messages it accepts is unspecified. Messages for channel A are references

to channels, but the type of these channels is not specified in the initialiser for A.

The type for channel B is fully specified – B : chan{pid, int}. A value for C is ob-

tained via the statement A?C, by which C is assigned to some global channel name

which has been sent on A by another process (an instantiation of proctype R, for

example). Let α = (3 4). We cannot deduce the form of α(P) without knowing the

complete type of C. If C : chan{pid, pid} then the statement ‘C! 3, 4’ is replaced in

α(P) with ‘C! α(3), α(4)’, i.e. ‘C! 4, 3’. On the other hand if B : chan{pid, int} then

the corresponding statement in α(P) is ‘C! α(3), 4’, i.e. ‘C! 4, 4’.

Complete type information for A and therefore C can be obtained using

constraint-based type reconstruction (also known as type inference) [141]. We explain

this process using the Promela fragment of Figure 8.2.

The channel type information which is available from the specification is

recorded, and is annotated with type variables Xi, i ∈ N, which record missing

type information, as shown in the top left panel of Figure 8.3.

Each time a channel name is used for communication in the specification, a

constraint is posted. For example, the statement A?C implies that channel A must
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accept single-field messages where the field has the same type as C. We know al-

ready that A accepts single type messages of type chan X1,1 and we know that

C : chan X2, so we can post the constraint chan X2 = chan X1. Constraints are posted

similarly for the other communication statements. We use the notation pid/int to

denote a type which is either int or pid, and use this notation to handle the literal

values 3 and 4 which (out of context) can be assigned either type. The constraints

for our example, together with the statements from which they arise, are shown in

the top right panel of Figure 8.3.

The resulting system of constraints is then solved using a process known as

unification. This process checks whether the system is consistent, and if so provides

concrete values for type variables. If we attempt to unify the constraints X2 = X1,

X2 = {pid/int, pid/int} and X1 = {pid, int}, then since X2 is a tuple of size 2, X1

must also be a tuple of size 2. Furthermore, each entry of the tuple for X2 must

match the corresponding entry in X1. This is the case since pid/int matches pid in

the first case, and pid/int matches int in the second. Since X1 = {pid, int} is a stricter

constraint than X2 = {pid/int, pid/int}, {pid, int} is taken as a concrete value for X1

and X2. The unification process is illustrated in the middle panel of Figure 8.3.

If the constraints shown in Figure 8.3 are the only constraints which arise

from P relating to channels A, B and C, then the complete types for A, B and C are

reconstructed as shown at the bottom of the figure, by substituting type variables

for their concrete values. Armed with this additional type information, with α =

(3 4) as above, we can unambiguously assert that the statement ‘C! 3, 4’ should

be replaced with ‘C! 4, 4’ in α(P). This example shows that type reconstruction is

critical to our automatic symmetry detection techniques.

Unification fails when the system of constraints is inconsistent: in this case

the unification process should stop and report a type error. Unification of consistent

constraints may not provide a concrete value for all type variables if, for example,

a channel is never used. If we declare chan A = [1] of {chan }, but never use A,

then A will be assigned the type chan{chan Y} where Y is a type variable, but no

constraints relating to Y will be posted. For the purposes of automatic symmetry

detection we can simply assign Y = {int} in this case.

For a more general description of constraint-based type reconstruction, see

[141]. Our implementation is based on an algorithm described in [1].

8.2.2 Dealing with recursive types

Let P be a Promela specification. Recall from Definition 27, Section 7.1, that two

channel nodes in the static channel diagram for P are coloured the same if they

1. Note that the type expression chan X1 denotes a channel with accepts a tuple of messages, where
both the arity of the tuple and the type of each message field are unknown. This is different from
the expression chan{X1} – a channel with this type accepts messages comprised of a single field of
unknown type.
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Initial type information, Constraints posted based
annotated with type variables on channel usage

A : chan{chan X1} A?C → chan X2 = chan X1

B : chan{pid, int} C?3, 4 → X2 = {pid/int, pid/int}
C : chan X2 A! B → chan X1 = chan{pid, int}

Solution to system of constraints

chan X2 = chan X1 ∧ X2 = {pid/int, pid/int} ∧ chan X1 = chan{pid, int}
⇒ X2 = X1 ∧ X2 = {pid/int, pid/int} ∧ X1 = {pid, int}
⇒ X1 = X2 = {pid, int}

Reconstructed channel types

A : chan{chan{pid, int}} B : chan{pid, int} C : chan{pid, int}

Figure 8.3: Type reconstruction for a simple example.

have the same channel signature. In order to construct the colouring function asso-

ciated with SCD(P) it is necessary to be able to compare channel types for equality.

This is straightforward, unless the types are recursive (see Section 6.1.2). Al-

though Promela does not include syntax for specifying recursive channel types,

they can be implied by channel usage. Consider the channel declaration chan A =

[1] of {chan }, and the statement A! A. Using constraint-based type reconstruc-

tion, we record that A : chan{chan X} from the declaration of A, where X is a type

variable. We then post the constraint X = {chan X} according to the statement

A! A. Since X appears on both sides of this equation, X is defined recursively. We

can assign to A the recursive type rec X . chan{X}. This kind of channel usage has

been employed in realistic Promela specifications, e.g. a specification of a telephone

system [20].

Due to the manner in which type reconstruction works, we may end up with

the same recursive type appearing in many different forms. Suppose that a specifi-

cation includes channels A, B and C, and that after applying type reconstruction

we find A : rec X . chan{X, int}, B : chan{chan{rec X . chan{X, int}, int}, int} and

C : rec X . chan{chan{chan{X, int}, int}, int}. The types for A, B and C are all the

same, and are intuitively represented by the infinite tree shown in Figure 6.2, Sec-

tion 6.1.2.

In order to compare recursive types for equality, we first convert them to

a minimal, canonical form. This is achieved using an algorithm for minimisation

of deterministic finite automata [122]. The algorithm requires a type to be rep-

resented as a directed graph; this is illustrated on the left of Figure 8.4 for the

type chan{chan{rec X . chan{X, int}, int}, int}. The largest bisimulation on this graph

is then computed. This relation partitions the graph nodes into equivalence classes.

The type graph for the minimised type expression is the quotient graph with re-
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Figure 8.4: Minimisation of the recursive type chan{chan{rec X . chan{X, int}, int}, int}.

spect to the bisimulation equivalence relation, shown on the right of Figure 8.4.

As we have explained, recursive type minimisation is necessary for static

channel diagram extraction. In addition, when a Promela specification is not well-

typed, minimising recursive type expressions can make type error messages easier

to understand.

8.3 Obtaining Static Channel Diagram Automorphisms from a

Promela Specification

Given a Promela specification P , the static channel diagram SCD(P) is defined

analogously to the static channel diagram for a Promela-Lite specification (Defini-

tion 27, Section 7.1). SCD(P) can be extracted from P in linear time, as discussed

in Section 7.1.1.

8.3.1 Computing Aut(SCD(P))

For illustration in Chapter 5 we used the GRAPE package to compute static channel

diagram automorphisms. GRAPE interfaces with the nauty graph automorphism

package [126].

For efficiency and ease of implementation, SymmExtractor uses saucy [37],

a graph automorphism program based on nauty, to compute Aut(SCD(P)). We

chose saucy over nauty as we found it easier to program with. Additionally, saucy

has been shown to perform better than nauty when applied to large, sparse graphs

[37]. We have found that static channel diagrams are typically sparse (though they

may not be large). Our implementation uses a prototype extension of saucy which

can handle directed graphs (personal communication, P. Darga and I. L. Markov,

2007).

8.3.2 Checking the validity of an element of Aut(SCD(P))

As discussed in Section 8.2.1, application of an element α ∈ Aut(SCD(P)) to P

requires information about the types of message arguments to channel variables

which may not be directly available from the specification. This information is

available after type reconstruction has been applied to P .
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The notion of validity for Promela specifications is slightly different to that

for Promela-Lite specifications. Promela specifications P1 and P2 are equivalent

if they are identical up to re-arrangement of operators to commutative operands,

options in do...od statements, options in if...fi statements, and statements

which appear after the run statements in the init { atomic { ... } } block.

Each of these statements assigns a distinct variable to a literal value (see Sec-

tion 8.1.1), and they are enclosed in an atomic block, so their order does not matter.

The intended use of these statements is for initialising pid-indexed arrays, such as

the array of priority levels in the resource allocator example (see Section 4.4).

Once the specification α(P) has been obtained, checking whether P ≡ α(P)

involves an in-order traversal of the abstract syntax tree for each specification,

sorting the operands to commutative operators and the options of do...od and

if...fi statements, and sorting the initilisation statements described above. If

P ≡ α(P) then the specifications should be identical after this normalisation pro-

cess has been applied.

8.3.3 Using GAP to compute the largest valid subgroup

In order to compute the largest valid subgroup of Aut(SCD(P)), SymmExtractor

uses a GAP implementation of Algorithm 4 (Section 7.4). The Java and GAP com-

ponents of SymmExtractor communicate using redirected standard input and out-

put. Given a group G and a subgroup H of G, GAP provides a function to effi-

ciently compute right coset representatives of H in G. The number of generators of

Aut(SCD(P)) is typically small, and so initial generators for the valid group H are

found quickly by checking each generator of Aut(SCD(P)) for validity against the

specification P .

As discussed in Section 7.4, Algorithm 4 performs badly if the initial group

H is small, and Aut(SCD(P)) is very large. Our implementation includes a heuris-

tic which can be applied to try to combat this problem. If the size of the initial

valid subgroup H can be increased, fewer coset representatives need to be con-

sidered. An initial approach for increasing the size of H involved taking a set A

of random elements of Aut(SCD(P)) \ H and checking the validity of each ele-

ment of A against P , adding the valid ones to the generators of H. However, when

Aut(SCD(P)) is large, the probability of a random element being valid for P may

be small. In this case a better approach is, for each β ∈ A and each generator α of H,

to check the validity of the element β−1αβ (the conjugate of α by β, see Definition 7,

Section 3.1.1), adding each valid element β−1αβ to the generators of H (if it is not al-

ready contained in H). Adding random conjugates to the generators of H can work

well in practice: discarding invalid generators of Aut(SCD(P)) often results in a

group which can permute disjoint sets of processes and channels; adding random

conjugates to this group can provide mappings between these disjoint sets.

Recall the prioritised resource allocator specification of Section 4.4. Consider
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Figure 8.5: Static channel diagram for a prioritised resource allocator specification.

Already in H Not valid for P Valid for P and not in H

(1 2)β1 = (6 7) (6 7)β2 = (4 6) (2 3)β1 = (2 7)
(2 3)β2 = (5 7) (1 2)β3 = (4 6) (5 6)β1 = (1 5)
(5 6)β3 = (5 7) (2 3)β3 = (2 4) (6 7)β1 = (3 5)

(1 2)β2 = (3 5)
(5 6)β2 = (1 6)
(6 7)β3 = (3 5)

Figure 8.6: Conjugation of the generators of H by elements β1 = (1 6 5)(2 7 3),
β2 = (1 3 7 4 2 5) and , β3 = (1 6 5 7 3 2 4). For brevity, (i j) is used to denote
(i j)(linki linkj).

a version of the specification with seven client processes, where client 4 has priority

level 1, and all other clients have priority level 0. The static channel diagram for

such a specification is shown in Figure 8.5. Using saucy to compute a generating

set for this group, and using (i j) to denote the element (i j)(linki linkj) we find

that:

Aut(SCD(P)) = 〈(1 2), (2 3), (3 4), (4 5), (5 6), (6 7)〉,

and |Aut(SCD(P))| = 5040. However, as client 4 is distinguished by its differing

priority level, the generators (3 4) and (4 5) are not valid for P . Removing these

elements from the generating set has the effect of eliminating any permutations

which map client processes in the set {1, 2, 3} to the set {5, 6, 7}, and vice-versa.

The result is a significantly smaller group H, with |H| = 36.

We can use GAP to pick three random elements of Aut(SCD(P)), say β1 =

(1 6 5)(2 7 3), β2 = (1 3 7 4 2 5), β3 = (1 6 5 7 3 2 4). Figure 8.6 shows

the elements obtained by conjugating each generator α of H by one of the βi (i.e.

computing β−1
i αβi, which we abbreviate to αβi ).
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Observe that these random conjugates yield six elements of G which are

valid for P , but do not belong to H. Adding any one of these elements to the

generators of H to give the group H′ say, we find that |H′| = 720 whereas

|H| = 36. Thus by considering 12 random conjugates, we have reduced the prob-

lem of checking |Aut(SCD(P))|/|H| = 140 coset representatives to checking

|Aut(SCD(P))|/|H′| = 7.

We cannot say anything about how well this approach works in general, and

it is likely to be problem-specific. However, it can be a useful optimisation when

Aut(SCD(P)) is large and H, the initial valid subgroup, is small but non-trivial.

The user can set a time-out period, after which the search for the largest valid

subgroup will terminate, returning the valid subgroup computed so far. Symm-

Extractor provides feedback to the user by displaying the number of cosets which

need to be checked, in the worst case. This feedback indicates whether it is worth

waiting a little longer for a larger valid subgroup to be computed.

8.4 Experimental Results

We now present experimental results running SymmExtractor on a variety of

Promela specifications, based on the examples described in Chapter 4. We divide

the specifications into six families, and refer to an individual specification as a con-

figuration of one of the families. For convenience, we introduce some shorthand

notation for referring to configurations.

8.4.1 Specification families and configurations

The families of specifications we consider are: simple mutex, Peterson, Peterson with-

out atomicity, resource allocator, three-tiered architecture and hypercube.

The simple mutex, Peterson and Peterson without atomicity families consist of

versions of mutual exclusion protocols based on the examples presented in Sec-

tions 2.4.1, 4.3.2 and 4.3.4 respectively (with Promela examples given in Figure 2.6

and Appendices A.1.2 and A.1.4). A configuration of one of these families is iden-

tified via the number n of processes considered in the specification.

A configuration in the resource allocator family is a version of the resource

allocator specification introduced in Section 4.4 and Appendix A.2.1. We consider

two kinds of configuration. A configuration is identified by the signature a0-a1-

. . . -ak−1, where ai > 0 (0 ≤ i < k) if there are k > 1 distinct priority levels and

client processes 1, 2, . . . , a0 have priority level 0, a0 + 1, a0 + 2, . . . , a1 have priority

level 1, etc. A configuration is referred to as alternating x, where x > 0 is even,

if there are two priority levels, x client processes, and the priority level alternates

between 0 and 1 every three client processes. For example, alternating 10 denotes

a 10-client configuration where client processes 1, 2, 5, 6, 9 and 10 have priority
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level 0 and client processes 3, 4, 7 and 8 have priority level 1. The resource allo-

cator specifications reveal an interesting problem. If an array of size n + 1 is in-

dexed using only literal values in the range 0–n then it is not possible to deter-

mine whether the index type of the array should be pid or byte. This is true of the

priorities array in the resource allocator specification (see Appendix A.2.1). By

default, SymmExtractor conservatively assigns the index type for such an array to

be byte. This causes symmetry detection to return a trivial group for the resource

allocator examples. We overcome this problem by incorporating an assertion of

the form assert(priorities[ pid]< n) (where n is the number of client pro-

cesses) in one of the atomic blocks in the body of the client proctype. Since pid

has type pid, this makes the index type of the array unambiguous.

A configuration in the three-tiered architecture family is a version of the three-

tiered architecture specification introduced in Section 4.5 and Appendix A.3. A con-

figuration with k server processes (k > 0) and ai > 0 client processes connected to

server i (1 ≤ i ≤ k) is identified via the signature a1-a2-. . . -ak. For example, 5-5-5-5

denotes a configuration with 5 servers and 20 clients, 5 connected to each server.

Recall that the hypercube specification of Section 4.6 and Appendix A.4.1

involves arithmetic operations on variables which have pid type. This was dis-

cussed in Section 4.6.1. However, we used SPIN-to-GRAPE to check that the symme-

try group associated with the hypercube specification is isomorphic to the group of

automorphisms of a 3-dimensional cube, which is in turn isomorphic to the group

of automorphisms of the channel diagram associated with the specification (see

Section 5.2.2). SymmExtractor is based on the type system of Figure 6.5, Section 6.2,

which does not allow pid variables to be operands in arithmetic expressions. In or-

der to apply SymmExtractor to examples based on the hypercube specification, we

have used techniques similar to those described in Section 7.6.2 to re-model the

specification without these arithmetic expressions in a semantics-preserving way.

The re-modelled version of the 3-dimensional hypercube specification is given in

Appendix A.4.2. As discussed in Section 7.6.2, this specification is much longer than

the original. A configuration of the hypercube family is a version of the modified hy-

percube specification. A configuration is identified via the number n of dimensions

of the hypercube. Note that configuration n is comprised of 2n node processes.

8.4.2 Results and discussion

For various configurations of the families described in Section 8.4.1, Figure 8.7 re-

ports the following figures:

• |Aut(SCD(P))| – size of the automorphism group of the static channel dia-

gram associated with configuration P

• |H| – size of the initial subgroup generated by the valid generators of

Aut(SCD(P))
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Configuration P |Aut(SCD(P))| |H| |G| saucy time find largest time

simple mutex

5 120 = = 0.03 0.07

10 3.6 × 106 = = 0.03 0.20

20 2.4 × 1018 = = 0.03 0.59

40 8.1 × 1037 = = 0.03 1.64

Peterson

3 6 = = 0.03 0.06
6 720 = = 0.02 0.16
9 362880 = = 0.04 0.30

12 4.8 × 108 = = 0.03 0.56

Peterson without atomicity

3 6 = = 0.03 0.08
6 720 = = 0.08 0.25
9 362880 = = 0.03 0.52

12 4.8 × 108 = = 0.03 0.89

resource allocator

3/4 5040 144 144 0.03 1.52
2/2/3 5040 24 24 0.03 5.24

5/5 3.6 × 106 14400 14400 0.05 8.34

3/3/4 3.6 × 106 864 864 0.03 114.49

alternating 10 3.6 × 106 32 17280 0.03 18.12

alternating 12 4.7 × 108 64 518400 0.04 314.87

alternating 14 8.7 × 1010 128 2.9 × 106 0.06 > 12 hours

alternating 16 2.1 × 1013 256 1.6 × 109 0.05 > 12 hours

three-tiered architecture

3/3/2 144 = = 0.04 0.09
3/3/3 1296 = = 0.05 0.14
4/4/3 6912 = = 0.05 0.17
4/4/4 82944 = = 0.05 0.26

5/5/5/5 5.0 × 109 = = 0.07 0.55

hypercube

2d 8 2 4 0.04 0.59
3d 48 2 8 0.03 2.50
4d 384 2 16 0.04 99.11
5d 3840 2 32 0.08 7171.57

Figure 8.7: Experimental results for automatic symmetry detection. For each configu-
ration the sizes of Aut(SCD(P)), H and G are given, together with the time (in sec-
onds, unless otherwise stated) to compute Aut(SCD(P)) using saucy, and to compute
the largest valid subgroup G using GAP. Experiments were performed on a PC with a
2.4GHz Intel Xeon processor and 3Gb or main memory.
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2 conjugates 5 conjugates 10 conjugates

Configuration |H| time |H| time |H| time

resource allocator

alternating 10 192 9.86 2880 9.32 17280 8.50
alternating 12 34560 39.14 518400 32.66 518400 33.59

alternating 14 414720 172.3 2.9 × 106 115.45 2.9 × 106 116.39

alternating 16 1.6 × 109 539.65 1.6 × 109 541.86 1.6 × 109 543.87

hypercube
2d 2 0.65 2 0.79 4 0.84
3d 4 1.85 8 1.60 8 1.98
4d 4 71.26 16 23.10 16 26.73
5d 8 3409.03 16 1786.33 32 957.79

Figure 8.8: Optimised symmetry detection using random conjugates.

• |G| – size of the largest valid subgroup of Aut(SCD(P)), computed using

Algorithm 4 (Section 7.4)

• saucy time – time (in seconds) taken by saucy to compute generators for

Aut(SCD(P))

• find largest time – time (in seconds) taken to compute G given generators

for Aut(SCD(P)).

When all generators of Aut(SCD(P)) are valid, Aut(SCD(P)), H and G are

equal, so there is no need to use Algorithm 4. This is indicated by ‘=’ in Figure 8.7.

When |G| could not be computed within 12 hours, the entry ‘> 12 hours’ appears in

the table. In these cases, the configuration is given in italics, as the group G has been

successfully computed by other means, which we discuss below. All experiments

were performed on a PC with a 2.4GHz Intel Xeon processor and 3Gb of main

memory.2

The ‘saucy time’ column shows that, for all the configurations we tried, there

is a minimal overhead associated with using saucy to compute Aut(SCD(P)), re-

gardless of how large this group is.

Configurations from the three mutual exclusion families, as well as three-

tiered architecture configurations, show that automatic symmetry detection is very

efficient when all generators of Aut(SCD(P)) are valid. In this case the ‘find largest

time’ column reports the time taken to check validity of these generators against

the input specification P . The results for the simple mutex configuration with 40

processes, and configuration 5-5-5-5 in the three-tiered architecture family (which in-

volves 25 processes) show that SymmExtractor is robust enough to handle large

Promela specifications.

Results for the first four resource allocator configurations shown in Figure 8.7

illustrate cases where the initial valid subgroup H turns out to be the largest valid

subgroup of Aut(SCD(P)). In these cases, since H 6= Aut(SCD(P)), it is necessary

2. All of the Promela specifications used for these experiments are available online in archived form
(see Section 1.2).
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to run Algorithm 4 to confirm that H is indeed the largest valid subgroup. This is

time-consuming for the 3-3-4 configuration.

The alternating resource allocator and hypercube specifications illustrate a strict

containment relationship: {id} ⊂ H ⊂ G ⊂ Aut(SCD(P)). Although the number

of cosets of H in Aut(SCD(P)) may be large, if G is significantly larger than H

then the number of coset representatives which need to be checked for validity

diminishes rapidly as valid representatives are found. However, for the alternating

14 and alternating 16 configurations the number of cosets of H in Aut(SCD(P)) is

so large that G could not be computed within 12 hours. Note that the size of G in

these larger examples has been computed with the aid of random conjugates, as

discussed below.

In Section 4.6.1 we computed the automorphism group of the Kripke struc-

ture associated with the 3-dimensional hypercube specification. (The results of Sec-

tion 4.6.1 are the same if we re-run SPIN-to-GRAPE using the modified specifica-

tion considered here.) We used GAP to show that this group is isomorphic to the

automorphism group of a cube – the group K3 ⋊ S3, which has order 48. If P is

the 3-dimensional hypercube specification, it is not surprising that Aut(SCD(P)) ∼=

K3 ⋊ S3 (given the similar result for Aut(CD(P)) described in Section 5.2.2), and

the results of Figure 8.7 confirm that |Aut(SCD(P))| = 48 also. It is surprising,

therefore, that G, the largest valid subgroup of Aut(SCD(P)), has order 8. Symm-

Extractor describes Aut(SCD(P)) in terms of three generators as follows:

Aut(SCD(P)) = 〈(2 3)(link2 link3)(6 7)(link6 link7),

(3 5)(link3 link5)(4 6)(link4 link6)

(1 2)(linky1 link2)(3 4)(link3 link4)(7 8)(5 6)(link5 link6)

(link7 link8)〉.

The first two of these generators are invalid. To see why this is the case,

for the generator α = (2 3)(link2 link3)(6 7)(link6 link7), consider the first run

statement of P :

run node(link1,link2,link3,link5);

By the definition of α(P) in Section 7.2.1, the first run statement of α(P) is:

run node(link1,link3,link2,link5);

The fact that these run statements are not identical implies that P 6≡ α(P). Sim-

ilarly, the second generator above is shown to be invalid for P . The largest valid

subgroup G can be shown to be isomorphic to the subgroup K3 of K3 ⋊ S3. For

each of the hypercube configurations we have analysed we see a similar result:

|Aut(SCD(P))| = |Kn ⋊ Sn| = 2n × n!, |H| = 2, and |G| = |Kn| = 2n (where

n is the dimension of the hypercube). SymmExtractor does not detect a symmetry

group isomorphic to Kn ⋊ Sn (which, for the 3-dimensional case, we have identified
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Configuration P |Aut(SCD(P))| |H| |G| saucy time find largest time

resource allocator sharing 864 4 12 0.03 4.47
three-tiered mixed 72 = = 0.05 0.08

hypercube fixed 6 1 1 0.03 1.08

Figure 8.9: Applying SymmExtractor to the modified resource allocator, three-tiered ar-
chitecture and hypercube specifications.

as a symmetry group for the associated model) due to the definition of validity given

in Section 7.3.1. It may be possible to relax this notion (as discussed in Section 7.6.4)

to automatically detect larger symmetry groups for the hypercube specifications.

While the elimination of arithmetic expressions from the specification is un-

related to this validity issue, re-modelling the specification to avoid arithmetic

on pid variables results in a much larger specification; this problem was noted

in Section 7.6.2. The complexity of checking whether α ∈ Aut(SCD(P)) is valid

for P is proportional to the size of P , and is therefore time-consuming for the

4- and 5-dimensional hypercube specifications. This explains the lengthy compu-

tation of G for the 5-dimensional configuration, despite the fact that the ratio

|Aut(SCD(P))|/|H| is not large (compared to that for e.g. the alternating 12 re-

source allocator configuration, for which the time to compute G is much less).

Results using the random conjugates optimisation

The alternating resource allocator configurations and the hypercube configurations

are examples where the initial valid subgroup H is non-trivial, but the search for

G involves checking a significant number of coset representatives. To alleviate this

problem we tried increasing the size of H using random conjugates as described in

Section 8.3.3.

For each of the relevant specifications, Figure 8.8 shows the size of H, en-

larged using two, five and ten random conjugates, and the resulting time to find G.

The sizes of Aut(SCD(P)) and G are as in Figure 8.7. The results show that this op-

timisation can be useful in practice: symmetry detection using conjugates is faster

in all cases. The speed-up is particularly noticeable for the alternating 12 resource

allocator and 5-dimensional hypercube configurations, and it was possible to detect

symmetry for the alternating 14 and 16 resource allocator configurations, which were

previously intractable.

Applying SymmExtractor to modified versions of the specifications

In Sections 4.4.3, 4.5.2 and 4.6.2 we considered modifications to the resource allo-

cator, three-tiered architecture and hypercube specifications respectively, and used

SPIN-to-GRAPE to see the effect of these modifications on the associated automor-

phism groups.
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Figure 8.9 shows the results of applying SymmExtractor to these modified

specifications. Symmetry detection is effective for the three-tiered architecture spec-

ification with mixed modes of communication, and the resource allocator specifica-

tion which features sharing between client processes, and the symmetry groups

obtained in each case conform to the groups computed using SPIN-to-GRAPE in Sec-

tions 4.4.3 and 4.5.2 respectively.

For the hypercube specification with a fixed initiator SymmExtractor does

not detect any non-trivial symmetry, and must enumerate Aut(SCD(P)) to de-

termine this. Recall from Section 4.6.2 that the symmetry group associated with

this modified specification is isomorphic to stabK3⋊S3
(0). Since the symmetry group

which SymmExtractor computes for the original specification is isomorphic to K3

rather than K3 ⋊ S3, it not surprising that the group computed for the modified

specification corresponds stabK3
(0) = {id}.

8.5 Using Two Student Assessed Exercises to Evaluate SymmExtractor

The SymmExtractor tool can handle more general kinds of symmetry than Symm-

Spin or SMC, places fewer restrictions on the form of specifications, and does not

require annotation of a specification with additional data types.3 However, Symm-

Extractor still places some restrictions on the form of specifications, as summarised

in Section 8.1.1. Due to the fundamental difficulty of automatic symmetry detection

(see Section 3.3.5), these restrictions are not unreasonable. Nevertheless, it is impor-

tant to assess the impact of the restrictions on the practical use of SymmExtractor.

We present an evaluation of SymmExtractor based on a set of example solu-

tions to two assessed exercises from the Modelling Reactive Systems final year course

at the University of Glasgow. We discuss the ethical issues involved in using stu-

dent programs for research, present the design of our evaluation, and propose some

changes to SymmExtractor, and directions for future work, based on the evaluation

results. As well as providing insight into the challenges of automatic symmetry

detection, the chapter is a novel case study in formal methods evaluation.

8.5.1 The Modelling Reactive Systems course

Modelling Reactive Systems (MRS) is a final year 20-lecture formal methods course

at the University of Glasgow. The primary focus of the course is on the theory

and practice of model checking, and students use SPIN in practical sessions. The

main prerequisite for MRS is a discrete mathematics course for computing science,

3. Arguably, making a distinction between the pid and byte data types, which SPIN regards as inter-
changeable, means that the use of the pid type is a form of symmetry-related annotation. However,
this primitive type is already part of the specification language, and is simple to use.
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which covers the basics of set theory, predicate logic, relational algebra and meth-

ods of proof. In addition, students are required to have passed first year mathemat-

ics courses on calculus and algebra, as well as multiple computing science courses

on programming, data structures and algorithms. Almost 20% of the assessment

for MRS is via a practical exercise which involves specifying a reactive system us-

ing Promela, then reasoning about the specification with SPIN. We now describe the

practical assignments which were set for sessions 2004/2005 and 2005/2006.

Telephone Exchange

The MRS practical exercise for 2004/2005 involved producing three versions of a

specification for a two user telephone system. Version one was a naive model, ver-

sion two a model in which acknowledgments were included, and version three a

model in which call clear-down was made to be asymmetric (only the initiator of a

call could terminate the call). Intuitively, a Promela specification of a two-user tele-

phone exchange should exhibit one non-trivial symmetry which switches the local

states of the users (and their associated channels) throughout all global states. Thus

solutions to this modelling task provide a good set of Promela examples with which

to evaluate the restrictions imposed by SymmExtractor. Furthermore, the associ-

ated state-spaces are small enough for SPIN-to-GRAPE (see Section 4.1) to compute

all state-space symmetries present in a given specification, which can be compared

with those detected by SymmExtractor.

Railway Signalling System

The practical exercise for 2005/2006 involved designing a specification of a rail-

way system consisting of two train processes, eight gate processes and a controller

process. The trains were each to travel around one of two circular tracks which

intersected along a section, as illustrated in Figure 8.10. The trains were to commu-

nicate with the controller process to indicate their approach to and departure from

the gates, and the controller process in turn was to communicate with the gates to in-

struct them to raise and lower, as appropriate. The communication protocol was to

be designed in such a way as to avoid the two trains having access to the section of

shared track simultaneously. The diagonal grey line of Figure 8.10 illustrates sym-

metry in the structure of the system. We would expect a model of such a system to

exhibit one non-trivial automorphism corresponding to simultaneously swapping

the local states of gates 0 and 4, 1 and 5, 2 and 6, 3 and 7, and trains 1 and 2.

8.5.2 Ethical approval

Before we describe how we have used solutions to the practical exercises for MRS

to evaluate SymmExtractor, we outline the ethics procedure we have followed.
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Figure 8.10: Layout of railway signalling system.

To ensure that our user study is ethical, we have followed the Glasgow Ethics

Code check-list [144]. This is a 12-point check-list distilled from the ethical standard

of the British Psychological Society [16], and focuses on the issues which are most

relevant to computing science projects. Compliance with most of the points on the

check-list was straightforward. The following points required some care:

• All participants explicitly stated that they agreed to take part. Students

who allowed us to use their solutions in the study were provided with an

information sheet detailing the aims of the study, and asked to sign a consent

form. The information sheet and consent form given to students in session

2005/2006 are included as Appendix D, and are adapted from a standard

example [143]. The intended usage of students’ solutions is detailed in Sec-

tion 8.5.3.

• The researcher conducting the experiment is not in a position of authority

or influence over any of the participants. As the solutions formed part of

the course assessment, it was important that the consent of students was not

sought until after solutions had been assessed and returned. This assured

students that their decision to take part in the study could have no effect

on their score for the exercise, and encouraged them to answer the assessed

questions in exactly the same way as they would have otherwise.

A further ethical concern is that the assessed exercises should be designed to meet

the intended learning outcomes of the course and not to meet research aims (unless

these overlap). In addition, since assessment has been shown to narrow students’

focus [15], care must be taken to ensure that an assessment biased towards the

research interests of the course director does not restrict breadth of learning. In our

case the exercises had been set to meet the course aims before we designed our

evaluation.
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The study was approved by the ethics committee of the Faculty of Informa-

tion and Mathematical Sciences at the University of Glasgow (ref. FIMS00203). We

obtained signed consent forms from 17 students from session 2004/2005, and 12

students from session 2005/2006. The average class size for these years was 35.

8.5.3 Methods

For each specification in the sample set we gathered the following data by a com-

bination of automatic and manual analysis:

1. Size of the unreduced state-space (computed using SPIN)

2. State-space symmetries computed by SPIN-to-GRAPE, and size of the result-

ing quotient state-space (if feasible)

3. Symmetry breaking features of the specification, and modifications required

to restore symmetry (documented by experimenter)

4. Violations of restrictions imposed by SymmExtractor (as reported by the

tool) and modifications required to satisfy restrictions (documented by ex-

perimenter)

5. Symmetries detected by SymmExtractor.

We also used our symmetry reduction package TopSPIN, which is described in

Chapter 11, to check that our symmetry reduction results agree with the quotient

state-spaces produced independently by SPIN-to-GRAPE.

Symmetry breaking features are aspects of a specification which destroy the in-

tuitive symmetry discussed in Section 8.5.1. When SPIN-to-GRAPE showed absence

of this expected symmetry in a given specification, the experimenter manually ex-

amined the specification to identify symmetry breaking features. In the cases where

it was not feasible to use SPIN-to-GRAPE for state-space analysis, the experimenter

looked for certain commonly occurring symmetry breaking features.

We classify the modifications of 4 above as minor if they could be avoided

by a straightforward extension of SymmExtractor, medium if they would be un-

necessary if SymmExtractor could capture symmetry between global variables (as

discussed in Section 7.6.3), or major if they could only be avoided by significant

development of the theory of Chapter 7 on which SymmExtractor is based.

8.5.4 Results

Telephone exchange

We refer to the individual components of a three part solution as specifications. Of

the 51 specifications analysed, just over half did not exhibit the expected symmetry

due to symmetry breaking features. In most cases this was because run statements

were not surrounded by an atomic block; for other examples the telephone users

were initialised asymmetrically (e.g. handset variables for users 1 and 2 were set to

up and down respectively, destroying symmetry between users). In all cases it was
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Figure 8.11: Typical static channel diagram for the telephone examples.

possible to restore symmetry by trivial modifications, with a negligible effect on

the global state-space. With these modifications, SymmExtractor was able to de-

tect symmetry immediately from 23 of the resulting specifications. A further 13 re-

quired modifications which we classified as minor; these included replacing locally

instantiated channels with globally instantiated channels, and removing channel

instantiation statements from record declarations. Another seven specifications re-

quired medium modifications (as described above). The final eight specifications

required major modifications. These modifications have identified a problem with

the usability of SymmExtractor, which involves the way that arrays indexed by

process identifiers are accessed. This is discussed further in Section 8.5.5. An exam-

ple of a typical specification which required major modifications, together with our

re-modelled version, can be found in Appendix A.5.

After necessary modifications, SymmExtractor was able to efficiently detect

symmetries for all specifications. Figure 8.11 shows the typical static channel dia-

gram structure associated with the example solutions.

Railway signalling system

The 12 Promela solutions to the railway signalling exercise all resulted in large

state-spaces. Thus for these examples it was not possible to use SPIN-to-GRAPE to

compute symmetries of the global state-space. However, in six of the solutions the

experimenter was able to identify the common symmetry breaking feature of run

statements occurring outwith an atomic block.

SymmExtractor proved to be ineffective in detecting symmetry for this set

of examples (after fixing symmetry breaking features): in all cases, specifications

required major modifications. We illustrate the kind of re-modelling required for

SymmExtractor to be applicable to these solutions using an example.

Figure 8.12 shows part of Promela specification which is typical of the set

of solutions for this exercise. Specifically, the figure includes a train proctype and

the init process, but omits proctypes for gate, shared gate and controller processes.

Figure 8.13 shows the portion of the example after re-modelling. Full versions of
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mtype = {approaches, leaves, lower, raise, atgate, faraway , up, down};

chan control_link = [0] of {mtype, byte};
chan gate_link [8] = [0] of {mtype};

mtype bar[8] = down;
bool on_shared_track[2] = false;
bool shared_track_open = false

proctype train(byte current_gate, id) {
mtype position = atgate;
control_link!approaches,current_gate;
do :: atomic { position==faraway ->

if :: current_gate==3 -> current_gate = 0; assert(id == 0) ( * )
:: current_gate==7 -> current_gate = 4; assert(id == 1)
:: else -> current_gate++;

fi;
control_link!approaches,current_gate; position=atgat e}

:: atomic { (bar[current_gate]==up && position==atgate)- >
if :: (current_gate == (id * 4)) -> on_shared_track[id] = true

:: else -> skip
fi;
position = faraway; control_link!leaves,current_gate;
if :: (current_gate == (id * 4 + 1)) -> ( ** )

on_shared_track[id] = false
:: else -> skip

fi
}

od
}

init {
atomic {

run controller(); run shared_gate(0); run gate(1); run gat e(2);
run gate(3); run shared_gate(4); run gate(5); run gate(6);
run gate(7); run train(2, 0); run train(6, 1);

}
}

Figure 8.12: Typical example of a solution to the railway signalling problem.

both Promela specifications are given in Appendix A.6.

In the original specification, a train process is instantiated with an id which

is either 0 or 1. Similarly, the eight gate processes are instantiated with an id in

the range 0–7. A train is also instantiated with the identifier of the gate at which it

starts. Recall from Section 8.1.1 that SymmExtractor requires processes to use their

built-in pid variable, rather than being passed an id as a parameter, and that

processes instantiated by the init process are assigned identifiers in order, starting

from 1. Comparing lines marked ( * ) in the original and modified specifications

illustrates this. Instead of referring to gates 3 and 0, in the re-modelled specification

we refer to gates 5 and 2. This is because the pid values for gate and shared gate

processes are in the range 2–9. Similarly, instead of asserting that id==0 , we now

assert that _pid==10 , since the pid value for the first train process in the re-

modelled specification is 10.

The major disadvantage of this modification is that train processes must now

index into the on shared track array using their pid variable, which is in the

range 10–11, and thus the array must be declared with size 12. The first ten positions
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of this array are unused, but still form part of the state-vector.

Another significant re-modelling step is illustrated by the lines marked

( ** ) . Recall from Section 8.1.1 that SymmExtractor does not allow variables of

type pid to be used in arithmetic operations. Thus the expression current_gate

==(id * 4+1) must be re-modelled. In the original specification this expression

can be re-written as a disjunction: (id==0&&current_gate==1)||(id==1&&

current_gate==5) , since id is either 0 or 1. In the re-modelled specification this

translates to:

(_pid==10&&current_gate==3)||(_pid==11&&current_gat e==7) .

In the re-modelled specification, to avoid the use of a global array of chan-

nels (another restriction of SymmExtractor), gate and shared gate proctypes are pa-

rameterised by a channel. For details of this re-modelling, see the online specifica-

tions.

After this heavy-weight re-modelling, SymmExtractor can be used to find

valid static channel diagram automorphisms for the specification of Figure 8.13.

However, the process of symmetry detection is slow for this example. The static

channel diagram for the specification is shown in Figure 8.14. SymmExtractor com-

putes generators for Aut(SCD(P)) as follows: Aut(SCD(P)) =

〈 (3 4)(gate link 3 gate link 4), (4 5)(gate link 4 gate link 5),

(5 7)(gate link 5 gate link 7), (7 8)(gate link 7 gate link 8),

(8 9)(gate link 8 gate link 9), (2 6)(gate link 2 gate link 6),

(10 11) 〉.

Here |Aut(SCD(P))| = 2880. However, the largest possible subgroup computed

by SymmExtractor has order 2, and consists of the identity and the element:

(2 6)(gate link 2 gate link 6)(3 7)(gate link 3 gate link 7)

(4 8)(gate link 4 gate link 8)(5 9)(gate link 5 gate link 9)(10 11).

Thus SymmExtractor must search the group Aut(SCD(P)) to find this single non-

trivial valid symmetry. Clearly if there were more processes in the specification

Aut(SCD(P)) would be would be larger, and this search might not be feasible. For

this example, the random conjugates optimisation presented in Section 8.3.3 does

not help, as the initial valid subgroup is trivial.

8.5.5 Outcomes of the evaluation

The evaluation has led to some straightforward changes to the documentation and

design of SymmExtractor, as well as some interesting open research questions. We
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mtype = {approaches, leaves, lower, raise, atgate, faraway , up, down};

chan control_link = [0] of {mtype, pid};
chan gate_link_2 = [0] of {mtype}; ...; chan gate_link_9 = [0 ] of {mtype};

mtype bar[12] = down;
bool on_shared_track[12] = false;
bool shared_track_open = false

proctype train(pid current_gate) {
mtype position = atgate;
control_link!approaches,current_gate;
do :: atomic { position==faraway ->

if :: current_gate==2-> current_gate=3
:: current_gate==3-> current_gate=4
:: current_gate==4-> current_gate=5
:: current_gate==5 -> current_gate = 2; assert(_pid == 10) ( * )
:: current_gate==6 -> current_gate=7
:: current_gate==7 -> current_gate=8
:: current_gate==8 -> current_gate=9
:: current_gate==9 -> current_gate=6; assert(_pid == 11)

fi;
control_link!approaches,current_gate; position=atgat e}

:: atomic { (bar[current_gate]==up && position==atgate) - >
if :: ((_pid==10 && current_gate == 2)||

(_pid==11 && current_gate == 6)) -> ( ** )
on_shared_track[_pid] = true

:: else -> skip
fi;
position = faraway; control_link!leaves,current_gate;
if :: ((_pid==10 && current_gate == 3)||

(_pid==11 && current_gate==7)) ->
on_shared_track[_pid] = false

:: else -> skip
fi

}
od

}

init {
atomic {

run controller(); run shared_gate(gate_link_2);
run gate(gate_link_3); run gate(gate_link_4);
run gate(gate_link_5); run shared_gate(gate_link_6);
run gate(gate_link_7); run gate(gate_link_8);
run gate(gate_link_9); run train(4); run train(8);

}
}

Figure 8.13: Re-modelled version of the railway signalling specification.
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Figure 8.14: Static channel diagram for the modified railway signalling specification.

have extended the SymmExtractor documentation with a short set of modelling

guidelines based on the problems encountered when applying the tool to this set

of examples (see Appendix C.2.3). It is clear that the tool would be more useful if it

could handle symmetry between global variables, as discussed in Section 7.6.3.

The line marked ( ** ) in Figure 8.13 illustrates a case where using a pro-

cess identifier in an arithmetic operation does not destroy symmetry in the underly-

ing model. Thus an open research question is: under what conditions is it possible

to relax this restriction of SymmExtractor? We outlined a possible solution to this

problem in Section 7.6.2.

As discussed in Section 8.5.4, for the re-modelled railway signalling exam-

ple, Aut(SCD(P)) is much larger than the valid subgroup which SymmExtractor

eventually computed. For this example, the static channel diagram does not reflect

the communication structure of the system very well. As discussed in Section 7.5,

it would be interesting to investigate other graphical representations derived from

Promela specifications which may better reflect the symmetry present in examples

such as this one.

A major challenge which the evaluation results have presented is to find

techniques to automatically determine the relationship between numeric identifiers

passed as parameters to processes by the user (and used to access arrays), and the

run-time id values which SPIN assigns to processes. This was a problem associated

with some of the telephone specifications, and with all of the railway signalling

solutions.

The problem is that the built-in pid variable indicates the instantiation

number of a process with respect to all processes, not with respect to a given proc-

type. Therefore the first train process in Figure 8.13 has pid value 10, even though

it is the first train process to be instantiated. This means that if the pid variable

is used as an index for an array of values relevant to processes of a given proctype,

the array must be as large as the highest id of any instantiation of this proctype, and
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this may significantly increase the space requirement for each state of the model.

An elegant solution to this problem would greatly improve the usability of Symm-

Extractor.

Summary

We have described SymmExtractor, an automatic symmetry detection tool for

Promela based on the techniques presented in Chapter 7. In particular, we have dis-

cussed the way in which SymmExtractor uses type reconstruction and bisimulation

minimisation to handle incomplete channel types and recursive types respectively.

We have described the way in which the saucy and GAP tools are used to find the

largest valid group of static channel diagram automorphisms for a Promela speci-

fication.

Experimental results show that the overhead of applying SymmExtractor

to detect Kripke structure automorphisms before search is minimal, except when

Aut(SCD(P)) is large and the largest valid subgroup of Aut(SCD(P)) is small.

We have suggested an optimisation based on random conjugates to help overcome

this problem, and shown that this optimisation can help with symmetry detection

for practical examples.

We have presented the methods and results of a user study to asses the

feasibility of the restrictions on the form of a Promela specification which Symm-

Extractor imposes. This evaluation has identified some cases where SymmExtractor

is over-restrictive and cannot detect symmetries which SPIN-to-GRAPE has shown to

exist. The evaluation results have identified some challenging open research prob-

lems in the area of automatic symmetry detection.



Chapter 9

Exact and Approximate Strategies for Symmetry Reduction

In Chapters 7 and 8 we have been concerned with the problem of detecting au-

tomorphisms of the Kripke structure associated with a Promela specification. We

now turn our attention to the problem of efficiently exploiting symmetry in order

to verify large systems using model checking.

As discussed in Section 3.4, given a symmetry group G, a common approach

to ensuring that equivalent states are recognised during search is to convert each

newly encountered state s into min�[s]G , the smallest state in its orbit (under a

suitable total ordering �), before it is stored. However, the problem of computing

min≤[s]G for an arbitrary group (where ≤ is the lexicographic ordering on vectors),

known as the constructive orbit problem (COP), is NP-hard [27] (see Definition 24 and

Theorem 10, Section 3.4).

Existing symmetry reduction packages, such as SymmSpin [14] and SMC

[166], are limited as they can only exploit full symmetry between identical compo-

nents of a system. This eases the problem of identification of symmetry, and the

COP can be solved efficiently for this special case. However, as illustrated in Chap-

ter 4, the automorphism group associated with a Kripke structure may be more

complex. Since the automatic symmetry detection techniques of Chapters 7 and 8

can detect arbitrary kinds of symmetry arising from the static channel diagram of a

specification, it is important to have techniques to solve the COP efficiently using

information about the structure of G, or to provide an efficient, approximate solution

to the COP (see Sections 3.4.1 and 3.4.2 respectively) when no such information is

available.

In this chapter we generalise existing techniques for efficiently exploiting

symmetry under a simple model of computation, and give an approximate strat-

egy for use with symmetry groups for which fast, exact strategies cannot be found.

We use computational group theory to automatically determine the structure of a

group as a disjoint/wreath product of subgroups before search so that an appro-

priate symmetry reduction strategy can be chosen.
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9.1 A Model of Computation Without References

We refer to a process, global variable or buffered channel in a concurrent system as

a component. We now justify the claim made in Section 3.4 that we can reason about

states of a concurrent system using a single integer variable for each component.

Let V = {v1, v2, . . . , vl} be the set of variables associated with a concurrent

system, and Di the finite domain of vi (1 ≤ i ≤ l). Let m = max{|Di| : 1 ≤ i ≤

l}. Then we can enlarge each Di so that |Di| = m, and assume without loss of

generality that Di = {1, 2, . . . , m} (1 ≤ i ≤ l). Let M = (S, s0, R) be a Kripke

structure defined in terms of D = D1 × D2 × · · · × Dl (see Definition 1, Section 2.2).

Suppose V is partitioned into n subsets, V1, V2, . . . , Vn for some n > 0, where

each set Vi consists of the variables associated with a single component i of the

system. Then, for 1 ≤ i ≤ n, Vi = {vi,1, vi,2, . . . , vi,li
}, for some vi,j ∈ V and

li > 0, such that ∑
n
i=1 li = l. If component i is a global variable, Vi consists of a

single variable. If component i is a buffered channel with capacity t then Vi con-

sists of t variables, one for each place in the buffer. On the other hand, if i is a

process, Vi is the set of local variables for that process. Then D = ∏
n
i=1 ∏

li
j=1 D̃i,j

where D̃i,j is the domain of vi,j, for 1 ≤ i ≤ n, 1 ≤ j ≤ li. Let f be the size of

the largest Vi. For 1 ≤ i ≤ n, define a map θi : D → {1, 2, . . . , m f} as follows:

for any state s = (d1,1, d1,2, . . . , d1,l1 , d2,1, d2,2, . . . , d2,l2 , . . . , dn,1, dn,2, . . . , dn,ln
) ∈ D,

θi(d) = ∑
li
j=1 di,jm

j−1. Define θ(s) = (θ1(s), θ2(s), . . . , θn(s)). It is straightforward to

check that θ is injective. We can define a Kripke structure M′ = (S′, s′0, R′) thus:

• S′ = θ(D)

• s′0 = θ(s0)

• R′ = {(θ(s), θ(t)) : (s, t) ∈ R}.

The structure M′ is obtained from M by representing all variables for a

given component by a single variable with a larger domain. Clearly M′ is essen-

tially the same as M: since θ is injective and is (trivially) a surjection from D to θ(D),

we can always translate a state of M′ back to a unique state of M.

The above argument justifies the assumption made throughout this chapter

that a Kripke structure representing a system of n components can be defined in

terms of a set of n variables, each with finite domain L ⊂ Z, so that a state is

a vector in Ln. We compare states using ≤, the natural lexicographic ordering on

vectors (see Section 3.4). Throughout, let I = {1, 2, . . . , n}.

9.1.1 Action of Sn on states

Let G ≤ Sn and s = (x1, x2, . . . , xn) ∈ Ln. Assuming that components in the system

do not hold references to one another, we can define the state α(s) as follows:

α(s) = (xα−1(1), xα−1(2), . . . , xα−1(n)).
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Figure 9.1: Communication structure for a three-tiered architecture.

In Chapter 10 we consider a more realistic model of computation where compo-

nents may hold references to one another, and present a corresponding action of

Sn. Throughout this chapter we use min[s]G to denote min≤[s]G, the ≤-minimum

state in the orbit of s under G.

9.1.2 Symmetry detection

We assume that generators for a symmetry group G have been computed via the

communication structure associated with a high level specification, or have been

provided explicitly. To make our results general, we do not assume that symmetry

has necessarily been detected using the techniques of Chapter 7.

For illustration, throughout this chapter we consider a system with a three-

tiered architecture based on the example in Section 4.5. Figure 9.1 shows a possible

communication graph for this system, which we assume has been extracted from a

specification of the system by some symmetry detection tool. Let M3T be a model of

the system. Using the GRAPE program, we compute G3T, the automorphism group

of the communication graph in terms of generators:

G3T = 〈(1 2), (2 3), (4 5), (5 6), (7 8), (8 9), (10 11),

(12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)〉.

Note that the last two elements of the generating set of G3T are products of trans-

positions. We assume that ρ(G3T) ≤ Aut(M3T) (where ρ is the permutation repre-

sentation of G3T on the states of M3T), and will use this group and its subgroups

as examples to illustrate some of our techniques.

9.2 Exploiting Basic Symmetry Groups

9.2.1 Efficient application of permutations

Before we discuss symmetry reduction strategies, we consider the problem of ap-

plying a permutation α to a state s (i.e. computing α(s)).

Direct application of a permutation α to a state s = (x1, x2, . . . , xn) clearly

requires exactly n operations: we must compute xα−1(i) for each i. On the other
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hand, applying a transposition (i j) to s is a constant time operation – the local

states xi and xj are simply exchanged.

Lemma 6 Let α ∈ Sn. Then α can be expressed as a product of at most n − 1 trans-

positions.1

Proof If α is a cycle (a1 a2 . . . am) for some m ≤ n then α can be expressed as

a product of m − 1 transpositions: α = (a1 a2)(a1 a3) . . . (a1 am) (where 1 ≤ ai ≤

n for each 1 ≤ i ≤ m) [81]. Suppose α is instead a product of l disjoint cycles,

α1, α2, . . . , αl , for some l > 0, where cycle αi has length mi (1 ≤ i ≤ l). We have

∑
l
i=1 mi ≤ n. Since each αi can be written as a product of mi − 1 transpositions, α

can be written as a product of ∑
l
i=1(mi − 1) ≤ n − 1 transpositions. �

In Section 11.3 we provide experimental evidence that representing a per-

mutation α as a list of transpositions, and computing α(s) by successively applying

these transpositions, speeds up symmetry reduction by a significant constant fac-

tor.

9.2.2 Enumerating small groups

The most obvious strategy for computing min[s]G is to consider each state in

[s]G , and return the smallest. This can be achieved by enumerating the elements

α(s), α ∈ G. If G is small then this strategy is feasible in practice, and provides an

exact symmetry reduction strategy. The SymmSpin package provides an enumera-

tion strategy for full symmetry groups, which is optimised by generating permuta-

tions incrementally by composing successive transpositions.

We generalise this optimisation for arbitrary groups using stabiliser chains. A

stabiliser chain for G is a series of subgroups of the form G = G(1) ≥ G(2) ≥ · · · ≥

G(k) = {id}, for some k > 1, where G(i) = stabG(i−1)(x) for some x ∈ moved(G(i−1))

(2 ≤ i ≤ k). If U(i) is a set of representatives for the cosets of G(i) in G(i−1) (2 ≤ i ≤

k), then each element of G can be uniquely expressed as a product uk−1uk−2 . . . u1,

where ui ∈ U(i) (1 ≤ i < k) [19]. Permutations can be generated incrementally

using elements from the coset representatives, and the set of images of a state s

under G computed using a sequence of partial images (see Algorithm 5). To ensure

efficient application of permutations, the coset representatives are stored as a list of

transpositions, applied in succession, as described above.

GAP provides functionality to efficiently compute a stabiliser chain and as-

sociated coset representatives for an arbitrary permutation group. Although this

approach still involves enumerating the elements α(s) for every α ∈ G (and is thus

infeasible for large groups), calculating each α(s) is faster. The experimental results

1. This is a well known fact for which we could not find an explicit proof. We include on here for
the sake of completeness.
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Algorithm 5 Computing min[s]G using a stabiliser chain.

min[s]G := s
for all u1 ∈ U1 do

s1 := u1(s)
for all u2 ∈ U2 do

s2 := u2(s1)
...
for all uk ∈ Uk do

sk := uk(sk−1)
if sk < min[s]G then

min[s]G := sk

end if

end for
...

end for

end for

of Section 11.3 show an improvement over basic enumeration. Additionally, it is

only necessary to store coset representatives, rather than all elements of G.

Stabiliser chains are used extensively in computational group theory [19, 63],

and have been utilised in symmetry breaking approaches for constraint program-

ming [64]. We are, to our knowledge, the first to apply these techniques to model

checking.

9.2.3 Minimising sets for G if G ∼= Sm (m ≤ n)

For systems where there is full symmetry between components, the smallest state in

the orbit of s = (x1, x2, . . . , xn) can be computed by sorting the tuple s lexicograph-

ically. [14, 27]. For example, for a system with four components, sorting equiva-

lent states (3, 2, 1, 3) and (3, 3, 2, 1) yields the state (1, 2, 3, 3), which is clearly the

smallest state in the orbit. Since sorting can be performed in polynomial time, this

provides an efficient solution for the COP when G = Sn.

Recall the group G3T of automorphisms of the communication graph of Fig-

ure 9.1. Consider the subgroup:

H = 〈(12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)〉.

This group permutes server components 12, 13 and 14, with their associated blocks

of client components. It is clear that H is isomorphic to S3, the symmetric group on

3 objects. However, we cannot compute min[s]H by sorting s in the usual way, since

this is equivalent to applying an element α ∈ S16 to s, which may not belong to H.

We can deal with a group G acting in this way using a minimising set for

G. Using terminology from [59], G is said to be nice if there is a small set X ⊆ G

such that, for any s ∈ S, s = min[s] ⇔ s ≤ α(s) ∀ α ∈ X. In this case we call X
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Algorithm 6 State minimisation using a minimising set X.

min := s
repeat

min′ := min
for α ∈ X do

if α(min′) < min then

min := α(min′)
end if

end for

until min′ = min

a minimising set for G. If a small minimising set X can be found for a large group

G, then computing the representative of a state involves iterating over the small

set X, minimising the state until a fix-point is reached. At this point, no element of

the minimising set maps the state to a smaller image, thus the minimal element has

been found. This approach is described by Algorithm 6.

We show that for a large class of groups which are isomorphic to Sm for

some m ≤ n, a minimising set with size polynomial in m can be efficiently found.

This minimising set is derived from the swap permutations used in a selection sort

algorithm. As discussed in Definition 10 (Section 3.1.2), we use orbG(i) rather than

[i]G to refer to the orbit of i ∈ I under G. This is to avoid confusion between orbits

of states and orbits of component identifiers.

Theorem 16 Suppose that |G| = m!; every non-trivial orbit of I under G has size

m; for any i ∈ I , stabG(i) fixes exactly one element from each orbit, and if i, j belong

to the same orbit then for any k ∈ I , stabG(i) and stabG(j) both fix k ⇒ i = j.

Then there is an isomorphism θ : Sm → G such that {(i j)θ : 1 ≤ i < j ≤ m} is a

minimising set for G.

Proof Assume, without loss of generality, that all orbits of I under G are non-

trivial. Let Ω1, Ω2, . . . , Ωd be the orbits, and say Ω1 = {x1, x2, . . . , xm}.

For 1 ≤ i ≤ m let Ci = {z ∈ I : α(z) = z ∀ α ∈ stabG(xi)}. By our

hypothesis, Ci ∩ Cj = ∅ when i 6= j, and it is clear that every k ∈ I belongs to some

Ci. We call the Ci columns.

For 1 ≤ i ≤ d, we can write Ωi as Ωi = {zi,1, zi,2, . . . , zi,m} where zi,j ∈ Cj (1 ≤

j ≤ m), (and so xj = z1,j). For 1 ≤ i ≤ m, define αi,j = (z1,i z1,j)(z2,i z2,j) . . . (zd,i zd,j).

It can be shown that αi,j ∈ G. The element αi,j transposes the elements of column Ci

with those of Cj. Let θ : Sm → G be defined on generators by (i j)θ = αi,j. It is easy

to see that θ is a monomorphism, and since |G| = m! = Sm (by hypothesis), θ is an

isomorphism.

Now consider states s and s′, where s′ = α(s) for some α ∈ G. Let i be the

smallest index for which s(i) 6= s′(i). Let j be the index such that j = α−1(i). All
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of the elements in the column containing j (column j′ say) are mapped via α to

the column containing i (column i′ say). Then s′ < s iff (i′ j′)θ(s) < s. Hence s is

minimal in its orbit iff (i j)θ(s) ≥ s for all i < j. So the set {(i j)θ : 1 ≤ i < j ≤ m} is

a minimising set for G. �

Note that the minimising set is much smaller than G, and the conditions

of Theorem 16 can be easily checked using GAP. Although testing two arbitrary

groups for isomorphism can be very inefficient, if a set of m candidate columns is

found, testing whether the action of G on the columns is isomorphic to Sm can be

performed efficiently using the GAP function IsNaturalSymmetricGroup(G) .

It may seem that the conditions of Theorem 16 are unnecessary, and that,

given any isomorphism θ : Sm → G, the set {(i j)θ : 1 ≤ i < j ≤ m} is a minimis-

ing set for G. However, consider the group G below, which is a subgroup of the

symmetry group of a hypercube (see Section 4.6):

G = 〈(1 2)(5 6)(9 10)(13 14), (1 2 4 8)(3 6 12 9)(5 10)(7 14 13 11)〉 ≤ S14

G is isomorphic to S4, with an isomorphism θ : S4 → G defined on generators by

(1 2 3 4)θ = (1 2 4 8)(3 6 12 9)(5 10)(7 14 13 11), (1 2)θ = (4 8)(5 9)(6 10)(7 11).

The state s = (6, 10, 3, 6, 3, 5, 7, 10, 4, 8, 2, 1, 9, 3) ∈ {1, 2, . . . , 10}14 can not be min-

imised using the set {(i j)θ : 1 ≤ i < j ≤ 4}.

Theorem 17 If G satisfies the conditions of Theorem 16 and X = {(i j)θ : 1 ≤

i < j ≤ m} then min[s]G can be computed in O(m3) time for any s ∈ Ln, using

Algorithm 6.

Proof Clearly |X| = {(i j)θ : 1 ≤ i < j ≤ m}| = m(m − 1)/2.

A column entry Ci(s) for a state s with respect to a column Ci is a tuple of

local states of s whose indices (in s) belong to Ci, viewed as an ordered list. Clearly

we can order columns and column entries lexicographically. An element (i j)θ ∈ X

has the effect of transposing two column entries for a given state.

We say that Ci is minimal in s if, for all Cj < Ci, Cj(s) ≤ Ci(s). That is, no

smaller column has a larger entry. Now suppose that the smallest column entry

for s which is not minimal in s has index j and let i be the largest i such that Ci is

minimal and Ci < Cj. Then clearly min{α(s) : α ∈ X} = (i j)θ(s). Hence, after

the first iteration of the outer loop of Algorithm 6, the state min′ has at least its first

(left-most) column entry as small as possible. Similarly, after the second iteration

min′ has (at least) its first and second column entries as small as possible, and after

m iterations all column entries are ordered in such a way that min′ = min, in which

case the outer loop terminates.

We have shown that, in the worst case, Algorithm 6 involves iterating m

times over a set of size O(m2). The result follows. �
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Algorithm 7 Optimised state minimisation using a minimising set X.

min := s
repeat

min′ := min
for α ∈ X do

if α(min) < min then

min := α(min)
end if

end for

until min′ = min

Each iteration of the outer loop of Algorithm 6 applies every element of X

to min′, the minimum state found by the previous iteration, and updates min′ to

the smallest image under X. Algorithm 7 works similarly, but updates the current

minimum every time an element of X is found which yields a smaller image. We

have found that this works better in practice.

9.2.4 Local search for unclassifiable groups

If G is large group then computing min[s]G by enumeration of the elements of G

may be infeasible, even with the group-theoretic optimisations discussed in Sec-

tions 9.2.1 and 9.2.2. If no minimising set is available for G, and G cannot be classi-

fied as a composite symmetry group (see Sections 9.3 and 9.4) then we must exploit

G via an approximate symmetry reduction strategy.

We propose an approximate strategy based on gradient-descent local search,2

which has proved successful for a variety of search problems in artificial intelli-

gence [152]. In this case the function min works by performing a local search of [s]G

starting at s, using the generators of G as operations from which to compute a suc-

cessor state. The search starts by setting t = s, and proceeds iteratively. On each

iteration, α(t) is computed for each generator α of G. If t ≤ α(t) for all α then a local

minimum has been reached, and t is returned as a representative for [s]G. Other-

wise, t is set to the smallest image α(t), and the search continues. In Section 11.3 we

show that this local search algorithm is effective when exploring the state-spaces of

various configurations of message routing in a hypercube network.

There are various local search techniques which could be employed to at-

tempt to improve the accuracy of this strategy. Random-restart local search [152]

involves the selection of several random elements of [s]G in addition to s, and per-

forming local search from each of them, returning the smallest result. In our case

we could apply such a technique by finding the image of a state s under distinct,

random elements of G (GAP provides functionality for generating random group el-

ements). Another potential improvement would be to use simulated annealing [109]

to escape local minima.

2. This is referred to in [43, 44] as hillclimbing local search.



9.3: EXPLOITING DISJOINT PRODUCTS 174

9.3 Exploiting Disjoint Products

Certain kinds of symmetry groups can be decomposed as a product of subgroups.

In this case it may be possible to solve the COP separately for each subgroup,

providing a solution to the COP for the whole group. In particular, if a symme-

try group permutes disjoint sets of components independently then the group can

be described as the disjoint product of the groups acting on these disjoint sets (see

Definition 15, Section 3.1.4).

Disjoint products occur frequently in model checking problems. For exam-

ple, the symmetry group associated with the resource allocator specification of Sec-

tion 4.4 is a disjoint product of two groups, which independently permute com-

ponents with priority levels 0 and 1 respectively. In our three-tiered architecture

example (see Section 9.1.2), the group G3T can be shown to decompose as a disjoint

product G3T = H1 • H2 where:

H1 = 〈(1 2), (2 3), (4 5), (5 6), (7 8), (8 9),

(12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)〉

H2 = 〈(10 11)〉.

If G is a disjoint product of subgroups H1, H2, . . . , Hk then min[s]G = min[. . .

min[min[s]H1
]H2

. . . ]Hk
[27], so the COP for G can be solved by considering each

subgroup Hi in turn. Even if it is necessary to enumerate over the elements of each

Hi, it is more efficient to enumerate over the resulting ∑
k
i=1 |Hi| elements than the

∏
k
i=1 |Hi| elements of G. Furthermore, it may be that some or all of the Hi can be

handled using minimising sets, or wreath product decompositions (see Section 9.4).

However, the above result is only useful when designing a fully automatic

symmetry reduction package if it is possible to automatically and efficiently de-

termine, before search, whether or not G decomposes as a disjoint product of sub-

groups.

We present two solutions to this problem: a sound, incomplete approach

which runs in polynomial time, and a sound, complete approach which in the

worst case runs in exponential time. We show that the second approach can be

optimised using computational group theory to run efficiently for the kind of sym-

metry groups which arise in model checking problems.

9.3.1 Efficient, sound, incomplete approach

Let G = 〈X〉 for some X ⊆ G with id /∈ X. Define a binary relation B ⊆ X2 as

follows: for all α, β ∈ X, (α, β) ∈ B ⇔ moved(α) ∩ moved(β) 6= ∅. Clearly B is

symmetric, and since for any α ∈ G with α 6= id, moved(α) 6= ∅, B is reflexive. It

follows that the transitive closure of B, denoted B∗, is an equivalence relation on X.

We now show that if B∗ has multiple equivalence classes then each class generates
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a subgroup of G which is a non-trivial factor for a disjoint product decomposition

of G.

Lemma 7 Suppose that α, β ∈ X, and that (α, β) /∈ B∗. Then moved(α)∩moved(β) =

∅ and α and β commute.

Proof If moved(α) ∩ moved(β) 6= ∅ then (α, β) ∈ B ⊆ B∗, a contradiction, thus

moved(α) ∩ moved(β) = ∅. Therefore if α1 and β1 are cycles in the disjoint cycle

forms of α and β respectively then α1 and β1 are disjoint and therefore commute.

By repeatedly swapping disjoint cycles, it follows that αβ = βα. �

Theorem 18 Suppose C1, C2, . . . , Ck are the equivalence classes of X under B∗

where k ≥ 2. For 1 ≤ i ≤ k let Hi = 〈Ci〉. Then G = H1 • H2 • · · · • Hk, and

Hi 6= {id} (1 ≤ i ≤ k).

Proof Clearly H1H2 . . . Hk ⊆ G. If α ∈ G then α = α1α2 . . . αd for some

α1, α2, . . . , αd ∈ X, d > 0. By Lemma 7 we can arrange the αl so that elements

of Ci appear before those of Cj whenever i < j. It follows that G = H1H2 . . . Hk.

By Lemma 7, moved(Hi) ∩ moved(Hj) = ∅ for 1 ≤ i 6= j ≤ k and so G =

H1 • H2 • · · · • Hk, where (since id /∈ X) the Hi are non-trivial. �

Consider the group G3T which is generated by the set X = {(1 2), (2 3), (4 5),

(5 6), (7 8), (8 9), (12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)(10 11)}. It is

straightforward to check that the equivalence classes under B∗ for this example are

as follows:

C1 = {(1 2), (2 3), (4 5), (5 6), (7 8), (8 9), (12 13)(1 4)(2 5)(3 6),

(13 14)(4 7)(5 8)(6 9)}

C2 = {(10 11)},

which generate the groups H1 and H2 respectively, described at the start of Sec-

tion 9.3. This is the finest disjoint product decomposition of G3T.

The approach is incomplete as it does not guarantee the finest decomposi-

tion of an arbitrary group G as a disjoint product. To see this, suppose that the ele-

ment (1 2)(10 11) is added to the generating set for the group G3T. This causes the

equivalence classes C1 and C2 to merge, and a non-trivial disjoint decomposition

for G3T is not obtained.

However, in practice we have not found a case in which the finest decompo-

sition is not detected when generators have been computed by a graph automor-

phism program. The approach is very efficient as it works purely with the genera-

tors of G, of which there are typically few.
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Algorithm 8 disjoint decomposition(G,O) – G is a group and O its non-trivial orbits.

for all partitions {O1,O2} of O do

if GO1 ≤ G and GO2 ≤ G then

return disjoint decomposition(GO1 ,O1) • disjoint decomposition(GO2 ,O2)
end if

end for

return G

9.3.2 Sound and complete approach

We now present an algorithm for computing the finest non-trivial decomposition of

G as a disjoint product of subgroups. The algorithm runs in exponential time in the

worst case, but for many groups which arise in model checking problems we can

obtain polynomial run-time via a computational group theoretic optimisation. We

present three lemmas, the proofs of which can be found in Appendix B.3. Through-

out this section we use (variations of) Ω and O to refer to orbits and sets of orbits

respectively.

Let G ≤ Sn, and O the set of all non-trivial orbits of G. For O′ ⊆ O, any

α ∈ G can be written as α = α1α2 . . . αsβ1β2 . . . βt, where moved(αi) ⊆ Ω ∈ O′ for

some Ω (1 ≤ i ≤ s) and moved(βi) ⊆ Ω ∈ (O \ O′) for some Ω (1 ≤ i ≤ t). With α

in this form, the restriction of α to O′ is the permutation αO′
= α1α2 . . . αs. In general,

αO′
/∈ G. For H ≤ G, the restriction of H to O′ is the group HO′

= {αO′
: α ∈ H}. In

general, HO′
6≤ G.

Lemma 8 Suppose G = H1 • H2 where H1 6= {id} and H2 6= {id}. Then there are

sets O1, O2 of non-trivial orbits of G such that {O1,O2} is a partition of O and for

i ∈ {1, 2}, Hi = GOi .

Algorithm 8 is a recursive algorithm for computing a disjoint decomposition

of G. If G can be decomposed, then by Lemma 8 there is some partition {O1,O2}

of O such that G = GO1 • GO2 . The algorithm detects when a partition with this

property has been found, based on the following lemma:

Lemma 9 If {O1,O2} is a partition of O and GOi ≤ G for i ∈ {1, 2} then G =

GO1 • GO2 .

Once a decomposition of the form G = GO1 • GO2 has been found, the

groups GO1 and GO2 are recursively decomposed. This guarantees the finest de-

composition of G as a disjoint product, thus Algorithm 8 is complete.

Computing GOi by restricting each generator of G to Oi is trivial. Testing

whether GOi ≤ G can be done in low-degree polynomial time using standard com-

putational group theoretic data structures [19]. Thus the complexity of Algorithm 8

is dominated by the number of partitions of O which must be considered in the
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worst case. If G does not decompose as a disjoint product then every partition of O

of size two must be considered. The number of such partitions is S(|O|, 2), a Stirling

number of the second kind [70], and it can be shown that S(|O|, 2) = 2|O|−1 − 1. In

the worst case, |O| may be n/2, thus the complexity of Algorithm 8 is O(2n).

A computational group theoretic optimisation

We can optimise the performance of Algorithm 8 for many commonly occurring

symmetry groups by introducing the notion of dependent orbits:

Definition 30 Let Ω1, Ω2 ∈ O. We say that Ω1 is dependent on Ω2 if |stab∗G(Ω2)Ω1 | <

|GΩ1 |.

Intuitively, Ω1 is dependent on Ω2 if fixing every point in Ω2 has an effect

on the action of G on Ω1. It is easy to show that Ω1 is dependent on Ω2 iff Ω2 is

dependent on Ω1, so we say that two orbits are dependent if one is dependent on the

other. We now show that dependent orbits must belong to the same element of the

partition of Lemma 8:

Lemma 10 Let {O1,O2} be a partition of O such that G = GO1 • GO2 (as in

Lemma 8). Let Ωi, Ωj ∈ O be dependent. Then {Ωi, Ωj} ⊆ O1 or {Ωi, Ωj} ⊆ O2.

Define a binary relation B ⊆ O ×O as follows: (Ω1, Ω2) ∈ B if Ω1 and Ω2

are dependent. We have already established that B is symmetric, and B is obviously

reflexive. We have not determined whether B is, in general, transitive, so we use B∗

to denote the transitive closure of B. Suppose {O1,O2} is a partition of O with G =

GO1 • GO2 (as in Lemma 8). If C is an equivalence class of B∗, called a dependency

class, then by Lemma 10 and induction, C ⊆ Oi for some i.

Since Algorithm 8 depends critically on the size of the set O, we can po-

tentially improve performance by taking O to be the set of all dependency classes,

rather than the set of all orbits, if there are fewer dependency classes. Computing

the dependency classes involves computing pointwise stabilisers, which is a poly-

nomial time operation [19].

Examples

We illustrate the sound and complete approach using a group for which the op-

timisation above reduces the problem so that there is only one potential partition

{O1,O2} to consider. We also give a pathological example for which our optimisa-

tion does not help at all.

Let G be the following group:

G = 〈(1 2 3)(4 5 6)(7 8 9)(10 11 12)(14 15)(17 18)(20 21),

(2 3)(5 6)(8 9)(11 12)(13 14 15)(16 17 18)(19 20 21)〉.
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Due to the manner in which the generators of G have been presented, applying the

sound and incomplete approach of Section 9.3.1 does not yield a disjoint product

decomposition. Using GAP, we find that G has seven non-trivial orbits:

O =
{
{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14, 15}, {16, 17, 18}, {19, 20, 21}

}

and there are S(7, 2) = 63 partitions of these orbits. However, analysing the orbits

for dependency, we find that the orbitsO1 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}

are all dependent, and O2 = {{13, 14, 15}, {16, 17, 18}, {19, 20, 21}} are all depen-

dent. There is only one partition of O which preserves these dependencies – the

partition {O1,O2}. It is straightforward to check that

G = GO1 • GO2

= 〈(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12), (1, 2)(4, 5)(7, 8)(10, 11)〉

•〈(13, 14, 15)(16, 17, 18)(19, 20, 21), (13, 14)(16, 17)(19, 20)〉.

This is an example for which the computational group theoretic optimisation is

very effective.

Now consider, for any even n > 2, the following group:

Gn = 〈(1 2)(3 4),

(3 4)(5 6),

...

(n − 6 n − 5)(n − 4 n − 3),

(n − 3 n − 2)(n − 1 n)〉.

It is clear that Gn has n/2 non-trivial orbits: O = {{1, 2}, {3, 4}, {5, 6}, . . . ,

{n− 1, n}}. It is not so obvious, but easy to check, that no two orbits are dependent.

Hence the computational group theoretic optimisation does not reduce the number

of partitions of O which must be checked to determine whether Gn decomposes as

a disjoint product. The number of partitions is S( n
2 , 2) = 2n/2 − 1, and all of these

must be checked since Gn does not decompose as a non-trivial disjoint product for

any n (this can be proved by induction). However, this is not a group which we

have encountered in association with a model checking problem.

An open problem in this area is to determine whether there is a polynomial

time algorithm for finding the finest disjoint product decomposition of an arbitrary

group G. A possible approach is to find a stronger notion of dependent orbits, with

the property that if C1, C2, . . . , Ch are the dependency classes of the orbits then G =

GC1 • GC2 • · · · • GCh .

This problem is of computational group theoretic interest. From a model
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checking perspective, the sound and incomplete approach of Section 9.3.1 returns

the finest disjoint product decomposition of groups whose generators have been

automatically computed. The sound, complete approach, with our computational

group theoretic optimisation, can efficiently handle all the types of symmetry group

which we have observed in connection with model checking problems, regardless

of the way their generators are presented.

9.4 Exploiting Wreath Products

Suppose that a symmetry group partitions the components of a system into subsets

such that there is analogous symmetry within each subset, and symmetry between

the subsets. Then the group can be described as the inner wreath product of the group

which acts on the subsets, and the group which permutes the subsets (see Defini-

tion 17, Section 3.1.4).

Wreath products occur in model checking problems when systems are mod-

elled using a tree structure. In Section 4.5 we established that the symmetry group

associated with the three-tiered architecture specification exhibits wreath product

symmetry. Recall the group G3T introduced in Section 9.1.2. In Section 9.3, we

showed that G3T decomposes as a disjoint product H1 • H2. We now show that

the factor H1 of this product decomposes as an inner wreath product.

We have H1 ≤ Sym(X) where X = {1, 2, . . . , 9, 12, 13, 14}. Consider the fol-

lowing partition {X1, X2, X3} of X, where we describe each Xi as an ordered set of

elements Xi = {xi,1, xi,2, . . . , xi,4} (as in Definition 17, Section 3.1.4):

X1 = {1, 2, 3, 12}

X2 = {4, 5, 6, 13}

X3 = {7, 8, 9, 14}

Taking K = S3 and H = S3,3 let σ be the permutation representation corre-

sponding to the action of K on X and σ1, σ2 and σ3 those for H on X as in Defini-

tion 17. Then:

σ(K) = 〈(1 4)(2 5)(3 6)(12 13), (4 7)(5 8)(6 9)(13 14)〉

σ1(H) = 〈(1 2), (2 3)〉

σ2(H) = 〈(4 5), (5 6)〉

σ3(H) = 〈(7 8), (8 9)〉

The group σ(K) permutes the partition {X1, X2, X3}, whereas each group

σi(H) permutes the set Xi. One can verify (using GAP) that H1 = σ(K)σ1(H)σ2(H)

σ3(H), i.e. H1 = H ≀ K.

3. The group H can be thought of as the subgroup of Sym({1, 2, 3, 4}) which fixes the point 4.
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Suppose that G ≤ Sn has a non-trivial (inner) wreath product decomposition

(H, K,X ) with associated permutation representations σ, σ1, σ2, . . . , σd for the ac-

tions of K and H on {1, 2, . . . , n} (where d = |X |). For a state s ∈ Ln it can be shown

that min[s]G = min[min[. . . min[min[s]σ1(H)]σ2(H) . . . ]σd(H)]σ(K) [27]. This means that

the COP for G can be solved by considering each subgroup σi(H) in turn, followed

by the subgroup σ(K). Even if we have to deal with these groups using enumer-

ation, it is more efficient to enumerate over the resulting d × |H| + |K| elements

than all |H|d|K| elements of G. Furthermore, it may be possible to deal with the

groups σ(K) and σi(H) (1 ≤ i ≤ d) efficiently using minimising sets or further

disjoint/wreath decompositions.

As with the similar result for disjoint products presented in Section 9.3,

the result for wreath products is only useful for automatic symmetry reduction

if we can automatically determine, before search, whether an arbitrary permuta-

tion group is a wreath product. We present an algorithm to determine whether a

group G decomposes as a wreath product for the case when G is transitive (see Def-

inition 10, Section 3.1.2). We then propose an extension of our approach to the case

where G may not be transitive.

9.4.1 Wreath product decomposition for transitive groups

If G is a transitive permutation group then we can determine whether G has wreath

product structure by considering the block systems of G. We introduce some stan-

dard definitions and results on block systems. See [85, 150] for details.

Definition 31 Let G ≤ Sym(X) and Y ⊆ X, where X is a non-empty set. Then Y is

a block for G iff, for all α ∈ G, α(Y) = Y or α(Y) ∩ Y = ∅.

Essentially a block is a subset of X which is either fixed by an element of G,

or moved completely by the element. The sets X, {x} (for any x ∈ X), and ∅ are

always blocks for G, and are called trivial blocks. Given a non-empty block Y, it can

be shown that the set {α(Y) : α ∈ G} is a partition of G, each set in this partition

is a block, and all the blocks have the same size. Such a partition is called a block

system for G, generated by Y. In general, rather than singling out a specific block, we

say that a partition X = {X1, X2, . . . , Xd} of X is a block system for G if each Xi is a

block for G, and the blocks are all images of each other under G. A non-trivial block

system is one for which the blocks are non-trivial.

Definition 32 Let {X1, X2, . . . , Xd} be a block system for G ≤ Sym(X). For 1 ≤ i ≤

d, the group (stabG(Xi))
Xi is called the block stabiliser for Xi.

This is the restriction of the group stabG(Xi) to the block Xi, and is analogous

to the restriction of a group to a union of orbits in Section 9.3.2. This restriction is
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well-defined since Xi is clearly an orbit of stabG(Xi). It can be shown that for any

blocks Xi, Xj, (stabG(Xi))
Xi and (stabG(Xj))

Xj are identical up to renaming of the

points on which they act. If |Xi| = m we can identify all of the groups (stabG(Xi))
Xi

with a group H ≤ Sm by renaming points in the obvious way. We call H the block

stabilizer for the system.

The block stabiliser for Xi shows the effect of G on the points contained in

Xi. The effect of G on the blocks, regarded as “black boxes”, is characterised by the

block permuter:

Definition 33 Let X = {X1, X2, . . . , Xd} be a block system for G ≤ Sym(X). For

α ∈ G and Y ⊆ X define α(Y) = {α(x) : x ∈ Y} in the usual way. It is easy to

check that this is an action of G on X (see Definition 13, Section 3.1.3). Let σ be the

permutation representation of this action so that σ(G) ≤ Sym(X ). We can identify

Sym(X ) with Sd by renaming Xi as i (1 ≤ i ≤ d). The group obtained by regarding

σ(G) as a subgroup of Sd is called the block permuter for X .

The following important theorem in wreath product theory (see, for exam-

ple, [129] for a proof) shows that if G is a transitive permutation group which ad-

mits a non-trivial block system then G is contained in an (inner) wreath product.

The theorem is followed by a straightforward lemma.

Theorem 19 Let G ≤ Sym(X) be transitive and X a non-trivial block system for G.

Let H and K be the block stabiliser and block permuter for X respectively. Then H

and K are non-trivial and G is contained in the (non-trivial) inner wreath product

of H and K with associated partition X , i.e. G ≤ H ≀ K.

Lemma 11 Let H ≀ K be the inner wreath product of Theorem 19, with associated

block systemX . Let σ1, σ2, . . . , σd be the actions of H on X described in Definition 17.

Then σi(H) = (stabG(Xi))
Xi , the stabiliser of block Xi (1 ≤ i ≤ d).

Conversely to Theorem 19, we show that any inner wreath product exhibits

a block system.

Lemma 12 Let G ≤ Sym(X) and suppose G is an inner wreath product H ≀ K with

associated partition X = {X1, X2, . . . , Xd}. Then X is a block system for G.

Proof Let σ and σ1, σ2, . . . , σd be the permutation representations of the actions of

K and H on X. Any element δ ∈ G has the form δ = σ(β)σ1(α1)σ2(α2) . . . σd(αd) for

some β ∈ K, α1, α2, . . . , αd ∈ H. For any Xi ∈ X , clearly σj(αj)(Xi) = Xi, therefore

δ(Xi) = σ(β)(Xi). By definition of σ, either σ(β)(Xi) = Xi, or σ(β)(Xi) ∩ Xi = ∅.

The result follows. �
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Algorithm 9 Computing a wreath product decomposition for a transitive permu-
tation group G.

for all non-trivial block systems X = {X1, X2, . . . , Xd} for G do

K := block permuter for X
θ : G → K := permutation representation of action of G on X
σ1(H) := (stabG(X1))

X1

if |G| = |σ1(H)|d|K| then

for all i ∈ {2, . . . , d} do

σi(H) := (stabG(Xi))
Xi

end for

for all monomorphisms σ′ : K → G do

if K = θ(σ′(K)) then

σ := σ′

break

end if

end for

return σ(K), σ1(H), . . . , σd(H)
end if

end for

return fail

The next theorem is a direct consequence of Theorem 19, Lemma 12 and

Theorem 4 (Section 3.1.4).

Theorem 20 Let G ≤ Sym(X) be transitive. Then G can be decomposed as a non-

trivial inner wreath product H ≀ K, with associated partition X , iff X is a non-trivial

block system for G, K and H are the block permuter and block stabiliser for X

respectively, and |G| = |H||X ||K|.

The consequence of Theorem 20 is that our search for a non-trivial inner

wreath product decomposition of an arbitrary transitive permutation group G boils

down to searching the non-trivial block systems for G. Given a block system, we

know that G is contained in the inner wreath product associated with the block

system, and can determine whether G is this wreath product by checking the order

of G.

Algorithm 9.4.1 (the correctness of which follows from Theorem 20) can be

used to find a non-trivial wreath product decomposition for a transitive group G, if

one exists. Rather than returning a decomposition in the form (H, K,X ), the algo-

rithm returns the groups σ(K) and σi(H) (1 ≤ i ≤ d), which are all that we require

to solve the constructive orbit problem efficiently.

For each non-trivial block system X , the block permuter K and a single

block stabiliser (stabG(X1))
X1 are computed. Since (stabG(X1))

X1 is isomorphic to

the block stabiliser for X it is sufficient to compare |G| with |(stabG(X1))
X1 |d|K|
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to determine (by Theorem 20) whether the current block system corresponds to

a wreath product decomposition. In the case where equality of orders holds, by

Lemma 11 the groups σi(H) can be computed as block stabilisers. The challenge

is to compute σ, the permutation representation of the action of K. We know that

σ maps K to an isomorphic subgroup of G, therefore σ must be a monomorphism

(see Theorem 2, Section 3.1.1). Furthermore, the restriction of σ(K) to act on the

blocks, i.e. the group θ(σ(K)), must be equal to K. Therefore σ can be computed by

considering (in the worst case) all monomorphisms from K to G.

Efficiency

We can compute θ, K and an individual block system for G, and determine the or-

ders of K and (stabG(X1)
X1) in polynomial time using algorithms presented in [85].

Although polynomial time algorithms are not available for computation of arbi-

trary setwise stabilisers, a block stabiliser stabG(Xi) can be computed in polynomial

time [85], after which computing the restricted group (stabG(Xi))
Xi is straightfor-

ward. The potential bottlenecks of Algorithm 9.4.1 are: the number of block systems

which may need to be considered, and the computation of all monomorphisms

from K to G.

It can be shown (by counting chains of blocks) that an upper bound for the

number of distinct block systems for a permutation group G is nlog2 n, where n is

the degree of G (personal communication, P. J. Cameron, 2007). This upper bound

is not too large for the sizes of n which occur in model checking problems.

Computing all monomorphisms from K to G can be achieved via the GAP

function IsomorphicSubgroups( G, K) (see Section 3.1.6). The complexity of

this algorithm is not documented, but it is not a polynomial-time algorithm (per-

sonal communication, S. Linton, 2007). An alternative algorithm for computing

σ(K) is presented as part of a constructive proof [110, Lemma 2.4], though this al-

gorithm does not appear to be more efficient than IsomorphicSubgroups . Note

that it is only necessary to compute the monomorphism σ if G does indeed de-

compose as an inner wreath product. The benefits which can result from having a

wreath product decomposition for G may therefore justify this computation.

We have observed that in many practical examples σ is the mapping defined

by: σ(β)(xi,j) = xβ(i),j, where each block Xi has the form {x1, x2, . . . , xm} with xi ≤

xj whenever i < j. Our implementation of Algorithm 9.4.1 tries this simple pre-test

for σ before resorting to monomorphism computation.

9.4.2 Extending the approach to intransitive permutation groups

The results of Section 9.4.1 provide a solution to the wreath product decomposition

problem for transitive groups. However, wreath product groups which occur in

model checking problems are not necessarily transitive. Consider the subgroup H1
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of G3T (see Sections 9.3 and 9.1.2 respectively). H1 has two orbits, {1, 2, . . . , 9} and

{12, 13, 14}. More generally, the symmetry group associated with a rooted tree is

an intransitive wreath product [106]: nodes at differing depths in the tree, or nodes

at the same depth which occur in non-isomorphic sub-trees, must be in separate

orbits. Unfortunately, there is very little literature on intransitive wreath products.

Even works which are dedicated to the topic of wreath products either assume

transitivity throughout [110], or only briefly discuss the intransitive case [129].

Transitivity is imposed in Section 9.4.1 due to Theorem 19. The need for tran-

sitivity in the proof of Theorem 19 (see [129]) is unclear: it appears that transitivity is

required simply because the theorem appears in the context of imprimitive permuta-

tion groups, which are transitive by definition [150]. We conjecture that Theorem 19

holds when the transitivity condition is omitted.

Assuming this conjecture, there is a further problem: techniques for com-

puting block systems are restricted to transitive groups [85]. We use an algorithm

to work around this problem as follows: if G has f > 1 distinct orbits then for

each orbit Ω we find a (possibly trivial) block system for GΩ. We then attempt to

construct a block for G which is the union of f blocks, one from each block system.

Formally, assume that the orbits of G are Ω1, Ω2, . . . , Ω f , and assume with-

out loss of generality that these orbits are non-trivial. For each Ωi, let blocks(Ωi) be

the set of all block systems for GΩi , excluding {Ωi} but including the trivial sys-

tem {{x} : x ∈ Ωi}. For each X1 ∈ blocks(Ω1), consider every set of block systems

{X1,X2, . . . ,X f } such that Xi ∈ blocks(Ωi), |Xi| = |X1| for all i > 1, and at least

one Xi is non-trivial. We attempt to construct a block from the Xi as follows: Set

B = X1 where X1 is any block in X1. Find a block X2 ∈ X2 such that B ∪ X2 is a

block for G, and set B = X1 ∪ X2. Continue this process until no suitable Xi exists,

or B = X1 ∪ X2 ∪ · · · ∪ X f is a block for G (Xi ∈ Xi, 1 ≤ i ≤ f ). In the latter case,

store the block system generated by B.

Algorithm 9.4.1 can be applied to the set of block systems for G obtained via

this process, to obtain an inner wreath product decomposition.

The symmetry reduction package TopSPIN, described in Chapter 11, uses

the techniques described above to compute wreath product decompositions for ar-

bitrary groups. If our conjecture above proves to be incorrect, it is possible that

our implementation may compute an erroneous wreath product decomposition for

a group G. The worst case scenario then is that representative computation for G

might result in multiple orbit representatives. This compromises the optimality, but

not the soundness, of symmetry reduction.

9.5 Direct and Semi-direct Products

As noted in Section 3.1.4, disjoint products are a special case of direct product, and

both direct and wreath products are examples of semi-direct products. It is natu-
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ral to ask whether the idea of solving the COP efficiently by decomposing G as

a disjoint/wreath product can be extended to apply to direct/semi-direct prod-

ucts. We use the symmetry group of a 3-dimensional hypercube to provide counter-

examples which show that a direct extension of the techniques is not possible.

Recall the group K3 ⋊ S3, the symmetry group of a 3-dimensional hypercube

(i.e. a cube), introduced in Section 4.6.1. For 1 ≤ i ≤ 8 we use the integer i to

represent the node in a cube corresponding to the boolean vector for i − 1.4 Then

the groups K3 and S3 can be expressed using generators as follows:

K3 = 〈(1 2)(3 4)(5 6)(7 8), (1 3)(2 4)(5 7)(6 8), (1 5)(2 6)(3 7)(4 8)〉

S3 = 〈(2 3 5)(4 7 6), (2 3)(6 7)〉.

Conjecture 1 If G ≤ Sn and G = H1 ⋊ H2 then, for s ∈ Ln, min[s]G =

min[min[s]H1
]H2

, or min[s]G = min[min[s]H2
]H1

.

Counterexample Consider the group G = K3 ⋊ S3 ≤ S8, and the state s =

(4, 3, 2, 4, 2, 1, 1, 3). Using GAP, we can compute min[s]G by enumeration of G,

and we find that min[s]G = (1, 2, 2, 4, 3, 1, 4, 3). Again using GAP, we find that

min[s]K3
= (1, 2, 3, 1, 3, 4, 4, 2) = t say, and that min[t]S3

= t 6= min[s]G . Similarly,

we find that min[min[s]S3
]K3

= (1, 2, 2, 4, 3, 4, 1, 3) 6= min[s]G . �

Conjecture 2 If G = H1 × H2 × · · · × Hk ≤ Sn then, for s ∈ Ln, min[s]G =

min[. . . min[min[s]H1
]H2

. . . ]Hk
.

Counterexample It is easy to show that the group K3 decomposes as a direct prod-

uct – K3 = H1 × H2 × H3, where:

H1 = 〈(1 2)(3 4)(5 6)(7 8)〉

H2 = 〈(1 3)(2 4)(5 7)(6 8)〉

H3 = 〈(1 5)(2 6)(3 7)(4 8)〉.

Consider the state s = (3, 4, 4, 2, 5, 4, 1, 5). Using enumeration we find that

min[s]K3
= (1, 5, 5, 4, 4, 2, 3, 4). However, min[min[min[s]Hi

]Hj
]Hk

= (3, 4, 4, 2, 5, 4, 1, 5)

for any distinct i, j, k ∈ {1, 2, 3}. This shows that s cannot be minimised by consid-

ering H1, H2 and H3 independently, no matter which order they are applied in. �

Note that Conjectures 1 and 2 show simply that the COP for semi-direct

4. We use the integers {1, 2, . . . , 8} rather than {0, 1, . . . , 7} so that we can present examples com-
puted using GAP.
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and direct products cannot, in general, be solved by straightforward application of

techniques which work for disjoint and wreath products. Of course this does not

mean that there is no way to efficiently solve the COP by exploiting this product

structure.

9.6 Choosing a Strategy for G

The strategies we have presented for minimising a state with respect to basic and

composite groups can be combined to yield a symmetry reduction strategy for the

arbitrary group G by classifying the group using a top-down recursive algorithm.

The algorithm starts by searching for a minimising set for G of the form

prescribed in Theorem 16, so that min[s]G can be computed as described in Sec-

tion 9.2.3. If no such minimising set can be found, a decomposition of G as a dis-

joint/wreath product is sought. In this case the algorithm is applied recursively to

obtain a minimisation strategy for each factor of the product so that min[s]G can be

computed using these strategies as described in Sections 9.3 and 9.4 respectively. If

G remains unclassified and |G| is sufficiently small, enumeration is used, otherwise

local search (see Section 9.2.4) is selected.

Summary

In this chapter we have developed techniques for solving the constructive orbit

problem, which is key to exploiting symmetry in explicit-state model checking. We

have described a method for efficiently applying a permutation to a state, an op-

eration which is fundamental to symmetry reduction. We have also shown that

a basic symmetry reduction strategy based on enumeration can be optimised by

representing a symmetry group using sets of coset representatives for a stabiliser

chain.

Previous approaches to symmetry reduction have exploited full symmetry

groups by sorting states. We have generalised this idea using the concept of a min-

imising set, and have shown how a minimising set for many commonly occurring

groups which are isomorphic to fully symmetric groups can be computed.

It has been established that the COP can be solved compositionally if a group

can be decomposed as a disjoint/wreath product of subgroups [27]. However, these

results are only useful for automated model checking if the decomposition process

can be automated. We have proposed two approaches to decomposing a group as

a disjoint product of subgroups. The first is sound, very efficient, but incomplete.

However, we have found it to work well in practice when applied to groups which

have been automatically computed using graph automorphism software. The sec-

ond approach is sound and complete, but runs in exponential time. We have pro-

posed a computational group theoretic optimisation for this approach which works
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well for commonly occurring groups. We have shown how a wreath product de-

composition for a transitive group can be found by examining non-trivial block sys-

tems for the group. Based on a computational group-theoretic conjecture, we have

extended this decomposition approach to apply to arbitrary imprimitive wreath

products, and discussed the efficiency of the decomposition algorithm.

We have shown that, in general, the COP cannot be solved compositionally

for groups which decompose as direct or semi-direct products of subgroups by

straightforward extension of the techniques for disjoint and wreath products.



Chapter 10

Extending Symmetry Reduction Strategies to a Realistic

Model of Computation

When components do not hold references to other components, the simple model of

computation and the action of a permutation on a state described in Section 9.1 are

sufficient to reason about concurrent systems. The model is common to numerous

works on symmetry reduction for model checking (e.g. [27, 57, 59]), and is adequate

for reasoning about input languages where components do not individually hold

references to other components, e.g. the input languages of SMC [166], SYMM[27]

and PRISM [83], or where components are specified using synchronisation skeletons

[57].

However, if components can hold references to one another then any permu-

tation that moves component i will affect the local state of any components which

refer to i. Sophisticated specification languages, such as Promela, include data-

types to represent process and channel identifiers. Both the results presented in

[27] on solving the COP for groups which decompose as disjoint/wreath products,

and our results on minimising sets for fully symmetric groups (see Section 9.2.3)

do not hold in general for this extended model of computation. We illustrate this

using an example in Section 10.1.2.

Thus for Promela specifications where local variables refer to process and

channel identifiers, the efficient symmetry reduction strategies presented in Chap-

ter 9 are not always exact; in some cases they may yield an approximate implementa-

tion of the function min, as discussed in Section 3.4.2. This does not compromise the

safety of symmetry reduced model checking, but means that symmetry reduction

is not memory-optimal.

For the simple case of full symmetry between identical components, the

SymmSpin package deals with local variables which are references to component

identifiers by dividing the local state of each component into two portions, one

which does not refer to other components (the insensitive portion), and another

which consists entirely of such references (the sensitive portion). A state is min-

imised by first sorting it with respect to the insensitive portion. Then, for each sub-

set of components with identical insensitive portions, every permutation of the sub-
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set is considered, and the permutation which leads to the smallest image is applied.

This is known as the segmented strategy. In this chapter we show that the segmented

strategy can be generalised so that the exact strategies presented in Chapter 9 yield

exact strategies under a more realistic model of computation.

We present the constructive orbit problem with references (COPR), and show

that polynomial time strategies for the COP under the simple model of compu-

tation of Chapter 9 do not directly solve the COPR. We then present a computa-

tional group theoretic approach based on the segmented strategy, which extends

any strategy for solving the COP to a solution for the COPR. Our extension results

in exact symmetry reduction, at the expense of polynomial time. However, exper-

imental results, which we present in Section 11.3, demonstrate that in practice our

approach is significantly more efficient than symmetry reduction by enumeration

(see Section 9.2.2). We show that the COPR is polynomial-time equivalent to COP,

and discuss the relationship between these problems and the computational group

theoretic problem of finding the smallest image of a set under a group [121].

10.1 A Model of Computation With References

As in Chapter 9, let I = {1, 2, . . . , n} be the set of component identifiers for a con-

current system. Suppose that the local state of a component is comprised of two

parts, its control state and its reference state.

The control state of a component is determined by the values of all local

variables of that component which are not references to other components, e.g. a

program counter or boolean flag. Without loss of generality (see Section 9.1), we

can represent a local control state abstractly as an integer taken from a finite set

Lc ⊂ Z.

The reference state of a component is determined by the values of all local

variables which are references to other components. For example, components in a

leader election protocol may require a reference variable to (eventually) hold the

identity of the leader; a user in a model of telephony may hold a reference to its

current partner. Thus a reference state is a tuple in the set Lr = (I ∪ {0})m for some

m ≥ 0. Here m is the number of references held by a component, and 0 is used

as a default value (e.g. to represent that the leader is unknown). Without loss of

generality we can assume that all components have exactly m ≥ 0 reference local

variables.

Thus a global state s ∈ (Lc × Lr)n has the form:

s = (l1, (r1,1, r1,2, . . . , r1,m), l2, (r2,1, r2,2, . . . , r2,m), . . . , ln, (rn,1, rn,2, . . . , rn,m)),

where li ∈ Lc represents the control state of component i, and ri,j ∈ I ∪ {0} is the

value of the jth reference variable of component i (i ∈ I, 1 ≤ j ≤ m).
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In the special case where m = 0, i.e. when components do not hold ref-

erences to one another, Lr consists of a 0-tuple, and can thus be ignored. A state

s ∈ Ln
c then has the form s = (l1, l2, . . . , ln) described in Section 9.1. We refer to

models of computation where m > 0 and m = 0 as a model of computation with

and without references, respectively.

10.1.1 The Constructive Orbit Problem with References

With the extended model of computation, in order to define a total ordering

� on S ⊆ (Lc × Lr)n, we define two projection mappings, ctrl and ref , pro-

jecting a state on to its control and reference parts respectively. For a state

s = (l1, (r1,1, r1,2, . . . , r1,m), l2, (r2,1, r2,2, . . . , r2,m), . . . , ln, (rn,1, rn,2, . . . , rn,m)), ctrl(s) =

(l1, l2, . . . , ln) and ref (s) = (r1,1, r1,2, . . . , r1,m, . . . . . . , rn,m).

Definition 34 For s, t ∈ S, s � t if either s = t; ctrl(s) < ctrl(t); or ctrl(s) =

ctrl(t) and ref (s) < ref (t). Here ref (s) and ref (t) are compared using the usual

lexicographic ordering on vectors (similarly ctrl(s) and ctrl(t)).

It is clear that � is a total ordering on states. We write s ≺ t if s � t and s 6= t. We

now extend the COP to the model of computation with references:

Definition 35 The COP with references (COPR) Given a group G ≤ Sn and a state

s ∈ (Lc × Lr)n, find min�[s]G , the �-least element in the orbit of s under G.

It is clear that the COPR is a generalisation of the COP: in the special case where

m = 0 the COP and the COPR are identical. Since the COP is NP-hard (Theorem 10),

the COPR is NP-hard by restriction. In fact, the two problems can be shown to be

polynomial-time equivalent. An instance of the COP is trivially an instance of the

COPR, and an instance of the COPR can be converted, in quadratic time, to an in-

stance of the COP. The latter is achieved by replacing each component id reference

ri,j by a vector of n binary values, which are all 0 unless ri,j = l > 0, in which

case the binary value l places from the right is one. For example, if n = 8 and

ri,j = 5, the value of ri,j is converted to the binary sequence 0, 0, 0︸ ︷︷ ︸
n−5

, 1, 0, 0, 0, 0︸ ︷︷ ︸
5

. The

variables introduced to hold these values are modelled as components with binary

valued local state. If convert denotes a function which performs this conversion,

then placing the value one l places to the right ensures that, for states s and t, s � t

iff convert(s) ≤ convert(t). Elements of the symmetry group G must also be trans-

formed appropriately, so that if s is a state and α ∈ G, the transformed element α′

must satisfy convert(α(s)) = α′(convert(s)).
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Algorithm 10 A COP strategy for Sn based on selection sort.

α := id
for all i ∈ [1, . . . , n − 1] do

β := id
for all j ∈ [i + 1, . . . , n] do

if (i j)α(s) < βα(s) then
β := (i j)

end if

end for

α := βα

end for

return α

10.1.2 Problems with references

Recall the polynomial time strategies for the COP described in Chapter 9. Clearly

the strategy based on enumeration extends immediately to a model of computation

with references, if |G| is polynomial in n. However, the other strategies are not

immediately applicable. We show this for the COP strategy where G = Sn and

representatives are computed by sorting. Similar arguments can be applied for the

other strategies.

The proof that the COP for G = Sn can be solved by sorting a state s is based

on the following lemma:

Lemma 13 In the simple model of computation, there are no i1, j1, i2, j2 ∈ I where

i1 < j1, i2 < j2, (i2 j2)(s) < s and (i1 j1)(s) ≥ s, but (i2 j2)(i1 j1)(s) < (i2 j2)(s).

However, this result does not hold in the presence of references.

Lemma 14 Lemma 13 does not hold for the model of computation with references

where the ordering ≤ is replaced with �.

Proof We prove Lemma 14 by counter-example. Suppose n = 3, Lc = {0, 1}, and

consider s = (1, 0, 0, 2, 0, 2). Take i1 = 2, j1 = 3, i2 = 1 and j2 = 3. Then we have

(i2 j2)(s) = (0, 2, 0, 2, 1, 0) ≺ s, (i1 j1)(s) = (1, 0, 0, 3, 0, 3) ≻ s. But (i2 j2)(i1 j1) =

(1 3 2), and (1 3 2)(s) = (0, 1, 0, 1, 1, 0) ≺ (i2 j2)(s). �

This counter-example for the case n = 3 can be extended to give a counter-example

for any n ≥ 3 – consider i1, j1, i2 and j2 as above, and s = (1, 0, 0, 2, 0, 2, 0, 0, . . . , 0, 0).

Applying Algorithm 10 with ≤ replaced by � to s = (1, 0, 0, 2, 0, 2) gives the

element (1 3) which does not minimise s, whereas enumeration of S3 gives (1 3 2),

which does. Thus this adaptation of Algorithm 10 does not yield an exact COPR

strategy.
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Suppose G ≤ Sn is a symmetry group and G′ ≤ Sn′ is the group isomorphic

to G obtained by the conversion of a COPR instance to a COP instance discussed in

Section 10.1.1 (here n′ ≥ n is the number of components used in the representation

of converted states). A polynomial time COP strategy for G does not in general

yield a corresponding COPR strategy for G′, as the action of G′ on {1, 2, . . . , n′}

may be fundamentally different to that of G on {1, 2, . . . , n}. For example, if G is the

disjoint product of subgroups H and K then G′ is the direct product of subgroups

H′ and K′, but it may not be the case that H′ and K′ act disjointly on {1, 2, . . . , n′}.

We now show how a polynomial time exact COP strategy can be extended

to an exact COPR strategy. The result is not a polynomial time strategy, but may be

significantly more efficient than the enumeration strategy if G is large.

10.2 Segmentation: Extending Strategies to a Model of Computation

With References

Our approach to extending a strategy for COP to one for COPR works by construct-

ing a partition of I from a given state, and enumerating the stabiliser of this partition.

10.2.1 Segmenting a state

We define a subset of [s]G whose elements have minimal control states.

Definition 36 Let smallG(s) = {t ∈ [s]G : ctrl(t) ≤ ctrl(u) ∀ u ∈ [s]G}.

Clearly min�[s]G ∈ smallG(s). Given a state s, the vector ctrl(s) can be viewed as

a state under a model of computation without references. The following result is a

consequence of this observation and Definition 36:

Lemma 15 For s ∈ S, t ∈ smallG(s) ⇔ ctrl(t) = min≤[ctrl(s)]G.

For k ∈ Lc, let s(k) = {i ∈ I : li = k}, i.e. the set of indices of components which

have control state k in s. Define the function seg acting on states by:

seg(s) = {s(k) : k ∈ Lc}.

Then clearly, for any state s, seg(s) is a partition of I.

10.2.2 Symmetry reduction via segmentation

So far we have defined a COP strategy for G to be a function f : S → S with

the property that f (s) = min≤[s]G . Note that we can equivalently define a COP

strategy with respect to a group G as a function f : S → G such that, for all s ∈ S,
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Algorithm 11 Extending an exact COP strategy f for a group G to an exact COPR
strategy.

β := f (ctrl(s))
H := stabG(seg(β(s)))
α = id
for all δ ∈ H do

if δβ(s) ≺ αβ(s) then

α := δ

end if

end for

return αβ

if α = f (s) then α(s) = min≤[s]G. We adopt the latter definition for the rest of this

chapter.

For a group H acting on a set X, recall the definition of the stabiliser of a

partition X of X (Definition 9, Section 3.1.2), denoted stabH(X ).

Lemma 16 If t ∈ smallG(s) and α(t) ≺ t for some α ∈ G then α ∈ stabG(seg(t)).

Proof Since t ∈ smallG(s) and α(t) ≺ t, by Definition 36 we have ctrl(t) =

ctrl(α(t)) and re f (t) > re f (α(t)). Since ctrl(t) = ctrl(α(t)), t(k) = α(t)(k) for all

k ∈ Lc, i.e. seg(t) = seg(α(t)). Thus α preserves seg(t), i.e. α ∈ stabG(seg(t)). �

Thus, if a state t ∈ smallG(s) is not the smallest element in [s]G under � then

search for a minimising element of G can be restricted to stabG(seg(t)). Note that

if component indices i, j ∈ X ∈ seg(t), it is still necessary to consider elements of

G which map i to j. Thus we cannot treat the elements of seg(t) as sequences and

compute their pointwise stabiliser (which would be computationally easier).

Suppose that we have an exact COP strategy f for G. Let β = f (ctrl(s)), so

that β(ctrl(s)) = min≤[ctrl(s)]G. Clearly β(ctrl(s)) = ctrl(β(s)), and therefore by

Lemma 15, β(s) ∈ smallG(s). By Lemma 16, the group H = stabG(seg(β(s))) can

now be enumerated to find an element α such that αβ(s) � δβ(s) for all δ ∈ H.

Thus we have proved the following:

Theorem 21 Let s ∈ S, G ≤ Sym(I), and let f be an exact COP strategy for G. Then

Algorithm 11 is an exact COPR strategy for G.

Figure 10.1 illustrates graphically the relationship between [s]G (represented

by the outer ellipse) and its subset smallG(s) (represented by the inner ellipse), and

the process of computing an element of G which minimises s. We illustrate the

approach further with an example.

Let n, m, Lc and Lr and G be as in the example in Section 10.1.2. Let
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β(s) αβ(s)
= min�[s]G

s

α ∈ H

β = f (ctrl(s))

smallG(s) = [β(s)]H

[s]G

ctrl(β(s)) = min≤[ctrl(s)]G H = stabG(seg(β(s)))

Figure 10.1: Symmetry reduction by segmentation.

s = (1, 2, 0, 1, 0, 1, 2, 1). Then ctrl(s) = (1, 0, 0, 2), and applying Algorithm 10, we

find that β = (1 3) satisfies β(ctrl(s)) = min≤[ctrl(s)]G . Applying β to s gives

t = (0, 3, 0, 3, 1, 2, 2, 3), and seg(t) = {{1, 2}, {2}, {3}}. It is easy to check that

stabG(seg(t)) = 〈(1 2)〉, a group of order 2, and that applying (1 2) to t gives

min�[s]G = (0, 3, 0, 3, 1, 1, 2, 3). For this example, the application of 6 group ele-

ments is required by Algorithm 10, followed by enumeration of a group of order 2.

Computing min�[s]G by basic enumeration would have required the application of

all 24 elements of G to s.

10.3 Efficiency

Assuming that f can be computed in polynomial time (using strategies described

in [27] and Chapter 9), the efficiency of Algorithm 11 is dominated by computation

of and iteration over H.

Computing H = stabG(seg(s)) is equivalent to computing the stabiliser of a

set in a group. The most efficient algorithms available for computing set stabilis-

ers involve backtrack search of the group using a base and strong generating set

[19]. Typically this search can be heavily pruned using both problem-independent

heuristics, and heuristics based on properties of set stabilisers. Thus, despite the

fact that no polynomial time algorithm is known for computing set stabilisers, the

associated overhead is not large. Furthermore, as the experimental results of Sec-

tion 11.3 show, the set {seg(s) : s ∈ S} of all partitions of I which must be con-

sidered during search, is often much smaller than the number of possible parti-

tions of I.1 Thus, re-computation of partition stabilisers can be avoided by caching

1. The number of such partitions is Bn, the nth Bell number, which is defined recursively by B0 = 1

and Bn = ∑
n−1
k=0 (n

k)Bk for n > 0 [151].
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partition-stabiliser pairs.

In the worst case, H may have size |G| (e.g. when |seg(s)| = 1), and |G| may

be as large as n! (in the case where G = Sn). However, if the number of distinct

component control states is reasonably large, many states s will have the property

that |seg(s)| = n, in which case stabG(seg(s)) is the trivial group.

Summary

In order for our symmetry reduction techniques to be applicable to the Promela

specification language, we have defined a realistic model of computation where

components may hold references to one another. We have defined the COP with ref-

erences, and shown that although the COP and COPR are polynomial-time equiva-

lent, polynomial time strategies for solving the COP for specific groups do not, in

general, directly extend to solve the COPR.

We have presented a technique for extending any COP strategy to solve

the COPR by generalising the segmented symmetry reduction strategy used by the

SymmSpin tool [14]. The extended strategy involves applying the initial strategy,

followed by an enumeration process to compute the minimum state in the set of

states regarded as minimal by the initial strategy. Although the extended strategy

does not run in polynomial time, it is more sophisticated than basic enumeration.

For many states, solving the COPR involves applying a polynomial time COP strat-

egy, then enumerating over a small (even trivial) permutation group.



Chapter 11

TopSPIN – a Computational Group Theoretic Symmetry

Reduction Package for SPIN

In this chapter we describe TopSPIN, a symmetry reduction package which we have

developed for the SPIN model checker. TopSPIN uses SymmExtractor (see Chap-

ter 8) for automatic symmetry detection, and the strategies presented in Chapters 9

and 10 to exploit symmetry efficiently.

We provide an overview of TopSPIN in Section 11.1, and present some exam-

ples of the source code generated by TopSPIN for a selection of symmetry reduc-

tion strategies in Section 11.2. We present experimental results which demonstrate

the effectiveness of our symmetry reduction techniques for a variety of Promela

specifications Section 11.3, and discuss some possible extensions to TopSPIN in Sec-

tion 11.4.

11.1 An Overview of TopSPIN

As described in Section 2.4.2 and illustrated by Figure 2.9, to check properties of

a Promela specification SPIN converts the specification into a C source file, pan.c .

This verifier is then compiled and executed, and the state-space thus generated is

searched, resulting in a counter-example, an exhaustive search with an absence of

counter-examples, or an incomplete search due to memory restrictions.

TopSPIN follows the approach used by the SymmSpin symmetry reduction

package [14] (see Section 3.9.1), where pan.c is generated as usual by SPIN, and

then converted to a new file, sympan.c , which includes algorithms for symmetry

reduction. With TopSPIN, because we allow for arbitrary system topologies, sym-

metry must be detected before sympan.c can be generated. The process involved

in generating sympan.c is summarised in Figure 11.1, which combines the process

of Figure 2.9 with automatic symmetry detection and classification.

The SymmExtractor tool (see Chapter 8) is used to extract the static channel

diagram SCD(P) of the Promela specification P , and to compute the largest valid

subgroup G ≤ Aut(SCD(P)) with respect to P . The symmetry detection process is
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Figure 11.1: The symmetry reduction process.

illustrated in Figure 8.1, Section 8.1, and involves the construction of a syntax tree

representation of P , annotated with type information.

Based on the symmetry reduction strategy specified by the user (see below),

or using the default fast strategy, TopSPIN generates C algorithms for symmetry re-

duction. The overall structure of this code is strategy-dependent, but the fine details

(in particular the function which applies a permutation to a state) are specification-

specific, and depend critically on the type information provided by SymmExtractor.

These algorithms are merged with pan.c to form sympan.c , which can be com-

piled and executed as usual. TopSPIN is currently limited to the verification of safety

properties, which can be expressed using assertions.

TopSPIN provides four symmetry reduction strategies: enumeration, local-

search, fast, and segmented. The enumeration and localsearch strategies use the gen-

eral representative computation techniques presented in Sections 9.2.2 and 9.2.4

respectively. The enumeration strategy provides exact symmetry reduction, thus is

memory optimal. However, it may be very slow if G is large. The localsearch strategy

is approximate (it does not guarantee computation of a unique representative from

each equivalence class) but computationally inexpensive. With both the fast and seg-

mented strategies, TopSPIN analyses the structure of G using a GAP implementation

of the algorithms presented in Chapter 9, and generates routines for representative

computation based on this structural information. If the fast strategy is selected

then these routines may or may not provide exact symmetry reduction, depend-

ing on whether processes in the input specification hold references to one another.

If the segmented strategy is used then the representative computation routines are

followed by a segmentation phase (as described in Chapter 10) which guarantees

unique representatives (unless local search is selected for the initial representative
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computation, in which case it is inadvisable to use the segmented approach). Note

that TopSPIN implements the sound, incomplete approach of Section 9.3.1 for de-

composing a group as a disjoint product.

To allow the user to manually specify symmetry (e.g. when SymmExtractor

is not capable of detecting it automatically), and to allow TopSPIN to be linked with

alternative automatic symmetry detection tools, TopSPIN also accepts generators

for a group of process and channel automorphisms specified (in disjoint cycle form)

in an input file. The resulting group can still be automatically classified if the fast or

segmented strategy is used.

In Sections 9.2.1 and 9.2.2 we discussed optimisations for efficient applica-

tion of permutations, and efficient enumeration of a group respectively. TopSPIN

uses these optimisations by default, but they can be disabled for purposes of com-

parison.

11.2 Computing Representatives

A key component of the pan.c verifier is the store function. Given a single ar-

gument s (a SPIN state-vector) the store function determines whether s already

belongs to the set of previously stored states, adding it to the set if it is not. In sum-

mary, TopSPIN adds a function rep to pan.c , and replaces each call of the form

store( s) with a call store(rep( s)) . If rep returns a unique representative of

[s]G it is clear that by modifying every call to store in this way we ensure only

a single state from each equivalence class is ever added to the state-space, result-

ing in optimal symmetry reduction. Alternatively, rep may provide sub-optimal

symmetry reduction by mapping [s]G on to a small set of representatives.

We now give some examples to illustrate the C code which TopSPIN gen-

erates for the function rep , for a variety of symmetry reduction strategies. The

examples use the standard C functions memcpy(a, b, c) , which copies c bytes from

the memory region pointed to by b to the memory region pointed to by a, and

memcmp(a, b, c) , which compares these memory regions, returning 0 if they are

equal, a positive value if b is larger than a (viewed as a binary vector), and a neg-

ative value otherwise. The State type denotes a SPIN state-vector, and State *

denotes a pointer to a state-vector. Each version of the rep function relies on a sub-

sidiary function applyPermToState . This function computes the image of a state

under a given permutation. Its implementation is specification-specific, dependent

on the location of pid and chan variables and pid-indexed arrays. The type informa-

tion gathered from the input specification during symmetry detection is critical to

the generation of this function. If a symmetry group is specified manually then it is

necessary for TopSPIN to type-check the input specification in order to successfully

generate the applyPermToState function. We do not give a code example for this
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State * rep(State * s) {
int i0, i1, i2, i3, i4;
State partialImages[5];

memcpy(min, s, vsize);

for(i4=0; i4<2; i4++) {
memcpy(&partialImages[4],s,vsize);
applyPermToState(&partialImages[4],coset_reps[4][i4 ]);

for(i3=0; i3<3; i3++) {
memcpy(&partialImages[3],&partialImages[4],vsize);
applyPermToState(&partialImages[3],coset_reps[3][i3 ]);

for(i2=0; i2<4; i2++) {
memcpy(&partialImages[2],&partialImages[3],vsize);
applyPermToState(&partialImages[2],coset_reps[2][i2 ]);

for(i1=0; i1<5; i1++) {
memcpy(&partialImages[1],&partialImages[2],vsize);
applyPermToState(&partialImages[1],coset_reps[1][i1 ]);

for(i0=0; i0<6; i0++) {
memcpy(&partialImages[0],&partialImages[1],vsize);
applyPermToState(&partialImages[0],coset_reps[0][i0 ]);

if(memcmp(&partialImages[0],min,vsize)<0) {
memcpy(min,&partialImages[0],vsize);

}
}

}
}

}
}
return min;

}

Figure 11.2: Representative computation for 6 process Peterson mutual exclusion pro-
tocol via enumeration, using a stabiliser chain.

function; for details see the TopSPIN source code (the location of which is given in

Section 1.2), or examine the sympan.c file which TopSPIN generates for a given

specification. For readability, we have tidied up the code examples in the following

sections to some extent.

11.2.1 Enumeration

Figure 11.2 shows the rep function which TopSPIN generates given a specification

of a 6-process version of Peterson’s mutual exclusion protocol (see Section 4.3 and

Appendix A.1.1). Note that TopSPIN would, by default, choose a more efficient rep-

resentative computation strategy for this example, as we show in Section 11.2.2.

Recall the process of enumeration using a stabiliser chain, described in Sec-

tion 9.2.2. The symmetry group for G in this example is S6, and GAP has been used

to construct a stabiliser chain for G. The chain has length six, so there are five sets of

coset representatives. The coset representatives are stored using a 2-dimensional ar-

ray, coset reps . An array, partial images , is used to store images of the state

s under consecutive coset representatives. The element partial images[4]

is the image of s under an element of coset reps[4] , and for 0 ≤ i < 4,
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State * rep(State * s) {
int j;

memcpy(min, s, vsize);
do {

memcpy(last_min,min,vsize);

for(j=0; j<15; j++) {
memcpy(tmp,min,vsize);
applyPermToState(tmp,minimising_set[j]);
if(memcmp(tmp,min,vsize)<0)

memcpy(min,tmp,vsize);
}

} while(memcmp(min,last_min,vsize)!=0);
return min;

}

Figure 11.3: Representative computation for 6 process Peterson mutual exclusion pro-
tocol, using a minimising set.

partial images[ i] is the image of partial images[ i + 1] under an ele-

ment of coset reps[ i] . The final image of s under an element of G is stored in

partial images[0] , and is compared with the smallest state in the orbit so far,

min (a global variable), using the C function memcmp.1 If partial images[0]

is found to be smaller than min then the value of min is overwritten with this new

minimum, using the memcpyfunction.

The code shown in Figure 11.2 is essentially an implementation of Algo-

rithm 5, Section 9.2.2, for the 6-process Peterson mutual exclusion example.

11.2.2 Minimising sets

As noted above, TopSPIN would not use enumeration for the Peterson mutual ex-

clusion example by default. Rather, a minimising set for G would be computed

using the techniques described in Section 9.2.3. Figure 11.3 shows the code for rep

which is generated in this case. The function is essentially an implementation of

Algorithm 7, Section 9.2.3. The (global) variables min , last min and tmp are SPIN

state vectors. The minimising set is stored as an array, minimising set , and the

algorithm proceeds by iterating over this array and minimising the state min , until

min does not change. For this example the group is S6 and the minimising set has

size 15, as predicted by the formula for minimising set size given in the proof of

Theorem 17 (Section 9.2.3).

11.2.3 Local search

The code generated when the local search strategy (see Section 9.2.4) is chosen, ei-

ther automatically by TopSPIN or manually for experimental purposes, is similar

to that generated when a minimising set is used. Figure 11.4 shows the code gen-

erated for the rep function when local search is applied to the Peterson mutual

exclusion example with six processes. The key differences between Figure 11.3 and

1. The argument vsize to memcmpis a global variable denoting the length of the state-vector.
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State * rep(State * s) {
int j;

memcpy(min, s, vsize);
do {

memcpy(last_min,min,vsize);

for(j=0; j<5; j++) {
memcpy(tmp,last_min,vsize);
applyPermToState(tmp,gens[j]);
if(memcmp(tmp,min,vsize)<0)

memcpy(min,tmp,vsize);
}

} while(memcmp(min,last_min,vsize)!=0);
return min;

}

Figure 11.4: Representative computation using local search.

Figure 11.4 are that a generating set gens for G is used, rather than a minimis-

ing set, and that on each iteration of the inner loop a permutation is applied to

last min , rather than min . This ensures that the inner loop computes the small-

est image of last min under the generators of G. If this image is smaller than

last min then local search continues. Otherwise this local minimum is returned

as a representative.

11.2.4 Applying a composite strategy

If TopSPIN computes a decomposition for G as a disjoint or wreath product of sub-

groups (using the techniques of Sections 9.3 and 9.4 and the recursive classification

algorithm described in Section 9.6) then the rep function consists of multiple sec-

tions of code, one for each factor of the product.

Consider a configuration of the resource allocator specification (see Sec-

tion 4.4 and Appendix A.2) consisting of three processes with priority level 0,

and four with priority level 1. This is the specification denoted ‘3-4’ in Section 8.4.

The symmetry group associated with this example decomposes a disjoint product

H1 • H2 where H1 and H2 are isomorphic to S3 and S4 respectively. These groups

can be handled using minimising sets of size 3 and 6. Figure 11.5 shows the code

for rep generated by TopSPIN.

11.2.5 The segmented strategy

If the segmented strategy is chosen then the function rep is generated as for the

fast strategy, but the return statement is prefixed by a function call of the form

segment(min) . The code which is common to the fast strategy corresponds to the

line β := f (ctrl(s)) in Algorithm 11, Section 10.2.2. The segment call corresponds

to the remainder of Algorithm 11. We give a high-level explanation of how the

segment function is implemented.

Before search, a variable of a proctype is classed as sensitive if it has type pid

or chan, or if it is an array indexed by values of type pid, otherwise it is classed as
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State * rep(State * s) {
int j;

memcpy(min, s, vsize);

do {
memcpy(last_min,min,vsize);
for(j=0; j<3; j++) {

memcpy(tmp,min,vsize);
applyPermToState(tmp,minimising_set_1[j]);
if(memcmp(tmp,min,vsize)<0)

memcpy(min,tmp,vsize);
}

} while(memcmp(min,last_min,vsize)!=0);

do {
memcpy(last_min,min,vsize);
for(j=0; j<6; j++) {

memcpy(tmp,min,vsize);
applyPermToState(tmp,minimising_set_2[j]);
if(memcmp(tmp,min,vsize)<0)

memcpy(min,tmp,vsize);
}

} while(memcmp(min,last_min,vsize)!=0);

return min;
}

Figure 11.5: Representative computation for a resource allocator specification which
has an associated disjoint product group H1 • H2, using two minimising sets.

insensitive. In order to handle user-defined (possibly nested) records, and arbitrary

arrays, distinct fields of a record variable are regarded as separate variables. Sim-

ilarly, distinct elements of an array which is not indexed by values of type pid are

treated as separate variables. A field of a buffered channel is classed as sensitive or

insensitive in an analogous way.

The segment function has a single state-vector parameter s. A partition

seg(s) of process identifiers and static channel names is constructed from s as fol-

lows. Process identifiers i and j are in the same partition if proctype(i) = proctype(j),

and the insensitive variables of i and j are equal at s. Buffered channels c and d are

in the same partition if signature(c) = signature(d), c and d have the same length at

s, and the insensitive fields of c and d are equal at s. Synchronous channels have no

state, and thus need not be included in the partition.

GAP is used to compute the subgroup H = stabG(seg(s)), and returns a

set of coset representatives for efficient enumeration of H (see Section 11.2.1). The

minimum image of s under H is computed using these coset representatives us-

ing a routine similar to that shown in Figure 11.2, Section 11.2.1. As mentioned

in Section 10.3, we optimise the performance of the segment function by caching

partition-stabiliser pairs. When a partition is computed, before calling on GAP to

compute the associated stabiliser, a lookup is made to a table of stabilisers, indexed

by partitions. If the partition has been encountered before then there is no need

to re-compute the stabiliser. Experimental results in Section 11.3 show that explo-

ration of a large state-space may result in only a few distinct partitions.
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The segmented strategy is the only strategy which requires communication

with GAP during search. Due to the technical difficulty of calling external processes

from a C program, the current implementation of TopSPIN provides a GAP function,

Verify() , which starts the sympan executable as a slave process. Unfortunately, it

is not possible (to our knowledge) to pass command-line arguments to sympan this

way, so parameters such as the maximum search depth must be changed manually

in sympan.c , which requires some expert knowledge. Communication between

sympan and GAP takes place via a text stream, using a simple bespoke protocol.

11.3 Experimental Results

We demonstrate the effectiveness of our symmetry reduction techniques by apply-

ing TopSPIN to a selection of Promela specifications. We categorise these specifica-

tions into families in Section 11.3.1. In Section 11.3.2 we discuss the type of symme-

try associated with each family, which determines the strategy chosen by TopSPIN

when the fast option is selected. In Section 11.3.3 we discuss the experimental re-

sults.

11.3.1 Specification families and configurations

We consider each of the specification families used for experiments with Symm-

Extractor in Section 8.4, and use the notation introduced in Section 8.4.1 to denote

configurations of these families. In order to fully illustrate TopSPIN we use two

additional families of Promela specifications: an email system, and a loadbalancer

which forwards requests from a pool of clients to a pool of servers in a fair manner.

The email example is adapted from [21]. A configuration of the system con-

sists of n client processes, which communicate by sending messages to a mailer pro-

cess via a network channel component. The client components are instantiations of

the same parameterised process and thus behave identically, so there is full sym-

metry between clients. Components in a Promela specification of the system use

reference variables to keep track of the sender and recipient of a given message. An

email configuration with n clients is denoted n.

Components of a configuration in the loadbalancer family are a set of m server

and n client processes with associated communication channels, and a loadbalancer

process (with a dedicated input channel). The load of a server is the number of

messages queued on its input channel. Client processes send requests to the load-

balancer, and if any of the server channels are not full, the loadbalancer forwards a

request nondeterministically to one of the least loaded server queues. Each request

contains a reference to the input channel of its associated client process, and the

server designated by the loadbalancer uses this channel to service the request. A

loadbalancer configuration with m server and n client processes is denoted m-n.
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For purposes of comparison, we have slightly modified some specifications

in order to be able to verify reasonably large examples without symmetry reduction.

11.3.2 Symmetry groups associated with each family

The simple mutex, Peterson, Peterson without atomicity and email specifications all ex-

hibit groups which are isomorphic to Sn, where n is the configuration size. For the

mutual exclusion examples, the group actually is Sn – there is full symmetry be-

tween the competing processes, and no channels. The symmetry group associated

with an email n specification consists of all permutations of the n client processes

which simultaneously permute their corresponding input channels. For configura-

tions in each of these families, TopSPIN automatically classifies the associated sym-

metry group, and computes a minimising set (see Section 9.2.3). The resulting code

for representative computation is similar to the example given in Figure 11.3, Sec-

tion 11.2.2.

Given a resource allocator configuration denoted a0-a1-. . . -ak−1, the corre-

sponding symmetry group is a disjoint product H1 • H2 • · · · • Hk, where Hi
∼= Sai−1

for each 0 ≤ i ≤ k. The group Hi consists of all permutations of client processes

with priority level ai−1 which simultaneously permute the client communication

channels. TopSPIN automatically computes this disjoint product decomposition and

identifies a minimising set for each factor of the product. Code for representative

computation is produced in a similar manner to the example given in Figure 11.5,

Section 11.2.4.

The symmetry group associated with an m-n loadbalancer configuration is

also a disjoint product. The group has the form H1 • H2, where H1
∼= Sm and

H2
∼= Sn permute the server and client components respectively (simultaneously

permuting their corresponding input channels). Once again, TopSPIN outputs code

for representative computation by computing a minimising set for each factor of

this product.

We consider three-tiered architecture specifications which are balanced – that

is, there are m server components, and a block of n client components connected

to each server component (for some m, n > 0). Given a configuration n-n- . . . -n︸ ︷︷ ︸
m

in the three-tiered family, the associated symmetry group decomposes as an inner

wreath product H ≀ K, where H ∼= Sn and K ∼= Sm. The wreath product contains

m copies of H, each of which permutes client processes and channels within one

of the blocks. The group K permutes the m server components. An element of K

which maps server i to server j also maps the block of clients connected to server i to

the block of clients connected to server j. TopSPIN uses the techniques of Section 9.4

to automatically compute this wreath product decomposition, and then computes

distinct minimising sets for each copy of H and a minimising set for K. Code for

the resulting composite strategy is again similar to the example given in Figure 11.5,
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Section 11.2.4.

For configurations in the hypercube family, we manually specify generators

for a group of symmetries. This is due to the inability of SymmExtractor to auto-

matically detect the complete group of symmetries for these examples, as discussed

in Section 8.4.2. The hypercube examples exhibit fairly large groups, which cannot

be decomposed as disjoint/wreath products, and for which no minimising set can

be found by our methods. Using the fast strategy, TopSPIN selects local search (see

Section 9.2.4) to handle this type of symmetry, and outputs code for representative

computation similar to the example given in Figure 11.4, Section 11.2.3.

11.3.3 Results and discussion

Figure 11.6 contains experimental results for various configurations of the above

families. For each configuration, we give the number of model states without sym-

metry reduction (orig), with memory optimal symmetry reduction using the enu-

meration strategy (red), and with symmetry reduction using the fast strategy (fast).

When the number of model states is the same using the enumeration and fast strate-

gies, ‘=’ appears in the fast column. State-space sizes which are larger than 106 are

given to the nearest hundred-thousand, with the exception of the Peterson without

atomicity 4 configuration (as discussed below). The use of state compression (see

Section 2.6.2) is indicated by the number of states in italics. This option was se-

lected for three configurations to allow verification without symmetry reduction.

Verification times (in seconds) are given for the enumeration strategy with

and without the group-theoretic optimisations of Section 9.2.2 (basic and enum

respectively), for the fast (fast) option, as well as for the case where symmetry re-

duction is not applied (orig). The size of the symmetry group (|G|) and the time, in

seconds, taken by GAP to classify this group (classify time) are also given.

Verification attempts which exceed available resources, or do not terminate

within 15 hours, are indicated by ‘-’. All experiments are performed on a PC with a

2.4GHz Intel Xeon processor, 3Gb of available main memory, running SPIN version

4.2.3.2 For the email 7 and loadbalancer 3-7, 4-6 and 5-7 configurations, the size of the

reduced state-space was computed using the segmented strategy, for which timing

information is given in Figure 11.6 and discussed below.

For all specification families except the hypercube family, the application of

symmetry reduction allows the verification of larger configurations – even using

state compression, memory requirements were quickly exceeded when symmetry

reduction was not applied. In all cases, the enumeration strategy without optimi-

sations is significantly slower than the optimised enumeration strategy, which is in

turn slower than the strategy chosen by TopSPIN.

2. An archive of the Promela specifications used for the experiments is available online (see Sec-
tion 1.2).
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Config states time |G| states time time classify states time
orig orig red basic enum time fast fast

simple mutex
5 113 0.09 120 12 0.10 0.10 0.19 = 0.06

10 6145 0.11 3.6 × 106 22 - 1088 0.14 = 0.05

15 278529 5 1.3 × 1012 - - - 0.17 32 0.08

20 1.2× 107 561 2.4 × 1018 - - - 0.23 42 0.12

Peterson
3 2636 0.35 6 494 0.08 0.02 0.13 = 0.35
4 60577 0.60 24 3106 0.04 0.20 0.13 = 0.41

5 1.56 × 106 11 120 17321 16 7 0.13 = 1

6 4.48 × 107 2666 720 89850 722 304 0.13 = 7
7 - - 5040 442481 30458 13885 0.13 = 56

8 - - 40320 - - - 0.14 2.09 × 106 412

9 - - 362880 - - - 0.14 9.62 × 106 3034

Peterson without atomicity
2 291 0.36 2 148 0.34 0.34 0.33 = 0.34
3 75356 1 6 12706 0.83 0.68 0.14 = 0.62

4 - - 24 3.6332 × 106 3426 972 0.13 3.6335 × 106 427

resource allocator
3-3 16768 0.2 36 1501 0.9 0.3 0.17 = 0.1
4-4 199018 2 576 3826 57 19 0.19 = 0.4

5-5 2.2× 106 42 14400 8212 4358 1234 0.16 = 2

4-4-4 2.39 × 107 1587 13824 84377 - 12029 0.19 = 17
5-5-5 - - 1728000 - - - 0.17 254091 115

three-tiered architecture

3-3 103105 5 72 2656 7 4 0.41 = 2

4-4 1.1× 106 37 1152 5012 276 108 0.44 = 2

3-3-3 2.54 × 107 4156 1296 50396 4228 1689 0.41 = 19
4-4-4 - - 82944 - - - 0.51 130348 104

email
3 23256 0.1 6 3902 0.9 0.8 0.16 3908 0.2
4 852641 9 24 36255 13 6 0.16 38560 2

5 3.04×107 3576 120 265315 679 253 0.13 315323 40

6 - - 720 1.7 × 106 - 13523 0.14 2.3 × 106 576

7 - - 5040 9.3 × 106 - - 0.14 1.53 × 107 6573

loadbalancer

2-6 2.37×107 1585 1440 23474 656 265 0.32 31066 5
2-7 - - 10080 44137 10314 4376 0.32 61245 16
3-6 - - 4320 125126 13468 5024 0.25 256204 57
3-7 - - 30240 293657 - - 0.28 685167 213

4-6 - - 17280 527548 - - 0.29 1.7 × 106 487

4-7 - - 120960 1.2 × 106 - - 0.30 3.7 × 106 1583

hypercube
3d 13181 0.3 48 308 0.6 0.3 0.07 468 0.2
4d 380537 18 384 1240 58 34 0.07 6986 13

5d 9.6×106 2965 3840 3907 7442 5241 0.10 90442 946

Figure 11.6: Experimental results for symmetry reduction with TopSPIN. For each con-
figuration, state-space sizes are given for verification without symmetry reduction
(states orig), with full symmetry reduction (states red) and using the fast strategy
(states fast). Time for verification (in seconds) is also given in each case. The columns
time basic and time enum refer to full symmetry reduction without and with com-
putational group-theoretic optimisations. The size of the group G and the time (in
seconds) taken to classify the structure of G (classify time) are also shown for each
configuration.
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Processes in the simple mutex configurations do not hold references to one

another, so the fast strategy provides exact symmetry reduction, as expected. In

contrast, the difference between the fast and enumeration strategies is especially

marked for the simple mutex 10 configuration, where the symmetry group is much

larger than even the unreduced state-space. Configurations in all the other fami-

lies consist of processes which do hold references to one another, in which case the

fast strategy does not promise exact symmetry reduction even when the associated

symmetry group can be classified appropriately (see Section 10.1.2). However, for

the Peterson, resource allocator and three-tiered architecture specifications, exact sym-

metry reduction is obtained using the fast strategy (at least for the configurations to

which we could feasibly apply the enumeration strategy).

Exact symmetry reduction using the fast strategy is not obtained for the email

or loadbalancer configurations, or for the Peterson without atomicity 4 configuration.

Nevertheless, a large factor of reduction is gained by exploiting symmetry in this

way, and verification is fast. The difference in model sizes using the fast and enu-

meration strategies for the Peterson without atomicity 4 configuration is small.

As discussed above, TopSPIN uses local search when the fast strategy is ap-

plied to the hypercube specifications. This requires storage of more states than the

enumeration strategy, but is considerably faster and still results in a greatly reduced

state-space.

Figure 11.7 shows the time taken for symmetry reduction using the seg-

mented strategy, applied to the email and loadbalancer configurations. The (reduced)

model sizes are given in the states red column of Figure 11.6. The email and load-

balancer configurations are suitable for the segmented strategy since the fast strategy

does not provide optimal symmetry reduction, and the symmetry group associ-

ated with each configuration can be classified using the techniques of Chapter 9.

Using the polynomial time COP strategy obtained via this classification, together

with the techniques of Chapter 10, we obtain exact symmetry reduction more effi-

ciently than via enumeration. Indeed, for larger configurations in each family, the

segmented strategy allows us to feasibly construct a memory-optimal reduced state-

space, which was not possible using straightforward enumeration. Recall that the

segmented strategy works by applying a polynomial time COP strategy to a state,

computing a partition associated with the resulting state, and enumerating the sta-

biliser of this partition to find the unique representative. Since many different states

may exhibit the same partition, TopSPIN stores a table of stabiliser subgroups, in-

dexed by partitions, as discussed in Section 11.2.5. Figure 11.7 records the number

of distinct partitions which were computed for each email and loadbalancer configu-

ration. Note that for all configurations this number is much smaller than the num-

ber of reduced model states.



11.4: EXTENDING TopSPIN 208

Configuration time segmented no. partitions

email

3 0.2 5
4 4 7
5 71 9
6 1600 11
7 50970 13

loadbalancer
2-6 28 94
2-7 266 259
3-6 271 330
3-7 2722 451
4-6 2378 884
4-7 29779 1296

Figure 11.7: Results for the segmented strategy applied to email and loadbalancer config-
urations.

11.4 Extending TopSPIN

The main limiting feature of TopSPIN is that it does not allow symmetry-reduced

verification of LTL properties. The symmetry group derived by SymmExtractor is,

by construction, an invariance group for a temporal property embedded in a spec-

ification as a never claim. This is a result of the fact that the never claim is just a

Promela process. If α is a static channel diagram automorphism under which a

given property φ is not invariant then α will not preserve the structure of the never

claim for φ, and so α will be (correctly) judged as invalid by SymmExtractor.

A solution to the problem of combining symmetry reduction with LTL model

checking in SPIN is presented in [13]. The next step in the development of TopSPIN

is to implement this solution for the general kinds of symmetry supported by

TopSPIN. This will involve adapting the nested depth-first search algorithm which

SPIN uses to check LTL properties, so that only representative states are considered.

In Section 11.2.5 we explained that use of the segmented strategy requires

communication between sympan and GAP during search, and currently relies on

GAP being the master process, starting sympan as a slave process. It should be pos-

sible to change this so that sympan starts GAP, which would be more natural, and

would avoid the current problem of passing command-line arguments to sympan .

There is some overhead associated with passing data between GAP and

sympan using a text stream during a verification run. We could remove this over-

head by implementing C versions of the small number of GAP functions which are

used by the segmented strategy, in particular the algorithms associated with comput-

ing setwise stabilisers. However, the GAP implementation has been refined over a

number of years by experts in computational group theory, and reportedly includes

many optimisations (some based on randomisation) which are not documented in

the literature. For this reason, it is likely that any savings in communication over-
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head would be lost to a reduction in efficiency. As a proof-of-concept, we imple-

mented the Schreier-Sims algorithm (a fundamental algorithm on which most tech-

niques for computing with permutation groups are based) in C, from a description

given in [19]. While our implementation produced correct results, it was signifi-

cantly slower than GAP.

The segmented strategy introduces the challenge of managing communica-

tion between sympan and GAP via a simple protocol. It would be interesting to

describe the control aspects of this protocol using Promela, and improve our con-

fidence in TopSPIN by eliminating any potential deadlocks in the protocol which

SPIN may find.

Summary

We have described TopSPIN, a computational group-theoretic symmetry reduction

package for the SPIN model checker. TopSPIN provides automatic symmetry detec-

tion using SymmExtractor, and also allows the user to manually specify symme-

try. For efficient symmetry reduction (and to allow experimental comparison with

naı̈ve approaches), TopSPIN provides a variety of strategies for representative com-

putation, based on the techniques of Chapters 9 and 10.

We have given an overview of the tool, and discussed each of the symme-

try reduction strategies in some detail, providing examples of the C code which

TopSPIN generates for representative computation. We have provided experimen-

tal results for a variety of Promela specifications which illustrate the practical effec-

tiveness of our computational group-theoretic symmetry reduction methods; both

over verification without symmetry, and symmetry-reduced verification using ba-

sic enumeration. In addition, we have discussed some directions for future devel-

opment of TopSPIN, the most important of which is to provide support for LTL

model checking.



Chapter 12

Conclusions and Open Problems

The original contribution of this thesis can be divided into two parts: techniques

for automatic symmetry detection in model checking, and methods for efficiently

exploiting arbitrary symmetry groups in explicit-state model checking. The goal

of these methods is to combat the state-space explosion problem, which limits the

application of model checking to relatively small systems. We have presented in-

depth theoretical results in each area, and backed up our theory with robust soft-

ware tools and convincing experimental results.

Having provided an overview of model checking and a detailed survey of

symmetry reduction techniques in Chapters 2 and 3 respectively, we illustrated

some problems with existing symmetry detection and reduction techniques in

Chapter 4 via a selection of example Promela specifications. In order to analyse

symmetry in the models associated with these specifications we introduced the

SPIN-to-GRAPE tool.

We identified two major problems with existing techniques for identify-

ing symmetry, namely the necessity for the user to annotate a specification with

symmetry-related keywords (or to use an appropriately restricted specification lan-

guage), and the limitation of being able to identify only full symmetry groups. To

overcome these restrictions we proposed a method for automatic symmetry detec-

tion based on static channel diagram analysis, in Chapter 7. This method was moti-

vated by a correspondence between Kripke structure automorphisms and channel

diagram automorphisms, which we investigated for specific examples in Chapter 5.

To present our results rigourously without obscuring them in the complexity of

Promela we introduced a smaller language, Promela-Lite, in Chapter 6. We have

used the techniques of Chapter 7 to develop SymmExtractor, an automatic symme-

try detection tool for Promela, described in Chapter 8. Experimental results show

that SymmExtractor is mostly efficient, using group-theoretic optimisations to deal

with certain difficult input specifications. We have assessed the usability of Symm-

Extractor by applying the tool to a set of example specifications written as solutions

to a student assessed exercise. The study reveals some ways in which the tool could

be improved, and provides a case study in formal methods evaluation.
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Our symmetry detection methods allow identification of groups which are

more complex than full symmetry groups. This leads to the constructive orbit prob-

lem (COP), which involves computing orbit representatives with respect to arbitrary

symmetry groups. In Chapter 9 we presented an optimised method for enumerat-

ing small groups, and a generalisation of techniques for dealing with full symme-

try groups by sorting, based on minimising sets. The minimising sets approach al-

lows us to automatically and efficiently handle a large class of commonly occurring

groups which are isomorphic to symmetric groups. We have extended the applica-

tion of techniques for handling disjoint/wreath product groups by presenting al-

gorithms to automatically determine disjoint/wreath product decompositions for

arbitrary groups. To deal with large groups which cannot be classified using min-

imising sets or decomposed as products we have proposed an approximate tech-

nique for computing representatives based on local search. The results of Chap-

ter 9 are based on a simple model of computation where components do not hold

references to one another. For many practical systems this is not the case. In Chap-

ter 10 we introduced the constructive orbit problem with references, and showed that

any algorithm for solving the COP can be extended to solve the COPR. However,

this extension comes at the expense of polynomial time complexity. In Chapter 11

we presented TopSPIN, a symmetry reduction package for the SPIN model checker

which uses SymmExtractor for automatic symmetry detection, and provides a vari-

ety of symmetry reduction strategies based on techniques from Chapters 9 and 10.

Using several families of Promela specifications, we have presented experimental

results which show the effectiveness of our techniques.

Throughout the thesis we have suggested improvements to each of our soft-

ware tools, and have identified a number of areas for further theoretical investi-

gation. We now summarise these implementation and research issues in the hope

that they may lead to further research and development on symmetry reduction

techniques for model checking.

12.1 Outstanding Implementation Issues

While we have emphasised the importance of implementing our ideas, there are

several features and optimisations which we have not had time to incorporate in

our tool set.

In Sections 7.6.1, 7.6.2 and 7.6.3 we proposed straightforward extensions to

our symmetry detection techniques for: allowing certain relational operations with

pid arguments; supporting arithmetic expressions which involve pid variables, and

capturing symmetry between global variables respectively. The user study of Sec-

tion 8.5 showed that these extensions (particularly support for global variable sym-

metry and arithmetic expressions over pid variables) would improve the usabil-
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ity of SymmExtractor. The additional functionality should be relatively straightfor-

ward to implement.

As discussed in Section 11.4, our symmetry reduction package TopSPIN does

not currently support the verification of LTL properties. This is not a research issue:

the problem of combining symmetry reduction with LTL verification has already

been investigated [13]. Nevertheless, for TopSPIN to be of interest to the SPIN com-

munity as a whole, facilities for LTL model checking under symmetry should be

implemented.

The segmented strategy (see Section 11.2.5) could also be improved. Currently

if this strategy is chosen it is necessary to launch the sympan executable from

within the GAP system. This is somewhat counter-intuitive, and poses problems

with passing command-line arguments (e.g. to set the maximum search depth) to

sympan . The performance of this strategy could potentially be improved by linking

sympan with compiled GAP code, rather than requiring sympan to communicate

with GAP using a text stream during a model checking run.

12.2 Research Problems Arising from the Thesis

In Section 7.5 we observed that although the symmetry detection techniques of

Chapter 7 are motivated by the concept of a static channel diagram – in turn mo-

tivated by the channel diagram concept, presented in Chapter 5 and inspired by

[157] – there is nothing fundamentally important about the static channel diagram

definition. By introducing the structure Ψ(P), we showed that the main results

of the chapter (contained in Sections 7.3 and 7.4) hold when Aut(SCD(P)) is re-

placed with any subgroup G of Aut(Ψ(P)). In defence of static channel diagrams,

we showed that they do provide an upper bound for the largest valid subgroup

of Aut(Ψ(P)) (see Theorem 15, Section 7.5). An interesting question for future re-

search is whether there exists a structure Γ(P) (say) which can be extracted from

P in polynomial time, such that Aut(Γ(P)) is exactly the largest valid subgroup

of Aut(Ψ(P)). Such a structure would eliminate the need for Algorithm 4 in Sec-

tion 7.4, which computes the largest valid subgroup of Aut(SCD(P)). Experimen-

tal results with SymmExtractor (see Section 8.4) show that this algorithm is the

bottleneck for our automatic symmetry detection method. Although the random

conjugates optimisation described in Section 8.3.3 can, in some cases, reduce this

bottleneck, the desired structure Γ(P) would remove it completely.

We showed in Section 7.6.4 (using a contrived example) that the notion of va-

lidity used by SymmExtractor could potentially be relaxed. The current test for de-

ciding whether a static channel diagram automorphism is valid for an input speci-

fication is somewhat conservative, but is correspondingly efficient. While we have

found that our notion of validity is usually acceptable in practice, applying Symm-
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Extractor to the hypercube example (see Sections 4.6 and 8.4.2) identified a situ-

ation where the group of automorphisms computed by SymmExtractor is signifi-

cantly smaller than the group of automorphisms computed using SPIN-to-GRAPE.

This practical example suggests that a less restrictive notion of validity is worth

investigation.

The main research challenge identified by the user study of Section 8.5 is

to find techniques to automatically determine the relationship between numeric

identifiers passed as parameters to processes by the user, and the run-time pid

values which SPIN assigns to processes. This is a Promela-specific issue, arising due

to the need to index into arrays using process identifiers, but an elegant solution

would greatly improve the practical usability of SymmExtractor.

In Section 9.3 we presented two approaches to computing disjoint prod-

uct decompositions for arbitrary permutation groups, motivated by the fact that,

given such a decomposition, we can compute equivalence class representatives un-

der the whole group by applying the factors of this decomposition separately. The

sound and incomplete approach described in Section 9.3.1 works extremely well

for groups which have been computed automatically using a graph automorphism

program, so this approach is implemented in TopSPIN. We illustrated the fact that

the approach is not complete using a simple example. From a group-theoretic per-

spective, it is desirable to have a sound and complete solution to this problem. We

presented one such solution in Section 9.3.2, but showed that, in the worst case,

it has exponential time complexity. An area for future research would be to fur-

ther analyse the complexity of this problem, aiming to find a polynomial time al-

gorithm. Since the sound, incomplete approach used by TopSPIN in solving this

problem works well in practice, this open problem may be of more interest to the

computational group theory community than to the model checking community.

Similarly, a topic for future research includes determining the exact complexity of

the wreath product decomposition problem which we investigated in Section 9.4.

We provided counter-examples in Section 9.5 showing that the composi-

tional approach to computing orbit representatives with respect to disjoint/wreath

products does not directly extend to direct/semi-direct products. As noted in Sec-

tion 9.5 these counter-examples do not mean that the structure of direct/semi-direct

product groups cannot be exploited in some other way to compute representatives

efficiently, and this would be a potential direction for future work. The family of

hypercube automorphism groups provide motivation: the group Kn ⋊ Sn is a semi-

direct product, and Kn in turn is a direct product of n groups of order 2.

A recent approach to symmetry breaking in constraint programming re-

quires a solution to a problem related to the COP [105]. During search, symmetry

breaking is performed by backtracking when the partial assignment of variables

at a given node is determined not to be lexicographically least in its orbit under a

symmetry group G. The approach relies on a variant of an algorithm for finding
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the smallest image of a set under a permutation group [121]. This problem can be

shown to be polynomial time equivalent to the COP, and the smallest image algo-

rithm can be used to solve arbitrary COP instances. Though the algorithm is not

polynomial time, it exploits the structure of G in order to perform better than basic

enumeration. The smallest image algorithm is general, and does not rely on spe-

cific features like minimising sets or disjoint decompositions as ours does. There-

fore we expect our techniques will be more efficient for these special cases (and

indeed preliminary experiments using GAP confirm this). Nevertheless, a poten-

tially beneficial area for future work would be to replace basic enumeration with

the smallest image algorithm. In particular the approach to symmetry reduction us-

ing segmentation, presented in Chapter 10 to deal with systems where components

hold references to one another, relies on an enumeration phase during represen-

tative computation. It may be possible to significantly speed up this technique by

using the smallest image algorithm instead of this enumeration step.

12.3 The Future

We conclude with three open problems which have proved to be beyond the scope

of this thesis, but which we believe are important to the applicability and effective-

ness of symmetry reduction techniques for practical model checking. These are: ex-

ploiting partial symmetries, over-exploiting symmetry, and using parallel processing

technology for efficient representative computation.

Partial symmetry reduction

The importance of techniques for the exploitation of partial symmetry (in the con-

text of hardware verification) is neatly summarised in [51]:

In conversations we have had with industrial hardware engineers, it

comes out that while symmetry reduction is often applicable due to

the presence of many similar subcomponents, there are also many in-

stances where it is not – quite – applicable. That is, the systems are

not genuinely symmetric but “approximately” symmetric, for exam-

ple, because of one different component or slight differences among

all components. This limits the scope of utility of symmetry reduction

techniques.

Our experience concurs with this statement. Although we have shown the

effectiveness of our symmetry reduction techniques using a number of convincing

examples, we have had to eliminate many more promising-looking case-studies

which turned out to be almost, but not quite, symmetric.
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We surveyed several approaches to handling partial symmetry in Sec-

tion 3.7. The main drawback of the notion of virtual symmetry presented in [52]

is the problem of deriving, at the specification level, a group of virtual symme-

tries for a Kripke structure. In addition, virtual symmetry reduction techniques

still require the property under consideration to be invariant under the group of

virtual symmetries. Methods for exploiting partial symmetry using guarded anno-

tated quotient structures [165] are potentially more promising, being able to handle

asymmetric properties as well as asymmetric models. Still, there is little indication

of how general partial symmetries can be detected at the source level. General, ef-

ficient techniques for automatic partial symmetry detection would greatly increase

the applicability of symmetry reduction in model checking.

Over-exploiting symmetry

When model checking a very large state-space, it may be acceptable to use an un-

sound reduction technique which efficiently covers a large portion of reachable

states, but does not provide 100% coverage. This is exemplified by the supertrace

method provided by SPIN, which reduces the storage requirement for a state to a

single bit at the expense of complete verification [87]. This kind of reduction tech-

nique is useful when we are interested in finding errors in a system, rather than

proving absence of errors.

In a symmetry reduction context, it may be possible to provide more effi-

cient verification either by exploiting a super-group of Kripke structure automor-

phisms, or by computing representatives in such a way that several orbits are rep-

resented by a single state. Suppose that we have a group G ≤ Aut(M), but can-

not find an efficient reduction strategy for G. If we can find a group G′, with an

efficient reduction strategy, such that G ⊂ G′, then performing symmetry reduc-

tion with respect to G′ will give at least the factor of reduction obtained using G.

However, if Aut(M) ⊂ G′ (or Aut(M) and G′ are incomparable) this approach

exploits more symmetry than actually exists in the model. Nevertheless, the ap-

proach may quickly discover counter-examples to the property being checked. This

is valuable if unreduced verification exhausts available resources before finding a

counter-example, but sound symmetry reduction is too time-consuming to be fea-

sible. The idea of using a representative computation function which maps several

states to the same representative follows a similar philosophy.

Parallel symmetry reduction

If we want to achieve sound, complete symmetry reduction under a model of com-

putation with references then, with current techniques, we may have to resort to

enumeration of large groups. Recall that the segmented approach to representative

computation, presented in Chapter 10, improves basic enumeration by exploiting

symmetry group structure, but still requires enumeration of partition stabilisers.



12.4: SUMMARY 216

Given a group G and state s, computing min[s]G by enumerating G is inher-

ently parallelisable. If we have n processing units then we can split G into n equally-

sized disjoint subsets X1, X2, . . . , Xn. Processing unit i can be used to independently

compute si = min{α(s) : α ∈ Xi} (1 ≤ i ≤ n), thus the si can be computed in

parallel. It is clear that min[s]G = min{s1, s2, . . . , sn}. It seems natural to extend

the enumeration and segmented strategies in TopSPIN to run on multiple processing

units, using a parallel programming system for C such as Sieve [120, 147]. Further

research effort would be required to improve more sophisticated representative

computation algorithms via parallel technology. Note that parallel approaches to

model checking (see e.g. [146]) do not remove the need for symmetry reduction

techniques. Distributing a task over a number of processing units promises, in the

best case, a linear reduction in verification time and a linear increase in available

memory. On the other hand, symmetry reduction using a large group may offer an

exponential state-space reduction, so it is sensible to utilise parallel technology for

this purpose.

12.4 Summary

We have summarised the results of the thesis, and outlined areas for further re-

search and development of the thesis topics. In addition, we have proposed three

areas for future research into symmetry reduction for model checking.

The techniques we have developed in this work are useful for the verifica-

tion of genuinely symmetric systems with large state-spaces, using standard com-

puting platforms. We hope that the next generation of symmetry reduction tech-

niques will be able to use parallel processing technology to over-exploit partially

symmetric systems with very large state-spaces.



Appendix A

Example Specifications

This appendix is comprised of Promela and SMC specifications, together with sys-

tem description files for SymmSpin specifications, used as examples throughout

the thesis. These examples are also available online (see Section 1.2).

A.1 Peterson’s Mutual Exclusion Protocol

We give various specifications of Peterson’s mutual exclusion protocol. See Sec-

tion 4.3 for a discussion of these specifications.

A.1.1 SymmSpin specification

System description

This description indicates to SymmSpin where scalarset types appear in the
Promela specification below.

const N 3

scalar PID[N]

proctype :system: {

bytes flag[PID];

PID turn[byte];

}

proctype user[PID] {

PID i;

PID j;

}

Promela specification

#define N 3

#define PID byte

byte flag[N];

PID turn[N];

byte inCR = 0;
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proctype user (PID i) {

PID j = N;

byte k;

bool ok;

do :: k = 1;

do :: k < N ->

flag[i] = k;

turn[k] = i;

again: atomic {

ok = true;

j = 0;

do :: j < N ->

if :: j != i ->

ok = ok && (flag[j] < k)

:: else -> skip

fi;

j++

:: else -> break

od;

if :: ok || turn[k] != i

:: else -> j = N; goto again

fi;

j = N;

};

k++

:: else -> break

od;

atomic { inCR++; assert(inCR == 1) }; inCR--;

flag[i] = 0;

od;

}

/ * initialize flags and start the processes * /

init {

atomic{

byte i = 0;

do :: i < N -> flag[i] = 0;

turn[i] = N; run user(i);

i++

:: else break

od;

}

}

A.1.2 Simpler, equivalent Promela specification

byte flag[4] = 0;

pid turn[3] = 4;

byte inCR = 0

proctype user () {
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byte k;

bool ok;

do :: k = 1;

do :: k < 3 ->

flag[_pid] = k;

turn[k] = _pid;

again: atomic {

ok = ((_pid==1)||(_pid!=1 && flag[1]<k))&&

((_pid==2)||(_pid!=2 && flag[2]<k))&&

((_pid==3)||(_pid!=3 && flag[3]<k));

if :: ok || turn[k] != _pid

:: else -> goto again

fi

};

k++

:: else -> break

od;

atomic { inCR++; assert(inCR == 1) }; inCR--;

flag[_pid] = 0;

od;

}

/ * start the processes * /

init {

atomic{

run user();

run user();

run user();

}

}

A.1.3 SMC specification

Program

Module process = 5;

flag[process]=0;

k[process]=0;

pc[process]=1;

inCR[process]=0;

turn1[process]=0;

turn2[process]=0;

turn3[process]=0;

p of process;

p: {

pc[p]==1 -> k[p]=1, pc[p]=2;

pc[p]==2 & k[p] < 3 -> pc[p]=3;

pc[p]==3 -> flag[p]=k[p], pc[p]=4;

pc[p]==4 & k[p]==1 -> ALL(q of process: turn1[q]=0),
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turn1[p]=1, pc[p]=5;

pc[p]==4 & k[p]==2 -> ALL(q of process: turn2[q]=0),

turn2[p]=1, pc[p]=5;

pc[p]==4 & k[p]==3 -> ALL(q of process: turn3[q]=0),

turn3[p]=1, pc[p]=5;

pc[p]==5 & k[p]==1 & (ALL(q of process: p==q | (p!=q & flag[q] <k[p])) |

turn1[p]==0) -> pc[p]=6;

pc[p]==5 & k[p]==2 & (ALL(q of process: p==q | (p!=q & flag[q] <k[p])) |

turn2[p]==0) -> pc[p]=6;

pc[p]==5 & k[p]==3 & (ALL(q of process: p==q | (p!=q & flag[q] <k[p])) |

turn3[p]==0) -> pc[p]=6;

pc[p]==5 & k[p]==1 & (!(ALL(q of process: p==q | (p!=q & flag[ q]<k[p]))

| turn1[p]==0)) -> pc[p]=5;

pc[p]==5 & k[p]==2 & (!(ALL(q of process: p==q | (p!=q & flag[ q]<k[p]))

| turn2[p]==0)) -> pc[p]=5;

pc[p]==5 & k[p]==3 & (!(ALL(q of process: p==q | (p!=q & flag[ q]<k[p]))

| turn3[p]==0)) -> pc[p]=5;

pc[p]==6 -> k[p]=k[p]+1, pc[p]=2;

pc[p]==2 & (!(k[p]<3)) -> pc[p]=7;

pc[p]==7 -> ALL(q of process: inCR[q]=inCR[q] + 1), pc[p]=8 ;

pc[p]==8 -> ALL(q of process: inCR[q]=inCR[q] - 1), pc[p]=9 ;

pc[p]==9 -> flag[p]=0, pc[p]=1;

}

A.1.4 More realistic Promela specification

byte flag[4] = 0;

pid turn[3] = 0;

byte inCR = 0

proctype user() {

byte k;

bool checked[4] = false;

bool ok = false;

do :: k = 1;

do :: k < 3 ->

flag[_pid] = k;

turn[k] = _pid;

again: atomic {

ok = true; checked[_pid]=true

};

do :: (!ok || checked[1]&&checked[2]&&checked[3]) ->

atomic {

do :: checked[1] -> checked[1] = false;

:: checked[2] -> checked[2] = false;

:: checked[3] -> checked[3] = false;

:: else -> break;

od;

break

}

:: d_step {

!checked[1] -> ok = ok && flag[1]<k;

checked[1]=true

}
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:: d_step {

!checked[2] -> ok = ok && flag[2]<k;

checked[2]=true

}

:: d_step {

!checked[3] -> ok = ok && flag[3]<k;

checked[3]=true

}

od;

if :: atomic { ok || turn[k] != _pid -> ok = false }

:: atomic { else -> ok = false; goto again }

fi;

k++

:: else -> break

od;

atomic { inCR++; assert(inCR == 1) }; inCR--;

flag[_pid] = 0;

od;

}

/ * start the processes * /

init {

atomic{

run user();

run user();

run user();

}

}

A.2 Resource Allocator

This section includes Promela and SMC specifications of a resource allocator sys-

tem, which is described in Section 4.4.

A.2.1 Promela specification

mtype = {request,confirmation,finished};

chan link1 = [1] of {mtype};

chan link2 = [1] of {mtype};

chan link3 = [1] of {mtype};

chan link4 = [1] of {mtype};

chan link5 = [1] of {mtype};

chan link6 = [1] of {mtype};

chan link7 = [1] of {mtype};

chan nullchan = [0] of {mtype};

pid resource_user = 0;

byte priorities[8];

hidden byte priority_level;

proctype client(chan link) {

do :: link!request;
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atomic { link?confirmation; resource_user = _pid };

atomic { resource_user = 0; link!finished }

od

}

proctype resource_allocator() {

chan client_chan = nullchan;

do :: atomic {

(link1?[request]||link2?[request]||link3?[request]| |

link4?[request]||link5?[request]||link6?[request]||

link7?[request]);

priority_level = 2;

do :: priorities[1]==priority_level && link1?[request] - >

client_chan = link1; break

:: priorities[2]==priority_level && link2?[request] ->

client_chan = link2; break

:: priorities[3]==priority_level && link3?[request] ->

client_chan = link3; break

:: priorities[4]==priority_level && link4?[request] ->

client_chan = link4; break

:: priorities[5]==priority_level && link5?[request] ->

client_chan = link5; break

:: priorities[6]==priority_level && link6?[request] ->

client_chan = link6; break

:: priorities[7]==priority_level && link7?[request] ->

client_chan = link7; break

:: else -> priority_level--

od;

client_chan?request;

}

client_chan!confirmation;

d_step { client_chan?finished; client_chan = nullchan }

od

}

init {

atomic {

run client(link1);

run client(link2);

run client(link3);

run client(link4);

run client(link5);

run client(link6);

run client(link7);

run resource_allocator();

priorities[1] = 0;

priorities[2] = 0;

priorities[3] = 1;

priorities[4] = 1;

priorities[5] = 1;

priorities[6] = 2;

priorities[7] = 2;

}

}
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A.2.2 SMC specification

Program

Module client0 = 2;

Module client1 = 3;

Module client2 = 2;

Module resourceallocator = 1;

link0[client0] = 0;

link1[client1] = 0;

link2[client2] = 0;

resourceuser[] = 0;

d0 of client0;

d1 of client1;

d2 of client2;

c0 of client0: {

link0[c0] == 0 -> link0[c0] = 1;

link0[c0] == 2 & resourceuser[] == 0 ->

resourceuser[] = resourceuser[] + 1;

link0[c0] == 2 & resourceuser[] == 1 ->

resourceuser[] = resourceuser[]-1, link0[c0] = 3;

}

c1 of client1: {

link1[c1] == 0 -> link1[c1] = 1;

link1[c1] == 2 & resourceuser[] == 0 ->

resourceuser[] = resourceuser[]+1;

link1[c1] == 2 & resourceuser[] == 1 ->

resourceuser[] = resourceuser[]-1, link1[c1] = 3;

}

c2 of client2: {

link2[c2] == 0 -> link2[c2] = 1;

link2[c2] == 2 & resourceuser[] == 0 ->

resourceuser[] = resourceuser[]+1;

link2[c2] == 2 & resourceuser[] == 1 ->

resourceuser[] = resourceuser[]-1, link2[c2] = 3;

}

r of resourceallocator: {

link2[c2] == 1 -> link2[c2] = 2;

link2[c2] == 3 -> link2[c2] = 0;

link1[c1] == 1 & ALL(d2: link2[d2]==0) -> link1[c1] = 2;

link1[c1] == 3 -> link1[c1] = 0;

link0[c0] == 1 & ALL(d2: link2[d2]==0) & ALL(d1: link1[d1]= =0) ->

link0[c0] = 2;

link0[c0] == 3 -> link0[c0] = 0;

}
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A.2.3 Promela specification with sharing

mtype = {request,confirmation,finished};

chan link1 = [1] of {mtype};

chan link2 = [1] of {mtype};

chan link3 = [1] of {mtype};

chan link4 = [1] of {mtype};

chan link5 = [1] of {mtype};

chan link6 = [1] of {mtype};

chan link7 = [1] of {mtype};

chan nullchan = [0] of {mtype};

pid resource_user = 0;

byte priorities[9];

hidden byte priority_level

proctype client(chan link) {

do :: link!request;

atomic { link?confirmation; resource_user = _pid };

atomic { resource_user = 0;

if :: _pid==3 && link4?[request] -> link4?request;

link4!confirmation;

link4?finished

:: _pid==4 && link5?[request] -> link5?request;

link5!confirmation;

link5?finished

:: _pid==5 && link3?[request] -> link3?request;

link3!confirmation;

link3?finished

:: else -> skip

fi;

link!finished

}

od

}

proctype resource_allocator() {

chan client_chan = nullchan;

do :: atomic {

(link1?[request]||link2?[request]||link3?[request]| |

link4?[request]||link5?[request]||link6?[request]||

link7?[request]);

priority_level = 2;

do :: priorities[1]==priority_level && link1?[request] - >

client_chan = link1; break

:: priorities[2]==priority_level && link2?[request] ->

client_chan = link2; break

:: priorities[3]==priority_level && link3?[request] ->

client_chan = link3; break

:: priorities[4]==priority_level && link4?[request] ->

client_chan = link4; break

:: priorities[5]==priority_level && link5?[request] ->

client_chan = link5; break

:: priorities[6]==priority_level && link6?[request] ->

client_chan = link6; break
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:: priorities[7]==priority_level && link7?[request] ->

client_chan = link7; break

:: else -> priority_level--

od;

client_chan?request;

};

client_chan!confirmation;

d_step { client_chan?finished; client_chan = nullchan }

od

}

init {

atomic {

run client(link1);

run client(link2);

run client(link3);

run client(link4);

run client(link5);

run client(link6);

run client(link7);

run resource_allocator();

priorities[1] = 0;

priorities[2] = 0;

priorities[3] = 1;

priorities[4] = 1;

priorities[5] = 1;

priorities[6] = 2;

priorities[7] = 2;

}

}

A.3 Three-tiered Architecture

The following specification models a system with a three-tiered architecture, which
is discussed in Section 4.5.

mtype = {request,response,query,result};

chan db_link = [0] of {mtype,chan};

chan cl_se_1 = [0] of {mtype,chan};

chan cl_se_2 = [0] of {mtype,chan};

chan cl_se_3 = [0] of {mtype,chan};

chan cl1 = [0] of {mtype};

chan cl2 = [0] of {mtype};

chan cl3 = [0] of {mtype};

chan cl4 = [0] of {mtype};

chan cl5 = [0] of {mtype};

chan cl6 = [0] of {mtype};

chan cl7 = [0] of {mtype};

chan cl8 = [0] of {mtype};

chan se1 = [0] of {mtype};

chan se2 = [0] of {mtype};

chan se3 = [0] of {mtype};

chan null = [0] of {mtype}
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proctype client(chan in; chan link) {

do :: link!request,in;

in?response

od

}

proctype server(chan in; chan c_link) {

chan current_client=null;

do :: c_link?request,current_client;

db_link!query,in;

in?result;

current_client!response;

current_client=null

od

}

proctype database(chan link) {

chan current_server=null;

do :: link?query,current_server;

current_server!result;

current_server=null

od

}

init {

atomic {

run database(db_link);

run server(se1,cl_se_1);

run server(se2,cl_se_2);

run server(se3,cl_se_3);

run client(cl1,cl_se_1);

run client(cl2,cl_se_1);

run client(cl3,cl_se_1);

run client(cl4,cl_se_2);

run client(cl5,cl_se_2);

run client(cl6,cl_se_2);

run client(cl7,cl_se_3);

run client(cl8,cl_se_3)

}

}

A.4 Message Routing in a Hypercube

The specifications below model message passing in a hypercube network, and are

discussed in Sections 4.6 and 8.4.1 respectively.

A.4.1 Original Promela specification

/ * Determines whether position i of byte bv is set to 1 * /

#define IS_1(bv,i) (bv&(1<<i))

mtype = {packet};
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chan link1 = [1] of {mtype};

chan link2 = [1] of {mtype};

chan link3 = [1] of {mtype};

chan link4 = [1] of {mtype};

chan link5 = [1] of {mtype};

chan link6 = [1] of {mtype};

chan link7 = [1] of {mtype};

chan link8 = [1] of {mtype};

pid dest = 0;

pid current = 0;

inline choose_destination() {

if

:: _pid!=1 -> dest = 1

:: _pid!=2 -> dest = 2

:: _pid!=3 -> dest = 3

:: _pid!=4 -> dest = 4

:: _pid!=5 -> dest = 5

:: _pid!=6 -> dest = 6

:: _pid!=7 -> dest = 7

:: _pid!=8 -> dest = 8

fi

}

inline choose_next_dimension() {

if

:: IS_1(((_pid-1)ˆ(dest-1)),0) -> chosen_dimension = 0

:: IS_1(((_pid-1)ˆ(dest-1)),1) -> chosen_dimension = 1

:: IS_1(((_pid-1)ˆ(dest-1)),2) -> chosen_dimension = 2

fi;

assert(chosen_dimension<3);

}

proctype node(chan in; chan out0; chan out1; chan out2) {

byte chosen_dimension = 4;

loop:

atomic {

in?packet; current = _pid;

if :: dest==_pid -> choose_destination()

:: else -> skip

fi

}

atomic { choose_next_dimension();

if :: chosen_dimension == 0 -> out0!packet

:: chosen_dimension == 1 -> out1!packet

:: chosen_dimension == 2 -> out2!packet

fi;

chosen_dimension = 4;

current = 0;

}

goto loop

}

init {

atomic {
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run node(link1,link2,link3,link5);

run node(link2,link1,link4,link6);

run node(link3,link4,link1,link7);

run node(link4,link3,link2,link8);

run node(link5,link6,link7,link1);

run node(link6,link5,link8,link2);

run node(link7,link8,link5,link3);

run node(link8,link7,link6,link4);

if

:: link1!packet; dest = 1

:: link2!packet; dest = 2

:: link3!packet; dest = 3

:: link4!packet; dest = 4

:: link5!packet; dest = 5

:: link6!packet; dest = 6

:: link7!packet; dest = 7

:: link8!packet; dest = 8

fi

}

}

A.4.2 Re-modelled specification which does not involve arithmetic on pid

variables

mtype = {packet};

chan link1 = [1] of {mtype};

chan link2 = [1] of {mtype};

chan link3 = [1] of {mtype};

chan link4 = [1] of {mtype};

chan link5 = [1] of {mtype};

chan link6 = [1] of {mtype};

chan link7 = [1] of {mtype};

chan link8 = [1] of {mtype};

pid dest = 0;

pid current = 0

inline choose_destination() {

if :: _pid!=1 -> dest = 1

:: _pid!=2 -> dest = 2

:: _pid!=3 -> dest = 3

:: _pid!=4 -> dest = 4

:: _pid!=5 -> dest = 5

:: _pid!=6 -> dest = 6

:: _pid!=7 -> dest = 7

:: _pid!=8 -> dest = 8

fi

}

inline choose_next_dimension() {

if :: _pid==1 && dest==2 -> if :: chosen_dimension = 0 fi

:: _pid==1 && dest==3 -> if :: chosen_dimension = 1 fi

:: _pid==1 && dest==4 ->

if :: chosen_dimension = 0 :: chosen_dimension = 1 fi

:: _pid==1 && dest==5 -> if :: chosen_dimension = 2 fi

:: _pid==1 && dest==6 ->
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if :: chosen_dimension = 0 :: chosen_dimension = 2 fi

:: _pid==1 && dest==7 ->

if :: chosen_dimension = 1 :: chosen_dimension = 2 fi

:: _pid==1 && dest==8 ->

if :: chosen_dimension = 0

:: chosen_dimension = 1

:: chosen_dimension = 2

fi

:: _pid==2 && dest==1 -> if :: chosen_dimension = 0 fi

:: _pid==2 && dest==3 ->

if :: chosen_dimension = 0 :: chosen_dimension = 1 fi

:: _pid==2 && dest==4 -> if :: chosen_dimension = 1 fi

:: _pid==2 && dest==5 ->

if :: chosen_dimension = 0 :: chosen_dimension = 2 fi

:: _pid==2 && dest==6 -> if :: chosen_dimension = 2 fi

:: _pid==2 && dest==7 ->

if :: chosen_dimension = 0

:: chosen_dimension = 1

:: chosen_dimension = 2

fi

:: _pid==2 && dest==8 ->

if :: chosen_dimension = 1 :: chosen_dimension = 2 fi

:: _pid==3 && dest==1 -> if :: chosen_dimension = 1 fi

:: _pid==3 && dest==2 ->

if :: chosen_dimension = 0 :: chosen_dimension = 1 fi

:: _pid==3 && dest==4 -> if :: chosen_dimension = 0 fi

:: _pid==3 && dest==5 ->

if :: chosen_dimension = 1 :: chosen_dimension = 2 fi

:: _pid==3 && dest==6 ->

if :: chosen_dimension = 0

:: chosen_dimension = 1

:: chosen_dimension = 2

fi

:: _pid==3 && dest==7 -> if :: chosen_dimension = 2 fi

:: _pid==3 && dest==8 ->

if :: chosen_dimension = 0 :: chosen_dimension = 2 fi

:: _pid==4 && dest==1 ->

if :: chosen_dimension = 0 :: chosen_dimension = 1 fi

:: _pid==4 && dest==2 -> if :: chosen_dimension = 1 fi

:: _pid==4 && dest==3 -> if :: chosen_dimension = 0 fi

:: _pid==4 && dest==5 ->

if :: chosen_dimension = 0

:: chosen_dimension = 1

:: chosen_dimension = 2

fi

:: _pid==4 && dest==6 ->

if :: chosen_dimension = 1 :: chosen_dimension = 2 fi

:: _pid==4 && dest==7 ->

if :: chosen_dimension = 0 :: chosen_dimension = 2 fi

:: _pid==4 && dest==8 -> if :: chosen_dimension = 2 fi

:: _pid==5 && dest==1 -> if :: chosen_dimension = 2 fi

:: _pid==5 && dest==2 ->

if :: chosen_dimension = 0 :: chosen_dimension = 2 fi

:: _pid==5 && dest==3 ->

if :: chosen_dimension = 1 :: chosen_dimension = 2 fi

:: _pid==5 && dest==4 ->

if :: chosen_dimension = 0

:: chosen_dimension = 1



A.4: MESSAGE ROUTING IN A HYPERCUBE 230

:: chosen_dimension = 2

fi

:: _pid==5 && dest==6 -> if :: chosen_dimension = 0 fi

:: _pid==5 && dest==7 -> if :: chosen_dimension = 1 fi

:: _pid==5 && dest==8 ->

if :: chosen_dimension = 0 :: chosen_dimension = 1 fi

:: _pid==6 && dest==1 ->

if :: chosen_dimension = 0 :: chosen_dimension = 2 fi

:: _pid==6 && dest==2 -> if :: chosen_dimension = 2 fi

:: _pid==6 && dest==3 ->

if :: chosen_dimension = 0

:: chosen_dimension = 1

:: chosen_dimension = 2

fi

:: _pid==6 && dest==4 ->

if :: chosen_dimension = 1 :: chosen_dimension = 2 fi

:: _pid==6 && dest==5 -> if :: chosen_dimension = 0 fi

:: _pid==6 && dest==7 ->

if :: chosen_dimension = 0 :: chosen_dimension = 1 fi

:: _pid==6 && dest==8 -> if :: chosen_dimension = 1 fi

:: _pid==7 && dest==1 ->

if :: chosen_dimension = 1 :: chosen_dimension = 2 fi

:: _pid==7 && dest==2 ->

if :: chosen_dimension = 0

:: chosen_dimension = 1

:: chosen_dimension = 2

fi

:: _pid==7 && dest==3 -> if :: chosen_dimension = 2 fi

:: _pid==7 && dest==4 ->

if :: chosen_dimension = 0 :: chosen_dimension = 2 fi

:: _pid==7 && dest==5 -> if :: chosen_dimension = 1 fi

:: _pid==7 && dest==6 ->

if :: chosen_dimension = 0 :: chosen_dimension = 1 fi

:: _pid==7 && dest==8 -> if :: chosen_dimension = 0 fi

:: _pid==8 && dest==1 ->

if :: chosen_dimension = 0

:: chosen_dimension = 1

:: chosen_dimension = 2

fi

:: _pid==8 && dest==2 ->

if :: chosen_dimension = 1 :: chosen_dimension = 2 fi

:: _pid==8 && dest==3 ->

if :: chosen_dimension = 0 :: chosen_dimension = 2 fi

:: _pid==8 && dest==4 -> if :: chosen_dimension = 2 fi

:: _pid==8 && dest==5 ->

if :: chosen_dimension = 0 :: chosen_dimension = 1 fi

:: _pid==8 && dest==6 -> if :: chosen_dimension = 1 fi

:: _pid==8 && dest==7 -> if :: chosen_dimension = 0 fi

fi;

assert(chosen_dimension<3)

}

proctype node(chan in; chan out0; chan out1; chan out2) {

byte chosen_dimension = 4;

loop:

atomic {
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in?packet;

current = _pid;

if :: dest==_pid -> choose_destination()

:: else -> skip

fi

};

atomic {

choose_next_dimension();

if :: chosen_dimension == 0 -> out0!packet

:: chosen_dimension == 1 -> out1!packet

:: chosen_dimension == 2 -> out2!packet

fi;

chosen_dimension = 4;

current = 0

};

goto loop

}

init {

atomic {

run node(link1,link2,link3,link5);

run node(link2,link1,link4,link6);

run node(link3,link4,link1,link7);

run node(link4,link3,link2,link8);

run node(link5,link6,link7,link1);

run node(link6,link5,link8,link2);

run node(link7,link8,link5,link3);

run node(link8,link7,link6,link4);

if :: link1!packet; dest = 1

:: link2!packet; dest = 2

:: link3!packet; dest = 3

:: link4!packet; dest = 4

:: link5!packet; dest = 5

:: link6!packet; dest = 6

:: link7!packet; dest = 7

:: link8!packet; dest = 8

fi

}

}

A.5 Telephony

The following Promela code provides part of an example telephone specification

which cannot be handled by SymmExtractor, and a re-modelled version which can.

They are discussed in some detail in Section 8.5.4.

A.5.1 Original telephone specification

mtype = { alert, answer, cutoff, ack };

chan link12 = [0] of { mtype };

chan link21 = [0] of { mtype };
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bool idle_st[2] = true;

bool dial_st[2];

bool calling_st[2];

bool ringing_st[2];

bool talking_st[2];

bool finish_st[2];

proctype user(chan in, out; byte id) {

mtype response;

bit is_caller;

idle:

assert(idle_st[id] && !dial_st[id] && !calling_st[id] &&

!ringing_st[id] && !talking_st[id]);

is_caller = 0;

do :: atomic {

idle_st[id] = 0;

dial_st[id] = 1

};

goto dial

:: in?alert ->

out!ack;

atomic {

idle_st[id] = 0;

ringing_st[id] = 1

};

goto ringing

od;

dial:

assert(!idle_st[id] && dial_st[id] && !calling_st[id] &&

!ringing_st[id] && !talking_st[id]);

do :: out!alert;

in?response;

if :: response == ack ->

atomic {

dial_st[id] = 0;

calling_st[id] = 1

};

is_caller = 1;

goto calling

:: response == alert ->

atomic {

dial_st[id] = 0;

talking_st[id] = 1

};

goto talk

fi

:: atomic {

dial_st[id] = 0;

finish_st[id] = 1

};

goto finish

od;

... etc.
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}

init {

atomic {

run user(link21,link12,0);

run user(link12,link21,1);

}

}

A.5.2 Telephone specification after re-modelling

mtype = { alert, answer, cutoff, ack };

chan link12 = [0] of { mtype };

chan link21 = [0] of { mtype };

bool idle_st[3] = true;

bool dial_st[3];

bool calling_st[3];

bool ringing_st[3];

bool talking_st[3];

bool finish_st[3];

proctype user(chan in, out) {

mtype response;

bit is_caller;

idle:

assert(idle_st[_pid] && !dial_st[_pid] && !calling_st[_ pid] &&

!ringing_st[_pid] && !talking_st[_pid]);

is_caller = 0;

do :: atomic {

idle_st[_pid] = 0;

dial_st[_pid] = 1

};

goto dial

:: in?alert ->

out!ack;

atomic {

idle_st[_pid] = 0;

ringing_st[_pid] = 1

};

goto ringing

od;

dial:

assert(!idle_st[_pid] && dial_st[_pid] && !calling_st[_ pid] &&

!ringing_st[_pid] && !talking_st[_pid]);

do :: out!alert;

in?response;

if :: response == ack ->

atomic {

dial_st[_pid] = 0;

calling_st[_pid] = 1

};

is_caller = 1;
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goto calling

:: response == alert ->

atomic {

dial_st[_pid] = 0;

talking_st[_pid] = 1

};

goto talk

fi

:: atomic {

dial_st[_pid] = 0;

finish_st[_pid] = 1

};

goto finish;

od;

... etc.

}

init {

atomic {

run user(link21,link12);

run user(link12,link21);

}

}

A.6 Railway Signalling System

The Promela code below provides full versions of a specification railway signalling

system which is discussed in Section 8.5.4.

A.6.1 Original railway signalling system

mtype = {approaches, leaves, lower, raise, atgate, faraway , up, down};

chan control_link = [0] of {mtype, byte};

chan gate_link [8] = [0] of {mtype};

mtype bar[8] = down;

bool on_shared_track[2] = false;

bool shared_track_open = false

proctype train(byte current_gate, id) {

mtype position = atgate;

control_link!approaches,current_gate;

do :: atomic {

position==faraway ->

if :: current_gate==3 -> current_gate = 0; assert(id==0)

:: current_gate==7 -> current_gate = 4; assert(id==1)

:: else -> current_gate++;

fi;

control_link!approaches,current_gate; position = atgat e}
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:: atomic {

(bar[current_gate]==up && position==atgate) ->

if :: (current_gate==(id * 4)) -> on_shared_track[id] = true

:: else -> skip

fi;

position = faraway; control_link!leaves,current_gate;

if :: (current_gate==(id * 4+1)) -> on_shared_track[id] = false

:: else -> skip

fi

}

od

}

proctype controller() {

mtype message;

byte current_gate;

do :: control_link?message,current_gate ->

if :: atomic {

message==approaches ->

gate_link[current_gate]!raise

}

:: atomic {

message==leaves ->

gate_link[current_gate]!lower

}

fi

od

}

proctype gate(byte id) {

mtype message;

do :: gate_link[id]?message ->

if :: atomic {

message==lower ->

bar[id] = down

}

:: atomic {

message==raise -> bar[id] = up

}

fi

od

}

proctype shared_gate(byte id) {

mtype message;

do :: gate_link[id]?message ->

if :: atomic {

message==lower ->

bar[id] = down;

assert(shared_track_open);

shared_track_open = false

}
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:: message==raise ->

lock: if :: atomic {

((!on_shared_track[0]) && (!on_shared_track[1]) &&

(!shared_track_open)) ->

shared_track_open = true; bar[id] = up

}

:: else -> goto lock

fi

fi

od

}

init {

atomic {

run controller();

run shared_gate(0); run gate(1); run gate(2); run gate(3);

run shared_gate(4); run gate(5); run gate(6); run gate(7);

run train(2,0); run train(6,1);

}

}

A.6.2 Railway signalling system after re-modelling

mtype = {approaches, leaves, lower, raise, atgate, faraway , up, down};

chan control_link = [0] of {mtype, pid};

chan gate_link_2 = [0] of {mtype};

chan gate_link_3 = [0] of {mtype};

chan gate_link_4 = [0] of {mtype};

chan gate_link_5 = [0] of {mtype};

chan gate_link_6 = [0] of {mtype};

chan gate_link_7 = [0] of {mtype};

chan gate_link_8 = [0] of {mtype};

chan gate_link_9 = [0] of {mtype};

mtype bar[12] = down;

bool on_shared_track[12] = false;

bool shared_track_open = false

proctype train(pid current_gate) {

mtype position = atgate;

control_link!approaches,current_gate;

do :: atomic {

position==faraway ->

if :: current_gate==2-> current_gate = 3

:: current_gate==3-> current_gate = 4

:: current_gate==4-> current_gate = 5

:: current_gate==5 -> current_gate = 2; assert(_pid==10)

:: current_gate==6 -> current_gate = 7

:: current_gate==7 -> current_gate = 8

:: current_gate==8 -> current_gate = 9

:: current_gate==9 -> current_gate = 6; assert(_pid==11)

fi;

control_link!approaches,current_gate; position = atgat e

}
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:: atomic {

(bar[current_gate]==up && position==atgate) ->

if :: ((_pid==10 && current_gate==2)||

(_pid==11 && current_gate==6)) ->

on_shared_track[_pid] = true

:: else -> skip

fi;

position = faraway; control_link!leaves,current_gate;

if :: ((_pid==10 && current_gate==3)||

(_pid==11 && current_gate==7)) ->

on_shared_track[_pid] = false

:: else -> skip

fi

}

od

}

inline send(id,msg) {

if

:: id==2 -> gate_link_2!msg

:: id==3 -> gate_link_3!msg

:: id==4 -> gate_link_4!msg

:: id==5 -> gate_link_5!msg

:: id==6 -> gate_link_6!msg

:: id==7 -> gate_link_7!msg

:: id==8 -> gate_link_8!msg

:: id==9 -> gate_link_9!msg

fi

}

proctype controller() {

mtype message;

pid current_gate;

do :: control_link?message,current_gate ->

if :: atomic {

message==approaches ->

send(current_gate,raise)

}

:: atomic {

message==leaves ->

send(current_gate,lower)

}

fi

od

}

proctype gate(chan link) {

mtype message;

do :: link?message ->

if :: atomic { message==lower -> bar[_pid] = down }

:: atomic { message==raise -> bar[_pid] = up }

fi

od

}
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proctype shared_gate(chan link) {

mtype message;

do :: link?message ->

if :: atomic {

message==lower -> bar[_pid] = down;

assert(shared_track_open); shared_track_open = false

}

:: message==raise ->

lock: if :: atomic {

((!on_shared_track[10]) && (!on_shared_track[11])

&& (!shared_track_open)) ->

shared_track_open = true; bar[_pid] = up

}

:: else -> goto lock

fi

fi

od

}

init {

atomic {

run controller(); run shared_gate(gate_link_2);

run gate(gate_link_3); run gate(gate_link_4);

run gate(gate_link_5); run shared_gate(gate_link_6);

run gate(gate_link_7); run gate(gate_link_8);

run gate(gate_link_9); run train(4); run train(8);

}

}



Appendix B

Proofs Omitted from the Text

B.1 Proof of the Promela-Lite Progress Theorem (Theorem 11,

Section 6.3.5)

The proof of Theorem 11 relies on the following lemma:

Lemma 17 Let P , M and s be as in the statement of Theorem 11. Let u be an update

appearing in a statement of proctype p, and suppose proctype(i) = p. If u is ‘skip ’

or ‘x = e′ then execp,i(s, u) is well-defined.

Proof If u is ‘skip ’ then the definition of execp,i(s, u) places no conditions on s, and

execp,i(s, u) = s.

Let Γ be the typing environment comprised of entries for the global variables

and static channels of P , proctypes appearing before p in P , and the local variables

of p. If u has the form ‘x = e′, where x is an identifier and e an expression then, since

Γ ⊢ u OK, x is not a static channel name, and both x and e have type T where T is

a well-formed type which is not the type of a proctype (rule T-ASSIGN). Thus x is

the name of a global variable or a local variable of p.

If x is the name of a global variable then we must have (x = a) ∈ s for some

a ∈ lit(T). Therefore, according to Figure 6.5, execp,i(s, u) =
(
s \ {(x = a)}

)
∪ {(x =

evalp,i(e))}, which is clearly well-defined.

On the other hand if x is the name of a local variable then (p[i].x = a) ∈ s

for some a ∈ lit(T), and we have execp,i(s, u) =
(
s \ {(p[i].x = a)}

)
∪ {(p[i].x =

evalp,i(e)}. Again, this is a well-defined state. The result follows. �

Proof of Theorem 11 Let Γ be the typing environment as defined in the proof of

Lemma 17, and let 〈stmnt〉 denote the Promela-Lite statement atomic { g -> u1;

u2; . . . ul }.

Suppose u1 has the form skip or x = e. Then by Lemma 17, execp,i(u1) is

well-defined.

Suppose u1 has the form x! e. Then x has type chan{T} in Γ, so x is either

a local variable of p, or a static channel name. There is no typing rule from which



B.2: PROOFS OMITTED FROM CHAPTER 7 240

Γ ⊢ u1 OKcan be inferred, thus rule T-UPDATE cannot be used to infer that Γ ⊢

〈stmnt〉 OK. Thus Γ ⊢ 〈stmt〉 OKmust follow from rule T-SEND. Therefore the guard

g must have the form ( h) && nfull( x) , or just nfull( x) (see Section 6.2). Since,

by hypothesis, s |=p,i g, we must have s |=p,i nfull( x) . Suppose x is a static chan-

nel name, so that (x = [~a1, ~a2, . . . , ~am]) ∈ s, where 0 ≤ m < cap(x). The conditions

on s required by the rule for execp,i(s, u1) are satisfied. It is easy to see that the result-

ing state is well-formed. If x is a local variable of p then (p[i].x = c) ∈ s, where c is a

static channel name or null . However, s |=p,i nfull( x) ⇔ s |=p,i nfull(null) ,

and we cannot have s |=p,i nfull(null) (see page 121). Thus c is a static channel

name, and execp,i(s, u1) = execp,i(s, c! e), which is well-defined by the above argu-

ment.

Suppose u1 has the form x?x. Then by a similar argument (using the fact

that the xi must be distinct, and that no xi is a static channel name), execp,i(s, u1) is

well-defined.

We have shown that execp,i(s, u1) is well-defined. Suppose that execp,i(. . .

execp,i(execp,i(s, u1), u2), . . . , uj) is well-defined for some 1 ≤ j < l. The type rules

for statements (T-UPDATE, T-SEND and T-RECV) ensure that uj+1 has the form

skip or x = a. By Lemma 17, execp,i(execp,i(. . . execp,i(execp,i(s, u1), u2), . . . , uj), uj+1)

is well-defined. Since execp,i(s, u1) is well-defined, it follows by induction that

execp,i(. . . execp,i(execp,i (s, u1), u2) . . . , ul) = execp,i(s, u1; u2; . . . ; ul) is well-defined.

�

B.2 Proof of Lemmas 1 and 2 (Section 7.3.2)

The proof of Lemma 1 depends on the following two sub-lemmas:

Lemma 18 Let α ∈ Aut(SCD(P)) and let e be an expression in P with e : int. Then

evalp,i(s, e) = evalp,α(i)(α(s), α(e)).

Proof The Promela-Lite syntax (Figure 6.3) and type system (Figure 6.5) restrict the

form of expressions with type int to simple expressions of the form:

1. a, where a ∈ Z

2. x, where x is a local or global variable of type int

3. len(null)

4. len( c) , where c is a static channel name

5. len( x) , where x is a local variable of type chan

or an arithmetic combination of the above. Since α only acts on static channel names

and values of type pid, if e is a simple expression of one of the first three forms

above, clearly α(e) = e and evalp,i(s, e) = evalp,α(i)(α(s), α(e)) = evalp,α(i)(α(s), e).

If e has the form len( c) where c is a static channel, and (c = [~a1, ~a2, . . . , ~am]) ∈

s then α(e) has the form len( α(c)) , (α(c) = [~a1
α, ~a2

α, . . . , ~am
α]) ∈ α(s), and
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evalp,i(s, e) = evalp,α(i)(α(s), α(e)) = m. If e has the form len( x) where x is a

local variable of P and (x = c) ∈ s, with c a static channel name or null ,

then evalp,i(s, e) = evalp,i(s, len( c) ). By the above argument, evalp,i(s, len( c) ) =

evalp,α(i)(α(s), len( α(c)) ) = evalp,α(i)(α(s), α(e)).

If e is an arithmetic combination of simple expressions, then clearly by in-

duction the result holds. �

Lemma 19 Let e be an expression with e : pid or e : chan{T}. Then

evalp,α(i)(α(s), α(e)) = α(evalp,i(s, e)).

Proof The form of expressions of type pid are restricted to: a where a ∈ lit(pid) and

a occurs in a pid context, pid , or x where x is a global/local variable with type

pid.

Suppose e has the form a where a ∈ lit(pid) and a occurs in a pid context.

Then α(e) = α(a). We have evalp,α(i)(α(s), α(e)) = evalp,α(i)(α(s), α(a)) = α(a) =

α(evalp,i(s, a)) = α(evalp,i(s, e)).

If e has the form pid then evalp,α(i)(α(s), α(e)) = evalp,α(i)(α(s), pid ) =

α(i) = α(evalp,i(s, pid )) = α(evalp,i(s, e)).

Now suppose e has the form x where x is a global variable with x : pid.

Suppose that (x = a) ∈ s, so that (x = α(a)) ∈ α(s). Then evalp,α(i)(α(s), α(e)) =

evalp,α(i)(α(s), x) = α(a) = α(evalp,i(s, x)) = α(evalp,i(s, e)). The cases where x is a

local variable with x : pid is similar.

The form of expressions of type chan{T} is restricted to: c where c is a static

channel name; null , and x where x is a local variable with type chan{T}.

If e has the form null then evalp,α(i)(α(s), α(e)) = evalp,α(i)(α(s), null ) =

null = α(null ) = α(evalp,i(s, e)).

The arguments for the cases where e is a static channel name, or e is a lo-

cal/global variable with type chan{T}, are analogous to those where e is a pid lit-

eral, or e is a local/global variable with type pid. �

Proof of Lemma 1

Base cases: Suppose g has the form e1==e2. By type rule T-EQ we must have e1 : T

and e2 : T for some type T.

• If T = int then by Lemma 18 evalp,i(s, ej) = evalp,α(i)(α(s), α(ej)) for

j ∈ {1, 2}. We have s |=p,i e1==e2 ⇔ evalp,i(s, e1) = evalp,i(s, e2) ⇔

evalp,α(i)(α(s), α(e1)) = evalp,α(i)(α(s), α(e2)) ⇔ α(s) |=p,α(i) α(e1)==α(e2).

• If T = pid then by Lemma 19 evalp,α(i)(α(s), α(ej)) = α(evalp,i(s, ej) for

j ∈ {1, 2}. We have s |=p,i e1==e2 ⇔ evalp,i(s, e1) = evalp,i(s, e2) ⇔

α(evalp,i(s, e1)) = α(evalp,i(s, e2)) ⇔ evalp,α(i)(α(s), α(e1)) = evalp,α(i)(α(s),
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α(e2)) ⇔ α(s) |=s,α(i) α(e1)==α(e2).

• If T = chan{T} the result follows similarly using Lemma 19.

This completes the argument for the case where g has the form e1==e2, and the case

where g has the form e1!= e2 is similar.

If g has the form e1 < e2 then the type system requires that e1 : int and

e2 : int (rule T-REL). We have s |=p,i e1 < e2 ⇔ evalp,i(s, e1) < evalp,i(s, e2),

and α(s) |=p,α(i) α(e1) < α(e2) ⇔ evalp,α(i)(α(s), α(e1)) < evalp,α(i)(α(s), α(e2)). By

Lemma 18, evalp,i(s, e1) = evalp,α(i)(α(s), α(e1)) and evalp,i(s, e2) = evalp,α(i)(α(s),

α(e2)). Therefore evalp,i(s, e1) < evalp,i(s, e1) ⇔ evalp,α(i)(α(s), α(e1)) < evalp,α(i)

(α(s), α(e2)), i.e. s |=p,i e1 < e2 ⇔ α(s) |=p,α(i) α(e1) < α(e2). The cases e1 <= e2,

e1 > e2 and e1 >= e2 are similar.

Suppose g has the form nfull (c) where c is a static channel name. Suppose

(c = [~a1, ~a2, . . . , ~ak]) ∈ s for some 0 ≤ k ≤ cap(c). Then (α(c) = [~a1
α, ~a2

α, . . . , ~ak
α]) ∈

α(s). Then s |=p,i nfull (c) ⇔ cap(c) > k ⇔ α(s) |=p,α(i) nfull (α(c)).

If g has the form nfull (x) where x is a local variable of p with x : chan{T}

then suppose (p[i].x = null ) ∈ s. Then (p[α(i)].x = null ) ∈ α(s), and we have

s 6|=p,i nfull (x) and α(s) 6|=p,α(i) nfull (x). Suppose instead (p[i].x = c) ∈ s

where c is a static channel name. Then (p[α(i)].x = α(c)) ∈ α(s). We have s |=p,i

nfull (x) ⇔ s |=p,i nfull (c) ⇔ α(s) |=p,α(i) nfull (α(c)) (by the above argument

for static channels) ⇔ α(s) |=p,α(i) nfull (x).

The cases nempty (c) and nempty (x) where c is a static channel name and

x a local variable with x : chan{T} are similar.

Inductive step:

Suppose the result holds for all guards of length less than m for some m > 1.

Let g1, g2 be guards with length less than m.

If g has the form ! g1 then s |=p,i g ⇔ s 6|=p,i g1 ⇔ α(s) 6|=p,α(i) α(g1) (by

inductive hypothesis) ⇔ α(s) |=p,α(i) ! α(g1) ⇔ α(s) |=p,α(i) α(g). If g has the form

( g1) the result follows similarly.

If g has the form g1 && g2 then s |=p,i g ⇔ s |=p,i g1 and s |=p,i g2, ⇔

α(s) |=p,α(i) α(g1) and α(s) |=p,α(i) α(g2) (by inductive hypothesis) ⇔ α(s) |=p,α(i)

α(g1) && α(g2) ⇔ α(s) |=p,α(i) α(g). If g has the form g1 || g2 the result follows

similarly. �

The proof of Lemma 2 uses the following sub-lemma:

Lemma 20 Let u be an update of P , α ∈ Aut(SCD(P)) and s a state such that

execp,i(s, u) is well-defined. Then execp,α(i)(α(s), α(u)) = α(execp,i(s, u)).

Proof If u is skip the result is immediate.

Suppose u has the form x = e, and let var(x) be defined as in Figure 6.7.

Define α(var(x)) = x if var(x) = x, and α(var(x)) = p[α(i)].x if var(x) = p[i].x.
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If x : int then suppose (var(x) = a) ∈ s. Then α((var(x) = a)) = (var(x) =

a) ∈ α(s) also. Suppose evalp,i(s, e) = b. Then evalp,α(i)(α(s), α(e)) = b by Lemma 18.

We have α((var(x) = b)) = (var(x) = b), and so

execp,α(i)(α(s), ‘x = α(e)′) =
(
α(s) \ {(var(x) = a)}

)
∪ {(var(x) = b)}

= α
((

s \ {(var(x) = a)}
)
∪ {(var(x) = b)}

)

= α(execp,i(s, ‘x = e′).

If x : pid, then suppose (var(x) = a) ∈ s. Then α((x = a)) = (α(var(x)) =

α(a)) ∈ α(s) also. Suppose evalp,i(s, e) = b. Then evalp,α(i)(α(s), α(e)) = α(b) by

Lemma 19. We have α((var(x) = b)) = (α(var(x)) = α(b)), and so

execp,α(i)(α(s), ‘x = α(e)′) =
(
α(s) \ {(α(var(x)) = α(a))}

)
∪

{(α(var(x)) = α(b))}

= α
((

s \ {(var(x) = a)}
)
∪ {(var(x) = b)}

)

= α(execp,i(s, ‘x = e′).

The argument is similar if x : chan{T}.

Suppose u has the form x! e1, e2, . . . , ek, and suppose x is a static chan-

nel name, with x : chan{T1, T2, . . . , Tk} so that ej : Tj (1 ≤ j ≤ k). Suppose

(x = [~a1, ~a2, . . . , ~am]) ∈ s for some m < cap(x). Then α((x = [~a1, ~a2, . . . , ~am])) =

(α(x) = [~a1
α, ~a2

α, . . . , ~am
α]) ∈ α(s). For 1 ≤ j ≤ k, let bj denote evalp,i(s, ej), and

let dj = bj if Tj = int, and dj = α(bj) otherwise. Using Lemmas 18 and 19, we

have dj = evalp,α(i)(α(s), α(ej)). Thus (d1, d2, . . . , dk) = (b1, b2, . . . , bk)
α (using the

notation of Section 7.2.2). Then execp,α(i)(α(s), ‘α(x)! α(e1), α(e2), . . . , α(ek)
′) =

=
(
α(s) \ {(α(x) = [~a1

α, ~a2
α, . . . , ~am

α])}
)
∪

{(α(x) = [~a1
α, ~a2

α, . . . , ~am
α, (d1, d2, . . . , dk)])}

=
(
α(s) \ {(α(x) = [~a1

α, ~a2
α, . . . , ~am

α])}
)
∪

{(α(x) = [~a1
α, ~a2

α, . . . , ~am
α, (b1, b2, . . . , bk)

α])}

= α
((

s \ {(x = [~a1, ~a2, . . . , ~am])}
)
∪

{(x = [~a1, ~a2, . . . , ~am, (b1, b2, . . . , bk)])}
)

= α(execp,i(s, ‘x! e1, e2, . . . , e′k)).

If x is a local variable of p then suppose (x = c) ∈ s, where c is a static chan-

nel name. Therefore (x = α(c)) ∈ α(s), and execp,α(i)(α(s), ‘x! α(e1), α(e2), . . . , α(ek)
′)

= execp,α(i)(α(s), ‘α(c)! α(e1), α(e2), . . . , α(ek)
′) = α(execp,i(s, ‘c! e1, e2, . . . , e′k)) (by

the above argument) = α(execp,i(s, ‘x! e1, e2, . . . , e′k)).

Suppose u has the form x?x1, x2, . . . , xk, and suppose x is a static chan-

nel name, with x : chan{T1, T2, . . . , Tk} so that xj : Tj (1 ≤ j ≤ k). Suppose
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(x = [(a1,1, a1,2, . . . , a1,k), ~a2, . . . , ~am]) ∈ s for some m < cap(x), and (var(xj) =

bj) ∈ s (1 ≤ j ≤ k). Define d1,j = a1,j if Tj = int, and d1,j = α(a1,j) otherwise

(1 ≤ j ≤ k). Then (d1,1, d1,2, . . . , d1,k) = (a1,1, a1,2, . . . , a1,k)
α (using the notation of

Section 7.2.2), and α((var(xj) = a1,j)) = (α(var(xj) = d1,j) (1 ≤ j ≤ k). Similarly,

define dj = bj if xj : int, and dj = α(bj) otherwise. Then α((var(xj) = bj)) =

(α(var(xj)) = dj). We have α((x = [(a1,1, a1,2, . . . , a1,k), ~a2, . . . , ~am])) = (α(x) =

[(d1,1, d1,2, . . . , d1,k), ~a2
α, . . . , ~am

α]) ∈ α(s), and α((var(xj) = bj)) = (α(var(xj)) =

dj) ∈ α(s) (1 ≤ j ≤ k). Then execp,α(i)(α(s), ‘α(x)?x1, x2, . . . , x′k) =

=
(
α(s) \ {(α(x) = [(d1,1, d1,2, . . . , d1,k), ~a2

α, . . . , ~am
α]),

(α(var(x1)) = d1), (α(var(x2)) = d2), . . . , (α(var(xk)) = dk)}
)
∪

{(α(x) = [~a2
α, . . . , ~am

α]), (α(var(x1)) = d1,1), (α(var(x2)) = d1,2),

. . . , (α(var(xk)) = d1,k)}

=
(
α(s) \ {(α(x) = [(a1,1, a1,2, . . . , a1,k)

α, ~a2
α, . . . , ~am

α]),

α((var(x1) = b1)), α((var(x2) = b2)), . . . , α((var(xk) = bk))}
)
∪

{(α(x) = [~a2
α, . . . , ~am

α]), α((var(x1) = a1,1)), α((var(x2) = a1,2)),

. . . , α((var(xk) = a1,k))}

= α
((

s \ {(x = [(a1,1, a1,2, . . . , a1,k), ~a2, . . . , ~am]),

(var(x1) = b1), (var(x2) = b2), . . . , (var(xk) = bk)}
)
∪

{(x = [~a2, . . . , ~am]), (var(x1) = a1,1), (var(x2) = a1,2), . . . ,

(var(xk) = a1,k)}
)

= α(execp,i(s, ‘x?x1, x2, . . . , x′k)).

If x is a local variable of p then suppose (x = c) ∈ s, where c is a static

channel name. Therefore (x = α(c)) ∈ α(s), and execp,α(i)(α(s), ‘x?x1, x2, . . . , x′k) =

execp,α(i)(α(s), ‘α(c)?x1, x2, . . . , x′k) = α(execp,i(s, ‘c?x1, x2, . . . , x′k)) (by the above ar-

gument) = α(execp,i(s, ‘x?x1, x2, . . . , x′k)). �

Proof of Lemma 2 As defined on page 121, execp,α(i)(α(s), α(u1); α(u2); . . . ; α(uk))

= execp,α(i)(. . . execp,α(i)(execp,α(i)(α(s), α(u1)), α(u2)) . . . , α(uk))

= execp,α(i)(. . . execp,α(i)(α(execp,i(s, u1)), α(u2)) . . . , α(uk))

(by Lemma 20)

= execp,α(i)(. . . α(execp,i(execp,i(s, u1), u2)) . . . , α(uk))

(by Lemma 20)

...

= α(execp,i(. . . execp,i(execp,i(s, u1), u2) . . . , uk))

(by repeated application of Lemma 20)

= α(execp,i(s, u1; u2; . . . ; uk)). �
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B.3 Proofs of Lemmas 8 – 10 (Section 9.3.2)

Proof of Lemma 8 Let Oi be the set of orbits of Hi, for i ∈ {1, 2}. Clearly any x ∈

moved(G) belongs to moved(H1) or moved(H2), and moved(Hi) = ∪Oi. In addition,

moved(H1) ∩ moved(H2) = ∅, so {O1,O2} is a partition of O. For i ∈ {1, 2}, every

x ∈ moved(Hi) must belong to a non-trivial orbit of Hi, thus moved(Hi) ⊆ ∪Oi. But

clearly if x belongs to a non-trivial orbit of Hi, i.e. x ∈ Oi, then x ∈ moved(Hi), so

moved(Hi) = ∪Oi. Let α = α1α2 ∈ G, where αi ∈ Hi (i ∈ {1, 2}). Then αmoved(Hi) =

αi, so Gmoved(Hi) ⊆ Hi. Clearly Hi ⊆ Gmoved(Hi) = GOi . The result follows. �

Proof of Lemma 9 Since ∪O1 and ∪O2 are disjoint, we have moved(GO1) ∩

moved(GO2) = ∅. Let α ∈ G. Then α can be written as a product of disjoint, mu-

tually commutative permutations, each acting on a distinct orbit of G. Therefore

α = α1α2, where αi acts on the orbits of Oi, i.e. αi ∈ GOi for i ∈ {1, 2}. We have

shown that G = GO1 GO2 . The result follows �

Proof of Lemma 10 Suppose, without loss of generality, that Ωi ∈ O1. If Ωj /∈ O1

then we must have Ωj ∈ O2. Since Ωi and Ωj are dependent, stab∗G(Ωj)
Ωi ⊂ GΩi , so

there exists α ∈ G such that αΩi 6= id, αΩj 6= id, and αΩi /∈ (stab∗G(Ωj))
Ωi .

The permutation α can be expressed in as a product αiβ1αjβ2, where αi only

acts on Ωi, β1 acts on O1 \ {Ωi}, αj only acts on Ωj, and β2 acts on O2 \ {Ωj}. Now

G = GO1 • GO2 , so every element γ of G can be expressed uniquely as a product

γ = γ1γ2 where γ1 ∈ GO1 , γ2 ∈ GO2 , and γ1, γ2 ∈ G. For the element α, we have

γ1 = αiβ1 and γ2 = αjβ2. It follows that αjβ2 ∈ G. Therefore (αiβ1αjβ2)(αjβ2)−1 ∈

G, i.e. αiβ1αjβ2β−1
2 α−1

j ∈ G (using the inverse rule), i.e. αiβ1 = δ, say, belongs to G.

Clearly δΩi = αΩi , but δ ∈ stab∗G(Ωj). It follows that αΩi ∈ stab∗G(Ωj)
Ωi . This is a

contradiction. It follows that Ωj ∈ O1. �



Appendix C

SymmExtractor and TopSPIN

In Appendix C.1 we survey the features of Promela which are not part of Promela-

Lite, discussing whether or not they are supported by SymmExtractor. We provide

a brief guide to the installation and use of TopSPIN (which incorporates Symm-

Extractor) in Appendix C.2. In Appendix C.2.3 we present a set of modelling guide-

lines to aid the construction of Promela specifications for use with SymmExtractor

and TopSPIN. These guidelines are based on findings of the user study of Sec-

tion 8.5.

C.1 Promela vs. Promela-Lite in the Context of SymmExtractor

Promela features which are not part of Promela-Lite but are supported by Symm-

Extractor are discussed in Appendix C.1.1. In Appendix C.1.2 we discuss features

of Promela which are not currently supported by SymmExtractor but could be han-

dled relatively easily. In Appendix C.1.3 we list Promela features which cannot be

handled by simple extensions to the theory of Chapter 7, and would require addi-

tional research effort to be supported by our implementation.

C.1.1 Supported omissions

All of the Promela features discussed in the following categories are supported by

SymmExtractor despite not being part of Promela-Lite. In most cases it is obvious

that the techniques presented in Chapters 6 and 7 could be extended in a trivial (if

laborious) manner to handle the features. We provide a brief justification for cer-

tain more complex cases and note some features which are supported by Symm-

Extractor but not TopSPIN.

Types and variables

SymmExtractor supports the following Promela/non-Promela-Lite features which

relate to types and variables:

• Primitive data types bit, bool, mtype, byte and short

• Arrays indexed using the byte type
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• User-defined record types

• Boolean literals true and false

• Local variables (in addition to parameters)

• The built-in ‘ ’ variable for the receipt of ‘don’t care’ (scratch) message

fields.

Arrays which are indexed using the pid data type are also supported. These

are slightly more complex: a static channel diagram automorphism acting on a state

of a specification should permute the positions of elements of a pid-indexed array

in the obvious way. Also, an expression of the form A[d] in a specification P , where

A is a pid-indexed array and d a literal pid value, should be replaced with the ex-

pression A[α(d)] in α(P), where α ∈ Aut(SCD(P)). It is clear that the results of

Chapter 7 could be extended to handle arrays with pid index type. As discussed in

Section 8.1.1, an array should be indexed using either byte or pid, but not both.

Promela allows the declaration of synchronous channels, which are not part

of Promela-Lite. Formally extending the Promela-Lite semantics and the results of

Chapter 7 to take into account synchronous channels would be straightforward,

but laborious. They are supported by SymmExtractor.

Control structures and expressions

SymmExtractor supports the full range of Promela control structures, together with

some forms of expression which are not included in Promela-Lite:

• Separation of statements using ; or ->

• Conditional if..fi constructs

• Nested do..od constructs (Promela-Lite specifications include a single,

mandatory, top-level do..od construct)

• Label definitions, and statements of the form goto 〈label〉

• break , else , unless , provided and timeout

• Condition expressions of the form ( 〈boolean-expr〉 -> 〈expr〉 : 〈expr 〉)

• Expressions as statements

• Receive poll expressions.

A Promela specification which uses these language features can be trans-

lated into a less elegant but equivalent Promela-Lite specification, via the introduc-

tion of an explicit program counter variable.

To manage the complexity of a specification, Promela allows the inclusion

of inline macros, similar to procedures in an imperative language. Macro invoca-

tions are expanded by SPIN using textual replacement before verification. Symm-

Extractor deals with inline macros similarly.

Promela-Lite includes the atomic keyword, but the type system of Sec-

tion 6.2 ensures that the statements within an atomic statement cannot block. In

Promela it is possible, and permissible, for blocking to occur within an atomic
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sequence. The semantics for this are rather complex, but are clearly orthogonal to

symmetry-related issues. Therefore, unrestricted atomic blocks are supported by

SymmExtractor.

Handling d step blocks is more complex. Recall from Section 2.4.1 that

a d step block must not involve non-determinism. This cannot be statically

checked, so the verifier generated by SPIN for a given specification checks for non-

determinism within d step blocks during search. If non-deterministic choice is

possible in a d step block then the first executable choice is taken by the verifier,

and a warning generated. This means that options to if..fi and do..od state-

ments are not, in general, commutative within a d step block. For this reason,

when checking whether P ≡ α(P) as described in Section 8.3.2, SymmExtractor

does not sort the options of if..fi and do..od statements which occur within

d step blocks.

Operators

The following Promela operators are not part of Promela-Lite, but are supported

by SymmExtractor:

• empty and full

• Non-destructive channel read operator

• Bitwise, modulo and division operators

• eval operator (and receipt of messages corresponding to literal values).

Simulation features

The Promela keywords printf , STDIN, show and priority can be used to aid

simulation of a specification, but have no effect on verification. SymmExtractor ig-

nores the use of these keywords in a Promela specification.

Reasoning mechanisms

SymmExtractor supports property specification using assert statements, never

claims, accept /progress labels, and trace/notrace constructs (see [92] for de-

tails of these).

Since never claims and trace/notrace constructs are Promela processes they

can be handled by the existing theory of Chapter 7. Furthermore, a group of valid

static channel diagram automorphisms is, by default, an invariance group for the

property represented by a never claim or trace/notrace construct (see Section 11.4).

Note that the TopSPIN symmetry reduction package is currently limited to

the verification of simple safety properties expressed via assertions, as discussed

in Section 11.4. It does not support never claims, accept /progress labels or

trace/notrace constructs.
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Miscellaneous

Unlike Promela, Promela-Lite does not include syntax for comments. Symm-

Extractor allows specification to include Promela style comments, which obviously

has no effect on symmetry.

The hidden keyword can be used to tell SPIN to exclude a global variable

from the state-vector (see Section 2.4.1). The value of a hidden variable x at a given

state s during search depends only on the previously visited state, not on the state

s itself. Thus, in general, no assumptions can be made about the value of x at s,

unless x is known to be a constant, and hidden variables are intended to be used as

“scratch” variables within atomic statements [92]. SymmExtractor supports use of

the hidden keyword (by ignoring its occurrence) and, like SPIN, places the respon-

sibility of its correct usage on the user.

A global variable can be prefixed with the local keyword to tell the SPIN

partial-order reduction algorithm that the variable is accessed by a single process

as if it were local to that process. Since this keyword has no relation to symmetry it

is allowed, and ignored, by SymmExtractor.

Promela includes keywords xr and xs , which stand for exclusive receive and

exclusive send respectively. A process can include a declaration xr 〈name〉, where

〈name〉 is the name of a previously declared channel, to indicate that only this

process can receive messages on the channel. The xs keyword is used similarly.

Providing SPIN with this information can lead to more efficient partial-order reduc-

tion. It is not possible to check, statically, whether xs and xr are used correctly,

but incorrect uses are flagged by SPIN during verification. These keywords do not

affect the presence of symmetry in the model associated with a specification, so are

supported by SymmExtractor. However, there is a problem with exploiting xs /xr

information in conjunction with symmetry reduction. Let P be a Promela specifi-

cation with associated model M, and c a channel in P . Suppose c is marked xs by

process 1, and there is some valid α ∈ Aut(SCD(P)) with α(1) = 2 and α(c) = c.

Assume that there is exactly one transition (s, t) in M which involves process 1

sending on c. Then the transition (α(s), α(t)) involves process 2 sending on c, vio-

lating the xs assertion on c. Clearly this is the only such transition. When model

checking without symmetry reduction, both (s, t) and (α(s), α(t)) will be consid-

ered, and the xs violation detected. However, with symmetry reduction only one of

these pairs of transition will be considered, so this violation of the xs assertion will

not be detected. An analogous argument can be given for xr . Therefore TopSPIN

should not strictly be applied to specifications which use xs and xr assertions.

C.1.2 Omissions which could be supported

Our implementation requires Promela processes to be instantiated using run state-

ments within an init process. However, Promela also allows multiple copies of
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a given proctype to be instantiated by prefixing the proctype keyword with

active [ k] , where k > 0 is the number of processes of the proctype to be in-

stantiated. Use of this keyword changes the way in which run-time process iden-

tifiers are assigned by SPIN, thus changes the way a static channel diagram is con-

structed. With some effort, our implementation could be modified to accommodate

this method of instantiating processes.

Promela supports an unsigned numeric type. A declaration of the form

unsigned x : y declares an integer variable x which takes non-negative values

which can be represented using y bits. Clearly the use of this data type will have no

effect on our symmetry detection/reduction techniques. However, SymmExtractor

is integrated with an enhanced Promela type checker (see Section 8.2), which does

not currently support the unsigned data type. A temporary fix for this omission is

to replace each occurrence of the unsigned keyword with one of the other numeric

types during symmetry detection.

Though not strictly part of the Promela language, SPIN supports Promela

specifications which include C-style #define macros. SymmExtractor could easily

be extended to handle this kind of macro by applying the C pre-processor to a

specification before parsing.

SymmExtractor does not allow channel initialisers to be associated with

channels which are declared locally to a proctype. This is to simplify the identifica-

tion of channels for inclusion in the static channel diagram. In a specification where

processes are created dynamically, local channel initialisers result in dynamic in-

stantiation of channels, which does not fit comfortably with the static channel dia-

gram concept. However, since SymmExtractor requires a fixed number of running

processes, it would be possible to extend SymmExtractor to allow locally initialised

channels.

For simplicity, SymmExtractor does not currently support arrays of chan-

nels. Further implementation work could remove this restriction.

C.1.3 Omissions which cannot currently be supported

As noted above, it is hard to see how a specification where processes are created dy-

namically fits in with the static channel diagram concept on which SymmExtractor is

based. This is not to say that specifications with dynamic process creation do not ex-

hibit symmetry: indeed, SPIN-to-GRAPE can be used to check that the “Agents and

Servers” specification of [92], which involves dynamic process creation, exhibits

a non-trivial automorphism group. Extending our techniques to identify symme-

try with a dynamically changing pool of processes will require further theoretical

work, perhaps building on techniques for this problem developed for the dSPIN

model checker [99] (see Section 3.9.4). For the time being, specifications which in-

volve dynamic process creation can be re-modelled using the approach described

in Appendix C.2.3.
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Package URL Version

Java runtime environment http://java.sun.com/ 1.5.0 06
JUnit library (junit.jar ) http://junit.org/ 3.8.1
GAP system http://gap-system.org/ 4.4.6
SPIN model checker http://spinroot.com/ 4.2.6
GNU C Compiler (gcc) http://gcc.gnu.org/ 3.3.4

Figure C.1: TopSPIN prerequisites.

Promela provides alternative channel operators ‘!! ’ (sorted send) and ‘?? ’

(random receive). Sending data on a buffered channel using ‘!! ’ causes messages to

be queued on the channel in sorted order. Messages can be retrieved from the buffer

in a random order using ‘?? ’. These operators provide a useful alternative to FIFO

channel semantics. They also aid state-space reduction: storing channel contents in

a sorted manner can be seen as a form of state canonicalisation. However, storing

pid messages in a sorted queue imposes an ordering on the set lit(pid). It is not

immediately clear whether this ordering has an effect on symmetry, so for the time

being SymmExtractor does not support the ‘!! ’ and ‘??’ operators.

Recent versions of SPIN allow C code to be embedded in a Promela specifi-

cation, and certain variables from the C part of the specification to be included in

the SPIN state-vector. Automatic symmetry detection for this mix of C and Promela

is beyond the scope of this thesis, but is certainly an interesting area for further

research.

C.2 TopSPIN Installation and User Guide

We provide instructions on how to obtain and configure TopSPIN, together with

details of the third-party packages required by the tool, in Appendix C.2.1. In Ap-

pendix C.2.2 we provide a brief guide to the use of TopSPIN. Some modelling guide-

lines are given in Appendix C.2.3.

C.2.1 Installing and configuring TopSPIN

Prerequisites

TopSPIN is written in Java and GAP, interfaces with the GAP and SPIN packages, and

produces C code which must then be compiled. The Java implementation requires

the JUnit library. Figure C.1 summarises the packages which must be installed be-

fore TopSPIN can be used, providing URLs for each. The version of each package

which we have used for development of TopSPIN is also given.

In addition, TopSPIN uses a prototype extension of saucy which has been

extended to handle directed graphs. This functionality will eventually be available
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from the saucy website [160]. For the time being, a source distribution of saucy with

the required extended functionality is provided with TopSPIN.1

Downloading the software

The TopSPIN release distribution is available online as an archive from the Software

page at the following URL:

http://www.dcs.gla.ac.uk/people/personal/ally/thesi s/

The files are compressed using the Linux utilities gzip and tar , and should

be extracted using standard tools. After extraction, move the TopSPIN folder

and its contents to a suitable location (e.g. C: \Program Files \TopSPIN under

Windows), and navigate to this folder. The folder should contain TopSPIN.jar ,

together with the sub-folders lib , saucy , Commonand TempFiles . Copy the

junit.jar file into the lib folder.

Setting up a GAP workspace

In order to start GAP efficiently, TopSPIN requires a GAP workspace to be set up. Full

details of GAP workspaces are available online [63]. Essentially, a workspace is an

image of a GAP session with a selection of libraries and files already loaded and

ready to be executed. In our case, the workspace consists of the GAP files used for

automatic symmetry detection and classification.

Navigate into the Commonfolder. Start GAP and type:

Read("WorkspaceGenerator.gap");

followed by:

SaveWorkspace("gapworkspace");

Ensure that these commands are typed exactly as shown. Entering the second com-

mand should result in true being printed to the console. Exit GAP by typing quit;

(ensuring that the semi-colon is included in this command).

Compiling saucy

Navigate into the saucy folder, and type make. Assuming that gcc is correctly

installed, this is all that should be required to compile the saucy program.

Setting up a configuration file

TopSPIN uses a textual configuration file, config.txt to locate GAP, saucy, var-

ious common files and a folder for temporary files, during execution. Symmetry

detection and reduction options are also specified in this file.

The structure of config.txt is summarised in Figure C.2. Example con-

figuration files for Windows and Linux systems are given in Figures C.3 and C.4

1. Permission for including the saucy distribution with TopSPIN has been granted by Paul Darga,
lead developer of saucy.
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Line Description Default

gap path to GAP n/a
saucy path to saucy n/a
tempfiles path to TopSPINTempFiles folder n/a
common path to TopSPIN Commonfolder n/a
timebound bound, in seconds, for largest no bound

valid subgroup computation
conjugates number of random conjugates to be used 0
transpositions boolean indicating whether permutations true

should be applied as transpositions
stabiliserchain boolean indicating whether to use a true

stabiliser chain for enumeration
strategy symmetry reduction strategy fast
symmetryfile path to file containing n/a

symmetry group generators

Figure C.2: Structure of a TopSPIN configuration file.

gap=C:\gap4r4\bin\gap.bat
saucy=C:\Documents and Settings\Ally D\TopSPIN\saucy\s aucy.exe
tempfiles=C:\Documents and Settings\Ally D\TopSPIN\Tem pFiles\
common=C:\Documents and Settings\Ally D\TopSPIN\Common \
timebound=0
conjugates=0
transpositions=true
stabiliserchain=true
strategy=fast

Figure C.3: A TopSPIN configuration file for Windows.

respectively. Users should create their own configuration file based on their spe-

cific setup and symmetry reduction needs. The configuration options related to

symmetry detection and reduction are described in Appendix C.2.2.

C.2.2 Using SymmExtractor and TopSPIN

The TopSPIN jar file can be executed to: typecheck a specification to see if it is suit-

able for symmetry reduction; detect symmetries of a specification (i.e. run Symm-

Extractor), or add symmetry reduction algorithms to the C code generated by SPIN

for a given specification. Note that in all cases the config.txt file must be in

the current directory. We use TOPSPINPATHto denote the TopSPIN folder (e.g.

C: \Program Files \TopSPIN ) and SPECIFICATION the Promela specification

to which TopSPIN is being applied (e.g. loadbalancer.p ).

Typechecking a specification

To typecheck a specification, type:

java -jar TOPSPINPATH/TopSPIN.jar check SPECIFICATION

Detecting symmetry

To apply SymmExtractor to find symmetries associated with a specification, type:
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gap=/users/grad/ally/Scripts/gap
saucy=/users/grad/ally/TopSPIN/saucy/saucy
tempfiles=/users/grad/ally/TopSPIN/TempFiles/
common=/users/grad/ally/TopSPIN/Common/
timebound=10
conjugates=4
transpositions=true
stabiliserchain=true
strategy=enumerate

Figure C.4: A TopSPIN configuration file for Linux.

java -jar TOPSPINPATH/TopSPIN.jar detect SPECIFICATION

For certain specifications, the search for the largest valid subgroup of symmetries

for a given specification may be time-consuming. A bound of x seconds for this

search can be specified by adding the line:

timebound= x

to config.txt . If no bound is required then add the line timebound=0 to the file.

To specify that x ≥ 0 random conjugates should be used for symmetry detection

(see Section 8.3.3), add the line:

conjugates= x

Using the TopSPIN strategies

Assuming that a specification exhibits a non-trivial group of static channel diagram

automorphisms, TopSPIN can be used to generate a verifier with symmetry reduc-

tion algorithms by typing:

java -jar TOPSPINPATH/TopSPIN.jar SPECIFICATION

All being well, this should generate files called sympan.c and group.o .

The sympan.c file can then be compiled to an executable using gcc :

gcc -o sympan -DSAFETY -DNOFAIR sympan.c group.o

Other SPIN compile-time options can be included as usual: the -DSAFETY and

-DNOFAIR options are merely examples. Except when the segmented strategy is

used, verification using the resulting sympan executable is performed as with the

pan executable produced normally using SPIN. The special case of the segmented

strategy is described below.

To specify which of the enumeration, localsearch, fast or segmented strate-

gies should be used, adjust the strategy line of config.txt accordingly. The

usetranspositions and usestabiliserchain options can be set to true or

false depending on whether efficient application of transpositions and efficient enu-

meration using a stabiliser chain, respectively, is desired.

Symmetry can be specified manually via a line of the form:

symmetryfile=FILENAME

where FILENAME is the name of a file containing generators for a group which

acts on processes identifiers and static channel names. Examples of such files are

available online (see Section 1.2) in the archive of files used for experiments with
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TopSPIN.

If the segmented strategy is selected then it is necessary to execute sympan

from within GAP. To do this, copy the sympan executable to the TopSPIN Common

directory; navigate to this directory; start GAP, and type:

Read("Verify.gap");

followed by:

Verify("sympan");

C.2.3 Modelling guidelines

The user study of Section 8.5 has identified some common specification features

which can render a model asymmetric, as well as some limitations of Symm-

Extractor which require further research and implementation work. We present

some modelling guidelines to help users avoid unnecessary loss of symmetry, and

work around the existing limitations of SymmExtractor and TopSPIN.

Avoiding symmetry breaking features

TopSPIN is capable of exploiting total symmetries associated with Promela specifi-

cations. For the tool to work effectively it is important to ensure that symmetry is

not destroyed by an unnecessarily asymmetric specification style.

Ensure that processes in a specification are started simultaneously. TopSPIN

requires that all run statements are enclosed in an atomic block, within the

init process. This ensures that all processes are instantiated together. Without the

atomic block the processes would be instantiated in a fixed order, which would

destroy any symmetry between processes.

Do not configure processes asymmetrically, unless faithful modelling de-

pends on this. For example, when modelling a telephone network where individual

user processes transition between local states idle, dial, calling, ringing and talk (say),

ensure that all user processes start in the same local state, unless there is a good

reason for doing otherwise. An asymmetric initial configuration may significantly

reduce the size of the symmetry group associated with a specification, leading to

less effective symmetry reduction.

Working within the limits of the tools

TopSPIN and SymmExtractor aim to cope with as much of the Promela language as

possible. However, there are currently various features of the language which are

not supported. In our experience, it is generally possible to re-model a specifica-

tion so that it falls into the set of specifications accepted by the tools. We provide

here a few re-modelling guidelines regarding: the use of statement separators; dy-

namic process creation, and the use of built-in process identifiers over user-defined

identifiers.
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proctype P() {

/ * body * /

}

proctype Q() {
...

run P();

...
}

Figure C.5: Skeleton Promela specification with dynamic process creation.

Due to limitations with the automatic parser generator used in the devel-

opment of TopSPIN, the tool follows strictly the use of statement and declaration

separators defined in the Promela grammar [92]. The grammar states that sepa-

rators should be used as such, rather than as statement/declaration terminators.

SPIN relaxes this restriction, allowing separators to be used optionally as termina-

tors. When using an existing Promela specification with TopSPIN it is usual to have

to modify the way in which semi-colons are used, to some extent. In particular, a

semi-colon must follow the closing brace of an atomic block if the block forms part

of a list of statements.

Dynamic process creation is not supported by TopSPIN. If a specification re-

lies on dynamic process creation then it may be possible to re-model the processes

as shown in Figures C.5 and C.6. Figure C.5 shows a specification which instanti-

ates copies of proctype P dynamically. Assuming that 3 is an upper bound for the

number of instances of P which should be running at any time, Figure C.6 shows

an alternative way of expressing the specification. The proctype P now includes a

channel parameter, and an instance of P waits until it can receive on this channel

before executing its body. Its body is identical to the original, except that it includes

a final goto statement after which it returns to its initial configuration.2 The init

process instantiates three copies of P, each with a distinct synchronous channel. In-

stead of instantiating a copy of P, the proctype Q now offers the literal value 1 to

all channels on which instances of P may be listening. The example of Figures C.5

and C.6 can be adapted to handle multiple process types, with any fixed upper

bound for each process type.

For symmetry to be detected, it is important for proctypes to use their built-

in pid variable rather than a user-defined process identifier. This is illustrated

in Figures C.7 and C.8. Processes in Figure C.7 are parameterised by a byte identi-

fier, which they use to index the st array. SymmExtractor is not yet sophisticated

enough to work out the correspondence between the id parameter and the built-in

identifier for each process. However, the specification can be converted into a form

2. This goto statement should really be part of an atomic block which also resets any local variables
of the proctype to their initial values.
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chan wakeup_P_1 = [0] of {bit};
chan wakeup_P_2 = [0] of {bit};
chan wakeup_P_3 = [0] of {bit}

proctype P(chan start) {

sleep:
start?1;

/ * body * /

goto sleep
}

proctype Q() {
...

if :: wakeup_P_1!1
:: wakeup_P_2!1
:: wakeup_P_3!1

run P();

...
}

init {
atomic {

/ * original ‘run’ statements * /

run P(wakeup_P_1);
run P(wakeup_P_2);
run P(wakeup_P_3)

}
}

Figure C.6: Re-modelled Promela specification without dynamic process creation.

which SymmExtractor can handle, as shown in Figure C.8. The disadvantage here

is that position 0 of the array st is un-used, meaning that an array of size three

rather than two is required, increasing the state-vector size by one byte. On the

other hand, eliminating the id variables reduces the state-vector by two bytes, so

the re-modelling works well for this example.
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mtype = {N,T,C}
mtype st[2]=N

proctype user(byte id) {
do

:: d_step { st[id]==N -> st[id]=T }
:: d_step { st[id]==T && st[0]!=C && st[1]!=C -> st[id]=C }
:: d_step { st[id]==C -> st[id]=N }

od
}

init {
atomic {

run user(0);
run user(1);

}
}

Figure C.7: Promela specification which uses user-defined process identifiers.

mtype = {N,T,C} mtype st[3]=N;

proctype user() {
do

:: d_step { st[_pid]==N -> st[_pid]=T }
:: d_step { st[_pid]==T && st[1]!=C && st[2]!=C -> st[_pid]= C }
:: d_step { st[_pid]==C -> st[_pid]=N }

od
}

init {
atomic {

run user();
run user();

}
}

Figure C.8: Re-modelled specification which uses the pid variable.



Appendix D

Ethics Consent Form and Information Sheet

The following two pages contain copies of the consent form and information sheet

for the user study described in Section 8.5.2. The forms included here are those

given to students from session 2005/2006, and are adapted from a standard exam-

ple [143]. The forms given to students from session 2004/2005 are very similar.
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Acronyms

• BNF Bakus-Naur form

• COP Constructive orbit problem

• COPR Constructive orbit problem with references

• CTL Computation tree logic

• CTL⋆ Extended computation tree logic

• ETCH Enhanced type checker

• GAP Groups, algorithms and programming

• GRAPE Graph algorithms using permutation groups

• LTL Linear temporal logic

• MRS Modelling reactive systems course

• nauty No automorphisms, yes

• SMC Symmetry-based model checker

• SymmSpin Symmetric SPIN

• SPIN Simple Promela interpreter

• SPIN-to-GRAPE A tool for analysing symmetry in Promela specifications

• TopSPIN A symmetry reduction package for SPIN



Mathematical Notation

• H • K Disjoint product of H and K

• H ≀ K Wreath product of H and K

• H × K Direct product of H and K

• H ⋊ K Semi-direct product of H and K

• H ≤ G H is a subgroup of G

• H E G H is a normal subgroup of G

• moved(H) Set of points permuted by H

• moved(α) Set of points permuted by element α

• αβ Conjugate β−1αβ of α by β

• Cn Cyclic group of order n

• Sn Symmetric group of degree n, or isomorphic subgroup of the

group associated with an n-dimensional hypercube

• stabG(x) Stabiliser of the point x in G

• stabG(X) Setwise stabiliser of X in G

• stab∗G(X) Pointwise stabiliser of X in G

• stabG(X ) Stabiliser of partition X in G

• [s]G Orbit of state s under G

• orbG(i) Orbit of component identifier i under G

• Ω An orbit

• O A set of orbits

• GΩ Restriction of G to act on orbit Ω

• GO Restriction of G to act on the union of O

• M Kripke structure

• P High level specification (e.g. in Promela, Promela-Lite or SMC)

• CD(P) Channel diagram associated with P

• SCD(P) Static channel diagram associated with P

• Aut(CD(P)) Group of channel diagram automorphisms

• Aut(SCD(P)) Group of static channel diagram automorphisms
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